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Abstract

Atomic Force Microscopy (AFM) is an extremely powerful tool for exploring surface
topology and nanoscale manipulation and characterization. A feature of AFM is the
existence of highly nonlinear forces between a cantilever tip and sample. One of these
forces that plays a large role in operation of AFM is the Van der Waals (VdW) force.
This force is characterized in part by the Hamaker constant H and cantilever tip ra-
dius R. Measuring these two properties quickly and accurately can facilitate further
characterization methods in dAFM.

This research will focus on creating methods in which H and R can be extracted using
the dynamic response of a cantilever. The VdW force is used to extract H by analyzing
the softening behavior of Frequency Response Curves (FRCs). Electrostatic forces are
used to extract R by applying a simplified Kelvin Probe Force Microscopy (KPFM) tech-
nique. The method proposed to extract H was demonstrated numerically, but technical
limitations prevented an experimental proof of the method. The method to extract R
was proven experimentally and validated using a Scanning Electron Microscopy (SEM)
image.
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Chapter 1

Introduction

The Atomic Force Microscope (AFM) was invented in 1982 as a way to provide a quan-
titative map of surface topography with atomic resolution [1]. Since then, the field has
expanded dramatically, in large due to the invention of dynamic AFM (dAFM) and it’s
two sub modes of operation; Amplitude Modulated AFM (AM-AFM) and Frequency
Modulated AFM (FM-AFM). These modes of operation are a powerful and versatile
technique for atomic and nanometer scale characterization and manipulation of a wide
variety of surfaces [2]. Taken together, these developments have led to the widespread
use of AFM in all fields of science and engineering [3]. In particular, the nonlinear nature
of AFM is increasingly being used and measured to reveal specific properties of the tip
and sample.

This thesis consists of three parts. Firstly, this chapter summarizes existing AFM liter-
ature. It covers the basics behind AFM operation, and briefly elaborates on the existing
methods that are currently being used to extract H and R. The second chapter includes
two papers which summarize the methods proposed to extractH and R respectively. The
last chapter includes a conclusion and recommendation. A collection of supplementary
material has been provided in the appendix.

1-1 Background

AFMs feature a micro cantilever with a sharp tip at its free end close to the surface of a
sample where multiple strongly nonlinear forces are present. These nonlinear tip-sample
interaction forces Fts can be either conservative or dissipative in nature, and are often
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2 Introduction

strongly dependant on the instantaneous tip sample separation d.

Simplified models of these tip sample interaction forces have been made, many of which
have been derived assuming a spherical tip interacting with a perfectly flat surface [3,4].

Figure 1-1: Tip and sample figure. d is the instantaneous tip sample separation, Fts is the
tip sample interaction force at this distance, and a0 is the inter molecular distance.

Most of these force models have analytical expressions which clearly distinguish between
contact and non contact regions. Contact is defined when the tip-sample gap is less than
or equal to the inter molecular distance d ≤ a0, and non contact is defined when d > a0.

Likewise, a few of these models account for the attractive Van der Waals force FV dW
which is derived from Keesom, Debye and London potential energies and integrating
over a continuum of a sphere (the tip) and a plane (the sample). The general expression
for the force becomes

FV DW = − 2HR3

3d2(2R+ d)2 (1-1)

Where H is the Hamaker constant and R is the tip radius.

However, for the case where the tip radius is sufficiently larger than the instantaneous
tip sample separation R� d then this expression can be simplified to

FV dW = −HR6d2 (1-2)

Despite being considered a long range force, the VdW force typically only has an influence
at around a few nanometers or less [5,6]. However, at larger distances retardation effects
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1-2 Force models 3

due to the finite speed of light become apparent and give rise to a Casimir force [5]. This
retardation effect causes the force to fall more rapidly with distance than the traditional
VdW force, and even change sign. However this typically happens outside of the range
of traditional AFM [4].

1-1-1 Hamaker constant

The Hamaker constant is a measure of the strength of the VdW force and varies de-
pending on the media that make up the tip and sample, and the medium it interacts
across [7]. The Hamaker constant for media 1 and 2 interacting across medium 3, H132,
is given by equation 1-3

H132 ≈ (
√
H11 −

√
H33)(

√
H22 −

√
H33) (1-3)

WhereHij is the Hamaker constant for media i interacting across a vacuum with media j.
This equation approximates poorly, however, when applied to media with high dielectric
constants such as water. Nonetheless, the Hamaker constant is typically 5-10 times less
across water than the Hamaker constant across air/vacuum [8]. This means the VdW
force can gradually be reduced as water condenses in between the gap between the tip
and sample.

Table 1-1: Table of Hamaker constants for different materials interacting across a medium
of air or water [7, 9–14]

Hamaker constant Media
H132(10−20J) 1 3 2

6.3 SiO2 air SiO2
18.63 Silicon air Silicon
9.86 Mica air Mica
47 HOPG air HOPG
45.5 Gold air Gold
29.6 Silicon air HOPG
40 Silver air Silver
2.01 Mica water Mica
9.75 Silicon water Silicon
11.5 HOPG water HOPG

1-2 Force models

Many different force models exist to approximate the true tip sample interaction force.
Some force models are more appropriate than others based on the type of material that
constitutes the tip and sample, and the expected applied load during measurement [3,15].
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4 Introduction

Two of these force models are the Hertz force model, and the Derjaguin-Muller-Toporov
(DMT) force model.

1-2-1 Hertz force model

The Hertz force model is a relatively simple contact model because it neglects the ex-
istence of any attractive forces, including the VdW force. The key assumptions behind
this model include negligible adhesion, small tip radius and no long range forces.

Fts =
{

0 if d ≥ a0
4
3E

∗
√
R(a0 − d)3/2 if d < a0

(1-4)

Figure 1-2: Hertz force model

Where R is the tip radius, H is the Hamaker constant, a0 is the inter molecular distance
and E∗ is the effective Young’s modulus. ν is the Poisson ratio and E is the Young’s
modulus.

E∗ =
(1− ν2

tip

Etip
+

1− ν2
sample

Esample

)−1

1-2-2 DMT force model

The DMT contact model is commonly used because it is a hybrid consisting of both
Hertz contact forces and long range Van der Waals (VDW) forces. The long range VdW
forces use the simplified expression given in equation 1-2 [3]. This contact model is
convenient to use since it is a conservative force model, implying there are no dissipative
nonlinear tip sample forces that can lead to hysteresis. However, similar to the Hertz
contact model, it is not differentiable at a0, making it also quite challenging to analyze
numerically. This model assumes low adhesion and hard substrates [2].
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1-2 Force models 5

Fts =
{

−HR6d2 if d ≥ a0
−HR6a2

0
+ 4

3E
∗
√
R(a0 − d)3/2 if d < a0

(1-5)

Figure 1-3: DMT force model

1-2-3 Electrostatic forces

Electrostatic forces arise from quantum mechanical phenomena whereby electrons tunnel
from a sharp metallic tip to a sufficiently conductive substrate. This essentially creates
a capacitor between the tip and sample which results in an adhesive force. Electrostatic
forces typically have the largest strength and longest range [16]. The long range elec-
trostatic force can be measured and mitigated by using Kelvin Probe Force Microscopy
(KPFM) which creates a bias voltage, nullifying the capacitor [3, 17]. In general the
electrostatic force that exists between a static tip and sample can be written as

Felec = −1
2
dC

dz
∆V 2 (1-6)

Where ∆V is the potential difference between the tip and sample, C is the capacitance,
and z is the static tip sample gap between the tip and sample. Since the capacitance
is largely a function of the geometry of the cantilever, there are many different models
for the electrostatic force between the tip and sample [17, 18]. However, a complete
analytical formula has been outlined in the appendix B, which breaks the components of
capacitance gradient into 3 separate regions; the tip apex, tip cone and cantilever base.
The total capacitance is the sum of all 3 components [16].

dC

dz
= dC

dz apex
+ dC

dz cone
+ dC

dz lever
(1-7)

The apex term tends to dominate at low gaps between tip and sample, whereas the
cone and lever components tend to dominate at large gaps [17]. Lately, however, more
attention is being put towards modelling the whole cantilever - tip system numerically,
rather than analytically [19].

Master of Science Thesis Matthew James



6 Introduction

1-3 Cantilever dynamics in AFM

In dynamic AFM (dAFM) the cantilever is intentionally exposed to additional external
forces which make the cantilever vibrate. There are two popular methods of excita-
tion; acoustic and magnetic. In acoustic excitation, a piezoactuator in contact with the
micro-cantilever chip holder drives its oscillation. In magnetic excitation, an oscillating
magnetic field beneath the sample drives cantilever oscillation [20]. These methods will
produce theoretically different Frequency Response Curves (FRC’s), however these dif-
ferences can only be observed for low cantilever stiffness k and quality factor Q. For
high k or high Q the differences become negligible [20]. Figure 1-4 illustrates the various
defined positions of the cantilever while undergoing acoustic excitation.

Figure 1-4: Cantilever Deflection configurations under acoustic excitation. In order from
top to bottom; undeflected, static deflection, static deflection + base excitation, instantaneous
displacement

w∗(x) denotes the static displacement of the cantilever without any external excitation,
Y sin (ωt) denotes the base excitation from the piezo, w(x, t) is the absolute instanta-
neous position of the cantilever and u(x, t) is the instantaneous position of the cantilever
relative to base excitation and static deflection. d(t) is the instantaneous tip sample gap,
η∗ is the static deflection tip sample gap, and Z is the undeflected, unforced position of
the cantilever tip sample gap.

The dynamics of the cantilever can be well approximated using Euler-Bernoulli Beam
theory. In this formula f(x) is the external force per unit length acting on the cantilever.
Since a positive tip sample force is a point force that is considered repulsive by convention
f(x) = −Ftsδ(x− L) [12, 21,22].

ρAẅ(x, t) + EIw′′′′(x, t) = f(x)
ρAü(x, t) + EI(u′′′′(x, t) + w∗′′′′(x)) = −Fts(η∗ − u(L, t)− Y sinωt)δ(x− L) + ω2ρAY sinωt

(1-8)
Solving this equation of motion for u(x, t) is difficult due to the presence of nonlinearities.
However, the cantilever tip can be accurately modelled as a single degree of freedom
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1-3 Cantilever dynamics in AFM 7

(SDoF) spring mass damper instead, so long as it’s oscillating near it’s first natural
frequency. By using Euler Bernoulli beam theory it can be proven (as shown appendix
chapter C-1) that the equivalent spring stiffness and equivalent mass of this 1 DoF system
is

k = 3EI
L3

m ≈ 0.242mc

Where E is the youngs modulus, I is the moment of inertia, L is the length, and
mc = ρAL is the mass of the cantilever.

The excitation of the whole cantilever caused by the piezo can be accounted for by mod-
elling the 1 DoF system as if both a base and mass are undergoing harmonic excitation.
An additional damper is added which is to account for several (largely unknown) dissi-
pative interactions. The equation that governs this motion is described below. Note that

Figure 1-5: 1 DoF base excitation model of cantilever tip

the natural frequency far from the sample is ω0 =
√

k
m and the quality factor far from

the sample is Q = mω0
c . The equation can also be nondimensionalized by introducing

nondimensionalized time and displacement τ = ω0t and x = q
z . The nondimensionalized

equation of motion is also presented in 3D state space.

mq̈ + cq̇ + kq = mω2Y sin(ωt)− cωY cos(ωt) + Fts(z + q + Y sinωt)

x′′ + 1
Q
x′ + x = ( ω

ω0
)2Y

z
sin( ω

ω0
τ)− ω

ω0

Y

z

1
Q

cos( ω
ω0
τ) +

Fts(z + zx+ Y sin ω
ω0
τ)

zkx′y′
Z ′

 =

 y

( ωω0
)2 Y

z sin(Z)− ω
ω0

Y
z

1
Q cos(Z) + Fts

zk −
1
Qy − x

ω
ω0


(1-9)

The equation of motion shown in equation 1-9 was derived using harmonic base excita-
tion, however many authors simplify this expression and assume the equation of motion
has the form of simple point excitation instead [2]. The following equations shows the
equation of motion for point excitation, the non dimensionalized equation of motion
(using τ = tω0 and x = q

z ) and the non dimensionalized equation of motion in state
space form.
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8 Introduction

Figure 1-6: 1 DoF point excitation model of cantilever tip

q̈ + ω0
Q
q̇ + ω2

0q = F0
m

sin(ωt) + Fts(z + q)
m

x′′ + 1
Q
x′ + x = F0

kz
sin( ω

ω0
τ) + Fts(z + zx)

kzx′y′
Z ′

 =

 y
F0
kz sin(Z) + Fts

kz −
1
Qy − x

ω
ω0


(1-10)

1-4 Frequency Response Curve

The Frequency Response Curve (FRC) is a compact way of expressing the steady state
amplitude of the cantilever tip A over a range of drive frequencies ω. In the absence
of tip sample interaction forces, the FRC is linear showing a single, vertical peak in
amplitude at its natural frequency. However, due to the presence of the highly nonlinear
tip sample interaction forces, the FRC begins to curve, creating complicated hysteric
dynamics. A complete analytical expression for the FRC is not possible, however an
approximate model assuming only the presence of the Van der Waals force (VdW) is
derived in the appendix in section A-1.

