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1. INTRODUCTION

In micro-optics, light interacts with structures with size
of the order of the wavelength. The modeling of these op-
tical systems is very important in photonics research, and
rigorous models based on Maxwell’s equations have to be
applied when accurate results are needed.

The configurations and materials that can occur are
very diverse. Sometimes the scatterer is a single object,
such as an optical tweezer that is illuminated by a fo-
cused spot. But scattering structures can also be periodic
in one (gratings), two (bi-gratings), or three directions
(crystals). The scatterers are often illuminated by an ex-
ternal source, but there can also be sources inside the
structure such as in biosensors. The materials that occur
can be (absorbing) dielectrics or metals. Many materials
are isotropic, but crystals often are optically anisotropic.
Sometimes the scatterer is optically inhomogeneous. An
example is the readout of bit patterns in a phase-change
optical disc. The bits on these discs are small optically in-
homogeneous amorphous regions in a crystalline back-
ground, which have been written by locally heating the
disc by using a laser spot. These examples show that a
general and flexible model is desirable with which many
configurations and materials can be studied.

In many problems of micro-optics the scattering objects
are not surrounded by homogeneous materials but are
embedded in a planar multilayer. The interference effects
due to light that has reflected at the interfaces of the
multilayer can lead to strong modulations of the field am-
plitude, and therefore it must be possible to incorporate
the multilayer background in the model.

The computational modeling of optical diffraction prob-
lems using Maxwell’s equations is a difficult subject. Even
though in micro-optics the regions of interest usually
have sizes of the order of the wavelength, the amounts of
memory and CPU that are required are often huge for

1084-7529/07/030866-16/$15.00

three-dimensional (3D) configurations. The literature on
rigorous computational models is extensive. Often models
are specific; i.e., they apply to a certain configuration and
to a certain class of materials. Important configurations
are one-dimensional (1D) diffraction gratings and bi-
gratings. An often-used computational model for gratings
is the rigorous-coupled wave method or the Fourier
method.™ The Fourier method is specific for periodic
structures. Methods that solve integral equations or dif-
ferential equations are more general and can be applied
to periodic as well as nonperiodic structures. The advan-
tage of volume integral equations (VIEs) and surface in-
tegral equations (SIEs) is that the radiation condition for
the scattered field is automatically satisfied. The Green’s
tensor that occurs in the integral equations has a strong
singularity. The SIE method is attractive because it re-
duces a 3D scattering problem to a relatively small prob-
lem for which the unknowns are tangential field compo-
nents on surfaces and/or interfaces. However, the SIE is
difficult to implement and cannot be used when there is
an inhomogeneous material. Because the matrix of the
discretized volume integral is full, the VIE often requires
a lot of storage and CPU. By using a regular grid, storage
and CPU requirements can be reduced considerably, but
then interfaces that are not parallel to faces of the grid
are approximated by a so-called staircase. A famous nu-
merical method to solve integral equations is the fast
multipole method, which was introduced by Rokhlin and
co-workers®® to reduce the computational costs.” See Ref.
8 for an interesting review of integral equation methods.

The finite-difference time domain (FDTD) and the
finite-element method (FEM) are methods that solve the
differential equations directly. In contrast with the inte-
gral equation methods, truncation of the computational
domain (CD) is needed, and this must be done such that
unphysical reflections are negligible. The FDTD* M was
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introduced by Yee. It is the most widely used method for
solving Maxwell’s equations in optics and also for mono-
chromatic light. Berenger’s perfectly matched layerlz
(PML) is a good method for truncating the domain with-
out causing reflections. Although quite a number of addi-
tional unknowns are needed inside the PML, it is more
accurate than traditional absorbing boundary conditions.
The FDTD can also be applied to metals with permittivi-
ties with negative real parts by taking dispersion into
account.'®!*

In the FEM the mesh used is usually unstructured so
that many configurations can be modeled adequately. The
FEM is most useful when a relatively complicated con-
figuration has to be modeled accurately. For example, in
the optical recording problem studied in this paper, the
sidewalls of the grooves and pits on the optical disc have
oblique angles. Approximating such a configuration by a
regular grid would cause errors. In the FEM this configu-
ration can readily be meshed by using tetrahedra without
any modeling error. Furthermore, the use of unstructured
meshes in the FEM permits the mesh to be adapted to the
material properties and configuration. The FEM is also
very flexible regarding the kind of materials that can be
modeled. Anisotropic, inhomogeneous materials and met-
als with permittivities that have negative real parts can
all be taken into account without special precautions. The
FEM has been applied to optical problems by several
authors.'® To guarantee convergence and the absence of
spurious modes in the computed solution, special so-
called curl-conforming Nédélec—Mur edge elements!™°
should be used. These elements are more difficult to
implement than standard nodal elements that are nor-
mally used in the FEM. This is an important reason why
the FEM is less frequently used in optics than in other
fields. Because FEM have been studied extensively in the
mathematical literature, a lot is known about their math-
ematical properties.zof22 By using edge elements of higher
order, more accurate solutions can be obtained for the
same amount of memory.23725

We shall present in this paper a FEM model with which
all materials and configurations of micro-optics that have
been mentioned above can be studied. The different geo-
metric configurations lead to different boundary condi-
tions. Sometimes the configuration is periodic in a par-
ticular direction, whereas the electromagnetic field is not.
An example is the scattering of a focused spot by a 1D
grating. This type of problem will be treated by decompos-
ing the electromagnetic field into quasi-periodic, so-called
Bloch waves and solving the corresponding quasi-periodic
boundary-value problems on a cell of the grating. We will
use a rather abstract formalism by which all cases can be
dealt with and which leads to an efficient implementation
in computer code such that the major part of the code is
shared by all configurations.

In Section 2 the geometric configurations, the material
properties, and the sources and incident fields are de-
scribed. The (CD) is defined, and the incident field and
the source are decomposed in Bloch waves. In Section 3 a
quasi-periodic boundary-value problem is formulated on
the CD. Exact boundary conditions on the nonperiodic
boundaries of the CD could be formulated by using the
analogue of the Dirichlet-to-Neumann map (also called
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the Caldéron map). This yields a nonlocal boundary con-
dition that is rigorously equivalent to the radiation condi-
tion for the scattered field and that can easily be incorpo-
rated in the variational formulation of the boundary
value problem. This procedure leads to what is called the
mixed FEM-BEM approach.26 Although this formulation
of the nonperiodic boundary conditions is rigorous and
therefore deserves to get preference over approximate
methods, we have used the PML in the present setup be-
cause it is easier to implement and since it gives, in gen-
eral, satisfactory results. By using complex stretched
coordinates,27 a modified version of the vector Helmholtz
equation is obtained in the PML, which causes damping
of the scattered field without generating nonphysical re-
flections. The disadvantage of this formulation is that the
differential equation in the PML contains a modified curl
operator that requires an adaptation of the edge ele-
ments. We therefore redefine the scattered field in the
PML such that the differential equation contains only the
classical curl operator so that the standard -curl-
conforming elements can be applied throughout the com-
putational domain.

