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Abstract

In this literature study the buckling of frames is investigated. Two frames are considered,
where both consists of two columns and a girder. The first step was looking at the behavior
of a single column under an compressive load. This results in so called effective lengths
for different sets of boundary conditions on the column. Because in a frame the multiple
columns and girders work together, the buckling mode also depends on the frame itself and
the neighboring beams. There are two types of frames according to their buckling mode,
a sway and a non sway frame. For determining the effective buckling lengths Eurocode 3
is studied for general rules for frames and calculation methods for effective lengths. Also the
method from the AISC standard is described shortly. After that, it is investigated what methods
the FEM programs use. Beside these methods, another method has been found and will be
demonstrated on both situations. In the last chapter the results are summarized and a final
conclusion and recommendation are made.
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1
Introduction

1.1. Motivation of assignment
1.1.1. Buckling
Buckling is in structural engineering a sudden change in shape (deformation) of a structural
component under load. It can also be seen as loss of stability or as a failure mode of the
structural component and so possibly the entire structure. A common example is a column
under compression (treated in the next chapter) as can be seen in the left example from the
figure below. This figure shows that the column under compression losses its stability and
buckles to the side. When the column buckles it losses part of its stiffness and the column
must resists bending moment instead of only normal stress

Figure 1.1: Single column buckling (left) and frame buckling (right)

Looking at the example in the figure on the right it can be seen that when the frame buckles,
both columns and the girder lose there stability. All members of the frame thus interact with
each other and the buckling behavior of each individual column is not only dependent on its
own parameters (𝐸, 𝐼, 𝐴,ect.) and its compressive load but also on the frame itself and the
neighboring beams.

The figure above shows only two examples, but there are many kinds of frames which
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2 1. Introduction

all have multiple buckling modes. This makes it hard to determine a critical load where the
structure is likely to buckle.

1.1.2. Sway and non sway frame
A frame consists of several beams joined together at so called joints. In the literature two
different types of frame buckling modes are distinguished, namely the sway mode and the
non sway mode, where a frame which tends to buckle in a sway mode is called a sway frame
and a frame which tends to buckle in a non sway mode is called a non sway frame

Figure 1.2: Sway mode (left) and non sway mode (right)

The difference between sway and non sway frames can be described as follows [? ]

• Sway frame: The frames in which longitudinal deflection takes place when the horizontal
force is applied are known as sway frames. Sway frames provide lateral resistance only
though columns and they lake adequate stiffness against horizontal loads. Sway frames
are also called unbraced frames.

• Non sway frame: In non sway frames longitudinal deflection is restrained by supports
when the horizontal load is applied. It is sufficiently braced by lateral bracing elements
like structural walls and they have enough stiffness to tackle horizontal forces. Non sway
frames are also called braced frames.

Checking for a sway frame A classical method of checking if a frame is a sway frame is
given in [? ]. According to this method, one should compare the deformations of the frame
with and without bracing against a load applied in the direction of the sway mode. If a frame
without the bracings deforms 5 or less times more than the one with the bracings, this is a
non sway frame. So the frame in the figure below is a sway frame when

𝐵 > 5 ⋅ 𝐴 (1.1)

Figure 1.3: Braced frame and unbraced frame for checking of the corresponding frame is a sway frame

This method is not very accurate and it is not guaranteed that a sway frame satisfies this
criterion. Also, an additional vertical load in the direction of the bucklingmode has been applied
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in this example above. This means that the direction of the sway mode must be known in order
to apply the additional load, which can be difficult for some situations. Sometimes, a value of
10 or an other factor is used instead of 5 [? ].

There are also other possibilities of determining if the sway or non sway frame calculation
has to be used

• Perform both and use the worst case scenario
• Preform a buckling analysis with a finite element analysis program and observe if the
first buckling mode is a sway or non sway mode

• Use own insight if the frame has the possibility to sway when it buckles. If not, the non
sway frame methods need to be used

1.2. Approach
1.2.1. Research question
Determining the critical load for which a frame buckles can be a complex problem. Consid
ering a single column, this critical load can be determined if the so called effective length is
known. For a single column this effective length can be easily be determined by using the
constraints on the column. For a frame structure, determining the boundary conditions of the
considered column under compression is more difficult because this column has interaction
with the neighboring beams. The goal of this literature assignment is to investigate which
methods are available to determine the effective length of a column under compression as
part of a frame. This effective length can then be used to determine critical load on the col
umn and so the corresponding load in the frame by using a static analysis. The associated
research question is defined as

How can the effective length of a column under compression, as part of a frame, be deter
mined?

This research question will be answered throughout this report, where a conclusion is made
at the final chapter.

1.2.2. Scope
For the sake of simplicity only two situations will be considered: one situation for each type of
buckling mode. The situations can be seen below

Figure 1.4: Situation 1 or Sway frame (left) and situation 2 or non sway frame (right)

• Situation 1: situation 1 has two columns with each a fixed connection with the ground.
These column are connected to each other with a girder. The connection of each column
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to the girder is fixed. At each end point of the girder, a vertical load 𝐹 is applied. At the
left upper corner also a horizontal load with a very small fraction 𝜉 of 𝐹 has been applied.
This horizontal loads has been applied to led the structure buckle to right side (instead
of a random one) and to look at the effect on the first order elastic moment lines and the
buckling mode. 𝜉𝐹 can also be seen as an imperfection and therefore it is feasible to
apply this load because in reality noting is perfect and there always is an imperfection.

• Situation 2: The column and girder construction of situation 2 is the same as situation
1. However, a slider which allows displacement in the vertical direction, is applied at the
right top corner to prevent the sway mode. Beside the vertical load 𝐹, also a distributed
load 𝑞 has been applied over the total length.

For both situations the same dimensions and beams are used: the height (length) of the
column equals ℎ = 𝐿𝑐𝑙𝑛 = 1𝑚, the length of the girder equals 𝐿 = 𝐿𝑏𝑚 = 1𝑚, the moment
of inertia of the columns and girder = 𝐼𝑐𝑙𝑛 = 𝐼𝑏𝑚 = 1, 33 ⋅ 10−1𝑚4 (rectangular beam of
0, 02 × 0, 02) and the elasticity modulus of the columns and girder equals 𝐸 = 2, 1 ⋅ 1011𝑁/𝑚2
(steel).

For both situations the left column will be considered. If the effective length of the left
column is determined the critical normal load on the column can be determined. By using
statics it follows for both situations that if 𝜉 = 0 and 𝑞 = 0, the normal load in the columns
equals 𝐹.



2
Single column buckling

The first step is looking at the buckling behavior of a single column under compression. This
leads to effective buckling lengths for different sets of boundary conditions. For each set of
boundary conditions a displacement, curvature and moment line have been established to
give more insight in the buckling behavior.