It’s important to notice that the FRC is strongly dependant on the static tip sample
gap z and strength of excitation F0. Since Fts approaches 0 at large distances from
the sample, the FRC will look linear at large z and will be governed by the following
amplitude and phase equations.

Afar = F0
k

1√(
1− ( ωω0

)2
)2

+
(

1
Q
ω
ω0

)2

αfar = tan−1
( ω

ω0

Q(1− ( ωω0
)2)
) (1-11)
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1-4 Frequency Response Curve 9

Where Afar and αfar is the amplitude and phase of the tip far from the surface, Q is
the quality factor and ω

ω0
is the nondimensionalized excitation frequency. However, for

experiments in which the tip is significantly close to the sample (but still not in contact),
the presence of the nonlinear attractive forces will make the FRC undergo a softening
behavior in which the FRC amplitude peak and corresponding phase curves left. This
implies that the natural frequency decreases while oscillating in the attractive regime.
This is mainly because the attractive forces effectively act to decrease stiffness of the
system in this regime.

Likewise, if the tip gets even closer to the sample such that it is in contact, then the
large repulsive forces will cause the FRC to undergo a hardening behavior in which the
FRC amplitude peak and corresponding phase curves right. This is mainly because the
tip sample interaction force effectively increases stiffness of the system in this regime.

For these nonlinear curves to be noticed, either the static tip sample gap z needs to be
sufficiently close to the sample, or the external forcing of the cantilever needs to be large
enough to cause the tip to dip close enough to the sample during its oscillation.

Figure 1-7 shows a typical FRC calculated using a point excitation model from equation
1-10 [23]. It demonstrates the influence additional forcing and static tip sample gap can
have on the FRC. Both can experience softening and hardening behavior if the forcing
is sufficiently large or the static tip sample gap is sufficiently small.

(a) FRC increasing forcing (b) FRC decreasing static gap

Figure 1-7: FRCs calculated using point excitation model. Figure 1-7a increases forcing while
fixing static displacement (z = 10nm). This shows the transition from linear to softening to
hardening behavior. Figure 1-7b decreases static gap while fixing forcing (Afar = 11nm) [23].

As shown in figure 1-7, there are a range of drive frequencies for which multiple am-
plitudes are possible. This can be understood more completely through the use of a
2D phase space diagram which capture the transient and steady state motion of the tip
oscillation visually. Since FRCs only feature steady state information, the amplitude of
the FRC at a specific drive frequency corresponds to the maximum displacement of a
limit cycle (ie periodic solution) - and all transient motion between these limit cycles is
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neglected. If an excitation frequency has multiple corresponding amplitudes, then this
implies the existence of multiple stable/ unstable limit cycles. Limit cycles that are un-
stable will correspond to an amplitude point which lies on an unstable amplitude branch.
Consequently, these branches are impossible to see naturally through experiment.

Due to the presence of unstable amplitude branches, a hysteretic nature can be observed
during a frequency sweep whenever an unstable saddle node bifurcation is reached. On
the onset of hitting an unstable limit cycle, the amplitude will instantly spike up/down
to the nearest stable amplitude. This jump in amplitude will be different for forward
frequency sweeps and backward frequency sweeps leading to path dependant behavior.

1-5 Analytical theory

Recent theoretical strides have allowed the motion of the AFM tip to be well approx-
imated by analytical formulas. By introducing two new variables; the Virial Vts and
the Energy Dissipation Ets, and making a few reasonable assumptions, some valuable
expressions and intuitions can be gained.

Firstly, even though a harmonic base excitation equation of motion is more accurate,
a more simple force excitation model is assumed. The tip sample force has also been
deconstructed into conservative (also known as path independent since the force only
depends on the distance between the tip and sample, not the path taken to get there)
and dissipative (also known as path dependant) parts Fts = Fts,cons + Fts,diss.

1
ω2

0
q̈ + 1

ω0Q
q̇ + q = F0

k
sinωt+ 1

k
(Fts,cons + Fts,diss) (1-12)

Where F0 is the excitation force. Despite nonlinear components of force, it is assumed
that the steady state displacement of the tip is purely sinusoidal q = A sin(θ) where
θ = ωt − α. Also, at some fixed static gap z, the conservative force applied back on
the tip due to the sinusoidal motion around z can be assumed to be some even function
vs θ (since it is path independent), whereas the dissipative force can be assumed to
be some odd function (since it is path dependant and acts in a direction that opposes
the velocity of the tip). The Virial Vts and Energy Dissipation Ets are defined by the
following relations.

Vts =< Fts,consq > = 1
2π

∫ 2π

0
q × Fts,consdθ

= kA2

2 (1− ω2

ω2
0

)− AF0
2 cosα

(1-13)
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1-6 Operational modes of AFM 11

Ets = − < Fts,dissq > = − 1
2π

∫ 2π

0
q × Fts,dissdθ

= πAF0 sinα− πkA2ω

Qω0

(1-14)

The Virial Vts can be thought of as the negative of stored energy in the conservative
tip sample interaction, whereas the Energy Dissipation Ets can be thought of as the
irreversible work done in one oscillation cycle by the tip on the sample. Using equations
1-13 and 1-14 and eliminating α, relationships for the nonlinear natural frequency ω′0
and quality factor Q′ at some fixed static gap z can be found.

ω′0 = ω0 − ω0
Vts
kA2

Q′ =
( 1
Q

+ ω0Ets
ωπkA2

)−1
(1-15)

Likewise, the amplitude reduction (also called setpoint) and phase can be found for the
case where the tip is oscillating near resonance. The amplitude reduction A

Afar
is the

ratio of the amplitude of steady state oscillation at some static gap z to the steady
state amplitude sufficiently far away from the sample such that tip sample forces can be
neglected. Formulas for the amplitude reduction and steady state phase are outlined in
equations 1-16 and 1-17.

A

Afar
=

1
Q√

(−2 Vts
kA2 )2 + ( 1

Q + Ets
πkA2 )2

(1-16)

tanα =
1
Q + Ets

πkA2

−2 Vts
kA2

(1-17)

1-6 Operational modes of AFM
As discussed in section 1-5, the amplitude, phase shift and natural frequency of the
cantilever change as the cantilever is slowly made to move toward or away from the
surface. This fact can be exploited to scan the topography of the surface through the
use of a feedback controller. Two different styles of controlling the system are Ampli-
tude Modulated AFM (AM AFM) and Frequency Modulated AFM (FM AFM). These
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12 Introduction

techniques are different in operation but can both be used to measure the topography of
a sample. Lock in Amplifiers (LIA) are used in all dAFM’s. Their purpose is to detect
the amplitude and phase of the cantilever accurately during measurement. In reality
the signal recorded from the photo diode will contain noise and higher harmonics which
is not desired (unless using multifrequency AFM). It’s possible to lock on to a single
frequency (normally the driving frequency) to extract useful data by integrating out the
other data over a sufficiently long time. In addition to this authors have also suggested
the design of multiple frequency LIA’s [24]. Phase Locked Loops (PLL) are commonly
used in FM AFM to keep a system at resonance, which occurs when the excitation force
is approximately 90o out of phase with the steady state displacement of the cantilever.
To do this, the PLL acts as a controller that works in tandem with a LIA to get a
feedback value for the phase so that it can be controlled to be 90o.

1-6-1 AM AFM

Information about the position of the cantilever is measured by shining a laser on the end
of the cantilever as it’s in motion. The laser reflects from the cantilever to a 4 quadrant
photo diode which records instantaneous relative displacement. The feedback loop of
the controller can adjust multiple parameters including drive excitation force, excitation
frequency and base height of the cantilever in order to keep the static tip sample gap z a
a fixed distance above the topography of the sample. In AM AFM (also called tapping
mode AFM), the amplitude A of the tip is controlled to be constant by adjusting the
static displacement of the cantilever z. To do this, the drive frequency ω and forcing F0
is kept constant so that any changes in the amplitude are purely a result of tip sample
gap differences caused by changes in topography as the tip scans the surface. Clearly the
displacement of the cantilever to maintain constant amplitude must be effectively equal
to the relative height of the sample, hence creating 1D topography scan. This process is
repeated multiple times, scanning hundreds/thousands of lines across a rectangular area
of the sample. A powerful advantage of AM AFM is that the phase (which has been left
to vary) provides additional data which can be used to find material properties.

1-6-2 FM AFM

In FM AFM, the natural frequency of the cantilever ωn (which can change due to
the presence of nonlinear forces) is controlled to be constant by adjusting the static
displacement of the cantilever z. Multiple feedback loops are included which make
sure that the drive frequency always matches the natural frequency - which implies
maintaining resonance where the phase lag = 90o. And the amplitude remains constant
by adjusting the force excitation F0. Since the amplitude and phase is controlled to be
constant, any change in natural frequency (also called frequency shift ∆ωn) must be a
result of changes in the topography as the tip scans the surface. Just like AM AFM,
the the displacement of the cantilever effectively maps the relative topography height.
A powerful advantage to this mode of operation is the increased sensitivity without any
restriction to bandwidth due to constantly exciting the cantilever at resonance [2].
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1-7 Measuring Hamaker constant 13

1-6-3 KPFM

KPFM is another operation mode of AFM. KPFM is a non contact technique for mea-
suring the surface potential (or surface voltage Vs) of a sample [25, 26]. There are a
few different variants of KPFM. One of these methods involves scanning the topography
of a sample by exciting the cantilever mechanically at the first natural frequency. In
addition to this, the cantilever is also excited electrically with a DC and AC tip voltage.
This tip voltage will cause the electrostatic force to have components at three distinct
frequencies. One of these components is presented in equation 1-18.

Felec0 = −1
2
dC

dz

(Vs − VDC)2 + 1
2V

2
AC


Felec1 = dC

dz
(Vs − VDC)VAC sin(ωelect)

Felec2 = 1
4
dC

dz
V 2
AC cos(2ωelect)

(1-18)

Where Vs is the surface voltage, VDC is the applied DC tip voltage, VAC is the applied
AC tip voltage, and ωelec is the applied AC electrical frequency. As the tip moves along
the surface, a separate LIA is used to output the amplitude and phase at ωelec. A
controller is then used to adjust VDC such that the amplitude measured at the electrical
excitation frequency is zero - effectively mitigating Felec1. This DC voltage is known
as the bias voltage because it perfectly matches the sample voltage to cancel out the
electrostatic force. Consequently, this bias voltage is also a record of Vs at every point
along the sample.

1-7 Measuring Hamaker constant

The Hamaker constant is a quantity that describes the strength of the attractive region
of the VdW force between a spherical tip and a flat substrate. In the literature, there
have been several ways this constant has been calculated or measured. Historically, H
has been calculated theoretically using Lifshitz theory. But it can also be measured
experimentally using a variety of techniques. Three of the most common ways of finding
H have been outlined below.

1-7-1 Lifshitz theory

Theoretically H can be calculated using quantum electrodynamic Lifshitz theory. This
theory takes into account the interaction potential energy from Keesom, Debye and
London effects between all atoms that make up the tip and sample. By assuming a
continuum model of the tip and surface, and assuming the tip radius is much larger than
the tip-sample gap (R� d), the well known attractive component of the VDW force is
derived to be F (d) = −HR

6d2 where
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H = π2ρ1ρ2CV DW (1-19)

Where CV dW is a constant depending on the number density of atoms, the dipole mo-
ment, the polarizability, and I is the ionization energy.

Lifshitz theory is commonly used as the standard against which experimental meth-
ods are evaluted, it has some limitations which make direct experimental measurement
preferable. Firstly a limitation of Lifshitz theory is that it doesn’t rigorously characterize
the collective nature of macroscopic dispersion interactions [27]. Also, the application
of this formula is limited by the need for optical response data over a wide range of
frequencies for the interacting materials, and this information is available only for a
relatively small number of materials [28].

1-7-2 Static AFM

A simple way to measure H directly is to use static AFM. H can be measured by slowly
lowering the cantilever until the tip snaps into contact. H is found by solving for when
the tip sample force equals the restoring force, and when the slope of the interaction
force equals the slope of the restoring force. The result is given by equation 1-20 [29].

These two equations can be solved simultaneously to find Hamaker constant in terms of
the cantilever stiffness k, tip radius R and undeflected position of the cantilever when
snap-in occurs zjump [29].

H =
8z3
jumpk

9R (1-20)

This formula for predicting H is limited due to the inherent flaws in Static AFM. Since
the substrate and the cantilever must realistically approach each other with a non zero
approach speed, the cantilever system is inherently dynamic. Likewise, the snap-in
point only truly exists in the limit where the approach speed is 0, and cannot be reliably
determined from an AFM static deflection curve. [28].

1-7-3 Quasi-dynamic AFM

The method proposed in subsection 1-7-2 H can be improved by using a “quasi-dynamic"
method which improves upon the static method by accounting for finite times taken to
snap into contact [30]. In practice there will always be some finite approach speed vc be-
tween the tip and sample before snap-in, which makes the system is inherently dynamic.
This complicates matters because for finite approach speeds a true jump point doesn’t
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1-8 Measuring the tip radius 15

appear and the amount the cantilever deflects during snap-in varies. Consequently, ap-
plying the static formula to an intrinsically dynamic system will only yield an apparent
Hamaker constant Happ.

