

Delft University of Technology

A Transformer-Based Approach for Smart Invocation of Automatic Code Completion

de Moor, Aral; van Deursen, Arie; Izadi, Maliheh

DOI
10.1145/3664646.3664760
Publication date
2024
Document Version
Final published version
Published in
AIware 2024

Citation (APA)
de Moor, A., van Deursen, A., & Izadi, M. (2024). A Transformer-Based Approach for Smart Invocation of
Automatic Code Completion. In AIware 2024: Proceedings of the 1st ACM International Conference on AI-
Powered Software (pp. 28-37). ACM. https://doi.org/10.1145/3664646.3664760

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3664646.3664760
https://doi.org/10.1145/3664646.3664760

A Transformer-Based Approach for Smart Invocation of
Automatic Code Completion

Aral de Moor
a.d.demoor@tudelft.nl

Delft University of Technology
Delft, Netherlands

Arie van Deursen
arie.vandeursen@tudelft.nl

Delft University of Technology
Delft, Netherlands

Maliheh Izadi
m.izadi@tudelft.nl

Delft University of Technology
Delft, Netherlands

ABSTRACT

Transformer-based language models are highly e�ective for code

completion, with much research dedicated to enhancing the con-

tent of these completions. Despite their e�ectiveness, these models

come with high operational costs and can be intrusive, especially

when they suggest too often and interrupt developers who are con-

centrating on their work. Current research largely overlooks how

these models interact with developers in practice and neglects to

address when a developer should receive completion suggestions.

To tackle this issue, we developed a machine learning model that

can accurately predict when to invoke a code completion tool given

the code context and available telemetry data.

To do so, we collect a dataset of 200k developer interactions with

our cross-IDE code completion plugin and train several invocation

�ltering models. Our results indicate that our small-scale trans-

former model signi�cantly outperforms the baseline while main-

taining low enough latency. We further explore the search space for

integrating additional telemetry data into a pre-trained transformer

directly and obtain promising results. To further demonstrate our

approach’s practical potential, we deployed the model in an online

environment with 34 developers and provided real-world insights

based on 74k actual invocations.

CCS CONCEPTS

• Human-centered computing; • Computing methodologies;

KEYWORDS

IDE, Code Completion, Usability, Transformers, Interaction

ACM Reference Format:

Aral de Moor, Arie van Deursen, and Maliheh Izadi. 2024. A Transformer-

Based Approach for Smart Invocation of Automatic Code Completion. In

Proceedings of the 1st ACM International Conference on AI-Powered Software

(AIware ’24), July 15–16, 2024, Porto de Galinhas, Brazil. ACM, New York,

NY, USA, 10 pages. https://doi.org/10.1145/3664646.3664760

1 INTRODUCTION

Transformer-based code completion has become essential in mod-

ern software development [46]. The widespread adoption of Arti-

�cial Intelligence (AI) tools in coding highlights the signi�cance

AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0685-1/24/07
https://doi.org/10.1145/3664646.3664760

of these models, particularly those built on the Transformer ar-

chitecture [35]. These AI-driven tools typically analyse the code

preceding the cursor to suggest the next lines of code [4, 16]. Recent

advancements have expanded the considered context to include

not only the subsequent code [3, 13, 17, 24, 32], but also related

snippets from other �les to enrich the prediction accuracy [25, 42].

This focus on augmenting the content quality of completions

has inadvertently overshadowed a vital aspect of the user experi-

ence: the interaction dynamics between the developers and the AI

tools [2, 31, 39]. While these models generate high-quality code

suggestions, their operational and environmental costs pose signif-

icant challenges [6, 27]. Moreover, due to their potential to disrupt

the coding work�ow of developers, the frequency and timing of

these suggestions is critical for the overall productivity the tools

aim to boost [31].

Previous e�orts focus on developing a �ltering model designed

to show a completion only when there is a high con�dence it will be

accepted [29, 36]. This reduces inference cost and likely improves

developers’ focus. However, Sun et al. [36] assume completions are

rejected based on the context before the cursor alone, ignoring the

interplay with developers’ mode of thought. Mozannar et al. [29]

improves on this by considering in-IDE telemetry data. However,

they propose a relatively complex ensemble model that can incur

additional latency by �ltering after a completion is generated; and

do not consider that some completions, despite being rejected, may

help guide the user in their thinking.

In this study, we take a further step to proactively predict when

to invoke a code completion model based on code context and

telemetry data. Our lightweight, transformer-based �ltering model,

JonBERTa, is designed to trigger a code completion model only

when there’s a strong likelihood that a developer requires assis-

tance or is likely to accept the suggested completion. To train our

model, we leverage the data we have collected from developers’

real-world interactions with our open-source code completion tool

called Code4Me1, available for both VSCode and Jetbrains IDEs.

We gather code context and telemetry data from user interactions

with the plugin, subject to their consent. We use two indicators

to gauge when a developer would prefer to receive a suggestion

based on usage data: (1) when they accept a model-suggested com-

pletion, and (2) when they manually invoke the model, irrespective

of whether they ultimately accept or reject the suggestion.

Every keystroke made by a developer provides two key types of

contextual information that assist our invocation-�ltering model

in deciding whether to trigger the LLM-based completion system.

These are: (1) the coding context surrounding the point of invoca-

tion, and (2) telemetry data gathered via the plugin, e.g. the time

1https://code4me.me

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

28

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0003-5105-0518
https://orcid.org/0000-0003-4850-3312
https://orcid.org/0000-0001-5093-5523
https://doi.org/10.1145/3664646.3664760
https://doi.org/10.1145/3664646.3664760
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3664646.3664760&domain=pdf&date_stamp=2024-07-10

AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil de Moor et al.

since the last completion. First, we use code context alone and

train a transformer-based classi�er. Next, we investigate hybrid

transformer architectures integrating telemetry data as additional

features. Based on our promising results, we evaluate our approach

in a user-study with 34 developers, to investigate how our �lters

perform in practice. To this end, we also propose a new performance

metric to help mitigate issues from optimising for just acceptance

rate in previous work [29, 46], which weighs proxies for the quality

and timing of a completion equally as a harmonic mean. We �nd

that our proposed JonBERTa-head model scores highest in both

the o�ine and online evaluation.

Our contributions are as follows:

• An o�ine evaluation of a transformer model we �ne-tuned

on our collected code completion dataset, demonstrating that

code context can considerably improve �ltering accuracy

over a baseline trained on telemetry features only.

• JonBERTa, a novel transformer architecture to show the

potential of training jointly on code context and telemetry

data; as well as a custom tokenisation strategy centred on

the cursor position.

• An online evaluation of our �lters in a code-completion

plugin with 74k invocations, spanning 34 users.

• For reproducibility purposes, we publish our replication

package2 with an online appendix, as well as our �ne-tuned

models3. However, in compliance with the GDPR, we cannot

share our training dataset.

