
Comparative analysis of two network anonymization settings using Integer Linear
Programming

Mike J.J.S Erkemeij1

Supervisor: Anna L.D. Latour1

1EEMCS, Delft University of Technology, The Netherlands

June 22, 2025

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
In network science, user privacy is a major con-
cern when handling data such as social networks.
These often contain sensitive data on e.g., indi-
viduals, companies, and governments. Therefore,
it is essential to adequately anonymize this data
before sharing or publishing to protect privacy
and encourage open science. In this thesis we ad-
dress this problem by studying k-anonymity in so-
cial networks. Specifically, we focus on (n,m)-k-
anonymity measure. Building on an existing Inte-
ger Linear Program (ILP) encoding that achieves
anonymity through edge deletion. We modify this
encoding to add edges as well. Additionally, we
propose a heuristic to improve the running time and
memory usage of the modified ILP. We compare the
anonymization settings, adding and deleting edges,
on synthetic and real social network datasets, eval-
uating their running time, memory usage, and solu-
tion quality. This analysis provides insights into the
trade-off between the two settings.

1 Introduction
In today’s digital world, with widespread Internet access,
network anonymization has become increasingly impor-
tant when preserving privacy in social networks. Network
data often contains sensitive information on e.g., individu-
als, companies, and governments, and is frequently leaked,
exchanged, or even sold, raising serious concerns about
user privacy. A concern already raised by Samarati and
Sweeney [Samarati and Sweeney, 1998]. Anonymizing such
data enables safe sharing and encourages goals such as open
science, as researchers are often hesitant to share data due to
privacy risks.

Simply removing unique identifiers, i.e., pseudonymiza-
tion, from these networks to mitigate privacy risks has
been shown to be ineffective against structural identifica-
tion [Backstrom et al., 2007]. As a consequence, indi-
viduals can be identified. Three proposed solutions to this
problem are clustering-based methods [Thompson and Yao,
2009], differential-privacy-based methods [Li et al., 2014],
and k-anonymity methods [de Jong et al., 2024]. Cluster-
ing methods group data together based on their structural
similarity, often destroying network properties. Alternatively,
in differential-privacy, users can query datasets with added
noised, typically the noise increases with each query. Among
these three approaches, k-anonymity is the most commonly
used for network anonymization [Xie, 2023]. This method
perturbs the original complete network dataset and generates
a modified anonymized version in return.

The k-anonymity approach partitions the network into
different equivalence classes. These partitions contain nodes
with equivalent structural positions based on a signature cho-
sen beforehand. A signature represents the attacker’s ability
to uniquely identify nodes in a network. However, for a net-
work to be k-anonymous, the partitions need to have a size of
k or greater. Following this, a node is k-anonymous if there
exists at least k− 1 other equivalent nodes in the network [de

Jong et al., 2023]. Using k-anonymity, along with different
signatures for node equivalence, different levels of attacker
knowledge can be modeled.

Various signatures, also known as measures, correspond
to different levels of attacker knowledge. A commonly used
measure is based on the degree of a node [Liu and Terzi,
2008]. Two other measurements, used by Xie [Xie, 2023], are
d-k-anonymity and (n,m)-k-anonymity. For d-k-anonymity,
the attacker’s knowledge is tuned using parameter d, repre-
senting perfect knowledge of a node up to, a given distance
d [de Jong et al., 2023]. In (n,m)-k-anonymity, the equiva-
lence class of a node is labeled through its degree, n and the
degree distribution in its ego-network, m.

An exact method of (n,m)-k-anonymity is approached
as an Integer Linear Programming (ILP) encoding, by La-
tour [Latour, 2024]. ILP is a mathematical optimization tech-
nique that is used to find the optimal solutions to a lin-
ear objective function. The solution is constrained by linear
equalities and inequalities with all variables restricted to in-
tegers. Latour takes advantage of this technique by modeling
the (n,m)-k-anonymity problem into an ILP encoding. To
achieve anonymity, the author uses edge deletion, with ILP
minimizing the number of edges deleted.

