TU Delft

TinyML-Empowered Indoor Positioning with Light

Model Optimization using Neural Architecture Search

Neel Lodha'
Supervisor(s): Qing Wang', Ran Zhu'!

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Neel Lodha
Final project course: CSE3000 Research Project
Thesis committee: Qing Wang, Ran Zhu, Ranga Rao Venkatesha Prasad

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Visible light positioning (VLP) systems are a
promising solution for indoor positioning, utiliz-
ing light-emitting diodes (LEDs) as transmitters
and photodiodes (PDs) as receivers. A received
signal strength (RSS) based VLP system’s accu-
racy is heavily dependent on the density of col-
lected fingerprints, being a very labor-intensive
process. In this study, we focus on RSS finger-
prints to achieve centimetre level positioning ac-
curacy, while addressing the challenges of labor-
intensive fingerprint collection and deployment on
resource-constrained devices like the Raspberry Pi
Pico microcontroller. We found different neural
network architectures using Neural Architecture
Search (NAS) to optimize the VLP system, which
achieve on average 12mm positioning error with
low inference latency around 50ms on the Rasp-
berry Pi Pico.

1 Introduction

Location-aware services are a crucial feature of modern wire-
less networks, enabling a wide range of essential applications,
particularly those in the Internet of Things (IoT). Although
wireless communication has advanced significantly in recent
years, achieving accurate and cost-effective indoor position-
ing using wireless systems continues to be a major challenge.
Numerous applications like smart retail, navigation in large
public facilities (e.g., hospitals, malls), assisted living, and
industrial tracking of robotic arms have driven exploration of
wireless technologies such as WiFi [1], Bluetooth [2], Zig-
bee [3], and ultra-wideband (UWB) [4]. However, these
technologies face persistent challenges, including limited ac-
curacy, electromagnetic interference, and spectrum conges-
tion [5].

The widespread adoption of light-emitting diodes (LEDs)
for illumination, coupled with advances in visible light com-
munication (VLC), has positioned visible light positioning
(VLP) as a compelling alternative for indoor localization.
VLP benefits from leveraging existing lighting infrastructure,
offers high positioning accuracy, and provides enhanced se-
curity. Furthermore, LED-based systems operate in the unli-
censed spectrum and are biologically safe, making them par-
ticularly attractive for environments such as hospital operat-
ing rooms, where radio frequency (RF) signals may pose risks
to both patients and sensitive equipment.

Unlike RF-based systems, VLP is less susceptible to mul-
tipath reflection, resulting in improved positioning accu-
racy [6]. Several techniques have been proposed for VLP,
including angle-of-arrival (AOA) [7], time-of-arrival (TOA),
time-difference-of-arrival (TDOA) [8], and received signal
strength (RSS) [9]. While AOA offers high accuracy, it re-
quires complex computations and expensive hardware. TOA
and TDOA demand highly sensitive receivers and precise
synchronization between transmitters and receivers. In con-
trast, RSS-based methods are cost-effective and do not re-
quire synchronized infrastructure, making them suitable for
resource-constrained environments.

VLP systems typically use multiple LEDs as transmit-
ters and photodiodes (PDs) or cameras as receivers. Due
to their lower cost and power consumption, PDs are pre-
ferred for scalable deployment. Prior work by Zhu et al.
[10] addressed the labor-intensive nature of data collection
in RSS-based VLP by introducing data preprocessing tech-
niques like data cleaning and data augmentation. Building
upon this foundation, our work focuses on optimizing the
VLP model for deployment on microcontrollers. Specifically,
we target improvements in positioning accuracy and infer-
ence latency through Tiny Machine Learning (TinyML), en-
abling efficient and scalable indoor localization on resource-
constrained hardware.

Thus, this papers aims to answer the following research
question and associate sub-questions:

Main Research Question

How can we improve the performance (accuracy, inference
latency) of a VLP system running TinyML on resource-
constrained devices?

RQ1 Which traditional neural network architec-
tures (Convolutional Neural Networks, Mul-
tilayer Perceptrons) found using Neural Ar-
chitecture Search are most suitable for our
RSS based VLP system when deployed on a
Raspberry Pi Pico microcontroller?

RQ2 How does the density of the fingerprint

dataset impact the model’s performance.

The remainder of this paper is structured as follows. Sec-
tion 2 reviews prior work by Zhu et al. [10] and surveys
relevant literature in RSS-based VLP, TinyML, and neural
architecture search (NAS). Section 3 outlines our proposed
methodology, including data preprocessing, NAS procedures,
and optimization strategies. Section 4 details the experimen-
tal setup used to evaluate our approach. Section 5 presents the
evaluation results, demonstrating improvements in position-
ing accuracy and reductions in inference latency. Section 6
situates our findings within the broader literature, highlight-
ing limitations and directions for future research. Section 7
discusses the ethical considerations relevant to our study. Fi-
nally, Section 8 summarizes our research questions and key
contributions.

2 Background

In this section, we discuss the state-of-the-art methods for
RSS based VLP systems, the work done by Zhu et al. [10],
related work in the field of TinyML and Neural Architecture
Search (NAS).

2.1 RSS based VLP systems

VLP systems utilize the RSS from multiple light-emitting
diodes (LEDs) to determine the position of a receiver. The
RSS values are influenced by factors such as distance, angle,
and environmental conditions. Previous research has shown
that RSS-based VLP systems can achieve high accuracy in in-

[ONONONORONC]

®0 0066
LEDgridTX ® @ ®@ @ ® @

POOO®®® |

[ORORNORONONE]
Q00000

Movable RX f——~7——

(a) Testbed
(b) Mlustration

Figure 1: DenseVLC testbed, a) actual testbed, b) testbed illustra-
tion.

door localization using various techniques like triangulation
and fingerprinting [11].