2 BACKGROUND AND RELATED WORK

Today, the most prominent AI-powered code completion tool with

over one million active users is GitHub Copilot [11]. This tool

is powered by a transformer-based [40] LLM trained on source

code, originally with the objective of predicting a function body

given its documentation [4]. However, given that the su�x lines

below the function are unavailable to the model, the current model

powering Copilot is presumably trained with a Fill-In-the-Middle

(FIM) objective [3]; where the model is trained to predict a span of

arbitrary length between the pre�x and su�x. Several alternatives

exist to Copilot, namely Amazon CodeWhisperer [1], TabNine [37],

Codeium [7], Sourcegraph Cody [34], JetBrains AI [18], and Gemini

Code Assist [10].

Since its inception, several user studies and surveys [2, 22, 28,

30, 31, 39, 41, 46] have been performed on GitHub Copilot4. They

highlight that the transformer models backing such tools excel

at providing contextual suggestions, due to their semantical un-

derstanding of code. As a result, this leads to increased developer

satisfaction [39] and perceived productivity [46].

2.1 Code Completion Pain Points

Nonetheless, such new technology comes with new questions about

its usability and design, arising from developer pain points, such

as: distraction due to the always-on nature of suggestions [31], out-

of-distribution generation leading to hallucinated terms [19], and a

2https://github.com/ar4l/curating-code-completions
3https://huggingface.co/collections/AISE-TUDelft/smart-invocation-of-code-
completion-66473ddf6fa6cf6e541f750c
4As of 29 December 2023, GitHub Copilot, and others, also o�er a conversational
interface; but we limit the scope of this paper to generative code completion only.

lack of personalisation with developers’ mode of thought [2]. Copi-

lot’s authors themselves reported that about two-thirds of shown

completions are ignored by their end-user [46]. Furthermore, Git-

Clear recently released a report empirically describing a strong

correlation between the adoption of AI code completion and code

churn in industry-grade software engineering [14], raising ques-

tions about the impact of AI on software maintainability. Other

studies further �nd that the bugs introduced by LLM-powered code

completion are often more subtle [4, 31], and di�cult to revert [39].

Barke et al. [2] �nd that developer interactions with AI-powered

code completion are bimodal: either accelerative, where the devel-

oper knows what they want and uses the tool to get there faster; or

explorative, where the developer relies on the tool to suggest pos-

sible approaches. Prather et al. [31] observe two additional modes

among novices: shepherding, where a novice slowly accepts a sug-

gestion; and drifting, where they are led down a cyclic ‘debugging

rabbit hole’. Not only is this an ine�cient use of computational

resources, but this also misaligns the tool with developer intent.

Some studies advocate for allowing users to con�gure the timing

and context of completions [2, 41] to address these concerns. How-

ever, we assume that the majority of end-users will likely expect

such tools to work out of the box and adapt to their usage patterns.

The issue of language model alignment is as pressing as the rate

of their increasing capabilities. As LLMs are becoming more inte-

grated into end-user work�ows, it is necessary to think beyond

aligning mere content; but, also the interactions with this content.

2.2 Existing Solutions

Sun et al. [36] aim to address this problem by �ltering out comple-

tions that are likely to be rejected. They train a transformer-based

classi�er on the code pre�x before it is submitted to the completion

model, and �nd it can hide 5% of suggestions that would have been

rejected with 94.5% accuracy. However, the authors rely on the

assumption that rejected completions are due to insu�cient code

context alone.

Mozannar et al. [29] train a �lter consisting of two model ensem-

bles: one ensemble before and one after a completion is generated.

They cite it can hide 53% of completions with the guarantee 91%

would have been rejected by the user. However, despite designing

their tool for GitHub Copilot, they do not include a user-study.

Additionally, their �lter can depend on a completion being gener-

ated, which is guaranteed to incur additional latency and compute

in practice. Moreover, both of these tools aim to maximise the ac-

ceptance rate of the shown completions, while the need for better

alignment with end-users has been highlighted [2, 29, 33, 39].

Furthermore, as detailed in a reverse-engineering blog-post [38],

Copilot also has its own logistic-regression classi�er to �lter out

completions based on telemetry data. We analyse how it weighs

each feature in more detail in our online appendix, and design our

baseline in this study as similar as possible.

A head-runner in this �eld would be Gmail SmartCompose [5],

considering the same problem in a natural-language email setting.

The authors detail a deep consideration for latency, scalability, and

personalisation. However, their approach uses legacy language

model architectures; and their insights, while valuable, may not

entirely apply to the programming process.

29

A Transformer-Based Approach for Smart Invocation of Automatic Code Completion AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil

3 PROBLEM DEFINITION

Code completion aims to improve developer productivity by saving

them keystrokes and keeping them in their �ow. Ziegler et al. [46]

proposes the acceptance rate of suggestions as a proxy for develop-

ers’ perceived productivity; however, this is critiqued by Mozannar

et al. [29], whom �nd that optimising the acceptance rate results in

shorter and typically less useful suggestions.

Therefore, some completions, despite seemingly helpful, can

potentially be detrimental to software quality and programming

�ow. And, conversely, some completions, despite being rejected,

are not wholly ignored by the developer and are potentially helpful

in guiding their thinking (e.g., a tip-of-the-tongue function call,

but with the wrong arguments). Determining the actual quality

of a completion, based on its functional correctness and human

preferences for style, remains an open question, though research is

progressing in the right direction [8, 44, 45].

Consequently, we reframe this problem to what we can actually

measure. We consider two plausible reasons why a user may have

rejected a suggestion, as depicted in Figure 1: (1) the model is

incapable of generating a good suggestion, which is mainly code

context-dependent; or (2) the user does not want to see a suggestion,

which is mainly user telemetry-dependent. These reasons are not

exclusive and likely have considerable overlap. Thus, we motivate

the need for integrating these feature types to better align with the

end-user’s �ow.

Model incapable of

generating a worth-

while completion.

Rejected Completions

User does not want

to see a completion

at this moment.

Figure 1: Reasons for Rejected Completions.

3.1 Code-Completion Data and Constraints

Throughout this study, we leverage Code4Me, an open-source code

completion plugin with around 100 monthly active users developed

at our institution [17]. We note three key di�erences compared with

the popular code completion plugins mentioned earlier (Section 2):

• Line-completion only. Other tools tend to provide multi-

line suggestions in ghost-text style; while we provide com-

pletions up to a newline character. Additionally, comple-

tions are displayed in a completion box along with typical

language-server suggestions.

• Restrictive activation. Contrary to alternative plugins, we

provide completions only on a prede�ned set of trigger char-

acters; at which IDE-based autocomplete would typically

trigger (e.g., full stop or an opening parenthesis). Though,

we do allow users to manually invoke a completion.

• Model selection. Our line-completions are generated by

smaller language models than the industry-standard, allow-

ing the user to pick one of three completions provided by

InCoder [9], UniXCoder [12], and CodeGPT [26].