To solve for the true Hamaker constant H, the following method is applied. Firstly, the
amount the cantilever is deflected once it has snapped into the surface ∆d is calculated
for a range of approach speeds. This is done by assuming the tip undergoes forced
projectile motion without the presence of damping during snap-in. Next, the apparent
Hamaker constant can be calculated at each value of ∆d using the static AFM equation.

Happ = 3k(∆d)3

R
(1-21)

Next Happ is plotted against vc and a curve fitting technique is used to extract the value
of Happ at vc = 0. Since 0 approach speed corresponds to the theoretically perfect static
case, this will yield the true Hamaker constant.

H = Happ(vc = 0) (1-22)

The main limitations of this method is the time and computation effort it takes to
perform the calculations. For this method to be used, a very similar process must be
done to ensure H is calculated at a theoretical 0 sampling resolution. Another difficulty
of this method is accurately measuring the tip radiusR for use in equation 1-21. However,
other authors have improved upon this method by using a calibration surface to get an
effective tip radius Re, hence avoiding the need for precise knowledge of tip geometry
altogether [28].

1-8 Measuring the tip radius
The tip radius of the cantilever R can be measured in many different ways that don’t
involve imaging using a Scanning Electron Microscope (SEM) [31]. Many of these meth-
ods exploit the electrostatic forces that exists between the tip and sample because they
are largely dependant on the geometry of the cantilever tip [32]. Two existing methods
for extracting R using electrostatic forces have been outlined below.

1-8-1 Force vs static gap
The tip radius can be extracted from a force distance curve by fitting it to an analyt-
ical approximation of the electrostatic force [33]. The analytical approximation of the
Electrostatic force can be modelled using a very simplified Generalized Image-Charge
Method (GICM) [34], which resembles a flat plate capacitor model.
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By applying a large DC tip voltage, the electrostatic force can be magnified allowing a
fit to be extracted more reliably from the slope of the Fts vs 1/z curve.

This method is very simple and effective at low static gaps. However, the simplified
analytical model doesn’t fully account for the capacitance gradient influences from the
cone or cantilever base. Likewise, the method uses static AFM which can result in earlier
snap-in at z values, limiting the most valuable data close to the sample.

1-8-2 DC voltage vs static gap

Another method uses dAFM under the influence of electrostatic forces to extract R [35].
In this method, an AC and DC tip voltage is applied to generate an electrostatic force
with multiple frequency components. The DC tip voltage VDC is varied while recording
the static gap z as its regulated to give a constant force gradient. The force gradient
is kept constant by controlling the resonance frequency of the cantilever to be constant.
The corresponding z − VDC curve can be fitted to a simplified analytical model of the
force gradient to extract R.

Felec = −πε0R(∆V )2

d

F ′elec = πε0R(∆V )2

d2

(1-23)

Where ε0 is the absolute permitivity constant and ∆V is the difference in voltage between
the sample and the tip. F ′elec is the derivative of the electrostatic force Felec with respect
to d.

This method is effective because the z − VDC curve can also provide insights into the
approximate shape of the cantilever tip. An additional advantage of this method is that
it operates in FM-mode which is especially sensitive to the geometry of the tip apex due
to the detection of the force gradient [36].

1-9 Conclusion
A summary of AFM operation and a brief review of existing methods to extract H and R
has been presented. The literature indicates that it is possible to extract H by analyzing
the motion of the tip in the presence of the VdW force. The literature also indicates
that it is possible to extract R using electrostatic forces.

The trademark softening behavior that is expected to be observed when oscillating suffi-
ciently close to the sample will be determined in part by the VdW force. Consequently,
by carefully obtaining forward and backward frequency sweeps, H can be fitted and
extracted. A difficulty in this method involves mitigating or modelling other adhesive
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1-9 Conclusion 17

forces that could also produce softening behavior. Fortunately, a bias voltage can mit-
igate the electrostatic forces, and a hydrophobic sample in low humidity can minimize
capillary forces.

Exploiting electrostatic forces are an ideal way to extract the tip radius because they
are highly dependant on the geometry of the cantilever. The capacitance gradient is
dominant at low static gaps, implying the tip radius can be extracted from capacitance
gradient data generated using a simplified KPFM technique.
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ABSTRACT
A newmethod to extract the Hamaker constant using dynamic Atomic Force Microscopy (dAFM)

is proposed. The Hamaker constant is extracted by fitting nonlinear Frequency Response Curves
(FRCs) to analytical approximations of the amplitude and phase. A fast and robust optimization
scheme is implemented to output the Hamaker constant, effective quality factor, and effective point
force excitation. This method is validated by applying the fitting scheme to numerical data based on
a point force excitation model. Two sets of formulas have been derived using the method of averag-
ing. These formulas are analyzed statistically to provide an upper limit on the expected uncertainty in
measuring the Hamaker constant.

1. Introduction
Atomic Force Microscopy (AFM) is a tool that has been

traditionally used to image surfaces with nanometer resolu-
tion. In addition to imaging, AFM can be used to charac-
terize materials at the nanoscale level. This is done by ex-
ploiting the large nonlinear tip-sample forces that exist be-
tween a microcantilever tip and sample. In nanotechnology,
one of the challenges is to characterize the nanoscale inter-
action. In this framework, a key parameter is the Hamaker
constant H . This constant is a measure of the strength of
the Van der Waals (VdW) force [1], and varies depending
on the material that makes up the tip and sample, and the
surrounding medium [2]. The VdW force typically only in-
teracts with the cantilever tip within a few nanometers or
less [3, 4]. This makesH difficult for extraction largely be-
cause of the presence of other tip sample interaction forces.
These can include but are not limited to electrostatic forces
and capillary forces [5]. Additionally, when the cantilever
tip approaches these small distances slowly, it is prone to
snap-in - a phenomena in which the restoring force of the
cantilever is overpowered by the net adhesive forces between
the tip and sample.

This snap-in behavior can be exploited to measureH by
recording the corresponding static gap jump [6]. However,
this method is limited by the inherent assumptions behind
static modeAFM. Since the substrate and the cantilevermust
realistically approach each other with a non zero approach
speed, the cantilever system is inherently dynamic. Other
methods improve upon this by using a ‘quasi-dynamic’method
[7]. In this case, the dynamics of snap-in are modelled into
the equation for predictingH . However, thismethod is timely
and requires high resolution static displacement curves.

The difficulties associated with snap-in can be mitigated
by vibrating the cantilever base mechanically using a shaker
piezo. In this case, the inertial forces that exist during an
oscillation allow the tip to probe closer to the surface while
minimizing the chance of snap-in. This method of dynamic

ORCID(s):

AFM (dAFM) has many additional advantages associated
with it. One such advantage is that the amplitude and phase
of the cantilever can contain information about the nonlin-
ear interaction forces. A Frequency Response Curve (FRC)
measures the steady state amplitude of the cantilever while
the excitation frequency is gradually increased or decreased.
If the cantilever tip is oscillating close to the sample in the
attractive regime then the FRC will exhibit softening behav-
ior. If the tip is oscillating purely in the attractive regime,
and if these adhesive forces are sufficiently large to cause
pronounced softening behavior, two unstable saddle node bi-
furcations can occur. One of these bifurcations occur at a
low amplitude, whereas the other bifurcation will occur at a
higher amplitude. Experimentally, a forward/backward fre-
quency sweep results in a rapid increase/decrease in steady
state amplitude. As a result, this creates an unstable ampli-
tude branch in the FRC, leading to hysteresis.

The FRC is an ideal way to measureH . This is because
the softening behavior caused by the VdW force can be fitted
to an analytical model. Additionally, if the softening is suffi-
ciently large such that hysteresis occurs, the peak of the FRC
can be easily identified which can help facilitate a fitting.

Analytical equations for both amplitude and phase have
been derived using the method of averaging. These equa-
tions have been fitted to numerical and experimental data to
extractH and two other parameters: the effective excitation
force F0, and the effective quality factor Q. To accomplish
this fitting a robust optimization algorithm based on a mod-
ified least squares technique was implemented. A statistical
analysis was also conducted which provides insight on the
upper limit of uncertainty in the extracted H from an ex-
perimentally generated FRC. Lastly, a comparison between
FRCs based on different models of the VdW force are dis-
cussed quantitatively.

This paper will have the following structure. First, in
section 2, the analytical formulas for amplitude and phase is
presented and discussed. In subsection 2.1, the optimization
algorithm which can extract H and other parameters from
FRC data is outlined. In section 4 the analytical expressions
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based on different VdW force models are compared. In sec-
tion 5, an upper limit in the uncertainty in H is discussed
quantitatively. Lastly, an experimental FRC fitting has been
discussed in section 6.

2. Hamaker constant using FRCs
Analytical approximations of the FRC by means of the

method of averaging has been presented in the literature [8].
Using thismethod, equations for both the amplitude and phase
have been derived. These equations assume that the tip oscil-
lates exclusively in the presence of the VdW force, and that
the point force harmonic excitation model is valid. Deriva-
tions for these equations have been outlined in section A-1
of appendix A.

Ω = 1 ± 1
2

√( F0
kzr

)2
−
( 1
Q

)2
−Hf (r, R, k, z) (1)

Ω = 1 + 1
2Q tan �

−Hg(�,R, k, z, F0, Q) (2)

Equation 1 captures the nondimensionalized excitation fre-
quency Ω = !

!0
as a function of nondimensionalized ampli-

tude r = A
z , and equation 2 captures the nondimensionalized

excitation frequency as a function of phase �. Where! is the
piezo excitation frequency, !0 is the first natural frequencyfar from the sample, A is the amplitude, z is the static gap
between tip and sample, F0 is the excitation force, k is the
stiffness,Q is the quality factor,H is the Hamaker constant,
and R is the tip radius. The nonlinear components that de-
scribe the softening behavior of the FRC are f (r, R, k, z) and
g(�,R, k, z, F0, Q). These terms depend on the VdW force
model used. The general expression for the VdW force be-
tween a sphere (the cantilever tip) and a plane (the sample)
is given by the following equation. [2, 9].

FV dW ,1 = −
2HR3

3d2(2R + d)2
(3)

where d is the instantaneous tip sample separation. If the tip
and sample are sufficiently close such that R ≫ d, then the
VdW force can be simplified to the following equation.

FV dW ,2 = −
HR
6d2

(4)

The nonlinear frequency terms that correspond to the
general VdW force model from equation 3 are denoted as
f1(r, R, k, z) and g1(�,R, k, z, F0, Q). The nonlinear terms
that correspond to the simplified VdW force model from
equation 4 are denoted as f2(r, R, k, z) and g2(�,R, k, z, F0, Q)correspond to FV dW ,2. These terms have been outlined be-
low.

f1 =
1

6kr2z3

[
(1 − r2)z4 + 8R3z + 12R2z2 + (6 − r2)Rz3

(4R2 + 4Rz + (1 − r2)z2)3∕2

+ r
2(R + z) − z
(1 − r2)3∕2

] (5)

g1 =
k2

6F 2
0Q2 sin2 �

[
F 2
0Q

2(R + z) sin2 � − k2z3
(
k2z2 − F 2

0Q2 sin2 �
)3∕2 +

F 2
0Q

2(R + z) cos2 � − F 2
0Q

2(R + z) + k2(2R + z)3
(
F 2
0Q2 cos2 � − F 2

0Q2 + k2(2R + z)2
)3∕2

] (6)

f2 =
R

6kz3(1 − r2)3∕2
(7)

g2 =
Rk2

6(k2z2 − F 2
0Q2 sin2 �)3∕2

(8)

A comparison between these formulas will be presented
in section 4. Equation 1 demonstrates that the natural fre-
quency !n will decrease with increasing amplitude. The
backbone curve, which is the locus of the natural frequency
Ωbb =

!n
!0
, is given by the following equation.

Ωbb = 1 −Hf (r, R, k, z) (9)
Equation 1 and equation 2 do not model in the repul-

sive force, these formulas are only valid for instantaneous
tip sample gaps greater than the inter molecular distance a0.Hence these formulas are only valid within the amplitude
range

0 ≤ r ≤ rpeak ≤ 1 − a0
z

(10)

Where rpeak = F0Q
kz is the maximum amplitude of the

FRC. This value, and it’s corresponding frequency Ωpeak =
1−Hf (rpeak, R, k, z) very accurately approximate the soft-
ening peak of the amplitude FRC. Likewise, it can be derived
that r = rpeak sin �, which implies that the corresponding
phasewill occur approximatelywhen � = �peak = �

2 . Lastly,it can also be shown that with sufficient softening behavior
present, two unstable saddle node bifurcations can occur. As
shown in figure 1, one bifurcation will occur approximately
near the peak of the FRC. This is where a sudden decrease
in steady state amplitude will be observed experimentally
during a backwards frequency sweep. The other bifurcation
will occur at a lower amplitude, and higher frequency. This
is where an increase in steady state amplitude will be ob-
served experimentally during a forwards frequency. Exact
locations of these bifurcatdions can be found by solving for
dΩ
dr =

dΩ
d� = 0.

