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SUMMARY

The deployment of electromagnetic (EM) induction tools while drilling is one of the standard
routines for assisting the geosteering decision-making process. The conductivity distribution
obtained through the inversion of the EM induction log can provide important information
about the geological structure around the borehole. To image the 3-D geological structure in the
subsurface, 3-D inversion of the EM induction log is required. Because the inversion process
is mainly dependent on forward modelling, the use of a fast and accurate forward modelling
tool is essential. In this paper, we present an improved version of the integral equation (IE)
based modelling technique for general anisotropic media with domain decomposition pre-
conditioning. The discretized IE after domain decomposition equals a fixed-point equation that
is solved iteratively with either the block Gauss—Seidel or Jacobi pre-conditioning. Within each
iteration, the inverse of the block matrix is computed using a Krylov subspace method instead of
a direct solver. An additional reduction in computational time is obtained by using an adaptive
relative residual stopping criterion in the iterative solver. Using this domain decomposition
scheme, numerical experiments show computation time reductions by factors of 1.97-2.84
compared to solving the full-domain IE with a GMRES solver and a contraction IE pre-
conditioner. Additionally, the reduction of memory requirement for covering a large area
of the induction tool sensitivity enables acceleration with limited GPU memory. Hence, we
conclude that the domain decomposition method is improving the efficiency of the IE method
by reducing the computation time and memory requirement.

Key words: Electromagnetic theory; Numerical modelling; Numerical solutions.

1 INTRODUCTION

State-of-the-art tools for electromagnetic (EM) induction logging-
while-drilling (LWD) enable real-time mapping of formation
boundaries tens of metres away from the borehole (Sinha et al.
2022). These tools typically consist of multiple antenna configu-
rations that have different sensitivities to the electrical resistivity
distribution in the medium around the borehole. The distribution of
the electrical properties is quantified through an inversion process
and provides structural information and characteristics of the sur-
rounding medium. The studies in real-time geosteering inversion
usually employ 1-D or 2-D approximations (Pardo & Torres-Verdin
2015; Bakr et al. 2017; Puzyrev 2019; Noh ef al. 2022). However,
for imaging complex geological structures, it is important to cap-
ture the 3-D variability of the resistivity change around the borehole
through 3-D inversion methods (Puzyrev et al. 2019; Sinha et al.
2022). The work of Wilson et al. (2019) shows that it is possible

to perform 3-D inversion in real-time, however, it is challenging
due to the large computational cost required for the 3-D forward
modelling, especially when quantification of the uncertainties in
the inversion is required. Therefore, the study of a fast 3-D forward
solver that accurately models induction logs remains essential for
the development and testing of new imaging methods.

The integral equation (IE) method is one of the most widely ap-
plied numerical methods for the 3-D modelling of EM data (Avdeev
2005; Wang et al. 2021) alongside the finite-difference (Newman
& Alumbaugh 2002; Hou et al. 2006) and finite-element meth-
ods (Puzyrev et al. 2013; Ren et al. 2014). One of the main ad-
vantages of using the IE method is that it has the accuracy of a
semi-analytical solution (Wang ef al. 2021). Without introducing
many specific approximations, the EM fields around the borehole
are obtained by solving the linear system arising from the dis-
cretization of the IEs. As the linear system is dense, the computa-
tional memory and time required can be large compared to other
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numerical methods (Zaslavsky et al. 2011; Yoon et al. 2016). To
overcome this challenge, the linear system can be efficiently solved
using an iterative solver based on the Krylov subspace method
in combination with the utilization of FFTs (Fast Fourier Trans-
form) to accelerate the convolution integral operations in the lin-
ear system (Fang et al. 2006). A faster convergence rate can be
achieved by implementing the contraction IE formulation (Hursan
& Zhdanov 2002) which works especially well in the presence of
a high contrast or a high degree of anisotropy. Additionally, the
application of GPUs further decreases computation times because
GPUs enable the acceleration of mathematical operations that can be
straightforwardly parallelized (Dyatlov ef al. 2015; Saputera et al.
2022).

In the work of Zhdanov et al. (2006), the formulation of the
IE method is extended by decomposing the region of interest into
several subdomains. The field in the entire domain is obtained by
sequentially solving the linear system in each subdomain and up-
dating the interaction between the subdomains iteratively until con-
vergence. With this formulation, it becomes feasible to conduct
large-scale modelling of surface EM data in heterogeneous media
as the computational operation can be reduced to one subdomain
at a time. It is possible to obtain an additional reduction in com-
putational costs by only considering subdomains that contain an
anomaly with respect to the background medium. This leads to a
smaller number of discretization blocks required for the 3-D mod-
elling while still enabling FFT implementation (Endo et al. 2009)
and an improved iterative solver convergence rate (Van Dongen
et al. 2007). Typically, a horizontally layered model is chosen as the
background medium as the theory of Green’s functions for layered
1-D models is very well developed (Zhdanov et al. 2006). Hence,
the IE method can be very efficient when the resistivity model only
deviates in some areas from the 1-D model. However, in our ap-
plication, the subsurface structure can vary in all directions. The
subdomains containing an anomaly can be everywhere around the
EM tools and it may not be possible to achieve a reduction in the
number of discretizations by the domain decomposition. Addition-
ally, the subdomains from the decomposition can be adjacent to each
other such that the interactions between neighbouring subdomains
are not negligible.

The domain decomposition method can lead to an efficient way
of solving the linear system of the IE method (Jakobsen & Tveit
2018; Wang et al. 2017). In the work of Jakobsen & Tveit (2018),
the domain decomposition method is used to efficiently compute
the 7-matrix for the inversion of controlled source EM data. It is
also shown that the domain decomposition method opens up the
possibility to compute the 7-matrix in parallel.