To help keep developers in their �ow, we want to leverage lan-

guage models’ ability to complete code even when not at a prede-

�ned trigger point. In practice, this means that our plugin will query

the completions server at any cursor position, and we would like

to �lter out those points where it may not be necessary to generate

a completion. Thus, the plugin should �lter out those automatic

suggestions that historically ended up being rejected or ignored by

the user. And, additionally, the plugin infers that a user wants a

suggestion, at a historically manual trigger point.

As added context, our �lter should prioritise false-positives over

false-negatives. We assume that this is where user preferences lie,

given the constant-suggestion nature of the more popular plugins.

However, to avoid wasted compute and developer distraction, we

aim to minimise those completions that are certain to be ignored;

e.g., because the developer is actively typing, or their intent cannot

be accurately inferred at the current cursor position.

Lastly, in terms of non-functional constraints, we would like our

�lter to take at most 10ms to make a decision. This is in preparation

for a backend migration to the vLLM engine [21]. For any incoming

completion prompt, this library waits about 10ms for to see if it can

be batched together with other requests. If our �lter takes less than

10ms, it means we incur 0 additional latency over the base wait time.

And, even if �ltering takes longer, it is still possible to terminate

the token-by-token generation process early, saving considerable

compute as our completions take about 300–400ms to generate.

3.2 Joint Optimisation Objective

Our goal is to train a �lter to invoke the completion model only

at the instant a developer wants to see a completion. We partially

mitigate the issues arising from optimising for acceptance rate,

through the observation that we may actually want to display the

rejected completions that were manually invoked via a key-bind. By

training a �lter with this objective, along with any completions that

were accepted, we hope to better align the completions that pass

through the �lter with what end-users want at that moment. Our

objective is thus perpendicular to existing work in this area [29, 36].

The objective jointly optimises the following: (1) we aim to min-

imise the amount of times an end-user has to manually invoke the

model, and (2) we aim to minimise the amount of rejected comple-

tions that were automatically triggered. In other words, we consider

all manual invocations and automatic, accepted completions to be

our positive class (not �ltered out), and rejected automatic comple-

tions to be our negative class (should be �ltered).

An added bonus of considering manually-invoked, yet rejected

completions in the positive class is that the resulting �lter will be

less dependent on the completion-model’s capabilities. We assume

that a manual trigger is a strong indicator that a user would like

to see a suggestion, and choose not to depend on whether the

suggestion was accepted in this scenario.

30

AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil de Moor et al.

4 APPROACH

We aim to �lter out suggestions by teaching a model to predict,

at any cursor location, whether to invoke the completion model

or not. To do this, we propose to leverage our collected dataset of

code completions and accompanying in-IDE telemetry to better

discern the nature of interactions. Noting the state-of-the-art con-

textual understanding that transformer models exhibit, we explore

architectures for integrating telemetry features with code context.

4.1 JonBERTa Architecture

We augment a code-pretrained RoBERTa architecture [23], yielding

the following two models of 84M parameters. As there are many

possible extensions to a transformer model, we limit our search

space to parameter-e�cient implementations. Speci�cally, both

our models incur less than 1M additional parameters. We assume

readers’ familiarity with the transformer architecture [40].

• JonBERTa-head incorporating telemetry features directly

in the classi�cation head.

• JonBERTa-attn attending to (small) learned feature embed-

dings in the self-attention modules.

We use the Jon pre�x to refer to Jointly optimised attention,

to both code context and telemetry data. The motivation behind

this approach lies in the state-of-the-art contextual understanding

transformermodels exhibit, which we hypothesise can also leverage

contextual telemetry data. We further propose a novel tokenisation

strategy centred on the cursor, to capture the most signi�cant parts

of code context.

4.1.1 Extended ClassificationHead. Weexplore a simple JonBERTa-

head model depicted in Figure 2. Given that a classi�cation head

�rst pools the output of the previous layer to the �rst token (<cls>,

the classi�cation token), it is trivial to extend this token’s one-

dimensional embedding with additional feature data.

In the scope of this paper, we only consider a JonBERTa-head

where the embedding is concatenated before reaching the dense

layer. The dense layer is a matrix of size 2×2 , where 2 is the length of

a token embedding. Dense layers can help the model learn low-rank

embeddings [15] of both feature and code context (which can help

with train/test generalisability), while the projection layer afterward

serves as a logistic classi�er. We increase only the dense layer’s

size, along one axis, to accommodate the concatenated features,

and reinitialise it.

4.1.2 Extended Self-A�ention. Figure 3 depicts our JonBERTa-

attn model, which learns feature embeddings to be attended to in

the pre-existing self-attention module. Each weight in the feature

embedding matrix is learned as a function of the corresponding

scalar feature. Given this embedding, keys, and values can be pro-

duced to be attended to by code tokens. In practice, the attention

module itself is equivalent to the original model, except that the

keys emitted from features can dot-multiply with the queries from

token embeddings, to produce weighted scores for how much a

given feature’s value should be added to that token embedding.

By including telemetry feature embeddings in its self-attention

mechanism, we hypothesise the model is able to combine both

modalities to grasp a �rmer picture of the current user intent. We

Multi-Head

Attention

Token
Embedding

Add & Norm

Feed

Forward

Add & Norm

Linear (proj.)

Linear (dense)

Code Context
(Prefix & Suffix)

Positional
Encoding

N×

Output
Probabilities

RoBERTa

Telemetry Features
(Scalar-Valued)

Norm

Figure 2: Telemetry Feature Data in Classi�cation Head.

further explore a variety of layer combinations and feature embed-

ding dimensions in the online appendix of our replication package,

but cannot conclusively state which achieves better results. We

use a feature embedding dimension of 204 throughout this study

to limit the additional parameters to the model, while ensuring

enough expressivity.

4.1.3 Tokenisation Strategy. The code context provided to our

JonBERTa-head and JonBERTa-attn models consists of the pre�x

(before the cursor), and the su�x (after the cursor). Commonly,

tokenisers truncate such sequence pairs either both on the left

or both on the right in paired sequence-classi�cation tasks (e.g.,

question-answer matching). However, we hypothesise that it is op-

timal to centre the context window on the cursor location. Perhaps

surprisingly, something we have not yet seen in previous work.

To achieve this within the JonBERTa context window of 512

tokens, we �rst tokenise the su�x with right-truncation up to a

maximum of 128 tokens. Denote the number of tokens in the su�x

by =B , which may be less than 128 if the developer is close to the

end of the �le. We then tokenise the pre�x, up to a maximum of

512 − 1 − =B ; subtracting one o� the total context window here, to

allow us to insert a <sep> separator token at the cursor position. If

the total length happens to be shorter than the context window, we

31

A Transformer-Based Approach for Smart Invocation of Automatic Code Completion AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil

Multi-Head

Attention

Token
Embedding

Feature

Embedding

Add & Norm

Norm

Feed

Forward

Add & Norm

Linear (proj.)

