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ABSTRACT

Producing an oil well is a transient process, and although we like to assume there is a steady state phase in the
production life, it is a fragile situation. Due to the many unknowns in the reservoir, changes in well production
performance cannot easily be predicted. Changes in the subsurface will influence the production and lifetime
of the well and need to be identified as soon as possible. Consequently, monitoring well performance is of
great importance.

Identifying deviations from production forecasts is difficult, because mismatches between predicted and
measured flow rates can have two causes: either the production prediction model is not valid, or the pro-
duction test data is wrong. This research aims to quantify the uncertainty inherent to performance models
caused by the uncertainty in input parameters and by the method used to establish the model. This is done
by introducing the performance envelope, a range instead of a line in which the well is expected to produce
for the given input parameters and the used method to establish it.

Two workflows are proposed to establish such a performance envelope, one for fitted models and one for
simulated models. Additionally, a rate selection method is proposed, optimizing the test program by select-
ing the three rates which result in the narrowest confidence interval. The results show that a Performance
Envelope can be computed for both fitted and simulated performance models, but that further research is
needed to use them as an objective criterion. Furthermore, they show that rate selection has influence on the
quality of the resulting model and that it can be used to optimize a test program.
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1
INTRODUCTION

Producing an oil well is a transient process and although we like to assume there is a steady state phase in
the production life, it is a fragile situation. Due to the many unknowns in the reservoir, changes in well pro-
duction performance cannot easily be predicted. Local heterogeneities can alter the water movements which
can lead to an unexpected early increase in water cut. Migration of sands or salt precipitation can lead to a
gradual or sudden change in the near-wellbore permeability, affecting the skin factor and thus productivity.
These changes will cause deviations in production that can sometimes be solved by applying corrective mea-
sures (such as workovers) but they have to be identified in time before the production impairments become
irreversible. Because of this narrow time frame it is of great importance to identify these deviations so that
the production life of the well can be optimized.

Identifying deviations from production forecasts is difficult, because mismatches between predicted and
measured flow rates can have two causes: either the production prediction model is not valid, or the pro-
duction test data is wrong. In this modern age of simulation, the industry tends to trust production models
since those form the basis for the economic value of an asset. An error in such critical business inputs can
have many consequences, and thus the blame for a mismatch between predicted and measured production
is usually assigned to an inaccurate measurement. With the daily use of reservoir simulators and nodal analy-
sis software their results are becoming more and more seen as the truth and one tends to forget the basic rule
of modeling: every model is as good as its input parameters. And here lies the crux of the matter: reservoir
parameters are usually estimated values with attached uncertainty, more like distributions than single values.
Some of them can be measured directly (such as permeability by coring), but such static measurements are
not representative for fluid flow, and other properties (such as drainage area or skin) have to be determined
by well test analysis. On top of this come the upscaling effects and assumptions made by the reservoir sim-
ulators for the sake of computational effiency. These assumptions lead to inherent model uncertainty which
can be evaluated by doing sensitivity studies: running the simulator for a range of values. But as this is time
consuming and the importance is not always recognized they are often omitted. Multiple simulations are run
to determine the range of recoverable reserves, but this is a macroscopic analysis for the whole reservoir and
does therefore not apply to a single well. This lack of sensitivity study leads to a false belief in the results of
simulation software and in this case well performance modeling. This is illustrated in Figure 1.1: the simu-
lated model (Figure 1.1a) is misleadingly represented by a line when in reality it is more like a cloud (Figure
1.1b).

PROBLEM STATEMENT
By treating the performance model as a line instead of a cloud or range, matching test results comes quite
close: as well test results can have significant uncertainty (error in flow rate up to 10 % is a typically accepted
uncertainty) it is obvious to assume a bad test in case of a big mismatch. Nowadays well test data is much
more precise thanks to new technologies, improved operational procedures and validation methods. Nev-
ertheless, a mismatch is still often dismissed as a bad test, not hesitating to discard them even as they may
be representative. Validation of well test data is not a part of the scope of this research. While test data con-
verged from a vague cloud into a better defined point, models are still not tested for their actual range of
uncertainty. Because of its significant impact, the uncertainty inherent to the performance models has to be

1
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(a) Simulated Tubing Performance Curve
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(b) Multiple Realisations for a Simulated Tubing Performance Curve

Figure 1.1: Illustration of the cloud effect

characterized. In this manner it is possible to establish a performance envelope instead of a line, a confidence
interval in which the well is expected to produce. Being able to characterize such uncertainty, it also becomes
possible to design a test program that optimizes the predictive power. Combining those two approaches in a
production analysis tool enables both an optimization of production prediction models but also provides an
objective way of determining when a well is deviating from its predicted production trend.

OUTLINE
After this introduction follows the current situation and used methods for well design and well performance
modeling in Chapter 2. This Chapter also identifies the issues with the current workflow and introduces
the proposed solution: the Performance Envelope. The workflow to establish this Performance Envelope is
presented in Chapter 3 as well as the proposed Rate Selector. Chapter 4 explains the practical execution of the
proposed workflows and the simulation run. Results for these simulations are presented in Chapter 5. The
concise conclusions of this research are presented in Chapter 6 and the road ahead and proposed follow up
is presented in Chapter 7 .



2
CURRENT WORKFLOW

Much of the information regarding workflows for well design or well test monitoring are so called company
knowledge: it is documented per company or section for internal use but not published to the outside world.
Therefore multiple interviews with production, reservoir and well testing engineers where conducted to ob-
tain this knowledge.

2.1. WELL DESIGN
Well performance prediction and analysis plays an important role in field development, either for designing a
new well or for evaluation of an already producing one. Although every company or even production engineer
has his own variations, all workflows use the same performance relations[1]:

• Inflow Performance Relations which describes flow from the reservoir to the near well bore area, com-
puting the bottom hole pressure needed to induce flow in the reservoir. Flow in the reservoir can be
divided in two phases, above and under bubble point shown in Figure 2.1a. The pressure drop in the
reservoir above bubble point can be computed using Equation 2.1 [2].

p̄ −pw f =
qsc Boµ

2πkh

(
ln

re

rw
− fr +S

)
(2.1)

And under bubble points using empirical equations such as Vogel[3].

