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Secondary Stability Analysis of Crossflow Vortices

using BiGlobal Theory on PIV Base Flows

Koen J. Groot∗, Jacopo Serpieri†, Marios Kotsonis‡

Delft University of Technology, Delft, 2629HT, The Netherlands

Fabio Pinna§

Von Kármán Institute for Fluid Dynamics, Rhode-St-Genèse, 1640, Belgium

Stability analysis is conventionally applied to highly resolved base flows that are obtained
through high-fidelity computational means. Modern experimental methods can capture
the flows to higher and higher detail, up to such extent that performing stability analysis
thereon has become feasible, at least for specific cases. Secondary instabilities to the pri-
mary crossflow vortices in a swept-wing boundary layer are resolved by applying BiGlobal
stability theory to the mean flow field measured with tomographic PIV, solving for the
high-frequency type I mode dedicatedly. The stability results are found to converge with
respect to the mean’s ensemble size and are independent of the treatment of the handling
of the exterior of the measurement domain. The BiGlobal mode agrees with the instanta-
neous tomographic PIV and hot-wire anemometry data. This is the first occasion where
this approach is applied to this application case. In doing so, one directly avoids problems
concerning accounting for the primary vortices’ receptivity.

I. Introduction

Swept-wing crossflow-dominated boundary layers are well-known to develop a stationary streamwise cross-
flow (CF) vortices as a primary instability that modify the mean velocity field. The primary instability

is not responsible for the breakdown to turbulence; it is caused by the high-frequency secondary instabil-
ity.1–4 Having detailed knowledge about the secondary instabilities, viz. their amplification characteristics
and shape, is instrumental in understanding—and ultimately predicting—where laminar-turbulent transi-
tion will occur. The classical approach in this regard is the semi-emperical eN -method,5 which correlates
perturbation amplification to the transition location. Malik et al.6,7 established that this method yields a
good transition correlation by applying it to the secondary instability, comparing their results to the exper-
iments of Kohama et al.8 Related experiments are elaborated on by Kawakami et al.,9 Bippes & Lerche10

and Bippes.11 Kawakami et al.9 and Chernoray et al.12 performed phase-locked hot-wire measurements. In
the recent work of Glauser et al.13 a transition correlation is proposed with respect to the onset of the POD
modes detected by wall-mounted hot-films.

The main effect of the primary CF vortices on the base flow is to redistribute momentum by advection
about their vortical axis. The resulting instantaneous and mean flow therefore has large shear stress compo-
nents in two, as opposed to one, spatial directions. Perturbations that are generated under these conditions
can be approached using linear stability theory and are governed by the BiGlobal stability equations,14

investigations of this type for this application are applied by Malik et al.,6 Högberg & Henningson15 and
Wasserman & Kloker.16 This is a system of two dimensional partial differential equations (PDEs), that
takes into account all the base flow’s inhomogeneities, i.e. shear stress, in a plane. Different approaches to
the secondary instability involve Floquet theory17–19 and DNS.1,16 The most prominent secondary modes
are classified into three catagories by Koch et al.19 First, the high-frequency type I mode is related to the
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spanwise shear layer in the upwash region of the primary vortex. Second, the high-frequency type II mode
lives on top of the vortex and is mainly produced by wall-normal shear. Third, the type III mode resides
close to the wall under the primary vortex, due to the low local convection velocities it is dominant at low
frequencies. Malik et al.20 have also termed the type I and II modes as z- and y-modes corresponding to
the dominant direction in the shear layer they inhabit.

The primary CF vortices have receptivity mechanisms of their own; they are sensitive to the specific dis-
turbance environment, e.g. micron-sized surface roughness near the leading edge and freestream turbulence.
The secondary stability analysis, in turn, depends strongly on the primary vortices and the overall distur-
bance environment, so care must be taken in representing the base flow for the secondary stability analysis.
This complication is avoided by directly measuring the base flow and perform the stability analysis thereon.
This is the main focus of this paper; applying the BiGlobal stability theory to a base flow that is conceived
through experimental means. and the primary crossflow vortices to determine the secondary instability.
Usually the latter is approached numerically by performing NPSE or DNS, that require careful recepticity
calibration for the initial condition, see Malik et al.,7 Fisher & Dallmann21 and Bonfigli & Kloker.1 The
current approach has also been applied to the flow about a micro-ramp; a type of micro vortex generator.22

The approach is to use an experimentally measured “base flow” for the secondary stability analysis using
tomographic (or tomo-)PIV, capturing the boundary layer flow and the mean flow distortion effect due to
the primary vortex. The base flow is represented by forming the mean of instantaneous snapshots under
the hypothesis that the difference between the base and mean flow becomes negligible as the number of
instantaneous snapshots is increased. The field of view of the measurement is limited, which is approached
by simple extrapolations using Blasius profiles. In the same vein, the shear layer under the primary vortex
in the raw tomo-PIV data displays erroneous inflection points because it is difficult to measure near the
wall.23 This is mended with the only objective to avoid highly unstable artificial solutions. The solutions of
interest are found to be independent of these features as they have nearly zero amplitude outside the field
of view. The set-up of the tomo-PIV and hot-wire experiments and the pre-processing of the experimental
data will be elaborated on in detail in Sec. II. The used experimental results are published independently,
see Serpieri & Kotsonis24 for a treatment of the tomo-PIV experiments and Serpieri & Kotsonis25 for the
hot-wire experiments.

The main objective is to investigate whether the secondary instabilities of interest can be approached
using BiGlobal stability theory on experimental base flows. The numerics of the BiGlobal stability method
is discussed in secion III The focus of the verification lies on the independency to the ensemble size for the
mean and the handling of the near-wall and freestream regions. A validation is performed in Sec. IV using
the instantaneous experimental data, relying on the comparison of the flow structures with those obtained
with hot-wire and tomo-PIV measurements. To this end, the BiGlobal modes are simply extracted at the
measured frequencies and determined at the fixed 45% chord location; determining amplification curves or
performing transition correlations are out of the current scope. The verification and validation are elaborated
on in Sec. IV and discussed in Sec. V. The paper is concluded in Sec. VI.