2.1. Governing equation
The figure below shows a single beam and a segment of the beam

Figure 2.1: Single pinned pinned column and small segment

the governing equation relating the bending moment to the deflection 𝑤 of the column
along its axis is given by [? ]

𝑑4𝑤
𝑑𝑥4 +

𝑃
𝐸𝐼
𝑑2𝑤
𝑑𝑥2 =

𝑞
𝐸𝐼 (2.1)

Considering a column with axial load only, such that the lateral load 𝑞(𝑥) vanishes, and sub
stitution of 𝜆2 = 𝑃/𝐸𝐼 gives

𝑑4𝑤
𝑑𝑥4 + 𝜆

2𝑑2𝑤
𝑑𝑥2 = 0 (2.2)

which is a homogeneous fourth order differential equation.

2.2. Solution
The general solution of the governing equation is defined as

𝑤(𝑥) = 𝐴 sin(𝜆𝑥) + 𝐵 cos(𝜆𝑥) + 𝐶𝑥 + 𝐷 (2.3)

The four constant 𝐴, 𝐵, 𝐶 and 𝐷 can be determined by satisfying the boundary conditions,
where there are four types:

• Pinned end: (rotation free and translation fixed) 𝑤 = 0 and 𝑀 = 𝑑2𝑤
𝑑𝑥2 = 0
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6 2. Single column buckling

• Fixed end (rotation fixed and translation fixed): 𝑤 = 0 and 𝑑𝑤
𝑑𝑥 = 0

• Sliding end (rotation fixed and translation free): 𝑑𝑤𝑑𝑥 = 0
• Free end (rotation free and translation free): 𝑀 = 𝑑2𝑤

𝑑𝑥2 = 0 and 𝑉 =
𝑑3𝑤
𝑑𝑥3 + 𝜆

2 𝑑𝑤
𝑑𝑥 = 0

where the derivatives of 𝑤(𝑥) are given by

𝑑𝑤/𝑑𝑥 = 𝐴𝜆 cos(𝜆𝑥) − 𝐵𝜆 sin(𝜆𝑥) + 𝐶
𝑑2𝑤/𝑑𝑥2 = −𝐴𝜆2 sin(𝜆𝑥) − 𝐵𝜆2 cos(𝜆𝑥)
𝑑3𝑤/𝑑𝑥3 = −𝐴𝜆3 cos(𝜆𝑥) + 𝐵𝜆3 sin(𝜆𝑥)

(2.4)

Below the different combinations of boundary conditions are solved. The constants are solved
numerically so only the results are shown. The solutions are also plotted with displacement,
curvature and moment lines.

1. pinned  pinned Because 𝑤(0) = 0 → 𝐴 = 0 and 𝑤(𝑙) = 0 → 𝐵 sin(𝜆𝑙) = 0. So, sin(𝜆𝑙)
must be zero and thus 𝜆𝑛𝑙 = 𝑛𝜋 for 𝑛 = 0, 1, 2, .... With 𝜆2 = 𝑃

𝐸𝐼 it follows that the critical
load corresponding to the 𝑛th buckling mode is given by

𝑃𝑛 =
𝑛2𝜋2𝐸𝐼
𝑙2 (2.5)

From this we define the critical Euler buckling load for the first buckling mode by

𝑃𝑐𝑟 =
𝜋2𝐸𝐼
𝐿2𝑒

(2.6)

with effective buckling length 𝐿𝑒 = 𝐾 ⋅ 𝐿 and 𝐾 the effective buckling length factor. For
the pinned  pinned case it follows that 𝐾 = 1 because the first buckling mode (𝑛 = 1)
will be used for each case. Below the resulting displacement, curvature and moment
lines for the buckling mode are shown

Figure 2.2: Displacement, curvature and moment lines for boundary condition set 1

2. fixed  fixed Because 𝑤(0) = 0, 𝑑𝑤𝑑𝑥 |𝑥=0 = 0 and 𝑤(𝐿) = 0, 𝑑𝑤𝑑𝑥 |𝑥=𝐿 = 0 it follows by
numerical evaluation that 𝐴 = 0, 𝐶 = 0, 𝐵 = −𝐷 and for the effective buckling length
𝐾 = 0.5. Again, the corresponding displacement, curvature and moment lines for the
buckling mode are shown below
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Figure 2.3: Displacement, curvature and moment lines for boundary condition set 2

3. fixed  rotation free / translation fixed Because 𝑤(0) = 0, 𝑑𝑤𝑑𝑥 |𝑥=0 = 0 and 𝑤(𝐿) = 0
it follows that 𝐴 ≈ −0.7𝑐, 𝐵 ≈ 0.305𝑐, 𝐶 ≈ 𝜋𝑐 and 𝐷 ≈ −3.05𝑐 with 𝑐 a parameter
determining the perturbation in the buckling mode. For the effective buckling length it
follows that 𝐾 = 0.7

Figure 2.4: Displacement, curvature and moment lines for boundary condition set 3

4. fixed  rotation fixed / translation free Because 𝑤(0) = 0, 𝑑𝑤𝑑𝑥 |𝑥=0 = 0 and
𝑑𝑤
𝑑𝑥 |𝑥=𝐿 = 0

it follows that 𝐴 = 0, 𝐵 = −𝐷, 𝐶 = 0 and for the effective buckling length 𝐾 = 1.0

Figure 2.5: Displacement, curvature and moment lines for boundary condition set 4
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5. fixed  free Because 𝑤(0) = 0, 𝑑𝑤𝑑𝑥 |𝑥=0 = 0 and 𝑑2𝑤
𝑑𝑥2 |𝑥=𝐿

= 0, (𝑑
3𝑤
𝑑𝑥3 + 𝜆

2 𝑑𝑤
𝑑𝑥 )𝑥=𝐿

= 0 it
follows that 𝐴 = 0, 𝐵 = −𝐷, 𝐶 = 0 for the effective buckling length 𝐾 = 2.0

Figure 2.6: Displacement, curvature and moment lines for boundary condition set 5

6. pined / rotation fixed translation free Because 𝑤(0) = 0, 𝑑
2𝑤
𝑑𝑥2 |𝑥=0

= 0 and 𝑑𝑤
𝑑𝑥 |𝑥=𝐿 = 0

it follows that 𝐵 = 𝐶 = 𝐷 = 0 and for the effective buckling length 𝐾 = 2.0

Figure 2.7: Displacement, curvature and moment lines for boundary condition set 6

Effective lengths in summary In the figure below the effective length factors 𝐾 of the dif
ferent situations are summarized
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Figure 2.8: Effective buckling length factors



3
Eurocode 3

This chapter discusses the methods and rules used in standards for frame buckling. First a
general buckling stability criteria will be defined based on Eurocode 3. For this criteria the
effective buckling lengths are needed, which will be treated in section 3.2 for the sway frame
and section 3.3 for the non sway frame. Finally the method from the AISC will be shortly
discussed.