In Section 4 the variational formulation of the
boundary-value problem for the vector Helmholtz equa-
tion on the extended domain is derived. By the redefini-
tion of the scattered field in the PML, the differential
equation inside the CD is very similar to that in the PML.
However, the unknowns in the CD and the PML are cho-
sen to be different, namely, the total and the scattered
fields, respectively. One could choose the scattered field as
unknown throughout the extended computational domain
(ECD). As will be explained in Section 4, this more simple
formulation has some disadvantages when the scatterers
are embedded in a multilayer as they usually are. In de-
riving the variational formulation, the differential equa-
tion is multiplied by a test vector field and partially inte-
grated. In this way the highest- (second-) order
derivatives disappear from the problem and hence need
not be approximated. The periodic boundary conditions of
Dirichlet type are satisfied by the test vector fields, and
those of Neumann type are imposed implicitly in the
weak sense in the variational formulation. The (electric or
magnetic) field that is to be computed is then approxi-
mated by a linear combination of finite-element basis
functions on the given mesh, with coefficients that are to
be determined. This approximation is substituted in the
weak formulation, and the test vector fields in the varia-
tional formulation are chosen in the space of base func-
tions. This then yields a discretized system of equations
for the unknown coefficients. The linear system is huge
but sparse because the finite-element basis functions are
nonzero only on a few elements.

A major problem is solving the large sparse system of
equations obtained after discretization of the variational
formulation. One distinguishes direct and iterative meth-
ods. Direct methods are variants of Gaussian elimination
and are very robust. However, the amount of memory and
the number of operations required by direct methods
scale badly with the number of unknowns, especially for
3D problems. Because in many optical problems the num-
ber of unknowns may easily exceed 10°, a direct solver
cannot be used, and one of the, less robust, iterative
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methods must be applied. Iterative methods often con-
verge very slowly due to a small eigenvalue or because
there are eigenvalues with negative and positive real
parts.?® For Helmholtz type of problems with transmis-
sion boundary conditions such as occur in optics, acous-
tics, etc., the differential operator usually is indefinite,
and therefore the system matrix often has eigenvalues
with positive and negative real parts.29 The system must
then be transformed into an equivalent system with more
favorable properties for convergence of the iterative
solver. This transformation is called preconditioning. Of-
ten the preconditioning consists of multiplying the system
matrix by a matrix that approximates the inverse matrix.
The thus-obtained transformed system matrix becomes
sufficiently similar to the identity matrix for the iterative
solver to converge rapidly. Due to the preconditioning, the
system usually becomes (much) less sparse; hence more
memory is required for storing the preconditioned matrix
than for the original sparse matrix. We briefly discuss the
main features of the iterative method and the precondi-
tioner that we have used in Section 4. More details will
appear in a separate paper.

Often, the scattered field has to be determined in the
exterior of the CD. It may, for example, be desirable to
compute the scattered far field. In Section 5 it is in par-
ticular explained how the scattered far field can be com-
puted efficiently by using a Fourier-transformed version
of the Stratton—Chu formula.

In Section 6 we describe the application of the FEM
model to the study of resolution enhancement in optical
recording by using a solid immersion lens (SIL). The SIL
is kept at a distance of approximately 25 nm above the ro-
tating disc by using actuators. The waves of high spatial
frequency are tunneled through the air gap between the
SIL and the disc, causing a smaller scanning spot than
with conventional far-field optics. We present results of
computations of the scattered near and far fields. In con-
trast with conventional recording, the computed detected
reflected intensity is largest when the spot is focused at
the center of a pit instead of between the pits.

2. SCATTERING CONFIGURATIONS

We shall consider 3D configurations that either consist of
isolated scatters (Fig. 1) or are periodic with respect to
one (Fig. 2), two (bi-gratings, Fig. 3), or three directions
(photonic crystals). All configurations will be dealt with in
one formalism.

In the following (x;,x9,x3) will be a Cartesian coordi-
nate system. Except for the case where the system is pe-
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Fig. 2. (Color online) Example of a configuration that is periodic
in the x; direction. The CD () has width along the x; direction
equal to the period.

Fig. 3. (Color online) Example of a configuration that is periodic
in two directions in the (x;,x,) plane. The vectors a; and a, span
the unit cell A in the x3=0 plane and (=4 X (xg,xé).

riodic in three directions, the x5 axis is always a direction
in which the structure is bounded and not periodic. When
there is an optical system with an optical axis, the x5 axis
coincides with the optical axis.

The sources of the electromagnetic fields may be inside
or outside the scatterers. The sources inside the scatter-
ing structure are specified by a current density. In con-
trast, the currents of the sources that are outside the scat-
terers are often not specified. Instead, the radiated field
that is incident on the scatterers is then assumed known.
This incident field can, for example, be an arbitrarily po-
larized plane wave or a spot focused by an imaging sys-
tem.

In optical problems, the scatterers are often inside a
planar multilayer, and it is thus essential to incorporate
such a multilayer in the model. The multilayer is often re-
ferred to as the background medium.

For all mentioned configurations, a computational do-
main (CD) Q) will be defined in which the electromagnetic
field is computed. The CD is truncated by using a PML.
The union of the CD ) and the PML will be called the ex-

tended computational domain (ECD) Q. The domains will
be considered in Subsection 2.B, and the PML will be de-
scribed in Subsection 3.B.

When the configuration is periodic in at least one direc-
tion, the scattering problem can be solved only when the
sources and incident fields are quasi-periodic; i.e., after a
translation over one period, they are the same except for a
(constant) change of phase. When the sources and/or inci-
dent fields are more general, they must first be expanded
in quasi-periodic so-called Bloch functions. After solving
the scattering problem for every quasi-periodic source and
incident field, the total field is obtained by coherently
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summing the solutions of the separate quasi-periodic
scattering problems. This procedure will be explained in
Subsection 2.C.

All sources and fields in this manuscript are time har-
monic and are taken to depend on time ¢ by the factor
exp(—iwt) for some w>0. This factor will be omitted from
all formulas.

A. Multilayer Background
The multilayer background consists of N+1 planar layers

with interfaces at x3=xg), j=0,...,N-1, parallel to the

(x1,x9) plane. The numbering is such that
xgo) > xgl) > e > x(3N_1). (1)

Hence x3 >x(30) and xg <x(3N)
convenience x§ =+ and x

sumption is made:

are half-spaces. We define for
(3N)=—DO. The following as-

Every layer xg) <x3 <xg_1) (i.e., including the half-
spaces) consists of homogeneous isotropic material with
relative dielectric permittivity ey) and relative magnetic
permeability ,uy). When layer j is absorbing, eﬁj ) and/or ,u@
are complex numbers with nonnegative imaginary parts.

The assumption that all layers of the multilayer are
isotropic is made only for simplicity. In principle, aniso-
tropic materials could be allowed. It will be convenient to
define piecewise-constant functions of x5 that give the
relative permittivity and the relative permeability in each
layer of the multilayer:

E(xg) = &V . )
~r rm for xg) <xa3< x(3’_1), j=0,...,N.
lu'r(xS) = My

(2)

B. Isolated and Periodic Scatterers
Suppose that the configuration is periodic with respect to
n,, directions, for some n, {0,1,2,3}:

n,=0. In this case the configuration is not periodic;
hence it consists of isolated scatterers embedded in a
multilayer background.

np,=1. In this case the configuration is periodic in one
direction, which is assumed to be the x; direction. With
respect to the basis (xq,x9,x3), we define the vector a;
=(p,0,0)T, where p is the period of the configuration.

n,=2. In this case there are two linearly independent
vectors a; and a, in the x3=0 plane such that the configu-
ration is invariant under translations over multiples of
these two vectors. These structures are called bi-gratings
or two-dimensional photonic crystals.

n,=3. Then there are three linearly independent vec-
tors a;, ag, and ag such that the configuration is invariant
under translations over multiples of these three vectors.
Examples of these structures are 3D photonic crystals.