II. Experimental Base Flow

The base flow is the mean field obtained with three-dimensional tomo-PIV measurements of which the
experimental set-up is the same as that elaborated upon by Serpieri & Kotsonis;24 the main difference in the
case of the hot-wire experiment is the inclusion of the DBD plasma actuator. See Fig. 1(left) for schematics of
the hot-wire and tomo-PIV set-ups. The experiment was performed in the TU Delft LTT facility. The model
is a 45˝ swept wing with an airfoil that is an adaptation of the NACA66018 shape, called 66018M3J, with a
small leading edge radius to avoid attachment line instability, see Fig. 1(top right). The angle of attack of the
wing was set to 3 degrees, so to enhance the crossflow instability at the pressure side. At this angle of attack,
the pressure minimum is attained at X{cX “ 0.63, where X is parallel to the tunnel walls and cX the chord
in the X-direction. The full Cp-distribution is shown in Fig. 1(bottom right). The windtunnel inflow velocity
is Q8 “ 25.6 rm{ss, yielding a chord Reynolds number of 2.17 ¨ 106. The measurement is performed about
the 45% chord, spanwise center location. At this location, the vortices and inviscid streamline respectively
have an angle of 5.0 and 1.74 degrees (clockwise positive) with Q8.

Several coordinate systems are defined, as illustrated in Fig. 2. The first, pX,Y, Zq, has X parallel to
Q8, Z in the spanwise direction perpendicular to the tunnel walls and Y normal to the ZX-plane. The
second, pxw, y, zwq, is aligned with the primary crossflow vortices. I.e. xw is parallel to the vortices, y
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Figure 1. Schematic of the (top left) hot-wire and (bottom left) tomo-PIV set-up, the flow comes from right. (top
right) 66018M3J and NACA66018 airfoils. (bottom right) Cp-distribution of the 66018M3J airfoil. Reproduced from

Serpieri & Kotsonis.24

wall-normal with respect to the airfoil and zw spanwise, perpendicular to the xwy-plane. With exceptions,
this will be the main coordinate system used to display the results. The related velocity components are
indicated with the subscript w. The third (swept-wing) coordinate system, px, y, zq, is obtained by rotating
the pX,Y, Zq-system 45˝ about the Y -axis. x is orthogonal to the leading edge, y wall-normal with respect
to the airfoil and z parallel to the leading edge. The origin in the pxw, y, zwq- and px, y, zq-systems is
placed at the 45% chord, spanwise center position. In the experimental treatments, the y-coordinate normal
to the airfoil is also denoted by yt; at the fixed streamwise station of current interest, X{cX “ 45%,
the difference is negligible. The primary instability is fixed by installing a cylindrical roughness element
array at X{cX “ 2.5% parallel to the leading edge, with a spanwise spacing of 9 rmms. The elements’
diameter and height are 2.8 rmms ˆ 10 rµms. The projection of the roughness spacing on the zw-direction
is 9 cos 40˝ “ 6.89 rmms. This length is denoted by λr and used as the length scale throughout. The edge
velocity in the direction of the primary vortex at X{cX “ 45%, Uw,e, is 28.0 rm{ss. This is used as the
velocity scale throughout the paper and is denoted with Ue in the remainder.

II.A. Tomographic PIV

The tomo-PIV setup consisted of four cameras, that were mounted in an arc configuration located approx-
imately one meter away from the model (see Fig. 1(left)). The laser light enters the wind tunnel vertically
from below. The final field of view was 35 ˆ 35 ˆ 3 rmm3s and centered at X{cX “ 0.45. Volume recon-
struction and correlation were performed in a coordinate system aligned with the primary crossflow vortices,
i.e. in the xw-direction. The final interrogation volume size is 2.6 ˆ 0.67 ˆ 0.67 rmm3s in pxw, y, zwq. For
the purposes of this paper it is assumed this yields sufficient spatial resolution. A 75% overlap of adjacent
interrogation volumes was used. The final vector field was interpolated on a grid with uniform spacing of
0.15 rmms in all three directions, only implying interpolation in xw. The planes were obtained at xw “ 0 by a
linear interpolation. The measurements were performed at 0.5Hz. Proper Orthogonal Decomposition (POD)
analysis is applied to identify the most energetic spatially correlated three-dimensional flow structures.26 See
Serpieri & Kotsonis24 for more details related to the present application.

In total 500 uncorrelated snapshots were obtained. The mean flow field was conceived with different
ensemble sizes (number of snapshots): Nf “ 300, 400 and 500 are used as a base flow for the stability
analysis. Previous studies22 pointed out that using this amount of snapshots is enough to yield converged
stability results. Regarding a maximal perturbation magnitude of 0.1Ue, the uncertainties of the mean fields
are estimated to be 0.1{

a

Nf “ 5.8 ¨ 10´3, 5.0 ¨ 10´3 and 4.5 ¨ 10´3 for the 300, 400 and 500 frame cases.
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Figure 2. Definition of (left to right) primary crossflow vortex pxw, zwq, inviscid streamline pxs, zsq, leading edge px, zq
and freestream pX,Zq coordinate systems. At the 45.0% chord location, the primary vortices have a ´40 ˝ angle with
respect to the leading edge orthogonal x-coordinate (`5.0 ˝ with respect to X), in turn the inviscid streamline has a
´3.26˝ angle with respect to the primary vortices (`1.74˝ with respect to X).

These are relatively large numbers in terms of the expected uncertainty of the stability analysis, but highly
sufficient for PIV standards. Despite of this, the stability results are found to be less sensitive than expected.

