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Computational fluid dynamics (CFD) simulations of viscous fluids described by the stationary 
Navier–Stokes equations are considered. Depending on the Reynolds number of the flow, the 
Navier–Stokes equations may exhibit a highly nonlinear behavior. The system of nonlinear 
equations resulting from the discretization of the Navier–Stokes equations can be solved using 
nonlinear iteration methods, such as Newton’s method. However, fast quadratic convergence is 
typically only obtained in a local neighborhood of the solution, and for many configurations, 
the classical Newton iteration does not converge at all. In such cases, so-called globalization 
techniques may help to improve convergence.

In this paper, pseudo-time stepping (also known as pseudo-transient continuation) is employed in 
order to improve nonlinear convergence. The classical algorithm is enhanced by a neural network 
model that is trained to predict a local pseudo-time step. Generalization of the novel approach is 
facilitated by predicting the local pseudo-time step separately on each element using only local 
information on a patch of adjacent elements as input. Numerical results for standard benchmark 
problems, including flow over a backward facing step geometry and Couette flow, show the 
performance of the machine learning-enhanced globalization approach; as the software for the 
simulations, the CFD Module of COMSOL Multiphysics® is employed.

1. Introduction

Computational fluid dynamics (CFD) simulations are highly relevant for a wide range of applications, including the fields of 
aerospace, environmental and biological engineering, weather predictions and medicine. Numerical simulations of Newtonian fluids 
involve the solution of the Navier–Stokes equations. Depending on the flow regime, the Navier–Stokes equations exhibit strong 
nonlinearities, posing challenges to numerical solvers.

In this work, we consider two-dimensional stationary CFD simulations using a mixed finite element method (FEM). The resulting 
discretized nonlinear system of equations is then solved using Newton’s method. Newton’s method converges quadratically for initial 
guesses close enough to the solution, but it may converge slowly or even diverge for guesses further away. To improve global 
convergence of the method, globalization techniques have been developed; see [1] for an overview, in which the authors categorize 
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the techniques into backtracking methods and trust region methods; cf. [2,3]. Other examples of robustness improving methods include 
homotopy, continuation, pseudo transient continuation, mesh sequencing methods, or nonlinear preconditioning methods; cf. [4--13].

The combination of scientific computing and machine learning, also called scientific machine learning (SciML), is a new field [14], 
which has recently gained a lot of attention. A popular application area for SciML techniques is CFD simulations; see the review 
paper [15]. Examples of successful SciML techniques in CFD are: discretization approaches using neural networks (NNs) [16--18], 
surrogate models [19--22], and model discovery [23--25]. In [26], the temporal evolution of dynamic systems is learned using NNs with 
long-short-term memory (LSTM). Approaches enhancing CFD simulations via ML include the generation of optimized meshes [27], 
the improvement of the resolution of the simulation results [28--31], or the detection of troubled cells in simulation meshes due to 
Gibbs oscillations arising from the use of higher-order methods [32]. We note that, in [29--32], the network inputs and output are 
specifically chosen from local patches of elements to achieve generalizability of the ML model; we apply a similar approach in this 
work.

The use of ML models to enhance numerical solvers is investigated in several works. In the context of linear solvers, [33] and [34] 
employ features generated by proper orthogonal decomposition (POD) to develop a modified conjugate gradient (CG) solver or precon

ditioning techniques, respectively. Enhancing the CG method by a nonlinear convolutional NN-based preconditioner is investigated 
in [35]. In [36,37], NNs are used to improve domain decomposition methods, and in [38--42] components of multigrid methods are 
selected or generated using ML models. In [43--47], suitable numerical algorithms are selected using ML techniques. Related to that, 
[48] investigate the prediction of a suitable combination of preconditioner and iterative method for sparse linear systems.

Fewer approaches have been developed for improving nonlinear convergence using ML. In hybrid Newton methods, the initial 
guess of the Newton iteration is predicted using ML models, such as NNs or random forests; see, e.g. [49--51]. In [52], the convergence 
of solvers for nonlinear partial differential equations is improved using POD features in a preconditioning approach, and the proposed 
method is tested specifically for CFD problems. In [53], dimensionless numbers and simulation properties are used as input to a random 
forest model to predict a relaxation parameter to accelerate convergence of the Picard iteration for multiphase porous media flow.

To the best of the authors’ knowledge, this work is the first to address the improvement of the convergence of pseudo-time stepping 
[8] for CFD simulations using a NN model. Moreover, the approach presented here stands out due to the strong locality of the inputs 
and outputs. This approach is only previously described in the master thesis of the first author [54], laying the foundation for this 
paper. Similar to previous approaches [29--32], the used NN model is trained to predict the local pseudo-time step size for each 
mesh element using only local input features; this aims to ensure generalizability of the approach. We test the performance and 
generalizability of our approach using the FEM software package COMSOL Multiphysics®; as a reference, we compare our approach 
against two default pseudo-time step control mechanisms implemented in COMSOL Multiphysics®. As the ML framework, we employ 
Matlab, which enables us to access data from COMSOL via an available interface between the two packages.

The paper is organized as follows. First, the Navier-Stokes equations and pseudo-time stepping are briefly recalled and discussed 
in section 2 respectively section 3. In section 4 the NN for the local element pseudo-time step prediction is described. Numerical 
results are given in section 5. Lastly, conclusions are presented in section 6.

2. Navier–Stokes equations

The Navier–Stokes equations are a system of partial differential equations (PDEs) that describes the flow of Newtonian fluids, that 
is, fluids with a linear correlation of the viscous stresses and the local strain rate. In particular, we consider incompressible fluids, 
that is, fluids with a constant density; cf. [55]. The stationary Navier-Stokes equations for incompressible flow read

𝜌(𝐮 ⋅∇)𝐮− 𝜇∇2𝐮 = −∇𝑝+ 𝐟 ,
𝜌∇ ⋅ 𝐮 = 0, (1)

describing the conservation of momentum and mass, respectively. In these equations, 𝐮 is the flow velocity, 𝜇 is the dynamic viscosity 
of the fluid, 𝜌 is the density, which is assumed to be constant, 𝑝 is the pressure, and 𝐟 is the body force acting on the flow [55]; in all 
our experiments, the body force is assumed to be zero.

Due to the convective term 𝜌(𝐮 ⋅∇)𝐮, eq. (1) is nonlinear, and the numerical treatment of this nonlinearity is the subject of this 
research. Very strong nonlinearities are generally related to turbulent flow. However, already in the regime of laminar flow, the 
nonlinearities may become severe enough to cause nonlinear solvers to diverge; hence, we will focus on the laminar case. Flow 
remains laminar as long as the Reynolds number is below a critical value in the order of 105 ; see, e.g., [56]. The Reynolds number 
Re is given by

Re = 𝜌𝑈𝐿

𝜇
. (2)

Here, 𝑈 and 𝐿 are the typical velocity and length scale. The Reynolds number describes the ratio between inertial and viscous forces; 
cf. [57]. At low Reynolds numbers, the flow remains laminar as the viscous forces are able to damp out disturbances in the flow. 
At high Reynolds numbers, the inertial forces become more important resulting in nonlinear interactions to grow, which causes 
turbulence.

In order to solve the stationary Navier-Stokes equations in eq. (1) on a Lipschitz domain Ω ⊂ ℝ2 numerically, we consider a 
triangulation of Ω into linear triangles. Then, we discretize eq. (1) using piecewise linear finite elements for both the velocity 𝐮 and 
the pressure 𝑝. Since this type of discretization does not satisfy the inf-sup condition, Galerkin least-squares (GLS) streamline diffusion 
is employed to stabilize the discretized problem. Furthermore, Hughes–Mallet type shock-capturing is used for additional robustness 
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in case of sharp gradients, either internally or at boundaries. For more details on the employed stabilization techniques and the used 
stabilization parameters, see [58,59] and the references therein. This yields a discrete but nonlinear system of equations

𝑁(𝐮ℎ) +𝐵⊤𝑝ℎ = 0,

𝐵𝐮ℎ = 0,
(3)

where we denote the discrete velocity and pressure fields as 𝐮ℎ respectively 𝑝ℎ. The linear operators 𝐵 and 𝐵⊤ correspond to the 
divergence and gradient, respectively, and the nonlinear operator 𝑁 corresponds to the convection-diffusion of the velocity field.