When 1<n,<3, we define the n,-dimensional lattice
by the set

Vol. 24, No. 3/March 2007/J. Opt. Soc. Am. A 869

p
Cnp =1{= E {;a;; for integer ¢; (. 3)
i=1
The fundamental cell of this lattice is
"p
A={r=> yay; —U2<yp, oy, <200 (4)
i=1

The reciprocal lattice consists of the vectors

m =Y, mb;, (5)
i=1
where m; are integers and vectors b, i=1,...,n,, are such
that
b;-a;=273g;, for1<i,j<n,,
b;-¢;=0, forlsi<n,andforn,+1<j<3,
(6)
where €; is the unit vector along the x; axis.
We have,
ifn,=1,
bl = (27T/p7070)T’ (7)
ifn,=2,
Ag X é3
bl = 4T ~ ) (8)
a; - (az X &)
a; X é3
by =2 — 9
ay- (a; X &)
if n,=3,
Ay X ag
b=27————, (10)
a; - (az X ag)
a; X ag
by =27—""""—, (11)
ay- (a; X ag)
ay X Ay
by=2r——"— (12)

ag-(a; X ag)

The fundamental cell of the reciprocal lattice is the Bril-
louin zone of dimension n,, defined by

-12< 1, ...,nnp<1/2

(13)

The nontrivial scatterers may be arbitrary inhomoge-
neous and/or anisotropic dielectrics, conductors, or mag-
netic materials. The relative permittivity and permeabil-
ity are, in general, complex two-tensors €.(r), which are
written as -
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&(r) =Re[&,(r)] +i Im[&,(r)], (14)

1, () = e, (1)] + T g, ()], (15)

where Re(e,), Im(¢,), Re(y,), and Im(y,) are real-valued
tensors. The following assumptions are made:

1.  and p, are periodic on the lattice; i.e., for every € in
£np, see Eq. (3):

&(r+€) = g(r), we(r +€) = p(r). (16)

2. €.—¢, and u,— i, have bounded support as functions
of the coordinates with respect to which the configuration
is not periodic, i.e., with respect to x; for i=n,+1,...,3.
Hence for every i=n,+1,...,3, if |x; is sufficiently large,
then €,.(r)=%¢.(x3)1 and u,.(r)=p,(x3)1, where 1 is the unit
tensor. -

3. Re(e,) and Im(u,) are symmetric tensors, and, since
we do not consider optically active materials and because
the time dependence of the fields is assumed to be given
by the factor exp(—iwt) for some positive w, the imaginary
parts Im(e,) and Im(u,) are nonnegative symmetric ten-
sors. Note that for metals the real part of the permittivity
is often negative in the optical domain; hence Re(e,) is, in
general, not positive definite. -

4. The components of the tensors €. and u, and of their
inverse ¢! and u,”! are essentially bounded functions,
ie.,

€6 Y pt e L%(R?). (17)

We shall introduce a notation for the CD by which all
cases of periodicity can be dealt with in one formalism. By
using this notation, we do not have to list the periodic
boundary conditions, and this simplifies the problem
statement considerably. We first introduce the parameter-
ization

r— (exp(iby-r), ... ,exp(ib“p -r)), (18)

which maps the fundamental lattice cell A onto the
n,-dimensional torus: T =I172,S*, where S! is the unit
circle in the complex plane. By considering fields on the
unit cell as fields defined on the torus, the fields are au-
tomatically periodic. For example, for n,=1 the configura-
tion is periodic in the a; direction but not in the directions
of ay and a;. We then use the circle 7'=S! instead of the
line y;a;,-1/2<y;<1/2, and all fields are functions of y;
considered to be defined on the circle so that they are au-
tomatically periodic with respect to y;.

We shall now define the CD. We first mention that
when n,=0, i.e.,, when the configuration is not periodic,
the CD will be a rectangular block, and therefore 7"»
X Hf’:n +1(xf,xﬁ) and R™ X Hi3=n +1(xf»,xf) must, for n,=0, be
identified with Hf’zl(xf,xf). When n,=3, i.e., when the con-
figuration is periodic in all three directions, these sets
should be identified with the sets 7° and RR3, respectively.

Definition of the CD:
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3
Q=Tw»x [] &), (19)
i=np+1
with x; and xf fori=n,+1,...,3, chosen such that the ex-
terior of the set
3
Rox ] () (20)
i=np+1

consists only of planar layers of the multilayer, i.e., €,
=€, and p, =, in the exterior of expression (20). Further-
more, x§ and x4 satisfy

xf <Y, xb = x; (21)

hence, each of the half-spaces x3<x3 and x3 >xé consists
of homogeneous matter.
Remarks:

1. When n,=3, we have ()= A; hence (} is then identical
to the fundamental cell of the lattice.

2. Properties (21) are necessary for applying the PML.

3. For a perfect conductor (PEC), the imaginary part of
the permittivity is infinite; hence expression (17) then
does not hold for €. A PEC can nevertheless easily be
taken into account in the FEM. As will be explained be-
low, the FEM is applied to a boundary-value problem for
the vector Helmholtz equation for either the electric or
the magnetic field. The region occupied by the PEC is ex-
cluded from the CD () and therefore is not meshed. On the
boundary of the PEC the tangential components of the
electric field are set equal to zero. Hence, when the
boundary-value problem for the electric field is solved,
this boundary condition is a Dirichlet condition. It is ex-
plicitly incorporated in the finite elements used in the ap-
proximation. In contrast, when one solves the boundary-
value problem for the magnetic field, the boundary
condition on the PEC is of Neumann type and hence is
taken account of implicitly in the variational formulation.
The presence of a PEC thus causes no fundamental prob-
lems and is in fact advantageous because there are then
fewer unknowns. In contrast, a good conductor that is not
considered a PEC needs a fine mesh because of the skin
effect. Metals with high but finite conductivity now re-
ceive a lot of attention in optics because of the interest in
plasmon waves generated at metallic surfaces. We stress
that there are no fundamental computational problems
when the FEM is applied to good conductors. One needs
only more computing power. For simplicity we shall not
mention the case of a PEC separately in the remainder of
this paper.

The boundary of the CD is

3 3
a=T»x| [ O\ JI @iah|. (22

i=n+p+1 i=n+p+1

Note that [x{,x'] is the closed interval xf <x; <x', whereas
(af ,xﬁ) is the open interval (i.e., without end points) x}
<x; <xf. For example, when n,=2, the boundary consists
of the set of all points (x1,x9,x3), with (x1,x3) on the torus
T? and with x3=x3 or x3=x5. When n,=3, the boundary of
Q is empty: dQ=7.
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Definition of the ECD
3
Q=T x [] -8

13

+8), (23)

12
i=np+1
for some >0 and & >0.
Hence the ECD is an extension of the CD in the direc-
tion of the coordinates x;, i=n,+1,...,3, i.e., the coordi-
nates with respect to which the structure is not periodic.