While Xie, focused on edge deletion due to its com-
putational efficiency, Casas-Roma argues that “Edge add is
the best method to keep graph’s properties when perturb-
ing scale-free networks” [Casas-Roma, 2015]. Scale-free net-
works represent graphs with a power-law degree distribu-
tions, a distribution commonly observed in social networks.
Additionally, Casas-Roma mentioned that adding ‘noise’
edges is regarded by some authors as a better privacy-
preserving technique. This is because it preserves the original
data by obscuring it rather than removing it.

In this paper, we compare two different settings, adding
edges and deleting edges for anonymization in networks
based on the (n,m)-k-anonymity measure. In our approach,
we use an existing ILP program to delete edges and modify it
to also be able to add edges. We then solve the two ILP encod-
ings on different network topologies, comparing the running
time, memory usage and the solution quality of each solution.
We expand on the quality of a solution in Section 2.4

This leads us to the main research question we aim to an-
swer:

How does an ILP implementation of the setting in
which we add edges compare to the one in which
we delete edges, in terms of solving time, memory
consumption and quality of the solution?

The remainder of this paper is organized as follows. In Sec-
tion 2, we describe the common notations and utility metrics
used during this paper. Section 3, presents additional back-
ground and related research. Furthermore, we describe the
different implemented ILP encodings in Section 4. In Sec-
tion 5, we discuss the experimental setup and address the
sub-question. Finally, in Section 6 we summarize the paper
and outline directions for future work.

2 Preliminaries
In this section, we expand on the notation and definitions used
during the paper. This introduces commonly used graph ter-
minology, defines anonymity, and presents utility metrics to
evaluate the quality of a solution.

2.1 Graph
We start by modeling the network as an undirected, sim-
ple, self-loop-free graph G = (V,E). Here, V denotes the
set of nodes and E denotes the set of edges in a network.
We denote v ∈ V as a node and {u, v} ∈ E as an undi-
rected edge that represents a connection between two nodes,
u, v ∈ V . The number of connections a node has is defined as
deg(v) = |{u ∈ V : {u, v} ∈ E}|, degree. We denote Tri(v)
as the number of incident triangles on node v. And we use
Θ := {(u, v, w) | (u, v), (v, w), (u,w) ∈ E u ̸= v ̸= w} to
denote the set of triangles in the network.

Let dist(u, v) be the distance between two nodes, u, v ∈
V . This distance corresponds to the shortest path between
node v and w. Since graph G is undirected, the distance be-
tween two nodes is symmetric, so dist(u, v) = dist(v, u).
Also, dist(v, v) = 0 and when no path exists between
two nodes dist(u, v) = ∞. Furthermore, the set of direct
neighbors of node v ∈ V is indicated as N1(v), where
|N1(v)| = deg(v) and dist(u, v) = 1, also known as their
ego-network [de Jong et al., 2025].

2.2 Anonymity measure
When achieving k-anonymity, we aim to partition the net-
work into equivalence classes of size k or larger. Equivalence
classes are groups of nodes that share the same signature,
making each node within this class equivalent. We use signa-
ture (n,m), n for the degree and m for the incident triangle’s
of a node.

Definition 2.1 (k-Anonimity). A node is k-anonymous if
there exist at least k − 1 other nodes with the same signa-
ture.

Definition 2.2 ((n,m)-Anonimity). An undirected, simple,
self-loop-free input network G := (V,E) on nodes V and
edges E, is called anonymous w.r.t. (n,m) (with k a positive
and n and m nonnegative integers) if the following condition
holds: for each possible combination of n neighbors and m
incident triangles there are either zero nodes with that (n,m)
combination, or at least k [Latour, 2024].

2.3 Toy Example
In this section, we present a formal introduction to the prob-
lem using a toy example for illustration.

Given the input graph G shown in Figure 1 on the left,
we can uniquely identify nodes c and d using (n,m)-k-
anonymity. Their equivalence classes differ from the other
nodes, as their signatures are (3, 1) and (1, 0), respectively.
To address this problem, we anonymize graph G by either
adding or deleting edges. In the middle graph, we achieve
anonymization by deleting the edge {b, c}, while in the right
graph we add the edge {b, d}. Both of these approaches
achieve (n,m)-2-anonymity and represent optimal solutions

for their setting, as they minimize the number of edge modifi-
cations. Looking closer at our example, we observe that mul-
tiple optimal solutions may exist, as deleting edge {a, c} also
achieves (n,m)-k-anonymity.