The most important feature of the tomo-PIV experiment as opposed to hot-wire measurements, which is
the prevalent technique applied in this field,4,8–13 is that all 3 velocity components are measured in an entire
volume. This is the first occasion where such experimental data is available for the current application case.
Preliminary BiGlobal stability tests indicated that the results deviated significantly when discarding the in-
plane velocity components, despite being an order of magnitude smaller. Lastly, it is noteworthy to mention
that the tomo-PIV measurements were performed in a different occasion than the hot-wire experiments.
Despite possible differences in the primary CF vortex’s receptivity, the current stability results could be
reasonably extrapolated to the hot-wire case to compare the structure of the secondary instability.

II.B. Hot-Wire Anemometry

Hot-wire measurements were performed with two probes simultaneously, one for the boundary layer and one
for the freestream. The hot-wire was operated at a sampling frequency of 40 rkHzs and low-pass filtered
with a cut-off frequency of 15 rkHzs before bridge amplification. The schematic of the total system including
the traverse is shown in Fig. 1(left). The sting is not straight so to reduce the influence of the sting on
the measurement region. Scans were performed in spanwise planes at X{cX “ 0.45 about the spanwise
centerplane. The spacing in the wall-normal and Z-direction are „ 0.1 rmms and 0.625 rmms, respectively.
The wire was aligned with the Z-direction (vertical in Fig. 1(left)), so that it measured mainly the Euclidean
sum of X- and Y -velocity components.

The structure of the perturbation can be constructed in a phase-locked sense if one has knowledge of
the phase of the incoming instability. Therefore, the secondary modes are forced with a fixed frequency
via a Dielectric Barrier Discharge (DBD) plasma actuator installed on the wing at X{cX “ 0.30 parallel to
the leading edge, having a measured total thickness of 125 rµms. Applications of phase-locked experiments
are treated by Kawakami et al.9 and Chernoray et al.12 Oil flow visualization and infrared thermography
indicated no adverse effects on the transition location by the actuator’s presence. Here the case with forcing
frequency ff “ 4.0 rkHzs is considered, which is proper to the type I mode instability. In combination with
the 40 rkHzs sampling frequency, this yields+ 10 measured phases. The obtained data is averaged per phase.
These measurements are used solely for the comparison of the mode’s structure.
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Figure 3. (left) In-plane Uw-shear magnitude of the 500 frame tomo-PIV dataset, interpolated onto the 55ˆ55 mapped

Chebyshev grid. Levels are in units of Ue{λr; the maximum encountered above the black dashed line is 7Ue{λr. Red

and white thick contours respectively indicate where the zw- and y-shear magnitudes equal 7{4 pUe{λrq. The horizontal
white dashed line (y{λr “ 0.433) indicates the highest coordinates captured in the measurement; the black dashed line
(y{λr “ 0.061) indicates the near-wall region. (right) Shear component profiles for the 500 (solid dots), 400 (circles)
and 300 (squares) frame datasets extracted along the vertical dash-dotted line (zw{λr “ 0.378) in the left figure. Black
dashed line indicates the near-wall region.

II.C. Pre-Processing for BiGlobal Analysis

Before the mean flow fields can be analysed with the BiGlobal stability method, they have to be pre-processed.
This processing is mainly related to the limited field of view and problems associated to measuring in close
proximity to the wall.

Regarding the upper limit of the domain, the perturbations need sufficient space to decay in the wall-
normal direction, so the Uw and Ww base flow components are both extrapolated using a Blasius profile,
using a cosine weight in an overlap region. In this regard, Ww,e “ Ue tan 3.26˝, related to the inviscid
streamline direction. A Falkner-Skan-Cooke profile would be a better approximation, but for the current
purposes using Blasius for Ww is deemed sufficient. V is extrapolated the same way, approaching zero in
the freestream. The height up to which the PIV data is used solely is denoted by δPIV and the height of
the overlap region by ∆y.

It is a difficult task to measure near the wall, for which there are several reasons;23 the most important
ones being low particle density, the strong shear near the wall and reflections. Effectively, these features yield
the velocity profile to slope off at a non-zero value instead of resembling the no-slip condition. The region
where these features are prominent is here referred to as the near-wall region. The type III mode depends
sensitively on the flow’s details in this region and it is therefore expected to be irreversibly affected by this
measurement noise. Moreover, artificial inflection points are created that can cause a significant artificial
inviscid instability.

This behaviour is mended with the sole purpose of avoiding the latter solutions. The data closest to
the wall is affected most. The treatment is therefore to connect the profiles to the wall, “add” the no-slip
condition, and linearly interpolate the data on the y-coordinate closest to the wall using the data on the
second y-coordinate. This reduces the artificial shear. In a way, this is analogous to what has been done to
suppress the type III mode in the computational literature.1 The resulting flow field in the near-wall region
is in no way the “correct” flow, but now at least can be properly assumed to have no adverse effect on the
targeted stability results. The modes of type I and II can be assumed to be affected negligibly. This will be
discussed in a larger extent in Sec. V.

The in-plane Uw-shear from the resulting mean tomo-PIV flow field is shown in Fig. 3(left), using 500
snapshots and extracting the plane along the zw-coordinate.24 The spanwise extent of the domain covers one
primary vortex in the zw-direction, 1λr “ 6.89 rmms. Sixth order finite differences are used to determine the
derivative fields consistently, i.e. using central differences in the interior and forward/backward differences
about the boundaries. This was done to take the most out of the limited resolution. Differentiation is
performed with another method than using the mapped Chebyshev matrices to avoid errors in the near-wall
region to affect the data at all points in y. It is observed the derivatives of the small quantities V and Ww,
that are difficult to measure, can attain large values in the near-wall region and are sensitive to the ensemble
size for the mean. Tests are performed in which these levels are artificially reduced, which led to Op10´4q
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absolute changes in the type I mode’s eigenvalues. These features are therefore tolerated. The height of the
measurement domain and the near-wall region is shown by the white and black dashed lines respectively.
The color scale is adjusted so to remove the levels pertaining to the near-wall region.

