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We present a three-dimensional model based on the finite-element method for solving the time-harmonic Max-
well equation in optics. It applies to isotropic or anisotropic dielectrics and metals and to many configurations
such as an isolated scatterer in a multilayer, bi-gratings, and crystals. We discuss the application of the model
to near-field optical recording. © 2007 Optical Society of America
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. INTRODUCTION
n micro-optics, light interacts with structures with size
f the order of the wavelength. The modeling of these op-
ical systems is very important in photonics research, and
igorous models based on Maxwell’s equations have to be
pplied when accurate results are needed.
The configurations and materials that can occur are

ery diverse. Sometimes the scatterer is a single object,
uch as an optical tweezer that is illuminated by a fo-
used spot. But scattering structures can also be periodic
n one (gratings), two (bi-gratings), or three directions
crystals). The scatterers are often illuminated by an ex-
ernal source, but there can also be sources inside the
tructure such as in biosensors. The materials that occur
an be (absorbing) dielectrics or metals. Many materials
re isotropic, but crystals often are optically anisotropic.
ometimes the scatterer is optically inhomogeneous. An
xample is the readout of bit patterns in a phase-change
ptical disc. The bits on these discs are small optically in-
omogeneous amorphous regions in a crystalline back-
round, which have been written by locally heating the
isc by using a laser spot. These examples show that a
eneral and flexible model is desirable with which many
onfigurations and materials can be studied.

In many problems of micro-optics the scattering objects
re not surrounded by homogeneous materials but are
mbedded in a planar multilayer. The interference effects
ue to light that has reflected at the interfaces of the
ultilayer can lead to strong modulations of the field am-

litude, and therefore it must be possible to incorporate
he multilayer background in the model.

The computational modeling of optical diffraction prob-
ems using Maxwell’s equations is a difficult subject. Even
hough in micro-optics the regions of interest usually
ave sizes of the order of the wavelength, the amounts of
emory and CPU that are required are often huge for
1084-7529/07/030866-16/$15.00 © 2
hree-dimensional (3D) configurations. The literature on
igorous computational models is extensive. Often models
re specific; i.e., they apply to a certain configuration and
o a certain class of materials. Important configurations
re one-dimensional (1D) diffraction gratings and bi-
ratings. An often-used computational model for gratings
s the rigorous-coupled wave method or the Fourier

ethod.1–4 The Fourier method is specific for periodic
tructures. Methods that solve integral equations or dif-
erential equations are more general and can be applied
o periodic as well as nonperiodic structures. The advan-
age of volume integral equations (VIEs) and surface in-
egral equations (SIEs) is that the radiation condition for
he scattered field is automatically satisfied. The Green’s
ensor that occurs in the integral equations has a strong
ingularity. The SIE method is attractive because it re-
uces a 3D scattering problem to a relatively small prob-
em for which the unknowns are tangential field compo-
ents on surfaces and/or interfaces. However, the SIE is
ifficult to implement and cannot be used when there is
n inhomogeneous material. Because the matrix of the
iscretized volume integral is full, the VIE often requires
lot of storage and CPU. By using a regular grid, storage

nd CPU requirements can be reduced considerably, but
hen interfaces that are not parallel to faces of the grid
re approximated by a so-called staircase. A famous nu-
erical method to solve integral equations is the fast
ultipole method, which was introduced by Rokhlin and

o-workers5,6 to reduce the computational costs.7 See Ref.
for an interesting review of integral equation methods.
The finite-difference time domain (FDTD) and the

nite-element method (FEM) are methods that solve the
ifferential equations directly. In contrast with the inte-
ral equation methods, truncation of the computational
omain (CD) is needed, and this must be done such that
nphysical reflections are negligible. The FDTD9–11 was
007 Optical Society of America
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ntroduced by Yee. It is the most widely used method for
olving Maxwell’s equations in optics and also for mono-
hromatic light. Berenger’s perfectly matched layer12

PML) is a good method for truncating the domain with-
ut causing reflections. Although quite a number of addi-
ional unknowns are needed inside the PML, it is more
ccurate than traditional absorbing boundary conditions.
he FDTD can also be applied to metals with permittivi-
ies with negative real parts by taking dispersion into
ccount.13,14

In the FEM the mesh used is usually unstructured so
hat many configurations can be modeled adequately. The
EM is most useful when a relatively complicated con-
guration has to be modeled accurately. For example, in
he optical recording problem studied in this paper, the
idewalls of the grooves and pits on the optical disc have
blique angles. Approximating such a configuration by a
egular grid would cause errors. In the FEM this configu-
ation can readily be meshed by using tetrahedra without
ny modeling error. Furthermore, the use of unstructured
eshes in the FEM permits the mesh to be adapted to the
aterial properties and configuration. The FEM is also

ery flexible regarding the kind of materials that can be
odeled. Anisotropic, inhomogeneous materials and met-

ls with permittivities that have negative real parts can
ll be taken into account without special precautions. The
EM has been applied to optical problems by several
uthors.15,16 To guarantee convergence and the absence of
purious modes in the computed solution, special so-
alled curl-conforming Nédélec–Mur edge elements17–19

hould be used. These elements are more difficult to
mplement than standard nodal elements that are nor-

ally used in the FEM. This is an important reason why
he FEM is less frequently used in optics than in other
elds. Because FEM have been studied extensively in the
athematical literature, a lot is known about their math-

matical properties.20–22 By using edge elements of higher
rder, more accurate solutions can be obtained for the
ame amount of memory.23–25

We shall present in this paper a FEM model with which
ll materials and configurations of micro-optics that have
een mentioned above can be studied. The different geo-
etric configurations lead to different boundary condi-

ions. Sometimes the configuration is periodic in a par-
icular direction, whereas the electromagnetic field is not.
n example is the scattering of a focused spot by a 1D
rating. This type of problem will be treated by decompos-
ng the electromagnetic field into quasi-periodic, so-called
loch waves and solving the corresponding quasi-periodic
oundary-value problems on a cell of the grating. We will
se a rather abstract formalism by which all cases can be
ealt with and which leads to an efficient implementation
n computer code such that the major part of the code is
hared by all configurations.

In Section 2 the geometric configurations, the material
roperties, and the sources and incident fields are de-
cribed. The (CD) is defined, and the incident field and
he source are decomposed in Bloch waves. In Section 3 a
uasi-periodic boundary-value problem is formulated on
he CD. Exact boundary conditions on the nonperiodic
oundaries of the CD could be formulated by using the
nalogue of the Dirichlet-to-Neumann map (also called
he Caldéron map). This yields a nonlocal boundary con-
ition that is rigorously equivalent to the radiation condi-
ion for the scattered field and that can easily be incorpo-
ated in the variational formulation of the boundary
alue problem. This procedure leads to what is called the
ixed FEM–BEM approach.26 Although this formulation

f the nonperiodic boundary conditions is rigorous and
herefore deserves to get preference over approximate
ethods, we have used the PML in the present setup be-

ause it is easier to implement and since it gives, in gen-
ral, satisfactory results. By using complex stretched
oordinates,27 a modified version of the vector Helmholtz
quation is obtained in the PML, which causes damping
f the scattered field without generating nonphysical re-
ections. The disadvantage of this formulation is that the
ifferential equation in the PML contains a modified curl
perator that requires an adaptation of the edge ele-
ents. We therefore redefine the scattered field in the
ML such that the differential equation contains only the
lassical curl operator so that the standard curl-
onforming elements can be applied throughout the com-
utational domain.
In Section 4 the variational formulation of the

oundary-value problem for the vector Helmholtz equa-
ion on the extended domain is derived. By the redefini-
ion of the scattered field in the PML, the differential
quation inside the CD is very similar to that in the PML.
owever, the unknowns in the CD and the PML are cho-

