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. Een overloop van een optelling onthouden of doorgeven, dat is de vraag

in dit proefschrift.
Optellen is eenvoudiger als aftrekken.

Het aantal reclames voor nieuwe computers houdt gelijke tred met het
aantal reclames waarin bedienend personeel wordt geworven.

Naarmate de tijd voortschrijdt, duurt alles korter.

. Als redundantie en fout-corrigerende eigenschappen net zo makkelijk

aan schakelingen toegevoegd kon worden als aan opgeslagen data, zou
de opbengst van de verschillende chipfabrieken allang tot 100% zijn
gestegen.

. De lage prijs, de goede beschikbaarheid en het gemak van CD-

recordables is zeker een factor waardoor Open Source Software in de
lift zit.

. Het algemene ontwikkelingsdoel van computer engineering is het maken

van snellere computers. Hieruit kan worden afgeleid dat de huidige com-
puters niet snel genoeg zijn.

De regels van de sociale zekerheid veranderen zodra je ervan athankelijk
wordt.

De levensduur van straatverlichtingsapparatuur wordt aanmerkelijk ver-
lengd door het gebruik ervan.

Het woorduitvinden moet aan banden worden gelegd.

Het openbaar vervoer kan veel goedkoper als we het gratis maken.

De betere stellingen worden pas bedacht,
als het proefschrift naar de drukker is gebracht.




12.

. To carry or not to carry, that is the question in this thesis.

Addition is simpler than subtraction.

. The number of commercials for new computers is at equal pace with the

number of commercials recruiting people to operate them.

. As time progresses, events last shorter.

. If redundancy and error-correcting properties could be added to circuitry

as easy as to stored data, the yield of the chip manufacturing industry
would have increased to a 100% a long time ago.

The low price, the high availability and the ease of use of CD Record-
ables are reasons for Open Source Software to flourish.

. The general research goal of computer engineering is to provide faster

computers. This implies that the speed of today’s computers is unsatis-
factory.

Social security’s rules change as soon as one becomes dependent on
them.

. Lamp-posts live longer by using them.
. Wordinvention should be restrained.

. Public transport could be much cheaper, if it is provided free of charge.

The more impressive propositions (theses) spring to mind only at the
moment the printer is printing the dissertation.
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Abstract

In this dissertation we we investigate the possibility to implement in hardware
complex expressions and operations shown to be frequently used in multime-
dia applications. The first group of expressions we consider can be formulated
as a general add-multiply-add operation and thus they can be captured by a sin-
gle compound instruction family. For this family of operations we show that
hardware can be built that requires approximately the same execution pipeline
stages as the multiply instruction. This implies that the Add-Multiply-Add
family of instructions should require the same execution time as the multiply
instruction, significantly speeding up the execution of multimedia applications.
Furthermore we show that two operations frequently used in motion estima-
tion, the Sum and the Mean of Absolute Differences, can be implemented in
hardware requiring also approximately the same execution time as the multi-
plication. Our approach can be extended easily to provide the computation of
the Sum and Mean of Absolute Differences of a 16x16 pixel block in no more
than four machine cycles. Additionally we propose a codec hardwired mech-
anism for the Paeth predictor used in the Portable Network Graphics Standard
(PNG). We show that this execution unit requires at most two general purpose
ALU cycles. We extend the Paeth unit to include the median, maximum and
minimum operations on three inputs with no additional cycle time and we also
extend the Add-Multiply-Add unit to include the mean of three numbers. Fi-
nally we propose the designs of two units to accommodate all the proposed
instructions. One unit comprises all multiply related operations, the other the
ALU related operations. The first one can be viewed as an extension of the
multiply execution stage hardware. The other can be viewed as a stand alone,
ALU like unit. Both units can be combined to a single execution unit that
operates on 32 instructions in total.

vii
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Chapter 1

Introduction

Multimedia' processing is embedded processing especially tuned to efficiently
execute multimedia applications. Accelerating multimedia processing is the
subject of this dissertation, as it relates to the logic design of multimedia pro-
cessors. More specifically we investigate the hardware implementation of ex-
ecution units capable of improving the performance of multimedia processors.
We note here that even though we discuss architecturalissues, the definition
of a complete multimedia architecture is not the primary scope of this disser-
tation. While we discuss design issues for a number of operations and propose
instruction formats, we do not perform performance analysis considering for
example frequencies of instructions’ and cycle count based estimations for an
entire application. In essence we do not attempt to legitimize an architectural
choice from performance benefit in terms of cycles saved in the entire execu-
tion of a program but rather we consider performance improvements due to the
realization of a specific function in hardware rather than in software. Further-
more we do not consider issues related to the physical realization of the units
we propose. We particularly focus on the execution stage of an instruction and
consider a pipelined processor as described in e.g. [2] and [3].

Under the above assumptions we establish instructions that have “small” num-

"Multimedia is defined as the combination of diverse information including text, graphics,
video, and audio. These forms of information compriscd in multimedia are also referred to as
multimedia formats.

2 Architecturc here and in the rest of this dissertation denotes the attribute of a system as secn
by the programmer, i.e., the conceptual structure and functional behavior of the processor. It
is distinct from the organization of the data flow and physical implementation of the processor
[i].

*Instructions are the basic operations performed by a processor.
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bers of cycle count requirements. More precisely the following is covered in
general:

o consideration of the data flow of a proposed pipelined instruction and
the logic design descriptions of the execution pipeline stage,

e cstimation of the number of cycles required to perform the execution of
the instructions we consider,

e providing estimations of the performance improvements for the pro-
posed units when compared to other existing approaches where the same
operations are executed in software.

We note that our work and proposals constitute the first basic steps for the def-
inition of an architecture and that our considerations are necessary to further
investigate the inclusion of new instructions to an architecture. Further discus-
sion and substantiations of our choices will be found throughout the presenta-
tion of our proposals. Some general preliminary assumptions are discussed in
the section 1.3.

The organization of the discussion of this chapter is as follows. First we pro-
vide some background information with some discussion on multimedia stan-
dards and some terminology definitions. Subsequently we discuss previous art
and open questions followed by some general assumptions regarding architec-
ture implementation and technologies. This chapter is concluded with a brief
discussion of the organization of this dissertation.

1.1 Background

As indicated earlier, multimedia processors are processors especially tuned
to perform “well” for multimedia applications. Multimedia is defined as the
combination of the following forms of information: text, graphics, video, and
audio — referred to as multimedia formats in the remainder of this dissertation.
Traditionally, multimedia formats were being represented in an analog form,
but currently we are observing a migration from the analog to the digital repre-
sentation. The digital representation of the multimedia formats proved to have
certain advantages. Examples of such advantages include easier editability and
improved error resilience. While there are several advantages, the digital rep-
resentation presented the scientific community and the industry with a sizeable
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problem, which is the large volume of data to be processed, stored and com-
municated. The first solution to this problem is to increase the size of storage
devices and the bandwidth of transmission lines.