• Intake Performance Relations which describes the flow from the well to surface, computing the bot-
tom hole pressure needed to lift the flow to surface for a given and constant tubing head pressure. In
combination with an Inflow Performance Relation the operating point for the well can be computed in
the design phase by plotting multiple Intake Performance Relations for various tubing head pressures.
(Figure 2.1b)

• Tubing Performance Relations which describe the flow from the well to surface, computing the tubing
head pressure needed to lift the flow to surface for a given and constant bottom hole pressure

• Total Performance Relations, a combination of an Inflow- and a Tubing Performance Relation which
overcomes the constant bottom hole pressure restriction by using an Inflow Performance Relation to
compute the bottom hole pressures. This relation is most used for predicting well performance. As it
also gives a relation between tubing head pressure and flow rate it is often wrongfully referred to as a
Tubing Performance Relation

These relations can be used both for designing a new well, as well as for evaluating the production of an
already producing well. The quality of their production prediction highly depends on the used input param-
eters, and their availability and degree of certainty depend on the lifetime of the field and the well: for a new
field most parameters are only known to a limited extent, they are estimated from similar fields or from an
exploration well, while for a new well in an already producing field most parameters are well-known by the
input and measurements from previous wells. Some parameters such as skin can only be measured after

3
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(a) Inflow Performance Curve with bubble point pressure, illustrat-
ing the two phases of flow
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Figure 2.1: The use of Inflow and Intake Performance Curves illustrated

completion and will remain highly uncertain during the design phase while parameters such as fluid proper-
ties will be well-known from other wells. In addition to simulating performance models, a different method
of determining a Total Performance Curve is by using the results of multi rate well tests. In a multi rate test
the well is tested at least at three rates from which one is the operating rate and then to establish the per-
formance relation a curve is fitted through these three results, this method is illustrated in Figure 2.2b. The
selection of rates is usually based on industry knowledge and consist of fractions of the operating rate, two
widely used are operating rate*[1/3 2/3 3/3] and operating rate*[0.5 1 1.2]. An advantage of this method is
that no input variables, assumptions or models are needed and as it is based on actual measurements it is
used as a valuable alternative for a simulated performance model.
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(a) Total Performance Curve from Pipesim
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Figure 2.2: Illustrating the fitted workflow

2.2. MONITORING WELL PERFORMANCE
Monitoring well performance can basically be done in three ways, either by comparing well performance
models with real time production testing, history matching or by using decline curve analysis. Decline Curve
Analysis was presented by Arps in 1944[4] and is based on recognition of a trend in recorded production data
and forecasting future production by extrapolation. History Matching is based on a reservoir model which
can be perfected using production data as new information, by adapting the model to minimize the difference
between predicted production and actual recorded production. Until now, both decline curve analysis as his-
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tory matching use the allocated results from monthly sales and delivery measurements. Real time production
testing/monitoring focuses on measuring production parameters at live well conditions and then compares
them with a well performance model. In recent history a complete well test package was needed but nowa-
days high resolution measuring devices with flow computers can measure production without interruption
daily production and remaining permanent on site. In additions to this usability comes the increase in accu-
racy: traditional surface well tests where based on recording fluid production from test separators by hourly
readings, resulting in measurement uncertainties in flow rate easily over 10%, while the new generation of
multi-phase flow meters reduced this uncertainty to 2%.

All three monitoring methods have their downside in using them for daily production: Both for decline
curve analysis as for history matching a large database of production history is needed and thus won’t qualify
for predictions in early production life. Due to the trend recognition character of decline curve analysis the
time scale is in the order of quarters or even years and is therefore not suitable for identification of early
deviations. For history matching an up to date reservoir model is needed and since in reservoir simulation
precision for small timescales is a trade-off between computational efficiency, the current methods used are
not suitable for day to day analysis either. Using production testing in combination with well performance
modeling has neither of these disadvantages and is therefore the most used to evaluate well performance.

2.3. ISSUES WITH THE CURRENT WORKFLOW
Although well performance modeling is the current best solution for evaluating well productivity, it has one
significant limitation. In the current used workflows, uncertainty in modeling parameters and in well test re-
sults are not incorporated in the well performance model while they have a significant influence: uncertainty
in results from well test data can be up to 10% in flow rate, and Azi et al.[5] reported up to 20% in permeabil-
ity from the interpretation of build up results. Until now, the uncertainty in well test results is only used to
discard a test results in case of a mismatch, but never as an input for modeling. Take for instance the fitted
workflow, where an empirical performance model is fitted to measurements as shown in Figure 2.2b: due to
the measurement error the used well test responses in figure two are actually more like a range of values, as
shown in Figure 2.3a. These ranges would result in a range of fits instead of just a line, as shown in Figure 2.3a
and 2.3b. The same holds for simulated curves, uncertainty in input parameters results in ranges of simu-
lated curves instead of one definitive line. These effects of uncertainty are commonly used e.g. the sensitivity
analysis for STOIIP calculations, but never in production engineering. Therefore this thesis suggests a similar
approach and introduces the performance envelope: a confidence interval, a range instead of a line in which
the well is expected to produce for the given input parameters and the used method to establish it.
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Figure 2.3: Illustrating the effect of measurement uncertainty for the fitted workflow
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2.4. OBJECTIVES IN DESIGNING THE PERFORMANCE ENVELOPE
• Define a performance envelope: an uncertainty band “caused” by the method used to build a well

performance model, and the uncertainty in input parameters:

– For a simulated performance relation by running a sensitivity study and propagation of error anal-
ysis such as Monte Carlo. From the assumption of a range of uncertainty in input parameters, a
possible range of outcomes can be generated leading to the definition of an uncertainty band on
performance relation outputs corresponding to a given confidence interval.

– The sensitivity analysis also gives information about the influence of various parameters and thus
enables optimizing the selection of test points to resolve major uncertainties

– Considering a performance relation established on the basis of fitting a mathematical or physi-
cal model to measurements (production test data), the evaluation of a confidence interval can be
done by considering the effect of both the model fitting routine used and the presence of mea-
surement error in the calibration points.