Hsu et al. [12] proposed a Convolutional Neural Network
(CNN) based VLP system along with data preprocessing
techniques like cleaning and interpolation to improve accu-
racy. Similarly, Zhu et al. [10] achieved centimeter-level ac-
curacy data preprocessing techniques like data cleaning and
data augmentation and used machine learning models to re-
duce data collection while maintaining good position accu-
racy. This work serves as the foundation of our research, as
we aim to further optimize the VLP system for deployment
on resource-constrained devices using TinyML techniques.

2.2 Previous work by Zhu et al.

Dataset
Zhu et al. [10] used the DenseVLC testbed [13] (see Figure 1)
to obtain the dataset for their VLP system.

The setup consists of 36 LED transmitters (TX) and 4 pho-

todiode receivers (RX). The TXs are mounted on a height
adjustable ceiling in a 6 x 6 grid with spacing of 0.5m. The
testbed is divided into 4 sections, with each section having an
area of 1.2m x 1.2m. Each RX is assigned to a section and
can move freely within along the = and y axes.
Every fingerprint sample in the dataset, consists of the re-
ceived signal strength (RSS) values from all the 36 TXs, the
RX’s positional coordinates (z, y, z). Measurements are con-
ducted at 1cm intervals in both the x and y direction. Simi-
larly, measurements are taken at 2 different heights (vertical
difference between the TX and RX) of 176¢cm and 192cm.
Finally, each measurement is taken 3 times at a specific loca-
tion. In conclusion, the dataset consists of 351, 384 measure-
ments.

Data preprocessing

Zhu et al. [10] proposed two data preprocessing to improve
the performance of the model. The first one is a data clean-
ing setup which using the Lambertian model to remove the
outliers (see Figure 2). The second one is using data augmen-
tation where data is only collected at intervals of 8cm in the
x and y direction. The data is then augmented by interpolat-
ing the data to 1cm intervals. This allows for a more dense
dataset while keeping the number of measurements low. In
our experiment, we will be using the same data cleaning and
augmentation techniques to evaluate the performance of our
model making sure that the results are comparable.

g

y-axis (cm)

08
06
3
s
04
100
50 02
0 00

o 50 00 150 200 250
x-axis (cm)

Raw data (1cm granularity)

Clean data (1cm granularity)

Figure 2: Visualization of the LED 9 RSS values in the -y plane.

TinyML

To run the VLP system, Zhu et al. [10] implemented three
different machine learning models. The first two are Ran-
dom forests and Support Vector Machines (SVM) which are
both non-deep learning models. The third is a deep learn-
ing model: a Multilayer Perceptron (MLP) comprising five
hidden layers. To enable deployment on an Arduino Nano
microcontroller, the MLP model was quantized, reducing its
size from 5M B to 1.3M B. ‘This” MLP model will also serve
as the baseline for our research.

2.3 Neural Architecture Search

Neural Architecture Search (NAS) is a method to automati-
cally search for the best architecture for a given task. Figure
3 shows the general workflow of NAS. The search space is
defined by the user, and the search algorithm explores this
space to find the best architecture. The search process is usu-
ally expensive, as it requires training and evaluating many
architectures. However, recent advances in NAS have made
it possible to search for architectures more efficiently [14]. It
has also been shown to be effective in finding architectures
that outperform hand-designed architectures.

Recent research has increasingly focused on hardware-aware
Neural Architecture Search (NAS), which aims to discover
neural network architectures that are not only accurate but
also optimized for deployment on specific hardware plat-
forms, such as microcontrollers and specialized accelerators.
For instance, uNAS [15] introduces a multi-objective con-
strained NAS algorithm specifically tailored for microcon-
trollers, balancing predictive performance with strict con-
straints on memory, storage, and inference latency, which are
critical for resource-scarce devices. Similarly, Banbury et al.
[16] utilizing NAS to deploy neural network architectures on
commodity microcontrollers, while using a multi-objective
optimization approach to balance accuracy, memory usage,
and inference time.

In this research, we will be using NAS to find the best ar-
chitecture for our VLP system. The search will be conducted
under strict hardware constraints to ensure that the resulting
model is compatible with deployment on a resource-limited
microcontroller, specifically the Raspberry Pi Pico (Figure 4)
featuring a dual-core ARM Cortex-MO+ processor running at
up to 133M Hz, 264K B of SRAM, and 2M B of onboard
flash memory, and we need to ensure that the model is small
enough to fit on the microcontroller while still achieving good
accuracy and inference latency.

Search Space

Controller

Performance
Evaluation

Candidate Select

Architecture

Evaluation
Strategy

Optimal
Architecture

l Training & Rank

Figure 3: Neural Architecture Search workflow [14]

Figure 4: Raspberry Pi Pico H

2.4 Quantization

Quantization is a technique which performs computations
and stores tensors at lower bit widths compare to floating
point precision (e.g., 32-bit floating point). By reducing
the bit width to for example 8-bit integers, the quantization
enables more compact model representations and utilization
of efficient vectorized operations on various hardware plat-
forms [17, 18]. This technique is particularly beneficial dur-
ing inference, significantly reducing computation costs while
maintaining inference accuracy.

There are two methods for quantization: Quantization-Aware
Training (QAT) and Post-Training Quantization (PTQ). QAT
involves training the model with quantization in mind, allow-
ing the model to learn to adapt to the quantized weights and
activations. PTQ, on the other hand, applies quantization after
the model has been trained, which is often faster and requires
less computational resources.

3 Methodology

This section introduces the methodology used to find different
neural network architectures, outlines the different stages of
the Neural Architecture Search (NAS) process, and describes
the evaluation metrics used to assess the performance of the
models.