en to be different, namely, the total and the scattered
elds, respectively. One could choose the scattered field as
nknown throughout the extended computational domain
ECD). As will be explained in Section 4, this more simple
ormulation has some disadvantages when the scatterers
re embedded in a multilayer as they usually are. In de-
iving the variational formulation, the differential equa-
ion is multiplied by a test vector field and partially inte-
rated. In this way the highest- (second-) order
erivatives disappear from the problem and hence need
ot be approximated. The periodic boundary conditions of
irichlet type are satisfied by the test vector fields, and

hose of Neumann type are imposed implicitly in the
eak sense in the variational formulation. The (electric or
agnetic) field that is to be computed is then approxi-
ated by a linear combination of finite-element basis

unctions on the given mesh, with coefficients that are to
e determined. This approximation is substituted in the
eak formulation, and the test vector fields in the varia-

ional formulation are chosen in the space of base func-
ions. This then yields a discretized system of equations
or the unknown coefficients. The linear system is huge
ut sparse because the finite-element basis functions are
onzero only on a few elements.
A major problem is solving the large sparse system of

quations obtained after discretization of the variational
ormulation. One distinguishes direct and iterative meth-
ds. Direct methods are variants of Gaussian elimination
nd are very robust. However, the amount of memory and
he number of operations required by direct methods
cale badly with the number of unknowns, especially for
D problems. Because in many optical problems the num-
er of unknowns may easily exceed 105, a direct solver
annot be used, and one of the, less robust, iterative
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ethods must be applied. Iterative methods often con-
erge very slowly due to a small eigenvalue or because
here are eigenvalues with negative and positive real
arts.28 For Helmholtz type of problems with transmis-
ion boundary conditions such as occur in optics, acous-
ics, etc., the differential operator usually is indefinite,
nd therefore the system matrix often has eigenvalues
ith positive and negative real parts.29 The system must

hen be transformed into an equivalent system with more
avorable properties for convergence of the iterative
olver. This transformation is called preconditioning. Of-
en the preconditioning consists of multiplying the system
atrix by a matrix that approximates the inverse matrix.
he thus-obtained transformed system matrix becomes
ufficiently similar to the identity matrix for the iterative
olver to converge rapidly. Due to the preconditioning, the
ystem usually becomes (much) less sparse; hence more
emory is required for storing the preconditioned matrix

han for the original sparse matrix. We briefly discuss the
ain features of the iterative method and the precondi-

ioner that we have used in Section 4. More details will
ppear in a separate paper.
Often, the scattered field has to be determined in the

xterior of the CD. It may, for example, be desirable to
ompute the scattered far field. In Section 5 it is in par-
icular explained how the scattered far field can be com-
uted efficiently by using a Fourier-transformed version
f the Stratton–Chu formula.

In Section 6 we describe the application of the FEM
odel to the study of resolution enhancement in optical

ecording by using a solid immersion lens (SIL). The SIL
s kept at a distance of approximately 25 nm above the ro-
ating disc by using actuators. The waves of high spatial
requency are tunneled through the air gap between the
IL and the disc, causing a smaller scanning spot than
ith conventional far-field optics. We present results of

omputations of the scattered near and far fields. In con-
rast with conventional recording, the computed detected
eflected intensity is largest when the spot is focused at
he center of a pit instead of between the pits.

. SCATTERING CONFIGURATIONS
e shall consider 3D configurations that either consist of

solated scatters (Fig. 1) or are periodic with respect to
ne (Fig. 2), two (bi-gratings, Fig. 3), or three directions
photonic crystals). All configurations will be dealt with in
ne formalism.

In the following �x1 ,x2 ,x3� will be a Cartesian coordi-
ate system. Except for the case where the system is pe-

ig. 1. (Color online) Example of a geometry of the CD � for a
onperiodic configuration.
iodic in three directions, the x3 axis is always a direction
n which the structure is bounded and not periodic. When
here is an optical system with an optical axis, the x3 axis
oincides with the optical axis.

The sources of the electromagnetic fields may be inside
r outside the scatterers. The sources inside the scatter-
ng structure are specified by a current density. In con-
rast, the currents of the sources that are outside the scat-
erers are often not specified. Instead, the radiated field
hat is incident on the scatterers is then assumed known.
his incident field can, for example, be an arbitrarily po-

arized plane wave or a spot focused by an imaging sys-
em.

In optical problems, the scatterers are often inside a
lanar multilayer, and it is thus essential to incorporate
uch a multilayer in the model. The multilayer is often re-
erred to as the background medium.

For all mentioned configurations, a computational do-
ain (CD) � will be defined in which the electromagnetic
eld is computed. The CD is truncated by using a PML.
he union of the CD � and the PML will be called the ex-

ended computational domain (ECD) �̃. The domains will
e considered in Subsection 2.B, and the PML will be de-
cribed in Subsection 3.B.

When the configuration is periodic in at least one direc-
ion, the scattering problem can be solved only when the
ources and incident fields are quasi-periodic; i.e., after a
ranslation over one period, they are the same except for a
constant) change of phase. When the sources and/or inci-
ent fields are more general, they must first be expanded
n quasi-periodic so-called Bloch functions. After solving
he scattering problem for every quasi-periodic source and
ncident field, the total field is obtained by coherently

ig. 2. (Color online) Example of a configuration that is periodic
n the x1 direction. The CD � has width along the x1 direction
qual to the period.

ig. 3. (Color online) Example of a configuration that is periodic
n two directions in the �x1 ,x2� plane. The vectors a1 and a2 span
he unit cell A in the x3=0 plane and �=A� �x3

s ,x3
l �.
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umming the solutions of the separate quasi-periodic
cattering problems. This procedure will be explained in
ubsection 2.C.
All sources and fields in this manuscript are time har-
onic and are taken to depend on time t by the factor

xp�−i�t� for some ��0. This factor will be omitted from
ll formulas.

. Multilayer Background
he multilayer background consists of N+1 planar layers
ith interfaces at x3=x3

�j�, j=0, . . . ,N−1, parallel to the
x1 ,x2� plane. The numbering is such that

x3
�0� � x3

�1� � ¯ � x3
�N−1�. �1�

ence x3�x3
�0� and x3�x3

�N� are half-spaces. We define for
onvenience x3

�−1�= +� and x3
�N�=−�. The following as-

umption is made:

Every layer x3
�j��x3�x3

�j−1� (i.e., including the half-
paces) consists of homogeneous isotropic material with
elative dielectric permittivity �r

�j� and relative magnetic
ermeability �r

�j�. When layer j is absorbing, �r
�j� and/or �r

�j�

re complex numbers with nonnegative imaginary parts.

The assumption that all layers of the multilayer are
sotropic is made only for simplicity. In principle, aniso-
ropic materials could be allowed. It will be convenient to
efine piecewise-constant functions of x3 that give the
elative permittivity and the relative permeability in each
ayer of the multilayer:

� �̃r�x3� = �r
�j�

�̃r�x3� = �r
�j�� for x3

�j� � x3 � x3
�j−1�, j = 0, . . . ,N.

�2�

. Isolated and Periodic Scatterers
uppose that the configuration is periodic with respect to
p directions, for some np� �0,1,2,3�:

np=0. In this case the configuration is not periodic;
ence it consists of isolated scatterers embedded in a
ultilayer background.
np=1. In this case the configuration is periodic in one

irection, which is assumed to be the x1 direction. With
espect to the basis �x1 ,x2 ,x3�, we define the vector a1
�p ,0 ,0�T, where p is the period of the configuration.
np=2. In this case there are two linearly independent

ectors a1 and a2 in the x3=0 plane such that the configu-
ation is invariant under translations over multiples of
hese two vectors. These structures are called bi-gratings
r two-dimensional photonic crystals.

np=3. Then there are three linearly independent vec-
ors a1, a2, and a3 such that the configuration is invariant
nder translations over multiples of these three vectors.
xamples of these structures are 3D photonic crystals.