2.1. Nonlinear identification algorithm
2.1.1. Amplitude - frequency fit

In order to identify H , a nonlinear identification algo-
rithm has been developed using a least squares fitting tech-
nique. Amplitude and phase data were fitted to equations 1
and 2 separately. The fit was designed to output three fit-
ting parameters; H , F0 and Q. The excitation force on the
cantilever is unknown since the raw base excitation signal is
measured in volts. Likewise, the calibrated value of Q far
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Figure 1: Plot showing softening due to the presence of the VdW
force. Unstable saddle node bifurcations occur at the blue and green
dots. A forward frequency sweep will result in an increase in am-
plitude and a decrease of phase. A backward frequency sweep will
result in a decrease in amplitude and an increase in phase.

from the sample cannot be used due to the presence of non-
linear damping which is not modelled in analytical equations
1 and 2. Consequently, F0 is an effective point force excita-
tion term, and Q is an effective linear damping at a specific
static gap.

The bi-stable response leads to more than one amplitude
point per frequency. Consequently, traditional least squares
fitting methods are inadequate to fit the amplitude FRC. In
order to overcome this issue, a modified least squares fit-
ting approach was utilized where the nonlinear curve and
data were both sheared by an amount defined by the nonlin-
ear function Hf (r, R, k, z) from equation 1. This shearing
causes the curve to become linear, facilitating a least squares
fitting. Each non dimensionalized frequency and amplitude
data point (Ωi, ri) was sheared horizontally by an amount
Hf (ri, R, k, z).

(
Ωs,i, rs,i

)
=
(
Ωi +Hf (ri, R, k, z), ri

)
(11)

rs =
F0
kz

1√
4
(
Ωs − 1

)2
+
(
1
Q

)2 (12)

The sheared data point is given in equation 11. The lin-
ear sheared curve is given by equation 12 and is derived in
the section A-2 of appendix A. The subscript ‘s’ denotes the
sheared data points or variables.

Equation 12 represents the new one-to-one sheared func-
tion, and equation 11 represents the new parameterised sheared
data. A least squares technique can now be applied with the
sheared function and sheared data. The optimization process
involved minimizing the sum of the square of the vertical
differences between each sheared data point and the sheared
curve. This vertical difference is defined as Li and is given
by the following equation.

Li = rs,i −
F0
kz

1√
4
(
Ωs,i − 1

)2 + ( 1
Q

)2 (13)

The fitting was desired to be most accurate near high am-
plitude regions of the FRC where softening behavior is ob-
served. Consequently, a linear scaling was applied to each
L2i termwhereby a larger weightingwas applied to data points
with larger amplitudes and a lower weighting was applied to
data points with lower amplitudes.

Si = cri (14)

This scaling function Si is given by formula 14 where c
is a constant determining the strength of the linear scaling
desired.

Multiple constraints were applied to the identification al-
gorithm. Most of the constraints were linear and used to
ensure that the parameter values rested in between a lower
bound and upper bound of their expected value. The range
of this lower and upper bound span several orders of mag-
nitude for the parameters F0 and H , whereas the range was
made much smaller for Q to force the optimization not to
deviate too strongly from the calibrated value of the quality
factor Q0 far from the sample. Two nonlinear equality con-
straints were also used to ensure that the peak of the FRC
was always fitted. Thus, using amplitude FRC data to solve
for the parameters F0, H , and Q, expressed in SI units, is
equivalent to solving the following optimization problem.

min
N∑
i=1
Si ×L2i such that

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

10−11 ≤ F0 ≤ 10−4
10−22 ≤ H ≤ 10−15
0.4Q0 ≤ Q ≤ 1.6Q0

ri,peak =
F0Q
kz

Ωi,peak = 1 −Hf (
F0Q
kz
, R, k, z)

(15)
Where ri,peak and Ωi,peak is the unsheared data point corre-
sponding to the peak of a backwards frequency sweep data
set. If the fitting procedure is applied to a forward frequency
sweep data set, then the equality constraints need to be re-
placedwith a broader nonlinear inequality constraint ri,peak <
F0Q
kz .
2.1.2. Phase - frequency fit

The phase - frequency fit was made using a more tradi-
tional horizontal least squares optimization. The fitting is
similar to the amplitude - frequency fit explained in section
2.1.1, but with a few exceptions. Firstly, Li = Ωi − 1 −

1
2Q tan �i

− Hg(�i, R, k, z, F0, Q). Secondly, since in prac-
tice the phase of the base motion is typically not measur-
able, all the phase data can be offset by an unknown constant
amount. Effectively, this means that there are 4 parameters
to be found from the fit. F0,H , Q, and the offset. Using the
formula r = rpeak sin �, the unstable saddle node during a
backwards frequency sweep occurs approximately at � = �

2 .Hence an equality constraint to find the offset is
offset = �i,peak − �

2
(16)

Where �i,peak is the phase data point corresponding to fre-
quency Ωi,peak. If more accuracy is desired, this equality
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Figure 2: Amplitude and phase fitting scheme. A least Squares
optimization was used to fit amplitude and phase data to analytical
formulas 1 and 2. First the amplitude analytical equation and data
are both sheared, and then the sheared amplitude data (Ωs,i, rs,i) isfitted to the sheared function (equation 12). The unsheared (raw)
data and analytical formula fit is shown in grey. The phase fit uses
a horizontal least squares method.

constraint can be made as an initial guess for the curve fit-
ting algorithm instead. Lastly, an inequality constraint can
be used to ensure that the curve is convex if the data shows
the presence of an unstable saddle node bifurcation at � = �

2 .Thus using phase data to solve for parameters F0,H , Q and
offset, expressed in SI units, is equivalent to solving the fol-
lowing optimization problem.

min
N∑
i=1
L2i such that

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

10−11 ≤ F0 ≤ 10−4
10−22 ≤ H ≤ 10−15
0.4Q0 ≤ Q ≤ 1.6Q0
d2Ω
d�2

|�=�∕2 > 0
Ωi,peak = 1 −Hg(

�
2
, R, k, z, F0, Q)

offset = �i,peak − �
2

(17)

3. Numerical FRC
Equations 1 and 2 were especially important to validate

numerically because they were derived using a point force
excitation model assuming small damping and VdW force.

The numerical FRCs were generated using the more ac-
curate nondimensionalized base excitation model. In this
equation x = q

z is the non nondimesnionalized displacement,
� = t!0 is the nondimesnionalized time, and Ω = !

!0
is the

non dimensionalized excitation frequency.
x′′ + 1

Q
x′ + x =Ω2 Y

z
sin(Ω�) − ΩY

z
1
Q
cos(Ω�)

+
Fts(z + zx + Y sinΩ�)

zk

(18)

Where Y is the amplitude of base motion, z is the static
gap, Q is the quality factor, q is the displacement of the
tip from static equilibrium, and t is time. Where Fts(d) =
FV dW ,1(d) = −

2HR3
2d2(2R+d)2 is the tip sample interaction force

which is assumed just to consist of the general VdW force.

The base excitation formula features sin and cos excitation
terms which can be combined to produce a small forcing
phase offset �force = tan−1( 1

ΩQ ).Figures 3a - 3d show amplitude and phase FRCs being
fitted. Many more numerical experiments are outlined in
section A-3 of appendix A. Each numerical data set consists
of 3 FRCs generated at different nondimensionalized base
excitation amplitudes Y ∕z. This numerical data was fitted by
the analytical formulas using the inbuilt fmincon function in
MATLAB with objective function and constraints described
in section 2.1. The fits outputted the parameters F0, H and
Q. The quality factor Q was extracted very accurately be-
cause the phase and amplitude far from resonance show neg-
ligible nonlinearaties. The effective point force excitation
very closely aligns with the formula F0

kz ≈
Y
z , as expected for

experiments around resonance Ω2 Yz sin(Ω�) ≈ Y
z sin(Ω�),

with low damping ΩY
z
1
Q cos(Ω�) ≈ 0. H is the hardest pa-

rameter to extract because of it’s extremely high sensitivity.
The experiment as shown in figure 3a - 3d managed to fitH
with an average relative error of 5% for the amplitude FRCs
and 12% for the phase FRCs. The error is quite small in this
case largely because the static gap is low enough to create
very pronounced softening behavior. In practice, the ampli-
tude FRC is expected to extractH more accurately because
the phase offset will need to be an additional fitting parame-
ter as discussed in section 2.1.2.

Even unrealistically large VdW forces with lowQ can be
fitted surprisingly well. The numerical experiment shown in
figure A-4 of section A-3 of appendix A was generated with
H = 4000 × 10−19J, which undermines the small nonlin-
earities assumption behind method of averaging. Likewise,
a low quality factor Q = 60 exaggerates the difference be-
tween the point force excitation model and the base excita-
tion model. Despite this, H is predicted quite accurately,
indicating the robustness of this method. This is also in-
line with the existing literature that the point force excitation
model adequately approximates the base excitation model
for Q > 100 [10]. This also shows that experiments which
feature unfittable features are likely due to the presence of
additional nonlinear tip sample forces.

4. Comparison between analytical Formulas
A quantitative comparison between the two amplitude

FRC’s presented in equation 1 was undertaken. Specifically,
the difference between the FRC corresponding to the general
VdW force expression (f = f1) and the FRC corresponding
to the simplified VdW force expression (f = f2) was ana-lyzed.

The difference between the curves was defined by the
differences between peaks of both FRC’s. Since both curves
will share the same maximum amplitude rpeak = F0Q

kz , the
difference was thus measured as the nondimensionalized ex-
citation frequency difference between the peaks:

|ΔΩpeak| = |Hf1(rpeak, R, k, z) −Hf2(rpeak, R, k, z)| (19)
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(a) Amplitude FRC fit (b) Amplitude fit extracted parameters

(c) Phase FRC fit (d) Phase fit extracted parameters
Figure 3: Fitting 3 numerical FRC data sets (blue/red/yellow) to analytical formulas (black) 1 and 2 (with f = f1 and g = g1). The
numerical data was generated using a base excitation model with uniformly distributed noise added (A∕znoise = 0.002). Figures 3b and
3d show the extracted parameters from the fits. The effective F0 extracted for amplitude were 1.45nN, 1.5nN, 1.55nN, and for phase were
1.43nN, 1.5nN, 1.56nN. Values used to generate numerical data, which are also shown by the black dotted line are k = 24N/m, z = 20nm,
R = 150nm,H = 5 × 10−19J, Q = 300.

A worst case scenario was analyzed for comparing the
FRCs. This was done by using an excitation force such that
the curves were both on the verge of exhibiting a hardening
type nonlinearity. F0 = kz

Q (1 −
a0
z ).Figure 4a shows how tip radius and static gap influence

the difference between the analytical formulas. The tip ra-
dius has a negligible effect except for extremely sharp tips.
This is because the VdW force is extremely small for small
values of R. The static gap has a much larger influence, es-
pecially for low values of z. Thus for a typical cantilever, if
imaging close to the surface (<10nm) it’s necessary to ac-
count for the more general VdW force when producing Fre-
quency Response Curves.

5. Error Propagation
A statistical analysis of formula 1 was undertaken to find

the error propagated to the Hamaker constantΔH due to un-
certainty in three calibrated parameters; stiffnessΔk, natural
frequency Δ!0, and static gap Δz. The formula to predict
error propagation is provided below.

ΔH =
√()H

)k
Δk

)2 + ( )H
)!0

Δ!0
)2 + ()H

)z
Δz

)2 (20)
Since a fitting was done to the whole FRC, the value of am-
plitude used when evaluating the partial derivatives was the
value corresponding to the minimum ΔH . Also, the uncer-
tainties Δk = 0.064 N/m, Δ!0 = 1.85 Hz were calculated
with a 95% confidence based on 12 calibrations using the hy-
drodynamic function method with a ElectriTap150-G can-
tilever. The uncertainty in quality factor ΔQ = 3.26, but
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(a) Difference between analytical formulas map

(b) Points on map
Figure 4: Color plot showing the difference between the ampli-
tude FRC’s when using different VdW force models. Figure 4b
shows the difference between the formulas at two different tip ra-
dius and static gap values. The green FRC corresponds to the re-
sponse when the generalized VdW force model is used (f = f1)and the black FRC corresponds to equation when the simplified
VdW force model is used (f = f2). |ΔΩpeak| is the nondimension-
azlied excitation frequency difference between the peaks of the two
FRC curves, and is indicated by a thick red line. The black curve
shows a isoline corresponding to |ΔΩpeak| = 5 × 10−5. Hence,
combinations of parameters (z,R) above this line correspond to a
negligible difference between FRC’s, whereas combinations be-
low this line correspond to a significant difference. k = 23.1N/m,
H = 4 × 10−19J, Q = 377, a0 = 0.7nm.

was not included in the error propagation formula since Q
was a fitting parameter. A conservative estimate of Δz =
0.2 nm was chosen, and the uncertainty in amplitude and
frequency were assumed to be 0 such that a ‘best case’ er-
ror propagation analysis could be undertaken. Likewise F0was chosen to correspond to when the FRC is at the onset
of hardening F0 = kz

Q (1 −
a0
z ). As can be seen in figure

5a it’s desirable to measure FRC’s at low static gaps with
low stiffness cantilevers. However, in practice z needs to
be large enough such that snap-in doesn’t occur during mea-
surements. Hence, even in the most ideal experiment where
a cantilever has a stiffness of k ≈ 7N/m and a static gap of
z ≈ 7nm, the error in the Hamaker constant is expected to

(a) Error propagated toH

(b) Normal Distributions
Figure 5: Figure 5a is a color plot showing error propagated to H
due to uncertainty in stiffness Δk = 0.064N/m, natural frequency
Δ!0 = 1.85Hz and static gap Δz = 0.2nm. The black isoline
corresponds to ΔH = 1 × 10−19J. The minimum error propagated
occurs at z = 7nm and k = 7N/m and isΔHmin = 2.71×10−20J. Thevalues chosen wereQ = 300,H = 4×10−19J, a0 = 0.7nm andR =
60nm. Figure 5b shows bell curves generated from 12 calibrations.
The middle number is the mean, and the outer numbers correspond
to one standard deviation from the mean.

be in the order of ΔH ≈ 10−20 or higher.