3.1. General buckling stability criteria
In Eurocode 3 a criteria for a column under compression is defined which must be satisfied
in order to be stable against buckling. For this criteria first the effective buckling length of the
column under consideration must be determined, which is treated in the next sections.

Looking at a single member in a frame there are 4 classes of cross sections according to
Eurocode (see table 5.2 [? ]). The different classes are defined as

• Class 1 cross sections: are cross sections where a plastic pin can occur where the
rotation capacity is enough for a plastic calculation without resistance loss

• Class 2 cross sections: are cross sections where the plasticity can be reached with
limited rotation capacity by local buckling

• Class 3 cross sections: are cross sections where elasticity can be reached, and even
local buckling doesn’t cause plasticity

• Class 4 cross sections: are cross sections where local buckling will occur before the
yield criteria will be reached in one of more parts of the cross section.

Considering a prismatic beam under an axial compression load, the buckling stability needs
to satisfy

𝑁𝐸𝑑
𝑁𝑏,𝑅𝑑

≤ 1 (3.1)

where 𝑁𝐸𝑑 is the normal compression force and 𝑁𝑏,𝑅𝑑 is the buckling resistance. For bars with
a asymmetric cross section of class 4, an additional moment Δ𝑀𝐸𝑑 needs to be included. The
buckling resistance can be determined by

• 𝑁𝑏,𝑅𝑑 =
𝜒𝐴𝑓𝑦
𝛾𝑀1

for cross sections of class 1,2 and 3

• 𝑁𝑏,𝑅𝑑 =
𝜒𝐴𝑒𝑓𝑓𝑓𝑦
𝛾𝑀1

for cross sections of class 4

where 𝑓𝑦 is the yield point, 𝛾𝑀1 is the partial factor for the resistance of elements corresponding
to instability (usually 𝛾𝑀1 = 1) and 𝜒 is the reduction factor for the corresponding buckling

10
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shape

𝜒 = 1

Φ + √Φ2 − 𝜆
2

but 𝜒 ≤ 1.0 (3.2)

where

Φ = 0.5 (1 + 𝛼 (𝜆 − 0.2) + 𝜆
2
) (3.3)

here 𝛼 is the imperfection factor and 𝑁𝑐𝑟 is the critical buckling load. The imperfection factor
𝛼 can be determined depending on the corresponding buckling shape for the table or graph
below
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Figure 3.1: Buckling shapes for cross sections

or we can use the graph below if the buckling shape is known



3.1. General buckling stability criteria 13

Figure 3.2: Buckling shapes

If the buckling shape is known the imperfection factor 𝛼 can be determined from the table
below

Table 3.1: Imperfection factor for the buckling shapes
Buckling shape 𝑎0 𝑎 𝑏 𝑐 𝑑
Imperfectionfactor 𝛼 0.13 0.21 0.34 0.49 0.76

For the relative slenderness 𝜆
• Buckling by bending: The relative slenderness 𝜆 is defined by

– 𝜆 = √𝐴𝑓𝑦𝑁𝑐𝑟 =
𝐿𝑐𝑟
𝑖

1
𝜆1

for cross sections of class 1,2, and 3

– 𝜆 = √𝐴𝑒𝑓𝑓𝑓𝑦𝑁𝑐𝑟
= 𝐿𝑐𝑟

𝑖

√𝐴𝑒𝑓𝑓
𝐴
𝜆1

for cross sections of class 4

where 𝐿𝑐𝑟 is the buckling length of the considered buckling direction and 𝑖 is the inertia
radius for the considered axis, 𝜆1 = 𝜋√

𝐸
𝑓𝑦
= 93.3𝜀 where 𝜀 = √235𝑓𝑦 with 𝑓𝑦 in 𝑁/𝑚𝑚2.

• Buckling by torsion: The relative slenderness 𝜆𝑇 for torsion stability and torsional buck
ling stability is defined by

– 𝜆𝑇 = √
𝐴𝑓𝑦
𝑁𝑐𝑟

= 𝐿𝑐𝑟
𝑖

1
𝜆1

for cross sections of class 1,2, and 3

– 𝜆𝑇 = √
𝐴𝑒𝑓𝑓𝑓𝑦
𝑁𝑐𝑟

for cross sections of class 4

where 𝑁𝑐𝑟 = 𝑁𝑐𝑟,𝑇𝐹 but 𝑁𝑐𝑟 < 𝑁𝑐𝑟,𝑇 with 𝑁𝑐𝑟,𝑇𝐹 the critical elastic force for torsional
buckling stability and 𝑁𝑐𝑟,𝑇 the critical elastic force for torsion stability

For a relative slenderness 𝜆 ≤ 0.2 or 𝑁𝐸𝑑𝑁𝑐𝑟
≤ 0.04 the buckling effects can be neglected.
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3.2. Sway frames
Support moment For beams and their connections to columns in sway frames, the first
order force distribution (no buckling) must be adjusted by adding an extra moment when the
structure buckles (also called the support moment) per column end on the connected beam
[? ]. The support moment can be calculated by

𝑀𝑟,𝐸𝑑 = (
1

𝛼𝑐𝑟 − 1
×𝑀1,𝐸𝑑) + (

𝛼𝑐𝑟
𝛼𝑐𝑟 − 1

× 𝐹𝑡,𝐸𝑑 × 𝑒0) (3.4)

with

𝛼𝑐𝑟 =
𝑁𝑐𝑟
𝐹𝑡,𝑒𝑑

and 𝑁𝑐𝑟 =
𝜋2 × 𝐸 × 𝐼

𝐿2𝑐𝑟
(3.5)

where 𝑀1,𝐸𝑑 is the first order bending moment in the column, 𝐸 is the elasticity modulus, 𝐼 is
the bending moment, 𝐿𝑐𝑟 is the effective buckling length, 𝐹𝑡,𝑒𝑑 is the total vertical load which
causes the column instability and 𝑒0 is the initial bending (imperfection).

The equations can also be rewritten to

𝑀𝑟,𝐸𝑑 = 𝑀2,𝐸𝑑 −𝑀1,𝐸𝑑 with 𝑀2,𝐸𝑑 =
𝛼𝑐𝑟

𝛼𝑐𝑟 − 1
× (𝑀1,𝐸𝑑 + 𝐹𝑡,𝐸𝑑 × 𝑒0) (3.6)

where 𝑀2,𝐸𝑑 is the second order bending moment.

Buckling mode The first order elastic moment lines and the moment lines of the buckling
mode of the sway frame considered in this literature assignment can be seen below [? ]

Figure 3.3: Sway frame: 1. first order elastic moment lines and 2. moment lines at failure

It can be seen that the second order effects change the force distribution in the buckling
mode. The figure also illustrates where the support moment is added when the structure
buckles. The effect of the horizontal load 𝜉𝐹 mostly effects the first order elastic moment lines,
but its effect is negligible (if 𝜉 is small enough) when the structure buckles. In the following the
effect of 𝜉 will be neglected.