When 1	np	3, we define the np-dimensional lattice
y the set
Lnp
=�� = �

i=1

np

�iai; for integer �i� . �3�

he fundamental cell of this lattice is

A =�r = �
i=1

np

yiai; − 1/2 � y1, . . . ,ynp
� 1/2� . �4�

he reciprocal lattice consists of the vectors

m = �
i=1

np

mibi, �5�

here mi are integers and vectors bi, i=1, . . . ,np, are such
hat

bi · aj = 2
�ij, for 1 	 i, j 	 np,

bi · êj = 0, for 1 	 i 	 np and for np + 1 	 j 	 3,

�6�

here êj is the unit vector along the xj axis.
We have,

f np=1,

b1 = �2
/p,0,0�T; �7�

f np=2,

b1 = 2

a2 � ê3

a1 · �a2 � ê3�
, �8�

b2 = 2

a1 � ê3

a2 · �a1 � ê3�
; �9�

f np=3,

b1 = 2

a2 � a3

a1 · �a2 � a3�
, �10�

b2 = 2

a1 � a3

a2 · �a1 � a3�
, �11�

b3 = 2

a1 � a2

a3 · �a1 � a2�
. �12�

he fundamental cell of the reciprocal lattice is the Bril-
ouin zone of dimension np defined by

B =�k = �
i=1

np

�ibi; − 1/2 	 �1, . . . ,�np
� 1/2� .

�13�

The nontrivial scatterers may be arbitrary inhomoge-
eous and/or anisotropic dielectrics, conductors, or mag-
etic materials. The relative permittivity and permeabil-

ty are, in general, complex two-tensors �r=�r�, which are
ritten as
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�r=�r� = Re��r=�r�	 + i Im��r=�r�	, �14�

�r=�r� = Re��r=�r�	 + i Im��r=�r�	, �15�

here Re��r=�, Im��r=�, Re��r=�, and Im��r=� are real-valued
ensors. The following assumptions are made:

1. �r= and �r= are periodic on the lattice; i.e., for every � in
np

, see Eq. (3):

�r=�r + �� = �r=�r�, �r=�r + �� = �r=�r�. �16�

2. �r=− �̃r and �r=− �̃r have bounded support as functions
f the coordinates with respect to which the configuration
s not periodic, i.e., with respect to xi for i=np+1, . . . ,3.
ence for every i=np+1, . . . ,3, if 
xi
 is sufficiently large,

hen �r=�r�= �̃r�x3�1= and �r=�r�= �̃r�x3�1= , where 1= is the unit
ensor.

3. Re��r=� and Im��r=� are symmetric tensors, and, since
e do not consider optically active materials and because

he time dependence of the fields is assumed to be given
y the factor exp�−i�t� for some positive �, the imaginary
arts Im��r=� and Im��r=� are nonnegative symmetric ten-
ors. Note that for metals the real part of the permittivity
s often negative in the optical domain; hence Re��r=� is, in
eneral, not positive definite.

4. The components of the tensors �r= and �r= and of their
nverse �r=

−1 and �r=
−1 are essentially bounded functions,

.e.,

�r=,�r=,�r=
−1, �r=

−1 � L��R3�. �17�

We shall introduce a notation for the CD by which all
ases of periodicity can be dealt with in one formalism. By
sing this notation, we do not have to list the periodic
oundary conditions, and this simplifies the problem
tatement considerably. We first introduce the parameter-
zation

r � �exp�ib1 · r�, . . . ,exp�ibnp
· r��, �18�

hich maps the fundamental lattice cell A onto the
p-dimensional torus: Tnp=�i=1

np S1, where S1 is the unit
ircle in the complex plane. By considering fields on the
nit cell as fields defined on the torus, the fields are au-
omatically periodic. For example, for np=1 the configura-
ion is periodic in the a1 direction but not in the directions
f a2 and a3. We then use the circle T1=S1 instead of the
ine y1a1 ,−1/2�y1�1/2, and all fields are functions of y1
onsidered to be defined on the circle so that they are au-
omatically periodic with respect to y1.

We shall now define the CD. We first mention that
hen np=0, i.e., when the configuration is not periodic,

he CD will be a rectangular block, and therefore Tnp

�i=np+1
3 �xi

s ,xi
l� and Rnp��i=np+1

3 �xi
s ,xi

l� must, for np=0, be
dentified with �i=1

3 �xi
s ,xi

l�. When np=3, i.e., when the con-
guration is periodic in all three directions, these sets
hould be identified with the sets T3 and R3, respectively.

Definition of the CD:
� � Tnp � �
i=np+1

3

�xi
s,xi

l�, �19�

ith xi
s and xi

l for i=np+1, . . . ,3, chosen such that the ex-
erior of the set

Rnp � �
i=np+1

3

�xi
s,xi

l� �20�

onsists only of planar layers of the multilayer, i.e., �r=
�̃r and �r== �̃r in the exterior of expression (20). Further-
ore, x3

s and x3
l satisfy

x3
s 	 x3

�N−1�, x3
l 
 x3

�0�; �21�

ence, each of the half-spaces x3�x3
s and x3�x3

l consists
f homogeneous matter.

Remarks:

1. When np=3, we have �=A; hence � is then identical
o the fundamental cell of the lattice.

2. Properties (21) are necessary for applying the PML.
3. For a perfect conductor (PEC), the imaginary part of

he permittivity is infinite; hence expression (17) then
oes not hold for �r=. A PEC can nevertheless easily be
aken into account in the FEM. As will be explained be-
ow, the FEM is applied to a boundary-value problem for
he vector Helmholtz equation for either the electric or
he magnetic field. The region occupied by the PEC is ex-
luded from the CD � and therefore is not meshed. On the
oundary of the PEC the tangential components of the
lectric field are set equal to zero. Hence, when the
oundary-value problem for the electric field is solved,
his boundary condition is a Dirichlet condition. It is ex-
licitly incorporated in the finite elements used in the ap-
roximation. In contrast, when one solves the boundary-
alue problem for the magnetic field, the boundary
ondition on the PEC is of Neumann type and hence is
aken account of implicitly in the variational formulation.
he presence of a PEC thus causes no fundamental prob-

ems and is in fact advantageous because there are then
ewer unknowns. In contrast, a good conductor that is not
onsidered a PEC needs a fine mesh because of the skin
ffect. Metals with high but finite conductivity now re-
eive a lot of attention in optics because of the interest in
lasmon waves generated at metallic surfaces. We stress
hat there are no fundamental computational problems
hen the FEM is applied to good conductors. One needs
nly more computing power. For simplicity we shall not
ention the case of a PEC separately in the remainder of

his paper.

The boundary of the CD is

�� = Tnp � 
 �
i=n+p+1

3

�xi
s,xi

l	 \ �
i=n+p+1

3

�xi
s,xi

l�� . �22�

ote that �xi
s ,xi

l	 is the closed interval xi
s	xi	xi

l, whereas
xi

s ,xi
l� is the open interval (i.e., without end points) xi

s

xi�xi
l. For example, when np=2, the boundary consists

f the set of all points �x1 ,x2 ,x3�, with �x1 ,x2� on the torus
2 and with x3=x3

s or x3=x3
l . When np=3, the boundary of

is empty: ��=�.
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Definition of the ECD

�̃ � Tnp � �
i=np+1

3

�xi
s − �i

s,xi
l + �i

l�, �23�

or some � i
s�0 and �i

l�0.
Hence the ECD is an extension of the CD in the direc-

ion of the coordinates xi, i=np+1, . . . ,3, i.e., the coordi-
ates with respect to which the structure is not periodic.
he set �̃\� is the PML. In Section 3 we will formulate a
oundary-value problem on �̃ whose solution gives an ap-
roximation of the solution of the scattering and radiation
roblem. Note that when the structure is periodic in all
hree directions �np=3�, then �̃=�; i.e., the ECD is iden-
ical to the CD, and a PML is not needed.

