
1 

Increasing computing performance 
of ADCS subsystems in small 
satellites for earth observation 



Johan Carvajal-Godínez, Morteza Haghayegh, Allan 
Granados, Jaan Viru and Jian Guo 

Space Engineering Department 
Faculty of Aerospace Engineering 

Delft University of Technology 



2 

Outline

•  Introduction

•  ADCS challenges

•  “Y model” approach for ADCS

•  DelFFi ADCS modeling and simulation

•  OBC Hardware selection

•  ADCS software integration

•  Conclusions




3 

What does Earth Observation and Formation Flying have in common? 



4 

Challenging ADCS subsystem


ü  Multiple attitude modes

ü  High pointing accuracy

ü  Precise three axis control algorithms

ü  High resolution data types from sensors

ü  Onboard sensor calibration

ü  Fault detection and correction

ü  onboard functions for autonomous 

operation 

More complex software à improving OBC capabilities for ADCS 



5 

DelFFi Mission Statement


Source: SSE TU Delft 

“The DelFFi mission shall 
demonstrate autonomous 
formation flying and 
provide enhanced scientific 
return within QB50 from 
2016 onwards, by utilizing 
two identical triple-unit 
Cubesats of TU Delft 
which further advance the 
Delfi-n3Xt platform.” 



6 

DelFFi ADCS software development


“Y approach” 



7 

ADCS 
Model 

OBC 
platform 

ADCS SW Integration 

DelFFi ADCS software development




8 

DelFFi ADCS simulation model

ADCS 
Model 



9 

DelFFi ADCS input requirements


VP: Velocity pointing 



10 

ADCS software architecture (initial)




11 

DelFFi ADCS simulation model




12 

ADCS model profiling

Goal: Identifying the most demanding blocks inside the 
ADCS model by measuring relative CPU time utilization 
during simulation, for later code acceleration with digital 
signal processor (DSP)



Process Steps:

•  Implement ADCS simulation model in Simulink

•  Setup up the Matlab profiler to collect model performance 

data

•  Setup up the simulation environment for ADCS model

•  Run the model profiler

•  Analyze ADCS model performance data

•  Select most demanding model block for code acceleration 

with DSP 




13 

Simulation environment setup




14 

ADCS model profiling results


Other functions include: 
•  Environment initialization 
•  ADCS Mode determination algorithm 
•  Other attitude modes (Safe and De-Tumbling) 
•  Simulation Termination 

Block Function Number of 
calls 

Percentage of 
relative CPU time 
usage during 
simulation 

Attitude estimation (EKF) 110 000 52% 
Velocity Pointing mode 110 000 14% 
Other  OBC functions  110 000 34% 



15 

DelFFi OBC selection

OBC 

platform 



16 

OBC architecture trade off


Better 
computing 

performance 

Multicore 
CPU 

Heterogeneous 
SoC 

Beagleboard XM 

OBC Requirements: 
 
•  Code acceleration support 
•  Build system support from 

open embedded community 
•  I2C, SPI and UART support 
•  Power efficient floating point 

unit performance w.r.t. FPGA 
•  COTS available 
•  Open hardware and software 



17 

Hardware Test bed

Beagleboard XM: 
 
-  COTS and open 

hardware/software 
platform 

-  TI DM3730 SoC (ARM 
processor +Digital 
Signal Processor)  

-  Build system support 
from embedded 
community (Yocto 
project) 

-  Continuous integration 
support (Jenkins) 

 



18 

ADCS software build system




19 

Results on services and drivers support


Operating system size with all driver support  is 18 MB 



20 

DelFFi ADCS software development


ADCS SW Integration 



21 

DelFFi ADCS architecture (final)


Accelerated block Non Accelerated blocks 

ADCS  application 

ADCS OBC 



22 

Communication inside ADCS application


Optimized buffer size for EKF requirements  



23 

 Integration Results

•  EKF execution speedup of 5-10 times (based 

on baseline performance for FFT)


•  ADCS software footprint size is less than 20 
MB (regular footprint is 100-200 MB)


•  Memory size for data exchange between ARM-
DSP was reduced to 64MB ( initially 128 MB)


•  Fully automated operating system image 
generation with Yocto project + Jenkins




24 

Conclusions



•  “Y approach ” was introduced and 

implemented for DelFFi ADCS software 
architecture exploration


•  Model profiling technique helped to identify 
and quantify computing demand for ADCS 
attitude estimation algorithm.


•  Using a build system (Yocto project) and 
continuous integration  tools improved 
software productivity problem




25 

Further Work



•  Continue the work in the porting of Simulink 

model to BeagleBoard XM board


•  Compare ADCS performance with results from 
Flight Model OBC (Benchmark)


•  Continue to investigate on code acceleration in 
space software applications with 
heterogeneous onboard processors




26 

Thank You for your attention!!! 
j.carvajalgodinez@tudelft.nl 

 
 