6. Experimental Investigation
Experimental FRC’s were generated using a setup con-

sisting of a commercially available Nanosurf FLEX AFM,
and an external Multi-frequency Lock-In Amplifier (MLA)
from Intermodulation Products. AC3000 controller was also
used to position the base of the cantilever for each experi-
ment. The experiment was conducted in air at 24oC with
an ElectriTap150 cantilever with Platinum overall coating.
The sample was freshly cleaved Highly Oriented Pyrolytic
Graphite (HOPG). The experiment was also under an acous-
tic hood, and inside a humidity chamber with a relative hu-
midity reading of 7%RH. The tip radiusR = 20nmwasmea-
sured from a SEM image, and the stiffness k = 6.54N/m,
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(a) Experimental Amplitude fit (b) Experimental Phase fit
Figure 6: Experimental backwards frequency sweep data fitted with the analytical formula from equation 1 (with f = f1) and equation
2 (with g = g1). The amplitude and phase data are colored blue and red respectively, and the black curves are the analytical formula fits.
F0, H and Q are the parameters extracted from each fit. The experiment was done with a ElectriTap150 cantilever with overall platinum
coating on a HOPG sample at z = 35nm. The calibrated parameters far from the sample were k = 6.54N/m,Q = 332.4, !0 = 170.297kHz.
R = 20nm.

quality factorQ = 332.4, and natural frequency!0 = 170.297kHzweremeasured using the hydrodynamic functionmethod
using the MLIA. The MLIA calibration also recorded a sen-
sitivity of 514.36nm/V.

The experimental amplitude and phase curves shown in
figure 6a and 6b were generated from a backwards frequency
sweep.

As can be seen in figure 6a, the maximum non dimensi-
noalized amplitude is slightly less than 1, which is expected
since the VdW force typically has a range of a few nanome-
ters [11, 4]. The sides of the amplitude FRC are poorly
aligned likely for three main reasons. Firstly, the natural fre-
quency far from the sample !0 could have decreased once incontact with the surface prior to the FRC. This is a possibil-
ity since the tip could have picked up some additional wa-
ter mass upon contact. Also, additional influences of other
modes at higher resonances (which aren’t modelled) could
also have adjusted the amplitude data. Additionally, ampli-
tude dependant damping is likely present which can’t be fully
captured by a linearized effective Q. Base excitation is un-
likely a cause since numerical experiments simulated under
the base excitation model with high damping (low Q) align
very well with the analytical equations 1 and 2.

As can be seen in figure 6b, the phase is fitted quite well,
especially around the unstable saddle node bifurcation at � =
�
2 . However, at larger frequencies the phase unexpectedly
flicks upwards. This is likely due to a frequency dependant
phase offset caused by the piezo or other equipment that can’t
be modelled.

TheHamaker constant extracted from both the amplitude
and phase data is extremely large. This can be explained
in part because long range electrostatic forces that exist be-
tween the tip and sample were not nullified with a bias volt-

age in this experiment. Also, the static gap used in this ex-
periment is approximate since the static displacement set-
point of 2nm was also neglected. Accounting for this set-
point causes the peak nondimensionalized amplitude to be
greater than 1.

Multiple other FRCswere also produced at different static
gaps in which softening behavior was also observed. How-
ever, these other experiments showed a nondimensinoalized
amplitude larger than 1 - which is impossible in reality since
it corresponds to the cantilever penetrating into the sample
during an oscillation and still feeling a purely attractive force.
These additional experiments are shown and discussed in
section A-4 of appendix A. A few experimental problems
can help explain this phenomena. Firstly, the sensitivity value
recorded by theMLA is likely a large source of error, and can
be exasperated due to a slight misalignment of the laser on
the tip of the cantilever. Secondly, z-fluctuation of around
0.5-2nm was observed, which is significant considering the
short range nature of the VdW force. These z-fluctuations
are speculated to be caused by piezo creep and thermal fluc-
tuations. Thirdly, x − y variation of the cantilever above
the surface could expose the tip to slightly different forces
for each set of experiments. Lastly, the high reflectivity of
the surface could interfere with the deflection measurement
from the 4 quadrant photo diode at very low static gaps.

Further explanation of the nature of the technical issues,
potential solutions, and additional corresponding experiments
is discussed in sections A-5 and A-6 of appendix A.

Lastly, the HOPG sample used in the experiment shown
in figure 6 is hydrophobic. Non hydrophobic samples at hu-
midities greater than 5%RH are likely to affect the the relia-
bility of FRCs due to the presence of strong capillary forces.
This is elaborated on in section A-7 of appendix A.
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7. Conclusion
Amethod to extract the Hamaker constant using analyti-

cal approximations for nonlinear frequency response curves
has been proposed. Many experimental FRCs were gener-
ated and fitted. However, the extractedH was unreliable in
these experiments due to technical limitations which have
been discussed. Despite being unable to validate this exper-
imentally, numerical experiments with added artificial noise
indicate thatH can bemeasured using a robust identification
algorithm. However, a theoretical upper limit of uncertainty
in the extractedH is approximately 3×10−20J. Experiments
aiming to extract H accurately should do so with soft can-
tilevers at low static gaps, and account for the general VdWs
force.
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ABSTRACT
A new method to extract the tip radius using electrostatic forces is presented. The method uses a
simplified Kelvin Probe Force Microscopy (KPFM) technique in which the cantilever is electrically
excited at different static gaps. The capacitance gradient at each point is measured by sweeping the
DC tip voltage and recording the corresponding amplitude. The following capacitance gradient vs
static gap data set is fitted to an analytical model to extract the tip radius, cone angle and tip height.

1. Introduction
Kelvin Probe ForceMicroscopy (KPFM) is a non-contact

variant of Atomic Force Microscopy (AFM) that can mea-
sure the surface potential (or surface voltage Vs) of a sample
[1, 2]. One popular method of KPFM involves scanning the
topography of a sample by exciting the cantilever mechani-
cally via the piezo at the first natural frequency, and simulta-
neously measuring Vs by electrically exciting the cantilever
tip (usually) at the second natural frequency. ‘Lift mode’
is another popular technique in which the cantilever makes
two passes along each scan line. During the first pass the
topography is measured by exciting the cantilever mechan-
ically at it’s first resonance, and during the second pass Vsis measured by exciting the cantilever electrically at it’s first
resonance [3]. In either case, when the tip is excited electri-
cally it is done so by applying a voltage to the cantilever tip
which consists of a DC component VDC and an AC compo-
nent VAC sin(!elect). Vs is thus calculated by using a feed-
back loop which adjusts VDC so that the component of the
electrostatic force at !elec , F!elec , is minimized.

There are many advantages of applying KPFM that go
beyond imaging the surface potential of a sample. Firstly, the
electrostatic force that exists between the cantilever tip and a
point on the surface can be measured and nullified by setting
VDC equal to Vs. This DC voltage is known as the bias volt-
age and can be visualized by observing the minimum of the
V-shaped F!elec vs VDC curve [4]. It’s possible to extract the
force component directly using an Electrostatic Force Mi-
croscopy Lock in Amplifier (EFM LIA). Another advantage
of KPFM is the ability to extract information about the ca-
pacitance gradient dCdz . For example, the capacitance gradi-
ent can be extracted by analyzing the motion at !elec [5], orit can be extracted by analyzing the motion of the cantilever
at 2!elec . [6].Fortunately, the tip radius R can be extracted using long
range electrostatic forces [7] largely because the capacitance
between the cantilever and sample is determined in part by
the geometry of the cantilever tip [8, 9].

There have been many attempts to extract the tip radius
using electrostatic forces. One method fits force-distance

ORCID(s):

data to a analytical expression derived using the Generalized
Image-Charge Method (GICM) [10, 11]. Another method
includes sweeping DC voltage and recording tip sample gap
as the force gradient is controlled to be constant, and curve
fitting this data to a capacitance gradient, dCdz , model [12].
The tip radius can also be found by fitting cantilever deflec-
tion vs sample displacement to a model based on a another
expression for dC

dz [13]. All of these methods use a simple
analytical approximation of the capacitance gradient that re-
sembles a flat plate capacitor model. This model is only
accurate extremely close to the sample where snap-in phe-
nomena is observed. In this paper, a non contact simplified
KPFM method is proposed which accounts for the capaci-
tance gradient components of the tip apex and cone, allow-
ing additional properties of the cantilever tip to be extracted.
Section 2will summarize the theory and assumptions used to
extract the capacitance gradient and tip geometry. sections 3
and 4 present and analyze an experiment that validates this
concept. Lastly, section 5 outlines the identification algo-
rithm used to fit data.

2. Theory
The electrostatic force between the tip and sample in its

most general form is

Felec = −
1
2
dC
dz
ΔV 2 (1)

Where ΔV is the difference between the surface voltage
Vs and the tip voltage which consists of both a DC compo-
nent VDC and an AC component VAC sin(!elect). [1]

Felec = −
1
2
dC
dz

(
Vs − VDC − VAC sin(!elect)

)2

= −1
2
dC
dz

(
(Vs − VDC )2 − 2(Vs − VDC )VAC sin(!elect)

+ 1
2
V 2
AC (1 − cos(2!elec))

)
(2)

The force can be split up into three separate components
Felec = Felec0 + Felec1 + Felec2 . Each force component has
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contributions at different frequencies; 0, !elec and 2!elec .

Felec0 = −
1
2
dC
dz

(
(Vs − VDC )2 +

1
2
V 2
AC

)

Felec1 =
dC
dz
(Vs − VDC )VAC sin(!elect)

Felec2 =
1
4
dC
dz

V 2
AC cos(2!elect)

(3)

If the system is exposed to this force far from the sam-
ple such that there are no other tip sample interaction forces
present, and if the static gap remains roughly constant, and if
there is no external excitation from the piezo, then the equa-
tion of motion becomes linear.

1
!20
q̈ + 1

Q!0
q̇ + q = 1

k
Felec(t) (4)

Where q is the displacement of the tip from static equilib-
rium. Since the EoM is linear, the superposition theorem
applies and each term can be solved for independently. The
steady state amplitude corresponding to the forcing compo-
nent Felec1 = dC

dz (Vs − VDC )VAC sin(!elect) yields equation
5. The dC

dz term is assumed constant, which is a reasonable
approximation if the amplitude of oscillation is much less
than the static gap.

A =

||||||||

dC
dz
(VDC − Vs)VAC

k
× 1√

(1 − (!elec
!0
)2)2 + ( 1

Q
!elec
!0
)2

||||||||
(5)

Since the other forcing terms are at distinct frequencies
far from !elec they will not contribute largely to the ampli-
tude at!elec . Hence, it is reasonable to assume a LIA at!elecshould accurately measure A. Equation 5 can be simplified
further if the AC voltage is set to oscillate at the first natural
frequency of the system !elec = !0.

A =
||||||

dC
dz
VACQ

k
(VDC − Vs)

||||||
(6)

As can be seen in equation 6, exciting the system at the
natural frequency will scale up the amplitude measured by
the LIA, hence improving the signal-to-noise ratio. Also,
since A is linear with VDC , an experimental plot will yield
a V-shaped curve. Simply observing the DC voltage which
corresponds to the minimum amplitude will identify the bias
voltage VDC = Vs.The magnitude of the slope of the A-VDC curve provided
in equation 6 is dCdz VACQ∕k. The magnitude of the AC volt-
age, VAC , is a free parameter to choose for each curve, and
k and Q can be measured in a separate thermal calibration.
Hence the only unknown constant, dCdz , can be found bymea-
suring slope of each A-VDC curve. Since the capacitance is
largely a function of the geometry of the cantilever, this value
of dCdz can be used to extract properties of the cantilever. The
total capacitance, C , between the tip and sample is made up

from 3 distinct components; the tip apex, the the tip cone and
the lever. In effect this means

dC
dz

= dC
dz apex

+ dC
dz cone

+ dC
dz lever

(7)

Full analytical approximations for each of these components
have been recorded in the literature [7] and are written in ap-
pendix B. These formulas demonstrate that for medium with
large tip sample gaps the dC

dz cone
and dC

dz lever
components

dominate. This is an undesired situation since these terms
are very weakly dependant on the tip radius, making curve
fitting dC

dz to find R difficult. However, for small tip sam-
ple gaps the dC

dz apex
term dominates [8]. Thus, to perform

a tip radius extraction, a Goldilocks region for z is needed;
the cantilever needs to be close enough such that the dC

dz apexis pronounced, but it also needs to be far enough away such
that presence of other forces are negligible.