In this paper, we demonstrate that the formulation of an IE
with domain decomposition (IE-DD) can be interpreted as a pre-
conditioned linear system, offering a computational advantage. We
illustrate that the IE-DD method can be represented as a fixed-point
equation, which is iteratively solved using block Gauss—Seidel or
Jacobi pre-conditioners (Saad 2003). In particular, we will use a
Krylov subspace method to invert the block matrices that are present
in the formulation. Instead of expressing the decomposition formu-
lation in terms of the contrast source in each subdomain as described
in Zhdanov et al. (2006) and Endo et al. (2009), we present the do-
main decomposition formulation in terms of the electric field in
each sub-domain and a different perspective on the derivation of the
IE-DD formulation. Additionally, we propose the use of an inexact
iterative solver when solving the IE linear system for each subdo-
main where the target tolerance is adapted based on the full-domain
residual.
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The outline of this paper is described as follows. In Section 2
called theory, we give an overview of the theory and implemen-
tation of the conventional IE method and the IE-DD. In Section 3
called numerical results and discussion, we present three numeri-
cal examples to show the performance of the IE-DD method and
discuss the computational aspect of our implementation. First, we
show an example with isolated subdomains to verify if the domain
decomposition formulation will produce the same numerical results
as the conventional full-domain formulation. Also, we show differ-
ent [E-DD schemes and compare the performance of these schemes
with each other and the full-domain IE as a reference. In the second
example, we show a numerical experiment with a simple anisotropic
faulted medium to demonstrate the benefit of using IE-DD in the
case of connected subdomains. In the last example, we simulate a
logging scenario across a large complex 3-D model. Furthermore,
we showcase the ability of the domain decomposition method to
reduce the memory requirement for dealing with a large number of
grid blocks in the last example. This feature lets us cover more por-
tion of the subsurface receivers while keeping a fine grid size, which
may not be straightforward to implement in our currently available
computer without the domain decomposition method. In Section 4,
we provide a compact evaluation of the IE-DD implementation in
this study and also some possible improvements for future research.
This paper contains appendices with more in-depth details of the
IE-DD derivation and implementation. We also include the compar-
ison of our conventional IE code and existing code as a benchmark
of our work in Appendix B.

2 THEORY

2.1 The integral equation method for 3-D induction logs
modelling

Maxwell’s equations for heterogeneous media (Wannamaker & Zh-
danov 2002) are the basic theory for modelling the induction tools’
response within the frequency domain:

VxsEW) =iopH @)+ J7 (), (D

VxH@F)=0{)E(r), (2)

where E (r) and H (r) are the total electric and magnetic fields,
respectively, at location r, J¥(r) denotes the magnetic source
term, w is the angular frequency, p is the magnetic permeabil-
ity, @ (r) = o (r) — iwe (r) is the complex electric conductivity, &
is the dielectric permittivity and i = v/—1. We assume that the
magnetic permeability is constant and it is set equal to the mag-
netic permeability of the vacuum 1. Additionally, the imaginary
part of the complex conductivity can be ignored in the diffusion
regime, which is a typical assumption for the operating conditions
of induction tools.

The total electric and magnetic fields can be formulated using
the following IEs (Fang et al. 2006)

E(r)= EO @)+ / GE (r,)Ac (F) E(#) dV (1), 3)
Q

H(r)=HY(r) +/ G (r,¥")Aca (r') E(r') dV (1), 4)
Q

where the € indicates the domain of integration where anomalies
in the conductivity relative to the homogeneneous isotropic back-
ground conductivity o are present. The integral terms in eqs (3) and
(4) represent the scattered electric and magnetic fields, respectively,
due to the presence of these anomalies. The (0) superscripts indicate
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the fields defined for the background medium which are referred
to as the background fields. We choose a homogeneous isotropic
background medium for simplicity and efficiency when calculating
Green’s tensor (Fang et al. 2006), and we assume that the tool is not
always surrounded by a horizontally layered medium. The tensor
Ao (r) =0 (r) — ool, denotes the conductivity contrast between
the actual anisotropic and the background medium, and with I the
identity tensor. The electric Green’s tensor G* (r, #') and its rela-
tion to the magnetic Green’s tensor G*(r, ') for a homogenous
isotropic medium are (Fang et al. 2006)

vV
GE(r, 1) = (ia)uo I+ —) g(r,r), (5)
0o
G (r,¥) = (iope) ' V x GE, (6)
’ eikg’r—r" ;
gr,r) = Py p— M

where g (r, 1) is the scalar Green’s function and ko = /iwooy.
To calculate the total magnetic fields, the total electric fields need to
be obtained first by solving eq. (3). Afterward, the calculation of the
total magnetic fields is a straightforward addition of the background
magnetic fields and the integral term as shown in eq. (4). Therefore,
the main computational challenge of the IE method is to solve
integral eq. (3), which is classified as a Fredholm IE of the second
kind (Fang et al. 2006).

2.2 Numerical implementation of the integral
equation method

A numerical solution of the volume integral in eq. (3) can be ob-
tained using the method of moments (Gibson 2021). The subsurface
model around the induction tool is discretized into a set of cubic
grid blocks with centroids r/ and volume of Av, where j indicates
the jth grid block. The discretization of eq. (3) leads to a linear
system of equations that can be expressed in operator form as

(I —GAo)E = E©, (8)

where G is the operator that represents the discrete convolution
integral of the electric Green’s tensor G” (r, ') with the contrast
source Ao E ineq. (3). For discretization with cubic grid blocks, the
Green’s function in eq. (5) can be discretized by separating the non-
singular part of the Green’s function and dealing with the singularity
by integrating the Green’s function of a grid block over a spherical
domain with an equivalent volume (Gao et al. 2005; Jakobsen &
Tveit 2018). The linear system in eq. (8) can be efficiently solved
using a Krylov subspace method because it does not require the
matrix of the linear system to be formed explicitly. The desired
accuracy of the iterative method is quantified by the relative residual
€ which is calculated as

3 |E® —(I-GAe)E|
| E| ’

where || - || is the Ly-norm. In this study, we use the generalized
minimum residual or GMRES (Saad & Schultz 1986) as the linear
system solver.