3.1 Dataset

As mentioned in the previous section, we use the dataset
from the DenseVLC testbed which contains 351,384 mea-
surements. Each measurement consists of the RSS values
from all 36 TXs (input values) and the RX’s positional co-
ordinates (x,y, z) (output values). A cleaned version of this
dataset is prepared by applying the data cleaning technique
proposed by Zhu et al. [10]. We can use both the original
(raw) and the cleaned dataset for training the models and eval-
uating their performance. To keep things simple, we only use
the measurements taken at the height of 176¢m, similar to
the previous work [10]. To remove biases from the dataset,
we ensure that both input and values are normalized using
the min-max technique to a range of [0, 1]. Finally, the nor-
malized dataset is split into training (70%), testing (20%) and
validation (10%) sets.

A key distinction in our approach compared to previous work,

such as Zhu et al. [10] which utilized Multi-Layer Percep-
trons (MLPs) with a flattened array of 36 RSS values, is our
input representation. Given that the 36 transmitters (LEDs) in
the DenseVLC testbed are arranged in a physical grid, we re-
shape the input RSS values into a 6 x 6 matrix. This 2D repre-
sentation could allow Convolutional Neural Network (CNN)
models to potentially learn and exploit spatial features and
correlations between neighbouring transmitters, which would
be lost in a 1D flattened input. Thus, we also explore the use
of CNNss in our search for optimal architectures.

3.2 Neural Architecture Search

We use the Microsoft Neural Network Intelligence (NNI)
framework [19] to perform our Neural Architecture Search
(NAS). NNI is a general open source AutoML toolkit for au-
tomating the process of hyperparameter tuning and neural ar-
chitecture search. It provides a flexible and easy-to-use inter-
face for defining search spaces, training models, and evalu-
ating their performance. The toolkit supports state-state-of-
the-art NAS algorithms, including both multi-shot and one-
shot methods, and can be easily integrated with popular deep
learning frameworks such as PyTorch and TensorFlow.

Search Space

Designing an effective search space is crucial for the suc-
cess of a NAS process, especially when finding architectures
for resource-constrained devices [20]. Zoph et al. [21] intro-
duced a cell based search space where the search space is de-
fined as a sequence of cells. A cell is a small sub-architecture
that is repeated multiple times to form the final architecture.
This approach allows to find the best cells that can be com-
bined to form a larger architecture, while reducing the search
space size and computational cost. Zoph et al. [21] introduced
two kinds of cells: normal cell that preserves the input dimen-
sions and a reduction cell that reduces the spatial dimensions.

For the CNN search space, we define it as a sequence of
cells, similar to common NAS setups. We also test a sim-
pler version with just a few convolutional layers, pooling
and full connected (FC) layers, which lets us compare com-
plex cell-based architectures with basic ones. For the MLP
search space, the cell-based design doesn’t apply, so we use
a straightforward setup with only FC layers. Finally, the out-
put layer is a fully connected layer with 2 neurons which are
then activated using Sigmoid (activation function to ensure
the output values are in the range of [0, 1]) corresponding to
the (z,y) coordinates of the RX.

Search Algorithm

For the exploration of our defined search space, our method-
ology leverages the capabilities of the Microsoft NNI frame-
work, which supports a variety of NAS search algorithms.
These algorithms broadly include multi-shot techniques, ex-
emplified by reinforcement learning (RL) based approaches
[22], where an agent iteratively learns to select better archi-
tectures. Additionally, NNI accommodates more recent one-
shot methods (see Figure 5) designed for greater computa-
tional efficiency. Prominent examples within this paradigm
are:

e Efficient Neural Architecture Search (ENAS) [23]: This

mm— Conv3x3 0 0
fm— Conv5x5

MaxPool

)

Figure 5: “Illustration of one-shot architecture search. Simple net-
work with an input node (denoted as 0), three hidden nodes (denoted
as 1,2,3) and one output node (de- noted as 4). Instead of applying a
single operation (such as a 3x3 convolution) to a node, the one-shot
model (left) contains several candidate operations for every node,
namely 3x3 convolution (red edges), 5x5 convolution (blue edges)
and MaxPooling (green edges) in the above illustration. Once the
one-shot model is trained, its weights are shared across different
architectures, which are simply subgraphs of the one-shot model
(right)” [25, 24]

method employs a shared-parameter super-network and a re-
inforcement learning controller to guide the search process,
allowing for efficient exploration of the architecture space.

* Differentiable Architecture Search (DARTS) [24]: This ap-
proach relaxes the architectural choices into a continuous do-
main, enabling gradient-based optimization, which signifi-
cantly reduces the computational burden compared to tradi-
tional methods.

Both of these techniques are one-shot strategies where only a
single super-net architecture is trained, contrary to the multi-
shot methods like random search or grid search which require
training each architecture in the search space independently,
leading to significant computational overhead.

In our specific implementation, we will be utilizing both
the ENAS and DARTS search strategies to explore the search
space.

Crucially, to ensure the discovered architectures are suit-
able for our resource-constrained Raspberry Pi Pico target,
we employ a custom evaluator. This evaluator performs a
regression task, optimizing for Mean Squared Error (MSE)
loss, which directly reflects the VLP system’s objective of
predicting (x,y) coordinates. To incorporate the stringent
hardware limitations, we integrate hardware-aware penalties
directly into this MSE loss function. Specifically, penalties
are added based on:

* The number of model parameters: This directly correlates
with the model size, ensuring it fits within the Pico’s limited
memory.

* The number of operations: This serves as a proxy for infer-
ence latency.

3.3 Deployment

After the NAS process is completed, the best architecture
is exported as PyTorch models which are then converted
to TFlite-micro format using the Tensorflow Lite Converter.