The set O\ Q is the PML. In Section 3 we will formulate a

boundary-value problem on ) whose solution gives an ap-
proximation of the solution of the scattering and radiation
problem. Note that when the structure is periodic in all
three directions (n,=3), then 0=0; i.e., the ECD is iden-
tical to the CD, and a PML is not needed.

C. Sources and Incident Fields
An arbitrary incident field E’, H* may exist in one or both
of the half-spaces x3 <ng) and x3 >x§’0>. There may also be
imposed current sources present, described by a current
density J(r).

We will assume that these currents have the following
properties:

1. When n,=1, the current either is quasi-periodic on
the lattice or has compact support with respect to the co-
ordinates x;, i=1,...,n,.

2. The current density must have compact support with
respect to the remaining coordinates x;, i=n,+1,...3, ie,
the coordinates with respect to which the configuration is
not periodic.

Note that the currents do not have to be confined to ).
The ECD will be used as the CD. However, when n,
=1, a boundary-value problem can only be formulated on

Q for an incident field and a current density that are
quasi-periodic in the sense defined next. In the following,
k will be a vector such that, with respect to the basis
(x1,%9,x3) and for the given n,, we have
k = (ky,ko,k3)T, with ;=0 for all n,+1<i<3.
(24)

Then a vector field Vi is called k quasi-periodic when
there exists a vector field V that is periodic on the
n,-dimensional lattice, such that

Vi(r) =e*"V(r), (25)
for all r. Property (25) is equivalent to
Vi(r +€) =™V (r), (26)

for all lattice vectors €.

An arbitrary incident field E! can always be expanded
in terms of quasi-periodic fields. To show this, we intro-
duce the Fourier transform of E’ with respect to
LSPRRRP Let k be as in Eq. (24), then

f(Ei)(k,xnp+1, ...,x3)=f f Ei(r)e‘ik'rdxl...dxnp.

(27)

The inverse transform can be written as follows:
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1\ ([~ *
Ei(r>=<;> j J FE)

X062, 41, o %3)e ™ dRy ... d,,

1\"% )
(5) T,
™ m J B+m

X (k,xnp+1, e ,xs)eik'rdkl “ee dknp

= f L(r)dk; ... dk, , (28)
B

where the sum is over all reciprocal-lattice vectors m and
k is the k-quasi-periodic field given by

) 1\ ) )
i((r) = (ﬂ) E f(EL)(k + m,xnp+1, e ,x3)el(k+m)'r.
m

(29)

An arbitrary current density can, of course, be written
in the same way:

J(r) =f Jy(r)dk; ... dknp, (30)
B
with Jy(r) given by

1\" ]
J(x) = (;) S F@ 5 e xe E

(31)

The incident electric field and the imposed current den-
sity have thus been written as integrals over the
n,-dimensional Brillouin zone B of quasi-periodic incident
fields and current densities. For every k € B3 the solution
of the scattering problem with incident field Ej and cur-
rent density Jy is k quasi-periodic. The total electric field
E is obtained by integrating the quasi-periodic solutions
Ej over the Brillouin zone:

E(r) = J Ey(r)dE, ... dk, . (32)
B

In the sequel we shall mainly discuss the scattering prob-
lem for quasi-periodic incident fields and current densi-
ties.

Remarks. For different vectors in the Brillouin zone,
the matrices of the linear systems obtained after discreti-
zation of the variational formulations of the quasi-
periodic boundary-value problems are different. When the
periods are small, the CD is correspondingly small, but
the Brillouin zone and therefore the number of quasi-
periodic problems are large. The decomposition is then
practical only when the code is run in parallel on many
processors or when the same preconditioning matrix can
be used for several quasi-periodic fields with similar k.
For the scattering of a focused incident spot by a struc-
ture that is periodic in one (n,=1) or two (n,=2) direc-
tions, one could instead define the CD so large that the
field is negligible outside (). Then only one, relatively big,
diffraction problem must be solved. The CD should be



872 J. Opt. Soc. Am. A/Vol. 24, No. 3/March 2007

chosen such that not only the incident field but also the
scattered field are negligible outside it. Since the scat-
tered field decreases only with the first power of the re-
ciprocal distance, the CD may have to be chosen quite
large for sufficient accuracy.

3. FORMULATION OF A BOUNDARY-
VALUE PROBLEM ON THE EXTENDED
COMPUTATIONAL DOMAIN

In this section we shall derive, for a given k in the Bril-
louin zone, a boundary-value problem for k-quasi-periodic

fields on the ECD Q.

A. Vector Helmholtz Equation o

For given k-quasi-periodic incident field Ej, Hj and cur-
rent density Jy, let Ey, Hy be the total quasi-periodic field
that satisfies Maxwell’s equations with relative permittiv-
ity tensor €, and the relative permeability tensor u, hav-
ing the properties mentioned in Subsection 2.B. The field
Ej, Hy is called the total field to distinguish it from the
incident and the scattered fields, but it should be noted
that it is the field for only one vector k in the Brillouin
zone.

Let E), HY be the field that would be caused by the
given incident field Ei, Hi( and the imposed current den-
sity Jj when only the multilayer is present (i.e., there are
no other scatterers). The field EY, HY can be computed by
a standard expansion in plane-wave Fourier components.
Note that when the configuration is periodic in three di-
rections there is no multilayer, and the field Eﬁ, HIO{ is
then set equal to zero.

The scattered field is defined by

w=Ex-E), Hj=H,-H;. (33)

It satisfies
V X Ej, = iopop, Hy + iopo(p, - ) Hy, (34)
V X Hj, = - iwee, B} + - iwey(e, - €)EY, (35)

% and Hj, satisfy the outgoing radiation conditions.

(36)

The fact that the electromagnetic energy is finite in every
bounded region of space is equivalent to the mathematical
statement that the electric and magnetic fields are locally
square integrable:

E, and Hy are in L? (R?), (37)

where L2(R3) is the space of all square-integrable vector
fields V:R3— (3. The fields Ej, Hy and E, Hj are also lo-
cally square integrable, of course.

By eliminating the magnetic field we get the vector
Helmholtz equations for the electric fields:

?eopo& B — VX (1, 'V X Ey) = —iopedy, (38)
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wzeo,uoirEi -V X (ir_l V X Ep)

= - W’euole - §)Ex —iopg V X [(1- p, ') Hy].
(39)

By eliminating the electric fields we get similar equations
for Hy, and Hj,. Each of these equations is a special case of
the following general equation:

k§aU =V X (BV X Up) =Fy+ V X Gy, (40)

where ko= w€ug is the wavenumber in vacuum; ¢ and g
are complex-valued tensors,

@=Re(e) +1Im(e), (41)

B=Re(p) +iIm(p), (42)

where Re(a) and Re(B) are symmetric tensors and Im(g)
and Im(B) are real symmetric nonnegative tensors; and
Fy. and Gy, are given quasi-periodic fields.

Since Uy, Fy, and Gy are k quasi-periodic, we have

Uy(r)=e™"U(r), Fir)=e™Fr), Gyr)
=e*TG(r), (43)
where U, F, and G are periodic on lattice Enp. We have
VX Up=e*"(k +V) x U=e*"V, x U, (44)
where
Vi=ik+V. (45)

Hence, Eq. (40) can equivalently be written in terms of
periodic fields as follows:

kjaU - Vi X (BVy, X U) =F + V} X G. (46)

The fact that the electric and magnetic fields are periodic
and locally square integrable is equivalent to the state-
ment

U e H,,.(curl, 7% X R37), (47)

where H,, (curl,T% X R37") is the space of vector fields,
which, together with their curl, are locally square inte-
grable on one period of the geometry and which are peri-
odic on the lattice.