Green'’s tensor operator exhibits a convolution structure in each
of the tensor components. This property enables the use of FFT to
convolve a Green’s tensor component Glffq and a component of the
contrast source (Ao E), efficiently (Fang er al. 2006). The p and ¢
indices indicate the component of Green’s tensor and the contrast

©

Figure 1. Schematic of the domain decomposition. The black arrows indi-
cate the field coming from the transmitter Tx to the subdomains €2;. The
double-headed green arrows indicate the scatterers’ interaction between the
subdomains. The transmitter can also be located in the anomalous domain.

source vector with p and ¢ = x, y, z. At each step of the iterative
solver, the convolution integral can be efficiently calculated by

Gy (AGE), = F ' (F[G: ]OF [(AGE),]). (10)

where F is the FFT operator and ©® denotes elementwise multipli-
cation. This operation reduces the convolution computation com-
plexity from O(N?) to O(Nlog?N) with N the number of grid blocks.
It should be noted that the FFT convolution requires uniform grid
discretization. Although there exist several studies that employ FFT
convolution on non-uniform grid settings (Nie et al. 2013; Kamm &
Pedersen 2014; Chen et al. 2021), we keep a uniform grid discretiza-
tion in this paper and the usage of non-uniform grid discretization
with domain decomposition is subject to future study. Additionally,
the size of the discretized contrast source Ao E needs to be padded
by zeros such that the padded Ao E has twice the original number of
points in all directions to avoid the periodicity in the FFT convolu-
tion result. The FFT of Green’s tensor can be pre-calculated before
calling the iterative solvers to save computational time during the
iterative process.

The convergence of the Krylov solver can be improved using the
pre-conditioning introduced in the contraction IE method (Hursan
& Zhdanov 2002). In the contraction IE method, eq. (8) is pre-
conditioned by multiplying both sides of the equation with v/ Reoq
and solving for the scaled electric field (a E) instead of the electric
field E which results in the following:

VReoy(I — GAa)a ' (aE) = \/Reoy E°, (11)
where
2Reoyl + Ag®
a= eao——i—a. (12)
(ZQ/ReUO)

2.3 Domain decomposition

The domain decomposition method attempts to solve the problem
for the entire from solutions of the different subdomains (Saad
2003). In our case, the spatial domain €2 is decomposed into M non-
overlapping rectangular subdomains €2;, hence

M
e=J, (13)
j=1

see Fig. 1. Adapting the domain decomposition formulation de-
scribed in Endo et al. (2009), the convolution integral term or the
scattered electric field term in eq. (3) can be expressed as a sum of
scattered electric fields from each of the subdomains. Subsequently,
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eq. (3) can be written as
M

E(r)=E%r)+ Z/ GE (r,¥)Ac (#)E(¥)dV (), (14)
j=17%

where €; indicates the subdomains with the conductivity anomaly.
From eq. (14), we obtain the following set of IEs evaluated in each
subdomain:

M
EO=EW + 3" GUAcDED, i=1,2, ... M. (15)

Jj=1

The terms E®?, E¥ and A¢® are the background electric field,
total electric field and the conductivity contrast defined at the sub-
domain €;, respectively. The terms G Ag) EY) in eq. (15) are the
discrete representations of the convolution integral in eq. (14) which
denote the scattered electric fields in the subdomain €2; due to the
contrast source in the subdomain ;. It can be seen in eq. (15) that
the region without a conductivity anomaly does not contribute to the
sum and hence can be omitted from the discretization when calcu-
lating the electric field. By collecting the scattered field terms into
the left-hand side of the equations, the linear system of equations in
eq. (15) can be expressed with a block-matrix representation, viz.

AE = EY, (16)

where A is the block matrix of the re-arranged linear system ac-
cording to the domain decomposition

I-G"WAcH —GgI1DAg® .. —GIMAGHD)
_g(Zl)Aa(l) 1—9(22)A0(2) o _g(ZM)AU(M)
A= ) ) . . . (A7)

—GM A —GMING® . [-GMM A
where E and E"” are the block vectors containing the total and

background electric fields in different subdomains, respectively.
These terms are defined as

ED ECO
E® ECO

E=| . | EY = | (18)
E(.M) E(1.\410)

Each block in the matrix A4 indicates interaction terms between the
subdomains. The diagonal terms (I—G"”Ac”) in eq. (17) can
be interpreted as the intradomain interaction within a subdomain,
while the off-diagonal terms —G“ Ag') represent the interdomain
interaction terms. Since the subdomains are rectangular, the con-
volution integrals with Green’s tensor in the intra- and interdomain
interaction terms can still be calculated using the FFT.

To solve the re-arranged linear system of equation with domain
decomposition in eq. (16), the matrix A is pre-conditioned by split-
ting the matrix into a strictly lower triangular (L), strictly upper
triangular (U) and diagonal (D) part (Barrett et al. 1994; Saad
2003):

A=(L+U+D), (19)

1E method with domain decomposition 837

where the matrices L, U and D are defined by

r 0 0 L0
_g(ZI)Ao-(l) 0 .0
L= )
_g(Ml.)Ao,(l) _g(Mé)AG(Z) . 0
[0 —G1YAc® ... —GUMAGHT
0 0 . =GP AGID
U= . ’
: (20)
0 o o
and
rI—GUVAgM 0 0
0 I-G*Ac® ... 0
D = ’
o 0 1—gMinagen

respectively. By substituting the matrix splitting in eq. (19) into
eq. (16) and some simple algebra, we obtain

E=(D+L)" [E(O)—UZ’?} , 1)

which can be solved by choosing an initial guess of E and iteratively
calculating the following

B =+ 1) [E"-UE'), (22)

with k the iteration number. The iteration described in eq. (22)
corresponds to the block Gauss—Seidel iterative method (Barrett
et al. 1994; Saad 2003). The matrix (D + L) has a lower triangular
form where the inverse can be obtained using forward substitu-
tion (Venkateshan & Swaminathan 2014). The forward substitution
process to compute eq. (22) is outlined in Appendix A. With the for-
ward substitution, the total electric field update in each subdomain
according to eq. (22) can be expressed in the simple form as

i—1
EOX = (1= gD ag®) ™ | ECO 4 3 G AgEDHH

J=1

M
+ Z G Ag D EDK , (23)