The second solution, which can be combined with the first solution, is to com-
press the digital information. A substantial amount of research has been per-
formed in this area, resulting in a multitude of compression techniques which
are being used in current multimedia standard¢'. These techniques exploit the
fact that redundancies exist within the digital information and that these re-
dundancies can be removed from the digital information with the possibility to
reconstruct the original digital information using the remaining (compressed)
digital information. The compression techniques can be basically divided into
two classes, namely lossless compression and lossy compression. In lossless
compression, statistics of the digital information are used to reveal redundan-
cies within the digital information. Decompression of lossless compressed
data produces an exact identical copy of the original data. This makes loss-
less compression applicable to all classes of data, regardless of its contents.
In lossy compression, other information besides the statistics of the digital in-
formation is used to remove redundant information. An example is using the
Human Visual System (HVS) model which describes the inner working of the
human eye. Using this model, information which cannot be detected by the
human eye is removed from the original digital information in order to ob-
tain higher compression ratios than lossless compression. An exact copy of
the original digital information cannot be reconstructed if lossy compression
is used, hence the term lossy is being used. This property makes lossy com-
pression unusable for certain classes of data, such as text or programs. In
general, most multimedia data can be compressed using lossy techniques. A
large part of this dissertation focuses on multimedia architectural issues that
relate to compression techniques which are used to compress digital pictures
and digital video. Each of the compression techniques is highly tuned towards
a certain multimedia format which is being used by multimedia applications

*A multimedia standard is generally defined as the collection of:
1. the definition of the structure of the bit-stream,
2. the rules on how to decode the bit-stream, and
3. aset of parameters which indicate certain constraints on the handled data.

Usually, a multimedia standard is general in the sense that multiple multimedia applications
can be targeted by the standard. This is achieved by defining the parameters for each targeted
application. One important fact to mention is that the encoding process is not specified in many
multimedia standards.
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to transfer information. In this sense, the multimedia applications pose the

requirements which must be met by the compression techniques. For example,
the VideoCD application stores video and audio (with predetermined parame-
ters, like resolution of the frames and sampling frequency) on a compact disc
which is being read by a CD-player at the bit-rate of 150 kBytes/s. This fact al-
ready determines that certain compression techniques can not be used, because
they can not deliver the compression ratio to obtain the desired bit-rate.

Multimedia standards usually target multiple multimedia applications by com-
bining several compression techniques well-suited to meet the requirements
posed by the targeted multimedia applications. Using the proposed compres-
sion techniques, the original digital information is compressed into a bit-stream
which can be stored or transmitted. To obtain a copy of the original digital
data, which can be an exact copy of the original or a copy closely resembling
the original, the inverse of the compression technique is used. The process
of obtaining the compressed bit-stream is called the encoding process and the
inverse is called the decoding process. Most multimedia standards only define
the decoding process and the structure of the bit-stream and leave the encoding
process undefined on purpose. Because of this fact, future results of continued
research into faster and more efficient algorithms can be used in the encod-
ing process. Additionally, manufacturers are currently enabled to implement
their own algorithms to distinguish their products from other manufacturers.
However, extreme differences after decoding due to the different encoding al-
gorithms must be avoided. To this end, a rough guideline is given containing
several error measures which must not be exceeded.

As stated in the previous paragraph, the encoding process is often not defined
in a multimedia standard and only rough guidelines are given how to imple-
ment the encoding process. Therefore, different implementation§ are possi-

ble for the encoding process enabling manufacturers to differentiate their own
products from other manufacturers. There are basically two approaches in how
to implement multimedia standards. One approach is to implement the entire
standard in software run on general-purpose processors. Using this approach,
the implementation is fast in adapting to changes, but usually the performance
is not good enough. The second approach is to implement the multimedia

5 A multimedia application is defined as any digital system which uses one or more multime-
dia formats to transport information and which performs the associated functions to accomplish
this goal. Usually, multimedia standards are used to handle the multimedia formats used by the
application.

SA multimedia implementation is defined as a structure for realization and the realization
itself in hardware or software for handling of multimedia formats specified by multimedia stan-
dards.
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standards in hardware using Application Specific Integrated Circuits (ASICs).
Using this approach, the highest achievable performance is possible, but usu-
ally adaptation to changes requires new designs which is a time-consuming
and expensive process. This led to a hybrid solution between the two previ-
ous approaches, namely programmable Digital Signal Processors (DSPs) or
Application Specific Instruction Set Processors (ASIPs). These processors are
programmable as general purpose processors, and also have some specialized
hardware execution units which can perform more complex, application-range
specific, operations. This thesis studies such specialized execution units which
may help to enrich the instruction set architectures of such processors to sup-
port multimedia applications. Additional information regarding these issues
will be discussed found in the following section.

Before continuing on describing related work and open questions we briefly
introduce some terminology that is found in multimedia and used throughout
the dissertation. The following are some commonly used terms and standards:

o Pixel or Pel: The smallest element of any system that represents data
in the form of 2-D arrays of visual information, e.g. on a video screen.

e Resolution: The fineness of the detail represented by any form of me-
dia: audio, images or video. In case of image and video, the resolution
is defined by the number of pixels per picture.

e Luminance: The intensity, or brightness component, of an electronic
image.

e Chrominance: The color portion of the information contained in an
electronic color image.

e Multimedia Standards:  Examples of multimedia standards are:
JPEG, MPEG-1, MPEG-2, and H.261. Table 1.1 shows which multi-
media applications are targeted by these standards. The JPEG standard
is used to compress digital continuous-tone still-pictures using a wide
variety of compression techniques while retaining good picture qual-
ity. The MPEG-1 and MPEG-2 standards are used to compress video
and audio information. These standards provide video quality which is
equal to or better than VHS tapes. The H.261 standard is very similar to
the two MPEG standards, but targets applications like video-telephony
(using regular telephone lines). This requires a very low bit-rate of
the compressed bit-stream. Two newer standards are the Portable Net-
work Graphics (PNG) and the Multiple Network Graphics (MNG) stan-
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dards. These two provide lossless compression for images respectively
sequences of images.

| Multimedia standard | Targeted multimedia application(s) |

JPEG Lossy compression of photographic images
MPEG-1 VideoCD
MPEG-2 DVD

digital broadcast of video

HDTV
H.261 Video conferencing

Video telephony
PNG Lossless compression of images and graphics
MNG Lossless compression of sequences

of images or graphics

Table 1.1: Examples of multimedia applications targeted by different multi-
media standards.

In the following sections we discuss the previous art and open questions, and
we describe our assumptions that will be observed throughout the study.

1.2 Related work and open questions

In order to improve the processing of multimedia applications, four types of
processors have been investigated, namely:

Specialized multimedia standard processors: In this class of processors a
specific standard such as MPEG-2 is assumed, and for such a standard
a processor is designed that uniquely performs this standards require-
ments. There are several processors available that assume this approach.
Examples of such processors are for example MPEG-2 Decoders [4, 5].