The full capacitance gradient expression is an exhaustive
but complete approach which was used for extracting R in
the following experiments. However, the dC

dz components
can be simplified at small tip sample gaps z, allowing for
a simpler fitting. Firstly, the cone and lever components of
the capacitance gradient remain roughly constant at small z
values.

dC
dz cone

+ dC
dz lever

= constant (8)

Additionally, the tip component dCdz apex can be simpli-
fied at small static gaps z, and can be modelled as a sphere
interacting with an infinite plane (the sample). In this case,
the capacitance gradient can be given by equation below [8].

dC
dz apex

= −2�� R2

z2 + Rz
(9)

Where R is the tip radius, z is the static gap, and � is the
absolute permittivity constant.

3. Experiment
3.1. Experimental setup

A commercial AFM (Nanosurf FLEX operated with the
C3000 controller) was used to position the cantilever at a
set static gap z for each A − VDC curve. The AFM head
was placed in a humidity chamber with an acoustic hood to
minimize influence of capillary forces and noise.

An experiment was done using an ElectriTap150-G can-
tilever on a freshly cleavedHighlyOriented Pyrolytic Graphite
(HOPG) sample. The humidity measured in the chamber
was 7% and the AC voltage chosen was VAC = 2V. One
set of SEM images was preformed before the experiment to
validate the result.

Since both experiments were not conducted in vacuum,
a dielectric constant at 20oC , 1 atm, and 10% humidity was
used [14].
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(a) A-VDC curves at discrete static gaps z (b) Capacitance gradient curve

(c) ElectriTap150 cantilever tip apex (d) ElectriTap150 cantilever tip zoomed out
Figure 1: ElectriTap150 cantilever with overall platinum coating with HOPG sample at 7% humidity and VAC = 2V. Figure 1a shows
multiple V-shaped A − VDC curves which were measured at discrete static gaps z in order to extract a profile of the bias voltage Vbias andcapacitance gradient dC

dz
. Figure 1b shows the extracted capacitance gradient data which was used to calculate the cantilever geometry by

fitting it to an analytical model. The extracted tip radius wasR = 15.3nmwhich is in rough alignment with the SEM image of the cantilever
tip from figure 1c which shows a tip radius of R = 18.8nm. Figure 1d shows a zoomed out view of the cantilever tip with significantly
different values of cone angle and tip height. Both SEM images were made at a tilt of 30 degrees. Calibrated values were Q = 288 and
k = 5.52N/m.

Figure 2: Schematic showing input AC and DC voltage being ap-
plied to the tip at the first natural frequency !0, and output ampli-
tude at the first natural frequency.

3.2. Method
A simplified KPFM technique was used to extract the tip

radius R. The method involves the following 5 steps:

1. Excite the cantilever purely electrically at first reso-
nance at a fixed static gap z above a point of the sam-
ple.

2. SweepVDC and record the corresponding amplitudeA
at the first natural frequency using a Lock-In Amplifier
(LIA).

3. Repeat this experiment multiple times at different dis-
crete static gaps. Although this can be done continu-
ously providing z increases/decreases sufficiently slowly.

dz
dt

≈ 0 (10)
4. Extract the bias voltage and capacitance gradient cor-

responding to each static gap by locating theminimum
and slope of the A vs VDC curve respectively.
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5. Plot dCdz vs z and curve fit to an analytical expression
to extract R.

4. Results and Discussion
The data extracted is shown in figures 1a-1b. Since the

SEM image was taken at a tilt of 30 degrees, the radius of
the very end of the tip was calculated by measuring the pro-
jected radii (as shown in blue and yellow), and extrapolating
assuming the tip had an ellipsoid shape.

The experiment as shown by figures 1a-1b extracted a tip
radius of R = 15.3nm whereas an SEM image conducted
prior to the experiment showed an effective tip radius of
about R = 18.8nm. The supplier for this cantilever type
specified a radius R < 25nm. HOPG is conductive and hy-
drophobic meaning that water layer influence and trapped
charges were expected to be minimal. Also, since a fairly
low stiffness cantilever was used (k = 5.52N/m), the ampli-
tude in each A − VDC curve is quite high, as expected from
equation 6. If the amplitude is too large (relative to the static
gap) then the assumption that dCdz remains constant for each
A − VDC curve becomes less accurate. For this reason, it’s
advised to use harder cantilevers or lower AC voltages.

The effective cone angle and especially the tip height
measured in both experiments are not very reliable param-
eters to extract for small tip sample gaps z < 200nm. This
is because the capacitance gradient component for the cone
and especially the base of the cantilever are roughly constant
over this range of z - and this low sensitivity makes a fitting
ineffective. For a more accurate measurement of the can-
tilever cone angle and tip height, this experiment should be
done using static gaps in the order of micrometers.

5. Curve Fitting
Two separate fits were used to extract the tip radius. First,

one fit was performed on each set of A−VDC data to extract
the bias voltage and dC

dz at each z. Then, the following dC
dz −zdata was fitted to the analytical expression from equation 7 to

identify the tip radius R, the cone angle � and the tip height
H . First, the amplitude data and DC voltage data (Ai, VDC,i)was then fitted to equation 6 using a least squares fitting. The
absolute value sign was accounted for by fitting the square of
the amplitude. Extracting the parameters dC

dz and Vs = Vbias
was equivalent to solving the following optimization prob-
lem.

min
N∑
i=1

(
A2i −

( dC
dz
VACQ

k
(VDC,i − Vs)

)2
)2

(11)

Following this, each dC
dz and it’s corresponding z value were

used to fit the analytical expression 7. This was accom-
plished through another standard least squaresminimization.

6. Conclusion
The tip radius of a micro cantilever can be determined

using a simplified KPFM technique. This has been demon-
strated by comparing an experiment with an SEM image.

This method can also be used to extract other geometries
of the cantilever tip as well, provided the experiment is con-
ducted over a large static gap range. The assumptions behind
this theory imply that the technique works best with highly
conductive, hydrophobic samples with hard cantilevers and
low AC tip voltages.
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Chapter 4

Conclusion & Recommendations

4-1 Conclusion

During the course of this project, multiple findings have been documented and signif-
icant challenges overcome. Firstly, multiple analytical amplitude and phase equations
were derived using different VdW force models. The formulas for both amplitude and
phase were validated numerically against a base excitation model. To accomplish this, a
robust optimization algorithm based on a modified least squares technique was invented
to quickly extract multiple fitting parameters. These formulas were also analyzed statis-
tically to provide an estimate on the upper limit of uncertainty that could be expected
when extracting H. These formulas were also compared against each other to provide
an understanding of when a comprehensive VdW force model should be used.

To mitigate electrostatic forces during these experiments a simplified KPFM microscopy
technique was invented and implemented. This method was later demonstrated to be ca-
pable of extracting the tip radius from capacitance gradient data. SEM images validated
this method. To accomplish this, another optimization algorithm was invented which
could quickly extract the bias voltage and tip radius simultaneously. In addition to this,
humidity was found to affect FRCs in certain conditions, highlighting the importance of
its mitigation.

Despite significant effort over several months, the method of extracting H through the
use of FRCs was not demonstrated reliably through experiment. This was due to un-
avoidable technical limitations which have been elaborated in section A-5-5.
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4-2 Recommendations
I recommend the following avenues of research to anyone who wants to continue work in
this field.

4-2-1 Analytical Equation to model Hardening

A successful derivation of analytical equations predicting amplitude and phase in FRCs
was derived. However, these formulas are only valid in the attractive regime. I recom-
mend deriving an analytical expression which incorporates the repulsive regime as well.
This could, in theory, be used to identify the Young’s modulus of the tip/sample.

Unfortunately many tip sample forces are short ranged and extremely difficult to model
analytically. Meaning a significant amount of technical work will need to be done to
control these external effects.

This is also difficult theoretically because hardening behavior cannot be viewed as a
‘small’ perturbation. This could invalidate many methods including the method of av-
eraging approach. Similarly, the non-linearity at d = a0 needs to be accounted for.

Nonetheless, method of averaging can overcome issues at d = a0 by integrating over
different regions: the purely attractive oscillation region, and part repulsive - part at-
tractive oscillation region. Alternatively, the nondifferentiability can be smoothed out
by using the Weierstrass approximation theorem.

4-2-2 Technical Solutions to extracting the Hamaker constant

I have been unable to extract experimentally the Hamaker constant reliably due to
three unavoidable technical limitations. Firstly, the sensitivity value was unreliable
despite calibration. Secondly, z-fluctuation immediately after positioning the cantilever
was present. And thirdly, there exists a large water layer presence on non hydrophobic
materials at a humidity of 5%RH or greater.

It will only be possible to extractH experimentally once solutions exist for these technical
limitations. In this case, H can can only be measured with an upper limit accuracy
of 3 × 10−20J , and decision would need to be made if this represents an acceptable
level of uncertainty. The sensitivity issue was largely a problem because an approximate
impedance factor needed to be found to compensate for different voltage signals recorded
by the Nanosurf AFM and the MLA. I recommend using a completely new all-in-one
system which extracts the raw amplitude signal without the need for an approximate
impedance factor. With the current setup, laser alignment can only be done by hand
with an Allen key. If the new system can align the laser using software, this will minimize
human error. I have presented an equation (A-17) which can extract H without the need
for the sensitivity. But it is not as accurate as the formula presented in the papers (A-
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7). None the less, these two formulas can be compared against each other to determine
whether the new system’s sensitivity values are reliable enough to extract H.

It is impossible to completely remove z-fluctuation. However, it can be accounted for.
I recommend using an Field-Programmable Gate Array (FPGA) to keep track of the
z-fluctuation before and during FRC sweeps. z-fluctuations can be corrected for in
post analysis. The affect of humidity was not very noticeable on HOPG because of
its hydrophobic nature. However, on many other samples (gold/silicon/tin), unreadable
FRCs were produced because of large water layers. If these samples want to be analyzed,
an Ultra High Vacuum (UHV) is highly advised.

In all cases, the KPFMmethod should be used to mitigate electrostatic forces by applying
a bias voltage.

4-2-3 Real time tip radius identification
It’s theoretically possible, using the simplified KPFM method that I’ve proposed, that
the tip radius can be extracted in real time. This can be done while imaging by using
the second natural frequency of the cantilever. This will involve electrically exciting
the cantilever tip such that ωelec = 6.27ω0 - although 2ωelec = 6.27ω0 can also be used
if the bias voltage is not required during imaging. The capacitance gradient can be
extracted in real time while imaging assuming AM-AFM is used at first resonance, and
assuming the static gap during imaging is always < 30nm. The advantage of this method
is that an operator can measure how the tip is blunting over the course of a separate
measurement.
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Appendix A

A-1 Method of Averaging

Analytical expressions for the amplitude and phase of the FRC were derived so that FRC
data could be fitted to extract H. This section details the derivation of these formulas
using the method of averaging. One set of equations corresponds to a simplified VdW
force, and the other corresponds to the general VdW force.

A-1-1 Simplified Van der Waals force

The one dimensional equation of motion in the most general form can be written as

mq̈ + cq̇ + kq = Fext(t) + Fts,cons(z + q) + Fts,diss(z + q, q̇) (A-1)

To simplify the following calculations, two core assumptions were made: the conserva-
tive force was assumed to consist of the purely attractive Van der Waals force Fts,cons =
− HR

6(z+q)2 , and the dissipative forces were assumed negligible Fts,diss = 0. For simplicity,
the piezo has been modelled to apply a purely harmonic force Fext = F0 cos(ωt).

Also, making substitutions for the natural frequency far from the sample ω0 =
√

k
m and

the quality factor far from the sample Q = mω0
c and substituting into equation A-1 yields

1
ω2

0
q̈ + 1

ω0Q
q̇ + q = F0

k
cos(ωt)− HR

6k(z + q)2 (A-2)
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Using non dimensionalized time τ = ω0t and non dimensionalized amplitude x = q
z and

using the notation x′ = dx
dτ and x′′ = d2x

dτ2 , and assuming all the external forces and
damping are sufficiently small such that they can be scaled down by a factor ε, the
expression becomes

x′′ + x+ ε

[
1
Q
x′ − F0

zk
cos( ω

ω0
τ) + HR

6kz3(1 + x)2

]
= 0 (A-3)

The expression is now in the form allowable to use method of averaging x′′ + x +
εh(x′, x, τ) = 0. Using this method finds the slowly varying displacement, ie amplitude,
r and slowly varying phase φ of the tip. The relevant formulas are ˙̄r = ε < h sin(τ−φ) >
and ˙̄φ = ε

r < h cos(τ − φ) > where x = r cos(τ + φ) and x′ = −r sin(τ + φ)

Also, since the frequency response curve is only desired for drive frequencies near res-
onance, we can assume ω

ω0
= 1 + εσ. Also using the simplification that θ = τ + φ

and α = εστ − φ, we can write cos( ωω0
τ) = cos(θ) cos(α) − sin(θ) sin(α). Making this

substitution and performing the averaging from 0 to 2π yields

˙̄r = ε

[
− r

2Q + F0
2zk sin(α)

]
(A-4)

˙̄φ = ε

r

[
− HRr

6kz3(1− r2)3/2 −
F0
2zk cos(α)

]
(A-5)

However, it’s more convenient to express equation A-5 in terms of the time averaged
rate of phase around resonance ˙̄α = εσ − ˙̄φ.