. Sources and Incident Fields
n arbitrary incident field Ei, Hi may exist in one or both
f the half-spaces x3�x3

�N� and x3�x3
�0�. There may also be

mposed current sources present, described by a current
ensity J�r�.
We will assume that these currents have the following

roperties:

1. When np
1, the current either is quasi-periodic on
he lattice or has compact support with respect to the co-
rdinates xi, i=1, . . . ,np.

2. The current density must have compact support with
espect to the remaining coordinates xi, i=np+1, . . .3, i.e.,
he coordinates with respect to which the configuration is
ot periodic.

ote that the currents do not have to be confined to �.
The ECD will be used as the CD. However, when np
1, a boundary-value problem can only be formulated on

˜ for an incident field and a current density that are
uasi-periodic in the sense defined next. In the following,

will be a vector such that, with respect to the basis
x1 ,x2 ,x3� and for the given np, we have

k = �k1,k2,k3�T, with ki = 0 for all np + 1 	 i 	 3.

�24�

hen a vector field Vk is called k quasi-periodic when
here exists a vector field V that is periodic on the
p-dimensional lattice, such that

Vk�r� = eik·rV�r�, �25�

or all r. Property (25) is equivalent to

Vk�r + �� = eik·�Vk�r�, �26�

or all lattice vectors �.
An arbitrary incident field Ei can always be expanded

n terms of quasi-periodic fields. To show this, we intro-
uce the Fourier transform of Ei with respect to
1, . . . ,xnp

. Let k be as in Eq. (24), then

F�Ei��k,xnp+1, . . . ,x3� =�
−�

�

¯�
−�

�

Ei�r�e−ik·rdx1 . . . dxnp
.

�27�

he inverse transform can be written as follows:
Ei�r� = � 1

2

�np�

−�

�

¯�
−�

�

F�Ei�

��k,xnp+1, . . . ,x3�eik·rdk1 . . . dknp

= � 1

2

�np

�
m
�

B+m

F�Ei�

��k,xnp+1, . . . ,x3�eik·rdk1 . . . dknp

=�
B

Ek
i �r�dk1 . . . dknp

, �28�

here the sum is over all reciprocal-lattice vectors m and

k
i is the k-quasi-periodic field given by

Ek
i �r� = � 1

2

�np

�
m

F�Ei��k + m,xnp+1, . . . ,x3�ei�k+m�·r.

�29�

An arbitrary current density can, of course, be written
n the same way:

J�r� =�
B

Jk�r�dk1 . . . dknp
, �30�

ith Jk�r� given by

Jk�r� = � 1

2

�np

�
m

F�J��k + m,xnp+1, . . . ,x3�ei�k+m�·r.

�31�

The incident electric field and the imposed current den-
ity have thus been written as integrals over the
p-dimensional Brillouin zone B of quasi-periodic incident
elds and current densities. For every k�B the solution
f the scattering problem with incident field Ek

i and cur-
ent density Jk is k quasi-periodic. The total electric field

is obtained by integrating the quasi-periodic solutions
k over the Brillouin zone:

E�r� =�
B

Ek�r�dk1 . . . dknp
. �32�

n the sequel we shall mainly discuss the scattering prob-
em for quasi-periodic incident fields and current densi-
ies.

Remarks. For different vectors in the Brillouin zone,
he matrices of the linear systems obtained after discreti-
ation of the variational formulations of the quasi-
eriodic boundary-value problems are different. When the
eriods are small, the CD is correspondingly small, but
he Brillouin zone and therefore the number of quasi-
eriodic problems are large. The decomposition is then
ractical only when the code is run in parallel on many
rocessors or when the same preconditioning matrix can
e used for several quasi-periodic fields with similar k.
or the scattering of a focused incident spot by a struc-

ure that is periodic in one �np=1� or two �np=2� direc-
ions, one could instead define the CD so large that the
eld is negligible outside �. Then only one, relatively big,
iffraction problem must be solved. The CD should be
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hosen such that not only the incident field but also the
cattered field are negligible outside it. Since the scat-
ered field decreases only with the first power of the re-
iprocal distance, the CD may have to be chosen quite
arge for sufficient accuracy.

. FORMULATION OF A BOUNDARY-
ALUE PROBLEM ON THE EXTENDED
OMPUTATIONAL DOMAIN

n this section we shall derive, for a given k in the Bril-
ouin zone, a boundary-value problem for k-quasi-periodic
elds on the ECD �̃.

. Vector Helmholtz Equation
or given k-quasi-periodic incident field Ek

i , Hk
i and cur-

ent density Jk, let Ek, Hk be the total quasi-periodic field
hat satisfies Maxwell’s equations with relative permittiv-
ty tensor �r= and the relative permeability tensor �r= hav-
ng the properties mentioned in Subsection 2.B. The field

k, Hk is called the total field to distinguish it from the
ncident and the scattered fields, but it should be noted
hat it is the field for only one vector k in the Brillouin
one.

Let Ek
0, Hk

0 be the field that would be caused by the
iven incident field Ek

i , Hk
i and the imposed current den-

ity Jk when only the multilayer is present (i.e., there are
o other scatterers). The field Ek

0, Hk
0 can be computed by

standard expansion in plane-wave Fourier components.
ote that when the configuration is periodic in three di-

ections there is no multilayer, and the field Ek
0, Hk

0 is
hen set equal to zero.

The scattered field is defined by

Ek
s = Ek − Ek

0, Hk
s = Hk − Hk

0 . �33�

t satisfies

� � Ek
s = i��0�r=Hk

s + i��0��r= − �̃r�Hk
0 , �34�

� � Hk
s = − i��0�r=Ek

s + − i��0��r= − �̃r�Ek
0 , �35�

Ek
s and Hk

s satisfy the outgoing radiation conditions.

�36�

he fact that the electromagnetic energy is finite in every
ounded region of space is equivalent to the mathematical
tatement that the electric and magnetic fields are locally
quare integrable:

Ek and Hk are in Lloc
2 �R3�, �37�

here L2�R3� is the space of all square-integrable vector
elds V :R3�C3. The fields Ek

0, Hk
0 and Ek

s , Hk
s are also lo-

ally square integrable, of course.
By eliminating the magnetic field we get the vector

elmholtz equations for the electric fields:

�2�0�0�r=Ek − � � ��r=
−1 � � Ek� = − i��0Jk, �38�
2�0�0�r=Ek
s − � � ��r=

−1 � � Ek
s �

= − �2�0�0��r= − �̃r�Ek
0 − i��0 � � ��1 − �r=

−1�̃r�Hk
0	.