The meaning of ¢, B8, F, and G for the different cases
when U is an electric or magnetic field are listed in Table
1.

Table 1. Values of g, B, F, and G When the Total or
Scattered Electric or Magnetic Field
Is Calculated

Para-

meter u=E U=E? U=H U=H°

& & g by by

B ot ot & &

F —topgd -~ 6uo(e-E)E" 0 —weuole ) H
G 0 —iwig -1 e,

(1, o, HO X(1- 615 )E
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B. Perfectly Matched Layer
The idea of a PML was first published by Berenger.12 We
do not use Berenger’s modification of Maxwell’s equations
but apply instead the formulation in terms of complex
stretching coordinates introduced by Chew and Weedon?’
because it is very suitable for applying the FEM.

Let the operators V¢ and V§ be defined by

J J Jd
V£= ( b b ) b (48)
{10xq Lo0x9 {30x3

Vi =ik + V. (49)

Here {=({1,42,{3) is a vector field defined on the entire

ECD Q but set equal to (1,1,1) inside Q. Inside the PML,
{; is a complex-valued function of x; by which the complex
stretching is specified. Write

&L 000
DW=|0 & 04 (50)
0 0 &

then we have

VEiXV=ik XV+ DOV X[D(V]. (51)

det(D(Q) ~
Hence, for V e L2(Q)), we have
Vi XV e L% Q) oV XDV e LXQ). (52)

In the vector Helmholtz equation for the scattered field,
Vy is replaced by Vf(:

k§aU - Vi X (BVE X U9 =F*+ Vi X G*, in Q. (53)

The superscript s is used to emphasize that the scattered
field is considered. Note that, according to Table 1, F*
=G*=0 inside the PML.

The component of { in the direction of the normal on ()
is set equal to a complex function or a complex constant
(e.g., 15+15i) to ensure that the scattered field is damped
inside the PML. The tensors ¢ and g in the PML get the
same value as in the underlying multilayer.

Inside the PML the modified curl V§x U differs from
the classical curl Vi X US. This is not convenient because
the finite elements have to be adapted so that they be-
come conforming with respect to the modified curl instead
of the ordinary curl. We shall therefore use Monk’s idea®
and redefine the scattered field inside the PML such that
the differential equation contains only the classical curl

operator throughout Q.
The modified scattered field is defined by

U =D(U". (54)

Note that inside Q we have Us =U®. Now we remark that
D(Yk=k. This follows from the observation that if £; #0
the configuration is periodic in the x; direction and hence
{i=1. By using the property that {; is a function of x; only,
one can verify that
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Vi X Us= )Q(g)(vk x UY). (55)

det(D(Q)
Then Eq. (53) can be transformed into
kja' U = Vi X B’V Xx U =F*+ Vi X G*, in O,

(56)

where ¢’ and [j’ are given by
a'=det(D())D()'eD(@)?, inQ, (57)
B’ =det(D(2)'D(HBDQ), in Q. (58)

Note that ¢’ and B’ are always anisotropic and functions
of position in the PML.

We now state two continuity properties of the field U® '
across d€). These will be needed later. First, expression

(52) implies that Us e H(curl;Q), and therefore the tan-
gential components of U’ are continuous across ():

limn X U¥ =limn X U¥, for r' € 90, (59)

’ '

rlr rir

where n is the unit normal on 4 and lim, ,, and lim,,
are the limits taken from the side of the PML and (), re-

spectively. Furthermore, Eq. (56) implies that @’VkXUS,

+GS e H(curl;Q)), and therefore the tangenti:;ll compo-
nents of this vector field are also continuous across ().

Because G°=0 in O\ Q, we get
limn X [BVy X U*"] +lim G° =lim n X [V, X U*" + G°],

' ’ ’

rlr rir

forr' € 9Q). (60)

We still have to impose a boundary condition for U* on

the outer boundary d0). One can choose among the Dirich-
let condition,

nxXU"=0, on d; (61)
the Neumann condition,
n X g'Vy XU =0, on o (62)

and an impedance type of condition. Often Eq. (62) gives
the most accurate results.

C. Reformulation of the Boundary-Value Problem on the
Extended Computational Domain

The boundary-value problem [Eqgs. (56) and (62)] for U is
still not optimal from the computational point of view
when there is a multilayer background. As follows from
Table 1, G® is discontinuous across the extension of the in-
terfaces x3=x(3j) of the multilayer into O (G* and F*® vanish
inside the PML; hence there are no discontinuities inside
the PML). The mesh generator will always take account
of interfaces between different materials inside the ECD
so that a finite element will never have a nonzero inter-
section with more than one material. But it would be im-
practical to require that the mesh should also take ac-
count of the extensions into () of the interfaces of the
multilayer background. Therefore, the discontinuity of G*
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across these interfaces will, in general, cause numerical
inaccuracies. To prevent these, we will use a formulation
in which the unknown inside () is the total field U while
the unknown in the PML is the modified scattered field

’

Us:

kgaU -V X (BV x U)=F+V, X G, inQ, (63)

kja'U* -V X (B'V, X U¥) =0, inQ\Q, (64)

where we have used F*=G*=0 outside of (). As follows
from Table 1, interfaces of the multilayer do not cause dis-
continuities in F and G.

Additional equations that link the fields U and U*’ on
dQ are, of course, now needed. These are derived from
Egs. (59) and (60) and from Us'=Us=U-U" in Q, where
UY is the solution when there is only the multilayer. We
obtain

limn X U(r) - limn X U%(r) =limn X U%r),

’ ’ ’

rir rir rir

forallr’ € 92, (65)

limn X gV X U-limn X [8'Vy X U*']

’ ’

rir rlr

=limn X [éVk x U+ G*]. (66)

rir’

Summarizing, the boundary-value problem that is
solved numerically consists of Egs. (64) and (62) for Us in

Q\Q, Eq. (63) for U in Q, and the continuity equations
(65) and (66). The fields U, U* are sought in the spaces

H(curl;Q) and H(curl;Q\ Q), respectively. Because the

torus 7™ is used in the definition of Q and O, periodic
boundary conditions do not have to be imposed explicitly.

4. DISCRETIZATION OF THE PROBLEM ON
THE EXTENDED COMPUTATIONAL
DOMAIN

We consider the discretization of the boundary-value
problem derived in Section 3.

A. Variational Formulation

Since the unknown fields U and U are sought in the
spaces H(curl;)) and H(curl;Q\ Q), respectively, U and
Us’ are periodic on the lattice:

a; X U(r + {a;) =a; X U(r), (67)

a; X U (r + (a;) =a; X U*'(r), (68)

for all r € ), all integers €, and for 1<j<n,,.

Now let V be a vector field in the space H(curl; Q). Take
the scalar product of V with Eq. (63), integrate over (),
and apply a partial integration. Next, take the scalar
product of V with Eq. (64) and partially integrate over the

PML O\ Q. By adding the resulting expressions, we get
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N =

+ffj (kg U - V= BV X U -V X V]
o\ h

X ey dagdxs

=JJ J FVd.xldedx3
Q
+ f f f G- V—k X deldedX3
Q

+fj limn X [V X U+ G- G*]-VdS.  (69)
Q0

rir’

The integral over J() is only over the nonperiodic parts of
the boundary because the contributions of the periodic
parts cancel, since U* and r— G(r,r°) are periodic and the
outward-pointing normal n is opposite on opposite parts
of the periodic boundaries.