• Design a test advisor:

– Use a simulated performance relation as a reference, and introducing measurement noise optimal
test points can be selected to minimize residual uncertainty

– As a deliverable, given the measurement uncertainty in pressure and flow-rate, the optimal rates
that should be tested to achieve the best/narrowest confidence interval can be identified



3
PROPOSED WORKFLOW

This chapter presents the proposed workflows (sections 3.1 & 3.2) to establish performance envelopes for
well production predictions, by characterizing the uncertainty inherent to performance models and the used
input parameters. Being able to characterize such uncertainty, it also becomes possible to design a test pro-
gram that optimizes the predictive power by narrowing the confidence interval, presented in section 3.4.
Combining those two approaches in a production analysis tool enables both an optimization of production
prediction models but also provides an objective way of determining when a well is deviating from its pre-
dicted production trend. In this section the proposed workflows are presented with the aim to illustrate the
workflow and the concept behind it, not to prescribe the exact steps, the used curves or distributions.

3.1. WORKFLOW 1: SENSITIVITY ANALYSIS FOR SIMULATED PERFORMANCE

MODELS
The main purpose of this workflow is to define a performance envelope and the associated uncertainty for a
simulated performance curve in order to use these uncertainty bands as an objective criterion to check if a
well is performing as predicted. In addition it can be used to evaluate and illustrate the influence of various
input parameters on the predicted performance of the well.

The workflow is schematically presented in Figure 3.1 and is similar to the workflows used for STOIIP
sensitivity analysis and the work of Azi et al.[5] to evaluate confidence intervals in well interpretation results.
As shown in Figure 3.1a, a basic Performance Model forms the base of this workflow and the purpose of the
workflow specifies the type of Performance Model selected. As not every parameters manifests its influence
in the same zone, the choice of the performance curve has to fit the parameter of interest. Skin for instance
results in a pressure loss in the near wellbore area and manifests itself solely in bottom hole pressure so
is studied best in an Inflow Performance Curve. Water cut on the other hand, influences the bottom hole
pressure but also the lift model and needs to be studied in both an Inflow and a Tubing Performance Curve.
Next comes the distribution for the input variable(s) of interest. Depending on the type of parameter and the
software used it can either be in the form of an expected value with measurement error or a PDF as shown
in Figure 3.1b. With the model and parameters in place Monte Carlo simulations can be run, building the
model for the different input parameters, resulting in the curves shown in Figure 3.1c. Finally, the data has
to be processed and sorted, resulting in the experimental confidence interval shown in Figure 3.1d. The last
step is to define the envelope, which is explained in section 3.3.

3.2. WORKFLOW 2: SENSITIVITY ANALYSIS FOR FITTED PERFORMANCE MOD-
ELS

The main purpose of this workflow is to define a performance envelop and evaluate the associated uncer-
tainty for a performance curve which is fitted to test data in order to use these uncertainty bands as an objec-
tive criterion to check if a well is performing as predicted. In addition it can be used to evaluate and illustrate
the influence of measurement error, the value of anchor points such as shut in pressure or the effect of the
chosen rates.

7
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(a) Step 1: Selecting a performance model
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(c) Step 3: Run realisations
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(d) Step 4: Process the data into confidence intervals

Figure 3.1: Workflow for simulated models visualized per step
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(a) Step 1: Using a simulated performance curve as a base

Oil flow rate -q
o,sc

 , m3/s

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

F
lo

w
in

g 
T

ub
in

g 
H

ea
d 

P
re

ss
ur

e 
p

w
f ,

 P
a

×106

0

1

2

3

4

5

6

7

8

9

10

Simulated Curve
Generated Well Test Response

(b) Step 2: Introducing measurement noise
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(c) Step 3: Fit realisiations
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(d) Step 4: Process the data into confidence intervals

Figure 3.2: Workflow for fitted models visualized per step
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The workflow is schematically presented in Figure 3.2 and is designed in the same manner as for the simu-
lated curve: well test data for the selected rates is generated by adding noise from a pre-defined distribution to
simulated Performance Relation (Figure 3.2a) results to include the effects of measurement errors, as shown
in Figure 3.2b. Then Monte Carlo simulations are run, fitting a model through randomly selected values from
the simulated data for every rate, resulting in the range of possible fits shown in Figure 3.2c. Finally the data
has to be processed and sorted, resulting in the experimental confidence interval Figure 3.2d.

3.3. FORMULATION OF THE PERFORMANCE ENVELOPE
The last step to obtain objective boundaries for evaluating well performance is to transform the experimental
confidence intervals presented in section 3.1 and 3.2 . These intervals represent, from a statistical point of
view, experimental quartiles as the result of a sample and represent the range where for a certain percentage
of repetitions the mean will fall in. Due to the big sample size the deviations from this mean even out and
using these intervals to evaluate a single new observation is like comparing the weight of one student to the
average of his class. Therefore the resulting intervals have no predictive power to evaluate a new individual
well test results and need to be converted into prediction intervals. Expressed in statistical terminology this
is converting a Confidence Interval in a Predictive Interval for a new observation. [6] To achieve this multiple
approaches can be used. As this research works with results from simulated data, methods are needed to
fit this experimental results in statistical tools. These methods are often used in social sciences to express
the result of a large sample in statistical terms. For the simulated curves a distribution can be fitted to the
data to obtain the standard deviation. After selecting a percentage for the prediction interval a p-value can
be acquired from literature and the predictive interval can be computed by adding the standard deviation
multiplied with the p-value to the mean. To make this predictive interval work practically the last step is
to include the measurement uncertainty as well, which can be done in the same way as for the predictive
interval, adding p-values multiplied with the standard deviation of the measurement noise to the interval,
now using the predictive interval as mean. For the fitted intervals only the measurement error multiplied
with the p-value has to be added. To exclude the subjective part of selecting percentages for p-values, this
workflow for producing predictive intervals needs to be tested with real data. As this was not part of this
research, nothing can be said about acceptable or advisable percentages. The further research needed is
presented in Chapter 7.