˙̄α = ε

r

[
σr + HRr

6kz3(1− r2)3/2 + F0
2zk cos(α)

]
(A-6)

The natural frequency of the system will not remain ω0 at all static deflections z due to
the presence of non linear forces. Recall that since x = r(τ) cos(τ + φ(τ)) the natural
frequency ωn can be found by setting F0 = 0 and differentiating the argument of the
cosine function. Also, since in practice the nonlinear forcing (VDW force) is quite small,
ε = 1.
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ωn
ω0

= d

dτ
(τ + φ(τ))

= 1− HR

6kz3(1− r2)3/2

Coincidentally, this formula also describes the backbone of the frequency response curve
(FRC). A complete analytical expression for the FRC, however, can be found by solv-
ing for the steady state case ( ˙̄r = 0 and ˙̄α = 0) and solving equations A-4 and A-6
simultaneously.

ω

ω0
= 1± 1

2

√(
F0
kzr

)2
−
( 1
Q

)2
− HR

6kz3(1− r2)3/2 (A-7)

ω

ω0
= 1 + 1

2Q tanα −
HRk2

6(k2z2 − F 2
0Q

2 sin2 α)3/2 (A-8)

Equation A-7 provides an approximate analytical expression to the FRC where the
nondimensionalized frequency is ω

ω0
and nondimensionalized amplitude is r = max q/z.

Each FRC will be centered around ω
ω0

= 1 and will exist for values 0 ≤ r ≤ 1. Equation
A-8 is an approximate analytical for the phase α vs nondimensinoalized frequency.

There are several insights A-7 can provide about the nature of the FRC. There is an
asymptote at r = 1 which corresponds to the unrealistic case where the cantilever tip
has penetrated the sample and is experiencing exclusively extremely large Van der Waals
forces. The term under the square root sign must be positive resulting in

rmax = F0Q

kz
< 1 (A-9) ωmax

ω0
= 1− HRk2

6
(
k2z2 − F 2

0Q
2
)3/2 (A-10)

Where equation A-9 shows the max nondimensionalized amplitude and A-10 shows the
corresponding nondimensionalized excitation frequency.

A-1-2 General Van der Waals force
The Van der Waals force used in subsection A-1-1 assumes the only tip surface force
present is the simplified Van der Waals force given by equation 1-2. However, this
formula is only valid for R� d. The general expression for this force is given by

Fts = − 2HR3

3d2(2R+ d)2 (A-11)
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Using this expression and following the same steps in section A-1-1 yields a more
accurate analytical FRC expression.

ω

ω0
= 1± 1

2

√( F0

kzr

)2
−
( 1
Q

)2
− H

6kr2z3

[
(1− r2)z4 + 8R3z + 12R2z2 + (6− r2)Rz3

(4R2 + 4Rz + (1− r2)z2)3/2

+r2(R+ z)− z
(1− r2)3/2

] (A-12)

ω

ω0
= 1 + cotα

2Q − Hk2

6F 2
0Q

2 sin2 α

[
F 2

0Q
2(R+ z) cos2 α− F 2

0Q
2(R+ z) + k2(2R+ z)3(

F 2
0Q

2 cos2 α− F 2
0Q

2 + k2(2R+ z)2
)3/2

− k2z3 − F 2
0Q

2(R+ z) sin2 α(
k2z2 − F 2

0Q
2 sin2 α

)3/2

] (A-13)

A-2 Sheared fitting function
The one-to-one sheared fitting curve is found by artificially adding the nonlinear com-
ponent to the amplitude FRC equation.

Ω = 1± 1
2

√( F0

kzr

)2
− 1
Q2 −Hf(r,R, k, z) +Hf(r,R, k, z)

Ω = 1± 1
2

√( F0

kzr

)2
−
( 1
Q

)2

4
(

Ω− 1
)2

=
( F0

zkr

)2
−
( 1
Q

)2

r = F0

kz

1√
4
(

Ω− 1
)2

+
(

1
Q

)2
(A-14)

A-3 Numerical Simulations
Many sets of AUTO simulations were created and fitted. The numerical simulations
extract Q and F0 very accurately. However the high sensitivity of H makes extraction
prone to error. Experiments done at large static gaps, where the softening behavior is
not so pronounced, are subject to larger errors in H that can be of the order 10−19J .
However, soft cantilevers at low static gaps produce very accurate fits.
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(a) Amplitude FRC fit (b) Amplitude fit extracted parameters

(c) Phase FRC fit (d) Phase fit extracted parameters

Figure A-1: Fitting 3 numerical FRC data sets (blue/red/yellow) to analytical formulas
(black) (with f = f1 and g = g1). The numerical data was generated using a base excitation
model with uniformly distributed noise added (A/znoise = 0.002). Figures A-1b and A-1d
show the extracted parameters from the fits. The effective F0 extracted for amplitude were
4.7nN, 4.72nN, 4.75nN, and for phase were 4.6nN, 4.63nN, 4.66nN. Values used to generate
numerical data, which are also shown by the black dotted line are k = 24N/m, z = 100nm,
R = 150nm, H = 2 × 10−19J, Q = 500.
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(a) Amplitude FRC fit (b) Amplitude fit extracted parameters

(c) Phase FRC fit (d) Phase fit extracted parameters

Figure A-2: Fitting 3 numerical FRC data sets (blue/red/yellow) to analytical formulas
(black) (with f = f1 and g = g1). The numerical data was generated using a base excitation
model with uniformly distributed noise added (A/znoise = 0.002). Figures A-11b and A-2d
show the extracted parameters from the fits. The effective F0 extracted for amplitude were
1.45nN, 1.5nN, 1.55nN, and for phase were 1.43nN, 1.5nN, 1.56nN. Values used to generate
numerical data, which are also shown by the black dotted line are k = 24N/m, z = 20nm,
R = 150nm, H = 5 × 10−19J, Q = 300.
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(a) Amplitude FRC fit (b) Amplitude fit extracted parameters

(c) Phase FRC fit (d) Phase fit extracted parameters

Figure A-3: Fitting 3 numerical FRC data sets (blue/red/yellow) to analytical formulas
(black) (with f = f1 and g = g1). The numerical data was generated using a base excitation
model with uniformly distributed noise added (A/znoise = 0.002). Figures A-3b and A-3d show
the extracted parameters from the fits. The effective F0 extracted for amplitude were 1.8nN,
2nN, 2.2nN, and for phase were 1.76nN, 1.96nN, 2.17nN. Values used to generate numerical
data, which are also shown by the black dotted line are k = 0.2N/m, z = 40nm, R = 50nm,
H = 4 × 10−19J, Q = 300.
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(a) Amplitude FRC fit (b) Amplitude fit extracted parameters

(c) Phase FRC fit (d) Phase fit extracted parameters

Figure A-4: Fitting 3 numerical FRC data sets (blue/red/yellow) to analytical formulas
(black) (with f = f1 and g = g1). The numerical data was generated using a base excitation
model with uniformly distributed noise added (A/znoise = 0.002). Figures A-7b and A-4d show
the extracted parameters from the fits. The effective F0 extracted for amplitude were 2.5nN,
2.3nN, 2.6nN, and for phase were 2.48nN, 2.61nN, 2.8nN. Values used to generate numerical
data, which are also shown by the black dotted line are k = 5N/m, z = 35nm, R = 30nm,
H = 4000 × 10−19J, Q = 60.
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A-4 Experiments

In the paper, several sets of FRC data were found to have maximum A/z values greater
than 1. Figures A-5a and A-5b show two sets of experimental data which demonstrate
this.

In figures A-5a and A-5b, multiple FRCs were conducted consecutively, without per-
forming a positioning static displacement curve between each FRC. As can be seen, the
softening behavior in the FRCs decrease with time. This is clear evidence of z-fluctuation
causing the cantilever to be slowly moved away from the sample. To try and remedy
this situation an ‘effective z’ value for each FRC was generated whereby the maximum
non dimensionalized amplitude was forced to be the same as the non dimensionalized
amplitude of the first FRC. This is only reasonable assuming the first FRC experiences
negligible drift. However, as will be explained in section A-5, issues with z-fluctuation
can be significant even for the first FRC. This problem is compounded by inaccuracies
in converting the amplitude signal in volts to an amplitude signal in nm. The constant
that converts this signal from volts to nm is called the sensitivity (in nm/V), and is
determined using a calibration before each experiment.

Additionally, an important observation about figures A-5a and A-5b is that the maximum
non dimensionalized amplitude is greater than 1. Both experiments were condcuted
with a static displacement setpoint of 2nm. Clearly accounting for the static deflection
setpoint (z = 38nm for experiment A-5a and z = 18nm for experiment A-5b) makes the
nondimensionalized amplitude even larger.
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(a) z = 40nm and Y = 1.5V (b) z = 20nm and Y = 0.85V

Figure A-5: Additional experiments from the paper showing a non dimesionalized amplitude
greater than 1

A-5 Non dimensionalized amplitude methods and phase

A different set of experiments were conducted to explore the technical issues behind the
calibrated sensitivity value. Problems associated with the sensitivity were attempted to
be resolved by using three different methods of nondimensionalizing amplitude.

Each method analyzes the same data from an experiment conducted with an ElectriTap150-
G cantilever and HOPG sample. A hydrodynamic function calibration method was used
to extract the following properties. ω0 = 167.16kHz, Q = 348.1, k = 6.67N/m. The
humidity was 4%RH and the temperature at the time of calibration was 22oC.

A-5-1 MLA sensitivity

The nondimensinoalized amplitude data r = A
z can be found by multiplying the raw

amplitude signal in volts by the sensitivity recorded by the MLA (in nm/V), and dividing
by the static gap z. In this set of experiments all non dimensionalized amplitudes
calculated using the MLA sensitivity were less than 0.5 despite exhibiting softening
behavior.

A-5-2 Nanosurf Sensitivity

Another way of nondimensionalizing amplitude is by using the sensitivity value recorded
by the Nanosurf. The nondimensionalizing amplitude r can be found using equation
A-15
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r = A

z
= AMLA(V )
Amax,MLA(V ) ×

Amax,ns(V )× sensitivityns
z

(A-15)

The left term can be found by dividing the raw amplitude signal recorded by the MLA
AMLA(V ) by the maximum amplitude of the signal Amax,MLA(V ).

The experiments shown in figures A-6a - A-6d and figures A-7a - A-7f are fitted using
the nondimensionalized amplitude calculated using the Nanosurf sensitivity.

A-5-3 Amplitude Ratio
A revised formula was made in which the nondimensionalized amplitude no longer defined
to be a ratio of amplitude to static gap. Instead, the nondimensionalized amplitude Ā
was defined as the ratio of the raw amplitude signal (in volts) divided by the maximum
amplitude (in volts). Hence avoiding the need for a sensitivity all-together.

The maximum amplitude of a FRC for the nonlinear case is the same as the linear case
and is given by F0Q

k .

Ā = A(V )
Amax(V ) = A× sensitivity

Amax × sensitivity = k

F0Q
A = kz

F0Q
r (A-16)

The revised FRC equation in terms of Ā is given by equation A-17.

Ω = 1± 1
2Q

√
1
Ā2 − 1−Hf(F0Q

kz
Ā,R, k, z) (A-17)

Equation A-17 shows the peak of the FRC at Āpeak = 1 (by definition) and Ωpeak =
1 − f(F0Q

kz , R, k, z). While this equation has the added advantage of avoiding the need
for calibrating sensitivity, it comes with the disadvantage of removing the usefulness
of the amplitude peak - which had previously made curve fitting for F0 very effective.
Instead F0 exists purely in the nonlinear term, which can make curve fitting for H more
challenging.

The experiments shown in figures A-8a - A-8d and figures A-9a - A-9f are fitted using
the nondimensionalized equation A-17.

A-5-4 Phase
Another way to avoid using the sensitivity value to fit experimental data was to use
phase data instead. The experiments shown in figures A-10a - A-10d and figures A-11a
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- A-11f are fitted using equation A-13.

A-5-5 Experiment Discussion
An analysis of the different methods attempted to resolve the issue of unreliable cal-
ibrated sensitivity have been outlined below. Relevant technical issues are also com-
mented on.

The experiments analyzed using a sensitivity recorded by the MLA are unreliable since
the nondimensionalized amplitude was far less than 1 for all curves. A large reason
for this is because the deflection data was transferred from the AFM to the MLA. An
impedance factor had to be calibrated to ensure that the deflection recorded by the AFM
matched the deflection recorded by the MLA. This was accomplished by multiplying the
amplitude of the deflection data recorded by the MLA by a constant such that it matched
the amplitude of the deflection data recorded by the AFM software. Both the MLA and
AFM had their own separate inbuilt oscilloscopes. The calibrated impedance factor was
found to be approximately 1.22. The uncertainty in the impedance factor proportionally
affected the amplitude output in nm, resulting in nondimensionalized amplitudes slightly
higher or lower than expected. Additionally, other sources of errors originate from the
manual alignment of the laser on the cantilever tip. This misalignment strongly affects
the sensitivity recorded by the MLA. In theory, this shouldn’t be a large cause of error
since the amplitude signal in volts should also be scaled up/down by the same factor
as the sensitivity. However, misalignment of the laser could cause problems with short
cantilevers on highly reflective surfaces. If the laser is reflecting from a point of the
cantilever which is closer to one of it’s nodes, then the measured amplitude will be less
than the deflection of the tip. Additionally, any light reflecting off a highly reflective
surface at low static gaps can interfere with the measurement recorded by the photo
diode.