Figure 1: A toy example showing graph anonymization em-
ploying (n,m)-k-anonymity. The input graph (left) is mod-
ified by deleting an edge (middle) or adding a fake edge
(right). Colors represent equivalent nodes within each graph.

2.4 Utility metrics
The quality of a solution is important for analyzing
anonymization measures. Ideally, we want to preserve the
network topology as much as possible, otherwise trivial so-
lutions (e.g., deleting all edges) become viable, undermin-
ing the purpose of anonymizing networks. For this, we have
adopted a few utility measures used in [Zhang et al., 2021]
and [Casas-Roma, 2015] to evaluate the quality of the solu-
tions.

Global transitivity (GT). The global transitivity (global
cluster coefficient) is the ratio in a graph between the number
of connected triplets and triangles in a graph. This represents
a graph’s tendency to cluster together. Here, a triplet denotes
three vertices that are connected by two or three edges.

GT =
3N∆

N3
(1)

Shortest path (SP). The shortest path between two nodes
u, v ∈ V is the minimum number of edges that must be tra-
versed to travel from node u to node v. Since we assume an
undirected graph, this value is equivalent to dist(u, v).

Closeness centrality (CC). The closeness centrality of node,
u ∈ V is calculated by taking the reciprocal of the sum of
all the shortest path lengths dist(u, v), with v ∈ V and u ̸=
v. This reveals the speed at which information travels in the
network.

3 Related Work
Several methods have been developed to solve the k-
anonymity problems. Most of them are either heuristic or ex-
act approaches. Latour approaches this problem using an ex-
act method by encoding it as an ILP. In this encoding, the
author minimizes the amount of edges deleted from graph
G. This is implemented in Python using Gurobi, an off-
the-shelf optimization solver. However, this encoding tends
to blows up as the size of the network grows.

In addition to network anonymization, researches have
also explored de-anonymization techniques. For example,
Zhang et al. [Zhang et al., 2019] have investigated differ-
ent graph anonymization measures and exploited their weak-
nesses. Their analysis revealed that most of these measures do
not take into account the important structural characteristics
of a social graph. This resulted in them successfully recover-
ing most of the original graph.

To address these issues, we propose a heuristic in Sec-
tion 4.3, which aims to improve both running time and mem-
ory usage. Additionally, the heuristic is intended to help pre-
vent the identification of fake edges.

4 Approach
In this section, we discuss our approach for anonymizing
graphs, using the (n,m)-k-anonymity measure. We encode
our ILP problems in Python using Gurobi and Networkx to
process the networks. We first present the existing ILP model
for deleting edges. Then we introduce our modifications for
adding edges and lastly we introduce a heuristic to improve
the running time.

4.1 Edge deletion
In this section, we give an overview of the existing edge
deletion ILP encoding. Given that the approach has not yet
been disclosed, specific implementation details are omitted.
However, this should give a general understanding of the ap-
proach. For the full encoding, we refer the reader to [Latour,
2024].

We start by modeling our variables. To indicate which
edges are deleted, we use binary variables for E. This tells
us whether or not an edge is included in the solution. We also
model Θ as binary indicator variables. These help us to for-
mulate constraints so that the solution adheres to the (n,m)-
k-anonymity measure. We use L and T to represent the sets
of edge variables and triangle variables, respectively.

L := {ℓ(u,v) | (u, v) ∈ E} (2)

T := {t(u,v,w) | (u, v, w) ∈ Θ} (3)
In order for the solver to compute (n,m)-k-anonymity,

the variables must be constrained. Firstly, constraints are cre-
ated indicating the degree and incident triangles that each
node has. These are linked to each other, forming the (n,m)
signature. We also define the relationship between L and T ,
such that these are updated accordingly. Furthermore, con-
straints are added to ensure that the size of an equivalence
class is either 0 or at least k. Below is an example illustrating
how such a constraint is formulated. These are the constraints
to indicate the degree and incident triangles that each node
has.