3.4. WORKFLOW 3: RATE SELECTOR
The aim of this workflow is to design a test program by optimizing rate selection, resulting in the best fitted
Performance Curve or the narrowest confidence interval in a region of interest and hereby enhancing the
methods of defining the confidence bands for well performance prediction. This workflow is built on the as-
sumption that every well test starts with a performance model that needs to be verified and gives a prediction
of the expected performance. The start of this workflow is defining the goal for the test, the intended result,
such as finding the narrowest confidence interval in the area around the operating point. Next comes the
formulation of the boundary conditions such as the number of tests/rates, rate restrictions or imposed rates
such as the operating point. Then for every combination of rates the workflow applies Workflow 2 (section
3.2) and checks for which combination of rates the confidence interval is the narrowest or provides the best
fit compared to the pre simulated model.
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METHODOLOGY

4.1. PRACTICAL IMPLEMENTATION OF THE WORKFLOWS
This chapter explains the scripts built and the procedures followed to get from the Proposed Workflows to the
Results

4.2. PRACTICAL IMPLEMENTATION OF THE WORKFLOWS
This section explains the scripts built to test and execute the method described in Proposed Workflows. As the
focus of this research is to establish a performance envelope for production prediction, it focuses on Tubing
Head Pressure Models. Although permanent downhole gauges are becoming more and more in fashion, this
research only uses FTHP and flow rate as input parameters for the sake of applicability. Inflow Performance
Curves are used to illustrate the effect of uncertainty, but for the establishment of Performance Envelopes the
Total Performance Envelopes were used.

4.2.1. SIMULATED MODELS
To execute the described workflows, the used nodal analysis software must be capable of running extensive
sensitivity studies: many thousands of realizations for multiple parameters, preferably defined as distribu-
tions. Pipesim 2014 is not capable of running such simulations, therefore nodal analysis scripts coded in
Matlab by Prof. Jansen for a course in Production Optimisation[7], where used as an alternative. An addi-
tional advantage of using a numerical computing environment such as Matlab over a commercial multiphase
flow simulator like Pipesim is that Matlab has an open structure: Pipesim has a very strong engine which is
completely obscured by the user interface, whereas in Matlab the code is accessible and adjustable. This
accessibility makes it very efficient to use in sensitivity analysis, because the parameters can be provided as
probability density functions and data can be formatted and plotted in a customized manner. The script
used to compute an Inflow Performance Curve uses Darcy when above the bubble point and Vogel below for
the analytical solution, and Runge Kutta integration for the numerical solution. It is capable of simulating
multiphase flow and computes relative permeabilities for increasing water cut. The basic form of the Matlab
code is presented in the Appendix. The script used to compute the Tubing Performance Curves and the To-
tal Performance Curves uses Matlab’s built in medium order method ODE45 for solving the multiphase flow
equations along the wellbore with the input of a multiphase flow method. To produce a Total Performance
Curve, an Inflow Performance Curve was used to compute the bottom hole pressures and these pressures
were used as the input for the Tubing Performance Curve, resulting in a Total Performance Curve. Code is
presented in the Appendix. Both scripts use temperature to compute the bubble point pressure and other
fluid properties such as viscosity, but do not take temperature effects such as cooling along the wellbore in to
account.

4.2.2. FITTED MODELS
The workflow for fitted curves is built in Matlab based on four basic ideas and assumptions: The well is tested
for three different rates, usually including the operating rate, resulting in three data points to fit the curve.
Polynomial functions of the 2nd degree were used to fit the curves because they are most widely used in

11
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the industry and numerically efficient. Different function types such as exponential were also considered
and tested but were found to be less capable of using just three data points. Additionally, they proved to
be computationally less efficient, resulting in up to hundredfold increases in computation times while not
improving the quality of fit. To apply measurement uncertainty, the distributions where assumed known and
constant and were implemented for both flow rate as well as pressure. The shut in pressure is known to a
limited extent. This is mainly important from a numerical point of view: due to the significant error in flow
rate, the best fit could be a parabola in the study area. From a physical point of view this make no sense as, it
is known that the function has a starting point on the pressure axis and is monotonically decreasing from that
point onwards. To implement this in the fitting routine, several options where tested such as restricting the
fit parameters or simply discarding bad fits. Both results were unsatisfying: restriction lead to a significant
growth in computing times and discarding bad fits resulted is loss of data. Implementing the knowledge from
physics worked out best: include the (expected) shut-in pressure with an uncertainty as a fourth point, using
it as an anchor. The results are shown in Figure 4.1.
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(a) Without shut-in as an anchor
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(b) With shut-in as an anchor

Figure 4.1: Effect of using the shut-in pressure as an anchor point for the fitting workflow

4.2.3. RATE ADVISOR

The rate advisor is built on the same principles as the Fitted Workflow and is based on the idea that according
to the purpose or the input parameters a different set of rates will result in the best fit. The script computes a
fit for every combination of three rates (three data entries) and compares this fit with the total performance
curve. As the scripts uses the simulated performance curve as input to select the rates, the increment between
the data points in the performance curve should be as small as possible, resulting in a big data vector. This
precision of data conflicts with computational efficiency: increasing the number of rates results in an even
bigger increase in combinations resulting in much longer computing times. Fortunately, two factors keep
this increase to a minimum, one practical and one numerical. Firstly, using a small distance in flowrate might
result in a precise result but is practically limited by the uncertainty in measured flowrate and the adjustability
of the well. Secondly, by specifying one rate under operating rate and one rate above, the number of possible
combinations is reduced by a factor two.

4.3. DIGITAL ASSET

All the simulations, both in Pipesim as in Matlab were run using a digital asset: a simple reservoir and well
description which is summarized in Table 4.1. It consists of one horizontal well in a reservoir described in
terms of thickness, outer range and permeability.



4.4. SIMULATIONAL SET-UP 13

Table 4.1: Parameters of the Digital Asset

Reservoir Parameter Value Well Parameter Value
Pressure Pr es [Pa] 3,00E+07 Tubing Inside Diameter ID [m] 0,0762
Temperature Tr es [C] 120 True Vertical Depth z [m] 3000
Permeabillity k [m2] 1,00E-13 Tubing Head Temperature Tw f [C] 30
Thickness h [m] 20 Tubing Roughness e [m] 3,00E-05
Borehole Diameter rw [m] 0.1524 Skin S 0
Drainage Radius re [m] 500

The used fluid parameters are shown in Table 4.2.