�39�

y eliminating the electric fields we get similar equations
or Hk and Hk

s . Each of these equations is a special case of
he following general equation:

k0
2�=Uk − � � ��

=
� � Uk� = Fk + � � Gk, �40�

here k0=���0�0 is the wavenumber in vacuum; �= and �
=

re complex-valued tensors,

�= = Re��=� + i Im��=�, �41�

�
=

= Re��
=

� + i Im��
=

�, �42�

here Re��= � and Re��
=
� are symmetric tensors and Im��= �

nd Im��
=
� are real symmetric nonnegative tensors; and

k and Gk are given quasi-periodic fields.
Since Uk, Fk, and Gk are k quasi-periodic, we have

Uk�r� = eik·rU�r�, Fk�r� = eik·rF�r�, Gk�r�

= eik·rG�r�, �43�

here U, F, and G are periodic on lattice Lnp
. We have

� � Uk = eik·r�ik + �� � U = eik·r�k � U, �44�

here

�k = ik + �. �45�

ence, Eq. (40) can equivalently be written in terms of
eriodic fields as follows:

k0
2�=U − �k � ��

=
�k � U� = F + �k � G. �46�

he fact that the electric and magnetic fields are periodic
nd locally square integrable is equivalent to the state-
ent

U � Hloc�curl,Tnp � R3−np�, �47�

here Hloc�curl,Tnp�R3−np� is the space of vector fields,
hich, together with their curl, are locally square inte-
rable on one period of the geometry and which are peri-
dic on the lattice.

The meaning of �= , �
=
, F, and G for the different cases

hen U is an electric or magnetic field are listed in Table
.

Table 1. Values of �=, �
=

, F, and G When the Total or
Scattered Electric or Magnetic Field

Is Calculated

ara-
eter u=E U=Es U=H U=Hs

�r= �r= �r= �r=

�r=
−1 �r=

−1 �r=
−1 �r=

−1

−i��0J −�2�0�0��r=− �̃r�E0 0 −�2�0�0��r=− �̃r�H0

0 −i��0
��1−�r=

−1�̃r�H0
−�r=

−1J i��0
��1−�r=

−1�̃r�E0
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. Perfectly Matched Layer
he idea of a PML was first published by Berenger.12 We
o not use Berenger’s modification of Maxwell’s equations
ut apply instead the formulation in terms of complex
tretching coordinates introduced by Chew and Weedon27

ecause it is very suitable for applying the FEM.
Let the operators �� and �k

� be defined by

�� = � �

�1�x1
,

�

�2�x2
,

�

�3�x3
� , �48�

�k
� = ik + ��. �49�

ere �= ��1 ,�2 ,�3� is a vector field defined on the entire
CD �̃ but set equal to (1,1,1) inside �. Inside the PML,

j is a complex-valued function of xj by which the complex
tretching is specified. Write

D= ��� = �
�1 0 0

0 �2 0

0 0 �3
�; �50�

hen we have

�k
� � V = ik � V +

1

det�D= ����
D= ��� � � �D= ���V	. �51�

ence, for V�L2��̃�, we have

�k
� � V � L2��̃� ⇔ � � D= ���V � L2��̃�. �52�

n the vector Helmholtz equation for the scattered field,
k is replaced by �k

� :

k0
2�=Us − �k

� � ��
=
�k

� � Us� = Fs + �k � Gs, in �̃. �53�

he superscript s is used to emphasize that the scattered
eld is considered. Note that, according to Table 1, Fs

Gs=0 inside the PML.
The component of � in the direction of the normal on ��

s set equal to a complex function or a complex constant
e.g., 15+15i) to ensure that the scattered field is damped
nside the PML. The tensors �= and �

=
in the PML get the

ame value as in the underlying multilayer.
Inside the PML the modified curl �k

� �Us differs from
he classical curl �k�Us. This is not convenient because
he finite elements have to be adapted so that they be-
ome conforming with respect to the modified curl instead
f the ordinary curl. We shall therefore use Monk’s idea20

nd redefine the scattered field inside the PML such that
he differential equation contains only the classical curl
perator throughout �̃.

The modified scattered field is defined by

Us� = D= ���Us. �54�

ote that inside � we have Us�=Us. Now we remark that
= ���k=k. This follows from the observation that if ki�0
he configuration is periodic in the xi direction and hence
i=1. By using the property that �j is a function of xj only,
ne can verify that
�k
� � Us =

1

det�D= ����
D= �����k � Us��. �55�

hen Eq. (53) can be transformed into

k0
2�= �Us� − �k � �

=
��k � Us� = Fs + �k � Gs, in �̃,

�56�

here �= � and �
=
� are given by

�= � = det�D= ����D= ���−1�D=���−1, in �̃, �57�

�
=
� = det�D= ����−1D= ����

=
D= ���, in �̃. �58�

ote that �= � and �
=
� are always anisotropic and functions

f position in the PML.
We now state two continuity properties of the field Us�

cross ��. These will be needed later. First, expression
52) implies that Us��H�curl;�̃�, and therefore the tan-
ential components of U� are continuous across ��:

lim
r↓r�

n � Us� = lim
r↑r�

n � Us�, for r� � ��, �59�

here n is the unit normal on �� and limr↓r� and limr↑r�
re the limits taken from the side of the PML and �, re-
pectively. Furthermore, Eq. (56) implies that �

=
��k�Us�

Gs�H�curl;�̃�, and therefore the tangential compo-
ents of this vector field are also continuous across ��.
ecause Gs=0 in �̃\�, we get

im
r↓r�

n � ��
=
�k � Us�	 + lim

r↑r�

Gs = lim
r↑r�

n � ��
=
�k � Us� + Gs	,

for r� � ��. �60�

We still have to impose a boundary condition for Us� on
he outer boundary ��̃. One can choose among the Dirich-
et condition,

n � Us� = 0, on ��̃; �61�

he Neumann condition,

n � �
=
��k � Us� = 0, on ��̃; �62�

nd an impedance type of condition. Often Eq. (62) gives
he most accurate results.

. Reformulation of the Boundary-Value Problem on the
xtended Computational Domain
he boundary-value problem [Eqs. (56) and (62)] for Us� is
till not optimal from the computational point of view
hen there is a multilayer background. As follows from
able 1, Gs is discontinuous across the extension of the in-
erfaces x3=x3

�j� of the multilayer into � (Gs and Fs vanish
nside the PML; hence there are no discontinuities inside
he PML). The mesh generator will always take account
f interfaces between different materials inside the ECD
o that a finite element will never have a nonzero inter-
ection with more than one material. But it would be im-
ractical to require that the mesh should also take ac-
ount of the extensions into � of the interfaces of the
ultilayer background. Therefore, the discontinuity of Gs
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cross these interfaces will, in general, cause numerical
naccuracies. To prevent these, we will use a formulation
n which the unknown inside � is the total field U while
he unknown in the PML is the modified scattered field

s�:

k0
2�=U − �k � ��

=
�k � U� = F + �k � G, in �, �63�

k0
2�= �Us� − �k � ��

=
��k � Us�� = 0, in �̃ \ �, �64�

here we have used Fs=Gs=0 outside of �. As follows
rom Table 1, interfaces of the multilayer do not cause dis-
ontinuities in F and G.

Additional equations that link the fields U and Us� on
� are, of course, now needed. These are derived from
qs. (59) and (60) and from Us�=Us=U−U0 in �, where
0 is the solution when there is only the multilayer. We

btain

im
↑r�

n � U�r� − lim
r↓r�

n � Us��r� = lim
r↑r�

n � U0�r�,

for all r� � ��, �65�

lim
r↑r�

n � �
=
�k � U − lim

r↓r�

n � ��
=
��k � Us�	

= lim
r↑r�

n � ��
=
�k � U0 + Gs	. �66�

Summarizing, the boundary-value problem that is
olved numerically consists of Eqs. (64) and (62) for Us� in
˜ \�, Eq. (63) for U in �, and the continuity equations
65) and (66). The fields U, Us are sought in the spaces

�curl;�� and H�curl;�̃\��, respectively. Because the
orus Tnp is used in the definition of � and �̃, periodic
oundary conditions do not have to be imposed explicitly.