Since TFlite only supports 8-bit quantized models, we have to
quantize the default float 32-bit models to 8-bit. This means,
that the model size is roughly reduced by a factor of 4.

Quantization

To quantize the models, we use the post-training quantization
technique provided by the Tensorflow Lite Converter. 300
samples (forming the representative dataset) from the valida-
tion set are used to calibrate the quantization process. The
input tensors and output tensors are not quantized, only the
weights and the biases of the model are. Since the Pico only
has 2M B of flash memory, the models need to be quantized
to fit within this limit. Thus, we can set an upper limit of ap-
proximately 7M B for the non quantized model size, which
would be reduced to approximately 1.75M B post quantiza-
tion, allowing for the weights to fit alongside the pico-tflmicro
and pico-sdk libraries in the flash. We can also set an up-
per limit of 800K B for the non quantized model size, which
would be reduced to approximately 200K B post quantiza-
tion, allowing for the entire model to fit in the SRAM of
the pico which is 264K B, thus allowing for faster inference
times.

3.4 Evaluation Metrics

The performance of the models is evaluated based on two
main criteria: accuracy and latency.

Accuracy

The accuracy of the model is evaluated using the Mean
Squared Error (MSE) metric (euclidean distance between the
predicted location and ground truth).

Latency

Using the pico-tflmicro and pico-sdk libraries, the quantized
models are deployed on the Pico, where the inference latency
is measured. The latency is measured by running the model
on a set of input tensors and averaging the time taken for mul-
tiple runs to get a reliable estimate. The latency is measured
in milliseconds (ms).

4 Experimental Setup

This section describes the experimental setup used to evalu-
ate the proposed methodology. All models were trained and
evaluated for accuracy on an NVIDIA T4 GPU. Inference la-
tency, however, was measured separately on a Raspberry Pi
Pico.

4.1 Baseline Model

We use the MLP model used by Zhu et al. [10] as our baseline
model. The model has five hidden layers with 256, 512, 1024,
512 and 256 neurons respectively and output layer of size 2,
ReLU activation function, Adam Optimizer with learning rate
of 1 x 10~* for gradient descent. The model is trained for
15 epochs with batch size of 64. The input of this model is a
1 x 36 vector corresponding to the 36 RSS values. The model
is also quantized using PTQ to 8-bit which reduces the model
size of 5.1K B to 1.3K B, thus can only be deployed on the
Pico’s flash memory.

Layer Type Options

32, 64, 128, 256, 512,
1024, 2048

ReLU, LeakyReLU, ELU,

Hardswish, Tanh, Sigmoid

Fully Connected Layer

Activation Function

Table 1: Search space configuration for MLP architectures, showing
the available options for layer widths and activation functions. De-
fault PyTorch parameters are used for all activation functions.

4.2 Neural Architecture Search

A search is performed for both MLP and CNN architectures
on the clean datasets. Architectures found are then re-trained
on both raw and clean datasets to compare its performance on
both datasets.

MLP Search

The MLP search space encompasses architectures with a vari-
able number of hidden layers ranging from 2 to 6, variable
layer dimensions and activation functions. The possible ac-
tivation functions are selected based on their compatibility
with TFLite-micro. Table 2 provides a detailed overview of
the search space.

ENAS strategy is used for the MLP search, where the super-
net is trained for 50 epochs using the Adam optimizer with a
learning rate of 1 x 10~* and batch size of 64. The RL con-
troller uses the Proximal policy optimization (PPO) algorithm
with a Long Short-Term Memory (LSTM) model with hidden
size of 64, learning rate of 1 x 10~—* and discount factor of
1.0. These parameters are the default values used by the NNI
framework for the ENAS strategy.

. Top 10 architectures are selected based on the validation
error and are then re-trained for 50 epochs with the same hy-
perparameters. Early stopping with a patience of 5 epochs
is used to prevent overfitting, and the model from the best-
performing epoch (based on validation loss) is saved and used
for evaluation. The NAS is conducted on the clean dataset
with a maximum quantized model size of 250 K B for SRAM
deployment and 1900K B for flash memory deployment, to
compare the trade-offs between model size and performance.
The input of this model is a 1 x 36 vector corresponding to
the 36 RSS values, same as the baseline model.

CNN Search

We perform the search on two different search spaces:

* Cell based search space: This search space consists of
normal and reduction cells, where each cell is a small sub-
-network that can be stacked to form a larger network, which
are then followed by a few fully connected layers. The cell
architecture is very similar to the one used in DARTS [24],
but with a few modifications to make it compatible with
TFLite-micro. ~ The possible operations within a cell
are: max_pool_3x3, avg_pool_3x3, skip_connect,
sep_conv_3x3, sep_conv_5x5, dil_conv_3x3 and
dil_conv_5x5. Number of cells can be between 6 and
15, which are then followed by FC layers to flatten and result
in the output shape of 1 x 2.

» Simple search space: This search space consists of basic

Layer Type Options

Channels: 16,32,64,128,256
Kernel Size: 3,5

Stride: 0, 1

Padding: 0, 1

Channels: 16,32,64,128,256
Type: Average, Maximum
32, 64, 128, 256, 512
ReLU, LeakyReLU, ELU,
Hardswish, TanH, Sigmoid

2D Convolution

2D Batch Normalization
2D Pooling
Full Connected Layer

Activation Function

Table 2: Search space configuration for the simple CNN architec-
tures, showing the available options for different layer types and
activation functions. Default PyTorch parameters are used for all
activation functions.

layers like convolutional layers, pooling layers and FC
layers.