By combining the fields 𝐮ℎ and 𝑝ℎ into a single field 𝐯, we can simply formulate the discrete nonlinear problem eq. (3) as

𝐹 (𝐯) = 0.

We solve this system using Newton’s method, that is, by solving a sequence of linear systems of the form

−𝐹 ′(𝐯𝑛)Δ𝐯𝑛 = 𝐹 (𝐯𝑛),

where 𝑛 is the iteration index of the Newton iteration and 𝐹 ′(𝐯𝑛) is the Jacobian at the linearization point 𝐯𝑛 . Close to the solution, 
Newton’s method converges with quadratic rate. However, for an arbitrary initial guess, the method might also diverge. As we will see 
in our numerical results, this may happen for a wide range of cases for the stationary Navier–Stokes equations. In order to make the 
nonlinear iteration more robust, globalization techniques can be employed; see, e.g., [1] for an overview of globalization techniques 
for Newton’s method for the Navier–Stokes equations. Here, we will consider the pseudo-time stepping approach [8], which we will 
discuss in more detail in the next section.

3. Pseudo-time stepping

Solving stationary nonlinear equations using Newton’s method requires an initial guess close enough to the root. Globalization 
techniques are designed to give a result for a wider range of initial guesses, but can stagnate at local minima [8]. Pseudo-time stepping, 
or pseudo-transient continuation, is an alternative to Newton’s method for computing stationary solutions of time-dependent partial 
differential equations. The idea is to obtain a solution more robustly by solving the time-dependent equation instead of the stationary 
one. The idea behind the method is to frame the problem in a time-depending setting,

𝜕𝐯
𝜕𝑡 

= −𝐹 (𝐯), (4)

with 𝐹 (𝐯) = 0 the system of nonlinear equations of which a solution must be determined. Now the algorithm for pseudo-time stepping 
can be described as the numerical integration with a variable time step method of the initial value problem

𝜕𝐯
𝜕𝑡 

= −𝐹 (𝐯), 𝐯(0) = 𝐯0; (5)

cf. [8]. The idea is that this time integration converges to a steady state for a wider range of initial values 𝐯0 than the standard Newton 
method. In addition, the method tries to increase the time step as 𝐹 (𝐯) approaches 0, such that when the iterations get closer to a 
steady state, the convergence becomes (close to) quadratic.

The iterations of the pseudo-time stepping algorithm are given by

𝐯𝑛+1 = 𝐯𝑛 −
(
(Δ𝑡𝑛)−1𝐼 + 𝐹 ′(𝐯𝑛)

)−1
𝐹 (𝐯𝑛), (6)

with 𝐹 ′(𝐯𝑛) the Jacobian. To understand how eq. (6) is obtained from eq. (5) consider an Euler backward step starting from 𝐯𝑛 for 
eq. (5):

𝐳𝑛+1 = 𝐯𝑛 −Δ𝑡𝑛𝐹 (𝐳𝑛+1). (7)

Note that 𝐳𝑛+1 is a root of

𝐺(𝜉) ∶= 𝜉 +Δ𝑡𝑛𝐹 (𝜉) − 𝐯𝑛, (8)

as a function of 𝜉. The first Newton iterate for solving 𝐺(𝜉) = 0 with initial guess 𝜉0 = 𝐯𝑛 gives

𝜉1 = 𝐯𝑛 −
(
𝐼 +Δ𝑡𝑛𝐹 ′(𝐯𝑛)

)−1 (𝐯𝑛 +Δ𝑡𝑛𝐹 (𝐯𝑛) − 𝐯𝑛),

= 𝐯𝑛 −
(
(Δ𝑡𝑛)−1 + 𝐹 ′(𝐯𝑛)

)−1
𝐹 (𝐯𝑛).

From this corrector iteration, we have obtained the formula in eq. (6). The pseudo code of the method is the given by Algorithm 1.

3.1. Applying pseudo-time stepping to the weak form of the Navier-Stokes equations

Consider a Lipschitz domain Ω ∈ ℝ2 with boundary Γ = Γ𝐷 ∪ Γ𝑁 . For the weak formulation of the Navier-Stokes equations, we 
introduce the following functions spaces:
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Algorithm 1 Pseudo-time stepping algorithm from [8].

1: Set 𝐯 = 𝐯0 and Δ𝑡 =Δ𝑡0 .

2: while ‖𝐹 (𝐯)‖ is too large do 
3: Solve (Δ𝑡−1𝐼 + 𝐹 ′(𝐯))𝐬 = −𝐹 (𝐯)
4: Set 𝐯 = 𝐯+ 𝐬
5: Evaluate 𝐹 (𝐯)
6: Update Δ𝑡
7: end while

𝐿2(Ω) = {𝑣 ∶ Ω→ℝ|∫ 𝑣2 𝑑𝑥 <∞},

𝐻1(Ω) = {𝑣 ∶ Ω→ℝ|∫ (𝑣2 + |∇𝑣|2) 𝑑𝑥 <∞},

𝑉 = {𝒗 ∈ (𝐻1(Ω))2},

𝑉0 = {𝒗 ∈ (𝐻1(Ω))2|𝒗 = 0 on Γ𝐷}.

The weak form of the Navier-Stokes equations is given by: find 𝐮 ∈𝐿2(0, 𝑇 ;𝑉 ) ∩𝐶0(0, 𝑇 ;𝐿2(Ω)) and 𝑝 ∈𝐿2((0, 𝑇 ) ×Ω) such that

∫
Ω 

(𝜌𝜕𝑡𝐮+ 𝜌(𝐮 ⋅∇)𝐮) ⋅ 𝜙− (𝜇∇𝐮 ⋅∇𝜙− 𝑝∇ ⋅ 𝜙) 𝑑𝑥 = ∫
Ω 

𝐟 ⋅ 𝜙 𝑑𝑥,

∫
Ω 

𝜌∇ ⋅ 𝐮𝜓 𝑑𝑥 = 0,
(9)

for all test functions 𝜙 ∈ 𝑉0, 𝜓 ∈ 𝐿2(Ω), and 𝐮 satisfying the boundary condition 𝐮|Γ𝐷 = 𝑔 and initial condition 𝐮|𝑡=0 = 𝐮0. Here, 𝐟
is a forcing term. Note that this formulation is derived assuming that, on the Neumann boundary Γ𝑁 , the velocity 𝐮 and pressure 𝑝
satisfy

𝜇𝐧 ⋅∇𝐮− 𝐧𝑝 = 0,

with 𝐧 the outer normal of the boundary Γ.

Next, we discretize the equations in space using finite elements. Therefore, let ℎ be a triangulation of the domain Ω with maximum 
element size ℎ. For every element  ∈ ℎ, let 𝑃1( ) denote the set consisting of all linear functions on  . Associated with ℎ, we 
define the finite element spaces

𝑋ℎ = {𝐮 ∈ 𝐶(Ω)2 ∶ 𝐮| ∈ 𝑃1( )2,∀ ∈ ℎ, 𝐮|Γ𝐷 = 𝑔},

𝑋0ℎ = {𝐮 ∈ 𝐶(Ω)2 ∩ 𝑉0 ∶ 𝐮| ∈ 𝑃1( )2,∀ ∈ ℎ},
𝑌ℎ = {𝑝 ∈ 𝐶(Ω) ∶ 𝑝| ∈ 𝑃1( ),∀ ∈ ℎ},

which will replace the infinite dimensional function spaces in the weak formulation.