Hence the variational problem is to find U
e H(curl;Q) and U* e H(curl; O\ Q) such that Eq. (69)
holds for all V e H(curl; ) and such that condition (65) is
satisfied.

Remark. The periodicity conditions for SV XU and
B'V X U’ analogous to Eqgs. (67) and (68) are not imposed
explicitly but are taken into account in a weak sense by
variational formulation (69).

B. Curl-Conforming Elements
Curl-conforming elements yield approximations in

H(curl; Q). These approximations are such that the com-
ponents of the fields that are tangential to the faces and
edges of the mesh are continuous. The elements of order %
are on every tetrahedron or hexahedron polynomial of or-
der k. Corresponding to a curl-conforming element of
given order k, there exists a divergence-conforming ele-
ment of order £ such that a discrete version of the de
Rham diagram commutes. This property is very impor-
tant because it implies the convergence of the FEM? and
precludes the occurrence of spurious numerical solutions.

The most important curl-conforming elements are
Nédélec elements of the first type on tetrahedra,'” Mur—
Nédélec elements of the second type on tetrahedra,'®1930
and Nédélec elements of the first type on hexahedra.?!
Nédélec elements of the second type on hexahedra also
exist, but these do not satisfy a discrete de Rham dia-
gram. The elements of the second type on tetrahedra give
more accurate results than those of the first type of the
same order. In fact, if 4 is a typical edge length of the
mesh, the elements of the first type of order % yield ap-
proximations E;, H), of the actual electromagnetic field E,
H with error of order A* measured in the L? norm:

B~ Byl + [H - Hy 2 < CR*, (70)

where C is a constant that depends on the configuration.
In contrast, elements of the second type give an error of
order A**1 for the field that is solved numerically while
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the error for the curl of this field is #*. Elements of the
second type involve more unknowns than those of type 1.
For accuracy it is desirable to locally adapt the mesh
and/or the order of the elements, e.g., near an interface
with an obtuse angle where the field is infinite. Using sev-
eral orders in one mesh (hp FEM, where h denotes diam-
eter and p polynomial degree) is possible by using a hier-
archical basis for the elements.?*"

We write the finite-element approximations of the total
field U on the CD () and the modified scattered field U
on the PML as

U=>U,¢, inQ, (71)
U => U, inQ\Q, (72)

where U,, and Uf,; are scalar degrees of freedom (the un-
knowns). The basis functions must be in the space

H(curl;Q)), which means in particular that they have to
be periodic with respect to the variables x,...,x, . By
substituting these expressions into variational formula-
tion (69) and by letting V run through the set {¢,,}, we
obtain a large linear system of equations for the un-

knowns {U,,} and {Uf,;}:

Un\ (Fa
)= (21 7

where A is the large system matrix and the F, and F; are
the coefficients of the right-hand side.

C. Iterative Solution Method

Although in many applications the CD is comparable to or
smaller than the wavelength, the number of unknowns is
often several hundred thousands. Because a fine grid is
needed to model the skin effect in a metal and a fine mesh
in a particular region tends to make the mesh in adjacent
regions also finer, the number of unknowns is particularly
high in the presence of metals. It is obvious that an itera-
tive solver must be used. However, because the system is
indefinite, preconditioning is necessary to achieve conver-
gence of the iteration. The construction of a robust pre-
conditioner that is adequate for all types of problems is
highly nontrivial, especially on an unstructured mesh. A
preconditioner based on a multigrid31_34 may show satis-
factory performance, but it is difficult to implement. The
same holds for the Schatz method.?’ We therefore used
Saad’s preconditioner ILUTP®® with BICGSTAB as the itera-
tive solver. In ILUTP the LU factorization is constructed of
a modified system matrix obtained by replacing by zero
all elements of the system matrix of which the ratio of
their absolute value and the maximum absolute value oc-
curring in their row is below a specified threshold. Fur-
thermore, all entries of the ILUTP matrix that are in the
complement of a band of certain width specified by the
user are set equal to zero. Furthermore, when nested dis-
section (ND) and approximate minimum fill-in (AMF) reor-
dering precedures are applied, the required fill-in and
hence memory and computation times that are needed
have been drastically reduced. The iterative solution
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method is rather robust but requires a considerable
amount of storage. More details about the optimized it-
erative scheme will appear in Ref. 36.

5. PROPAGATION OF THE SCATTERED
FIELD INTO THE EXTERIOR OF
THE COMPUTATIONAL DOMAIN

Often the scattered field is required outside the CD. We
briefly describe a rigorous method to compute the scat-
tered field in an arbitrary point in the exterior of ().

Consider again a quasi-periodic boundary-value prob-
lem for some k in the Brillouin zone, and let Uy be the
k-quasi-periodic total field inside Q) given by Eq. (19). The
field U is the corresponding periodic field, i.e., Ug(r)
=e®TU(r). Suppose that r, is a point in the exterior of Q
for which there is a lattice vector €=277,¢;a; such that
ro+¢ is in Q. Then the total field in r can immediately be
obtained from the quasi-periodicity:

Uy(rg) =& Uy (ry + 0). (74)

The scattered field then obviously follows by subtracting
the incident field U}, from the extended total field.

Suppose next that r0=(x(1),xg,xg)T is a point in the exte-
rior of Q) for which no such lattice vector € exists. This
happens when, for some i=n,+1,...,3, we have x?<xf or
x?>x!. The scattered field in r° will then be obtained from
a formula of the Stratton—Chu type that contains the
Green’s tensor of the vector Helmholtz equation.

In the Stratton—Chu formula for the scattered field of
the k-quasi-periodic boundary-value problem, the Green’s
tensor occurs, which is (-k)-quasi-periodic. Let G_i(r, 1)
be the Green’s tensor when the dipole is in ry in the fun-
damental cell. Write

G x(r,rp) = exp(- ik - 1)G(r,ro), (75)

where r—G(r,r() is the corresponding periodic Green’s
tensor. If p is a constant complex vector, r— G(r,ry)p is
the periodic field that satisfies

k2agp - V_i X BV_;c X Gp =pd(r 1), (76)

with Sommerfeld’s radiation condition for |xs|—> . Recall

that @ and B describe the material properties of the
multilayer background. For multilayers consisting of sev-
eral layers, a closed formula for the Green’s tensor cannot
be written down. Instead, its Fourier transform with re-
spect to x; and x3 can be determined by a standard
multilayer calculation.

Let U® be the periodic scattered field for the given vec-
tor k in the Brillouin zone. Let ¥° be a point in the exte-
rior of ), and let G(r,r() be the periodic Green’s tensor for
the vector Helmholtz equation for wave vector —k. By ap-
plying a partial integration, we obtain
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Ui(ry) - p

= f f f U - [k§agp - V_y X BV X Gp]
R3O

=- f f limn X US(r') - BV_i X G(r,r")pdS(r)
€

) rlr’

—j J limn X [8V) X U*(r")]- G(r,r*)pdS(r),
a0

rir’

(77)

where n is the unit normal that points out of ) and the
limits are taken from the exterior of (). In the derivation
of this result, the fact that both the scattered field and the
Green’s tensor satisfy Sommerfeld’s radiation condition is
used to infer that the contribution of the integral over the
surface of a large sphere vanishes in the limit of infinite
radius.