Jj=i+1

where i = 1,2, ..., M denotes the number of inner iterations where
the IE is solved for one subdomain and the number & denotes the
number of the total domain sweeps where the electric field is updated
for the entire domain. The inverse operation of the block intrado-
main term in eq. (23) is not calculated using the direct solver, but
instead by using a Krylov subspace method to solve the following
linear system of equations within each subdomain:

i1
(I _ g(ii)AU(i)) EOkT — pG.0) + Z g(i/')Aa(j)E(j)Jﬁl

Jj=1

M
+ Z G AGD EDE, (24)
Jj=i+l

The domain sweep is carried out until the relative residual on the
whole domain reaches a desired threshold. The resulting operation
of solving eq. (24) iteratively is equivalent to the formulation de-
scribed in Zhdanov et al. (2006) and Endo et al. (2009). However,
in our derivation, we can see the link between the original formula-
tion to a block-pre-conditioned iterative method, which is the block
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Gauss—Seidel iterative method in this case. The convergence of the
Gauss—Seidel iterative method depends on the diagonal dominance
of the linear system matrix (Saad 2003). In this case, if the sum
of the interdomain terms’ norm is small compared to the norm of
the intradomain terms in eq. (24), then this scheme is guaranteed
to converge. Since the magnitude of Green’s tensor elements de-
pends on the distance between subdomains, the interaction terms
are small when the subdomains are isolated from each other. When a
subdomain has small contrasts, the interaction is one-sided from the
subdomain with high contrast. Additionally, the domain order may
affect the convergence rate of the Gauss—Seidel iterative method
(Barrett et al. 1994) because the ordering of the subdomains de-
termines the matrix (D + L), which controls the convergence rate.
These properties should be considered when designing the domain
decomposition settings.

Instead of the Gauss—Seidel iterative method, one can also choose
the Jacobi iterative method by taking only the diagonal part of the
matrix A as the pre-conditioner of the fixed-point equation instead of
its lower triangular part. The fixed-point equation that corresponds
to the Jacobi iterative method can be written as

B = pt [75(‘” —(L+U) Ek], (25)

which leads to the following linear system of equations to be solved
in each subdomain:

M
(I -G Ag") V4! = E00 37 G A EDE, (26)
j=1

Since the right-hand side of eq. (26) only depends on the solutions at
the kth iteration, the Jacobi iterative method is more straightforward
to be implemented in parallel computing environments (Barrett ef al.
1994). In this case, the linear system of equations at each subdomain
can be solved with the Krylov solver in parallel and the interaction
terms are updated after the Krylov solver computations are done
for all subdomains. The main drawback is that the Gauss—Seidel
method generally has better convergence properties than the Jacobi
method (Barrett ef al. 1994).

To further improve the computation speed, we propose to use
a Krylov solver with adaptive target residual when solving the IE
linear system of a subdomain. The main idea is that the relative
residual of the Krylov solver in a subdomain only needs to be
an order of magnitude less than the full-domain relative residual
to achieve the convergence of the Gauss—Seidel or Jacobi iteration.
Inaccurate approximate solutions from the Krylov solver are accept-
able at the beginning of the iteration and the relative residual target
of the Krylov solver is lowered as the full-domain relative solver
is decreasing during the Gauss—Seidel or Jacobi iterative method.
Additionally, the initial guess for the Krylov solver in the current
outer iterative process is updated from the result of the previous
outer iteration. Detailed implementation of this strategy is shown in
Algorithm 1.

Although we did not use the contraction IE form in the deriva-
tion, the contraction IE pre-conditioning can be applied when solv-
ing the linear system of equations in each subdomain. This can
result in further reduction of computation time pre-conditioning
by improving the convergence rate of the Krylov solver in each
subdomain (Endo et al. 2009; Zhdanov et al. 2006). Depending
on the choice of Gauss—Seidel or Jacobi iteration, the contraction
IE pre-conditioning can be applied when solving eq. (24) or (26).

Algorithm 1. IE method with domain decomposition pre-conditioning.

set : ¢, = threshold value, M = number of subdomains,
initialize : E* := E© k=1
H EO—(I-Gac)EF! \|
o [E7]
while € > ¢,
fori=1:M
if Gauss—Seidel pre-conditioning
b= EGO L Z'j—:‘l GUNDAgD) EDF+T Z»’/V:Hl GUN Ag ) EU)K
else if Jacobi pre-conditioning
b= EW0 4 Y M gD Ag() U)K
end if
set : initial guess = E(®X  threshold = /10
EW*1 = GMRES[A = (I — g(if)Ay(i)) , b, initial guess, threshold]
end for
k=k+1
end while

3 NUMERICAL RESULTS AND
DISCUSSION

In this section, we present three numerical cases to demonstrate the
effectiveness of the domain decomposition pre-conditioning of the
IE method. The first case is a model with two anomalous subdo-
mains separated by an isotropic medium with conductivity equal
to the background conductivity. In the second case, we present a
model where the anomalous isotropic conductivity is surrounded
by an anisotropic medium. Lastly, we simulate a logging scenario
across a faulted sand formation surrounded by anisotropic shale lay-
ers. We use the IE formulation with contraction IE pre-conditioning
as described in Section 2 in the GMRES solver for both full-domain
IE and IE-DD method, which we refer to as full-domain CIE and
CIE-DD, respectively. In all cases, we use the restarted GMRES
method with 10 restart iterations. All numerical experiments pre-
sented in this paper are performed on a laptop with an AMD Ryzen
7 4800H processor and NVIDIA GeForce RTX 3060 Laptop GPU
using MATLAB with GPU support enabled. We have compared
our full-domain IE code with existing 1-D semi-analytical solution
(Shahriari et al. 2018) and 3-D finite-volume method (Hou ef al.
2006). This comparison is shown in Appendix B and our results
show a good agreement with less than one per cent average abso-
lute difference.

3.1 Isolated subdomains on isotropic medium example

We consider two isolated anomalous subdomains embedded in an
isotropic medium background as shown in Fig. 2. The background
conductivity o is equal to 0.1 S m~! and the conductivity in the
anomalous subdomain is equal to 0.01 S m~!. A transmitter with
a 24 kHz frequency is located at the origin (x =0,y = 0,z = 0)
and is oriented in the x-direction. The whole domain is discretized
into 120 x 120 x 120 cubic grid blocks with a uniform grid size
0f 0.25 x 0.25 x 0.25 m>. The two anomalous subdomains are set
to have an equal size of 30 x 30 x 5 m® with the subdomain in the
negative z-axis as the subdomain 1. The distance between the closest
edges of the two subdomains is 10 m which is approximately equal
to the skin depth of the background medium given the transmitter
frequency.
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Figure 2. (a) xz-plane view of the model at y = 0 m. (b) xy- and xz-slice of the model in 3-D view.