It is difficult to spot differences between the analogous contour plots for the different ensemble sizes. To
that end Fig. 3(right) displays profiles extracted at constant zw{λw “ 0.378; the location where the type I
mode turns out to be most dominant. Although it displays the flow derivative profiles, the fields are similar
with the exception of the near-wall region. The largest relative difference between the 400 and 500 frame
cases outside of the near-wall region is 1.9% for both profiles. The shear levels are directly related to the
modal growth rates,27 thus one expects the difference in the growth rates to be of this order of magnitude.

III. BiGlobal Stability Analysis

The BiGlobal stability approach assumes the flow to have its shears in 2 principal directions. The flow is
assumed to be independent of the third. The best approximation of such a direction in the case of the primary
crossflow vortices is along the wave vector of the primary vortices: the xw-direction. Implicitly this implies
one neglects the curvature of the vortices,1,7 which is a postiori justified by the small wavelengths of the
secondary modes.14 Regarding the spanwise direction, a finite domain extent has to be considered. Here the
smallest interesting such length is chosen for simplicity: a single primary vortex wavelength. Moreover, one
must justify boundary conditions on the introduced boundaries, especially the periodic boundary conditions
in the spanwise direction. The flow is closest to periodic in the leading edge parallel z-coordinate. This
implies the BiGlobal plane should be contained in the zy-plane; but the out-of-plane dynamics should be
described in terms of quantities pointing in the xw-direction, non-orthogonal to this plane. This set-up
is approached by extracting the base flow at x “ 0.45c and projecting it onto an appropriate zwy-plane;
effectively changing the spanwise lengthscale. This is explained in high detail by Bonfigli & Kloker,1 see
their Fig. 18 and the corresponding elaboration. Regarding the wall-normal direction, wall conditions28 are
applied at y “ 0 and Dirichlet conditions are used for all amplitudes on the top boundary as it is located
high enough (at 4λr) and as it resolves the additive-constant non-uniqueness problem with the pressure.

In the current case, it was chosen not to follow the latter “best” approach regarding the choice of the
spanwise coordinate. The zwy-planes were extracted directly from the tomo-PIV data, because the cross-
correlation is performed in this direction and hence yields the most consistent representation. The data is
interpolated to yield the plane with zw “ 0 at x{c “ 0.45. The introduced non-periodicity is assumed to be
negligible. The change in the edge velocity is used as a representative quantity and changes less than 10´3

units. This is a consequence of the small chordwise extent of the domain, 9{1270 sin 40˝ “ 0.0045. Note, in
this regard, that the base flow quantities, including the shear, change discontinuously across the boundaries,
but no new shear is introduced due to this.

One combines the aforementioned in the BiGlobal ansatz for the perturbation as follows:

q1 “ q̃pzw, yq e
ipαxw ´ωtq ` c.c. (1)

One solves the BiGlobal stability equations for ω P C (given α P R) or α P C (given ω P R), the temporal or
spatial framework, respectively. In both approaches solutions are sought for which ωr{p2πq « 4.0 rkHzs and
5.0 rkHzs, the frequencies corresponding to the tomo-PIV and hot-wire data, respectively.

The BiGlobal tools of the VKI Extensible Stability and Transition Analysis (VESTA) toolkit are used
to set up the stability problem.29 The problem is discretized using Chebyshev spectral collocation and a
BiQuadratic mapping is used to resolve the y- and zw-directions in specific areas. The BiQuadratic mapping
is defined as follows:

y “ ymax
aη2 ` bη ` c

dη2 ` eη ` f
, (2)

a “ pyi2 ´ 3yi1q b “ 3
2 pyi2 ´ yi1q c “ pyi2 ` 3yi1q{2

d “ 2p2yi2 ´ 2yi1 ´ ymaxq e “ 0 f “ 2ymax ´ yi2 ` yi1
,

where the Chebyshev coordinate η P r´1, 1s and the physical coordinate y P r0, ymaxs. The mapping is
conceived so as to distribute one third of the collocation nodes over the domains r0, yi1s, ryi1, yi2s and
ryi2, ymaxs, as long as 0 ă yi1 ă yi2 ă ymax and yi2 ă 9yi1 and 9yi2 ă yi1`8ymax to ensure a regular one-to-
one behaviour. The resulting grids maintain a cosine distribution near the boundaries. In the current context,
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using a BiQuadratic mapping. (right) Resolved eigenvalue region by the Arnoldi algorithm using the optimized shift

ωg “ p0.669` 2.02iqα{Ue to resolve interesting modes only, while avoiding the continuous spectrum and modes dominant
in the near-wall region. Particular spectrum corresponds to α “ 8.2{λr. Locations about the type I mode where the

pseudo levels are resolved are indicated, having a linear spacing of 0.01 units of Ue{λr.

the mapping is equipped with specific parameters so to dedicatedly resolve the type I mode. Using NzˆNy “
55ˆ 55 nodes and setting pzi1, zi2, zmaxq “ p0.30, 0.55, 1.0qλr and pyi1, yi2, ymaxq “ p0.18, 0.60, 4.0qλr yields
the most amplified type I mode to be absolutely converged to op10´4q. An example of the mode on the grid
is shown in Figure 4(left). Grid convergence was checked by increasing the resolution using these mapping
parameters and checking against more conventional grid, applying no or standard bilinear mappings.30 The
type II mode, positioned about the point pzw, yq “ p0.7, 0.35q that is depleted from nodes, has yet to overcome
Op10´3q differences with higher resolution computations. Using the BiQuadratic mapping this way has the
main advantage of markedly reducing the computational expenses, in terms of RAM and evaluation time,
while maintaining excellent accuracy for the main target at hand: the type I mode. The reduced number
of nodes rendered both temporal and spatial problems small enough to be solved on small workstations in
mass. A single evaluation lasting several minutes.