Then, in order to apply pseudo-time stepping to the stationary form of the spatially discretized system, the same conceptual idea 
as described in the previous section is used, which can be summarized by first writing the time-discretized equations for one Euler 
backward step, and then linearizing this system for the new time step around the current time step. The Euler backward formula with 
time step Δ𝑡𝑛 for the discretized weak form of eq. (9) gives the following (discretized) nonlinear problem: given (𝐮𝑛

ℎ
, 𝑝𝑛

ℎ
) ∈𝑋ℎ × 𝑌ℎ

find (𝐮𝑛+1
ℎ

, 𝑝𝑛+1
ℎ

) ∈𝑋ℎ × 𝑌ℎ such that

∑
 ∈ℎ

(
∫


(𝜌
𝐮𝑛+1
ℎ

− 𝐮𝑛
ℎ

Δ𝑡𝑛
+ 𝜌(𝐮𝑛+1

ℎ
⋅∇)𝐮𝑛+1

ℎ
) ⋅𝜙𝑗

−(𝜇∇𝐮𝑛+1
ℎ

⋅∇𝜙𝑗 − 𝑝𝑛+1
ℎ

∇ ⋅𝜙𝑗 ) 𝑑𝑥− ∫


𝐟 ⋅ 𝜙𝑗 𝑑𝑥

)
= 0,

∑
 ∈ℎ

(
∫


𝜌∇ ⋅ 𝐮𝑛+1
ℎ

𝜓𝑗 𝑑𝑥

)
= 0,

(10)

for all test functions (𝜙𝑗 ,𝜓𝑗 ) ∈ 𝑋0ℎ × 𝑌ℎ. Note that, in order to make this discretization stable, additional stabilization terms are 
needed. The standard choice for these stabilization terms in COMSOL Multiphysics is to employ Galerkin least-squares (GLS) streamline 
diffusion in combination with a Hughes–Mallet type shock-capturing for robustness in case of sharp gradients. For more details, see 
[58,59]. Here, these terms are omitted for the ease of presentation as they are not essential for the explanation of the main ideas.
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Linearizing this system at (𝐮𝑛
ℎ
, 𝑝𝑛

ℎ
) results in

∑
 ∈ℎ

(
∫


(𝜌
𝐮𝑛+1
ℎ

− 𝐮𝑛
ℎ

Δ𝑡𝑛
+ 𝜌(𝐮𝑛

ℎ
⋅∇)𝐮𝑛+1

ℎ
+ 𝜌(𝐮𝑛+1

ℎ
⋅∇)𝐮𝑛

ℎ

−𝜌(𝐮𝑛
ℎ
⋅∇)𝐮𝑛

ℎ
)𝜙𝑗 − ∫


(𝜇∇𝐮𝑛+1

ℎ
⋅∇𝜙𝑗 − 𝑝𝑛+1

ℎ
∇ ⋅𝜙𝑗 ) 𝑑𝑥− ∫


𝐟 ⋅ 𝜙𝑗 𝑑𝑥

)
= 0,

∑
 ∈ℎ

(
∫


𝜌∇ ⋅ 𝐮𝑛+1
ℎ

𝜓𝑗 𝑑𝑥

)
= 0.

(11)

Solving this linear system for (𝐮𝑛+1
ℎ

, 𝑝𝑛+1
ℎ

) constitutes one pseudo-time step. We write eq. (10) in matrix format

1 
Δ𝑡𝑛

𝑀(𝐯𝑛+1 − 𝐯𝑛) + 𝐹 (𝐯𝑛+1) = 0, (12)

where the coefficients of (𝐮𝑛
ℎ
, 𝑝𝑛

ℎ
) w.r.t. the chosen basis of 𝑋ℎ are again combined into a single vector 𝐯𝑛 , and where 𝑀 =

[
𝑀𝐮 𝟎
𝟎 𝟎

]
is a block matrix with 𝑀𝐮 the velocity mass matrix. Then, we can also write the solution of eq. (11) in the more compact form

𝐯𝑛+1 = 𝐯𝑛 − ( 1 
Δ𝑡𝑛

𝑀 + 𝐹 ′(𝐯𝑛))−1𝐹 (𝐯𝑛). (13)

3.2. Choice of the pseudo-time step

The idea is that the pseudo-time step Δ𝑡𝑛 is initially small, such that its influence in eq. (13) is large. When the iteration approaches 
convergence, the magnitude of the pseudo-time steps becomes large such that eq. (13) performs more like the standard Newton 
iteration. This has the benefit that, in the beginning, the method depends less on the initial guess, and in the end, it may behave 
closely to the quadratic convergence of Newton’s method. There are several possibilities to define a pseudo-time step that fits this 
property.

In addition to that, it is possible to use a pseudo-time step that uses local, i.e. mesh element dependent, information. This amounts 
to replacing the global pseudo-time step Δ𝑡𝑛 in eq. (11) by a local, mesh element dependent, pseudo-time step Δ𝑡𝑛 . In this case the 
mass matrix 𝑀 in eq. (13) will depend on the vector of local pseudo-time steps Δ𝑡

𝑛
= (Δ𝑡𝑛1 ,… ,Δ𝑡𝑛𝑚 ), so that eq. (13) becomes

𝐯𝑛+1 = 𝐯𝑛 − (𝑀(Δ𝑡
𝑛
) + 𝐹 ′(𝐯𝑛))−1𝐹 (𝐯𝑛). (14)

In COMSOL, for instance, the following local pseudo-time step is used:

Δ𝑡𝑛 = CFL(𝑛)
ℎ‖𝐮𝑛
ℎ
‖ , (15)

with ℎ the size of mesh element  , ‖𝐮𝑛
ℎ
‖ the Euclidean norm of the velocity field 𝐮𝑛

ℎ
in the mesh element  , and CFL(𝑛) a global 

Courant–Friedrichs--Lewy (CFL) number [57]. This global CFL number may depend on the iteration count 𝑛, for instance,

CFL𝑖𝑡𝑒𝑟(𝑛) =
⎧⎪⎨⎪⎩
1.3min(𝑛,9), 1 ≤ 𝑛 ≤ 20,
1.39 + 9 ⋅ 1.3min(𝑛−20,9), 20 < 𝑛 ≤ 40,
1.39 + 9 ⋅ 1.39 + 90 ⋅ 1.3min(𝑛−40,9), 𝑛 > 40;

(16)

see [57, p. 1108]. Alternatively, it can be given by a controller based on the nonlinear error estimate 𝑒𝑛 for iteration 𝑛, the given 
target error estimate ``tol'', and control parameters 𝑘𝑃 , 𝑘𝐼 , and 𝑘𝐷 , which are positive constants:

CFL𝑒(𝑛) =
(
𝑒𝑛−2
𝑒𝑛−1

)𝑘𝑃
(

tol

𝑒𝑛−1

)𝑘𝐼
(
𝑒𝑛−2∕𝑒𝑛−1
𝑒𝑛−3∕𝑒𝑛−2

)𝑘𝐷

CFL𝑒(𝑛− 1), (17)

where 𝑒𝑛 is an estimate for the error in the 𝑛th nonlinear iteration; see [57, p. 1515]. Both these options are available for controlling 
the global CFL number in COMSOL.

For both cases, in the initial iterations of pseudo-time stepping, the method starts with a small global CFL number and gradually 
increases it as the solution reaches convergence [57]. In eq. (16) this is because the CFL number increases each iteration, also shown 
in Fig. 1. For eq. (17), when the solution is near convergence, the error estimates 𝑒𝑛 will be smaller and thus the CFL number increases.

Note that, since we are not interested in following accurately the time evolution of the dynamical system eq. (4), the global 
CFL numbers in eqs. (16) and (17) are not chosen to satisfy a CFL condition for convergence of a time stepping scheme to the 
time-dependent solution; they are chosen to reach convergence to a stationary solution as robustly and quickly as possible. Other 
pseudo-time step control mechanisms include the ``switched evolution relaxation'' (SER) method [8].