Cn :=

nv =
∑

u∈N1(v)

ℓ(u,v) | v ∈ V

 (4)

Cm :=

mv =
∑

(u,v,w)∈Tri(v)

t(u, v, w) | v ∈ V

 (5)

The goal is to minimize the amount of edges deleted from
graph G. This is achieved by setting the object function to
maximize the number of edge considered in the solution.

max
∑
ℓ∈L

ℓ (6)

4.2 Edge addition
We now present our modification on the existing ILP encod-
ing. We start by redefining L and T , for the setting in which
we add edges. In this setting the existing edges are fixed and
are therefor not modeled. The only variables the model con-
siders are the set of edges (u, v) /∈ E, and set of triangles
(u, v, w) /∈ Θ.

L :=
{
ℓ(u,v)

∣∣ {u, v} /∈ E, u ̸= v
}

(7)

T := {t(u,v,w) | {u, v, w} /∈ Θ, u ̸= v ̸= w} (8)

Since we are adding edges in this approach, we change the
objective function to minimize the amount of edges used in
the solution. As a result, the model adds the minimum number
of edges required to anonymize the graph G.

min
∑
ℓ∈L

ℓ (9)

The constraints remain unchanged, as we still employ
(n,m)-k-anonymity.

4.3 2-neighborhood heuristic
We introduce the 2-neighborhood heuristic to improve the
running time and memory usage. This approach is motivated
by the skewed degree distribution commonly observed by so-
cial networks. These networks often follow a power law dis-
tribution, meaning most nodes have low degrees while a small
number of nodes have high degrees [de Jong et al., 2025].

Our modified approach considers all possible edges when
adding new ones. However, this tends to grow exponentially
as encoding triangles is very costly. ILP solvers like Gurobi,
depend on branch-and-bound and cutting planes. When the
number of variables and constrains explode, the branch-and-
bound tree grows to large to search efficiently. This may even
prevent the solver from reaching feasible solutions within ac-
ceptable time limits.

The heuristic reduces the search space by only consider-
ing the edges (u, v) /∈ E, such that dist(u, v) = 2. Note
that dist(u, v) = 1 implies that (u, v) ∈ E. This excludes
connections between vertices that are far apart, focusing only
on those at distance two. This greatly reduces the number
of potential edges. As a result, the branch-and-bound tree is
smaller, which improves computational efficiency.

Taking the 2-neighborhood as a heuristic serves to imitate
the natural way people form connections in social networks.
We assume that individuals are more likely to connect with
others close to their existing connections, such as friends who
introduce their friends. Following this reasoning, the heuristic
may reduce the likelihood of fake-edge detection, a vulnera-
bility highlighted in [Zhang et al., 2019].

Additionally, this heuristic should help preserve the utility
measures SP and CC. Since we only consider adding edges
within a node’s 2-neighborhood, the impact on the shortest
path distances is limited. Each edge addition shortens the dis-
tance by at most one.

5 Experiments
In this section, we first present the sub-questions and our ex-
pectations. Then we describe the experiments for evaluating
the methods in 4. Lastly, we show the results using the utility
measures from 2.4.

5.1 Experimental Setup
Solving methods. We compare the different anonymity ap-
proaches discussed in Section 4. In this section, we refer to
edge addition and edge deletion as opt_add and opt_del, re-
spectively. These return optimal solutions. We refer to the 2-
neighborhood heuristic approach as heur_add.
Software. All programming was done using Python version
3.11.13. These includes scripts for processing the results, cre-
ating graphs and the ILP implementations. The ILP encoding
was modeled using Gurobi version 12.0.0 and to initialize the
input networks, we used Networkx 3.5. Lastly, we processed
the results using Igraph version 0.11.9 for gathering the util-
ity metrics described in Section 2.4.
Hardware. All of the experiments are performed on the
DelftBlue supercomputer clusters [Delft High Performance
Computing Centre (DHPC), 2024]. Each experiment utilize
an Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz. The clus-
ters use a Red Hat Enterprise Linux 8.10 operation system.
We allocated each to each experiment one CPU core and 4GB
of ram. With the exception of two social networks described
in Section 5.2, as they require more memory. These are given
32GB of ram.