Linear (dense)

Code Context
(Prefix & Suffix)

Positional
Encoding

N×

Output
Probabilities

RoBERTa

Telemetry Features
(Scalar-Valued)

Norm

Figure 3: Self-Attention Extended to Telemetry Feature Data

conventionally right-pad the remainder of the sequence. Note that

this doesn’t perfectly centre the cursor in the context window, and

assumes the pre�x holds more weight than the su�x. This decision

is substantiated by the results in our online appendix.

4.2 Dataset

We train our models on data collected from a code completion

plugin developed at our institution (Section 3.1). Any given code

suggestion is either manually invoked via a key-bind, or automati-

cally on a prede�ned set of common trigger characters (e.g., a full

stop, or opening paranthesis) [17]. As stated in our objective Sec-

tion 3.2, we aim to optimise for those completions that are either

(1) manually invoked, or (2) automatically invoked and accepted.

While we have over 1M invocations of our tool, after �ltering

for high-quality samples containing code context (collected on an

opt-in basis, ∼200k samples), and balancing our dataset by under-

sampling, we maintain only about 10k code suggestions for training.

Our test set, following the real-world distribution of manual and

automatic invocations, contains about 20k samples, completely

separate from the training set. We empirically compare di�erent

dataset distributions in our online appendix, motivating the under-

sampled training distribution in this classi�cation scenario where

classes are not equally represented in practice.

Table 1: Class Distribution in Our Code Completion

Train/Validation and Test Datasets.

Class Positive Negative

Completion
Manual

Automatic

Type Accepted Rejected

Test 6118 (27.8%) 431 (1.9%) 15889 (70.3%)

Train/Validation 3909 (33.3%) 3909 (33.3%) 3909 (33.3%)

Table 1 shows the (sub-)class distribution of our train/validation

and test dataset. We purposefully avoid distinguishing between

manual accepted, and manual rejected invocations of our tool, as

we consider both to be part of our positive class. As added context,

however, themanual rejected invocations constitute a total of 47% of

our positive class in the real-world (test) distribution. Unfortunately,

we are unable to share our collected dataset as it contains user-

sensitive code context.

5 EXPERIMENTAL SETUP

We laid out the code completion plugin context and problem con-

straints in Section 3. And, having established our search space for

this problem in Section 4, we now propose how to navigate it.

5.1 Research Questions

As de�ned in Section 3.2, the objective of our models is to label

manual and automatic invocations which are accepted as positive

(helpful); and, consider the remaining automatic invocations that

are rejected as the negative class (unhelpful). To this end, we pose

the following research questions:

RQ1 How does a transformer model compare to a baseline

logistic regression model at �ltering out unhelpful

suggestions (o�line evaluation)? We �ne-tune a code-

pretrained RoBERTa [23] model (CodeBERTa) on code com-

pletion snippets collected from our plugin, and evaluate it

against a logistic regression baseline trained on telemetry

and selected textual features. The baseline is inspired by

reverse-engineering GitHub Copilot and re�ects the state-

of-the-art.

RQ2 Can a pre-trained transformer be extended to incor-

porate an additional modality consisting of telemetry

feature data?We train our JonBERTa variants (Section 4.1)

with telemetry feature data as an additional modality when

making predictions.

RQ3 How e�ective are the above approaches in a real-world

setting (online evaluation)? We deploy our �lters in a

code-completion plugin to investigate whether the �lters’

decisions align with 34 users in practice. We further evalu-

ate the computational feasibility of our approach, and note

discrepancies between the o�ine and online environments.

5.2 Evaluation Settings and Metrics

5.2.1 Metrics for O�line Se�ings (RQ1&RQ2). To evaluatewhether

our models can capture the di�erent invocation types that deter-

mine our classes (see Section 3.2), we compute accuracy per manual,

32

AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil de Moor et al.

accepted automatic, and rejected automatic subclass. Based on this,

we further compute the macro average accuracy, to serve as a single

metric to compare models on.

We choose macro average accuracy (across classes), as opposed

to micro average (across all samples), as our positive classes are

under-represented in our code-completion dataset. As a result, it is

paramount that completions the developer wants to see are priori-

tised against the vast majority of completions that are ignored. We

assume that the mistake of �ltering out a completion when a devel-

oper would want to see one is worse than showing a completion

when the developer does not want to see one.

As shown in Table 1, some of our classes are considerably under-

represented. The variance due to such a small dataset can become

pronounced when training transformer models. To capture this

variance, we train �vemodels on �ve train/eval splits (9:1). Then, we

bootstrap our accuracy scores on the test set by alternatingly taking

a sample from each of the �ve models, for a total of = = 10, 000

samples.

5.2.2 Metrics for Online Se�ing . For our online evaluation, we no

longer have a valuable distribution of manual/automatic classes as

we remove the prede�ned trigger-point invocation rule. To remedy

this, we evaluate completions that pass the �lter via (1) acceptance

rate as a proxy for their timing with developers’ mode of thought;

and (2) score accepted completions using CodeBERTScore [44] as a

proxy for their quality. We also measure the latency in milliseconds.

CodeBERTScore is a recently-proposed measure that correlates

closest with both functional correctness and human preference [44].

This is contrary to the oft-seen CodeBLEU, METEOR, and ROUGE-L

measures which are designed for natural languages and do not work

well with the syntactic structure of programming languages [8].

CodeBERTScore is computed by passing the code completion and

ground truth (after 30s) through a code-pre-trained encoder model,

and then computes the F3 score based on the similarity between

token embeddings at a layer that correlates best with human pref-

erence and functional correctness.

We further propose the harmonic mean of these two as a single

metric to compare models by. Speci�cally, optimising only accep-

tance rate results in worse completions [29, 46]. And, optimising

just the content of a completion, does not make the �lter align well

with developers, as evidenced by the number of manual comple-

tions we observe in our dataset. We hope this communicates to the

reader how these two measures should be weighed in our framing

of the problem.

5.3 Feature Engineering and Baselines

The features extracted from our code-completion data for the Lo-

gistic Regression, CodeBERTa, and JonBERTa models, are shown

in Table 2. We purposely avoid providing JonBERTa with features

that can be inferred from the code context (e.g., whether there is

whitespace after the cursor), to assert it is able to leverage that data

implicitly. To this end, we de�ne three types of feature data:

T Telemetry as those features that cannot be directly extracted

from a snippet of code.

C Code context as those textual features that are explicitly

extracted by �xed rules.

S Snippet as the prompt to the completion model, truncated

to the �lter model’s context window (512 tokens) using our

centred-on-cursor strategy (Section 4.1.3).

Table 2: Features Used in Classi�cation, per Filter Model.