We set the full-domain relative residual to €, = 10 for both
the full-domain CIE and CIE-DD iteration stopping criterion. Be-
cause the medium without contrast does not contribute to the scat-
tering field, we refer to the full-domain relative residuals as the
relative residual evaluated within the anomalous subdomains in
both cases. Additionally, the subdomains without the conductiv-
ity anomalies are excluded from the discretization in the CIE-
DD iterations. This results in one-third of the total number of
grid blocks of the full-domain IE being discretized in the CIE-DD
iterations.

We present four different schemes of CIE-DD to calculate the
electric field of the model, which are CIE-DD-GS-F, CIE-DD-GS-
A, CIE-DD-J-F and CIE-DD-J-A. The letters GS and J refer to the
CIE-DD with Gauss—Seidel and Jacobi iteration, respectively. The
letter F denotes the CIE-DD with a fixed GMRES solver relative
residual stopping criterion equal to 10~° in every outer iteration.
Whereas the letter A denotes the implementation of adaptive GM-
RES solver relative residual stopping criterion. In the adaptive rela-
tive residual scheme, the relative residual stopping criterion is set to
be one order of magnitude lower than the relative residual calculated
on the domain of interest or the full-domain relative residual of the
current outer iteration divided by ten.

The full-domain relative residuals presented in Fig. 3 shows the
convergence behaviour of all the CIE-DD schemes. It can be seen
that all the schemes are converged to the desired tolerance level. In
general, the relative residuals are decreasing at almost a constant
rate in all schemes, which are indicated by almost linear slopes
in the plot with a logarithmic scale. These rates are higher in the
schemes with Gauss—Seidel iterations compared to the ones with
Jacobi iterations. Comparing different GMRES solver tolerance
schemes, these convergence rates are higher in the schemes with
fixed GMRES solver tolerance. However, it can be observed that
there are decreases in the convergence rate in the last iteration which
is not the case with the adaptive tolerance schemes.

The full-domain relative residual behaviours indicate that the
convergence rates of the CIE-DD schemes are related to the ratio
between the full-domain relative residual and the GMRES solver
tolerance in the current outer iteration. In the schemes with fixed
GMRES solver tolerance of 1079, the ratios decrease as the full-
domain relative residual approaches 10°. This may explain the
significant changes of the line slopes at the last iteration of the
schemes with fixed tolerance in Fig. 3. Whereas in the adaptive
tolerance scheme, this ratio is approximately constant in each outer
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Figure 3. Full-domain relative residual during the Gauss—Seidel and Jacobi
iteration of the CIE-DD schemes. The solid and dashed lines indicate the
schemes with fixed and adaptive GMRES tolerance, respectively.

iteration which reflects the almost constant line slopes in the full-
domain relative residual plot.

Fig. 4 displays the total number of GMRES iterations taken to
reach the target residual within each of the outer iteration corre-
sponding to the Gauss—Seidel and Jacobi iteration. The schemes
with fixed GMRES solver tolerance show a decreasing trend of the
total number of GMRES iterations with the number of outer itera-
tions. This indicates that the changes in the electric fields due to the
interaction terms become smaller as the initial guess for the GM-
RES solver is updated in each of the outer iterations. On the other
hand, these numbers are generally increasing in the schemes with
adaptive GMRES solver tolerance which is related to the increas-
ing difficulty of reaching lower tolerance in each outer iteration. It
can be observed that the total GMRES iterations in subdomains 1
and 2 are equal in the Jacobi schemes due to the symmetry of the
subdomains.

Table 1 summarizes the computational cost comparison between
the full-domain CIE and CIE-DD with different schemes. All the
CIE-DD schemes converge below the desired tolerance within six
outer iterations. It can be seen that the total GMRES iterations in
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Figure 4. Total number of GMRES solver iterations within each outer iteration corresponding to the Gauss—Seidel (left-hand column) or Jacobi (right-hand
column) iterations. The plots in the top and bottom rows contain the schemes with fixed and adaptive GMRES solver tolerance, respectively.

Table 1. Computational cost of IE with different schemes on the isolated
domain case.

Total
GMRES Total outer
Schemes Target €, iterations iterations  Time (s)
Full-domain CIE 10-¢ 75 - 12.42
CIE-DD-GS-F 10-° 246 4 8.73
CIE-DD-J-F 10-¢ 336 6 11.86
CIE-DD-GS-A €710 170 6 6.29
CIE-DD-J-A /10 164 6 6.19

Note. €5 and € are the relative residual of the sub- and full domains, respec-
tively.

the CIE-DD schemes are more than the full-domain CIE, but the
computation time is faster than the full-domain CIE. This is because
the GMRES iterations in CIE-DD work on a smaller domain with
the number of blocks equal to one-sixth of the full-domain grid
blocks in each domain.

Based on the computation time, the schemes with domain de-
composition method with adaptive GMRES solver tolerance are
faster compared to their fixed tolerance counterparts. The CIE-
DD-GS-A schemes show faster computation time compared to the
CIE-DD-GS-F schemes because there are fewer GMRES iterations.
Therefore, specifying the adaptive relative residual for the Krylov
solver in the CIE-DD improves the computation time of the origi-
nal CIE-DD formulation with the cost of going through more outer
iterations. Compared to the full-domain CIE, the computation time
using CIE-DD-GS-A and CIE-DD-J-A schemes are faster by ap-
proximately factors of 1.97 and 2, respectively. The CIE-DD-J-A
is slightly faster compared to the CIE-DD-GS-A in this example
because it takes slightly fewer number GMRES iterations.

Fig. 5 shows the total magnetic field comparison between the
results calculated using full-domain CIE, CIE-DD-GS-A and CIE-
DD-J-A. Qualitatively, there are no differences observed because
both methods show similar numerical results within less than
0.01 per cent average normalized magnitude difference. Therefore,
the CIE-DD method will give the same result within the same rela-
tive residual level as the full-domain CIE.