Stream based video processors: This class of processors performs various
operations on streaming video. These processors are not targeted to a
specific standard, but rather to a specific application domain, such as
video-recorders and television sets. The programmability of these pro-
cessors is limited, in that they can only perform a predefined set of op-
eration. Typical operations executed by these processors are image en-
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hancement, picture-in-picture and on-screen-display. Examples of these
processors can be found in [6, 7, 8, 9, 10, 11, 12, 13, 14] and [15].

Specialized processors for augmented multimedia processing: In this
class of processors, programmability is assumed and no restrictions
to standards are imposed. That is, the processing follows the usual
general purpose paradigm of programmability and the instructions
set definition. These C-programmable processors are general purpose
processor with extensions that make them particularly suited for media
processing. For the Philips Trimedia architecture and processors [16]
these are fine-grain extensions to the VLIW processor as well as
coarse-grain coprocessors for e.g. VLD decoding. Another example
of this class of processors is the Texas Instruments Multimedia Video
Processor MVP) [17].

General purpose processors: The family of general purpose machine is ex-
tended with coprocessing capabilities to improve the performance of
multimedia applications. This approach follows the traditional exten-
sion oriented processing. That is, a general purpose processor archi-
tecture is extended with new architectural features in order to improve
a certain application domain, which allows the design of coprocessors
specialized for the considered application. Examples of such extensions
include the floating point and vector extension of general purpose com-

puting. Examples of this type of extensions with respect to multimedia
include:

o Intel MMX(Multi Media eXtensions) [18, 19],

e ALPHA MVI (Motion Video Instruction extensions) [20, 21, 22],
e Sun VIS (Visual Instruction Set) [23, 24, 25] and

¢ MIPS DME (Digital Media Extensions) [26].

All these classes of processors provide improvements in multimedia process-
ing and there is discussion which of the approaches should be followed. In
this dissertation we do not discuss nor decide which of these approaches is a
better multimedia solution. Rather we propose mechanisms that provide some

improvements to all possible types of processors by proposing new execution
units.

In order to determine the scope of our discussion we consider some of the
open questions left by the previous proposals. Processors specialized for a spe-
cific standard assume fixed functions for all processing including the execution
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hardware. This approach is rather limited to a single application (imposed by
the standard) and it can hardly follow the multimedia requirements in their
entirety. For example, an MPEG-2 specialized processor has no capabilities
to perform the functions required by other standards or applications. Further-
more, advancement in standards can not be followed, except by redesigning the
processor. Consider the following scenario as an example. Assume a specific
motion estimator has been designed using the Sum of Absolute Differences
operation. Given that the motion estimation algorithm is implemented in hard-
ware, no change can occur even when a new, possibly better, algorithm also
containing the sum of absolute differences function is proposed and desirable
to implement. The previous discussion leaves open the following question:

e Can frequently used functions be parametrically specified and provided
with appropriate interfacing so that standard improvements can be fol-
lowed with minimal design effort and no redefinition of functions?

The last three classes of multimedia processors partially resolve this open
question by providing programmability and new instructions. There are sev-
eral examples of this approach. For example, the sum of absolute differences
discussed previously, has been implemented as the PERR instruction in Al-
pha MVI [22] and as the newly added PSADBW instruction in Intel MMX
[27].The open question is resolved in part. While an appropriate interfacing
is given (all programmable processor instructions have this property) the pro-
posed instructions do not parameterize their implementation resulting in a po-
tential bottleneck for their performance. To further elaborate, consider the
sum of absolute differences function. If we assume a word parallel architec-
ture based on 64-bit registers and if we assume a “word” is a byte then at
most 8 “words” can be processed by a sum of absolute differences function
instruction. While this is an improvement, it is also a bottleneck. It implies
a maximum parallelism of 8 while the sum of absolute differences operates
on blocks of 16 by 16 pixels. An additional open question imposed by this ap-
proach is that to the best of our knowledge, no specific direct implementations
are reported that require minimum number of cycles necessary.

"Recently, a new instruction has been added in the Intel MMX architecture and possibly a
new implementation has been reported in the direction we propose [27]. Following the discus-
sion of the microprocessor report [27] we conclude that the described approach is not the best
possible. To determine the sum of absolute differences it is stated that their implementation
performs the following three micro-operations:

o determine for each pair of inputs the difference,
¢ take the absolute value of this difference,

o take the sum of these absolute differences.
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An additional open issue is phrased by the following:

e In determining the instruction set it is of interest to include the highest
number of possible functions that are related to each other, so that a unit
may be implemented that allows a number of functions to be performed
at approximately the same cycle time with the least hardware expense.

In general purpose computing this problem has been addressed extensivels
(and plus or minus completely resolved). While multimedia instruction sets
have added a number of instructions that follow the general purpose paradigm,
the issue is far from a final settlement and continues to constitute an interesting
open question phrased by the following:

e Which instructions can be added to the instruction set that are imple-
mentable with small hardware additions to the existing execution unit or
that can be implemented as a new hardware unit capable of performing
this new set of instructions?

We resolve in part’ this open question by proposing:

e new instructions that can be added to existing units, e.g. a multiplier
unit, with small additional cost and by proposing

e a separate “ALU like unit” capable of performing specialized multime-
dia functions, with cycle times comparable to general purpose ALU cy-
cles.

The additions we introduce are meant to be the initiation of new unit design
and the proposed research direction is to solidify this multimedia unit(s) by
adding instructions in the future with similar hardware requirements.

Before we proceed with the further elaborations of our proposal we need to
discuss a number of parameters. We dedicate the next section to the description
of our assumptions.

As we have shown in [28] and describe in Chapter 3 of this dissertation, a better approach exists
to compute this function.

8See for example ALU related operations for fixed point units and adder or multiply related
operations in floating point instruction sets.

°In part here means that while we consider a number of multimedia formats we did not
perform an exhaustive search. Basically we add-on on an existing art without pretending to
cxaminc all possible situations as such an attempt is rather impossible.
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1.3 Assumptions

In order to determine new architectural features, a number of assumptions has
to be put in order. The reason for such assumptions lies mostly in the difficulty
to establish “universal” parameters for the evaluation and the acceptance of a
proposal. Our assumptions for this dissertation are implied by the computer
engineering general paradigm relating to the following factors:

e architecture,
¢ implementation,

e realization.

As suggested earlier we assume an add-on architectural approach, in that we
assume a general purpose scenario rather than an application specific one.
This assumption implies that our descriptions will strictly follow processing
behavior that is programmable and possibly usable by multiple multimedia
application requirements. Our assumptions regarding implementation rely on
pipelined, possibly super-scalar machine organizations, which follow general
logic design techniques, e.g. boolean logic instead of threshold logic [29].
Furthermore we assume “usual” pipeline structures. That is, we assume fixed
point, non memory interfacing instructions, a pipeline structure of fetching, de-
coding, execute and write cycles. Additional cycles are assumed for load/store
instructions!® and other complex instructions such as multiply and divide.