Table 4.2: Used Fluid Parameters

Parameter Value
Oil Density ρo [kg /m3] 850
Gas Density ρg [kg /m3] 0,95
Water Density ρw [kg /m3] 1000
Gas Oil Ratio GOR [m3] 90
Oil Parameter Correlations Standing
Multi-phase Correlations Mukherjee and Brill

4.4. SIMULATIONAL SET-UP
To test the proposed workflows and investigate the influence of parameters several cases were simulated,
explained below in section 4.4.1 following the proposed workflows from Chapter 3. For all cases (except the
uncertainty case) the measurement error in flowrate was assumed to be normally distributed with a standard
deviations of 5% of the flowrate, the measurement error in pressure was assumed to be uniform distributed
with an absolute error of 7 ·104 Pa and the error in shut-in was also assumed to distributed normal with an
absolute error of 7·104 Pa. For the fitted workflows a Total Performance Curve computed in Pipesim was used
with the operating rate at 0.0093 m3/s. To compare the results for the simulated workflow two criteria are
used: The productivity index J as shown in Equation 4.1 and the flowrate at a flowing tubing head pressure of
5e6 Pa.

J = 2πkh

Boµ

(
ln

re

rw
− fr +S

)
(4.1)

To compare the results for the fitted workflows two criteria were defined: ’Diff in Curve’, computed as the sum
of the squared residuals between the two confidence intervals and the input data used, and ’Diff in Oprange’
computed as the sum of the squared residuals between the two confidence intervals and the input data used
in the operating range, defined as operating rate ±15%.

4.4.1. SIMULATED CASES

Design Case The aim of the Design Case is to illustrate the effects of uncertainty in reservoir parameters prior
to drilling. As no cores or well test results are available to estimate the value of certain parameters such as
reservoir permeability with any precision, the uncertainty in these parameters is very large. The potential
errors in these estimates are expected to have a profound impact on the size of the performance envelope.
Using permeability k as the investigated parameter, simulations were run for a range of values between 0.2
· k and 5 · k. A triangular distribution was used as an approximation of the lognormal distribution that is
typically found for permeability values.
Production Case In the later stages of constructing a well, well test data will be available to determine typ-
ical values of permeability and skin factor. Although available with a greater degree of accuracy than in the
Design Case, there is inherent uncertainty in these parameters, mostly due to the uncertainties in well test
interpretation. Simulations were run for a range of values for permeability and skin, using the uncertainties
reported by Azi et al.[5] to create typical (uniform)distributions as shown in Table 4.3.
Skin Case: As opposed to investigating the effects of uncertainty in reservoir parameters, this case was sim-
ulated to illustrate the effect of the measurement uncertainties during the well test for both pressure and
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flow rate. By using the measurement error as an uncertainty on a simulated Total Performance Curve from
Pipesim, one can investigate whether changes parameters such as the skin factor may remain unnoticed.

Table 4.3: Used parameters and distributions for the Simulated Cases

Case Parameter Distribution Low Mean High
Design k Triangular 20% 1 500% Relative
Production k Uniform 80% 1 120% Relative
Production S Uniform -0,25 0 0,25 Absolute

4.4.2. FITTED CASES
For the fitted cases three cases where compared:
Rate Selection compares the two rate selection methods as introduced in chapter 2.
Reducing Measurement Uncertainty illustrates the effect of reducing the uncertainties in flowrate and pres-
sure and shut-in pressure.
Rate Advisor illustrates the added value of the rate selector, one result optimized for a narrow confidence
interval over the whole curve and one for the operating range only.



5
RESULTS

5.1. BASE CASE
The results for the base case scenario are shown in Figure 5.1. The difference between the two Total Perfor-
mance Relations plotted in Figure 5.1b is notable.This difference is caused by multiple factors, and one of
them is the fact that the Matlab model does not take temperature effects along the wellbore into account.
This difference on its own illustrates how results coming from nearly the same model can differ greatly.
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(b) Total Performance Relation computed in Pipesim and Matlab

Figure 5.1: Results for the basecase scenario

5.2. SIMULATED WORKFLOW

5.2.1. DESIGN CASE
As shown in Figure 5.2 and Table 5.1 the ranges for the results for the Design Case are quite large, which is
expected due to the big uncertainty in input parameters. Although these results might seem obvious, they do
illustrate the added value of simulating the whole range of possible outcomes, because these play an impor-
tant role in designing the well.

Table 5.1: Productivity Index and flowrate at 50 bar for the Design Case

Parameter Mean Low Percentage High Percentage
J 3,82 ·10−9 1,26 ·10−9 33 8,01 ·10−9 210

q 0,01 0,0055 55 0,0121 121

15
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(a) Inflow Performance Relation
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(b) Total Performance Relation

Figure 5.2: Results for the simulated workflow with design uncertainties

5.2.2. PRODUCTION CASE

The results for the Production Case are shown in Figure 5.3 and Table 5.2. The uncertainty in input parame-
ters results in an 11% spread in flowrate at the reference pressure and this illustrates the added value of the
performance envelope.
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(a) Inflow Performance Relation
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(b) Total Performance Relation

Figure 5.3: Results for the simulated workflow with the parameters from the Azi paper

Table 5.2: Productivity Index and flowrate at 50 bar for the Production Case

Parameter Mean Low Percentage High Percentage
J 2,01 ·10−9 1,64 ·10−9 82 2,37 ·10−9 118

q 0,0074 0,0066 89 0,0082 111

5.2.3. SKIN CASE

Figure 5.4a illustrates that not only the input parameters cause uncertainty, but the measurement uncertainty
does as well. With the reference uncertainty, it is not possible to determine if the skin factor has changed or
if the measurements are affected by measurement noise and as a result it is not possible to distinguish a
difference between a skin of zero and a skin of two. Figure 5.4b shows that by reducing the uncertainty in
measurement error it becomes possible to determine if the skin factor changed.
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(a) Results standard error in flowrate, 5%
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(b) Results reduced error in flowrate, 2%