In this paper we investigate replacing the pseudo-time step control algorithm by the use of an NN to control the local, mesh 
element dependent, pseudo-time step Δ𝑡𝑛

𝑒
. In order to make the method easily generalizable to different meshes, the NN is provided 
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Fig. 1. A plot of CFL𝑖𝑡𝑒𝑟 depending on the nonlinear iteration count, as defined in eq. (16). 

with local information from the corresponding mesh element and its adjacent mesh elements. One could think of local information 
about the solution, residuals, mesh and the cell Reynolds number. For example, elements with high local residuals could then have 
smaller local pseudo-time steps compared to elements with low residuals, which could accelerate convergence in areas which already 
have low residuals. So, treating each mesh element individually using local information can accelerate convergence for the whole 
simulation. In order to use these predictions in COMSOL, a continuous pseudo-time step function has to be defined withing COMSOL. 
This is done via interpolation: The local pseudo-time step size is predicted at the center of each mesh element. Then, the values 
are interpolated linearly between the centers of the mesh elements and extrapolated as a constant from the centers of the boundary 
elements towards the boundary. By doing so, the pseudo-time step is defined as a continuous function within the whole computational 
domain.

4. Neural network for the local pseudo-time step prediction

In order to predict an element-wise local pseudo-time step for the pseudo-time stepping that yields fast and robust Newton 
convergence, we employ a data-based approach based on machine learning techniques; more specifically, we use artificial neural 
networks (ANNs). The most basic form of an ANN is a multilayer perceptron (MLP) and is given as a composed function

 (𝑥) =𝑊𝑛+1 𝑓𝑛 ◦⋯ ◦ 𝑓1 (𝑥) ,

with

𝑓𝑖 (𝑥) = 𝜎
(
𝑊𝑖𝑥+ 𝑏𝑖

)
. (18)

Here, the 𝑊𝑖 ∈ ℝ𝑛𝑖×𝑛𝑖−1 and 𝑏𝑖 ∈ ℝ𝑛𝑖 are the so-called weight matrices and bias vectors, which represent the linear parts of the 
NN function  ; see Fig. 6 for an exemplary network architecture of an MLP. Given a specific network architecture, that is, the 
dimensions 

(
𝑛𝑖
)
𝑖
, the MLP is determined by the coefficients of the weight matrices and bias vectors, also denoted as the network 

parameters. The MLP becomes nonlinear due to composition with the activation function 𝜎. Here, we will employ the rectified 
linear unit (ReLU) function 𝜎 (𝑥) = max (0, 𝑥). MLPs, and NNs in general, are well-suited for approximating nonlinear functions; see, 
e.g., [60]. In order fit an NN to input data 𝑋 =

{
𝑥𝑖
}

and corresponding output data 𝑌 =
{
𝑦𝑖
}

, a loss function  is minimized with 
respect to the network parameters:

arg min 
𝑊𝑖,𝑏𝑖

( (𝑋) , 𝑌
)

The loss function penalizes deviation of the network function from the reference output data 𝑌 . In order to optimize the NN parameters 
(a.k.a. network training), we employ a stochastic gradient descent (SGD) method using adaptive moment estimation (Adam) [61], 
with an initial learning rate and decay of 0.001 every iteration; the gradients are computed using the backpropagation algorithm [62]. 
For a more detailed introduction to deep learning and NNs; see, e.g., [63].

In this section, we will discuss how the local pseudo-time steps used as reference data in the root mean squared error (RMSE) loss 
function are computed as well as the composition of our training data set and the network architecture.

4.1. Loss and optimal local pseudo-time step

Our goal is to predict local pseudo-time steps that enhance the pseudo-time stepping method in accelerating convergence of a 
given flow problem. In particular, we try to predict the vector of local pseudo-time steps Δ𝑡𝑜𝑝𝑡 such that the next iterate is as close as 
possible to the solution of the nonlinear problem. We will denote this as the optimal local pseudo-time step for an iterate 𝐯𝑛, Δ𝑡𝑜𝑝𝑡(𝐯𝑛), 
defined by

Δ𝑡𝑜𝑝𝑡(𝐯𝑛) ∶= argmin
Δ𝑡

||𝐯𝑛 − (
𝑀(Δ𝑡) + 𝐹 ′(𝐯𝑛)

)−1
𝐹 (𝐯𝑛) − 𝐯∗||, (19)
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Fig. 2. The local pseudo-time step optimized by SNOPT; the difference between the obtained solution and the converged solution was minimized up to a value of 
3.1⋅10−5 .

where 𝐯∗ satisfies 𝐹 (𝐯∗) = 0. The norm that is used here is the 𝐿2 norm of the reconstructed velocity components.

Since the optimal local pseudo-time step cannot be computed explicitly, we compute an approximation via an optimization 
procedure, using the sparse nonlinear optimizer (SNOPT) software package [64,65]. This optimization is performed within COMSOL; 
see [54] for more details. For the example of a back-step geometry with laminar flow, we obtain the optimal local pseudo-time 
step as shown in Fig. 2 by using this two step procedure. We did not perform a detailed investigation of the computing time of the 
optimization, but the optimization for a single pseudo-time step took in the order of a few hours on employed hardware; cf. section 5. 
So the computational cost is considerable, but the optimization has to be performed only once for the data generation.

Once we have computed the local optimal pseudo-time step for all elements in the data set, we optimize the squared error of the 
network prediction against these reference values. The whole data set consists of a large number of optimal local pseudo-time steps 
Δ𝑡𝑒𝑖,𝑜𝑝𝑡(𝐯

𝑛) computed from various problem configurations, nonlinear iterates 𝐯𝑛 , and elements 𝑒𝑖 computed using the optimization in 
COMSOL. To define the complete loss, let Δ𝑡(𝑖)

𝑝𝑟𝑒𝑑
and Δ𝑡(𝑖)

𝑜𝑝𝑡
be the network prediction and optimized pseudo-time steps, respectively, 

for the 𝑖th data point in a data set with 𝑛 data points. The full RMSE loss, is then given as:

loss =

√√√√1
𝑛 

𝑛 ∑
𝑖=1 

(
Δ𝑡(𝑖)

𝑝𝑟𝑒𝑑
−Δ𝑡(𝑖)

𝑜𝑝𝑡

)2
. (20)

As mentioned earlier, we are interested in improving the nonlinear convergence rather than the temporal evolution. Therefore, 
negative pseudo-time steps are also valid, and we do not enforce any positivity constraint. Similarly, as discussed in [8], there is 
generally no upper limit for the pseudo-time step.

4.2. Neural network input

NNs are universal function approximators and can theoretically approximate any continuous nonlinear function up to arbitrary 
precision; see, for instance, [60,66,67]. Therefore, we expect that it is possible to predict the optimal local pseudo-time step, given 
sufficient input data. On the other hand, we want to limit the complexity of the input data and train a model with strong generalization 
properties. Therefore, similar to other approaches for NN-enhanced simulations [29,30,32], we employ local input data to predict the 
local optimal pseudo-time step. This means that we do not include any information about the specific global boundary value problem 
but only data that is given on a local patch of elements around the element of interest, that is, where the local optimal pseudo-time 
step is to be predicted. As a result, the trained NN model is applicable to any considered laminar flow problem. An additional benefit 
of using only local data is that the dimensionality and complexity of the data is being limited. Note that, as also noted in [29], due to 
the local data approach, a single simulation already generates a rich data set: each simulation yields data on a large set of elements 
over a number of Newton iterations. However, to generate a training data set with sufficient variation to allow for generalization of 
the model, the training data may be sampled from different simulations with varying flow conditions, induced by different boundary 
conditions and geometries as well as mesh refinement levels.

Let us now discuss the specific data included in the model input. As mentioned before, we employ data from a patch of elements

𝑃𝑗 =
4 ⋃
𝑖=1 

𝑒𝑗,𝑖.

In particular, the patch consists of the element for which we want to compute the local optimal pseudo-time step, 𝑒𝑗,1 , as well as the 
(up to) three adjacent elements 𝑒𝑗,2 , 𝑒𝑗,3, and 𝑒𝑗,4; cf. Fig. 3. Specifically, we denote two elements as adjacent if they are connected 
via an element edge. On each patch, we sample the data listed in Table 1 with their respective location. The nodal information is 
explicitly available from the mixed finite element discretization used in our simulations; cf. the description of our simulation setup 
in section 2. At high CFL numbers, the ratio of propagation distance to element size increases. As a result, using input data from larger 
patches extending beyond a single element and its three adjacent elements could be beneficial in such cases. Although this aspect is 
beyond the scope of the current paper, it will be investigated in future work.