Log. Reg. Code Jon

T1 Time since last completion ✓ ✓

T2 Document length ✓ ✓

T3 Cursor o�set ✓ ✓

T4 O�set as percentage ✓ ✓

T5 language (20 options) ✓ ✓

T6 IDE (jetbrains / vscode) ✓ ✓

C1 Length of last pre�x line ✓

C2 Above, without whitespace ✓

C3 Whitespace after cursor ✓

C4 Last pre�x char (ASCII 32-125) ✓

C5 Above, without whitespace ✓

S1 Pre�x ✓ ✓

S2 Su�x ✓ ✓

The features for the logistic regression model are inspired by

reverse-engineering Copilot [38], with the exception of one feature

that depends on a pre-existing �lter (which we do not have). The

languages are the same as the 20 considered by Copilot. We choose

to follow Copilot as, to our knowledge, this is the only �lter cur-

rently deployed in practice, and contains most of the signi�cant

features found in previous work [29]. An extended explanation of

these features can be found in our online appendix.

5.4 Con�guration and Implementation Details

We �ne-tune all transformer models for six epochs with a 24−5

learning rate and 16 batch size from a public CodeBERTa-base-v15

checkpoint, with each epoch containing about 10k training samples.

We also use its tokeniser for snippet features. For the JonBERTa

models, we �ne-tune from the 3rd-epoch CodeBERTa checkpoint,

for an additional three epochs; as we observe this results in stabler

training than training from the public checkpoint.

All of our transformer models are implemented with PyTorch6,

and trained on an NVIDIA GeForce RTX 3080 GPU, taking about 20

minutes per model. All metrics are computed using the functions

provided by scikit-learn 7 library. For our online evaluation, we

use an inference server with an NVIDIA GeForce RTX 2080 Ti,

separate from our training setup. As this is a relatively older GPU,

we expect slightly higher latency during �lter inference.

6 RESULTS

6.1 RQ1: Impact of Code Context

To address RQ1, we evaluate the contributions from training on

snippet features (S), against telemetry (T), and �xed-rule textual

5https://huggingface.co/huggingface/CodeBERTa-small-v1
6https://pytorch.org
7http://scikit-learn.org

33

A Transformer-Based Approach for Smart Invocation of Automatic Code Completion AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil

features (C). To this end, we �rst consider logistic regression base-

lines trained on iteratively more T and C (see Section 5.3). Lastly,

Code4Meis cross-application, so we include a feature for the IDE.

In our dataset, JetBrains users tend to have a higher suggestion

acceptance rate, partially because they support only the popular

languages 8 which code completion models tend to perform best

on [20].

We do not directly extract the weights from its plugin code. In-

stead, we retrain the Copilot-style baselines on our own completion-

request dataset. because the data distribution of our completion

plugin is likely di�erent due to its di�erent invocation methods and

completion style as explained in section 3.1.

Table 3: Filter accuracy for Logistic Regression and Code-

BERTa classi�cation models, given per invocation sub-class.

Manual Auto/acc. Auto/rej. Avg.

Logistic Regr.

Telemetry T1−5 99.6 ±0.3 99.1 ±0.7 1.4 ±0.7 66.7

+ Textual C1−4 98.6 ±0.3 66.8 ±4.5 61.9 ±1.2 75.8

+ Copilot C5 98.6 ±0.3 66.1 ±4.6 63.9 ±0.9 76.2

+ IDE T6 98.5 ±0.3 66.1 ±4.6 65.0 ±0.9 76.5

CodeBERTa 98.5 ±0.4 74.7 ±4.6 73.1 ±1.2 82.1

As shown in Table 3, a model trained on telemetry features (T1–

5) alone, while attaining average accuracy of 66.7%, is completely

unable to distinguish automatic invocations that end up being re-

jected (1.4% accuracy). Thus, it is necessary to include some explicit

textual features (C1–4) for distinguishing these classes. This inti-

mates that extended code context can be leveraged. We refer to

our replication package for additional experiments with di�erent

granularities of textual features.

Notably, CodeBERTa, trained on solely code snippet (S) features,

can outperform the best baseline on automatically accepted and

automatically rejected queries by 9.6 and 3.2 absolute percentage

points, respectively. This indicates that the semantic understanding

of code such a transformer model exhibits propels it past the clas-

si�cation baseline. And, furthermore, this snippet modality likely

contributes orthogonally to the telemetry data, as both are distinct

features that cannot be inferred from each other. This motivates

our architectural exploration to attend to both these modalities in

one classi�cation model.

6.2 RQ2: Hybrid JonBERTa Models

To address RQ2, we train JonBERTamodels leveraging both snippet

and telemetrymodalities and compare them to our newCodeBERTa

baseline. This architectural search space is especially vast for the

JonBERTa-attn model, due to the inclusion of feature embeddings

with tuneable parameters. As such, we defer most of our experi-

ments to the online appendix in our replication package, as well

as a few JonBERTa-head experiments. We choose to only display

the �rst-layer con�guration here9 to give telemetry embedding an

8Very recently, JetBrains did release a preview for a cross-language IDE, Fleet:
https://www.jetbrains.com/�eet/
9JonBERTa-attn 0L: Ranking 19/67, Median average score is 81.7.

equally early chance as token embeddings at communicating in the

attention mechanism; and choose an embedding dimension of 204

to not incur too many additional parameters.

Table 4: Filter accuracy forCodeBERTa and JonBERTa classi-

�cationmodels, given per invocation sub-class. Error Bounds

are for ? < 0.5 via Bootstrapping = = 10 000.

Manual Auto/acc. Auto/rej. Avg.

CodeBERTa 98.5 ±0.4 74.7 ±4.6 73.1 ±1.2 82.1

JonBERTa

head (dense) 98.6 ±0.4 78.0 ±6.2 71.4 ±5.1 82.7

attn (0L) 98.6 ±0.4 75.0 ±6.8 72.5 ±3.5 82.0

In Table 4, JonBERTa-head promisingly shows it can better

discern between completion classes, though our results are less

conclusive than before. While incorporating the telemetry features

in the �rst attention layer of JonBERTa-attn matches the per-

formance of JonBERTa-head, implying it can learn to integrate

telemetry features with its semantic understanding of code, this

may equally well be attributable to variance. This could be, in part,

due to the limited training set size as revealed by our bootstrap

strategy for computing error bounds (Section 5.2), which we further

discuss as an internal threat to validity in Section 7.1.1.

Regardless, we present these results motivated by the same argu-

ment as in Section 3: Transformermodels are becoming increasingly

integrated into software engineering tasks, but also well outside of

the �eld. As a result, there is a need to integrate additional modali-

ties into pre-trained models, as tokens are but one of many sources

of information that can be leveraged in AI-powered tools.

6.3 RQ3: Online Evaluation

To evaluate how our �lters fare in the real world, we deploy them in

a code completion plugin with 34 developers over a 2 week period,

resulting in 74k requests. To this end, we disable the prede�ned

trigger-point constraint that was described in Section 3.1, to now au-

tomatically invoke the completion model at the historically manual

trigger-points.