5.2 Datasets
This section briefly explains the datasets used during the ex-
periments. This includes synthetic networks and existing so-
cial networks. For generating graphs, we use software igraph.
The real data sets consist of five undirected graphs obtained
from Network Repository [Rossi and Ahmed, 2015].
Synthetic Networks. We have generated networks using
the Erdös-Rényi and Barabási-Albert model. Barabási-
Albert [Barabási and Albert, 1999] is a model, which sim-
ulates scale-free networks. Upon generation each added node
is connected to m different nodes. We set this value to 3.
Using this model, we generated 10 networks ranging from
node size 5 to 15. The Erdös-Rényi model [Erdös and Rényi,
2006], is a random graph model, where each edge has an
equal probability of appearing in the network. Using this
model we generated graphs with 12 nodes and number of
edge counts ranging from 15 to 65. This covers most of the
edge density. All networks are generated using a fixed random
seed of 1 to ensure reproducibility.
Social Networks. The selected networks in this study are de-
rived from animal social networks. These typically represent
interactions between animals within a certrain species. Our

datasets were gathered through trophallaxis (the exchange of
food or fluids), grooming (the act of cleaning and maintaining
the another body), and spatial proximity (physical closeness
between animals). These social networks mirror patterns of
human interaction, providing insights into bigger and more
complex networks.

Dataset |V | |E| |Θ| GT

insecta-ant-trophallaxis-colony1-day1 30 37 12 0.14
insecta-ant-trophallaxis-colony1-day8 37 68 39 0.17
mammalia-baboon-grooming-group07 16 41 51 0.27
mammalia-raccoon-proximity-24 14 41 162 0.66
mammalia-raccoon-proximity-3 23 50 96 0.48

Table 1: Network topologies

5.3 Research Questions
In this section we present the sub-questions we intend to an-
swer with the experiments. With each setting, we refer to
adding edges and deleting edges.

Q1 How does opt_add and opt_del scale in solving time
and memory usage as networks become larger?

Q2 How does opt_add and opt_del scale in solving time
and memory usage with different network topologies

Q3 How does opt_add and opt_del perform in terms of so-
lution quality, based on the utility measures in section 3?

Q4 How does heur_add compare to opt_add in terms of
solving time, memory usage and solution quality?

As already mentioned, we expect adding edges to be com-
putationally more expensive than removing edges. Conse-
quently, memory consumption is likely to be worse for adding
edges. However, we anticipate adding edges to introduce less
perturbations in the utility metrics.

5.4 Experimental Results
In this section, we report our experimental results and address
our research questions. We use the methods explained in Sec-
tion 4 and the datasets described in 5.2. The running times
and memory usage are averaged over ten runs to ensure au-
thenticity. Additionally, we use a fixed random seed of one,
for reproducibility.
Q1: Network size. We compare opt_add and opt_del accros
different networks of increasing size to assess how they scale
in terms of running time and memory usage. These networks
are generated using the Barabási-Albert model, mimicking
the structure of scale-free networks. The results are shown in
Figure 2.

From the results, we observe that opt_del compared to
opt_add is significantly more efficient in both running time
and memory usage. Moreover, Figures 2a, 2b, suggest that
both approaches experience an exponential growth in running
time, as network size increases. As for memory usage only
opt_add follow an exponential growth, shown in Figure 2c.
In Figure 2d, we can see the growth staggers after a size of 12.
The overal decreaase in Computational efficiency is expected,

since larger networks contain more variables and constraints,
leading to a bigger and more complex ILP model to solve.

(a) opt_add running time. (b) opt_del running time.

(c) Add max memory. (d) Delete max memory.

Figure 2: Running and memory usage over different network
sizes.

Q2: Network topology. To gain deeper insight into the im-
pact of different network topologies we fix our network size.
By keeping the size constant, we isolate the effect of the net-
work topologies on running time and memory usage. We con-
duct this analysis for both opt_del and opt_add using the
synthetic networks generated with the Erdös-Rényi model.
Since this model is based on randomness, it helps us better
understand the general behavior of the two approaches across
varying topological structures.

By analyzing the results in Figure 3a and in Figure 3b, we
identify a clear turning point where one approach becomes
more computationally efficient than the other. Specifically,
opt_del outperforms opt_add when the size of the edges are
smaller. As the number of edges grows, this trend reverses,
and opt_add tends to outperform opt_del. In the figures,
the two methods are compared with respect to the number of
edges in the network. This topology is taken as we generated
the datasets on a range of edge counts. However, we observe
equivalent results with other topologies, such as the number
of triangles and GT. The results are provided in Appendix A.