Let us briefly motivate our choices. Firstly, we include the element size, which is implied by the element edge lengths, and 𝐮 since 
they are also employed in the computation of the pseudo-time step approach in eq. (15). We complement this 𝐮 by 𝑝 to provide a 
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𝑣𝑗,2

𝑣𝑗,3
𝑣𝑗,1

𝑒𝑗,1

𝑒𝑗,4
𝑒𝑗,2

𝑒𝑗,3

Fig. 3. Data point which contains information of a patch of four elements 𝑒𝑗,1 to 𝑒𝑗,4 with their vertices 𝑣𝑗,1 to 𝑣𝑗,6 ; see Table 1 for all input features for the NN model 
on each element patch.

Table 1
Variables used as input for the NN with their given 
unit and location on one element in the patch shown 
in Fig. 3, in this case the central element. One data 
point contains information of four elements, with a 
non-structured order of the adjacent elements. The two 
different types of residuals 𝑟𝛼 and 𝑅𝛼 , 𝛼 = 𝑢, 𝑣, 𝑝 are 
given in eqs. (21) and (22).

variable unit location 
element edge length m -

𝑢 m∕s 𝑣𝑗,1, 𝑣𝑗,2, 𝑣𝑗,3
𝑣 m∕s 𝑣𝑗,1, 𝑣𝑗,2, 𝑣𝑗,3
𝑝 Pa 𝑣𝑗,1, 𝑣𝑗,2, 𝑣𝑗,3
𝑅𝑢 𝑣𝑗,1, 𝑣𝑗,2, 𝑣𝑗,3
𝑅𝑣 𝑣𝑗,1, 𝑣𝑗,2, 𝑣𝑗,3
𝑅𝑝 𝑣𝑗,1, 𝑣𝑗,2, 𝑣𝑗,3
𝑟𝑢

N∕m3 𝑣𝑗,1, 𝑣𝑗,2, 𝑣𝑗,3
𝑟𝑣

N∕m3 𝑣𝑗,1, 𝑣𝑗,2, 𝑣𝑗,3
𝑟𝑝

kg∕(m3 ⋅s) 𝑣𝑗,1, 𝑣𝑗,2, 𝑣𝑗,3
cell Reynolds number 𝑒𝑗,1

complete description of the finite element solution on the local patch. Moreover, the local information describing the convergence of 
the Newton iteration is supplied in the form of two different types of residuals, i.e., the residual of the discretized system of nonlinear 
equations

𝐹 (𝐯) =
⎛⎜⎜⎝
𝑅𝑢

𝑅𝑣

𝑅𝑝

⎞⎟⎟⎠ =
(
𝑁(𝑢, 𝑣) +𝐵⊤𝑝

𝐵(𝑢, 𝑣)

)
=
(
𝑁(𝐮) +𝐵⊤𝑝

𝐵(𝐮)

)
(21)

and the residual obtained by substituting the approximate solution into the system of PDEs eq. (1):

𝑟𝑢 = 𝜌(𝑢𝜕𝑥𝑢+ 𝑣𝜕𝑦𝑢) − 𝜇(𝜕2
𝑥
𝑢+ 𝜕2

𝑦
𝑢) + 𝜕𝑥𝑝+ 𝑓𝑥,

𝑟𝑣 = 𝜌(𝑢𝜕𝑥𝑣+ 𝑣𝜕𝑦𝑣) − 𝜇(𝜕2
𝑥
𝑣+ 𝜕2

𝑦
𝑣) + 𝜕𝑦𝑝+ 𝑓𝑦,

𝑟𝑝 = 𝜌(𝜕𝑥𝑢+ 𝜕𝑦𝑣).

(22)

The local Reynolds number, as given in eq. (2), provides additional information about the local nonlinearity of the flow; it is also 
used in papers [29,30,53] as input for the machine learning model. Furthermore, as shown in [54], using information from a patch 
of elements improves the convergence of the method more compared to using only information from a single element. The input is 
normalized vector-wise to have mean 0 and standard deviation by computing the z-score defined as

𝑧(𝜎) = 𝑥− 𝜇

𝜎
,

with 𝑥 the evaluated input data, 𝜇 the mean of the input, and 𝜎 the standard deviation of the input [68]. The mean and standard 
deviation for centering and scaling the data are saved and later on used to normalize input data from other simulations.

Note that, for practical reasons, in our implementation in COMSOL, we collect all input information, as listed in Table 1, element 
by element from each patch. This means that vertex- and edge-based information is duplicated where the elements in the patch touch. 
As a result, we obtain a total of 𝑛0 = 124 input features for our network model. In practice, one may want to omit the redundant 
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Table 2
Dimensions of the back-step geometries considered for the training and test data; see Fig. 4
for the base geometry.

back-step dim. inflow dim. outflow range inflow range maximum 
geometry tunnel (m) tunnel (m) velocity (m∕s) element size (m) 
B1 0.05 × 0.25 0.12 × 1.15 0.001 -- 0.015 0.0106 -- 0.0256 
B1S 0.005 × 0.025 0.012 × 0.115 0.01 -- 0.15 0.00106 -- 0.00256 
B2 0.08 × 0.25 0.22 × 1.15 0.001 -- 0.013 0.0126 -- 0.0206 
B2S 0.008 × 0.025 0.022 × 0.115 0.01 -- 0.13 0.00126 -- 0.00206 

Γ𝑤𝑎𝑙𝑙
Γ𝑜𝑢𝑡

Γ𝑤𝑎𝑙𝑙
Γ𝑖𝑛

Fig. 4. Back-step geometries employed: B1, B1S, B2, and B2S vary in the width of the inlet Γ𝑖𝑛 (red), where a constant velocity profile is prescribed, and the length of 
the blue wall segment; cf. Table 2. At the outlet Γ𝑜𝑢𝑡 , we prescribe a constant pressure boundary condition, and at all other parts of the boundary, which are denoted 
as Γ𝑤𝑎𝑙𝑙 , a no-slip boundary condition is enforced. For an exemplary flow field, see Fig. 8.

data, however, this is currently not straightforward based on the data structures in our interface from Matlab to COMSOL since the 
elements in each patch cannot be easily retrieved in a consistent ordering. The neural network might be able to extract connectivity 
information from the redundant data, which could alternatively be encoded by a consistent ordering of the elements within the patch. 
Our numerical results in section 5 indicate that this handling of the input data does not prevent our model to learn from the data. 
However, in future work, we plan to investigate if using unique input data with a consistent ordering may have a positive effect on 
our model.

Finally, elements which are adjacent to the boundary of the computational domain Ω, may only have one or two neighboring 
elements, resulting in patches consisting of two or three elements only. In order to encode this in the data, we set any data of 
the vertices and edges outside the domain to zero; other approaches for encoding this information are possible and will, again, be 
considered in future work.

4.3. Generation of training data

We train our model based on simulation data from several boundary value problems defined on back-step geometries; see Fig. 2
for an exemplary back-step geometry. The boundary conditions for the back-step flow are defined as follows: We impose a constant 
inflow velocity profile at the inlet Γ𝑖𝑛 and a constant pressure at the outlet Γ𝑜𝑢𝑡 on the right side of the geometry. For the other parts 
of the boundary, Γ𝑤𝑎𝑙𝑙 , a no-slip boundary condition is prescribed.

As discussed in section 4.2, due to the locality of the input features, we expect that it suffices to use training data for a single 
type of geometry, as long as there is enough variation in the data with respect to the individual patches. In particular, we will 
consider two different base cases of back-step geometries, which we denote as B1 and B2. For both cases, we consider meshes with 
different levels of refinement and inflow velocities. This also results in flow fields with different Reynolds numbers. Moreover, we 
use data from different Newton iterations since, as can be seen in Fig. 8, the iterate changes quite drastically between different 
Newton iterations. Additionally, we consider scaled variants of B1 and B2, which we denote as B1S and B2S, respectively. These are 
obtained by scaling the geometric dimensions of B1 and B2 by a factor of 0.1 and increasing the inflow velocity by a factor of 10; 
cf. Table 2 for the dimensions of the four different geometries. As a result the Reynolds number remains the same, and we would 
expect the nonlinear convergence to be similar. By adding the scaled versions to the training configurations, we try to force the model 
to learn the dependence of the nonlinearity on the Reynolds number. In the case of the back-step, the step height is considered as the 
characteristic length to compute the Reynolds number. The considered dynamic viscosity 𝜇 is 9.98 ⋅ 10−4 𝑚𝑃𝑎 ⋅ 𝑠 and the density 𝜌 is 
988 𝑘𝑔∕𝑚3. We summarize all configurations considered for the generation of training data in Table 3. All these configurations are in 
the laminar regime, allowing for a stable stationary solution, which we checked by running a time dependent solver.