Cycle related requirements such as critical paths, are imposed by well known
algorithms for the design of general purpose units for addition related opera-
tions. That is, our cycle time assumptions mostly relate to the implementation
of:

e ALU operations incorporating the design of parallel adders. See for
example [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40] and

e multipliers, dividers and other “multi-operand addition” functions, see
for example [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53].

We do not consider serial implementations as for example described in [54, 55,
56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67] as such implementations are not
used commonly in general purpose computers.

""Note that given the fact that we are concerned mostly with the execution unit, very little
is discussed about memory interfacing as such interfacing is not part of our concern in this
dissertation.
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Our technological assumptions are dictated by the implementation assump-
tions and the currently available technologies. In particular we assume that the
technology is a gate array type of technology. For such technology we imply
the availability of a library with gates called a bookset performing prespecified
functions. The technology in which the gates are implemented is assumed to
be CMOS. The assumed CMOS gates (bookset) consist of: a two-way XOR
and XOR-INVERT; up to a three-way AND, OR, AND-INVERT, and OR-
INVERT; and up to & 3z4 AO books where + indicates the AND-OR function
and — indicates the AND-OR-INVERT function. This is the same bookset as-
sumed in [36] for the design of high speed, non-custom binary adders and it is
also the bookset assumed in [68] for the design of high speed complex ALU
operations. We further assume that every book in this library constitutes one
stage of delay. While these assumptions are restricted to a particular technol-
ogy, they do not limit the applicability of our discussion since such a bookset is
common in currently available technologies and it is extendable to other tech-
nologies having similar characteristics or equivalent functional power within
their booksets [36].

1.4 Framework of the dissertation

The contributions of this dissertation are discussed in five chapters. More
specifically the following is discussed.

e In Chapter 2, entitled Add Multiply Add, we investigate complex (com-
pound) instructions which could provide performance improvement for
embedded systems and multimedia applications if implemented in hard-
ware. In particular we show that a number of arithmetic expressions of
certain forms occur frequently in embedded system applications. These
arithmetic expressions have certain data-dependencies among the indi-
vidual (fine grain) operations that constitute the arithmetic expression.
A number of these expressions can be captured by an unique expres-
sion: (A + B)*xC + D, or Add-Multiply-Add. Consequently, we
propose two schemes for the implementation of such an expression, as-
suming two’s complement number representation. The first scheme, the
Inversion Selection technique, is a direct multiplication scheme for array
and/or parallel implementations. The second scheme, the Half-Adder
technique, performs a modified Booth Encoding and is also suitable for
parallel design. The end result of the investigation in this chapter is
that the Add-Multiply-Add expression can be computed in two machine
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cycles (comparable to the machine cycles of a two cycle multiply), sug-
gesting no more cycle time than the multiply instruction alone. This in
turn suggests that the expressions we consider can experience a substan-
tial benefit from the data dependency collapsing unit we propose. More
specifically, the expression will require four machine cycles using stan-
dard hardware and three machine cycles using multiply-add hardware.
This suggests that a speed-up between 1.5 and 2 will be achieved if the
Add-Multiply-Add unit we propose is implemented in hardware.

In Chapter 3, entitled Sum and Mean of Absolute Differences, we in-
vestigate the Sum Absolute Difference (SAD) operation, an operation
frequently used by a number of algorithms for digital motion estima-
tion. For such an operation, we propose a single vector instruction that
can be performed (in hardware) on an entire block of data in parallel. We
investigate possible implementations for such an instruction. Assuming
a machine cycle that is comparable to the cycle of a two cycle multiply,
we show that for a block of 16x1 or 16x16, the SAD operation can be
performed in 3 or 4 machine cycles respectively. The proposed imple-
mentation operates as follows: first we determine in parallel which of the
operands is the smallest in a pair of operands. Second we compute the
absolute value of the difference of each pairs by subtracting the smallest
value from the largest and finally we compute the accumulation. The
operations associated with the second and the third step are performed
in parallel resulting in a multiply (accumulate) type of operation. Our
approach covers also the Mean Absolute Difference (MAD) operation at
the exclusion of a shifting (division) operation.

In Chapter 4, entitled Paeth Prediction and Coding, we describe an
execution unit capable of computing the Paeth predictor, as used in the
Portable Network Graphics (PNG) standard. PNG is a rather new, loss-
less compression method for real-world pictures. It features five predic-
tion schemes, of which the modified Paeth predictor is the most compu-
tational intensive. This chapter focuses on a hardware implementation
of the Paeth predictor. We propose a hardware Paeth codec, capable of
computing three different quantities:

— the Paeth predictor of three inputs,

- the difference of the current pixel and the Paeth predictor of the
other inputs (Coding), and

— the sum of the coded input and the Paeth predictor of the other
three inputs (Decoding).
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The Paeth unit computes these values within two cycles, where a cycle
is comparable to the cycle of a two cycle multiply. Depending on the
mode of operation, the proposed mechanism produces the predictor or
the (de/en)-coded pixel value.

e In Chapter 5, entitled Median, Max, Min and Mean we introduce an
extension of the Pacth unit by which it can additionally compute the Me-
dian of three inputs. This median is used in video-deinterlacing, which
is needed for displaying normal (interlaced) video on a non-interlaced
computer screen or a modern, high-end television set. We will further
extend the Paeth logic, so that is can also compute the maximum and
minimum of the three inputs. Furthermore, we introduce an extension
of the Add-Multiply-Add unit, described in Chapter 2 by which the Add-
Multiply-Add unit can compute the Mean of three inputs. The overall
direction of this chapter is to introduce new instructions and show that
they can be of advantage when compared to their software equivalent.

e In Chapter 6, entitled Putting it all together, the data-formats of the
input and output of our proposed unit design are described. We also de-
scribe how the units can be integrated in one single unit implementation.
Finally we propose a data-flow capable of performing all 32 instructions.

In the conclusion chapter we briefly discuss our findings and summarize the
contributions of our proposals. We conclude the discussion by indicating some
possible directions for future research.
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Chapter 2

Add-Multiply-Add

It is widely accepted that true data dependencies [2] constitute one of the major
obstacles for the improvement of speed in the computer based computational
paradigm. True data dependencies occur when the execution of an instruc-
tion has to wait, because the instruction requires operands that are the result
of the execution of a previous instruction. In the recent past it has been shown
that some important classes of true data dependencies for the general purpose
computational paradigm can be resolved resulting in a substantial gain of per-
formance [69, 70, 71, 72, 73].

A major open question regarding special purpose multimedia computations,
and embedded systems in general, is phrased by the following: while special
purpose engines execute code that can possibly substantially benefit from the
resolution of data dependencies techniques, thus far little has been achieved
in such an area for this class of computations. There is evidence suggesting
that current research is headed to the direction of investigating such an open
question. For example, the application analysis presented by F. Onion et al.
[74] for applications such as 2D convolution, filters, FFT, DCT, histogram
flattening, edge detection, etc., shows that more elaborate data dependency
collapsing hardware is required to resolve most of the true data dependencies.