(a) Running time (s). (b) Max memory (GB).

Figure 3: Performance comparison of edge addition and dele-
tion operations across varying triangle densities. Color indi-
cates the number of edges in each graph.

(a) Running time. (b) Max memory.

Figure 4: Comparison of running time and memory usage
with varying edge counts.

Upon examing Figures 4a, 4b, both approaches initially
decrease in performance. However beyond a certain point
their running time and memory usage start to improve again.
Consider opt_del for example. As the number of edges in-
creases, the ILP model grows in size and complexity, since
it must account for more possible deletions. At some point
we get to the turning point and opt_del performs worse than
opt_add. However, as the number of edges continues to in-
crease, we notice a drop-off. At this point, performance starts
to improve again, although it remains worse than opt_add.
The reverse holds for opt_add.

Notably, neither setting is consistently dominant across
the full range of edge counts. However, according to Table
2, which shows the results of the selected networks, opt_del
is significantly more efficient than opt_add in both running
time and memory usage. Given that social networks typi-
cally follow a power-law edge distribution, we suspect that
these networks are more likeley to fall into the region where
opt_del performs better.
Q3: Solution Quality. We compared the solution qualities re-
turned by opt_add and opt_del on the five selected datasets.
The quality of a solution is evaluated using the utility metrics
described in Section 2.4

For SP, opt_del has the greatest impact among the ap-
proaches. Figure 5, illustrates a representative example how
edge perturbations affect SP. Edge deletions, destroy paths
and therefore increase the frequency of long paths and de-
crease the frequency of short paths. The reverse is true for
adding edges. The figure also shows that opt_del causes more
significant perturbations overall.

Figure 6, displays the CC per node, the results reflect the
perturbation behavior of the different approaches. opt_add

Figure 5: perturbation in SP for opt_add and opt_del

Dataset Approach Running time (s) Avg Mem (GB) Max Mem (GB) |E| GT

insecta-ant-trophallaxis-colony1-day1

delete 0.0970 0.00200 0.00800 27 0.13
add 630 1.33 5.27 32 0.22

heuristic 10.8 0.017 0.053 32 0.19
original - - - 30 0.14

insecta-ant-trophallaxis-colony1-day8

delete 2.96 0.00400 0.0170 33 0.13
add 1830 5.32 20.8 41 0.17

heuristic 421 0.405 0.807 41 0.21
original - - - 37 0.17

mammalia-baboon-grooming-group07

delete 1.04 0.004 0.021 13 0.22
add 1900 1.29 1.85 20 0.29

heuristic 2140 1.10 1.45 22 0.35
original - - - 16 0.27

mammalia-raccoon-proximity-24

delete 22.1 0.109 0.177 9 0.64
add 14100 1.50 2.47 22 0.70

heuristic 935 0.587 0.893 22 0.72
original - - - 14 0.66

mammalia-raccoon-proximity-3

delete 49.6 0.120 0.195 45 0.38
add 8530 1.64 3.03 55 0.46

heuristic 1530 0.635 0.919 56 0.52
original - - - 50 0.48

Table 2: Results from the selected social networks, averaged over 10 runs.

increases the CC by creating shorter paths, while opt_del
destroys paths, decreasing this value. In Figure 6a, we no-
tice that both approaches generally follow the structure of
the original network, although both exhibit noticeable fluc-
tuations in CC. For the networks with a size large than thirty
nodes, opt_add performs better. opt_add, has less notice-
able and smaller changes in CC, an example of this is illus-
trated in Figure 6b.

Table 2, presents the results for GT, which do not reveal a
consistent trend. Consequently, no definitive conclusions can
be drawn from this.
Q4: Heuristic comparison. We compare heur_add with
opt_add on the selected networks. We assess them on run-
ning time, memory usage and solution quality.

In Table 2 when looking at |E|, we observe that the
heur_add is able to find solutions with optimal edge per-
turbations. However, as a heuristic it does return non-optimal
solutions.