In total, we obtain 79 256 data points from all configurations listed in Table 3. To arrive at a balanced distribution of the training 
data set, we perform the sampling such that we obtain roughly the same number of data points for each element size in the data set; 
that is, we select exactly 3 500 data points from all configurations with the same maximum element size. In total, we can categorize 
14 different simulations based on the maximum element size, which gives a data set of 49 000 data points. To make it easier to apply 
batch learning for the NN, 1 000 data points are discarded at random. So, in total there are 48 000 data points, of which 70% are 
used for training our network model, 15% are used for testing and 15% are used for validation. In section 5, we will first discuss how 
this model performs on configurations with back-step geometry in section 5.1. Then, in sections 5.2 and 5.3, we will also discuss the 
generalization to other configurations, that is, to Couette flow and flow around an obstacle, respectively.
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Table 3
Different combinations of mesh sizes and flow velocities of the back-step simulations to generate training data. 
The number of obtained data points is given in column 2, which are sampled from the nonlinear iteration steps 
given in the last column. The dimensions of the four back-steps can be found in Table 2. Here, # iterations 
denote the number of nonlinear iterations performed before extracting the data.

back-step number of max. element inflow velocity 
# iterations Re

geometry elements size (m) (m∕s) 

B1

6 516 0.0156

0.001 1, 10 78 
0.005 10 392 
0.01 10 784

3 908 0.0206

0.003 1, 10 235 
0.006 10 470 
0.009 10 706

3 558 0.0266

0.002 1, 10 157 
0.007 10 549 
0.008 2, 4 627 
0.015 10 1 176

13 828
0.0106

0.004 2, 10 313 
0.008 2, 10 627 

B1S

(scaled B1)

6 516 0.00156

0.01 1, 10 78 
0.05 10 392 
0.1 10 784

3 908 0.00206

0.03 1, 10 235 
0.06 10 470 
0.09 10 706

3 558 0.00266

0.02 1, 10 157 
0.07 10 549 
0.08 2, 4 627 
0.15 10 1 176

13 828
0.00106

0.04 2, 10 313 
0.08 2, 10 627 

B2

5 808 0.0156 0.005 1, 10 784 
4 134 0.0186 0.01 2, 10 1 568 
8 790 0.0126 0.013 3, 10 2 039 

B2S

(scaled B2)

5 808 0.00156 0.05 1, 10 784 
4 134 0.00186 0.1 2, 10 1 568 
8 790 0.00126 0.13 3, 10 2 039 

Table 4
Hyper parameters and search space for the grid search.

hyper parameter search space 
# hidden layers {2,3,4,5}
# neurons per hidden layer {

24,25,26,27,28
}

4.4. Network architecture and training

The architecture of the network model employed in this work is depicted in Fig. 6: the model consists of an input layer with 124 
neurons, two hidden layers with 16 neurons each, and an output layer with the neuron representing prediction of the local optimal 
pseudo-time step; the composition of the input data has been discussed in section 4.2.

We determined the network architecture as follows: We first performed a grid search with 6-fold cross validation on the search 
space given in Table 4 to determine three different network architectures with an acceptable average validation loss. Note that the 
loss is defined based on the prediction of the local optimal pseudo-time step; that means a low validation loss does not necessarily 
result in a low solution residual when the network is used. From the grid search, we determined one network with small, one with 
medium, and one with high networks capacity, that is, networks with:

• 2 hidden layers and 16 neurons per layer,

• 3 hidden layers and 64 neurons per layer,

• 4 hidden layers and 256 neurons per layer.

Then, in order to find the best model for accelerating the Newton convergence, we compare them when applied to several back-step 
and Couette simulations, further explained in section 5.1 and section 5.2. The combinations of the inflow or wall velocities with the 
maximum element size used for these simulations are given in Table 5.
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Fig. 5. Training plot of network trained on the optimized pseudo-time step targets. Every epoch consists of 20 iterations, each iteration with a mini-batch size 1225. 
With a validation patience of 150 epochs, the smallest validation loss for this network is obtained after 78 epochs. The training costed in total 228 epochs in a time 
of 9:31 minutes.

Fig. 6. Exemplary NN with 124 inputs, 2 hidden layers with 16 neurons and an output layer. The arrows are associated with weights in the weight matrices 𝑊𝑖 ; 
cf. eq. (18).

Table 5
Combinations of velocities and mesh sizes for simulations used to test the NN performance, with the back-step configurations 
B1--B2S in Table 2 and the Couette flow configurations C and CS.

geometry type inflow/wall velocity (m∕s) max. element size (m) Reynolds number 
B1 0.001, 0.004, 0.007, 0.01, 0.012, 0.015 0.0106 : 0.005 : 0.0256 76 -- 1153 
B1S 0.01, 0.04, 0.07, 0.1, 0.12, 0.15 0.00106 : 0.0005 : 0.00256 76 -- 1153 
B2 0.001 : 0.003 : 0.01 0.0126, 0.0156, 0.0186, 0.0206 153 -- 1537 
B2S 0.01 : 0.03 : 0.1 0.00126, 0.00156, 0.00186, 0.00206 153 -- 1537 
C 0.01, 0.03, 0.04, 0.05, 0.07, 0.1 0.014 : 0.002 : 0.022 2195 -- 21 955 
CS 0.01, 0.03, 0.05 0.0028 : 0.0004 : 0.0044 439 -- 2195 

For each network, the required number of nonlinear iterations per simulation was compared. Surprisingly, the largest network 
now performed much worse, while the smallest network performed best, which could be explained by an overfitting behavior.

Each network is trained based on the different back-step simulations given in Table 2. As mentioned before, the local optimal 
pseudo-time steps obtained using the SNOPT optimizer are used as the reference. In particular, the network output is compared to 
these optimized local pseudo-time steps via the RMSE loss function eq. (20). As the optimizer, we use stochastic gradient descent 
with adaptive moments (Adam) [61] with an initial learning rate of 0.001. As the stopping criterion and regularization, we employ 
early stopping with a patience of 150 epochs. The evolution of the loss during training of the NN is shown in Fig. 5.

5. Numerical results

In this section, we discuss numerical results for our NN-enhanced pseudo-time stepping approach, which we have introduced in 
the previous section 4. As discussed in section 4.3, we have trained the model only for back-step geometries. Our model is designed 
such that only local features are used as input in order to enable generalizability. First, we test our model on the back-step flow 
training cases, with varying mesh sizes and inflow velocities within the range of the training data; cf. section 5.1. In addition to that, 
we investigate the performance on flipped and rotated cases. Then, in order to further test the generalization properties of the model, 
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Fig. 7. Convergence plot of a B1 simulation for all three strategies for the local pseudo-time step under consideration: using the NN model as well as the strategies 
defined in eqs. (16) and (17).

Fig. 8. Iterations of B1 with inflow velocity 0.001 m∕s and maximum element size 0.0156m using NN, with velocities (left) and corresponding distribution of the 
predicted local pseudo-time step prediction (right).

we test our model on Couette cylinder flows in section 5.2 as well as for flow around an obstacle cases in section 5.3. For the Couette 
cases, we vary the geometry, the mesh size, and the velocity of the inner rotating wall, and for the flow around an obstacle, back-step 
and Couette cylinder geometries with different kinds of obstacles are considered.