DARTS strategy is used for the cell based search space,
where the supernet and architecture parameters are trained
for 30 epochs using the Adam optimizer with a learning rate
of 1 x 1073, gradient clipping of 0.5 and batch size of 128.
The architecture is trained using the AdamW optimizer with
a cosine learning rate schedule, starting at 1 x 10~2 and
decaying to 1 x 10~° over the course of training. The weight
decay is set to 3 x 104

The search space is penalized for the number of parameters
to ensure the hardware constraints are met. The best archi-
tecture is selected based on the validation error and is then
re-trained for 100 epochs with the same hyperparameters.
For the simple search space, we use also DARTS strategy,
with the same hyperparameters as above, expect the number
of epochs for training the supernet and architecture param-
eters is 15. The best architecture is selected based on the
validation error and is then re-trained for 50 epochs with the
same hyperparameters.

The NAS is conducted on the clean dataset, same as the
MLP search. For the search of cell based architectures, the
maximum quantized model size is set to 200K B, since the
cell based architecture tend to use more memory during
inference. Based on trail and error, we found that on average
the cell based architecture use around 60K B of memory, so
we set the maximum model size to 200K B to ensure that
the architecture can fit in the memory of the Raspberry Pi
Pico. In contrast, for the simple search space, the maximum
quantized model size is set to 230K B, since the simple
architectures tend to use less memory during inference. For
flash memory deployment the maximum quantized model
size is set to 1800K B for both search spaces. The input
shape for the CNN architectures is 6 x 6, which corresponds
to the 36 RSS values reshaped into a grid.

4.3 Augmented Data

To evaluate how the models perform on different fingerprint
data densities, we run the best models found in the previous
searches on augmented data with densities of 8cm, 4cm and
2em. We do not perform a new NAS for each density; instead,

Model size (KB) 5168
Model SIZ.C . 1303
post quantization (KB)
Positioning error (mm) Raw 207
Clean | 14.2
Positioning error Raw 21.7
post quantization (mm) | Clean | 16.2
Inference latency (ms) 283

Table 3: Performance of the baseline MLP model

we reuse the top architectures discovered from the NAS on
the clean dataset and retrain them. This approach focuses on
testing the models’ ability to handle varying data densities
and on evaluating the effectiveness of the data augmentation
methods introduced by Zhu et al. [10].

5 Evaluation

5.1 Baseline

We run the baseline model, which is a Multilayer Perceptron
(MLP) with five hidden layers, on the raw and clean datasets.
Since, it is MLP architecture, the input shape is 1236. We
also quantize the baseline model to 8-bit and run it on the
Pico. Table 3 shows the performance of the baseline model
on both datasets and the inference latency on the Pico. The
results indicate that the baseline model performs well on both
datasets, but the clean dataset yields better performance in
terms of error and model size. Post quantization, the model
size is reduced significantly from 5168 KB to 1303 KB, mak-
ing it feasible to run on the Raspberry Pi Pico. The error
increases slightly after quantization both on raw and clean
datasets

5.2 Search

MLP Search

The MLP search took around 2 hours to find top 10 architec-
tures. Each architecture took around 2 minutes for re-training
for each dataset.

5.3 CNN Search

The CNN cell based search took around 4 hours to find archi-
tectures for the normal and the reduction cell. Figure 6 show
the architectures of the normal and reduction cells found
by DARTS strategy with model size constraint for SRAM
deployment. For the simple search space, the search took
around 30 minutes to find the top architecture, which then
took around 5 minutes for re-training.

5.4 Results

Table 5 summarizes the top-performing architectures iden-
tified through our experiments. The exact architectural de-
tails for each model are provided in Appendix A. Table 4
presents the performance of these models across raw, clean,
and augmented datasets. We report both quantized and non-
quantized accuracies, as well as inference latency measured
on the Raspberry Pi Pico. All selected models outperform

the baseline in terms of both positioning error and inference
speed.

MLP_SRAM is the smallest model, with a size of 553K B. It
achieves a positioning error of 7.4mm on the clean dataset
and boasts an exceptionally fast inference latency of 18ms
on the Pico. Because it fits entirely within SRAM, it benefits
from significantly faster inference compared to models that
must run from flash memory.

MLP_FLASH, the largest MLP model at 1344 K B, achieves
improved positioning accuracy due to its larger hidden layers,
which can capture more complex patterns. However, this is
not a general trend, more neurons do not always equate to
better performance.

The best accuracy is achieved by the CNN models.
CNN_Simple_Flash, for instance, attains a positioning error
of 4.1mm on the clean dataset an impressive improvement
over the baseline. Other simple CNNs also achieve compet-
itive results. However, their inference latency is higher than
MLPs due to the computational complexity of convolutional
operations.

The cell-based CNN model, CNN_Cell_Flash, achieves a
positioning error of 6.9mm slightly worse than the simple
CNN but still better than both the MLPs and the baseline. Its
increased complexity and deeper architecture result in higher
memory usage and latency during inference.

After post-training quantization, all models show a sub-
stantial reduction in model size. MLP_SRAM compresses down
to just 144K B. In contrast, CNN_Cell_SRAM sees a less dra-
matic size reduction only about 1.3 compared to an average
4 x reduction seen in other models, likely due to the structural
complexity of the cell-based architecture.

Quantization generally leads to a slight degradation in
positioning accuracy, which is expected due to the re-
duced numerical precision of weights and activations. Still,
the models perform well post-quantization. For example,
CNN_Simple Flash maintains a strong performance with a
positioning error of 12.1mm. The drop in accuracy varies
across models, suggesting differing levels of quantization
robustness. For instance, while MLP_SRAM experiences a
twofold increase in error, CNN_Cel1_SRAM shows a threefold
increase highlighting that simpler models like MLPs are less
sensitive to quantization than more complex CNNss.