A final step to improve solving efficiency is setting the center of the resolved spectrum, the parameters for
the shift and invert spectral transformation required in the Implicitly Restarted Arnoldi Method (IRAM).
This is done considering specific heuristics: the modes of interest are all positioned high in the boundary
layer, away from the near-wall region indicated in Figures 3, and they are discrete modes that do not belong
to the continuous spectrum. Modes that lie in the near-wall region have low phase speeds corresponding
to the low Uw values, by inspection smaller than 0.4Ue. Hence, the region with ωr ă 0.4αr, especially the
stable region, is to be avoided. It is indicated in Figure 4(right) as the wall limit. The continuous spectrum
contains modes that live in the freestream, those with phase velocity equal to 1. They complete the spectrum,
but are very expensive to compute. Due to Ww,e being non-zero, the upper bound of the spectrum in the
ω-plane is the parabola shown in Figure 4(right), with its vertex at pαp1´ iα{Req. The shift is oriented so
to equally avoid both (stable) regions, but capture all interesting discrete modes. See Wheeler & Barkley
for a similar approach.31 This allowed reducing the number of resolved modes to 5. Note that this approach
results in a large imaginary shift value which occasionally increases the required computational time; a shift
closer to the modes is helpful at the cost of having to resolve continuum modes. As one encounters another
continuous branch for large negative αi in the spatial problem, this approach is fruitful only for the temporal
problem. Changing the shift or the number of nodes only yields changes of Op10´12q.

The pseudospectrum is the generalization of the spectrum indicating regions in the eigenvalue space
that might pass for eigenvalues when the problem is subjected to arbitrary perturbations. That is, the
ε-pseudospectrum contour indicates the maximal perturbation of the eigenvalue when the corresponding op-
erator problem is perturbed by an operator of order ε.32,33 See Riedel34 for definitions related to generalized
problems. Here, the weighted pseudospectrum definition is used; the norms of the right hand side matrices
are Op1q. These ε contours are used to see where an eigenvalue can be moved subject to the worst-case-
scenario ε perturbation. Unfortunately, but expectedly, the contours corresponding to the uncertainty levels
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Figure 5. Temporal (left) and spatial (right) eigenvalues associated to the type I secondary instability with varying real
α and ω, respectively. The spacing of the latter is chosen so to densely resolve the most unstable and most amplified
modes at the x{c “ 45% location. The Gaster-transformed 500 frame temporal spectrum is shown amongst the spatial
spectra. Note that the top axes, indicating the input for the 500 frame base flow case, are non-linear. Pseudospectrum
levels corresponding to the 500 frame case are superposed, for the temporal spectrum: 10pp´6,´5,´4,´3.1,´3,´2.9q and
the spatial spectrum: 10pp´7,´6,´5,´4.1,´4,´3.9q.

associated to the PIV base flow datasets lie very far. This is in agreement with the common knowledge that
stability results depend very sensitively on the base flow parameters. But this is a pessimistic indication.
The disturbance operators yielding the precise movement of an eigenvalue onto the pseudospectrum are very
special. It is in no sense clear that the PIV base flow errors are as special. Investigating the actual move-
ment due to the convergence of the mean PIV flow with respect to the pseudo levels helps understanding
the impact of using experimentally measured base flows on the stability results for this case specifically.
To this end, the pseudospectrum levels are calculated about the type I mode obtained with the 500 frame
PIV dataset, so to compare the locations obtained corresponding to the other datasets. Note the use of the
500 frame dataset implies the assumption that that is the “correct” base flow solution. This is a posteriori
justified regarding the resulting convergence characteristics with respect to the ensemble size. The pseudo
levels are computed in the imaginary direction with respect to the eigenvalue as the imaginary part is found
to be most sensitive to perturbations. A standard sweep over these pseudospectrum levels is indicated in
a single BiGlobal spectrum in Fig. 4(right), indicating the location at which the levels are computed. The
pseudo levels themselves in this figure are presented in Fig. 5(left).

IV. Results

The temporal and spatial branches corresponding to the type I mode obtained for a range of α and ω,
respectively, are displayed in Figure 5(left) and -(right). The temporal problem is solved for the α-range
r1.5, 11.5s{λr with a spacing of half a unit of 1{λr. The most unstable, forced and high frequency neutral
modes (respectively having pαλr, ωλr{Ueq “ p6.1; 4.6q, p8.2; 6.2q and p11.4; 8.7q) are resolved with a spacing
of a tenth unit of 1{λr. These α-values are based on the 500 frame base flow case specifically and fixed for the
other cases. The obtained real parts of the temporal frequencies are used as the input for the spatial problem.
The obtained branches display the characteristic shape associated to the Kelvin-Helmholtz mechanism35

associated to the type I mode and are qualitatively comparable with computational literature.1 The closest
extracted wavenumbers and frequencies for the comparison to the experimental data are: pαrλr, ωrλr{Ueq “
p9.5; 7.2q for the tomo-PIV and p8.2; 6.2q for the hot-wire experiment. Both frequencies are higher than the
most unstable frequencies at this location. This is a qualitative indicator for the spatially most amplified
mode, as a frequency attaining the maximal N -factor usually is itself not the most unstable wave at that
streamwise location.36