Effective buckling length determination Looking at the moment lines of the buckling mode
of the situation 1 sway frame above and the single column buckling moment lines it can be
observed that the effective length factor of the columns must be between 1 < 𝐾 < 2. Indeed,
according to Eurocode for general columns in sway frames, 𝐿𝑐𝑟 > 𝐿 so 𝐾 > 1. For rigidly
connected beams Eurocode states that one of the following situations can be used



3.2. Sway frames 15

Figure 3.4: Effective buckling lengths with fixed columns in a sway frame

which satisfies the observation that the effective length observed from the buckling mode
must be between 1 and 2.

As a more exact solution for sway frames Eurocode states that the relation between effec
tive length en the length of the column is given by

𝐿𝑐𝑟
𝐿 = 𝜋

𝜆 (3.7)

where 𝜆 for 0 ≤ 𝜆 ≤ 𝜋, can be determined by solving 𝜆 from

𝐶𝐴 × 𝐶𝐵 × 𝜆2 × sin 𝜆 = ((𝐶𝐴 + 𝐶𝐵) × 𝜆 × cos 𝜆) + sin 𝜆 (3.8)

or by drawing a straight line between 𝐶𝐴 and 𝐶𝐵 and take 𝐿𝑐𝑟/𝐿 from the figure below

Figure 3.5: Elastic effective buckling length or elastic fixed columns in sway frames
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Here 𝐶 is the flexibility parameter, where the subscribt A and B denote the ends of the
considered column

𝐶 =
∑ 𝐼𝑐𝑙𝑛/𝐿𝑐𝑙𝑛

∑𝜇 × (𝐼𝑏𝑚/𝐿𝑏𝑚)
(3.9)

where the sum is over all beams which are rigid connected to the considered column end.
𝐼𝑐𝑙𝑛 is the moment if inertia of the column axis, 𝐿𝑐𝑙𝑛 is the column length, 𝐼𝑏𝑚 is the moment
of inertia of the beam and 𝐿𝑏𝑚 is the length of the beam. 𝜇 is a correction factor in order to
implement a constraint

• 𝜇 = 6 if the other end is rigid connected to one or more columns
• 𝜇 = 4 if the other end is fixed
• 𝜇 = 3 if the other end is pinned

For a column with a pinned end, the theoretical value is 𝐶 = ∞, but 𝐶 = 5 must be used. For
a column end which is fixed the theoretical value is 𝐶 = 0, but 𝐶 = 0.25 must be used.

The flexibility parameter 𝐶 of a column end can also be calculated by

𝐶 = 𝐸 × (𝐼𝑐𝑙𝑛/𝐿𝑐𝑙𝑛)
𝑘𝜑

(3.10)

where 𝑘𝜑 is the rotation elastic stiffness at the column end.
For column ends that are elastic fixed to beams which are not totally stiff connected to the

column, 𝐿𝑐𝑟 can be determined in the same way where we replace the beam length 𝐿𝑏𝑚 by
the equivalent beam length 𝐿𝑒𝑞𝑢

𝐿𝑒𝑞𝑢 = 𝐿𝑏𝑚 +
𝜇 × 𝐸 × 𝐼𝑏𝑚

𝑆𝑖
(3.11)

where 𝑆𝑖 is the rotational stiffness of the flexible connection.

Situation 1 elaboration Looking at the left column of the first situation is follows that for the
lower end which is fixed 𝐶𝐴 = 0 and thus 𝐶𝐴 = 0.25.

Figure 3.6: Situation 1

For the upper end we assume that the girder and column have the same length and cross
section, and so we can use 𝐼𝑐𝑙𝑛 = 1, 𝐿𝑐𝑙𝑛 = 1, 𝐼𝑏𝑚 = 1, 𝐿𝑏𝑚 = 1. Here 1 is used for simplicity
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but any other value gives the same solution as long as 𝐼𝑐𝑙𝑛 = 𝐼𝑏𝑚 and 𝐿𝑐𝑙𝑛 = 𝐼𝑏𝑚 holds (and
so the assumtion holds). Because there is a fixed connection of the column and the girder
𝜇 = 4, such that

𝐶𝐵 =
1/1

4 × 1/1 =
1
4 (3.12)

Solving formula 3.8 gives
𝐿𝑐𝑟
𝐿 = 𝜋

𝜆 ≈ 1.45 (3.13)

This also satisfies the observation that the effective length factor must be between 1 and 2.
Using the critical euler buckling formula

𝑃𝑐𝑟 =
𝜋2𝐸𝐼
𝐿2𝑒

(3.14)

the critical buckling load follows as 13143, 79𝑁.

3.3. Non Sway frames
Support moment Also for the non sway frame a support moment has to be added to the
first order linear elastic moment lines when the frame buckles. The support moment 𝑀𝑟,𝐸𝑑 at
the end of the column with the largest fixings parameter 𝜌1 is the minimum of the following
three values

𝑀𝑟,1,𝐸𝑑 = (𝑘𝑀 × 𝑅𝜌 × (𝜆𝐿 − 𝜆𝐿𝑐𝑟) ×
(𝑁𝑐𝑟−𝑁𝑏,𝑅𝑑)
(𝑁𝑐𝑟−𝑁𝑒𝑑)

× 𝑁𝐸𝑑
𝑁𝑏,𝑅𝑑

) × 𝑀𝑐,𝑅𝑑
𝑀𝑟,1,𝐸𝐷 = (−0.015 + 𝐶 × 𝜆𝐿) × 𝑀𝑐,𝑅𝑑
𝑀𝑟,1,𝐸𝑑 = 𝑀𝑁,𝑅𝑑

(3.15)

The support moment 𝑀𝑟,2,𝐸𝑑 at the end of the column with the smallest fixing parameter 𝜌2 is
given by

𝑀𝑟,2,𝐸𝑑 = (2 ×𝑀𝑟,1,𝐸𝑑) − 𝑀𝑟,1,𝐸𝑑 (3.16)

with
𝑘𝑀 = 10−6 × (−439 + 129𝜆𝐿 − 0.451𝜆2𝐿)
𝑅𝜌 =

2×𝜌1
𝜌2+𝜌1

𝜆𝐿 =
𝐿
𝑖

𝜆𝐿𝑐𝑟 =
𝐿𝑐𝑟
𝑖

𝐶 = 10−6 × (3300 + 834, 4 log (𝜌1𝜌2 ) − 124 (log (
𝜌1
𝜌2
))
2
)

𝜌𝑖 =
𝑘𝜙𝑗×𝐿
𝐸×𝐼

(3.17)