The integral over the boundary J consists of only
those parts that are nonperiodic because the surface inte-
grals over the periodic parts cancel due to the periodicity.

The limits from the exterior of () of the tangential com-

ponents n X U¢ and n X[V, X U¢] that occur in the right-
hand side of Eq. (77) can be expressed in terms of limits
from within Q of the tangential components of the nu-
merically computed total field U, the field U°, and their
curls. Since both the tangential components of U and of
BV XU are needed, it is advantageous to use Nédélec’s
first type of elements because then, as has been men-
tioned before, the errors in the computed U and VX U are
of the same order in the mesh size.

In many applications it is important to determine the
scattered field at large distances. According to the Fraun-
hofer formula, the scattered field for xgﬁ + is propor-
tional to the Fourier transform with respect to x? and xg of
the scattered near field. By taking the Fourier transform
of Eq. (77), the Fourier transform of (x?,xg)HUs(x?,xg,xg)
can be expressed in terms of surface integrals over JQ) of
the Fourier transform of the Green’s tensor. Since the lat-
ter is easy to compute in a multilayer, this expression is
computationally much more efficient than first computing
the scattered near field in some plane xg=constant using
Eq. (77) and then computing the Fourier transform after-
ward. In directions in which the structure is periodic, the
Fourier transform is, of course, discrete.

6. READING DATA ON AN OPTICAL DISC
USING A SOLID IMMERSION LENS

In an optical recording system, the size of the carrier of a
bit is of the order of the wavelength. The bit density can
be increased by reducing the wavelength or by increasing
the numerical aperture of the focusing lens. The effective
numerical aperture can also be increased by using a near-
field optical system in which a solid immersion lens (SIL)
is kept at close distance (20—50 nm) to the disc by an ac-
tuator. Because the width of the air gap between the SIL
and the disc is small, the waves of high angle of incidence
inside the SIL can, although they are evanescent in air,
tunnel through the air gap into the disc and thus can con-
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tribute to a smaller spot. It is estimated that in this way a
storage capacity of up to 300 GB on a compact-disc—size
disc may be possible.

In Ref. 37 two different systems are described. Both use
the blue wavelength of 405 nm. In the first system a su-
perhemispherical SIL is used with a first-surface read-
only (ROM) disc made of silicon. This system gives the
highest effective numerical aperture NA.g=ng;NAy of
1.9, where NA is the numerical aperture of the objective
lens and ngjy, is the refractive index of the SIL. In the sec-
ond system a cover layer on the disc is used to protect the
SIL and the disc from impact. Because the refractive in-
dex of the cover layer is approximately 1.5, the effective
numerical aperture is reduced to 1.5. In this paper, we
consider only the near-field optical system for readout of
first-surface ROM discs, i.e., without the cover layer. The
SIL is made of LaSF35 glass with refractive index ngp,
=2.086 at 405 nm and has a radius of 0.5 mm. Figure 4
shows the optical system with the focusing lens and the
spherical SIL. Furthermore, a top view and a cross sec-
tion are shown of a region of the disc that contains a
groove with a row of equal pits in it and two neighboring
grooves without pits.

To study the signal modulation and polarization depen-
dence of the readout system, we assume that the Gauss-
ian beam that is focused by the lens is TE polarized (elec-
tric field perpendicular to the grooves) or TM polarized
(electric field parallel to the grooves). The numerical ap-
erture of the lens is NA;=0.91, so that the effective nu-
merical aperture of the combined system of the focusing
lens and SIL is NAg=ng;*NA)=1.9, as stated above.
Vector diffraction theory38 must be applied to take the ro-
tation of the electric field upon transmission through the
lens into account. For simplicity, we use a hemispherical
SIL instead of a superhemispherical SIL to achieve the
NA=1.9. The Gaussian beam is focused on the lower sur-
face of the SIL. The field inside the SIL consists of a su-
perposition of plane waves of which the spatial frequen-
cies k,, k, fill a circular disc in reciprocal space of radius

652nm
Gaussian beam 23
» Z.Zénm »
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Focus adjustment
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50nm100nm
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Silicon | n=5.42+0.329i

I

Fig. 4. (Color online) Optical system with a focusing lens and
SIL (left) and part of the disc (right) seen from the top and in
cross section (the SIL as shown is much too small because its ra-
dius is 0.5 mm.)
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Fig. 5. (Color online) Amplitudes of the E; (top left), E; (top right), and E; components (bottom) of the incident field in the focal plane

of the objective lens. The effective numerical aperture is 1.9.
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Fig. 6. (Color online) Amplitudes of the E, (left) and the E, components (right) of the total electric field in a plane inside the air gap and
parallel to the surface of the disc at a distance of 5 nm from it. The Gaussian beam is TE polarized, and the incident spot is focused on

the center of a pit.

kngNA,, with & as the wavenumber in vacuum. Hence
the FWHM of the intensity of the spot is approximately
N/ NA=~200 nm. The absolute values of the incident-field
components E;, E|, and E; in the focal plane, i.e., in the
lower surface of the disc (on the side of the SIL), are
shown in Fig. 5. This incident field is determined as if the
entire image space of the focusing lens consists of the
glass of which the SIL is made. Since the plane waves
with wave vector k=(k,,k,,k,) such that kf+k3>k2 are
evanescent in air, the size of the spot in the disc will be
somewhat larger than 200 nm.

We determined the modulation of the detected signal
for both polarizations by calculating the reflected field im-
aged by the lens on the detector. Except for the rotation of
the polarization upon transmission through the lens, the

field in the detector plane is basically identical to the
Fraunhofer pattern of the reflected near field.

The pits considered have minimum length of 100 nm at
the bottom and 184 nm at the top (this length is often
called 2T, where T is the nominal clock period). As indi-
cated in Fig. 4 the pits are cylindrical with depth of
60 nm, sidewall angle of 55°, and radius at the bottom of
50 nm. The radius of the pit at the surface of the disc is
approximately 100 nm. The distance between the grooves
(i.e., the track pitch) is 226 nm, and the width of the
grooves is 100 nm. The complex refractive index of the
silicon disc in ng;=5.42+0.329:. The gap width is 20 nm.

In Fig. 6 the amplitudes of the x and y components of
the total electric field are shown in the plane parallel to
the disc at a distance of 5 nm above the disc. The incident
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(Color online) Modulus of the electric field as a function of x5 in a SIL—air—Si three-layer system, calculated analytically and

numerically on different meshes with the indicated number of points per wavelength. The incident plane wave is oblique, and the angle
between the wave vector and the x5 axis is 30 deg. Both S polarization (left) P polarization (right) are shown.

spot is TE polarized, and therefore the maximum ampli-
tude of the E, component is considerably larger than that
of the E, component. The spot is focused at the center of a
pit. It is seen that the numerically obtained spot has
small size, in agreement with the estimation given above.