Although the statistical uncertainties of the mean flows are large, of Op10´2.3q, Fig. 5 shows the resulting
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branches are similar over the covered frequency range. The main change is a vertical shift, that increases
for higher frequencies and wavenumbers. The real dispersion parameters pertaining to the phase and group
speed differ very slightly, the average group speed found for the spatial 500, 400, 300 and temporal 500
frame cases are 0.7725, 0.7760, 0.7648 and 0.7736 units of Ue, respectively, indicating Op10´3q errors in the
real parameters for the 400 and 500 frame cases. These values agree with the values reported by Bonfigli
& Kloker,1 Malik et al.7 and Koch et al.19 The average group speed cg “ 0.7736Ue is used for the Gaster-
transformation37 of the 500 frame temporal spectrum shown in Fig. 5(right); which agrees remarkably with
the spatial branch. As the number of frames increases, the growth rates ωi and ´αi decrease and saturate.
The same applies to the most unstable real frequency and wavenumber. To quantify the proximity of the
branches more closely, specific pseudospectrum contours corresponding to the 500 frame case are shown,
combining the levels obtained per mode as described before. The levels are chosen to indicate the contour
distributions close to the 300 and 400 frame cases. Most striking is that the 400 frame branch covers the
10´4 and 10´5 contours in the temporal and spatial spectra, respectively. It lies in the steep valley close
to the 500 frame case. This means that the branches are insensitive to the residuals in the mean flows
associated to the finite ensemble size. In that sense, these residuals are suboptimal. It is concluded that the
effective differences in the 400 and 500 frame cases are of Op10´4q and Op10´5q for the temporal and spatial
spectra, respectively. Note that these results cannot be used to quantify the convergence with respect to
the ensemble size for the mean; it only indicates that error estimates based on the pseudospectrum are very
pessimistic. It is unclear why the pseudo levels for the temporal and spatial problems differ by an order of
magnitude. It cannot be the result of using the weighted pseudo-spectrum definition, see Riedel,34 as the
right hand side matrix norm sizes are the same.

Absolute eigenfunction profiles corresponding to the frequency considered in the tomo-PIV experiment
are shown in Fig. 6(left). This is the frequency corresponding to the largest differences in the branches.
The profiles are shown at the zw-coordinate where the |ũw|-amplitude attains its maximum in the 500 frame
case. A first observation is that these profiles have very small magnitudes in the near-wall region and in
the freestream. Second, the temporal and spatial eigenfunctions corresponding to the 500 frame case are
found to be virtually identical. The same conclusion is drawn when considering the full two-dimensional
absolute amplitude contours for all variables. The combination of the match of the temporal and spatial
eigenvalues and -functions demonstrates the Gaster-transformation can be applied with confidence. Third,
it is found that the profiles corresponding to the 400 and 500 frame cases closely overlap as well. The only
noticeable differences are small depressions in the ṽ- and w̃-amplitudes of the 400 frame case. This indicates
that the 400 and 500 frame base flows yield nearly identical mode structures, although the eigenvalues have
slightly different imaginary parts. With these observations it is concluded that the 400 and 500 frame cases
yield a converged stability result. The latter will therefore be used to compare to the experimental data in
the remainder of the paper. A significant difference is expected when regarding the 300 frame case. This
manifests itself primarily in the eigenfunction’s maximum moving towards the wall. It is unclear why this
happens, as the shear profiles in Fig. 3(right) for the 300 frame case indicates a local increment in the
opposite direction.

It is important to quantify the effect of the parameters of the Blasius extrapolation to approach the
limited field of view in the experiment. Significant variations in the position (δPIV ) and size (∆y) of the
overlap region causes negligible differences. This is displayed in Fig. 6(right). Increasing both δPIV and ∆y
reduces the “intrusiveness” with the PIV data, in terms of changing the data inside the field of view and the
introduced shear magnitude, respectively. The type I eigenvalue behaves as expected, as the parameters are
maximized, the eigenvalue converges and attains Op10´5q absolute convergence levels. The physical reason
for this is that the eigenfunctions are small in the near-wall and freestream regions and are hence affected
to an insignificant extent. The used overlap region for the results presented in this paper was set to have
zero overlap with the PIV domain (δPIV “ 0.433λr) and the same wall-normal extent as the PIV domain
(∆y “ 0.433λr). This wall-normal extent ensures the shear magnitude introduced in the extrapolated region
is small with respect to that inside the PIV domain for this specific case.

The two-dimensional amplitude distributions of the BiGlobal mode are compared to the (total) r.m.s. of
the tomo-PIV experiment in Fig. 7. The near-wall region is cut from the experimental data as this is deemed
affected too much by measurement noise. The BiGlobal mode is evaluated at xw “ 0, while the experimental
contours are extracted at xw “ 17.55 rmms “ 2.5λr. This is done because the measured structures at xw “ 0
are deemed to be too small to have been properly captured. Regarding the assumption of xw-inhomogeneity,
it is deemed to have negligible impact on the current comparison. First of all, the relative magnitudes of
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Figure 6. (left) Absolute eigenmode y-profiles at zw “ 0.378λr, where the type I |ũw|eigenfunction corresponding to the
500 frame base flow is maximal. The solid dots, circles and squares correspond to the 500, 400 and 300 frame spatial
BiGlobal modes (at pαλr;ωλr{Ueq “ p9.506 ´ 0.1191i; 7.228q, p9.465 ´ 0.1319i; 7.228q and p9.572 ´ 0.1988i; 7.228q, respectively)

and the triangles to the temporal BiGlobal mode for the 500 frame base flow (for pαλr;ωλr{Ueq “ p9.500; 7.228`0.09318iq).
Black dashed lines indicate the near-wall region and the upper limit of the field of view. (right) Temporal eigenvalue

for different domain extrapolation parameters (in units of 0.433λr). Dashed and dash-dotted lines indicate 10´4 and

10´5 absolute error limits with respect to the δPIV “ ∆y “ 0.433λr case.

the different velocity components are very close. This is unexpected regarding the apparent sensitivity of
the relative magnitudes of the local ṽ- and w̃w-profiles as opposed to ũw displayed in Fig. 6. Second, the
structure of the streamwise and wall-normal components agree well, the main difference being the extent.
This is remarkable when comparing the uncertainty of the mean 0.1{

?
500 « 0.0045, represented by the non-

zero r.m.s. levels in the background, to the size of the ṽ component. It is more difficult to find similarities for
the spanwise component. An explanation for these differences could lie in the structure of the most energetic
POD mode corresponding to this experimental measurement, reported by Serpieri & Kotsonis.24 This mode
shakes the whole primary vortex in the spanwise direction. Lastly, next to the type I structure, a hint can
be detected of another in the xw-component. Just above the near-wall region, one can see an elevation in
the r.m.s. level. If not related to measurement noise, it is most probably related to the top of the type III
mode. Similarly, the ring shape about the outer mean flow contour could be associated to the type II mode.