If 𝜌1 → ∞ than take 𝜌1
𝜌2
= 10000 and if 𝜌2 → ∞ than take 𝜌1

𝜌2
= 10000. Here 𝑅𝜌 is a ratio

expressed in relative stiffness from the column ends, 𝑀𝑐,𝑅𝑑 is the moment resistance from the
column cross section, 𝑀𝑁,𝑅𝑑 is the moment resistance from the column cross section taking
into account the normal force, 𝑁𝑐𝑟 is the critical elastic force of the column assuming the
buckling length, 𝑁𝑏,𝑅𝑑 is the buckling resistance from the axial loaded bar, 𝑁𝑒𝑑 is the normal
force in the column, 𝐿 is the length of the column, 𝜆𝐿 is slenderness of the column, bases on
length 𝐿, 𝜆𝐿𝑐𝑟 is the slenderness of the column based on buckling length 𝐿𝑐𝑟, 𝐼 is the inertia
moment radius, 𝜌𝑖 is the relative stiffness of the column end 𝑖 = 1, 2 and 𝑘𝜑𝑗 is the rotation
stiffness at the column end 𝑖 by the beams.
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Buckling mode The moment lines of the non sway frame used in this assignment and the
moment lines of its buckling mode can be seen in the figure below

Figure 3.7: Non Sway frame: 1. first order elastic moment lines and 2. moment lines when the structure buckles

As can be seen, the moment lines again change when the structure buckles due to the
second order effects. The change in height of the beam moment line can be incorporated by
𝑀𝑟,𝐸𝑑.

In the figure it can be seen that the distributed load 𝑞 has an influence on the moment lines
and thus the buckling. It enlarges the moments at the rigid connections of the columns and
thus influence the moment lines of the columns. Because the found methods do not include
this type of pre applied loads which causes an extra moment on the connection it is assumed
that 𝑞 = 0 for the next sections.

Effective buckling length From the moment lines of the figure above and by using the
moment lines of the single column buckling moment lines, we can observe that the effective
length of the columnsmust be between 0.5 < 𝐾 < 1. Indeed according to Eurocode, in general
𝐿𝑐𝑟 ≤ 𝐿 and so 𝐾 < 1 for columns in a non sway frame. For the effective buckling length of
pinned or rigid connections in a non sway frame one of the following situations can be used
according to Eurocode

Figure 3.8: Effective buckling lengths with pinned or fixed columns in a non sway frame

For columns where the ends are connected to other beams by their stiffness, 𝐿𝑐𝑟 can be
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determined with 𝐿𝑐𝑟
𝐿 = 𝜋

𝜆 (3.18)

where 𝜆 for 𝜋 ≤ 𝜆 ≤ 2𝜋 can be determined by solving for 𝜆 from

𝐶𝐴 × 𝐶𝐵 × 𝜆2 × sin 𝜆 = ((𝐶𝐴 × 𝐶𝐵) × 𝜆 × cos 𝜆) + ((1 − 𝐶𝐴 − 𝐶𝐵) × sin 𝜆) − (2 × 1 − cos 𝜆
𝜆 )
(3.19)

of by drawing a straight line between 𝐶𝐴 and 𝐶𝐵 and read 𝐿𝑐𝑟/𝐿 from the figure below

Figure 3.9: Elastic effective buckling length or elastic fixed columns in non sway frames

Here, the flexibility parameters 𝐶, where subscripts A and B denote the ends of the con
sidered column, need to be deteremined first. These parameters can be determined by

𝐶 =
∑ 𝐼𝑐𝑙𝑛/𝐿𝑐𝑙𝑛

∑𝜇 × (𝐼𝑏𝑚/𝐿𝑏𝑚)
(3.20)

where the sum is over all beams which are rigid connected to the considered column end.
𝐼𝑐𝑙𝑛 is the moment if inertia of the column axis, 𝐿𝑐𝑙𝑛 is the column length, 𝐼𝑏𝑚 is the moment
of inertia of the beam and 𝐿𝑏𝑚 is the length of the beam. 𝜇 is a correction factor in order to
implement a constraint

• 𝜇 = 2 if the other end is rigid connected to one or more columns
• 𝜇 = 3 if the other end has a pinned connection
• 𝜇 = 4 if the other end is fixed

For an end which is pinned, the value of 𝐶 is in theory ∞, but an ideal pin is not possible and
therefore 𝐶 = 5 is used. For a column fixed at one end, 𝐶 = 0.25 for that end, because an ideal
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fixed end is not possible. For columns where the ends have an elastic (spring) connection by
beams which are not totally stiff connected to the column, 𝐿𝑐𝑟 can be determined by using the
same method, where 𝐿𝑏𝑚 is replaced by the equivalent beam length 𝐿𝑒𝑞𝑢

𝐿𝑒𝑞𝑢 = 𝐿𝑏𝑚 +
𝜇 × 𝐸 × 𝐼𝑏𝑚

𝑆𝑗
(3.21)

where 𝑆𝑗 is the rotational stiffness in a flexible connection.

Situation 2 elaboration Looking at the left column of the second situation it follows that for
the lower end which is fixed 𝐶𝐴 = 0 and so 𝐶𝐴 = 0.25.

Figure 3.10: Situation 2

For the upper end we again make the following assumptions and thus 𝐼𝑐𝑙𝑛 = 1, 𝐿𝑐𝑙𝑛 =
1, 𝐼𝑏𝑚 = 1, 𝐿𝑏𝑚 = 1 and because there is a fixed connection with the girder 𝜇 = 3, such that

𝐶𝐵 =
1/1

4 × 1/1 =
1
4 (3.22)

Solving formula 3.18 gives
𝐿𝑐𝑟
𝐿 = 𝜋

𝜆 ≈ 0.66 (3.23)

This satisfies the observation that the effective length factor must be between 1 and 2. Using
the critical euler buckling formula the critical buckling load follows as 63440, 82𝑁.

3.4. AISC method
A method which looks like the Eurocode 3 method is the method used in the AISC manual [?
], where in case of a sway frame and a non sway frame respectively, the effective length factor
𝐾 must be solved from

𝐺𝐴𝐺𝐵
4 (𝜋/𝐾)2 + (𝐺𝐴+𝐺𝐵2 ) (1 − 𝜋/𝐾

tan(𝜋/𝐾)) +
2 tan(𝜋/2𝐾)

𝜋/𝐾 − 1 = 0
or 𝐺𝐴𝐺𝐵(𝜋/𝐾)2−36

6(𝐺𝐴+𝐺𝐵)
− 𝜋/𝐾

tan(𝜋/𝐾) = 0
(3.24)

The relative stiffness factors are given by

𝐺𝐴 =
∑𝐴(𝐸𝐼/𝐿)𝑐
∑𝐴(𝐸𝐼/𝐿)𝑔

and 𝐺𝐵 =
∑𝐵(𝐸𝐼/𝐿)𝑐
∑𝐵(𝐸𝐼/𝐿)𝑔

(3.25)
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where the subscripts 𝐴 and 𝐵 indicate the joints for the column, and the subscripts 𝑐 and 𝑔
indicate the terms for the column and girder. Because this methods looks like the Eurocode
method it will not be used to calculate the effective lengths for the situations in this assignment.