We perform an A/B study by assigning each user one of the

following �ve �lters per coding session. We de�ne a session as

a sequence of completion requests where any two are no more

than 30 minutes apart, to avoid end-user confusion from di�erent

completion behaviour on every request. For all �lters, requests with

a prompt (pre�x + su�x around the cursor) less than 10 characters

are automatically rejected, as they do not have enough context for

a worthwhile completion.

1 None: all completion requests pass through.

2 Logistic regression using telemetry (T) and context (C)

features.

3 CodeBERTa using only snippet (S) features.

4 & 5 JonBERTa-head and -attn using both T and S.

Table 5 shows our results. Using our proposed harmonic mean

to convey the balance of suggestion quality and timing, JonBERTa-

head performs best. While our proposed metric maintains ordi-

nality among the CodeBERTa and JonBERTa models, compared

34

AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil de Moor et al.

Table 5: Completion statistics for �lters deployed in

Code4Me. The relative acceptance rate is with respect to

None. Latency is computed as the median of all requests.

Filters
JonBERTa

None LogReg. Code head attn

Requests

Received 13.5k 10k 20k 15k 13k

Filtered out 2.2% 29.4% 36.6% 34.4% 39.4%

Completions

Shown 97.8% 70.5% 63.2% 65.6% 60.5%

Accepted 1.42% 0.62% 1.20% 1.44% 1.03%

Accepted

Relative rate 100.0% 45.0% 84.5% 101.0% 72.3%

CodeBERTScore 0.76 0.94 0.85 0.82 0.88

Harmonic Mean 0.864 0.609 0.847 0.905 0.794

Latency (ms) 0.0 0.2 25.0 20.8 24.1

to the o�ine evaluation, this also highlights our proposed metric

is not perfect, as presumably, all our �lters should be performing

better than the no-�lter baseline. We defer discussion on alternate

weightings for the harmonic mean to future work (Section 7.1.3),

to avoid con�icting interests from tuning our metric here.

Additionally, we demonstrate the feasibility of our approach in

practice. A lightweight transformer model can be deployed server-

side as a �lter for incoming requests, with relativelyminimal latency

compared to the completion model itself, which takes 300-400ms in

our case. Future work can consider further optimising these models,

through e.g., model compression [43], for client-side deployment.

7 DISCUSSION

We anticipate that the issue of redundant invocation will become

even more noticeable as software engineering tasks increasingly in-

corporate billion-parameter transformermodels. Our results demon-

strate the e�ectiveness of using a smaller, lightweight transformer

to control when a larger, completion model is invoked. Moreover,

we believe smart invocation �ltering models such as ours not only

enhance code completion but also any other transformer-based

interaction with users.

To our knowledge, we are the �rst work to augment a pre-trained

transformer with additional feature modalities. Transformer models

exhibit exceptional contextual understanding, yet are bottlenecked

by the textual medium. Especially considering that in-app telemetry

data is often collected anyway, we highlight that it is fruitful to

leverage this additional input dimension. By showing promising

results in this search space, we hope to inspire others to venture

deeper.

7.1 Threats to Validity

7.1.1 Internal: Limited Contextual Usage Data. In RQ1 and RQ2,

we used a training dataset of just 10k samples. This size is not

optimal for fully examining the potential of hybrid transformer

models enhanced with extra feature data. Expanding the dataset

in future research would likely o�er a better understanding of
these models’ capabilities, enabling more meaningful comparisons

between di�erent architectures.

7.1.2 External: Generalisability to Other Code-Completion Tools.

We utilized a code-suggestion plugin that has a smaller user base

compared to larger production systems. This choice introduces

several factors that might impact how our �ndings can be applied

to other code completion tools. These di�erences have been detailed

in Section 3.1. Our approach, while speci�c, o�ers valuable insights

but warrants caution when generalizing to other contexts.

7.1.3 Construct: Limitations of the Proxy Metrics. In our online

evaluation, we use the harmonic mean of acceptance rate and Code-

BERTScore as our metric to measure performance. This approach,

suggested for further exploration in future studies, allows for adjust-

ments in how each component is weighted. Consistent with earlier

research [29, 46], we acknowledge that these proxy metrics might

not fully capture the usability of the interaction without potentially

compromising it in some other way. To gain a deeper understand-

ing, we suggest that future work could bene�t from qualitative

studies, including interviews with developers, to complement these

quantitative measures.

7.1.4 Ethical Considerations. Our research received approval from

the institutional ethical board and explicit user consent for data

use. Additionally, we have secured explicit consent from users

before collecting and using their information. We chose not to

deeply investigate privacy issues related to developer data usage,

as our invocation �ltering models (classi�ers) pose fewer privacy

risks compared to generative models. However, to comply with the

GDPR, we are unable to share our dataset as we cannot guarantee

anonymity.

8 CONCLUSION AND FUTUREWORK

To summarise, we train a transformer-based invocation-�ltering

model on a dataset we collected from an open-source code com-

pletion plugin, Code4Me. We show that code context is especially

useful in �ltering predictions, and highlight the potential of inte-

grating this information with the telemetry data collected in an IDE.

Lastly, we deploy our �lters in practice and show their practical

e�ectiveness in both o�ine and online settings.

Future work can more thoroughly explore the search space we

have established, by utilising a larger dataset. Our limited dataset

may not fully represent the diverse behaviours of developers, and re-

lated work shows promising results in personalising the invocation-

�ltering system [5, 29]. We choose not to explore this avenue in

this study to limit our architectural search space, though strongly

advocate for further exploration in this area.

Lastly, we note that delivering completions exactly when a de-

veloper requests them might not always match what developers

truly need in the long run. Tracking the long-term impact of these

completions presents challenges, yet understanding this is crucial,

especially as the use of AI tools shows a link to increased code

changes. This domain deserves further investigation to better align

for lasting developer bene�ts.

35

A Transformer-Based Approach for Smart Invocation of Automatic Code Completion AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil

REFERENCES
[1] Amazon CodeWhisperer 2023. AI Code Generator. Online. https://aws.amazon.

com/codewhisperer/
[2] Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2022. Grounded

Copilot: How Programmers Interact with Code-Generating Models. Proceedings
of the ACM on Programming Languages 7, OOPSLA1 (Oct. 2022), 85–111. https:
//doi.org/10.1145/3586030

[3] Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine
McLeavey, Jerry Tworek, and Mark Chen. 2022. E�cient Training of Language
Models to Fill in the Middle. http://arxiv.org/abs/2207.14255 arXiv:2207.14255
[cs].

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish
Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,
Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe
Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam,
Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage,
Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam
McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large Lan-
guageModels Trained on Code. http://arxiv.org/abs/2107.03374 arXiv:2107.03374
[cs].

[5] Mia Xu Chen, Benjamin N. Lee, Gagan Bansal, Yuan Cao, Shuyuan Zhang, Justin
Lu, Jackie Tsay, Yinan Wang, Andrew M. Dai, Zhifeng Chen, Timothy Sohn,
and Yonghui Wu. 2019. Gmail Smart Compose: Real-Time Assisted Writing.
http://arxiv.org/abs/1906.00080 arXiv:1906.00080 [cs].