3.2 Simple faulted anisotropic medium example

Fig. 6 shows an xz-plane view of a faulted resistive isotropic medium
with a conductivity of 0.005 S m~! surrounded by an anisotropic
medium with vertical transverse isotropy. The conductivity tensor
of the anisotropic medium consists of the conductivity in the hor-
izontal and vertical directions with the value of 6, = 0.2 S m™!
and o, = 0.1 S m~!, respectively. The conductivity of the media
does not vary in the y-direction. For the background medium, we
choose a homogenous isotropic medium with a conductivity of ¢
= 0.1 Sm~!. A transmitter with a 24 kHz frequency is located at
the origin and is oriented in the x-direction. The whole domain is
discretized into 120 x 120 x 120 grid blocks with a grid size of
0.25 x 0.25 x 0.25 m*. Because the whole domain contains con-
ductivity anomalies with respect to the background conductivity,
there is no reduction in discretization in the CIE-DD method. We
set the full-domain relative residual to €, = 107 as the stopping
criterion for the full-domain CIE and CIE-DD.

The full domain is decomposed into three rectangular subdo-
mains of equal size as illustrated in Fig. 6. Each subdomain is
discretized into 120 x 120 x 40 grid blocks with a grid size of
0.25 x 0.25 x 0.25 m?. With this decomposition, the faulted re-
sistive layer is located only in subdomain 1, while the other two
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Figure 5. xz-plane slice of total magnetic fields at y = 0 m. A transmitter oriented in the x-direction is located at x = 0 m, y = 0 m and z = 0 m. From top to
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bottom row: full-domain CIE, CIE-DD-GS-A and CIE-DD-J-A. The real and imaginary parts of the magnetic fields are on the left- and right-hand columns,

respectively.
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Figure 6. (a) xz-plane view of a faulted resistive layer surrounded by an anisotropic medium at y = 0 m and the domain decomposition setting. (b) 3-D view
with the anisotropic layers removed. A transmitter oriented to the x-direction is located atx =0m, y=0m and z = 0 m.

subdomains contain only the anisotropic medium. In this example,
we present the results of using the CIE-DD-GS-A and CIE-DD-J-A
schemes. In both schemes, we set GMRES solver stopping crite-
rion equals the maximum between €,/10 and 10~°. With this slight
modification, we minimize the number of GMRES iterations taken
when the full-domain residual in the outer iteration is close to its
stopping criterion.

Full-domain relative residuals presented in Fig. 7 show the con-
vergence of both CIE-DD-GS-A and CIE-DD-Jacobi schemes. The
full-domain relative residuals with both schemes are always de-
creasing with outer iteration to the desired tolerance. In general, the

convergence rate of the CIE-DD-GS-A is faster than the CIE-DD-
J-A. The CIE-DD-GS-A converges within seven outer iterations,
while the CIE-DD-J-A converges within 10 outer iterations.

The computational cost comparison between the full-domain CIE
and CIE-DD schemes is shown in Table 2. In this case, the total
number of GMRES iterations for the CIE-DD is similar value to
the total number of iterations for the full-domain CIE. Because the
computational cost of a GMRES iteration in the CIE-DD method
is cheaper, this results in the computation time reduction for both
the CIE-DD-GS-A and CIE-DD-Jac-A schemes of approximately
a factor of 2.84 compared to the full-domain CIE. We have tested
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Figure 7. The convergence rate comparison between the CIE-DD-GS-A
and CIE-DD-J-A schemes for the anisotropic medium example.

Table 2. Comparison of computational cost and resulting relative residual
of different IE schemes on the anisotropic medium example.

Total
GMRES  Total outer
Schemes iterations iterations  Time (s) €f
Full-domain CIE 18600 - 3053.87  9.99 x 1077
CIE-DD-GS-A 18163 7 1075.50  9.97 x 1077
CIE-DD-J-A 18329 10 1083.09  9.96 x 1077

the CIE-DD-GS-A with different subdomain order and the effect of
changing the order is not significant to be included in this paper.

Fig. 8 displays the distribution of total number of GMRES it-
erations in each subdomain for every outer iteration using CIE-
DD-GS-A and CIE-DD-J-A schemes. In both cases, subdomain 1,
which contains the faulted resistive layer, takes the largest num-
ber of GMRES iterations. The total number of GMRES iterations
in subdomain 1 increases up to 4770 while it is only below 10 in
the other two subdomains. This indicates different condition num-
bers in each subdomain which can be related to the conductivity
contrast in the domain (Singer et al. 2003; Zaslavsky et al. 2011;
Yavich & Zhdanov 2016). Yavich & Zhdanov (2016) established
that the condition number is bounded by the maximum conductiv-
ity contrast between the actual and background conductivity. The
maximum ratio of actual to background conductivity is a factor of
10 in the subdomain 1, while it is a factor of two in the other subdo-
mains. Based on these factors, subdomain 1 has the highest contrast
compared to the other subdomains.

This example highlights the usage of the domain decomposition
method for isolating the domain with the highest condition number
and reducing the computation time. By isolating the subdomain
with the highest contrast, we can exclude the calculation in the
subdomain with less contrast and focus the computational resource
on iterating in this domain.

3.3 Logging simulation across a complex formation

We simulated induction logs across the faulted anisotropic forma-
tion with an 85° drilling angle as illustrated in Fig. 9(a). This forma-
tion consists of anisotropic shale layers surrounding isotropic sand
layers. The shale layers are marked in blue and the sand layers in
yellow in Fig. 9. The model has 2.5-D main structural features with

the addition of a simple 3-D Gaussian perturbation only in the sand
layers to imitate a fluid distribution in a reservoir. This perturbation
is defined by

O'sand = o'lsland + ao'gand €xXp <_M> ’ (27)
where the subscripts sand denote the values located in the sand
layers and the superscripts u indicate the defined unperturbed value;
r. is the location of the maximum perturbation; o and y are the
factors that control the magnitude and range of the perturbation,
respectively. In this example, we set the peak perturbation location
r.atx =500m,y =0 mand z =40 m; and define« =4 and y =
50 m.

We use a moving 3-D forward modelling window to simulate a
moving transmitter scenario. The z-direction in the forward mod-
elling window is directed to the drilling direction so it is consis-
tent with the component direction of the induction tools (Pardo
& Torres-Verdin 2015). Hence, the coordinate system in the win-
dow is rotated from the Cartesian coordinate system according to
the drilling direction as illustrated in Fig. 9(a). Consequently, the
conductivity tensor elements are transformed following the domain
rotation (Gao 2006), see Appendix C for further details. In each
of the forward modelling windows, we set a constant background
conductivity oy = 0.1 Sm™".