4
Calculation methods for effective length

In this chapter first it is investigated which methods the different FEM programs use that han
dle buckling for structures. Also another modified Eurocode 3 method will be discussed and
demonstrated.

4.1. Methods used in FEM programs
The table below gives an overview of the different methods used in FEM programs

Table 4.1: Buckling methods used in FEM programs
Program Method
staad nonlinear buckling analysis and linear buckling analysis [? ]
etabs nonlinear buckling analysis and linear buckling analysis [? ]
revit /
SAP2000 nonlinear buckling analysis and linear buckling analysis [? ]
SACS /
strand7 Linear buckling analysis [? ]
nastran Linear buckling analysis [? ]
nauticus /
genie /
dnv genie /
sesam /
maestro /
rstab nonlinear buckling analysis and linear buckling analysis [? ]

With Eurocode 3 extension:
Effective length factors (can be obtained by eigenvalue analysis) and Eurocode 3 [? ]

rfem nonlinear buckling analysis and linear buckling analysis [? ]
With Eurocode 3 extension:
Effective length factors (can be obtained by eigenvalue analysis) and Eurocode 3 [? ]

civilfem /
robot
csi /
midas Linear buckling analysis [? ]
scia /
tekla Linear buckling analysis and Eurocode 3 [? ]
krasta /
sdc verifier Eurocode 3 method [? ]
FEMAP nonlinear buckling analysis and linear buckling analysis

22
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4.1.1. Linear buckling analysis
The linear buckling analysis is the most used method for FEM programs. For the linear buck
ling analysis, first a linear static analysis has to be executed. From this linear static analysis
a material K𝑚𝑎𝑡 and an geometrical K𝑔𝑒𝑜 stiffness matrix can be made. The linear buckling
analysis is then performed by solving the following eigenvalue problem [? ]

(K𝑚𝑎𝑡 + 𝜆𝑖K𝑔𝑒𝑜) �𝑖 = 0 (4.1)

where the eigenvalues 𝜆𝑖 are the load parameters and the eigenvectors �𝑖 is the buckling mode
corresponding to load parameter 𝜆𝑖. The load parameter multiplied by the applied load for the
analysis defines the critical buckling load where the structure buckles in the corresponding
buckling mode.

This method can be applied to all finite element types beams, shells, volume elements,
ect.

Situation 1 With the FEM program FEMAP a linear buckling analysis has been performed.
For the dimensions and geometry the properties defined in section one are used: length of
columns and girder = 1𝑚, the moment of inertia of the columns and girder = 𝐼𝑐𝑙𝑛 = 𝐼𝑏𝑚 =
1, 33 ⋅ 10−1𝑚4 (rectangular beam of 0, 02 × 0, 02) and the elasticity modulus of the columns
and girder equals 𝐸 = 2, 1 ⋅ 1011𝑁/𝑚2 (steel). For the model beam elements are used. In the
figure below the fixed constraint is given by 123456. In the top corners there is an translation
in the z direction (3). The applied load 𝐹 is defines as 1 such that the resulting eigenvalue
defines the critical load in the structure.

From the analysis it follows that the critical buckling load is given by 20635, 59𝑁. This
result, and the corresponding buckling mode can be seen in the figure below

Figure 4.1: Linear buckling analysis result for situation 1

Using statics it follows that the normal force 𝑃𝑐𝑟 in the column is equal to 𝐹. In this analysis
the force 𝐹 equals 20635.59. For the corresponding effective length the effective buckling
length formula can be reformulated as

𝐾 = 1
𝐿
√𝜋

2𝐸𝐼
𝑃𝑐𝑟

(4.2)
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Using this formula it follows that the effective length is given by 𝐾 = 1, 16.

Situation 2 Again the same dimensions and geometry is used, however an extra constraint
is added to prevent the swaymode. Also, at the middle of the columns an translation constraint
has been added in the 𝑧 direction. This prevents that the first bucklingmode is in the 𝑧 direction.
The critical buckling load now follows as 70329.13. The result and the corresponding buckling
mode can be seen in the figure below

Figure 4.2: Linear buckling analysis result for situation 2

Again, the same formula will be used to determine the effective length factor, which results
in 𝐾 = 0, 627

4.1.2. Nonlinear buckling analysis
The nonlinear buckling analysis is more expensive then the linear buckling analysis in the
sense that a lot more calculation steps are needed [? ]. In a general nonlinear structural
analysis the incremental iterative method is a many used method. With this method the to
tal applied load on the structure will be applied in multiple load steps, where for each step
the displacement will be calculated. With a nonlinear buckling analysis also such an incre
mental iterative method will be used and after each load step the system will be checked for
bifurcation. This will be done by an eigenvalue problem with the so called tangential stiffness
matrix, where a negative eigenvalue indicates that in the so far applied load a bifurcation has
occurred. In this analysis this bifurcation indicates loss of stability and thus the structure has
buckled.

This method can also be applied to all finite element types beams, shells, volume elements,
ect.

4.1.3. Effective length factors
The programs rstab and rfem also have the possibility to select the effective length factors for
all the beam elements in a structure, as can be seen in the figure below
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Figure 4.3: Effective length factors

In rstab and rfem there is also the possibility to import the effective lengths from the linear
buckling analysis of a buckling mode.

If the effective length factors are known for each member of the frame, the program can
execute a linear static analysis and check if the normal force in each member does not exceed
the critical compression load corresponding to the effective length.

4.2. StruSoft calculation method
An other calculation method based on the Eurocode 3 method is given by StruSoft [? ]. In
these method there again are two different theoretical planer models, namely for non sway
and sway frames

Figure 4.4: Theoretical model for nonsway and sway mode

The distribution factors (representing the sum of the rotational stiffness at the end) at the
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end of the considered column are defined as

𝜂1 =
𝐾𝑐

𝐾𝑐 + 𝐾11 + 𝐾12
= 𝐾𝑐
𝐾𝑐 + ∑

𝑛
𝑗=1 𝐾1𝑗

and 𝜂2 =
𝐾𝑐

𝐾𝑐 + 𝐾21 + 𝐾22
= 𝐾𝑐
𝐾𝑐 + ∑

𝑛
𝑗=1 𝐾2𝑗

(4.3)

where the 𝐾 values are the rotational stiffness coefficients. 𝜂𝑖 = 0 if the column is fixed against
rotation and 𝜂𝑖 = 1 if the end is hinged. The 𝐾𝑐 column stiffness coefficient of the considered
column is

𝐾𝑐 = 4
𝐸𝐼
𝐿 (4.4)

The effective stiffness coefficients of the connecting beams at the ends of the considered
column are 𝐾𝑖𝑗 with 𝑖 = 1, 2 representing the point of the considered column.