[6] Andrew A Chien, Liuzixuan Lin, Hai Nguyen, Varsha Rao, Tristan Sharma, and
Rajini Wijayawardana. 2023. Reducing the Carbon Impact of Generative AI
Inference (today and in 2035). In Proceedings of the 2nd Workshop on Sustainable
Computer Systems. 1–7.

[7] Codeium 2023. Codeium - Free AI Code Completions. Online. https://codeium.
com/

[8] Mikhail Evtikhiev, Egor Bogomolov, Yaroslav Sokolov, and Timofey Bryksin.
2023. Out of the BLEU: how should we assess quality of the Code Generation
models? Journal of Systems and Software 203 (Sept. 2023), 111741. https://doi.
org/10.1016/j.jss.2023.111741 arXiv:2208.03133 [cs].

[9] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2023. InCoder: A
Generative Model for Code In�lling and Synthesis. http://arxiv.org/abs/2204.
05999 arXiv:2204.05999 [cs].

[10] Gemini Code Assist 2023. Gemin Code Assist. Online. https://cloud.google.com/
products/gemini/code-assist

[11] GitHub Copilot 2021. GitHub Copilot: Your AI Pair Programmer. Online. https:
//github.com/features/copilot

[12] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022.
UniXcoder: Uni�ed Cross-Modal Pre-training for Code Representation. http:
//arxiv.org/abs/2203.03850 arXiv:2203.03850 [cs].

[13] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong,Wentao Zhang, Guant-
ing Chen, Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang.
2024. DeepSeek-Coder: When the Large Language Model Meets Programming –
The Rise of Code Intelligence. http://arxiv.org/abs/2401.14196 arXiv:2401.14196
[cs].

[14] William Harding and Matthew Kloster. 2024. Coding on Copilot: 2023
Data Shows Downward Pressure on Code Quality. Whitepaper. GitClear. 24
pages. https://gitclear-public.s3.us-west-2.amazonaws.com/Coding-on-Copilot-
2024-Developer-Research.pdf

[15] Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal,
and Phillip Isola. 2023. The Low-Rank Simplicity Bias in Deep Networks. http:
//arxiv.org/abs/2103.10427 arXiv:2103.10427 [cs].

[16] Maliheh Izadi, Roberta Gismondi, and Georgios Gousios. 2022. CodeFill: Multi-
token Code Completion by Jointly Learning from Structure and Naming Se-
quences. In Proceedings of the 44th International Conference on Software Engi-
neering. 401–412. https://doi.org/10.1145/3510003.3510172 arXiv:2202.06689
[cs].

[17] Maliheh Izadi, Jonathan Katzy, Tim van Dam, Marc Otten, Razvan Mihai Popescu,
and Arie van Deursen. 2024. Language Models for Code Completion: A Practi-
cal Evaluation. In 46th International Conference on Software Engineering (ICSE).
ACM/IEEE. http://arxiv.org/abs/2402.16197 arXiv:2402.16197 [cs].

[18] Jetbrains AI 2023. Jetbrains AI Service an In-IDE Assistant. Online. https:
//www.jetbrains.com/ai/

[19] Daniel D. Johnson, Daniel Tarlow, and Christian Walder. 2023. R-U-SURE?
Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random
User Intents. (2023). https://doi.org/10.48550/ARXIV.2303.00732 Publisher: arXiv
Version Number: 2.

[20] Jonathan Katzy, Maliheh Izadi, and Arie van Deursen. 2023. On the Impact of
Language Selection for Training and Evaluating Programming Language Models.
http://arxiv.org/abs/2308.13354 arXiv:2308.13354 [cs].

[21] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. 2023. E�cient
Memory Management for Large Language Model Serving with PagedAttention.
http://arxiv.org/abs/2309.06180 arXiv:2309.06180 [cs].

[22] Jenny T. Liang, Chenyang Yang, and Brad A. Myers. 2023. Understanding
the Usability of AI Programming Assistants. http://arxiv.org/abs/2303.17125
arXiv:2303.17125 [cs].

[23] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. http://arxiv.org/abs/1907.11692
arXiv:1907.11692 [cs].

[24] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-
Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian
Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding
Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii,
Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xu-
anli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennigho�, Xiangru
Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou,
Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier De-
haene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak,
Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapa-
dos, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis,
Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra,
and Harm de Vries. 2024. StarCoder 2 and The Stack v2: The Next Generation.
http://arxiv.org/abs/2402.19173 arXiv:2402.19173 [cs].

[25] Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-won Hwang, and Alexey Svy-
atkovskiy. 2022. ReACC: A Retrieval-Augmented Code Completion Framework.
http://arxiv.org/abs/2203.07722 arXiv:2203.07722 [cs].

[26] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou,
Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan Duan,
Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021. CodeXGLUE:
AMachine Learning Benchmark Dataset for Code Understanding and Generation.
http://arxiv.org/abs/2102.04664 arXiv:2102.04664 [cs].

[27] Aaron Mok. 2024. Estimated Cost of ChatGPT. https://www.businessinsider.
com/how-much-chatgpt-costs-openai-to-run-estimate-report-2023-
4?international=true&r=US&IR=T

[28] HusseinMozannar, Gagan Bansal, Adam Fourney, and Eric Horvitz. 2023. Reading
Between the Lines: Modeling User Behavior and Costs in AI-Assisted Program-
ming. http://arxiv.org/abs/2210.14306 arXiv:2210.14306 [cs].

[29] Hussein Mozannar, Gagan Bansal, Adam Fourney, and Eric Horvitz. 2023. When
to Show a Suggestion? Integrating Human Feedback in AI-Assisted Programming.
http://arxiv.org/abs/2306.04930 arXiv:2306.04930 [cs].

[30] Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. 2023. The
Impact of AI on Developer Productivity: Evidence from GitHub Copilot. http:
//arxiv.org/abs/2302.06590 arXiv:2302.06590 [cs].

[31] James Prather, Brent N. Reeves, Paul Denny, Brett A. Becker, Juho Leinonen,
Andrew Luxton-Reilly, Garrett Powell, James Finnie-Ansley, and Eddie Antonio
Santos. 2023. "It’s Weird That it Knows What I Want": Usability and Interactions
with Copilot for Novice Programmers. (April 2023). https://doi.org/10.48550/
ARXIV.2304.02491 Publisher: arXiv Version Number: 1.

[32] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xi-
aoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Fer-
rer, Aaron Gratta�ori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and
Gabriel Synnaeve. 2023. Code Llama: Open Foundation Models for Code.
http://arxiv.org/abs/2308.12950 arXiv:2308.12950 [cs].

[33] Daniel Russo. 2023. Navigating the Complexity of Generative AI Adoption in
Software Engineering. http://arxiv.org/abs/2307.06081 arXiv:2307.06081 [cs].