Figure 5.4: Results for the Skin Case

5.3. FITTED WORKFLOW

5.3.1. RATE SELECTION

The performance envelope for the two different rate selection methods are shown in Figure 5.5. As the
method illustrated in Figure 5.5b uses the operating rate as the highest rate, the confidence interval for higher
rates is much wider than for the method shown in Figure 5.5a. This difference in confidence interval can also
be seen from the significant difference in Diff in Curve and Diff in Oprange, as shown in Table 5.3 . From these
values can be concluded that the confidence interval for both the whole curve as for the operating range is
smaller/narrower for operating rate*[0.5 1 1.2] method and thus is a better rate selection method. Therefore
the next simulations are run with the operating rate*[0.5 1 1.2] method. This case also shows that the rates
selected to test and fit the model influence the quality of the fitted model.

Table 5.3: Comparison between the two rate selection methods

Rates Diff in Curve Diff in Oprange
operating rate*[0.5 1 1.2] 3.06 ·1013 4.45 ·1012

operating rate*[1/3 2/3 3/3] 4.83 ·1013 8.77 ·1013
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(a) Results for operating rate*[0.5 1 1.2]
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(b) Results for operating rate*[1/3 2/3 3/3]

Figure 5.5: Results for the two different rate selection methods
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Table 5.4: Comparison between reducing the error in flowrate and shut-in pressure

Uncertainty Diff in Curve Diff in Oprange
Flowrate 1.77 ·1013 9.87 ·1011

Shut-in 2.21 ·1013 4.30 ·1012

5.3.2. REDUCING MEASUREMENT UNCERTAINTY
The effect of reducing measurement uncertainty is shown in Figure 5.6. In Figure 5.6a the measurement
uncertainty in flowrate is reduced for 5% to 2% and this has a significant effect as can be seen in Table 5.4:
the Diff in Curve is reduced over 40% and the Diff in Oprange is reduced by a factor of 4.5. This enormous
difference in result for the whole curve compared to the operating range is due to the error in shut-in pressure:
since the error in shut-in is unchanged and significant, the reduction of flowrate uncertainty mainly effects
the confidence interval for higher rates. Due to this locational effect, reduction of the error in shut-in has a
limited effect for the operating range.
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(a) Effect of reducing the uncertainty in flowrate from 5% to 2%
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(b) Effect of reducing the uncertainty in shut-in pressure from 10e6
Pa to 7e4 Pa

Figure 5.6: Results for reduction of the measurement uncertainties

5.4. RATE ADVISOR
As already shown in the rate selection case the selected rates influence the outcome. The results for the rate
advisor are shown in Table 5.5 and are illustrated in Figure 5.7. They show that optimizing for a given criterion
does need different rates and also improves the model by narrowing the confidence interval. In addition,
these results compared with the results for the rate selection method show that the operating rate*[0.5 1 1.2]
selection method is quite precise for the whole curve. Only when the rate selector is optimized for a narrow
confidence interval in the operating range it has significant added value, a decrease of 8% in Diff in Oprange.

Table 5.5: Comparison between the two used criteria for the rate advisor

Criterion Adviced Rates Diff in Curve Diff in Oprange
Curve op rate*[0.44 1 1.25] 3.04 ·1013 4.64 ·1012

Operating Range op rate*[0.62 1 1.09] 3.71 ·1013 4.07 ·1012
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(a) Results for optimalization for the whole curve
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(b) Results for optimalization for the operating range

Figure 5.7: Results for the rate advisor





6
CONCLUSIONS

• By taking into account the uncertainties in the relevant parameters, we can generate a performance
envelope and define associated uncertainty depending on the methodology used.

• Pre-simulation and sensitivity analysis have added value by illustrating the effects of uncertainty in
parameters. The knowledge of what to expect makes it possible to anticipate: to design the test program
optimized for the situation at hand.

• The rates used to test a well and establish a well performance model heavily influence the results, i.e.
the shape and size of the performance envelope. Thinking about what rate to test helps to improve the
quality of the resulting model. Using the proposed rate selector to optimize the well test, the three rates
that result in the narrowest confidence interval can be determined.

• Simulation also shows the effects of reducing measurement uncercainty. Although this might seem
trivial from a scientific point of view, the simulator was able to quantify the added value of reducing
measurement uncertainty. The results prove the value of using high resolution multi-phase flow me-
ters.

• Although the constructed performance envelopes provide insight into the effects of various uncertain-
ties, further research is needed to use the performance envelope as an objective criterion to decide if a
well produces as expected.
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7
RECOMMENDATIONS

The next step towards identification of problematic wells requires the input of real production data, or at least
full reservoir modeling. A big advantage of using full reservoir simulation is the controllability: it enables the
control of parameters and the measuring of the effects, factoring real world uncertainty out of the equation.
Reservoir simulators with the added possibility of simulating well test and production test data will prove to
be especially useful. Using such simulators, we can apply changes in the reservoir and observe the response
in the wells, to gain an understanding of the manifestation of the effects and the delay in reservoir effect
and deviated production. Using this strategy, time effects such as increasing water cut and the decrease in
reservoir pressure can be monitored in the well performance. Using such a time-based approach, it becomes
possible to design experiments for the validity of a well performance model under changing circumstances.
Another approach that can be tested with full reservoir simulators is a procedure similar to history matching
for reservoir simulators: optimizing a well performance model based on the simulated production history
and new simulated results.
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A
INFLOW AND TOTAL PERFORMANCE

CURVE.MAT

1 % -----------------------------------------------------------------------------------
2 % Input data:
3 % -----------------------------------------------------------------------------------
4 alpha = from_deg_to_rad(0); % wellbore inclination , rad
5 d = from_in_to_m(3); % tubing inside diameter, m
6 e = 30e-6; % tubing roughness, m
7 av = 1; % use reservoir pressure at external boundary
8 beta = 0; % Forcheimer coefficient, m^-1. Not relevant for fluid 1.
9 f_w_sc = 0.0; % = q_w_sc/(q_w_sc+q_o_sc) = water cut, -. Not relevant for fluids ...