If the considered column has a parallel sequel at one end then the distribution is given by

𝜂1 =
𝐾𝑐 + 𝐾1

𝐾𝑐 + 𝐾1 + 𝐾11 + 𝐾12
= 𝐾𝑐 + 𝐾1
𝐾𝑐 + 𝐾1 + ∑

𝑛
𝑗=1 𝐾1𝑗

and 𝜂2 =
𝐾𝑐 + 𝐾2

𝐾𝑐 + 𝐾2 + 𝐾21 + 𝐾22
= 𝐾𝑐 + 𝐾2
𝐾𝑐 + 𝐾2 + ∑

𝑛
𝑗=1 𝐾2𝑗

(4.5)
where 𝐾1 and 𝐾2 are the effective coefficients of the continuous (sequel part) column at the
end points.

The effective stiffness coefficients of the connecting beams 𝐾𝑖𝑗 depends on
• The far end support condition of the beam (e.g. fixed, hinged, elastic support, ect.)
• The connecting elements to the beam at far ends (e.g. vertical columns, ect.)
• The previous property depends on whether the column is nonsway or sway
• The end release condition of the connecting beam at both ends (e.g. hinges)

In general case if the connecting beam has a transnational 𝐾𝑇 and rotational 𝐾𝑅 point support
at the far end the effective rotational stiffness parameter in the principal plain of the straight
beam is given by

𝐾𝑖𝑗 = 4
𝐸𝐼𝐵 (𝐾𝑇𝐿2𝐵 (𝐾𝑅𝐿𝐵 + 3𝐸𝐼𝐵) + 3𝐾𝑅𝐸𝐼𝐵)

𝐾𝑇𝐿3𝐵 (𝐾𝑅𝐿𝐵 + 4𝐸𝐼𝐵) + 12𝐸𝐼𝐵 (𝐾𝑅𝐿𝐵 + 𝐸𝐼𝐵)
(4.6)

Figure 4.5: The effective rotational parameter case with general support condition at far end

The following far end support conditions of the connecting beam

Table 4.2: Far end support conditions and effective stiffness
Conditions Effective stiffness
𝐾𝑇 → ∞ 𝐾𝑅 → ∞ Fixed end 𝐾𝑖𝑗 = 4

𝐸𝐼𝐵
𝐿𝐵

𝐾𝑇 → ∞ 𝐾𝑅 → 0 Hinged end 𝐾𝑖𝑗 = 3
𝐸𝐼𝐵
𝐿𝐵

𝐾𝑇 → 0 𝐾𝑅 → 0 Free end 𝐾𝑖𝑗 = 0
𝐾𝑇 → 0 𝐾𝑅 → ∞ 𝐾𝑖𝑗 =

𝐸𝐼𝐵
𝐿𝐵
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• Non Sway frame: in a sway frame if the connecting beam has a connection with an
adjacent column then the rotational stiffness parameter comes from the case when the
rotation equal and opposite to that at the near end. The stiffness parameter in this case

𝐾𝑖𝑗 = 2
𝐸𝐼𝐵
𝐿𝐵

(4.7)

Figure 4.6: Beam in non sway frame

• Sway frame: in a sway frame if the connecting beam has a connection with an adjacent
column then the rotational stiffness parameter comes from the case when the rotation
equal to that at the near end. The stiffness parameter in this case

𝐾𝑖𝑗 = 6
𝐸𝐼𝐵
𝐿𝐵

(4.8)
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Figure 4.7: Beam in sway frame

Finally, the ratio between the flexural buckling length and the geometric length of the con
sidered column (thus the effective length) is given by

𝛽 = 𝐿𝑐𝑟/𝐿 (4.9)

where

• Non sway frame: 𝛽 = 1+0.145(𝜂1+𝜂2)−0.265𝜂1𝜂2
2−0.364(𝜂1+𝜂2)−0.247𝜂1𝜂2

where the factor is between 0.5 and 1

• Sway frame: 𝛽 = √1−0.2(𝜂1+𝜂2)−0.12𝜂1𝜂21−0.8(𝜂1+𝜂2)+0.6𝜂1𝜂2
where the factor is between 1.0 and +∞.

Situation 1 Again the same geometry, dimensions and columns and girder will be used,
such that

Figure 4.8: Situation 1
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Considering the left column it follows that 𝜂2 = 0. For 𝜂1

𝜂1 =
𝐾𝑐

𝐾𝑐 + 𝐾11 + 𝐾12
= 𝐾𝑐
𝐾𝑐 + 0 + 𝐾12

(4.10)

where 𝐾12 = 6𝐸𝐼𝑏𝑚𝐿𝑏𝑚
because there is a fixed connection and 𝐾𝑐 = 4𝐸𝐼𝑐𝑙𝑛𝐿𝑐𝑙𝑛

. It follows that
𝜂1 = 0, 4. Solving 𝛽 gives 𝛽 = 1, 16216. By using the critical buckling load formula

𝑃𝑐𝑟 =
𝜋2𝐸𝐼
(𝐾 ⋅ 𝐿)2 = 20425.74𝑁 (4.11)

Situation 2 Also for situation 2 the same geometry, dimensions, columns and girder will be
used

Figure 4.9: Situation 2

Considering the left column it again follows that 𝜂2 = 0. For 𝜂1

𝜂1 =
𝐾𝑐

𝐾𝑐 + 𝐾11 + 𝐾12
= 𝐾𝑐
𝐾𝑐 + 0 + 𝐾12

(4.12)

where 𝐾12 = 2𝐸𝐼𝑏𝑚𝐿𝑏𝑚
because there is a fixed connection and 𝐾𝑐 = 4𝐸𝐼𝑐𝑙𝑛𝐿𝑐𝑙𝑛

. It follows that
𝜂1 = 0, 667. Solving 𝛽 gives 𝛽 = 0, 624052. By using the critical buckling load formula

𝑃𝑐𝑟 =
𝜋2𝐸𝐼
(𝐾 ⋅ 𝐿)2 = 70960, 34𝑁 (4.13)
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Result and conclusions

5.1. Results
The results of the found methods are summarized in the table below

Table 5.1: Results of effective length calculation methods
Sway frame Non Sway frame

Method Critical load Effective length Critical load Effective length
Eurocode 3 13143, 79𝑁 1, 45 63440, 82𝑁 0, 66
FEMAP 20635, 59𝑁 1, 16 70329, 13𝑁 0, 63
StruSoft 20425, 74𝑁 1, 16 70960, 34𝑁 0, 62

It can be seen that, especially with the sway frame, there is a significant error between the
Eurocode 3 method and the FEMAP simulation. However, the improved Eurocode 3 method
from StruSoft has an negligible error compared to the FEMAP simulation. However, with the
methods used for only two situations no conclusion can be made about what is the more
accurate method.