5.5 Augmented Data

On average, the models perform better on the augmented data
than on the raw dataset, indicating that the data augmentation
methods are effective in improving the models’ performance.
Similarly, the positioning error increases slightly as the data
density decreases, which is expected since the models are
trained on denser data. In some cases, like the MLP_Flash
model where the error on raw dataset is less than the error
for augmented data and the CNN_Cel1l_SRAM model where the
error on 8cm augmented data is less than the error on 4cm
augmented data. These anomalies could be due to the ran-
domness involved in the training or due to the models not
being able to generalize well to the augmented data.

Model Size | Model Size Positioning Error Positioning Error Latency
Name (KB) PQ (KB) (mm) PQ (mm) (ms)
Raw | Clean | 2cm | 4cm | 8cm | Raw | Clean | 2cm | 4cm | 8cm

Baseline 5168 1303 20.7 | 14.2 146 | 153 | 17.6 | 21.7 | 16.2 16.5 | 158 | 19.0 | 283
MLP_SRAM 553 114 100 | 7.4 104 | 146 | 15.8 | 20.1 | 169 156 | 17.0 | 189 | 18

MLP _Flash 1344 351 9.8 6.6 10.8 | 13.1 | 11.1 | 16.8 | 12.6 156 | 169 | 18.3 | 67
CNN_Simple_SRAM | 548 155 8.2 4.9 6.3 6.9 6.7 14.1 | 12.3 12.8 | 13.8 | 16.2 | 84
CNN_Simple_Flash 5689 1446 6.4 4.1 5.3 5.7 6.0 19.6 | 12.1 122 | 124 | 13.6 | 334
CNN_Cell_ SRAM 235 176 6.9 4.8 56 |53 5.7 19.5 | 16.2 17.1 | 189 | 19.3 | 241

Table 4: Comparison of architectures found by NAS. PQ stands for Post Quantization. In Positioning error, the columns 2c¢m, 4cm and
8cm represent the error on augmented data with densities of 2cm, 4cm and 8cm respectively. Latency is inference latency measured on the

Raspberry Pi Pico.

Figure 6: Cell architectures Normal cell (a) and Reduction cell (b)
found by DARTS strategy with model size constraint for SRAM de-

a) Normal cell

max_pool_3x3

b) Reduction cell

ployment.
Model Name Search Space | Constraint
MLP_SRAM MLP SRAM
MLP _Flash MLP Flash
CNN_Simple_.SRAM | Simple CNN | SRAM
CNN_Simple_Flash Simple CNN | Flash
CNN_Cell_SRAM Cell CNN SRAM

Table 5: Top architectures found from the different experiments.

6 Discussion and Limitations

Neural Architecture Search (NAS) proved effective in iden-
tifying models with superior positioning accuracy and lower
inference latency on the Raspberry Pi Pico, highlighting its
utility in optimizing neural networks under tight resource
constraints. While traditional cell-based architectures com-
monly employed in state-of-the-art NAS frameworks were
also explored, they did not outperform the simpler, directly
searched architectures. This indicates that the positioning
task considered here is relatively simple, and more complex
NAS strategies may not be necessary. Nonetheless, NAS
played a valuable role in adapting models to different hard-
ware constraints, such as memory and inference latency, by
discovering architectures that balanced accuracy, size, and
latency. Post-training quantization yielded inconsistent re-
sults across models, some performing much worse than the
others, suggesting room for improvement through advanced
compression techniques like pruning, knowledge distillation,
or quantization-aware training.

Data augmentation, though not outperforming the clean
dataset (since it was derived from it), led to significantly bet-
ter results than training on raw data and effectively reduced
the manual burden of data collection. Moving forward, it
would be worthwhile to explore larger and more expressive
search spaces, though such efforts should be weighed against
the computational cost, especially given the marginal gains
observed for this relatively constrained task.

Furthermore, enhanced data preprocessing techniques could
simplify the model design process, enabling even lightweight
architectures to achieve high accuracy. As future datasets be-
come more complex and representative of real-world deploy-
ment conditions, NAS is likely to become more impactful,
uncovering diverse and robust architectures that outperform
manual designs.

6.1 Limitations and Future Work

This research presents several limitations that warrant discus-
sion. The NAS methodology employed focuses on discover-
ing simple architectures for a relatively straightforward prob-
lem compared to state-of-the-art applications, making tradi-
tional NAS approaches not directly applicable to this domain.
The search space is constrained to a limited set of layers and

hyperparameters, which may prove insufficient for identify-
ing optimal architectures for the given problem. Furthermore,
the search space is not exhaustive, potentially overlooking
superior architectures that remain undiscovered by the NAS
process, with the architectures found showing minimal per-
formance differences. While hardware constraints provide
valuable guidance for selecting architectures suitable for tar-
get devices, they simultaneously restrict both the search space
and model performance capabilities.

Additionally, the dataset limitations present significant
constraints, as it is restricted to the DenseVLC testbed, which
may not adequately represent other VLP systems or diverse
environments. The dataset generated is in a confined lo-
cation, missing environmental factors such as interference,
noise, and other real-world conditions that could impact the
performance of the models in practical applications. This is
not a limitation for the NAS process, but rather a limitation of
the dataset, and it would be interesting to see how the models
perform in a more realistic setting.

7 Responsible Research

We address the ethical considerations of our research, repro-
ducibility of our results, and the use of generative Al tools in
the writing process.

7.1 Ethical Considerations

The data collected for this research is from the DenseVLC
testbed, which only contains measurements of RSS values
and thus doesn’t contain any sensitive or personal informa-
tion. Also, VLP systems use LEDs with visible light, which
doesn’t pose any health risks to humans. However, the during
data collection, rapid flashing of the LEDs may cause dis-
comfort to some individuals.