All simulations were done with Nédélec elements of
type 1 and order 1 on a tetrahedral mesh consisting of 10
points per wavelength (measured inside the material).
Since the refractive index of the disc is much higher than
that of the SIL and air, the mesh inside the disc is re-
quired to be much finer than in the air and the SIL. By
continuity of the mesh, the grid spacing inside the air and
the SIL is actually finer than 10 points per wavelength.
The number of (complex) unknowns is 10°.

To investigate the accuracy of the presented results, we
compared the numerical and analytical solutions for a
multilayer with the same composition as the optical disc.
The only difference is that the interfaces are flat; i.e., the
pits and and grooves are absent because otherwise an
analytic solution does not exist. Instead of a focused spot
we computed the field due to a single oblique incident lin-
early polarized plane wave. The angle between the wave
vector and the x5 axis was 30°. In Fig. 7, the modulus of
the electric field [i.e., (|[E1|>+|E5?+|E5|)V?] is shown as a
function of x5 of the analytical solution and the numerical
solutions with the number of mesh points per wavelength
varying from 10 to 40. The results were obtained on a
relatively small CD of 80 nm X 80 nm X 120 nm because
otherwise the computations for 40 points per wavelength
would require too much memory. On the left the field is S
polarized (hence the electric field is continuous); on the
right it is P polarized (the normal component of the elec-
tric field jumps at the interfaces). The mean error in the
modulus of the electric field is shown in Fig. 8. It is seen
that the convergence is linear with the number of mesh
points, as expected for lowest-order elements. The re-
sidual error for 40 points per wavelength was mainly
caused by the fact that the quality of the mesh deterio-
rates when a large number of mesh points are required.
The PML seemed to be accurate enough. For the configu-
ration with the grooves and pits present having vertical
sidewalls only, we compared our numerical results with a
code based on the FDTD. Based on these tests, we esti-
mate the mean error in the numerical solutions for the
optical disc to be less than 5% when the number of points

0.031

mean error of |E|

0.025

0.021

0.0151

1)

0'011 0 15 26 25 3‘0 35 40

number of points per A
Fig. 8. (Color online) Mean error in the modulus of the electric
field shown in Fig. 7 is plotted as a function of the number of
points per wavelength. Both polarizations are considered.

per wavelength is 10 (conservative estimate). Using more
points per wavelength was not possible on the machine
available. Solving the system required approximately
20 h on a Linux HP-DL585 machine with 48 GB memory
and a 2.4 GHz processor. Approximately 90% of the CPU
is spent in computing the ILUTP.

In Fig. 9 cross sections of |E,| in the (x,z) and (y,z)
planes through the center of the pit corresponding to the
case of Fig. 6 are shown. It is seen that the pattern of |E,]|
is more narrow in the (y,z) plane than in the (x,z) plane.
Furthermore, the amplitude of a field component is maxi-
mum close to those parts of the walls of the pits where the
field component is perpendicular to these walls. Figure 10
presents the amplitudes of the E, (left) and the E, com-
ponent (right) of the total electric field in a plane inside
the air gap and parallel to the surface of the disc at a dis-
tance of 5 nm above the surface. The incident spot is TM
polarized, and therefore the maximum amplitude of the
E, component is considerably larger than that of the E,
component.

When the spot is focused in the middle between two
pits, the differences between near fields for the two or-
thogonally polarized spots become larger. It is seen in
Figs. 11 and 12 that the total field is smaller than when
the spot is focused at the center of a pit. Furthermore, for
TM polarization there are two maxima at the fringe of the
neighboring pits with a minimum in between. However,
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Fig. 9. (Color online) Cross section of the amplitude of the E, component of the total field for the case of Fig. 6 in the (x,z) plane (left)
and the (y,z) plane (right). Both planes are through the center of the spot.
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Fig. 10. (Color online) Amplitudes of the E, (left) and the E, components (right) of the total electric field in a plane inside the air gap
and parallel to the surface of the disc at a distance of 5 nm from it. The Gaussian beam is TM polarized, and the incident spot is focused

on the center of a pit.
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Fig. 11.  (Color online) Amplitudes of the E, (left) and the E, components (right) of the total electric field in a plane inside the air gap

and parallel to the surface of the disc at a distance of 5 nm. The Gaussian beam is TE polarized, and the incident spot is focused in the
middle between two pits.

300

200

100

y
o

-100

-200

-300

-300 -200 -100 0 10

-300 -200 -100 0 100 200 300
X

X

i

-300 -200 -100 0 100 200 300 -300 -200 -100 0 100 200

300

x(nm) x(nm)

Fig. 12. (Color online) Amplitudes of the E, (left) and the E, components (right) of the total electric field in a plane inside the air gap

and parallel to the surface of the disc at a distance of 5 nm. The Gaussian beam is TM polarized, and the incident spot is focused in the
middle between two pits.
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Fig. 13. (Color online) Intensity patterns of the reflected field (i.e., E§+E§ of the reflected far field) when the incident Gaussian beam is
TE polarized and the spot is focused in the center of a pit (left) and in the middle between two pits (right). The normalized detected

intensities are 0.4795 (left) and 0.3724 (right), respectively.
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Fig. 14. (Color online) Intensity patterns of the reflected field when the incident Gaussian beam is TM polarized and the spot is focused
in the center of a pit (left) or in the middle between two pits (right). The normalized detected intensities are 0.4862 (left) and 0.4797

(right).

in the TE case, the maximum of the E, components occurs
at the center of the spot between the two pits.

In Figs. 13 and 14, the intensity patterns of the re-
flected field at the detector are shown when the incident
Gaussian beam is TE and TM polarized, respectively, and
the spot is focused either at the center of a pit or halfway
between two pits. It is seen that the patterns for TE and
TM polarizations differ substantially. Furthermore, the
total detected reflected intensity is considerably higher
when the spot is focused in the center of a pit than when
it is focused between the pits. When the pits are longer,
for pit lengths of 3T and 4T, for example, the computa-
tions predict similar effects. These computational results
are confirmed by experiments. They are in contrast to
what is measured for conventional compact disc and DVD
systems for which the reflected intensity is always ob-
served to be largest when the spot is focused between the
pits. This difference between conventional and near-field
recording may be due to the contribution to the reflected
intensity of scattered waves that are evanescent in air but
propagate in the SIL. These scattered waves contribute to
the detected signal in the case of near-field recording but
cannot contribute in conventional recording. The ampli-
tudes of these scattered evanescent waves may be ex-
pected to be larger when the spot is focused on the pit
than when the spot is focused on the land between the
pits.

7. CONCLUSION

A finite-element model for the rigorous modeling of elec-
tromagnetic scattering in micro-optics is described. The
model applies to nonperiodic structures and to structures
that are periodic in one, two, or three directions. The ma-
terials may be inhomogeneous and/or anisotropic dielec-
trics, metals, or magnetic materials. A computational do-
main was defined that enclosed all nontrivial scatterers.
This domain is extended in the directions of nonperiodic-
ity by a PML to prevent reflections. On the extended com-
putational domain a variational formulation was derived,
and Nédélec’s edge elements were used to discretize the
system. The system was solved iteratively by BICGCSTAB
with ILUTP as the preconditioner. Due to a ND and AMF
renumbering of the unknowns, the ILUTP was made quite
efficient. An application of the model to our proposal for
high-density optical recording using a solid immersion
lens has been discussed. It was found that, in contrast to
conventional recording, the detected reflected intensity is
largest when the spot is focused instead of between the
pits.
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