Following the typical tool configurations described in Antonsen
et al. (2022), we set a z-oriented transmitter with a frequency of
24 kHz and three receivers with spacings of 7, 15 and 30 m as illus-
trated in Fig. 10 for the logging simulations. A forward modelling
window with a size of 32 x 32 x 32 m? may not be enough to
capture the full sensitivity of all the receivers, especially the one
with the largest spacing. Hence, we tested two different windows
with different sizes of 32 x 32 x 64 and 64 x 64 x 64 m® to see
different sensitivities of the receivers with the forward modelling
domain size. We refer to the smaller window as window 1 and the
larger one as window 2. In both windows, we keep a grid size of
0.25 x 0.25 x 0.25 m® resulting in a total of 128 x 128 x 256 and
256 x 256 x 256 grid blocks for windows 1 and 2, respectively.

The memory requirement of solving a linear system of equa-
tions using iterative methods and FFT convolution roughly scales
linearly with the number of grid blocks N. The memory require-
ments for storing the electric fields and conductivity model remain
the same with and without domain decomposition. However, be-
cause the GMRES solver and FFT convolution operations are done
on each subdomain separately using the domain decomposition
method, the memory requirement for GMRES solver and FFT con-
volution operations can be reduced from O(N) to O(N/M), with M
the number of subdomains. This allows us to fully take advantage
of the GPU acceleration with limited GPU memory and solve a
large linear system of IE without having to store everything in the
memory at the same time.

The logging position starts at x = 0m, y =0 mand z = 0 m
and ends at x = 900 m, y = 0 m and z = 78.74 m. In each logging
position, we use the CIE-DD-GS-A scheme and we set the order of
the subdomain according to the distance of the subdomain closest
edges to the source point as shown in Fig. 11. We set €, = 1072 as
the outer iteration stopping criteria as it is good enough to see the
main pattern of |H.,| component at the receiver positions along the
drilling trajectory.

Fig. 12 shows |H..| component measured by the receivers at
each transmitter position using different windows. Qualitatively,
the differences in the results between the two window settings are
increasing with the receiver spacings. This result shows different
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Figure 10. Illustration of an induction tool with a single transmitter and
three receivers. Tx and Rx stand for transmitter and receiver, respectively.

sensitivities of the transmitter—receiver spacing and we can observe
that the sensitivity range is proportional to the receiver spacing.

The computation time required to calculate the magnetic field for
one logging position using the windows 1 and 2 settings takes an
average of approximately 54.28 and 633.77 s, respectively. Updating
the interaction terms is the most expensive part of the computation
time, taking up around 80 per cent of the time at every iteration. One
of the main reasons is that the FFT of dyadic Green’s tensors for
the interaction terms is not pre-calculated before the Gauss—Seidel
iterations due to not enough memory space available to store these
tensors. This adds extra FFT function calls which can be avoided
when the dyadic Green’s operators can be put into memory.
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Figure 12. Measured magnitude of the z-component |H_| at different re-
ceiver positions across the formation.

In every position, it took three to four Gauss—Seidel iterations
with 49-86 total GMRES iterations to reach the desired tolerance
using the window 1 setting. Whereas using the window 2 setting,
it took four to seven Gauss—Seidel iterations with 293-424 total
GMRES iterations in each logging position.

4 CONCLUSION

The linear system of equations arising in the IE method for 3-D EM
method modelling can be naturally decomposed into a set of linear
systems of equations that correspond to the IE in different parts of
the modelling domain. The IE-DD formulation reduces the mem-
ory requirement to compute a large-scale problem as it provides
the connection between each subdomain while still maintaining the
viability of using FFTs to calculate the convolution integral oper-
ation. By expressing these linear systems of equations in a block

matrix representation where each block represents the interactions
between the domains, we have made a link between the derivation in
Zhdanov et al. (2006) and Endo et al. (2009) with a pre-conditioned
fixed-point iteration using domain decomposition method. Depend-
ing on the choice of the pre-conditioner, the fixed-point iteration
corresponds to the block Gauss—Seidel and Jacobi iterative method.
In every Gauss—Seidel or Jacobi iteration, the inverse of the block in-
tradomain interaction term is calculated using the Krylov subspace
method instead of a direct solver. In addition to the domain decom-
position method, we use the implementation of contraction integral
pre-conditioner when solving the linear system in each subdomain.

Our numerical results show that a reduction in computation time
can be achieved although the total number of GMRES solver iter-
ations in IE-DD schemes is more than in the full-domain IE. This
speed-up is due to the GMRES solver in the decomposed domains
being cheaper to compute and it is shown that it only takes less
than 10 IE-DD outer iterations to reach the desired tolerance. Ad-
ditionally, specifying adaptive relative residual stopping improves
the computation time of the IE-DD by reducing the total number
of GMRES iterations required for reaching the desired error tol-
erance. The implementation of domain decomposition shows the
advantage of reduction in discretization and isolating subdomain
with high contrast. Our numerical experiments show computation
time reductions by factors of 1.97-2.84 compared to the full-domain
pre-conditioned IE. In addition, the domain decomposition method
can be used to reduce the memory requirements of the opera-
tions involved in solving a large system of IE. The IE-DD with
Gauss—Seidel pre-conditioning generally has a better convergence
rate compared to the Jacobi pre-conditioning. However, the form of
the Jacobi iterative method is more suitable for parallel computation
as the operation in each subdomain can be computed independently,
which is a subject for future implementation.