7.2 Reproducibility

To ensure the reproducibility of our research, we have made
all the code used in this research publicly available on
Github!. Our code, uses open source libraries and frame-
works, and is well documented for easy understanding and
use.

7.3 Use of Generative Al

We have used generative Al tools, such as ChatGPT and
Gemini, to assist in writing of this paper, in specific for tasks
related to grammar and style checking. Prompts like Please
rewrite the following text to improve its clarity and style were
used to improve the quality of the text. All outputs from these
tools were critically reviewed and evaluated. These tools
were not used to generate any results.

8 Conclusions

In this paper, we used Neural Architecture Search (NAS) to
find efficient MLP and CNN architectures for Visible Light
Positioning (VLP) using Received Signal Strength data. Our
models target the Raspberry Pi Pico and improve positioning
accuracy by 50% compared to prior work by Zhu et al. [10],

"https://github.com/Idkwhoami42/vlp-nas

while achieving a low inference latency under 100ms on the
Pico.

We also showed that our models maintain good perfor-
mance when trained with augmented data, helping reduce the
manual effort needed for data collection.

Our results show that NAS can effectively discover ar-
chitectures that are well-suited for both the target hardware
and the task. However, given the simplicity of the prob-
lem, hand-crafted architectures could likely achieve similar
results. While NAS is not strictly necessary in this case, it
remains valuable for more complex scenarios.

In future work, with more challenging datasets and envi-
ronments, NAS could offer greater benefits by discovering
diverse and higher-performing architectures that outperform
manually designed models.

References

[1] K. Chintalapudi, A. Padmanabha Iyer, and V. N.
Padmanabhan, “Indoor localization without the pain,”
in Proceedings of the Sixteenth Annual International
Conference on Mobile Computing and Networking, ser.
MobiCom ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 173—184. [Online].
Available: https://doi.org/10.1145/1859995.1860016

[2] D. Chen, K. G. Shin, Y. Jiang, and K.-H.
Kim, “Locating and tracking ble beacons with
smartphones,” in Proceedings of the 13th Interna-
tional Conference on Emerging Networking EXperi-
ments and Technologies, ser. CONEXT ’17. New
York, NY, USA: Association for Computing Ma-
chinery, 2017, pp. 263-275. [Online]. Available:
https://doi.org/10.1145/3143361.3143385

[3] W.-H. Kuo, Y.-S. Chen, G.-T. Jen, and T.-W. Lu, “An
intelligent positioning approach: Rssi-based indoor and
outdoor localization scheme in zigbee networks,” 07
2010, pp. 2754-2759.

[4] L. Barbieri, M. Brambilla, A. Trabattoni, S. Mervic,
and M. Nicoli, “UWB Localization in a Smart Factory:
Augmentation Methods and Experimental Assessment,”

IEEE Transactions on Instrumentation Measurement,
vol. 70, p. 3074403, Jan. 2021.

[5] J. Torres-Sospedra, R. Montoliu, S. Trilles Oliver,
O. Belmonte Ferndndez, and J. Huerta, “Comprehen-
sive analysis of distance and similarity measures for
wi-fi fingerprinting indoor positioning systems,” Expert
Systems with Applications, vol. 42, pp. 9263-9278, 12
2015.

[6] G. Seco-Granados, J. Lépez-Salcedo, D. Jiménez-
Bafios, and G. Lépez-Risuefio, “Challenges in indoor
global navigation satellite systems: Unveiling its core
features in signal processing,” IEEE Signal Processing
Magazine, vol. 29, no. 2, pp. 108-131, 2012.

[71 A.Gradim, P. Fonseca, L. Alves, and R. Mohamed, “On
the usage of machine learning techniques to improve po-
sition accuracy in visible light positioning systems,” 07
2018, pp. 1-6.

https://github.com/Idkwhoami42/vlp-nas
https://doi.org/10.1145/1859995.1860016
https://doi.org/10.1145/3143361.3143385

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

P. Du, S. Zhang, C. Chen, A. Alphones, and W.-D.
Zhong, “Demonstration of a low-complexity indoor vis-
ible light positioning system using an enhanced tdoa
scheme,” IEEE Photonics Journal, vol. 10, p. 7905110,
08 2018.

S. Zhang, P. Du, C. Chen, and W. Zhong, “3d indoor vis-
ible light positioning system using rss ratio with neural
network,” 07 2018.

R. Zhu, M. Van den Abeele, J. Beysens, J. Yang, and
Q. Wang, “Centimeter-level indoor visible light po-
sitioning,” IEEE Communications Magazine, vol. 62,
no. 3, pp. 48-53, 2024.

J. Luo, L. Fan, and H. Li, “Indoor positioning systems
based on visible light communication: State of the art,”

IEEE Communications Surveys & Tutorials, vol. 19,
no. 4, pp. 2871-2893, 2017.

L.-S. Hsu, D.-C. Tsai, H. M. Chen, Y.-H. Chang,
Y. Liu, C.-W. Chow, S.-H. Son, and C.-H. Yeh, “Using
received-signal-strength (rss) pre-processing and convo-
lutional neural network (cnn) to enhance position ac-
curacy in visible light positioning (vlp),” in 2022 Op-
tical Fiber Communications Conference and Exhibition

(OFC), 2022, pp. 1-3.