In particular, we compare the convergence of our hybrid approach with the convergence of two classical strategies for the choice 
of the local pseudo-time step described in section 3.2, that is, the strategy denoted by CFL𝑖𝑡𝑒𝑟, as given by eqs. (15) and (16), and 
the strategy denoted by CFL𝑒, as given by eqs. (15) and (17). Furthermore, in the appendix, the convergence of the network is also 
compared with two variants of Newton’s method, that is, the standard Newton method with a constant damping factor and a variant 
with an adaptive choice of the damping factor, as well as Newton’s method with Anderson acceleration; see appendices A and B for 
more details. The initial condition of all the simulations is the zero velocity field. The 𝐿2 norm of the ``reconstructed'' residual 𝑅̃

‖𝑅̃‖𝐿2(Ω) =
√√√√∫

Ω 
𝑅̃2
𝑢
+ 𝑅̃2

𝑣
+ 𝑅̃2

𝑝
𝑑𝑥 (23)

is used as the stopping criterion. Here, (𝑅̃𝑢, 𝑅̃𝑣) and 𝑅̃𝑝 are the residual velocity and pressure fields in 𝑋ℎ reconstructed by using the 
components of the residual vector 𝑅 = (𝑅𝑢,𝑅𝑣,𝑅𝑝), as defined in eq. (21), as coefficients w.r.t. the chosen basis of 𝑋ℎ.

Note that COMSOL uses a scaled version of the residual eq. (23) in the stopping criterion, such that the tolerance may differ 
depending on the problem configuration. However, when reporting the convergence results, we make sure that the same tolerance 
for the unscaled residual eq. (23) is used to determine convergence for the different approaches.

All simulations have been performed using COMSOL Multiphysics® version 6.1 on an Intel Core i7-6820HQ CPU, the NN compu

tations have been carried out on an NVIDIA Quadro M100M GPU using Matlab.
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Fig. 9. Back-steps results for each method; the simulations are ordered from smallest required number of nonlinear iterations to largest separately for each approach. 
The horizontal lines indicate the average nonlinear iteration counts for the different approaches.

5.1. Back-step geometries

In this subsection, we discuss the performance of our model on the same four back-step geometries which we also used for the 
training; cf. section 4.3 and Table 2. In particular, we investigate if the network can accelerate the convergence when varying inflow 
velocity and mesh size on those configurations; cf. Table 5. As a result of those variations, a total of 80 different simulations for the 
back-step geometries are analyzed.

Exemplary, we plot the convergence history for the back-step geometry B1 with inflow velocity 0.001 m∕s and a maximum element 
size of 0.0156m in Fig. 7. It can be observed that the network speeds up the convergence significantly compared with the two 
reference approaches; moreover, whereas the residual norm oscillates strongly for CFL𝑖𝑡𝑒𝑟, the convergence is almost monotonous for 
the network and CFL𝑒 approaches. The qualitative behavior observed in Fig. 7, where the classical choices for the CFL number yield 
slow convergence or even strong oscillations in the residual, is not an exception; similar convergence behavior can also be observed 
for Couette flow and flow around an obstacle configuration; cf. sections 5.2 and 5.3. Furthermore, in Fig. 8, we depict four iterates 
during the Newton iteration using the network approach as well as the corresponding predicted local optimal pseudo-time step. It can 
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Fig. 10. Iterations of C with wall velocity 0.05 m∕s and maximum element size of 0.016 m using NN, with velocity (above) and local pseudo-time step prediction 
(below). The shown asymmetry in the pseudo-time step prediction is probably due to a not completely rotationally symmetric mesh.

be observed that both the iterate and predicted local optimal pseudo-time step still vary during the first iterations and both become 
stationary in the later iterations.

In Fig. 9, we compare the performance with respect to the numbers of Newton iterations resulting from the different choices NN, 
CFL𝑖𝑡𝑒𝑟, and CFL𝑒 for the pseudo-time step on different back-step configurations; cf. section 4.3 and Table 2. Furthermore, as a first 
investigation of the generalizability, we additionally consider cases resulting from mirroring (BM) or anti-clockwise rotating by 90 
degrees (BR) the B1 cases.

For most cases from our training data B1--B2S, the NN model performs better than or equally well as the best choice of CFL𝑖𝑡𝑒𝑟 and 
CFL𝑒, as well as both Newton methods; see appendix A for the results for the Newton methods. This can also be seen in the average 
number of iterations for the configurations B1, B2, BM, and BR; see Figs. 9 and A.15. For B1S, the network performs equally well as 
CFL𝑖𝑡𝑒𝑟.

In particular, for cases with lower velocities (B1 and B2), the network performs best. For cases with higher velocities (B1S and B2S) 
but the same Reynolds numbers, the network model performs clearly worse compared to the low velocity cases. Moreover, it could 
be observed that, for B1S and B2S, convergence was generally less robust; in particular, we observed a relatively high ratio of cases 
for which none of the pseudo-time step approaches converged. Since the nonlinearity should be mostly determined by the Reynolds 
number rather than the magnitude of the velocities, we would like to investigate in future research whether a scaling/normalization 
of the network inputs can improve the performance. The same behavior can also be observed for the Newton methods, although these 
methods converge in more cases; cf. appendix A.

Even though the mirrored and rotated configurations, of course, yield the same but mirrored respectively rotated results, we 
observe slight variations in the performance of the network model. This shows a slight overfitting with respect to the B1 configurations 
as shown exemplarily in Fig. 8, where, for instance, the velocities in positive 𝑥 direction are dominant; this clearly changes when the 
geometry is mirrored or rotated. However, the performance of the network model is only slightly worse compared to the B1 cases, 
which shows that the overfitting is not severe with respect to the prediction of suitable local pseudo-time steps. In the future, we may 
consider group invariant networks [69] to prevent these geometric overfitting effects.

5.2. Couette

Next, we discuss the generalization of our hybrid globalization approach to a different type of geometries, that is, Couette cylinders. 
We consider two different geometries and a range of configurations resulting from varying the wall rotation velocity and refinement 
of the mesh; C with an outer radius of 0.4 m and an inner radius of 0.2 m, and CS with an outer radius of 0.08 m and an outer radius of 
0.04 m. In total, we obtain 45 different configurations of Couette simulations, and in Table 5, the corresponding boundary conditions 
and maximum element sizes for the back-step configurations previously used for training the NN model can be found. Here, the 
characteristic length used to compute the Reynolds number is the distance between the two cylinders.

Again, we present the iterates and corresponding predicted local pseudo-time steps during the Newton iteration for one exemplary 
case with C geometry; see Fig. 10. As for the back-step configuration in Fig. 8, we observe that both the solution and local pseudo-time 
step prediction approach a stationary distribution.

Figs. 11 and A.16 confirm that the use of our NN-based approach, which has only been trained on back-step geometries, is 
beneficial for most of the Couette flow cases. First of all, we notice that, for the Couette flow simulations considered, all choices for 
the local pseudo-time step yield convergence. However, the NN-based approach accelerates convergence in 70% of the C cases and 
even 93.3% of the CS cases. The fact that the network seems to perform better for CS than for C cases, compared with the CFL𝑖𝑡𝑒𝑟
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Fig. 11. The results of the Couette flow for each method; the simulations are ordered from smallest required number of nonlinear iterations to largest separately for 
each approach. The horizontal lines indicate the average nonlinear iteration counts for the different approaches.

Table 6
Combinations of object center coordinates, velocities and mesh. Here, BO are B1 back-steps in Table 2 with 
obstacles: a circle with radius 0.03 m, an ellipse with a-semiaxis 0.03 m and b-semiaxis 0.02 m, both with inflow 
velocity of 0.003 𝑚∕𝑠 and an ellipse with a-semiaxis 0.02 m and b-semiaxis 0.03 m with inflow velocity of 0.002 
𝑚∕𝑠. The Couette flow has geometry of CS with outer radius 0.08 m and inner radius 0.04 m with obstacles: a 
circle with radius 0.008 m, an ellipse with a-semiaxis 0.01 m and b-semiaxis 0.006 m, and an ellipse with a

semiaxis 0.006 m and b-semiaxis 0.01 m.

geometry type x (m) y (m) inflow/wall velocity (m∕s) max. element size (m)

BO 0.37 0.035 : 0.005 : 0.08 0.002, 0.003 0.0126 
BO 0.3, 1.1 0.04 0.002, 0.003 0.0126 
CO 0.004 0.016 0.006 : 0.002 : 0.01 0.0028 : 0.0004 : 0.0044 

and CFL𝑒 choices, is remarkable because the CS cases contain higher velocities and smaller mesh element sizes compared to C. For 
the back-step geometries, we observed the opposite; cf. Fig. 9, where the network performed worse on B1S and B2S than B1 and B2 
configurations.