More in particular the investigation in [74] has revealed that the following
expressions (assuming the compiler can expose them) appear frequently in the
benchmarks they have considered.

e Add-Add
e Add-Multiply

15
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s Multiply-Add
e Add-Multiply-Add
e Multiply-Add-Add

In this chapter we resolve in part the open question regarding the expressions
which Onion et al. [74] have uncovered. We consider fixed point number
representations and combine four of the above five exposed expressions in a
single instruction, for which we propose a hardware implementation. We do
not consider floating point notations which are left as a further research topic.

Our investigation strongly suggests that the add-multiply-add expression we
consider, in addition to the covering most of the expressions or operations re-
vealed in [74], can potentially be implemented using a parallel hardware orga-
nization and potentially be executed within two machine cycles. The previous
conjecture is put in place by showing that the partial product matrix associated
with the expression requires no more than n + 2 rows, n being the number of
bits of the input-values, which will most likely require no more cycle time than
a fixed point multiplier in most implementations. We propose two schemes for
the computation of the add-multiply-add operation. The first scheme, the In-
version Selection technique, is a direct multiplication scheme for array and/or
parallel implementations. The second scheme, the Half-Adder technique, per-
forms a modified Booth Encoding and is also suitable for parallel design.

The organization of this chapter is as follows. In the section to follow we give
some background information on the multiplication of two two’s complement
numbers. In Section 2.3 the first approach will be presented, the Inversion
Selection Technique and in section 2.4 the second approach, the Half Adder
Encoding is described. Section 2.5 concludes this chapter.

2.1 Preliminaries

The general form of the expression we investigate in this chapter is (A + B)
C + D. The four operands, A, B, C and D are assumed to be n-bit numbers in
two’s complement notation. The result is a (2n + 1)-bit number, also in two’s
complement notation. Figure 2.1 gives a graphical representation of the unit.
Table 2.1 shows that a specific operation is carried out with the setting of the
controls denoted as opy, opz. Additionally, by proper setting of the operands, a
multiplicity of other operations, e.g., multiply, add, add-add can also be com-
puted. In the next two sections we present two implementation schemes for the
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expression we consider. In the final section we conclude the presentation with
some remarks. We first present the two’s complement notation and a modifi-
cation of the Baugh-Wooley algorithm for multiplying two two’s complement
numbers.

—~ A Add - Mul — Add
— 2B (A+B)+C%D

7 2n+1
— C Result
7 D
opy op2

— ]

Figure 2.1: The outside view of the Add-Multiply-Add Unit,

opery | opery | (A opery B) « C opera D | opy | opa
+ + (A+B)xC+D 040
+ - (A+B)*C’—D 0 1
— + (A-B)xC+D 1 0
| - - (A-B)«C—-D 1 1

Table 2.1: The operations that can be performed by the Add-Multiply-Add
Unit.

2.2 Two’s Complement Multiplication

Let X and Y be two n-bit two’s complement numbers, where Xj is the least
significant bit and X, ; is the most significant bit, then the values of X and Y
are defined as:

n—2

X = —zpq#2" 1) a2 2.1
j=0
Y o= —gpo #2774 g2 (2.2)

and their product XY is equal to:
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n—2

XY = (—zp1#2"0 4 ;% 29) (2.3)
§=0
n—2

* (= #2714 Yy #20) (2.4)
1=0

This product can be written as a sum of four terms: Termy, Terms, Terms
and T'ermy, which are defined as follows: v

Term; = (—Zp_1%* 2”_1) * (—yYp—1 * 2"*1)

n—-2
Termgy = (—Zp-1* 2"_1) * (Z Yi * 2’)
1=0

n—2
Terms = (—yn_1* 2"_1) * ij %27
Jj=0

n—2 n—2
Termy = Z Tj* 27 | « (Z 1Yi * 2i) 2.5)

The four terms can be rewritten as:

Termi = Tp_1Yn_1 %2272
n—2
Termy; = —2""1x Zmn_lyi * 2
1=0
n—2
Terms = —2""1x Zyn_lxj * 27
j=0
n—2n—2
Termy = Z Z Ty * Qi+ 2.6)
7=0 i=0

The result of the multiplication of two n-bit two’s complement numbers is a
2n-bit two’s complement number. It can be observed that Termy and Terms

are negative. This is detrimental to a hardware implementation as it is required
to perform element subtractions. While it is possible to be achieved, it requires
multiple cell designs [40]. Baugh and Wooley [75] introduced an algorithm
which requires no element subtraction. Given that in our investigation we will
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also introduce an algorithm that contains no element subtraction we discuss
for background purposes a modification of the Baugh-Wooley algorithm in
this section.

Baugh and Wooley [75] indicate that instead of subtracting a partial product,
the negation of this partial product can be added. The negative partial product
rows can be converted to positive elements rows via the addition of 2" and

truncation. As the result of the multiplication is a 2n bit result, the 2" constant

is truncated in the final steps and therefore it doesn’t influence the result.

More in particular, the negative elements elimination is achieved as follows.
The negative Termso

n—2
Termg = —2""1 an_lyi * 2 2.7
i=0

can be rewritten to a positive term by adding 2™

n—2
22" 4 Termy, = 2% —9n! Z Ty 1y * 2

ontl _ an Vi *2’)
n—2 n—2

nyonlig +Z2i —Zmn_lyi*?)
1=0 =0
n—2

n n—1 i . i

+9 +1+Z(2 Tn_1yi * 2

1=0

n—2
L AR Z(l — Tp-1¥s) * 2")
i=0

2
2
2

-

2nt (
-
-

n—2
= gn-1 (2" +2" L4+ Fam x 2i> (2.8)

=0

This means that the negative Termy can be replaced with the following posi-
tive equivalent:

n—2
Termg = 27+ (2” +2" 14> T+ 2i) (2.9)
=0
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Terms can be treated in the same way:

n—2
Termg =2""1 (2" + 2% 14 14 ) Froyz; # 2 (2.10)
=0

From this point, our approach differs from Baugh and Wooley’s. While their
goal was to make a multiplication structure with the highest possible regularity,
they had to eliminate the NAND function required for Terny and Terms.
Our goal is to minimize the number of terms to be added together. Therefore,
we try to eliminate as much constants as possible by adding them together
beforehand.

If we add the constant part of 2.9 and 2.10, we get:

Terms_Constant = gn—1 (271 + gn—1 + 1)
Terms_Constant = gn—1 (zn 49n 1y 1) +
Termys Constant = 27" + 2271 4 on BN

where 22" is the carry-out of the addition, which can be ignored.

The end effect is that we have to invert two times n — 1 bits, and add two single
hot ones: on position n and on position 2n. — 1. Figure 2.2 shows a graphical
representation of this multiplication. The white dots’ and the *dot’ in the lower
left corner are the normal multiplication bits, 2;3;. The black and gray ’dots’

are the inverted partial products, z;77; and the two hot-ones are represented as
two triangles. As we can see from the figure, the number of rows to be reduced
equals n, the number of bits of the input numbers.