. DISCRETIZATION OF THE PROBLEM ON
HE EXTENDED COMPUTATIONAL
OMAIN
e consider the discretization of the boundary-value

roblem derived in Section 3.

. Variational Formulation
ince the unknown fields U and Us� are sought in the
paces H�curl;�� and H�curl;�̃\��, respectively, U and
s� are periodic on the lattice:

aj � U�r + �aj� = aj � U�r�, �67�

aj � Us��r + �aj� = aj � Us��r�, �68�

or all r��, all integers �, and for 1	 j	np.
Now let V be a vector field in the space H�curl;�̃�. Take

he scalar product of V with Eq. (63), integrate over �,
nd apply a partial integration. Next, take the scalar
roduct of V with Eq. (64) and partially integrate over the
ML �̃\�. By adding the resulting expressions, we get
�� �
�

�k0
2�=U · V − �

=
�k � U · �−k � V	dx1dx2dx3

+�� �
�̃\�

�k0
2�= �Us� · V − �

=
��k � Us� · �−k � V	

�dx1dx2dx3

=�� �
�

F · Vdx1dx2dx3

+�� �
�

G · �−k � Vdx1dx2dx3

+� �
��

lim
r↑r�

n � ��
=
�k � U0 + G − Gs	 · VdS. �69�

he integral over �� is only over the nonperiodic parts of
he boundary because the contributions of the periodic
arts cancel, since Us and r�G= �r ,r0� are periodic and the
utward-pointing normal n is opposite on opposite parts
f the periodic boundaries.

Hence the variational problem is to find U
H�curl;�� and Us��H�curl;�̃\�� such that Eq. (69)

olds for all V�H�curl;�̃� and such that condition (65) is
atisfied.

Remark. The periodicity conditions for �
=

� �U and

=
�� �Us� analogous to Eqs. (67) and (68) are not imposed
xplicitly but are taken into account in a weak sense by
ariational formulation (69).

. Curl-Conforming Elements
url-conforming elements yield approximations in
�curl;�̃�. These approximations are such that the com-

onents of the fields that are tangential to the faces and
dges of the mesh are continuous. The elements of order k
re on every tetrahedron or hexahedron polynomial of or-
er k. Corresponding to a curl-conforming element of
iven order k, there exists a divergence-conforming ele-
ent of order k such that a discrete version of the de
ham diagram commutes. This property is very impor-

ant because it implies the convergence of the FEM20 and
recludes the occurrence of spurious numerical solutions.
The most important curl-conforming elements are

édélec elements of the first type on tetrahedra,17 Mur–
édélec elements of the second type on tetrahedra,18,19,30

nd Nédélec elements of the first type on hexahedra.21

édélec elements of the second type on hexahedra also
xist, but these do not satisfy a discrete de Rham dia-
ram. The elements of the second type on tetrahedra give
ore accurate results than those of the first type of the

ame order. In fact, if h is a typical edge length of the
esh, the elements of the first type of order k yield ap-

roximations Eh, Hh of the actual electromagnetic field E,
with error of order hk measured in the L2 norm:

�E − Eh�L2 + �H − Hh�L2 	 Chk, �70�

here C is a constant that depends on the configuration.
n contrast, elements of the second type give an error of
rder hk+1 for the field that is solved numerically while
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he error for the curl of this field is hk. Elements of the
econd type involve more unknowns than those of type 1.
or accuracy it is desirable to locally adapt the mesh
nd/or the order of the elements, e.g., near an interface
ith an obtuse angle where the field is infinite. Using sev-
ral orders in one mesh (hp FEM, where h denotes diam-
ter and p polynomial degree) is possible by using a hier-
rchical basis for the elements.23–25

We write the finite-element approximations of the total
eld U on the CD ��� and the modified scattered field Us�

n the PML as

U = �
m

Um�m, in �, �71�

Us� = �
m

Um
s��m, in �̃ \ �, �72�

here Um and Um
s� are scalar degrees of freedom (the un-

nowns). The basis functions must be in the space
�curl;�̃�, which means in particular that they have to

e periodic with respect to the variables x1 , . . . ,xnp
. By

ubstituting these expressions into variational formula-
ion (69) and by letting V run through the set ��m�, we
btain a large linear system of equations for the un-
nowns �Um� and �Um

s��:

Anm�Um

Um
s�� = �Fn

Fn
s� , �73�

here A is the large system matrix and the Fn and Fn
s are

he coefficients of the right-hand side.

. Iterative Solution Method
lthough in many applications the CD is comparable to or
maller than the wavelength, the number of unknowns is
ften several hundred thousands. Because a fine grid is
eeded to model the skin effect in a metal and a fine mesh

n a particular region tends to make the mesh in adjacent
egions also finer, the number of unknowns is particularly
igh in the presence of metals. It is obvious that an itera-
ive solver must be used. However, because the system is
ndefinite, preconditioning is necessary to achieve conver-
ence of the iteration. The construction of a robust pre-
onditioner that is adequate for all types of problems is
ighly nontrivial, especially on an unstructured mesh. A
reconditioner based on a multigrid31–34 may show satis-
actory performance, but it is difficult to implement. The
ame holds for the Schatz method.20 We therefore used
aad’s preconditioner ILUTP35 with BICGSTAB as the itera-
ive solver. In ILUTP the LU factorization is constructed of

modified system matrix obtained by replacing by zero
ll elements of the system matrix of which the ratio of
heir absolute value and the maximum absolute value oc-
urring in their row is below a specified threshold. Fur-
hermore, all entries of the ILUTP matrix that are in the
omplement of a band of certain width specified by the
ser are set equal to zero. Furthermore, when nested dis-
ection (ND) and approximate minimum fill-in (AMF) reor-
ering precedures are applied, the required fill-in and
ence memory and computation times that are needed
ave been drastically reduced. The iterative solution
ethod is rather robust but requires a considerable
mount of storage. More details about the optimized it-
rative scheme will appear in Ref. 36.

. PROPAGATION OF THE SCATTERED
IELD INTO THE EXTERIOR OF
HE COMPUTATIONAL DOMAIN
ften the scattered field is required outside the CD. We
riefly describe a rigorous method to compute the scat-
ered field in an arbitrary point in the exterior of �.

Consider again a quasi-periodic boundary-value prob-
em for some k in the Brillouin zone, and let Uk be the
-quasi-periodic total field inside � given by Eq. (19). The
eld U is the corresponding periodic field, i.e., Uk�r�
eik·rU�r�. Suppose that r0 is a point in the exterior of �

or which there is a lattice vector �=�i=1
np �iai such that

0+� is in �. Then the total field in r can immediately be
btained from the quasi-periodicity:

Uk�r0� = eik·�Uk�r0 + ��. �74�

he scattered field then obviously follows by subtracting
he incident field Uk

i from the extended total field.
Suppose next that r0= �x1

0 ,x2
0 ,x3

0�T is a point in the exte-
ior of � for which no such lattice vector � exists. This
appens when, for some i=np+1, . . . ,3, we have xi

0�xi
s or

i
0�xi

l. The scattered field in r0 will then be obtained from
formula of the Stratton–Chu type that contains the

reen’s tensor of the vector Helmholtz equation.
In the Stratton–Chu formula for the scattered field of

he k-quasi-periodic boundary-value problem, the Green’s
ensor occurs, which is �−k�-quasi-periodic. Let G= −k�r ,r0�
e the Green’s tensor when the dipole is in r0 in the fun-
amental cell. Write