The three-dimensional instantaneous xw-velocity isosurfaces of the BiGlobal mode are compared to those
of the POD mode that is representative of the type I mode from the tomo-PIV experiment in Fig. 8. Using the
xw-inhomogeneity argument, the spatial BiGlobal mode is extrapolated in space, incorporating the spatial
growth. A difference is the absence of surfaces upstream of the xw “ 0 station in the POD mode. This is
associated to the limited dynamic range of this particular tomo-PIV experiment. Overall, accounting for
the logical and explainable differences in the structure in the different representations, the structures match.
Based on this comparison, it is difficult to conclude whether the linear spatial growth matches with the
experiment; further investigations have to be undertaken to pinpoint this.

A similar representation of the type I mode’s structure is shown in Fig. 9, where it is compared against the
phase-locked hot-wire measurements. Recall that the BiGlobal analysis is applied to the base flow conceived
from the tomo-PIV experiment, so this implies an extrapolation from one to another experiment. A 4 rkHzs
forcing was applied in the hot-wire experiments, different with respect to the 5 rkHzs center of the bandpass
range for the POD mode. The irregularity in the measurement isocontours is due to the small number of
measured phases, 10, in the phase-locking procedure. Here, the spatial BiGlobal mode is extrapolated in
time, at a fixed position, so no growth is involved. Note, that the figure is represented in the leading edge
parallel z-coordinate, while the xw-velocity isosurface is depicted. The isocontour levels are equated to the
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Figure 7. Relative magnitudes of the (top) xw-, (middle) y- and (bottom) zw-velocities of (left) the type I spatial

BiGlobal mode with pαλr;ωλr{Ueq “ p9.506´0.1191i; 7.228q at xw “ 0 and (right) the r.m.s. of the tomo-PIV measurement
at xw “ 17.55 rmms, the region affected by the wall proximity is cut. 15 base flow contours are superposed ranging from

0 to Ue.

measured relative magnitude with respect to the maximum perturbation level. Again, the structures are
found to be very similar. In this case, variations in the size of the structure can be directly compared and
agree qualitatively.

V. Discussion

Stability equations are differential equations having the base flow velocity fields and their derivatives as their
coefficients. The velocity derivatives strongly influence the results and therefore must be determined up to
high accuracy.2 The only consistent, though practically vague, argument in this regard is that the fields
should satisfy the Navier-Stokes equations.14 In practice, one uses the condition that the stability results
have to be converged with the numerical parameters of the laminar base flow solution, at least to the required
accuracy. To satisfy this condition, highly refined high-fidelity computational methods are usually deployed,
just to make sure base flow errors are absolutely minimal.

Applying stability analysis to experimentally measured base flows is a controversial topic. Letting alone
resolution, the closest one can get to the laminar undisturbed flow is to regard the mean of instantaneous
fields as a close representation. These resulting flow fields include a residue of the perturbation field and
measurement noise, so one violates the requirement of it being a laminar Navier-Stokes solution. The residual
perturbation field consists, for example, of Reynolds stress effects and residues related to finite ensembles.
The perturbations of interest here are small and mono-chromatic. So, the only, in itself negligibly small,
non-linear effect they can exert is self-interaction. Hence, the disturbance dynamics is linear up to good
approximation and it can be assumed to have a negligible effect on the laminar flow. In short, Reynolds
stresses can be assumed to be negligible. This implies that, as long as measurement noise and the residuals
due to the mean’s ensemble size are small enough, one can use the measured mean flow field as a base flow.
Regarding these premises, this approach is consistent. Examples of applications of stability theory that are
strictly inconsistent apply it to turbulent flows where Reynolds stresses cannot be neglected.38

Applying stability methods to experimental data also has definite advantages. One can think of problems
for which the experimental set-ups are standard and cheap, while the corresponding computational approach
requires months of expensive CPU time on clusters. Furthermore, parameter uncertainty and important
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Figure 8. xw-velocity isosurfaces of (left) the type I spatial BiGlobal mode at the frequency ω{2π “ 5 rkHzs (αr “ 9.5{λr),
having maximal amplitude 1 at x “ ´17.6 rmms, plotting the ˘84% levels, and (right) the tomo-PIV POD mode, plotting

the ˘0.086Ue levels, the near-wall region is cut.

Figure 9. 2 periods of the perturbation (red and blue) and mean (grey) xw-velocity isosurfaces of (left) the type I
spatial BiGlobal mode (˘18% of the maximum amplitude) at the frequency ω{2π “ 4.0 rkHzs (αr “ 8.2{λr) and 500 frame
tomo-PIV mean flow (23 rm{ss) and (right) the phase-locked hot-wire fluctuations (˘0.5 rm{ss) forced with ff “ 4.0 rkHzs
and the time-averaged field (20 rm{ss).
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details specifically associated to the experimental environment are covered as closely as possible. One could
argue that, if the stability results are that sensitive to the base flow, one might have to incorporate (or at
least model) all these specific features to match the experimental situation. Take the spanwise periodicity as
an example. The strength of the primary vortices varies along the span, according to the specific roughness
receptivity and freestream turbulence level. These effects are accounted for as realistically as possible in
an experimentally measured base flow. Efficiently replicating this kind of experimental environment is
very difficult. Lastly, the practical approach to transition has always combined stability methods with
experiments; leading to eN -correlations. The current approach brings the stability method closer to the
experiment, making the potential mismatch smaller.