1 and 2
10 fluid = 4; % fluid = 1: single-phase oil flow
11 % fluid = 2: single-phase gas flow
12 % fluid ≥ 3: multi-phase gas-oil-water flow
13 h = 20.0; % reservoir height, m
14 k = 1e-13; % effective permeability for fluids 1 and 2, or absolute permeability
15 % for fluid 3, m^2
16 n_pt = 200; % number of points in plot, -
17 oil = 1; % parameter to select black oil model or volatile oil table, -. Not relevant for
18 % fluids 1 and 2
19 % oil = 1: black oil; parameters computed with the aid of Standing correlations
20 % oil = 2: black oil; parameters computed with the aid of Glaso correlations
21 % oil = 3: volatile oil; parameters read from file 'vol_oil_table_01'
22 p_base = 3e7; % reservoir pressure, Pa
23 q_o_sc_max = -0.0125; % maximum oil flow rate, m^3/s
24 r_e = 500; % external radius, m
25 r_w = from_in_to_m(6); % well bore radius, m
26 R_go = 90; % producing GOR as observed at surface, m^3/m^3. Not relevant for ...

fluid 2
27 rho_g_sc = 0.95; % gas density at standard conditions, kg/m^3.
28 rho_o_sc = 850; % oil density at st. conditions, kg/m^3. Not relevant for fluid 2
29 rho_w_sc = 1000; % water density at st. conditions, kg/m^3. Not relevant for fluids ...

1 and 2
30 semi = 0; % semi = 0: use steady-state conditions
31 % semi = 1: use semi-steady-state conditions
32 simp = 1; % simp = 0: numerical solution using Runge Kutta integration
33 % simp = 1: simplified (semi-)analytical solution
34 S = 0; % skin, -
35 T_R = 120; % reservoir temperature, deg. C
36 T_tf = 30; % tubing head temperature, deg. C
37 T_wf = 120; % bottomhole temperature, deg. C
38 z_tvd = 3000; % true-vertical depth, m
39

40 % Relative permeability data (not relevant for fluids 1 and 2):
41 k_rg_0 = 0.7; % end-point relative permeability to gas, -
42 k_ro_0 = 0.9; % end-point relative permeability to oil, -
43 k_rw_0 = 0.5; % end-point relative permeability to water, -

25
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44 n_g = 3; % Corey exponent for gas, -
45 n_og = 3; % Corey exponent for oil in gas-oil flow, -
46 n_ow = 3; % Corey exponent for oil in oil-water flow, -
47 n_w = 3; % Corey exponent for water, -
48 S_gc = 0.00; % critical gas saturation, -
49 S_or = 0.10; % residual oil saturation, -
50 S_wi = 0.15; % immobile water saturation, -
51

52 n=10000;
53 p_R=p_base;
54 range=90; %in percentage
55 low=round((0.5*(100-range)/100)*n);
56 high=round((range+0.5*(100-range))/100*n);
57 % -------------------------------------------------------------
58 % End of input data
59 % -------------------------------------------------------------------
60 % [ mc_k ] = triangularmontecarlo( k_base, 0.2*k_base, 5*k_base, n);
61 %
62 % figure
63 % histogram(mc_k,101)
64 %
65 % pstore=zeros(22,n);
66 % entries=zeros(1,n);
67 % JS=zeros(1,n);
68

69 % for j=1:n;
70 % k=mc_k(j);
71

72 % Check input:
73 if (simp == 1 && beta 6= 0)
74 warning('Forcheimer flow only available numerically.')
75 warning('Parameter "simp" reset to 0.')
76 simp = 0;
77 end
78 if (simp == 0 && semi == 1)
79 warning('Semi-steady state solution only available analytically.')
80 warning('Parameter "semi" reset to 0.')
81 semi = 0;
82 end
83 if (simp == 0 && av == 1)
84 warning('Average reservoir pressure solution only available analytically.')
85 warning('Parameter "av" reset to 0.')
86 av = 0;
87 end
88

89 % Compute auxiliary variables:
90 s_tot = z_tvd/cos(alpha); % total along-hole well depth, m
91

92 % Create data vector:
93 rel = [k_rg_0,k_ro_0,k_rw_0,n_g,n_og,n_ow,n_w,S_gc,S_or,S_wi];
94 rho_sc = [rho_g_sc,rho_o_sc,rho_w_sc];
95

96 % Compute and print bubble point pressure (for info only):
97 if fluid 6= 2
98 switch oil
99 case 1

100 p_b = pres_bub_Standing(R_go,rho_g_sc,rho_o_sc,T_R);
101 case 2
102 p_b = pres_bub_Glaso(R_go,rho_g_sc,rho_o_sc,T_R);
103 case 3
104 p_b = pres_bub_volatile_oil(T_R);
105 end
106 end
107

108 % Compute and plot IPR:
109

110 ∆_q_o_sc = q_o_sc_max/n_pt; % oil rate increment, m^3/s
111 p_wf = p_R;
112 results = zeros(n_pt,2);
113 for i=1:n_pt
114 q_o_sc = i * ∆_q_o_sc; % oil rate, m^3/s
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115 q_g_sc = R_go * q_o_sc; % gas rate, m^3/s
116 q_w_sc = (f_w_sc/(1-f_w_sc)) * q_o_sc; % water rate, m^3/s
117 q_sc = [q_g_sc,q_o_sc,q_w_sc];
118 if simp == 0 % numerical solution
119 p_old = p_wf;
120 p_wf = res(beta,fluid,h,k,oil,p_R,q_sc,r_e,r_w,rel,rho_sc,T_R);
121 Delta_p = p_old - p_wf;
122 results(i,1:2)= [-q_o_sc p_wf];
123 if p_wf < 1e5 + Delta_p % to avoid pressures below atmospheric
124 break
125 end
126 else % Vogel solution
127 p_old = p_wf;
128 [p_wf J] = res_Vogel_BS(av,h,k,oil,p_R,q_sc,r_e,r_w,rel,rho_sc,semi,S,T_R);
129 if ¬isreal(p_wf) % p_wf is complex-valued
130 break
131 end
132 Delta_p = p_old - p_wf;
133 if p_wf < 1e5 + Delta_p % + Delta_p % to avoid pressures below atmospheric
134 break
135 end
136 results(i,1:3)= [-q_o_sc p_wf J];
137 end
138 end
139 nonzero_rows = results(:,1) 6= 0; % select non-zero rows
140 results = results(nonzero_rows,:); % remove zero rows
141 p_bh=results(:,2);
142 figure
143 plot(results(:,1),results(:,2))
144

