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ABSTRACT

Localization microscopy for imaging at the nano-scale relies on the quality of fitting the emitter positions from
the measured light spots. The type and magnitude of the noise in the detection process, the background light
level and the Point Spread Function model that is used in the fit are of paramount importance for the precision
and accuracy of the fit. We present several developments on the computational methods and performance limits
of single emitter localization, targeting specifically these three aspects.
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1. INTRODUCTION

Since the advent of PALM,1 STORM2 and fPALM3 in 2006 localization microscopy based on stochastically and
sparsely activated fluorescent emitters has emerged as a powerful tool to study molecular building blocks of life
on the nano-scale.4 One of the cornerstones of localization microscopy is the determination of the positions of
the sparse emitters by fitting a model Point Spread Function (PSF) to the actually observed spot shape over
a small Region Of Interest (ROI).5,6 These ROIs are selected from the raw frames of the entire sequence of
acquired images by an initial spot detection algorithm.

In this paper we present formal developments concerning three important aspects of single emitter localization.
The first concerns the noise model used in localization. The emitter location is found via a process called
Maximum Likelihood Estimation (MLE). An equation for the likelihood of the observed spot shape given a
model for the PSF centered at the position of the emitter is set up based on the noise sources in the photon
detection process. Noise sources are shot noise originating from the quantum character of light, the readout noise
of the camera, and possibly, excess noise originating from electron multipication when Electron Multiplying (EM)
CCDs are used.7 We give an outline of MLE that interpolates between the shot noise only and the readout noise
only limits. The second aspect concerns the background that usually obscures the single molecule signals.
The signal-to-background level appears to be of eminent importance for the precision of the single molecule
localization algorithm.8 Possible non-unformities in the background have a negative impact on the accuracy of
the localization.9 We present an extension of the previously presented formalism8 for the minimum variance in
the fit parameters of the MLE procedure, the so-called Cramér Rao Lower Bound (CRLB). In our previous study
the background was assumed to be a fixed parameter, in the current treatment we take the background as an
additional statistical parameter. The third aspect concerns the model assumed for the PSF. The conventional
choice is a Gaussian model, but this choice is based entirely on convenience and convention, not on physical
principle. It has been shown that the chocice of a Gaussian PSF model leads to satisfactory results provided the
actual PSF is symmetric10 but there is no reason to exclude other heuristic PSF models that could work equally
well as or perhaps better than the Gaussian model. In particular we will focus on the Lorentzian PSF model
and will compare the anticipated localization precision to that of the Gaussian PSF model.
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2. MAXIMUM LIKELIHOOD ESTIMATION AND NOISE MODEL

The state-of-the-art in localization algorithms is described in Ref. 11, which describes two algorithmical inno-
vations targeting sCMOS-cameras. The first is related to non-uniformities in offset, gain and readout noise
variance. We will neglect that here. The second is a relatively simple way to incorporate the effects of both shot
noise and readout noise in spot fitting. Starting point is the expression for the log-likelihood as a summation
over all pixels k in the selected ROI:

W =
∑

k

[(

nk + σ2
r

)

log
(

µk + σ2
r

)

−
(

µk + σ2
r

)

− log Γ
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where nk is the observed photon count, Γ(x) =
∫∞

0
ds sx−1 exp(−x) is the Gamma-function, σr the rms readout

noise, and the expected photon count at pixel k is given by the integration of the PSF over the pixel area Ak:
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∫
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dxdy H (x− x0, y − y0) , (2)

where the PSF is conventionally approximated by a Gaussian:
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b

a2
. (3)

The fit parameters are the coordinates of the emitter x0 and y0, the spot width σ, the emitter photon count N
and the number of background photons per pixel b, and are determined by maximizing the log-likelihood Eq. (1).
The observed photon count nk satisfies:

〈nk〉 = µk, (4)

〈n2
k〉 − 〈nk〉2 = µk + σ2

r . (5)

In the limit of zero readout noise σr ↓ 0 Eq. (1) reduces to the classical shot-noise only log-likelihood:

W =
∑

k

[nk log µk − µk − log (nk!)] , (6)

and in the limit of large readout noise σr ≫ nk for all pixels k we retrieve the least-squares log-likelihood:

W = −
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(nk − µk)
2

2σ2
r

, (7)

So, the log-likelihood Eq. (1) interpolates between least-squares fitting and shot noise only maximum likelihood
fitting.