In this section we discussed the well known Baugh-Wooley algorithm {75].
This algorithm provides the capability of eliminating negative elements for
the multiplication matrix, in order to avoid irregularities from these negative
elements in the the partial product reduction hardware. In next section we
describe two techniques, called inversion selection and half adder encoding
for computing (A + B) * C + D. Both of them consist of two steps and use
similar derivations of the Baugh-Wooley algorithm discussed previously. In
the first step the partial products from (A+ B) *C are computed. Those partial
products are added together with D to produce (A + B) «C £ D in the second
step. The aim of both schemes is to provide a low-latency, hardwired unit with
relatively modest hardware requirements, that computes (A+ B)*C + D in
the same time required by a normal multiply.
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@ 000000y
#O0O00000(F

Term;, which is inverted twice
Terms, which is inverted
Termgs, which also is inverted

Termy, the normal multiplication bits

>0 & @&®

The combined constants

Figure 2.2: Graphical representation of a normal multiplication.

2.3 Inversion-selection

The inversion-selection-technique is based on the fact that in the two’s com-
plement notation — X is almost equal to X (to be precise: —X = X + 1).

We rewrite the (A + B) * C so that we compute it with A * C' + B x C (or
A * C + B+ C), in which the bits of C' choose between passing the bits of A
or B(B).

As an example, we will compute (4 — B) * C. We can do so by rewriting it to:

(A—=B)+*C=A+C—Bx+C (2.12)
=AxC+ Bx(=C) (2.13)

In this last equation, we use the two’s complement rule in that we rewrite —C'
as C + 1. The hot one is not added directly in this case. This makes
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(A-B)xC=A+«xC+Bx(C+1) (2.14)
(A-B)xC=AxC+B*xC+B (2.15)

This means that for each bit of C, we have to add either A (if the bit of C' is
one) or B (if it is zero) to the partial product matrix, in stead of both or neither
of them. C' is used as a select signal to choose between them.

Normally, if a certain bit of C' is one, we would have to feed A and —B to
the partial product matrix on that position. If that bit would have been zero,
we would have to add nothing. The maximum number of partial product rows
would be equal to two times the number of bits of C. In our scheme, each row
is always filled with either A or B, and the number of rows equals the number
of bits of C and one extra row for B.

We will now rewrite the four instances of (A + B) x C + D so that they fit
this scheme.

Depending on the operation, there are four instances of the expression
(A opery B) * C opers D. These are shown below:

1) oper; = + and opery = + (op1 = 0;0p2 = 0)

(A+B)xC+D = AxC+BxC+D
AxC+(-B)x(-C)+ D
AxC+(B+1)*x(C+1)+D

= A+C+B+«C+B+C+D+1 (2.16)

I

i

2) oper; = + and opery = — (op1 = 0;0p2 = 1)
(A+B)xC—-D = AxC+BxC-D

= A*C+(-B)*(-C)-D

= A+C+(B+1)*(C+1)+(D+1)

= A*xC+B+C+B+C+D+2 (217
3) opery = — and opery = + (op1 = 150p9 = 0)

(A-B)*xC+D = AxC-~B+C+D
= AxC+Bx+x(-C)+D
= AxC+B+(C+1)+D
= AxC+B+«xC+B+D (2.18)
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4) oper; = — and opery = — (op1 = L;0p2 = 1)
(A-B)xC—-D = A«xC-BxC-D
= AxC+Bx(-C)-D
AxC+ B+ (C+1)+(D+1)
= A+xC+B+xC+B+D+1 (2.19)

All the instances are summarized in Table 2.2. In the Table op and ops (the
operations) are the control signals to the hardware to indicate what needs to be
computed. Equal to zero implies addition and equal to one implies subtraction.

The four instances can be combined into a single expression as follows:

(A opery B) x C opera D =
AxC+B+C+B+C+D+ opi + ope (2.20)

in which B = Boopy, C=C& op1 and D= D & opy . The computation

op1 | op2 expression expression used for the
Inversion Selection Technique
(A+ ByxC+D | AxC+B+«C+B+C+D+1
(A+B)*C—D | AxC+B*C+B+C+D+2
(A-B)«xC+D | AxC+B*xC+B+ D
(A—B)xC—-D | AxC+B+xC+B+ D+1

— = OO
_= O = O

Table 2.2: The possible operations used for the Inversion-Selection Tech-
nique.

of the expression 2.20 can be split in two parts. The first part is generating the
partial products and correction-terms (correction-terms are needed to avoid
negative elements). The second part is summing up the partial products and
the correction-terms. We first concentrate on producing the partial products.

First we compute A * C + B * C. This is achieved by two multiplications and
an addition. It can immediately be noted that if a certain bit in C'is 1 then the
corresponding bit in C is 0, and vice versa. This implies that in generating the
partial products certain eliminations of bits can be carried out. This indicates
that a combined matrix can be generated directly and eliminates the hardware
requirements for one of the two multiplications and the addition.

The same scheme that is used for the multiplication of X and Y', (formulas 2.5
through 2.11) can be used for computing A * C' +B x C. We simply compute
both terms of the sum and add them together. The four terms, which were used
in Section 2.2 can be computed as follows:
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Termy = (—cp—1#2"7) * (—ap_1 *2™71)

+ (—Cn1 * 2"“1) * (—b;jl * 2”_1)

=Cp1 * Qo1 %277 4 T 4 b:l 2202
= (Cn—l * Qp-1+ Cp_1 * b/n‘j1) * 22n—2
= (Cn—l&an-l Icn—l&b;-—\l) ¥ 272 (2.21)

The * between c and a and between ¢ and b (bitwise multiplication) is equiva-
lent to the AND (&) operator, and the + (arithmetic addition) is equivalent to
the OR (]) operator, because either G,—; or &,_7 is equal to zero.

n—2 n—2
Termg = (—ap_1 * 2" 1)« (Z Ci * 2’) +(—b;—_\1 £ 2" 1)« (Zc_, * 2i)
i=0

=0
n—2 n—2 o )
=—9n1 *Zan_l w20 — 91y an_l xg x 2
i=0 i=0
n—2 -
=971y Z (an_l * C; * 2t + bp_1 * Cj * 21)
1=0
n—2 o )
=—2""1 %) (ci&an_1[Gleby, 1) * 2 (2.22)
i=0
n—2 n—2
Termg = (—cp—1 * 2”_1)* Z aj * 2 +(—¢, 1% 2"‘1)* Z /; * 27
j=0 §=0
n—2 n—2
=21y ch_l * 4 %20 —gnly ZEE*IZ * 2
§=0 i=
n—2
= —on 1, Z (cn_l * aj x 2 +’€E*I;; *Zj)
7=0
n—2 N
= =21 > (cn-1&ay[Eiileby) x 2 (2.23)

J=0
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n—2 . n—2 '
Termy = Z ajx2 | « (Z Ci * 21)
j=0 i=0
n—2 R ‘ n—2 )
+ ij*27 *(Z'c}*?l)
j=0

i=0
n—2n—2 n—2n—2
= ZZ@*Q*T‘H +ZZ@*&7*2i+j
§=0 i=0 §=0 =0
n—2n—2 R
ZZ aj * ¢; + by *G)*Ziﬂ
7=0 i=
n—2n— R
= (ci&aj Ei&b;) * 217 (2.24)
7=01i=0

It should be noted that the terms involved in the computation of A C' +BxC
are similar to the terms involved in the computation of X * Y. The main
difference is the use of a 2-input MUX instead of a 2-input AND (using the bit
of C to select between A and B).