The current approach is feasible for other fundamental reasons. It is hard to obtain high quality measure-
ment data near the wall; the near-wall region is where experimental noise is non-negligible. The secondary
instabilities of main interest here are driven by inviscid mechanisms. Inviscid instabilities are localized about
the inflection points in shear layers and, in this case, this point lies far away from the wall, so it can be
measured well with Particle Image Velocimetry (PIV). Near-wall details, especially wall-normal shear, are
more difficult to acquire for practical reasons like reflections. This means that applying this approach to
wall-bounded viscous instabilities like TS waves is more challenging.

Furthermore, the current secondary instabilities appear as discrete modes in the BiGlobal spectra. This
means that they are “global modes,” in the sense associated to the spanwise BiGlobal domain.39 A global
modes’ direct eigenfunction must, at least partially, overlap the associated adjoint eigenfunction. The adjoint
eigenfunction indicates the region of influence of the mode.40 The necessity of the overlap suggests that the
adjoint eigenfunction, just like the direction eigenfunction, is small in the near-wall region. Hence, the
experimental noise in the near-wall region has negligible influence on the mode. The actual extent of the
adjoint eigenfunction has to be determined to investigate this in more detail.

For these two reasons the general methodology of applying stability theory to measured base flows is
expected to be feasible at least for these inviscid perturbations that live about inflection points far from the
wall.

VI. Conclusion

BiGlobal stability theory is applied to resolve secondary instability of swept-wing three-dimensional boundary
layers. The treatment is focussed on the type I mode as this is the most dominant. The stability results are
found to be converged with the ensemble size of the mean tomo-PIV flow. Pseudo spectrum levels indicate
that, although the statistical uncertainty of the mean is rather high (Op10´3q), the residual differences
between the 400 and 500 frame datasets effectively correspond to differences of Op10´4q for the temporal
and Op10´5q for the spatial approach. It is moreover found that the treatment of the freestream and,
hence, the near-wall region has negligible effect on the stability results, which is associated to the negligible
amplitude of the eigenfunctions in these regions.

This indicates, at least for this application, that resolving the shear layers associated to the secondary
instabilities is sufficient to be able to perform stability analysis. Inherently, this implies that by measuring
the primary crossflow vortices to sufficient detail, using tomo-PIV, it is possible to capture the secondary
instability via stability analysis and use it for classical secondary eN transition correlations. Thereby one
circumvents having to scrutinize the delicate primary vortices’ receptivity in the computational approach.

It is found that the temporal and spatial eigenfunctions display the same absolute profiles. The spatial
eigenfunctions corresponding to the 500 and 400 frame datasets are very similar, the main difference being
the relative proportion of the ṽ and w̃w amplitudes with respect to ũw.

Successful validations are performed with respect to the instantaneous tomo-PIV and hot-wire measure-
ment data for the frequencies associated to the measured structures. Comparing the spanwise amplitude
distributions, high similarity is observed, despite the apparent sensitivity of the ṽ and w̃w-profiles. The
three-dimensional structures, in turn display a high degree of similarity.
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30Malik, M. R., “Numerical methods for hypersonic boundary layer stability,” Journal of Computational Physics, Vol. 86,

No. 2, 1990, pp. 376–413.
31Wheeler, P. and Barkley, D., “Computation of spiral spectra,” SIAM Journal on Applied Dynamical Systems, Vol. 5,

No. 1, 2006, pp. 157–177.
32Reddy, S. C., Schmid, P. J., and Henningson, D. S., “Pseudospectra of the Orr-Sommerfeld operator,” SIAM Journal on

Applied Mathematics, Vol. 53, No. 1, 1993, pp. 15–47.
33Trefethen, L. N. and Embree, M., Spectra and pseudospectra: the behavior of nonnormal matrices and operators, Prince-

ton University Press, 2005.
34Riedel, K. S., “Generalized epsilon-pseudospectra,” SIAM journal on numerical analysis, Vol. 31, No. 4, 1994, pp. 1219–

1225.
35Drazin, P. G. and Reid, W. H., Hydrodynamic Stability, Cambridge University Press, ISBN: 978-0521525411, 2004.
36Arnal, D., “Boundary Layer Transition: Predictions Based on Linear Theory,” Special course on Progress in Transition

Modelling, No. R-793, AGARD, ISBN: 92-835-0742-8, 1994.

14 of 15

American Institute of Aeronautics and Astronautics



37Gaster, M., “A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic
stability,” Journal of Fluid Mechanics, Vol. 14, 1962, pp. 222–224.

38Jordan, P. and Colonius, T., “Wave packets and turbulent jet noise,” Annual review of fluid mechanics, Vol. 45, 2013,
pp. 173–195.

39Huerre, P. and Monkewitz, P., “Local and Global Instabilities in Spatially Developing Flows,” Annual Review of Fluid
Mechanics, Vol. 22, No. 1, 1990, pp. 473–537.

40Luchini, P. and Bottaro, A., “Adjoint equations in stability analysis,” Annual Review of fluid mechanics, Vol. 46, No. 1,
2014, pp. 493.

15 of 15

American Institute of Aeronautics and Astronautics


	Introduction
	Experimental Base Flow
	Tomographic PIV
	Hot-Wire Anemometry
	Pre-Processing for BiGlobal Analysis

	BiGlobal Stability Analysis
	Results
	Discussion
	Conclusion