In optimization routines as e.g. the Levenberg-Marquardt algorithm the derivatives of the log-likelihood
w.r.t. the fit parameters θ = {x0, y0, σ,N, b} are needed. Using the chain rule we find:
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It is mentioned that the second term in the second order derivatives is usually discarded as it is generally small
close to the optimum ofW , and it does not affect the set of parameters for whichW is maximal. These derivatives
also give rise to a Fisher matrix:
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The CRLB is found from the diagonal elements of the inverse of the Fisher matrix. From the derived expression
for the Fisher-matrix (the term µk +σ2

r in the denominator) we may infer that the effect of readout noise on the
best possible emitter position estimation is simply to add the readout noise variance to the background photon
count giving an effective background:

beff = b+ σ2
r . (11)

Therefore, without loss of generality, we will set σr = 0 in the following. The corresponding equations for the
case of non-zero readout noise can then be found by subtituting the background b with the effective background
beff .

3. CRAMÉR-RAO LOWER BOUND OF GAUSSIAN SPOT FITTING

We expand on the treatment of Ref. 8 by adding the background as an additional statistical parameter that is
estimated by the MLE procedure. Appearing summations over the Npix pixels in the ROI are at some point
approximated by an integration over the entire detector surface. The derivatives of the PSF w.r.t. the fit
parameters θ = {x0, y0, σ,N, b} are:
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The Fisher-matrix elements for the set of parameters θ = {x0, y0, σ,N, b} then follow from:

Fjl =
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∑

k=1

1
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∂Ha2
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, (18)

where the derivatives are evaluated at the pixel centers (xk, yk) and where we have neglected the variation of
the PSF over the area of single pixels. The Fisher matrix elements involving only the parameters {x0, y0, σ,N}
may be approximated by the integrals:
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∫ ∞

−∞

∫ ∞

−∞
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1

H
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∂θj

∂H

∂θl
, (19)

as the integrands are rapidly decaying functions of position w.r.t. the spot center. This results in the Fisher
matrix elements:8

Fx0x0
= Fy0y0

=
N

σ2
(1− I1) , (20)

FNN =
1

N
(1− I0) , (21)

Fσσ =
4N
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FσN =
2

σ
(I0 − I1) , (23)
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where the parameters:

In =
τ

n!

∫ ∞

0

dt
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1 + τet
, (24)

for integer n depend on the dimensionless background parameter τ = 2πbσ2/Na2. The Fisher-matrix elements
involving the background b can be evaluated in a similar way. For example:
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The other non-zero Fisher matrix elements involving the background b are derived in the same spirit:
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The diagonal elements of the inverse of the Fisher matrix results in the CRLB of the fit parameters:
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with:

A = 1− I0 + τI0, (32)

B = 1− 2I2 + 2I1 − I0, (33)

C = I0 − 2I0I2 + I21 . (34)

Compared to the results obtained in Ref. 8 we see the ratio of the spot area and the ROI area 2πσ2/Npixa
2

appearing. When this ratio is much smaller than one we retrieve the CRLB for σ and N of Ref. 8. A typical
ROI is (6σ + a) × (6σ + a) wide.12 With σ ≈ a this leads to 2πσ2/Npixa

2 ≈ 0.13 implying that the corrections
related to the finite ROI size over the results of Ref. 8 are relatively small.

For τ → 0 (low background limit) we find the relatively simple expressions:

(∆x)
2

=
σ2

N
, (35)
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, (36)
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= N, (37)

(∆b)
2

=
b
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. (38)

A good approximation to the CRLB for the emitter coordinates has been proposed in Refs. 8, 13:

(∆x)
2
=

σ2 + a2/12

N

(

1 + 4τ +

√

2τ

1 + 4τ

)

, (39)

which also takes into account the effect of non-zero pixel size, and which is more convenient than the exact result
of Mortensen et al.14 and wich improves over the often quoted result of Thompson, Larson and Webb.15