In this case it is however recommenced to use the Eurocode 3 results. This because the
eurocode 3 method gives the largest effective length results and thus the lowest critical load.
Buckling is a failure mode where the exact value of the critical load can not be determined.
So, it is more useful to underestimate the strength of the frame against buckling. It is therefore
recommended design the frame such that is can resits the critical loads of all methods. In this
case a frame which satisfies eurocode 3 also satisfies the FEMAP and StruSoft outcome, and
not vice versa.

The above does not apply to all methods. The method used in this assignment are well
tested and many used and thus the results are not significantly inaccurate. There are many
methods and not all methods show good results and thus not all methods need to be satisfied.

5.2. Conclusion
First of all, there are two types of frames, a sway and a non sway frame. Which type of
frame determines the type of buckling mode and the necessary calculation method. There
are different ways of determining which type of calculation method has to be used

• Classical method (chapter 1) to determine if the frame is a sway frame
• Use both methods (sway and non sway) and use the worst case scenario
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• Preform a buckling analysis with a finite element analysis program and observe if the first
buckling mode is a sway or non sway mode (or just use the results of the linear buckling
analysis of a FEM program).

• Use own insight if the frame has the possibility to sway when it buckles. If not, the non
sway frame methods need to be used

In chapter 2, the buckling of single columns has been discussed. The buckling mode and
the critical buckling load are depended on the type of boundary conditions. Each combination
of boundary conditions has its own effective length factor and characteristic displacement,
curvature and moment lines. This moment lines can be used to determine the effective length
of the columns in sway and non sway frame looking at the moment lines of the buckling mode
of that frame.

Eurocode 3 uses a similar simplified method, which uses the single column with boundary
condition cases of chapter 2 in order to determine the effective lengths of columns in a frame.
This is discussed in chapter 3. An more advanced method from Eurocode 3 is also discussed
in chapter 3, and tested on the frames of the two situations.

In chapter 4 the methods used in FEM programs are discussed, where it can be seen that
the most used methods are the linear and nonlinear buckling analysis. This methods however
do not give an effective length for each column but only the critical buckling load and the
corresponding buckling mode. The only found programs which are able to determine effective
lengths out of a buckling mode are rfem and rstab. In chapter 4 also a modified version of
the Eurocode 3 method is discussed. Both the modified Eurocode method and the linear
buckling analysis of a fem program (FEMAP) are used to determine the effective lengths of
both situations.

So looking at the research question, How can the effective length of a column under com
pression, as part of a frame, be determined? there are multiple methods to calculate effective
lengths. However, not all methods can be trusted and one should determine the plausibility
of the results. In the case of this assignment, all the three considered methods give plausible
results to determine the effective length en thus all the methods should be satisfied.

5.3. Recommendation
If we want to tackle a buckling problem where we want to determine of a structure remains
stable against buckling to a corresponding load there are multiple ways. If we look at the
situations used in this assignment it can observed that for almost the same frame there are
significantly different results depended on if it is a sway or a non sway frame. A first recom
mendation is thus to determine if the considered frame is a sway or a non sway frame, and if
this is not known the worst case scenario is recommended.

Based on the results on this assignment not a single method can be recommended on
which is more accurate. Therefore it is always better to use multiple methods an let the struc
ture satisfy all applicable methods. In this assignment three methods are tested and they all
have plausible results but there is a difference in the results. The three used methods in this
assignment are well used and trusted methods and thus it is recommended to let the structure
satisfy all methods.



Bibliography

[1] CEN, Eurocode 3, Eurocode, NENEN 199311+C2+A1, 2016.

[2] CEN, Eurocode 3, Eurocode, NENEN 199311+C2+A1/NB, 2016.

[3] E. Bayo, A. Loureiro, An efficient and direct method for buckling analysis of steel frame
structures, Department of structural engineering, University of Navarra, 2000.

[4] D. Choi, H. Yoo, Iterative system buckling analysis, considering a fictitious axial force to
determine effective length factors for multi story frames, Department of Civil Engineering,
Hanyang University, 2020.

[5] K. Girgin, G. Ozmen, E. Orakdogen, Buckling lengths of irregular frame columns, Faculty
of civil engineering, Istanbul Technical University, 2005.

[6] Z. I. Bocskai, Automatic calculation of flexural buckling length, FEMDesign, StruSoft,
2018.

[7] AISC, Steel construction manual, 13th ed, AISC, 2017.

[8] CivilMint, Sway and NonSway Frames, https://civilmint.com/swayandnonswayframes/.

[9] L Skotny, Buckling length in sway and non sway structures, https://enterfea.com/buckling
lengthinswaystructures/, Enterfea, 2017.

[10] Wikipedia, Euler’s critical load, https://en.wikipedia.org/wiki/Euler’s_critical_load.

[11] T. Belytschko, W.K. Liu, B. Moran, K.I. Elkhodary, Nonlinear Finite Elements for Continua
and Structures, Wiley, second edition, 2014.

[12] B. Purkayastha, Interpretation of Buckling Analysis in Staad.Pro,
https://communities.bentley.com/products/ramstaad/w/structural _analysis _and _design
__wiki/28093/interpretationofbucklinganalysisinstaadpro, Bentley, technical support
group.

[13] Eigenvalue vs. Nonlinear buckling analysis, https://wiki.csiamerica.com/display/kb/Eigenvalue
+ vs.+ Nonlinear + buckling + analysis, CSI knowledge base, 2019.

[14] Strand7 linear buckling analysis, https://www.strand7.com/html/linearbuckling.htm,
Strand7.

[15] Linear buckling analysis, https://knowledge.autodesk.com/support/inventor
nastran/learnexplore/caas/CloudHelp/cloudhelp/2021/ENU/NINCADES
Videos/files/GUIDBE99DD4069AA4AD0B94AB99DB665349Ehtm.html, Autodesk.

[16] Stability analysis of beam structures, https://www.dlubal.com/en/products/rfemand
rstabaddonmodules/others/rsbuck, Dlubal.

[17] RFSTABILITY Addon Module for RFEM, https://www.dlubal.com/en/products/rfemand
rstabaddonmodules/others/rfstability, Dlubal.

32



Bibliography 33

[18] RF/STEEL EC3 5/8, https://www.dlubal.com/en/downloadsand
information/documents/onlinemanuals/rfsteelec3/02/05, Dlubal.

[19] Buckling Analysis Control, http://manual.midasuser.com/EN _Common/Gen/865/Start/06
_Analysis/Buckling_Analysis _Control.htm, Midas.

[20] Compression buckling (Beams: EC3), https://support.tekla.com/doc/teklastructural
designer/2019/ref _compressionbucklingbeamsec3eurocode , Tekla.

[21] Eurocode3 Beam Member Checks, https://sdcverifier.com/articles/eurocode3member
checks/, SDC verifier.