[34] SourceGraph Cody 2023. Cody - AI Coding Assistant. Online. https:
//sourcegraph.com/cody

[35] Stack Over�ow. 2023. Stack Over�ow Developer Survey 2023.
https://survey.stackover�ow.co/2023/#section-developer-tools-ai-in-the-
development-work�ow

[36] Zhensu Sun, Xiaoning Du, Fu Song, Shangwen Wang, Mingze Ni, and Li Li.
2023. Don’t Complete It! Preventing Unhelpful Code Completion for Produc-
tive and Sustainable Neural Code Completion Systems. In 2023 IEEE/ACM 45th
International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion). IEEE, Melbourne, Australia, 324–325. https://doi.org/10.1109/ICSE-
Companion58688.2023.00089

[37] Tabnine 2023. Tabnine AI Coding Assistant. Online. https://www.tabnine.com/
[38] Parth Thakkar. 2023. Copilot Internals. https://thakkarparth007.github.io/copilot-

explorer/posts/copilot-internals Publication Title: Copilot-Explorer.

36

https://aws.amazon.com/codewhisperer/
https://aws.amazon.com/codewhisperer/
https://doi.org/10.1145/3586030
https://doi.org/10.1145/3586030
http://arxiv.org/abs/2207.14255
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/1906.00080
https://codeium.com/
https://codeium.com/
https://doi.org/10.1016/j.jss.2023.111741
https://doi.org/10.1016/j.jss.2023.111741
http://arxiv.org/abs/2204.05999
http://arxiv.org/abs/2204.05999
https://cloud.google.com/products/gemini/code-assist
https://cloud.google.com/products/gemini/code-assist
https://github.com/features/copilot
https://github.com/features/copilot
http://arxiv.org/abs/2203.03850
http://arxiv.org/abs/2203.03850
http://arxiv.org/abs/2401.14196
https://gitclear-public.s3.us-west-2.amazonaws.com/Coding-on-Copilot-2024-Developer-Research.pdf
https://gitclear-public.s3.us-west-2.amazonaws.com/Coding-on-Copilot-2024-Developer-Research.pdf
http://arxiv.org/abs/2103.10427
http://arxiv.org/abs/2103.10427
https://doi.org/10.1145/3510003.3510172
http://arxiv.org/abs/2402.16197
https://www.jetbrains.com/ai/
https://www.jetbrains.com/ai/
https://doi.org/10.48550/ARXIV.2303.00732
http://arxiv.org/abs/2308.13354
http://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2303.17125
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2402.19173
http://arxiv.org/abs/2203.07722
http://arxiv.org/abs/2102.04664
https://www.businessinsider.com/how-much-chatgpt-costs-openai-to-run-estimate-report-2023-4?international=true&r=US&IR=T
https://www.businessinsider.com/how-much-chatgpt-costs-openai-to-run-estimate-report-2023-4?international=true&r=US&IR=T
https://www.businessinsider.com/how-much-chatgpt-costs-openai-to-run-estimate-report-2023-4?international=true&r=US&IR=T
http://arxiv.org/abs/2210.14306
http://arxiv.org/abs/2306.04930
http://arxiv.org/abs/2302.06590
http://arxiv.org/abs/2302.06590
https://doi.org/10.48550/ARXIV.2304.02491
https://doi.org/10.48550/ARXIV.2304.02491
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2307.06081
https://sourcegraph.com/cody
https://sourcegraph.com/cody
https://survey.stackoverflow.co/2023/#section-developer-tools-ai-in-the-development-workflow
https://survey.stackoverflow.co/2023/#section-developer-tools-ai-in-the-development-workflow
https://doi.org/10.1109/ICSE-Companion58688.2023.00089
https://doi.org/10.1109/ICSE-Companion58688.2023.00089
https://www.tabnine.com/
https://thakkarparth007.github.io/copilot-explorer/posts/copilot-internals
https://thakkarparth007.github.io/copilot-explorer/posts/copilot-internals

AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil de Moor et al.

[39] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs.
Experience: Evaluating the Usability of Code Generation Tools Powered by Large
Language Models. In CHI Conference on Human Factors in Computing Systems
Extended Abstracts. ACM, New Orleans LA USA, 1–7. https://doi.org/10.1145/
3491101.3519665

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2023. Attention Is All
You Need. http://arxiv.org/abs/1706.03762 arXiv:1706.03762 [cs].

[41] Ruotong Wang, Ruijia Cheng, Denae Ford, and Thomas Zimmermann. 2023.
Investigating and Designing for Trust in AI-powered Code Generation Tools.
http://arxiv.org/abs/2305.11248 arXiv:2305.11248 [cs].

[42] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D. Q. Bui, Junnan Li, and
Steven C. H. Hoi. 2023. CodeT5+: Open Code Large Language Models for Code
Understanding and Generation. http://arxiv.org/abs/2305.07922 arXiv:2305.07922

[cs].
[43] Xiaoxia Wu, Zhewei Yao, Minjia Zhang, Conglong Li, and Yuxiong He. 2022.

Extreme Compression for Pre-trained Transformers Made Simple and E�cient.
https://doi.org/10.48550/arXiv.2206.01859 arXiv:2206.01859 [cs].

[44] Shuyan Zhou, Uri Alon, Sumit Agarwal, and Graham Neubig. 2023. Code-
BERTScore: Evaluating Code Generation with Pretrained Models of Code. http:
//arxiv.org/abs/2302.05527 arXiv:2302.05527 [cs].

[45] Terry Yue Zhuo. 2024. ICE-Score: Instructing Large Language Models to Evaluate
Code. http://arxiv.org/abs/2304.14317 arXiv:2304.14317 [cs].

[46] Albert Ziegler, Eirini Kalliamvakou, Shawn Simister, Ganesh Sittampalam, Al-
ice Li, Andrew Rice, Devon Rifkin, and Edward Aftandilian. 2022. Productiv-
ity Assessment of Neural Code Completion. http://arxiv.org/abs/2205.06537
arXiv:2205.06537 [cs].

37

https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3491101.3519665
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2305.11248
http://arxiv.org/abs/2305.07922
https://doi.org/10.48550/arXiv.2206.01859
http://arxiv.org/abs/2302.05527
http://arxiv.org/abs/2302.05527
http://arxiv.org/abs/2304.14317
http://arxiv.org/abs/2205.06537

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Code Completion Pain Points
	2.2 Existing Solutions

	3 Problem Definition
	3.1 Code-Completion Data and Constraints
	3.2 Joint Optimisation Objective

	4 Approach
	4.1 JonBERTa Architecture
	4.2 Dataset

	5 Experimental Setup
	5.1 Research Questions
	5.2 Evaluation Settings and Metrics
	5.3 Feature Engineering and Baselines
	5.4 Configuration and Implementation Details

	6 Results
	6.1 RQ1: Impact of Code Context
	6.2 RQ2: Hybrid JonBERTa Models
	6.3 RQ3: Online Evaluation

	7 Discussion
	7.1 Threats to Validity

	8 Conclusion and Future Work
	References