4. ALTERNATIVES TO GAUSSIAN PSF MODEL

The Gaussian function has a width that is characterized by its Full Width Half Maximum (FWHM):

FWHMGauss = 2
√

2 ln (2)σ, (40)

leading to a localization precision at zero background:

∆x =
σ√
N

=
FWHMGauss

2
√

2 log (2)
√
N

≈ 0.425
FWHMGauss√

N
(41)

An alternative to the Gaussian might be the Lorentzian, which is also a bell-shaped function:

H (x, y) =
N

πω2 (1 + (x2 + y2) /ω2)
2 , (42)

The FWHM of this distribution is:

FWHMLorentz = 2

√√
2− 1 ω. (43)

The question now is what the expected localization precision is for fitting with a Lorentzian PSF model. To that
end we must evaluate the Fisher-matrix element:

Fx0x0
=

∫

dxdy
1

H (x, y)

∂H (x, y)

∂x0

2

=
16N

πω6

∫ ∞
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dr

∫ 2π

0

dφ
r3 cos2 φ

(1 + r2/ω2)
4

=
4N

3ω2
. (44)

This results in a localization precision:

∆x =

√
3ω

4
√
N

=

√
3FWHMLorentz

4
√√

2− 1
√
N

≈ 0.673
FWHMLorentz√

N
. (45)

Given the same FWHM this seems to be a factor 1.6 worse than the Gaussian PSF model. However, in the MLE
procedure σ (for the Gaussian PSF model) and ω (for the Lorentzian PSF model) will be adjusted to give the
best overall fit of the actual spot shape. This will result in a FWHM of the fitted model that is smaller for the
Lorentzian than for the Gaussian, giving a localization precision that differs less than the factor 1.6 for the equal
FWHM case.
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Figure 1. Localization precision scaled by the precision at zero background as a function of the scaled background parameter

τ for the Gaussian and Lorentzian PSF model, assuming constant fitted widths or all background levels.

The localization precision for the Lorentz PSF model at non-zero background can be computed in a similar
way. Now the PSF is given by:

H (x, y) =
N

πω2 (1 + (x2 + y2) /ω2)
2 +

b

a2
, (46)

and the relevant Fisher-matrix element is:
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=

∫
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∫ ∞
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=
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[

1− 3κ (1 + 2κ) + 6κ2 (1 + κ) log

(
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κ

)]

, (47)

with the dimensionless background parameter κ = πbω2/Na2, leading to a localization precision:

∆x =

√
3ω

4
√
N
√

1− 3κ (1 + 2κ) + 6κ2 (1 + κ) log ((1 + κ) /κ)
. (48)

Fig. 1 shows the localization precision for the Gaussian and the Lorentzian PSF models as a function of the
background parameter τ of the Gaussian PSF model for ω = 2σ/

√
3, which leads to the same precision at

zero background and to κ = 2τ/3. We see that the Lorentzian PSF model has a favourable dependence on
background in this graph. However, it assumes that the MLE routine will fit Lorentzian spots with the same
width ω = 2σ/

√
3 for al levels of background, which may not be the case after all. For an elevated background

the tail of the Lorentzian spot shape may be interpreted by the fitting routine as part of the background, leaving
only the central part for fitting the actual spot, which will generally lead to a larger value for ω and to a worse
precision.

5. CONCLUSION

We have presented several advances concerning the method of single emitter localization. An integrated treatment
of MLE including effects of both readout noise and shot noise has been given, leading to the conclusion that the
readout noise variance effectively adds to the background. A CRLB analysis of the estimation of background,
signal photon count and spot width leads to new analytical expressions for the best possible variance of these
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parameters. These expressions provide a correction to previously obtained expressions by taking the effect of a
finite ROI into account. In particular, it is found for a high signal-to-background that the background itself can
be estimated with a precision that scales inversely proportional to the square root of the number of pixels in the
ROI. Finally, an alternative heuristic PSF model is proposed, namely the Lorentzian spot model. This may work
equally well as the almost universally used Gaussian PSF model. The relative performance of the Lorentzian
PSF model compared to the Gaussian PSF model depends on the level of background and the fitted spot widths
for the two cases. A next step would be to compare the fit results for a fully vectorial ground truth, similar to
the study of Ref. 10.
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