J. Beysens, A. Galisteo, Q. Wang, D. Juara, D. Gius-
tiniano, and S. Pollin, “Densevlc: a cell-free massive
mimo system with distributed leds,” in Proceedings of
the 14th International Conference on Emerging Net-
working EXperiments and Technologies, ser. CONEXT
’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 320-332. [Online]. Available:
https://doi.org/10.1145/3281411.3281423

P. Ren, Y. Xiao, X. Chang, P.-y. Huang, Z. Li, X. Chen,
and X. Wang, “A comprehensive survey of neural
architecture search: Challenges and solutions,” ACM
Comput. Surv., vol. 54, no. 4, May 2021. [Online].
Auvailable: https://doi.org/10.1145/3447582

E. Liberis, tukasz Dudziak, and N. D. Lane,
“unas: Constrained neural architecture search for
microcontrollers,” 2020. [Online]. Available: https:
//arxiv.org/abs/2010.14246

C. Banbury, C. Zhou, I. Fedorov, R. M. Navarro,
U. Thakker, D. Gope, V. J. Reddi, M. Mattina, and P. N.
Whatmough, “Micronets: Neural network architectures
for deploying tinyml applications on commodity
microcontrollers,” 2021. [Online]. Available: https:
/larxiv.org/abs/2010.11267

A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney,
and K. Keutzer, “A survey of quantization methods
for efficient neural network inference,” 2021. [Online].
Available: https://arxiv.org/abs/2103.13630

L. Capogrosso, F. Cunico, D. S. Cheng, F. Fummi,
and M. Cristani, “A machine learning-oriented survey
on tiny machine learning,” 2023. [Online]. Available:
https://arxiv.org/abs/2309.11932

Microsoft, “Neural Network Intelligence,” 1 2023.
[Online]. Available: https://github.com/microsoft/nni

[20]

[21]

[22]

[23]

[24]

[25]

H. Benmeziane, K. E. Maghraoui, H. Ouarnoughi,
S. Niar, M. Wistuba, and N. Wang, “A comprehensive
survey on hardware-aware neural architecture search,”
2021. [Online]. Available: https://arxiv.org/abs/2101.
09336

B. Zoph, V. Vasudevan, J. Shlens, and Q. V.
Le, “Learning transferable architectures for scalable
image recognition,” 2018. [Online]. Available: https:
/larxiv.org/abs/1707.07012

B. Zoph and Q. V. Le, “Neural architecture search with
reinforcement learning,” 2017. [Online]. Available:
https://arxiv.org/abs/1611.01578

H. Pham, M. Y. Guan, B. Zoph, Q. V. Le,
and J. Dean, “Efficient neural architecture search
via parameter sharing,” 2018. [Online]. Available:
https://arxiv.org/abs/1802.03268

H. Liu, K. Simonyan, and Y. Yang, “Darts: Differen-
tiable architecture search,” 2019. [Online]. Available:
https://arxiv.org/abs/1806.09055

T. Elsken, J. H. Metzen, and F. Hutter,
architecture search: A survey,” 2019.
Available: https://arxiv.org/abs/1808.05377

“Neural
[Online].

https://doi.org/10.1145/3281411.3281423
https://doi.org/10.1145/3447582
https://arxiv.org/abs/2010.14246
https://arxiv.org/abs/2010.14246
https://arxiv.org/abs/2010.11267
https://arxiv.org/abs/2010.11267
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/2309.11932
https://github.com/microsoft/nni
https://arxiv.org/abs/2101.09336
https://arxiv.org/abs/2101.09336
https://arxiv.org/abs/1707.07012
https://arxiv.org/abs/1707.07012
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1802.03268
https://arxiv.org/abs/1806.09055
https://arxiv.org/abs/1808.05377

A

L]

Model Architectures

MLP_SRAM:
FC(36) — FC(256) + Hardswish — FC(256) +
Hardswish — FC(256) + Tanh — FC(2) + Sigmoid

MLP_Flash:

FC(36) — FC(2048) + LeakyReLU — FC(64) +
LeakyReLU — FC(2048) + LeakyReLU — FC(2) +
Sigmoid

CNN_Simple_SRAM:

Conv2d(1, 32, kernel=1, padding=1) — Batch-
Norm2d(32) — ReLU —
DepthwiseSeparableConv2d(32, 64, kernel=3) —
BatchNorm2d(64) — Sigmoid —
DepthwiseSeparableConv2d(64, 128, kernel=3) —
BatchNorm2d(128) — Tanh — AvgPool2d(2) —
Flatten — Linear(512, 256) — Tanh — Linear(256, 2)
— Sigmoid

CNN_Complex_Flash:

Conv2d(1, 32, kernel=1, padding=1) — Batch-
Norm?2d(32) — LeakyReLU —
DepthwiseSeparableConv2d(32, 64, kernel=3) —
BatchNorm2d(64) — LeakyReLU —
DepthwiseSeparableConv2d(64, 128, kernel=3) —
BatchNorm2d(128) — Tanh — MaxPool2d(2) —
Flatten — Linear(128x2x2, 1024) — Tanh — Lin-
ear(1024, 512) — ReLU —

Linear(512, 512) — ReLU — Linear(512, 256) —
Hardswish — Linear(256, 2) — Sigmoid

10

	Introduction
	Background
	RSS based VLP systems
	Previous work by Zhu et al.
	Dataset
	Data preprocessing
	TinyML

	Neural Architecture Search
	Quantization

	Methodology
	Dataset
	Neural Architecture Search
	Search Space
	Search Algorithm

	Deployment
	Quantization

	Evaluation Metrics
	Accuracy
	Latency

	Experimental Setup
	Baseline Model
	Neural Architecture Search
	MLP Search
	CNN Search

	Augmented Data

	Evaluation
	Baseline
	Search
	MLP Search

	CNN Search
	Results
	Augmented Data

	Discussion and Limitations
	Limitations and Future Work

	Responsible Research
	Ethical Considerations
	Reproducibility
	Use of Generative AI

	Conclusions
	Model Architectures