As the addition of negative terms introduces irregularities in the partial prod-
uct reduction logic, we are are interested in eliminating the negative elements
(Termy and Terms). We modify these terms to positive using the fact that all
computations are done in two’s complement. Because the result is 2n + 1 bits
wide, N~ = 22n+1 _ N,

n—2
Termy = 8" — 21 xS (cidean 1 [eibebn 1) 2
=0
n—2
—on-1, (2”+2 — Z(Ci&aTL*llc—i&b‘:l) * 21’)
=0
n+l n—2 n—2 o
=l ( Do 2D 2+ 1) (cian Gy ) % Qi)
1t=—=n—1 1=0 =0
n+1 n—2
=2""1x ( Z 2’+1+Z (1 = cibean_1[Gi&bn- 1)*2>
i=n—1 =0
n+ n—2
= 2" ( ZZ + 14+ z C7&an 1|C,&bn 1 * 21) (225)
i=n—1 =0
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And in the same way:

n—2
Terms = 22n+1 _gn-1 Z(cn_l&aj |E'n_—1&l;;) 27
7=0
n+1 n—-2__.
=2 | T X414 (ena&aylETrkb) 2 ) (2.26)
j=n—1 Jj=0

Consequently the total multiplication A x C +B«C canbe computed as:

AxC+B«C = (cn_l&an_ﬂcn_l&b:_\l) * 2212

n+1 ) n—2 — .
+2m s ( Y. 21+ (ckan-ifgibeby ) + 22)
i=n—1 =0

n+1 n—2
+27 L | DT W1+ (o &agleni&h;) * 21
j=n—1 7=0
n—2n-2 R
+ 2 ) (cikajlzieb;) x 2+ (2.27)
=0 i=0

If we group all constants from the above equation:

AxC+B+C = (cn1&an—1|Cnz1&bp_1) * 2202
n-—2

b 2 Y (cilean 1[aikeby ) # 2

1=0
n—2

+ 2n—1 * Z (cn_1&a,j|c.n_1&bj) * 2j
j=0

n—2n—2

+ D> (eikagleeby) « 27

7=01=0

n+l1
+ 2"« (1+ > 2i) (2.28)

i=n—1

If we rewrite this last term using the fact that all computations are done modulo
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22n+1 we get:

n+1 ) n+1 _
2" % <1+ > 21> = 2"+ 2"« Z o (2.29)

i=n-1 i=n—1
— 9n + 22n—1 + 22n +22n+1
n 4 22n—1 + 22n

In order to compute (A + B) * C'+ D we have to addB, C, D, op1 and opo
to 2.28, as derived in 2.20.

The three constants, (2%, 22" ! and 2"), and the negative sign bits of B, C and

D (on position 2*~1) can easily be combined to a single bit-string according
to Table 2.3 and 2.4 .

Hot_ones — 3 (by_1,6n-1,dn_1) | = result
2271 + 22n—1 197 _ (% 211—1 2% 4 22n~1 2% anl
2271 + 2271—1 49" 1% anl 22n + 22n—1 4+ 1% 211—1
22n + 22n—\ 1927 2% 2n——1 2217, + 2211—1 40 % 2n—1
22n + 22n—1 + AL 2n—1 2271 + 2271—1 — 1% 2n—1

Table 2.3: Summing up the hot ones

Result Bity,, | Biton_1 | Bitay_o.. | Bit, Bit,_1
.Bitpi1
220 4 92n=T 4 9y on—1 1 1 0 1 0
22n 4 92n—1 1 1 4 9n—1 1 1 0 0 1
22n 4 92n—1 4 (g4 201 1 1 0 0 0
92n 4 9n—1 _ 1 4 on—l 1 0 1 1 1

Table 2.4: The bit-string resulting from the hot-ones and the sign-bits.

From Table 2.4 we can derive the formulas for these bits.

Bity.y = bp @GO dn 1
Bit, = b:l&cﬁl&d/n:|ﬁ&ﬁ&d/n—\1
Bityy1..Biton—o = bn 1&cn1&dn_y
Bityn 1 = by &G o1&y

Bity, = 1 (2.30)
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The block realizing these formula’s (2.30) is as complex as a full-adder.

2.3.1 Putting the pieces together

The complete formula is as follows:

(A opery B) * C opery D
=A+xC+B+C+B+C+D+ op1 + ops
= (cn—1&an—1]n—1&bp_1) * 22"~

n—2
+ on—ly Z (ci&anvllc—i&b;jl) x 2
=0
n—2 _
+ 2Lk Z (cn—1&aj|Cr1&b;) x 2
7=0

n—2n—2
+ Z Z(cz&aﬂcﬁ&l};) * 2i+j
=0 i=0
n—2 N n—2 n—2 R
+ ) (i x2)+ Y (G2 + > (di*2Y)
=0 =0 =0
2n
+0p1 + opy+ Y Bit;# 2 (2.31)

t=n—1

Where the term Y Bit; » 2¢ is defined in 2.30. If we re-arrange the terms we
get:

(A oper, B) * C opery D
= AxC+B+xC+B+C+D+ opi + opa

n—2n-—2

=3 (cikeayleikedy) « 21

§=0i=0
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+ 2212 & (Cn—l&anfllcn——]&bn—l)

n—2
+2"71 Y (cikean 1[Gikbn 1) * 2
1=0
n—2 = .
+ 2"‘1 * Z (Cn_l&ajlcn—l&bj) * 27
Jj=0

2n
+2" 1 Y Bityx 2

i=n—1
n—2 = A n—2 _ n—2 R ‘
+3 i+ 2)+ D> (G #2)+ D (di +2Y)
=0 1=0 =0
+0p1 + ops (2.32)

Figure 2.3 shows a graphical representation of the Inversion Selection Tech-
nique. The dot in the lower right corner represents the first term in the above
Equation (2.31). The second and third term, the inverted partial products, are
indicated with black and gray dots, while the white dots represent the fourth
term. The white triangles form the correction term Bit,. The black and gray
triangles are correction terms, resulting from neigation of B {op) and D (op2).

The squares represent the positive elements of D and the two correction terms
Band C.