More promising results are observed in terms of running
time and memory usage. According to Table 2, Memory us-
age is consistently lower for heur_add. This observation
can be explained by the fact that heur_add considers fewer
edges, resulting in fewer variables and constraints. Similar
results are observed for the running time. However, there is
one instance where heur_add performs worse in terms of
running time. In this case, the memory usages of heur_add
remains better.

When assessing the quality of the solution, heur_add
tends to stick to the overal structure of the original network.
This is a consistent trend for SP, due to the heuristic only
adding edges within a node’s 2-neighborhood. However, Fig-
ure 7 illustrates that heur_add does not always perform bet-
ter than opt_add. In Figure 8 again notice heur_add to not

(a) Node size smaller than 30

(b) Node size bigger than 30

Figure 6: Perturbation in CC for opt_add and opt.

deviate too much from the original values. Regarding GT,
opt_add generally introduces less perturbation compared to
heur_add.

Figure 7: Perturbation in SP for heur_add and opt_add

Figure 8: Perturbation in CC for heur_add and opt_add

6 Conclusion
In this paper, we focused on exact solutions for anonymizing
social networks, building on an existing Integer Linear Pro-
gramming (ILP) encoding based on the (n,m)-k-anonymity
measure. Our primary goal was to gain insight into two dif-
ferent anonymization settings, edge addition and edge dele-
tion. While prior work considers edge deletion computation-
ally more efficient, edge addition is often regarded as the bet-
ter privacy-preserving technique, as it avoids removing origi-
nal data. To address the performance limitation of edge addi-
tion, we introduced a heuristic that restricts edge addition to
a node’s 2-neighborhood.

The experimental results on synthetic networks show that
running time and memory usage are heavily influenced by
network size and network topology. Even revealing a turn-
ing point where one method becomes more efficient than the
other. Given that social networks follow a power-law edge
distribution, we suspect that social networks fall into the re-
gion where edge deletion performs better. However, we no-
ticed, edge deletion tends to introduce greater perturbations
in SP. The utility metrics, GT and CC did not show consistent
trends across methods.

Our heuristic for edge addition generally showed sig-
nificant improvements in computational performance while
not introducing major perturbations. However, one instance
showed in increase in running time, suggesting that further
investigation is needed to understand this behavior.

For future work, a natural next step would be to further in-

vestigate the heuristic, since this showed promising improve-
ments in computational performance. Additional directions
include improving efficiency by enhancing exact methods, ei-
ther by refining the ILP model or by tuning GUROBI param-
eters. Another interesting direction is to further examine the
"easy-hard-easy" pattern observed across different network
topologies, as it may offer deeper insights into computational
behavior.

Acknowledgments
I want to express my gratitude towards Anna Latour, for her
supervision throughout the Research Project course. I also
want to thank the people from Leiden, Rachel de Jong and
Frank Takes, for their input and support. I want to thank Tu
Delft for access to resources such as the Delftblue supercom-
puter and the Gurobi license.

Responsible Research
When anonymizing networks the main objective is mitigat-
ing privacy risks. If done incorrectly or not at all, users can
be uniquely identified. Consequently, sensitive information
about the users can be revealed. This raises serious ethical
concerns. With our research we aim to reduce these risks by
providing anonymization techniques and analyzing their be-
havior.

During this research, we used animal social networks.
However, these are not fully representable of human social
networks. As such, results may not translate accurately, since
the selected social networks may miss key structural charac-
teristics of human social networks.

ChatGPT was used to support during the writing of this
paper. To help with the overall structure of the text. AI was
not involved during the implementation of the methods and
analyzing the results.

Upon reproducing this research the results should lead to
similar conclusions. However, a few problems might arise.
Firstly, the code is not publicly available at the time of writ-
ing. Although the experiments cannot be replicated exactly,
the paper outlines the main concepts of the implementation.
As such, researchers are able to create their own version with
similar behavior. Another potential problem is access to TU
Delft specific resources, which allows access to resources
such as Delft Blue and Gurbobi licenses. Additionally, a fixed
random seed was used throughout the research, further sup-
porting reproducibility.

References
[Backstrom et al., 2007] Lars Backstrom, Cynthia Dwork,

and Jon Kleinberg. Wherefore art thou r3579x?
anonymized social networks, hidden patterns, and struc-
tural steganography. In Proceedings of the 16th Interna-
tional Conference on World Wide Web, WWW ’07, page
181–190, New York, NY, USA, 2007. Association for
Computing Machinery.

