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What does Earth Observation and Formation Flying have in common? 
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Challenging ADCS subsystem


ü  Multiple attitude modes

ü  High pointing accuracy

ü  Precise three axis control algorithms

ü  High resolution data types from sensors

ü  Onboard sensor calibration

ü  Fault detection and correction

ü  onboard functions for autonomous 

operation 

More complex software à improving OBC capabilities for ADCS 
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DelFFi Mission Statement


Source: SSE TU Delft 

“The DelFFi mission shall 
demonstrate autonomous 
formation flying and 
provide enhanced scientific 
return within QB50 from 
2016 onwards, by utilizing 
two identical triple-unit 
Cubesats of TU Delft 
which further advance the 
Delfi-n3Xt platform.” 
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DelFFi ADCS software development


“Y approach” 
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ADCS 
Model 

OBC 
platform 

ADCS SW Integration 

DelFFi ADCS software development
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DelFFi ADCS simulation model

ADCS 
Model 
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DelFFi ADCS input requirements


VP: Velocity pointing 
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ADCS software architecture (initial)
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DelFFi ADCS simulation model
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ADCS model profiling

Goal: Identifying the most demanding blocks inside the 
ADCS model by measuring relative CPU time utilization 
during simulation, for later code acceleration with digital 
signal processor (DSP)



Process Steps:

•  Implement ADCS simulation model in Simulink

•  Setup up the Matlab profiler to collect model performance 

data

•  Setup up the simulation environment for ADCS model

•  Run the model profiler

•  Analyze ADCS model performance data

•  Select most demanding model block for code acceleration 

with DSP 
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Simulation environment setup
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ADCS model profiling results


Other functions include: 
•  Environment initialization 
•  ADCS Mode determination algorithm 
•  Other attitude modes (Safe and De-Tumbling) 
•  Simulation Termination 

Block Function Number of 
calls 

Percentage of 
relative CPU time 
usage during 
simulation 

Attitude estimation (EKF) 110 000 52% 
Velocity Pointing mode 110 000 14% 
Other  OBC functions  110 000 34% 
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DelFFi OBC selection

OBC 

platform 
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OBC architecture trade off


Better 
computing 

performance 

Multicore 
CPU 

Heterogeneous 
SoC 

Beagleboard XM 

OBC Requirements: 
 
•  Code acceleration support 
•  Build system support from 

open embedded community 
•  I2C, SPI and UART support 
•  Power efficient floating point 

unit performance w.r.t. FPGA 
•  COTS available 
•  Open hardware and software 
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Hardware Test bed

Beagleboard XM: 
 
-  COTS and open 

hardware/software 
platform 

-  TI DM3730 SoC (ARM 
processor +Digital 
Signal Processor)  

-  Build system support 
from embedded 
community (Yocto 
project) 

-  Continuous integration 
support (Jenkins) 
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ADCS software build system
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Results on services and drivers support


Operating system size with all driver support  is 18 MB 
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DelFFi ADCS software development


ADCS SW Integration 
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DelFFi ADCS architecture (final)


Accelerated block Non Accelerated blocks 

ADCS  application 

ADCS OBC 
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Communication inside ADCS application


Optimized buffer size for EKF requirements  
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 Integration Results

•  EKF execution speedup of 5-10 times (based 

on baseline performance for FFT)


•  ADCS software footprint size is less than 20 
MB (regular footprint is 100-200 MB)


•  Memory size for data exchange between ARM-
DSP was reduced to 64MB ( initially 128 MB)


•  Fully automated operating system image 
generation with Yocto project + Jenkins
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Conclusions



•  “Y approach ” was introduced and 

implemented for DelFFi ADCS software 
architecture exploration


•  Model profiling technique helped to identify 
and quantify computing demand for ADCS 
attitude estimation algorithm.


•  Using a build system (Yocto project) and 
continuous integration  tools improved 
software productivity problem
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Further Work



•  Continue the work in the porting of Simulink 

model to BeagleBoard XM board


•  Compare ADCS performance with results from 
Flight Model OBC (Benchmark)


•  Continue to investigate on code acceleration in 
space software applications with 
heterogeneous onboard processors
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Thank You for your attention!!! 
j.carvajalgodinez@tudelft.nl 

 
 