145 results = zeros(n_pt,2);
146 for i=1:(n_pt);
147 q_o_sc = (i) * ∆_q_o_sc; % oil rate, m^3/s
148 q_g_sc = R_go * q_o_sc; % gas rate, m^3/s
149 q_w_sc = (f_w_sc/(1-f_w_sc)) * q_o_sc; % water rate, m^3/s
150 q_sc = [q_g_sc,q_o_sc,q_w_sc];
151 p_th = pipe(alpha,d,e,fluid,oil,p_bh(i),q_sc,rho_sc,s_tot,0,T_wf,T_tf);
152 results(i,:)= [-q_o_sc p_th];
153 end
154

155 figure
156 plot(results(:,1),results(:,2))
157 xlabel('Oil flow rate\it -q_{o,sc} ,\rm m^3/s')
158 ylabel('Flowing bottom hole pressure\it p_{wf} ,\rm Pa')
159 xlim([0 0.02])
160 grid on





B
RATE SELECTOR.MAT

1 function [ advice, mid, sortsums, sortstore ] = rs_ci_curve_around( ...
xdata,q_e,ydata,p_e,shutin_e,nc,nop,op)

2

3 %Rate selector based on Confidence Interval for the Operating Range with
4 %one point before and one points after op
5 % Detailed explanation goes here
6 n_pts=length(xdata);
7

8 % %check variables
9 % if op>length(xdata);

10 % error('Operating Point out of reach')
11 % elseif range>length(xdata)-op;
12 % error('Operating Range to big')
13 % elseif range>op
14 % error('Operating Range to big')
15 % end
16

17 count=0;
18 for i=2:op-1;
19 one=i;
20 for k=op+1:n_pts;
21 two=k;
22 t=count+1;
23 count=t;
24 end;
25 end;
26

27 pos=zeros(count,nop+1);
28

29 if nc<100
30 up=0.9;
31 low=0.1;
32 elseif nc==100
33 up=0.95;
34 low=0.05;
35 else
36 up=0.95;
37 low=0.05;
38 end
39

40 count=0;
41 for i=2:op-1;
42 one=i;
43 for k=op+1:n_pts;
44 two=k;
45 t=count+1;
46 count=t;
47 pos(t,1)=one;
48 pos(t,2)=two;

29



30 B. RATE SELECTOR.MAT

49 pos(t,3)=op;
50

51 store=zeros(n_pts,nc);
52 sortstore=zeros(n_pts,nc);
53

54 xdata_op=[xdata(1) xdata(one) xdata(two) xdata(op)];
55 ydata_op=[ydata(1) ydata(one) ydata(two) ydata(op)];
56 xdata_fit=sort(xdata_op,'ascend');
57 ydata_fit=sort(ydata_op,'descend');
58

59 [ xcloud ] = normalcloudp( xdata_fit, q_e, nc );
60 [ ycloud ] = cloudmaker( ydata_fit, p_e, nc );
61

62 shutinx= zeros(nc,1);
63 shutiny = cloudmaker( ydata(1), shutin_e, nc );
64 xcloud(1:nc)=shutinx;
65 ycloud(1:nc)=shutiny;
66

67 for k=1:nc;
68 xdatafit=[ xcloud(k) xcloud(nc+k) xcloud(2*nc+k) xcloud(3*nc+k)];
69 ydatafit=[ ycloud(k) ycloud(nc+k) ycloud(2*nc+k) ycloud(3*nc+k)];
70

71 [p] = polyfit(xdatafit,ydatafit,2);
72 [Y] = polyval(p,xdata);
73

74 store(:,k)=Y;
75 end
76

77 for k=1:n_pts;
78 sortstore(k,:)=sort(store(k,:));
79 end
80

81 ci_low=sortstore(:,(low*nc));
82 ci_high=sortstore(:,(up*nc));
83

84 sumsqr=sum((ydata-ci_low).^2)+sum((ci_high-ydata).^2);
85

86 pos(t,4)=sumsqr;
87 end
88 end
89

90

91 sortsums=sortrows(pos,nop+1);
92 one=sortsums(1,1);
93 two=sortsums(1,2);
94 drie=op;
95 points=[one two drie];
96 advice=sort(points);
97 one=advice(1,1);
98 two=advice(1,2);
99 drie=advice(1,3);

100

101 xdata_op=[xdata(1) xdata(one) xdata(two) xdata(drie)];
102 ydata_op=[ydata(1) ydata(one) ydata(two) ydata(drie)];
103

104 [ xcloud ] = normalcloudp( xdata_op, q_e, nc );
105 [ ycloud ] = cloudmaker( ydata_op, p_e, nc );
106

107 shutinx= zeros(nc,1);
108 shutiny = wolkmaker( ydata(1), shutin_e, nc );
109 xcloud(1:nc)=shutinx;
110 ycloud(1:nc)=shutiny;
111

112 for k=1:nc;
113 xdatafit=[ xcloud(k) xcloud(nc+k) xcloud(2*nc+k) xcloud(3*nc+k)];
114 ydatafit=[ ycloud(k) ycloud(nc+k) ycloud(2*nc+k) ycloud(3*nc+k)];
115

116 [p] = polyfit(xdatafit,ydatafit,2);
117 [Y] = polyval(p,xdata);
118

119 store(:,k)=Y;
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120 end
121

122 for k=1:n_pts;
123 sortstore(k,:)=sort(store(k,:));
124 end
125

126 mid=(sortstore(:,nc/2)+sortstore(:,(nc/2)+1))./2;
127

128

129

130

131

132 end
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