G=−k�r,r0� = exp�− ik · r�G=�r,r0�, �75�

here r�G= �r ,r0� is the corresponding periodic Green’s
ensor. If p is a constant complex vector, r�G= �r ,r0�p is
he periodic field that satisfies

k0
2�̃G=p − �−k � �̃�−k � G=p = p��r − r0�, �76�

ith Sommerfeld’s radiation condition for 
x3
��. Recall
hat �̃ and �̃ describe the material properties of the
ultilayer background. For multilayers consisting of sev-

ral layers, a closed formula for the Green’s tensor cannot
e written down. Instead, its Fourier transform with re-
pect to x1 and x2 can be determined by a standard
ultilayer calculation.
Let Us be the periodic scattered field for the given vec-

or k in the Brillouin zone. Let r0 be a point in the exte-
ior of �, and let G= �r ,r0� be the periodic Green’s tensor for
he vector Helmholtz equation for wave vector −k. By ap-
lying a partial integration, we obtain
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s�r0� · p

=�� �
R3\�

Us · �k0
2�̃G=p − �−k � �̃�−k � G=p	

= −� �
��

lim
r↓r�

n � Us�r�� · �̃�−k � G=�r,r0�pdS�r�

−� �
��

lim
r↓r�

n � ��̃�k � Us�r��	 · G=�r,r0�pdS�r�,

�77�

here n is the unit normal that points out of � and the
imits are taken from the exterior of �. In the derivation
f this result, the fact that both the scattered field and the
reen’s tensor satisfy Sommerfeld’s radiation condition is
sed to infer that the contribution of the integral over the
urface of a large sphere vanishes in the limit of infinite
adius.

The integral over the boundary �� consists of only
hose parts that are nonperiodic because the surface inte-
rals over the periodic parts cancel due to the periodicity.

The limits from the exterior of � of the tangential com-
onents n�Us and n� ��̃�k�Us	 that occur in the right-
and side of Eq. (77) can be expressed in terms of limits
rom within � of the tangential components of the nu-
erically computed total field U, the field U0, and their

urls. Since both the tangential components of U and of
� �U are needed, it is advantageous to use Nédélec’s
rst type of elements because then, as has been men-
ioned before, the errors in the computed U and ��U are
f the same order in the mesh size.

In many applications it is important to determine the
cattered field at large distances. According to the Fraun-
ofer formula, the scattered field for x3

0→ ±� is propor-
ional to the Fourier transform with respect to x1

0 and x2
0 of

he scattered near field. By taking the Fourier transform
f Eq. (77), the Fourier transform of �x1

0 ,x2
0��Us�x1

0 ,x2
0 ,x3

0�
an be expressed in terms of surface integrals over �� of
he Fourier transform of the Green’s tensor. Since the lat-
er is easy to compute in a multilayer, this expression is
omputationally much more efficient than first computing
he scattered near field in some plane x3

0=constant using
q. (77) and then computing the Fourier transform after-
ard. In directions in which the structure is periodic, the
ourier transform is, of course, discrete.

. READING DATA ON AN OPTICAL DISC
SING A SOLID IMMERSION LENS

n an optical recording system, the size of the carrier of a
it is of the order of the wavelength. The bit density can
e increased by reducing the wavelength or by increasing
he numerical aperture of the focusing lens. The effective
umerical aperture can also be increased by using a near-
eld optical system in which a solid immersion lens (SIL)

s kept at close distance �20–50 nm� to the disc by an ac-
uator. Because the width of the air gap between the SIL
nd the disc is small, the waves of high angle of incidence
nside the SIL can, although they are evanescent in air,
unnel through the air gap into the disc and thus can con-
ribute to a smaller spot. It is estimated that in this way a
torage capacity of up to 300 GB on a compact-disc–size
isc may be possible.
In Ref. 37 two different systems are described. Both use

he blue wavelength of 405 nm. In the first system a su-
erhemispherical SIL is used with a first-surface read-
nly (ROM) disc made of silicon. This system gives the
ighest effective numerical aperture NAeff=nSILNA0 of
.9, where NA0 is the numerical aperture of the objective
ens and nSIL is the refractive index of the SIL. In the sec-
nd system a cover layer on the disc is used to protect the
IL and the disc from impact. Because the refractive in-
ex of the cover layer is approximately 1.5, the effective
umerical aperture is reduced to 1.5. In this paper, we
onsider only the near-field optical system for readout of
rst-surface ROM discs, i.e., without the cover layer. The
IL is made of LaSF35 glass with refractive index nSIL
2.086 at 405 nm and has a radius of 0.5 mm. Figure 4
hows the optical system with the focusing lens and the
pherical SIL. Furthermore, a top view and a cross sec-
ion are shown of a region of the disc that contains a
roove with a row of equal pits in it and two neighboring
rooves without pits.

To study the signal modulation and polarization depen-
ence of the readout system, we assume that the Gauss-
an beam that is focused by the lens is TE polarized (elec-
ric field perpendicular to the grooves) or TM polarized
electric field parallel to the grooves). The numerical ap-
rture of the lens is NA0=0.91, so that the effective nu-
erical aperture of the combined system of the focusing

ens and SIL is NAeff=nSIL�NA0=1.9, as stated above.
ector diffraction theory38 must be applied to take the ro-
ation of the electric field upon transmission through the
ens into account. For simplicity, we use a hemispherical
IL instead of a superhemispherical SIL to achieve the
A=1.9. The Gaussian beam is focused on the lower sur-

ace of the SIL. The field inside the SIL consists of a su-
erposition of plane waves of which the spatial frequen-
ies kx, ky fill a circular disc in reciprocal space of radius

ig. 4. (Color online) Optical system with a focusing lens and
IL (left) and part of the disc (right) seen from the top and in
ross section (the SIL as shown is much too small because its ra-
ius is 0.5 mm.)
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nSILNA0, with k as the wavenumber in vacuum. Hence
he FWHM of the intensity of the spot is approximately
/NA�200 nm. The absolute values of the incident-field
omponents Ex

i , Ey
i , and Ez

i in the focal plane, i.e., in the
ower surface of the disc (on the side of the SIL), are
hown in Fig. 5. This incident field is determined as if the
ntire image space of the focusing lens consists of the
lass of which the SIL is made. Since the plane waves
ith wave vector k= �kx ,ky ,kz� such that kx

2+ky
2�k2 are

vanescent in air, the size of the spot in the disc will be
omewhat larger than 200 nm.

We determined the modulation of the detected signal
or both polarizations by calculating the reflected field im-
ged by the lens on the detector. Except for the rotation of
he polarization upon transmission through the lens, the

ig. 5. (Color online) Amplitudes of the Ex
i (top left), Ey

i (top rig
f the objective lens. The effective numerical aperture is 1.9.

ig. 6. (Color online) Amplitudes of the Ex (left) and the Ey comp
arallel to the surface of the disc at a distance of 5 nm from it. T
he center of a pit.
eld in the detector plane is basically identical to the
raunhofer pattern of the reflected near field.
The pits considered have minimum length of 100 nm at

he bottom and 184 nm at the top (this length is often
alled 2T, where T is the nominal clock period). As indi-
ated in Fig. 4 the pits are cylindrical with depth of
0 nm, sidewall angle of 55°, and radius at the bottom of
0 nm. The radius of the pit at the surface of the disc is
pproximately 100 nm. The distance between the grooves
i.e., the track pitch) is 226 nm, and the width of the
rooves is 100 nm. The complex refractive index of the
ilicon disc in nSi=5.42+0.329i. The gap width is 20 nm.