Also when taking the two variants of Newton’s method into account in the results in appendix A, the NN approach remains 
competitive. In particular, the NN is on average close to the best method (for the C configurations) or as good as the best method (for 
the CS configurations).

5.3. Flow around an obstacle

As the final type of test examples, we consider Couette and back-step flow around an obstacle. In particular, we place an obstacle 
inside the computational domain of the back-step B1 and Couette C configurations; cf. Table 6, where different obstacle geometries are 
considered: circles with different radii and ellipses with different a-semiaxis and b-semiaxis. We denote the resulting configurations as 
back-step with obstacle (BO) and Couette cylinder with obstacle (CO); see Table 6 for more details on the configurations and Fig. 12 for 
exemplary flow fields for the three different obstacle geometries in Couette flow. In total, we obtain 36 BO and 45 CO configurations. 
The Reynolds numbers of the back-step with obstacle lay between 60 and 90, and for the Couette flow with obstacle between 35 and 
100, taking the obstacle hight as the characteristic length.

The results of the simulations with obstacles are given in Figs. 14 and A.16. Qualitatively, the NN approach compares to CFL𝑖𝑡𝑒𝑟
and CFL𝑒 similarly as before. It performs better on 36.3% of the BO cases and on all of the CO cases. Note that for the BO cases, the 
NN approach performs around the same as the CFL𝑒 approach. Also, the average number of iteration is best for the NN approach 
for the BO and CO configurations. For one of the considered simulations of CO with an elliptic obstacle, we again plot iterates and 
corresponding distributions of the local pseudo-time step in Fig. 13.

Finally, also compared with the Newton methods in Appendix A, the NN performs clearly best, that is, both in terms of robustness 
and in terms of acceleration of convergence.

6. Conclusion

We have introduced a novel NN-based approach to improve the pseudo-time stepping algorithm. Instead of using local pseudo

time steps based on predefined global CFL numbers, optimal local pseudo-time step predictions of the network are used to compute 
the local pseudo-time step. The network uses local information in order to make these local pseudo-time step predictions and to 
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Fig. 12. Velocity solutions for Couette flow with different kinds of obstacles. The wall rotation is 0.008 m∕s and the maximum element size is 0.0032 m. The center of 
the obstacle is x = 0.02 m and y = 0.08 m.

Fig. 13. Iterations of CO with wall velocity 0.01 m∕s and maximum element size of 0.004 m using NN, with velocity (above) and local pseudo-time step prediction 
(below). The obstacle is an ellipse with a-semiaxis 0.006 m and b-semiaxis 0.01 m, with center x = 0.02 m and y = 0.08 m.
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Fig. 14. The results of the simulations with obstacles for each method; the simulations are ordered from smallest required number of nonlinear iterations to largest 
separately for each approach. The horizontal lines indicate the average nonlinear iteration counts for the different approaches.

achieve generalizability. As a result, it can accelerate the convergence for the simulations on which it has been trained as well as 
for simulations which it has not seen before. In all considered simulations, the network was able to perform better or equally well 
compared to the standard CFL number based pseudo-time stepping strategies in most cases; the same is true in comparison with the 
variants of Newton’s method.
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Fig. A.15. Back-step flow results using all approaches under consideration: using the NN, the strategies defined in eqs. (16) and (17), model as well as the NC and AN 
Newton methods; see appendix A for details on the organization of the plots.

In future work, we would like to extend the method to turbulent and three-dimensional flow cases. Furthermore, we will try to 
improve the method presented here, for example, by generating a more diverse training data set, combining the heuristic strategies 
for choosing the pseudo-time step with our network approach the default CFL number based strategies and the network, or remov

ing redundancies in the input features. Furthermore, the impact of the patch size containing the neural network inputs should be 
examined, as larger patches may be particularly advantageous for high-speed fluid flows.

Appendix A. Comparison against variants of Newton’s method

In Figs. A.15 and A.16, we show results for all configurations considered, comparing our novel NN approach with four nonlinear 
solvers implemented in COMSOL, that is, the two default CFL number strategies defined in eqs. (16) and (17) as well as two variants 
of Newton’s method. As variants of Newton’s method, we employ the standard Newton method with damping factor of one and an 
adaptive choice of the damping factor, depending on the intermediate iterates. We denote the two approaches as Newton constant 
(NC) and automatic Newton (AN), respectively; cf. [57, p. 1627]. Different from Figs. 9, 11, and 14, the ordering of the simulations 
for the different methods is the same for each approach. The simulations are first organized into different blocks, and within each 



Computers and Mathematics with Applications 196 (2025) 64–83

81

A. Zandbergen, T. van Noorden and A. Heinlein 

0 5 10 15 20 25 30

0

20

40

60

80

100
R

e
q
u
ir

e
d
 nu

m
b
e
r o

f i
te

ra
ti

o
n
s

C

NN

CFL𝑒

CFL𝑖𝑡𝑒𝑟

NC

AN

0 2 4 6 8 10 12 14 16

0

20

40

60

80

100

CS

0 10 20 30

0

20

40

60

80

100

Simulation number

R
e
q
u
ir

e
d
 nu

m
b
e
r o

f i
te

ra
ti

o
n
s

BO

0 10 20 30 40

0

10

20

30

Simulation number

CO

Fig. A.16. Couette flow and flow around an obstacle results using all approaches under consideration: using the NN, the strategies defined in eqs. (16) and (17), model 
as well as the NC and AN Newton methods; see Appendix A for details on the organization of the plots. The horizontal lines indicate the average nonlinear iteration 
counts for the different approaches.

block the ordering is based on the number of nonlinear iterations needed for the NN approach. The blocks are as follows: before the 
first vertical dashed line, the NN performed best; between the first and second vertical dashed line, the NN performed best with the 
same number of iterations as at least one other method; between the second and third vertical dashed line, the network performed 
worse than at least one other method; after the third vertical line, none of the methods converged.

The results are mostly in alignment with the previous results as the NC and AN methods often perform similarly to one of the 
classical CFL strategies considered. In particular, when inspecting the average iteration count, both NC and AN perform quite similarly 
to CFL𝑖𝑡𝑒𝑟 for B1, B1S, BM, BR, CS, and BO configurations; in all those cases the NN approach is clearly competitive. For the CO and 
B2 cases, AN performs better than NC, while the NN approach performs best. Only for the B2S configuration, where the NN approach 
generally performed worst, AC seems to perform clearly best; however, all approaches struggle for the B2S cases. Finally, for the C 
configurations, all methods perform similarly well, except for NC, which fails in most of the cases.

In summary, adding the NC and AN approaches to the picture does not change the qualitative comparison much; only for the B2S 
cases, AN performs clearly better than the NN approach. In future work, this should be taken into account for further improving the 
NN model.

Appendix B. Comparison against Anderson acceleration

The performance of the network has also been compared to the performance of the NC approach applying Anderson accelera

tion [70]. Therefore, the default settings for the Anderson acceleration in COMSOL are used, that is the dimension of iteration space, 
mixing factor, and iteration delay are respectively set to 10, 1.0, and 0, respectively. Again, we observe that, on average, the NN 
approach performs better for the simulations in Tables 5 and 6, except for the BS2 configurations. In 66 percent of the simulations, 
the NN resulted in an improvement with respect to Anderson acceleration. Furthermore, the NN improved the amount of converged 
simulations by 16.

Data availability

The generated training data of the back-step simulations, as well as the data of each column of the simulations mentioned in 
Table 3 and data with all the numerical results are available at https://github.com/searhein/nn-pseudo-time-stepping-data.

https://github.com/searhein/nn-pseudo-time-stepping-data
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