Nondimensionalizing amplitude using the sensitivity from the Nanosurf AFM managed
to improve the quality of the FRCs significantly. Many of the nondimensionalized am-
plitudes are very close to 1, as expected, facilitating good fits to be made. However,
there are still several issues with using method of nondimensionalizing. Firstly, the sen-
sitivity recorded by the AFM uses used a deflection calibration from static displacement
curves. This is expected to be less accurate than a thermal calibration analyzed around
the first eigenfrequency. Additionally, the Nanosurf software does not have an inbuilt
feature to export amplitude signal data. This is an issue because the amplitude signal
had to be observed manually in real time from a small monitoring tab. Unavoidable
human error made accurately recording the Amax,MLA(V ) value impossible. The low
dimensionless amplitude shown in figures A-7d and A-7f illustrate this. In these cases,
the static gap was increased and the real amplitude of the cantilever is much larger due
to the increased forcing. However, the monitoring tab displayed an amplitude that ap-
peared to remain roughly constant, leading to an unrealistically low softening behavior
at low nondimensionalized amplitudes. Consequently, the nondimensionalized ampli-
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tude values were unrealistically small. Additionally, evidence for z-fluctuation can be
seen observed in figure A-7e. This figure shows a completely linear response, whereas
identical experiments at the same positioned static gap and base excitation show very
different FRC shapes. This is likely due to thermal fluctuations and piezo creep moving
the cantilever tip sufficiently far away from the sample before a FRC was created. All
FRCs were conducted immediately after positioning the cantilever, which implies that
significant z-fluctuations can occur during the course of the positioning static displace-
ment curve. This is further evidenced by the F0/Y ratios not being constant across the
FRCs. Additional, figure A-7e has been fitted with a very large H. This large value is
very likely a result of a slight error recorded in the true natural frequency far from the
sample ω0. This could be caused by the cantilever tip attracting water during the po-
sitioning static displacement. The effective added mass will reduce 0. using a manually
adjusted ω0 for all FRCs such that the fitted H in figure A-7e was a minimum, did not
resolve the fluctuating H and F0 values observed.

Nondimensionalizing amplitude using the refined A/Amax equation A-17 solves the sen-
sitivity issue, but uses a less robust equation to output fitting parameters. Nonetheless,
this method can fit data corresponding to figures A-9d and A-9f, adding further evidence
that poor quality fits from figures A-7d and A-7f were caused by a sensitivity error. The
H extracted from these fits vary significantly, with most in the order of 10−17J . Inter-
estingly, the H extracted increased with larger tip sample gap z on average. This is an
unrealistic result and is speculated to be caused by the optimization algorithm (which
is based on equation A-17) mistaking a decreased excitation force for an increased H. A
similar problem is observed in figure A-9e. A completely linear FRC with a nondimen-
sionalized amplitude of 1, makes extracting F0 reliably impossible. This is because using
equation A-17, F0 can only be extracted from the influence of softening. An additional
complication is that the z-fluctuation cannot be easily observed using this method be-
cause, unlike the previous methods, the nondimensionalized amplitude is never greater
than 1.

The phase fitting scheme share the same problems as equation A-17. Additionally, the
offset fitting parameter make the optimization algorithm less robust. In many cases, the
phase was poorly fitted because several local minima in the least squared error caused
the optimization algorithm to end prematurely. Despite this figure A-11e adds further
evidence of z-fluctuation due to its linear relationship.

Each experiment was conducted with a set of FRCs that had a bias voltage, and a control
set of FRCs that did not have a bias voltage. The influence of a bias voltage mitigates
the attractive electrostatic force, and should decrease the softening behavior. However,
each experiment appears to show no reliable difference between FRC sets. This is likely
due to the experimental setup limitations described.

A-6 Experimental FRC fits
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(a) z = 27.6nm, Y = 0.15V (b) z = 28.1nm, Y = 0.15V

(c) z = 21.7nm, Y = 0.2V (d) z = 22.3nm, Y = 0.2V

Figure A-6: Amplitude FRC’s with a bias voltage of 1.1V. Amplitude FRCs fitted using
the nondimensionalized amplitude A

z
determined using the sensitivity value recorded by the

Nanosurf. Some curves show a nondimensionalized amplitude greater than 1
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(a) z = 27nm, Y = 0.15V (b) z = 27nm, Y = 0.15V

(c) z = 27nm, Y = 0.15V (d) z = 37nm, Y = 0.2V

(e) z = 37nm, Y = 0.2V (f) z = 37nm, Y = 0.2V

Figure A-7: Amplitude FRC’s without a bias voltage applied. Amplitude FRCs fitted us-
ing the nondimensionalized amplitude A

z
determined using the sensitivity value recorded by

the Nanosurf. Some curves appear linear while others show softening at unrealistically low
nondimensionalized amplitudes
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(a) z = 27.6nm, Y = 0.15V (b) z = 28.1nm, Y = 0.15V

(c) z = 21.7nm, Y = 0.2V (d) z = 22.3nm, Y = 0.2V

Figure A-8: Amplitude FRC’s with a bias voltage of 1.1V. Amplitude FRCs fitted using the
nondimensionalized amplitude A

Amax
from equation A-17. H and F0/Y values vary significantly
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(a) z = 27nm, Y = 0.15V (b) z = 27nm, Y = 0.15V

(c) z = 27nm, Y = 0.15V (d) z = 37nm, Y = 0.2V

(e) z = 37nm, Y = 0.2V (f) z = 37nm, Y = 0.2V

Figure A-9: Amplitude FRC’s without a bias voltage.Amplitude FRCs fitted using the nondi-
mensionalized amplitude A

Amax
from equation A-17. H and F0/Y values vary significantly
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(a) z = 27.6nm, Y = 0.15V (b) z = 28.1nm, Y = 0.15V

(c) z = 21.7nm, Y = 0.2V (d) z = 22.3nm, Y = 0.2V

Figure A-10: Phase FRC’s with a bias voltage of 1.1V. H and F0/Y values vary significantly
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(a) z = 27nm, Y = 0.15V (b) z = 27nm, Y = 0.15V

(c) z = 27nm, Y = 0.15V (d) z = 37nm, Y = 0.2V

(e) z = 37nm, Y = 0.2V (f) z = 37nm, Y = 0.2V

Figure A-11: Phase FRC’s without a bias voltage. H and F0/Y values vary significantly

Master of Science Thesis Matthew James



60

A-7 Humidity affects on experiments
In practice, humidity in the air can cause small water layers to form on the surface of
a sample and cantilever tip. When the tip gets sufficiently close to the sample, a water
neck can occur. This water neck is adhesive in nature and depends strongly on the
geometry of the cantilever tip [37]. This water neck breaks off at larger tip sample gaps
than when it formed, leading to dissipation and hysteresis

An experiment was conducted to see the influence humidity can have on the FRC’s.
A silicon sample was placed in a humidity chamber at 5% real humidity (RH). The
lid was then opened, causing the humidity to equilibrate to the humidity of the room
(37%RH). Multiple static deflection curves on approach were recorded in real time as
the humidity increased. The static deflection q∗ was multiplied by the stiffness of the
cantilever k = 24.1N/m to provide the tip sample force Fts.

Figure A-12: Consecutive approach static deflection curves over time. Shortly after opening
the humidity chamber snap-in is observed. As time passes, snap-in occurs at larger static gaps.

Figure A-12 shows that the humidity values at least greater than 5% on a silicon surface
affects the force-distance curve significantly. As the humidity increases, a snap-in is
observed which is likely indicative of a water neck forming. Also, as humidity increases
even more, the snap-in occurs further away from the sample, likely indicating an increase
in water layer thickness.

Even though silicon is hydrophobic, a silicon oxide layer had likely formed on the surface
during these experiments, making the surface hydrophilic. Consequently, no conclusions
can be drawn about the influence of humidity on truly hydrophobic samples like HOPG
in humidity values less than 5% RH.
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Appendix B

B-1 Capacitance gradient analytical model
The total capacitance between the tip and sample is made up from 3 distinct components.
These components include the tip apex, the the tip cone and the lever.

dC

dz
= dC

dz apex
+ dC

dz cone
+ dC

dz lever
(B-1)

Analytical approximations for each of these components have been made and are avail-
able in the literature [16] [38].

dC

dz apex
=

−2πε
(
R+ z

2
)2

 R−2z

z

(
2z tan2( θ2 )

R +1

) + 2 log
(

4z
cos(θ)(R−2z)+R+2z

)
(R− 2z)2

(
z2 log

(
csc( θ2 )

)
R2
(

1−sin( θ2 )
)(

sin( θ2 )+3
) + 1

) (B-2)

dC

dz cone
=
−8πε

(
log
(
H− 1

2R cot2( θ2 )+z
1
2R cot2( θ2 )+z

)
−

sin( θ2 )
(
H−R cot2( θ2 )

)(
z− 1

2R cot2( θ2 )
)(

1
2R cot2( θ2 )+z

)(
H− 1

2R cot2( θ2 )+z
) )

(π − θ)2 (B-3)

≈
−8πε

(
log
(

2H tan2( θ2 )
R

)
+ sin

(
θ
2

))
(π − θ)2 (B-4)
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dC

dz lever
=

−4εLw tan2
(
θl
2

)
θl

2(H + z)2

(
2L tan

(
θl
2

)
H+z + 1

) (B-5)

≈
−4εLw tan2

(
θl
2

)
Hθl

2
(
H + 2L tan

(
θl
2

)) (B-6)

Where θL is the angle the lever makes from the horizontal, H = tip height, L = cantilever
length, w = cantilever width, and θ = cone angle.
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Appendix C

C-1 Cantilever dynamics Theory

The cantilever dynamics are adequately approximated by Euler Bernoulli beam theory.
This approximation is valid because the length of the cantilever is considerably large (in
the order of 100µm) whereas the amplitude of oscillation is quite small (in the order of
10nm). The equation of motion is given by C-1, where f is the external force per unit
length.

ρAẅ + EIw′′′′ = f (C-1)

The natural frequencies and mode-shapes of this beam can be found by setting f = 0
and assuming a solution in the form w = W (x)eiΩt.

− Ω2ρAW (x)eiΩt + EIW (x)′′′′eiΩt = 0
− Ω2ρAW (x) + EIW (x)′′′′ = 0

And now defining the term β4 = ρA
EIΩ2 and solving for the mode-shape W (x) yields

W (x)′′′′ − β4W (x) = 0
W (x) = c1e

βx + c2e
−βx + c3e

βxi + c4e
−βxi

W (x) = A cosh βx+B sinh βx+ C cosβx+D sin βx
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AFM’s are typically modelled as a clamped - free connection. This implies the following
w(0, t) = 0, w(0, t)′ = 0, w(L, t)′′ = 0, w(L, t)′′′ = 0. Inserting these boundary conditions
into the equation for W (x) will force the following result cosβL = −1

coshβL . Solving this
numerically produces an infinite number of values for β: β1 ≈ 1.875

L , β2 ≈ 4.694
L , etc.

Each of these values can be rearranged to find the corresponding natural frequency.

Ω1 ≈
3.52
L2

√
EI

ρA

Ω2 ≈ 6.27× Ω1 ≈
22.03
L2

√
EI

ρA

The boundary conditions also eliminate 3 of the 4 constants, producing the following
result

W (x) = A

[
cosh βx− cosh βL+ cosβL

sinh βL+ sin βL sinh βx− cosβx+ cosh βL+ cosβL
sinh βL+ sin βL sin βx

]

Since there are an infinite number of natural frequencies Ωn, there are also an infinite
number of corresponding mode-shapes Wn(x). Using superposition and recalling that
w(x, t) = W (x)eiΩt, the general solution can be written as

w(x, t) =
∞∑

n=1

Wn(x)eiΩnt

w(x, t) =
∞∑

n=1

An

[
cosh βnx− cosh βnL+ cosβnL

sinh βnL+ sin βnL
sinh βnx− cosβnx+ cosh βnL+ cosβnL

sinh βnL+ sin βnL
sin βnx

]
sin(Ωnt+ φn)

The constants An and φn can be found using initial conditions. This formula is quite
complicated and difficult to use analytically. Typically, Engineers approximate this ex-
pression by assuming all modes n ≥ 2 are negligible. This is a reasonable approximation
since in most AFM’s the tip is excited near the first resonance only. It’s also convenient
to model the entire motion of the very tip of the cantilever as an equivalent spring mass
damper with mass m and stiffness k. Since the tip is assumed to oscillate at the first
mode exclusively, Ω1 =

√
k
m .

However, another equation is needed to find the equivalent stiffness k. This is done
by considering the same beam in static equilibrium where an equivalent spring force
F = k × w(L) is acting on the free end.

EIw′′′′static(x) = Fδ(x− L)
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Figure C-1: Equivalent cantilever beam with a point force acting on its end F

The boundary conditions; wstatic(0) = 0, w′staic(0) = 0, −EIw′′static(L) = 0 and−EIw′′′static(L) =
F yield the final static displacement equation

wstatic(x) = −F6EI x
3 + FL

2EI x
2

The equivalent force is now F = k×wstatic(L) = k× FL3

3EI . Solving for k, and substituting
this value of k into the expression Ω1 = 3.52

L2

√
EI
ρA =

√
k
m yields the following results. Note

the mass of the cantilever is mc = ρAL

k = 3EI
L3

m ≈ 0.242mc
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