[Barabási and Albert, 1999] Albert-László Barabási and
Réka Albert. Emergence of scaling in random networks.
science, 286(5439):509–512, 1999.

[Casas-Roma, 2015] Jordi Casas-Roma. An evaluation of
edge modification techniques for privacy-preserving on
graphs. In Modeling Decisions for Artificial Intelligence:
12th International Conference, MDAI 2015, Skövde, Swe-
den, September 21-23, 2015, Proceedings 12, pages 180–
191. Springer, 2015.

[de Jong et al., 2023] Rachel G. de Jong, Mark P. J. van der
Loo, and Frank W. Takes. Algorithms for efficiently com-
puting structural anonymity in complex networks. ACM J.
Exp. Algorithmics, 28, August 2023.

[de Jong et al., 2024] Rachel G. de Jong, Mark P. J. van der
Loo, and Frank W. Takes. A systematic comparison of
measures for k-anonymity in networks, 2024.

[de Jong et al., 2025] Rachel G. de Jong, Mark P. J. van der
Loo, and Frank W. Takes. The anonymization problem in
social networks, 2025.

[Delft High Performance Computing Centre (DHPC), 2024]
Delft High Performance Computing Centre
(DHPC). DelftBlue Supercomputer (Phase 2), 2024.
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2.

[Erdös and Rényi, 2006] P. Erdös and A. Rényi. On the evo-
lution of random graphs, pages 38–82. Princeton Univer-
sity Press, Princeton, 2006.

[Latour, 2024] Anna L. D. Latour. Research note - anonymi-
sation - ilp encoding. personal communication (unpub-
lished), 2024.

[Li et al., 2014] Chao Li, Michael Hay, Gerome Miklau, and
Yue Wang. A data- and workload-aware algorithm for
range queries under differential privacy, 2014.

[Liu and Terzi, 2008] Kun Liu and Evimaria Terzi. Towards
identity anonymization on graphs. In Proceedings of the
2008 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’08, page 93–106, New York,
NY, USA, 2008. Association for Computing Machinery.

[Rossi and Ahmed, 2015] Ryan A. Rossi and Nesreen K.
Ahmed. The network data repository with interactive
graph analytics and visualization. In AAAI, 2015.

[Samarati and Sweeney, 1998] Pierangela Samarati and La-
tanya Sweeney. Protecting privacy when disclosing infor-
mation: k-anonymity and its enforcement through general-
ization and suppression. 1998.

[Thompson and Yao, 2009] Brian Thompson and Danfeng
Yao. The union-split algorithm and cluster-based
anonymization of social networks. In Proceedings of
the 4th International Symposium on Information, Com-
puter, and Communications Security, ASIACCS ’09, page
218–227, New York, NY, USA, 2009. Association for
Computing Machinery.

[Xie, 2023] Xinyue Xie. Anonymization algorithms for
privacy-sensitive networks. Master’s thesis, LIACS, Lei-
den University, 2023.

[Zhang et al., 2019] Yang Zhang, Mathias Humbert, Bart-
lomiej Surma, Praveen Manoharan, Jilles Vreeken, and
Michael Backes. Towards plausible graph anonymization,
2019.

[Zhang et al., 2021] Cheng Zhang, Honglu Jiang, Xiuzhen
Cheng, Feng Zhao, Zhipeng Cai, and Zhi Tian. Utility
analysis on privacy-preservation algorithms for online so-
cial networks: an empirical study. Personal and Ubiqui-
tous Computing, 25:1063–1079, 2021.

https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2

A Extra Comparisons

Figure 9: Max memory (GB).

Figure 10: Average memory (GB).

Figure 11: Runtime (S).

Figure 12: Average memory (GB).

Figure 13: Max memory (GB).

Figure 14: Running time (s).

	Introduction
	Preliminaries
	Graph
	Anonymity measure
	Toy Example
	Utility metrics

	Related Work
	Approach
	Edge deletion
	Edge addition
	2-neighborhood heuristic

	Experiments
	Experimental Setup
	Datasets
	Research Questions
	Experimental Results

	Conclusion
	Extra Comparisons