In this study, we have only implemented IE-DD with a simple
iterative update corresponding to the Gauss—Seidel and Jacobi iter-
ative methods. The Gauss—Seidel and Jacobi iterative methods are
in general not very competitive in terms of convergence compared
to the Krylov subspace method (Barrett e al. 1994). Therefore,
further potential improvement of the IE-DD presented in this study
is obtained by implementing the Krylov subspace as the outer itera-
tion update instead of the Gauss—Seidel and Jacobi iteration update.
Another interesting application of the domain decomposition in the
IE method would be to incorporate a direct method that can be com-
puted in parallel into the domain decomposition pre-conditioner, for
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example using the 7-matrix method (Jakobsen & Tveit 2018; Som-
mer & Jakobsen 2018). Since the domain decomposition method
can be used for solving any linear system of equations in general,
it can be applied to other numerical or geophysical methods that
involve solving a linear system of equations.
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APPENDIX A: FORWARD
SUBSTITUTION IN GAUSS-SEIDEL
ITERATIVE METHOD

The inverse of a lower triangular matrix can be obtained through
forward substitution (Venkateshan & Swaminathan, 2014). For sim-
plicity, we demonstrate the forward-substitution process in the case
of domain decomposition with three subdomains. We can write the
block-matrix representation and its splitting for three subdomains:

All A12 A13
A=|Ay Ap Ay | =(D+ L+ V), (A1)
A31 A32 A33

with the matrices D, L and U are the block diagonal, strictly lower
triangular and strictly upper triangular of A, respectively. These
terms are defined as

(4, 0 0
D=| 0 An 0 |,
L0 0 4y
[0 0 0]
L= A2| 0 0 N
| Az A3 0] (A2)
and
[0 4,, A)5]
U=10 0 A
00 o |

Here, each of the blocks denotes the interdomain or intradomain
operators described in Section 2 as

A = (I-G""Ac?), (A3)
Ay =—GP AV, i # ). (A4)

The fixed-point equations using matrix A that corresponds to the
Gauss—Seidel iterative method

EY =+ [E(O)—U;?k] . (A5)

By substituting the matrices D, L and U for three subdomains and
calculating the inverse of (D + L), we obtain:

E(;) . 1141711 1 01 0 R,
E(; = |~z Au 4, Ay 0 IRy (A6)
E¢ —A;, — Ay An Ay, Ay || Ry

where

Ay = A A3 A} — A3 An Ay A A7 (A7)

and the terms R; denote the ith row of the second term in the
right-hand side of eq. (A5) written as

R, ENO _ 4, EPF _ 4 EOF
R, | = E®0 — 4,, E&* ) (A8)
R; EC?

By multiplying the matrix on the right-hand side of equation (A.6),
we obtain the following equations:

EMA+L AﬂlRl, (A9)
EDM = 4 [Ry — Ay A R ], (A10)

EOM = A7) [Ry — Ay Ay, (R, — Ay A Ry) — A3 A7 R ]
(A1)

Note that the term AR, in the second right-hand side
term of eqs (A10) and the third right-hand side term of (All)
can be substituted by EV**! from eq. (A9). Also, the term
A5} (Ry — Ay A} Ry) in the second right-hand side term of
eq. (A11) can be substituted by E?**! from eq. (A10). With sub-
stitutions on these terms, eqs (A9)—(A11) can be expressed as:

EOF — 41R,, (A12)
E®F — A;zl [Rz - A21E(1)'k+l], (A13)
E®kH A;; [R3 — Ay E@HH1 _ A31E(1)”‘“], (A14)

where the terms A;l are the block matrices that indicate the pro-
cess of solving a linear system of equations in the ith subdomain.
It can be observed from eqs (A12)—(A14) that, in general, there
are recurrences of the term E™*#*! in all of the equations in the
jth subdomain for j > i. This implies the results of the fixed-point
eq. (A5) can be obtained by sequentially solving the linear system of
equations in each subdomain and updating the right-hand side in the

equations for the next subdomain using the most recent solutions.

APPENDIX B: VERIFICATION OF THE
CONVENTIONAL IE CODE

To verify the accuracy of our conventional 3-D IE code, we compare
our numerical results to those obtained with a semi-analytical 1-D
solver (Shahriari et al. 2018) and a 3-D finite-volume solver (Hou
et al. 2006). Following Jahani et al. (2023), we consider an LWD
simulation across a layered anisotropic medium with a drilling angle
of 80° as illustrated in Fig. B1. The tool consists of a tri-axial
transmitter and receiver with a frequency of 12 kHz and a receiver
spacing of 7.62 m. We use a moving forward modelling window with
a size of 48.64 x 48.64 x 48.64 m3. This window is discretized
into 128 x 128 x 128 grid blocks and a cell size of 0.38 x 0.38
x 0.38 m*. We set a constant background conductivity of 0.1118 S
m~!.
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Figure B1. Sketch of logging while drilling across an anisotropic layered
medium.

Fig. B2 shows the co-axial and co-planar components of the
magnetic fields obtained using different numerical methods. We
do not include the Y co-planar components of the magnetic fields
because the values are zero. Overall, the results obtained from our
IE-code show a good agreement with the 1-D semi-analytical and
3-D finite-volume results. The average absolute difference of all
components calculated using our IE code is less than one per cent
compared to the 1-D semi-analytical result.

APPENDIX C: CONDUCTIVITY TENSOR
TRANSFORMATION FOR
TRANSVERSELY ANISOTROPIC
FORMATION

The tensor structure of electrical conductivity o for anisotropic
media is generally expressed as (Zhdanov 2009)

Oxx Oxy Ox:z
0 = [ Oyx Oy, Oy |, (Cl)
Ozx Ozy Oz
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with an off-diagonal symmetry o; = o;. For a vertical transverse
isotropic medium with the z-axis as the vertical axis, the conductiv-
ity tensor is written as (Gao 2006; Jakobsen & Tveit 2018)

o=1|00, 0], (€2)

where o, and o, are the conductivity in the horizontal and vertical
directions, respectively. In the case where the angle between the
formation layering and the drilling trajectory is not 90°, it is neces-
sary to rotate the conductivity tensor from the formation coordinate
system to the induction tool coordinate system. For a transversely
isotropic formation, the explicit expressions of the rotated conduc-
tivity tensor are as follows (Gao 2006)

o, =0y + (0, — o) sin’ 6 cos? ¢,

oy, = (0, — o) sin® 6 sin ¢ cos ¢,

o,. = (0, — 0;,)sin6 cos O cos ¢,

ay/y = o}, + (0, — 03,) sin® 0 sin’ ¢, (C3)
1. = (0, — 03)sin6 cos O sin g,

and

ol. =0, — (0, — 0,)sin* 6,

where 6 and ¢ are the z-axis rotation and y-axis rotation angles
from the formation coordinate system to the induction tool coor-
dinate system, respectively. The resulting conductivity tensor has
non-zero off-diagonal components and our method can deal with
this complication without making any other changes in the imple-
mentation.
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Figure B2. Comparison of the calculated magnetic field couplings with different numerical methods.
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