In Fig. 6 the amplitudes of the x and y components of
he total electric field are shown in the plane parallel to
he disc at a distance of 5 nm above the disc. The incident

d Ez
i components (bottom) of the incident field in the focal plane

(right) of the total electric field in a plane inside the air gap and
ussian beam is TE polarized, and the incident spot is focused on
ht), an
onents
he Ga
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pot is TE polarized, and therefore the maximum ampli-
ude of the Ex component is considerably larger than that
f the Ey component. The spot is focused at the center of a
it. It is seen that the numerically obtained spot has
mall size, in agreement with the estimation given above.

All simulations were done with Nédélec elements of
ype 1 and order 1 on a tetrahedral mesh consisting of 10
oints per wavelength (measured inside the material).
ince the refractive index of the disc is much higher than
hat of the SIL and air, the mesh inside the disc is re-
uired to be much finer than in the air and the SIL. By
ontinuity of the mesh, the grid spacing inside the air and
he SIL is actually finer than 10 points per wavelength.
he number of (complex) unknowns is 106.
To investigate the accuracy of the presented results, we

ompared the numerical and analytical solutions for a
ultilayer with the same composition as the optical disc.
he only difference is that the interfaces are flat; i.e., the
its and and grooves are absent because otherwise an
nalytic solution does not exist. Instead of a focused spot
e computed the field due to a single oblique incident lin-
arly polarized plane wave. The angle between the wave
ector and the x3 axis was 30°. In Fig. 7, the modulus of
he electric field [i.e., �
E1
2+ 
E2
2+ 
E3
�1/2] is shown as a
unction of x3 of the analytical solution and the numerical
olutions with the number of mesh points per wavelength
arying from 10 to 40. The results were obtained on a
elatively small CD of 80 nm�80 nm�120 nm because
therwise the computations for 40 points per wavelength
ould require too much memory. On the left the field is S
olarized (hence the electric field is continuous); on the
ight it is P polarized (the normal component of the elec-
ric field jumps at the interfaces). The mean error in the
odulus of the electric field is shown in Fig. 8. It is seen

hat the convergence is linear with the number of mesh
oints, as expected for lowest-order elements. The re-
idual error for 40 points per wavelength was mainly
aused by the fact that the quality of the mesh deterio-
ates when a large number of mesh points are required.
he PML seemed to be accurate enough. For the configu-
ation with the grooves and pits present having vertical
idewalls only, we compared our numerical results with a
ode based on the FDTD. Based on these tests, we esti-
ate the mean error in the numerical solutions for the

ptical disc to be less than 5% when the number of points

ig. 7. (Color online) Modulus of the electric field as a function
umerically on different meshes with the indicated number of po
etween the wave vector and the x3 axis is 30 deg. Both S polari
er wavelength is 10 (conservative estimate). Using more
oints per wavelength was not possible on the machine
vailable. Solving the system required approximately
0 h on a Linux HP-DL585 machine with 48 GB memory
nd a 2.4 GHz processor. Approximately 90% of the CPU
s spent in computing the ILUTP.

In Fig. 9 cross sections of 
Ex
 in the �x ,z� and �y ,z�
lanes through the center of the pit corresponding to the
ase of Fig. 6 are shown. It is seen that the pattern of 
Ex

s more narrow in the �y ,z� plane than in the �x ,z� plane.
urthermore, the amplitude of a field component is maxi-
um close to those parts of the walls of the pits where the
eld component is perpendicular to these walls. Figure 10
resents the amplitudes of the Ex (left) and the Ey com-
onent (right) of the total electric field in a plane inside
he air gap and parallel to the surface of the disc at a dis-
ance of 5 nm above the surface. The incident spot is TM
olarized, and therefore the maximum amplitude of the
y component is considerably larger than that of the Ex

omponent.
When the spot is focused in the middle between two

its, the differences between near fields for the two or-
hogonally polarized spots become larger. It is seen in
igs. 11 and 12 that the total field is smaller than when

he spot is focused at the center of a pit. Furthermore, for
M polarization there are two maxima at the fringe of the
eighboring pits with a minimum in between. However,

in a SIL–air–Si three-layer system, calculated analytically and
r wavelength. The incident plane wave is oblique, and the angle
(left) P polarization (right) are shown.

ig. 8. (Color online) Mean error in the modulus of the electric
eld shown in Fig. 7 is plotted as a function of the number of
oints per wavelength. Both polarizations are considered.
of x3
ints pe
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ig. 9. (Color online) Cross section of the amplitude of the Ex component of the total field for the case of Fig. 6 in the �x ,z� plane (left)
nd the �y ,z� plane (right). Both planes are through the center of the spot.
ig. 10. (Color online) Amplitudes of the Ex (left) and the Ey components (right) of the total electric field in a plane inside the air gap
nd parallel to the surface of the disc at a distance of 5 nm from it. The Gaussian beam is TM polarized, and the incident spot is focused

n the center of a pit.
ig. 11. (Color online) Amplitudes of the Ex (left) and the Ey components (right) of the total electric field in a plane inside the air gap
nd parallel to the surface of the disc at a distance of 5 nm. The Gaussian beam is TE polarized, and the incident spot is focused in the

iddle between two pits.
ig. 12. (Color online) Amplitudes of the Ex (left) and the Ey components (right) of the total electric field in a plane inside the air gap
nd parallel to the surface of the disc at a distance of 5 nm. The Gaussian beam is TM polarized, and the incident spot is focused in the
iddle between two pits.
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n the TE case, the maximum of the Ex components occurs
t the center of the spot between the two pits.
In Figs. 13 and 14, the intensity patterns of the re-

ected field at the detector are shown when the incident
aussian beam is TE and TM polarized, respectively, and

he spot is focused either at the center of a pit or halfway
etween two pits. It is seen that the patterns for TE and
M polarizations differ substantially. Furthermore, the
otal detected reflected intensity is considerably higher
hen the spot is focused in the center of a pit than when

t is focused between the pits. When the pits are longer,
or pit lengths of 3T and 4T, for example, the computa-
ions predict similar effects. These computational results
re confirmed by experiments. They are in contrast to
hat is measured for conventional compact disc and DVD

ystems for which the reflected intensity is always ob-
erved to be largest when the spot is focused between the
its. This difference between conventional and near-field
ecording may be due to the contribution to the reflected
ntensity of scattered waves that are evanescent in air but
ropagate in the SIL. These scattered waves contribute to
he detected signal in the case of near-field recording but
annot contribute in conventional recording. The ampli-
udes of these scattered evanescent waves may be ex-
ected to be larger when the spot is focused on the pit
han when the spot is focused on the land between the
its.

ig. 13. (Color online) Intensity patterns of the reflected field (i.
E polarized and the spot is focused in the center of a pit (left)

ntensities are 0.4795 (left) and 0.3724 (right), respectively.

ig. 14. (Color online) Intensity patterns of the reflected field wh
n the center of a pit (left) or in the middle between two pits (ri
right).
. CONCLUSION
finite-element model for the rigorous modeling of elec-

romagnetic scattering in micro-optics is described. The
odel applies to nonperiodic structures and to structures

hat are periodic in one, two, or three directions. The ma-
erials may be inhomogeneous and/or anisotropic dielec-
rics, metals, or magnetic materials. A computational do-
ain was defined that enclosed all nontrivial scatterers.
his domain is extended in the directions of nonperiodic-

ty by a PML to prevent reflections. On the extended com-
utational domain a variational formulation was derived,
nd Nédélec’s edge elements were used to discretize the
ystem. The system was solved iteratively by BICGCSTAB

ith ILUTP as the preconditioner. Due to a ND and AMF
enumbering of the unknowns, the ILUTP was made quite
fficient. An application of the model to our proposal for
igh-density optical recording using a solid immersion

ens has been discussed. It was found that, in contrast to
onventional recording, the detected reflected intensity is
argest when the spot is focused instead of between the
its.
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