As can be seen in figure 2.3, all the components of the matrix form a com-
pact structure, which can be reduced using counters. See for example [76].
The Figure shows that there are are only two extra rows required for the Add-
Multiply-Add when compared to the normal multiply depicted in Figure 2.2.
As setting up the partial products is not more complicated than setting up the
partial products of a normal multiply, we conclude that this design will require
the same execution time as a normal multiply.

Inversion selection technique remarks: In this section, we have introduced the
Inversion Selection Technique. Such a technique uses the fact that the partial
products generated by ¢ * A and those generated by G * B can be added by
simply OR-ing them together. This technique results in n + 2 partial product
lines, that can be summed up in an arbitrary counter structure. In the next
section, the Half Adder Encoding Technique will be introduced.
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j=n—-1 j=0
ryyyyyyas

Term,, which is inverted twice

Termso, which is inverted

Termg, which also is inverted

Termy, the normal multiplication bits

The correction element Bity,,.. Bit,_;

The first hot one depending on the operation, opy
The second hot one depending on the operation, op
The term D = D @ opz (except for the sign-bit)
The term B = B @ op1 (except for the sign-bit)
The term € = C & op1 (except for the sign-bit)

D=AN>P»»CO0O00®

Figure 2.3: Graphical representation of the Add-Multiply-Add using the
Inversion-Selection Technique.

2.4 Half-adder encoding

Half-Adder Encoding is derived from Booth-encoding [40]. The main dif-
ference is that in the Haif-Adder Encoding the “set” of bits which are coded
together come from the two operands A and B. This results in n partial prod-
ucts, n being the number of bits of operand A and B, and n hot-ones, resulting
from the possible negation of these partial products. For this technique, we
add or subtract A and B on a bitwise basis. For this operation, we use a half-
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adder, hence the name Half-Adder Encoding. The key-advantage of the use of
a half-adder as opposed to a full-adder is the absence of a carry-signal. Earlier
we derived four expressions from the add-multiply-add operation, depending
on the two controlling inputs (op; and ope) which select the operation. That is
the expression:

(AXxB)xC+D = (Aoper, B)*C opery D

can assume one of the following: (A+ B)*C + D; (A+ B)*C — D;
(A—B)*C + D or (A— B) *C — D representing one of the choices of open

and opery. We treat the addition/subtraction of D later, for now we only treat
the add-multiply part, which has two instances:

(A+B)«C
(A-—B)xC

From Equation 2.5 through 2.11 we know that the product Z of X and Y,
(Z = X *Y) in two’s complement is the sum of four terms. We substitute X
by C and Y by (A oper; B). This yields:

n—2
X = C=—coo1 #2714+ ) g2 (2.33)
=0
Y = (Aoper B)=
n—2
= —(an_j opery by_) 2" 4 Z(ai opery b;) x 20 (2.34)
i=0

Since the result of (a; oper; b;) can range from —1 to +2, we have to ensure
that multiplying it with C' doesn’t pose any problems. If C is multiplied by 2,
the result will be an (n + 1)-bit number. In order to keep all partial products
of the same length, C has to be sign-extended by one bit. After this sign-
extension, we can safely left-shift it one bit, and ignore the bit that will be
shifted out. This yields C' = —gu_1 % 2" + Y774 ¢j * 27.

The four terms for the computation of (A oper; B) « C' are:
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Termi = (—cy_1%2")  (—(an—1 opery by 1) *2°71)  (2.35)
n—2 .

Terms = (—cp_1*2")* (Z(ai opery b;) * 21) (2.36)
=0

n—1
Terms = (—(an—1 operyb,_1)* 2""1) * Z cj * 27 2.37)
j=0

n—1 n—2
Termy = Z cj * 27 | % (Z(ai opery b;) * 2i> (2.38)
j=0

=0

with (a; oper; b;) € {-1,0,1,2}, Vi € {0,1,2,..n — 1}.

Because (a; oper; b;) can take only one of these four values,
((a; oper;y b;) * C) can always be written as an element of n + 1 bits (and
possibly a hot one). Moreover, it is trivial to derive this element from C'. Table
2.5 defines how this can be done and Figure 2.4 shows an example of how
partial products can be computed.

a|op|b | result | how to make this

0] +10 0 setall to 0

0] + |1 1 just pass through

0] -10 0 setallto O

0] - |1 -1 invert all bits and add a hot-one
11 +1]0 1 just pass through

1]+ |1 2 shift one to the left

11 -10 1 just pass through

1] - 11 0 setall to O

Table 2.5: The result of the bit-wise addition(subtraction) of A and B.

Of these four “operations” performed on C, the multiplication with —1 is the
most complex one. To accomplish this, all bits are inverted, and a hot one is
added. This hot one comprises an extra “partial product”, which is visualized
by upward triangles in the graphical representation of the Half-Add technique
in Figure 2.6 on page 36.
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Figure 2.4: Part of a section producing the least significant bits of a partial
product using the Half-Adder Encoding.

2.4.1 Adding the partial products together

For adding the partial products together, the same strategy is used as for the
Inversion Selection Technique. To account for the negative weight of the sign-
bits we invert them all and add a hot one on the position of the least significant
inverted bit. Before we invert T'ermy and add the hot-one, D=D & opsy
is added to the list of partial products. Its sign-bit is concatenated with the
sign-bits on the upper diagonal (Terny), yielding a negative partial product
ranging from position n — 1 to 2n — 2. The value of this element is:

n—2
— Z cn—-1(a; opery b¢)2i+” —dy_ 271 (2.39)
i=0

In order to account for the negative value, the element is sign-extended, in-
verted, and a hot one is added on position n — 1.

So instead of adding the negative element

n—2

- Z cn—1(a; opery b,;)2i+n — d/n:\ﬂ"*l (2.40)
i=0
we add
n—2 -
220 + 22771 N e 1@ opery 0)2H T +d, 2 42 241
i=0

The two sign-extension-bits are later combined with the two sign-extension-
bits of the other negative element and the hot-one on position n — 1 is later
combined with the hot-one of the last partial product.
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The other negative element is the last row of the multiplication matrix
(Terms). Its value is

n—1

- Z cj(an—1operiby_1)27 "1
j=0

(2.42)

This element is a bit more complicated, because it can have a positive value,
namely when (a,,—10perib,—1) = —1. In this case, these bits do not get in-
verted, and the most significant bit of the “extra element” (the upward triangles
in Figure 2.6) is equal to zero. We combine Termyg with Term,. There are
four cases, because (a,—10per1b,_1) can have four different values.

(an—10perib,_1) | Value of Term; | Value of Terms | Ranges of the negative value
~1 negative positive 2n—-1.2n -1
0 positive negative n—1.2n~2
1 positive negative n—1.2n-~2
2 positive negative n—1.2n-2

Table 2.6: The sign of T’erm; and T'erms in each of the four possible cases.

(an—10peribn_1) | Operation on | Operation on | Position of position of
Term, Terms hot ones Sign-extension-bits
-1 Inversion No inversion 2n—1 2n
0 No inversion inversion n—1 2n —1land 2n
1 No inversion inversion n—1 2n — 1 and 2n
2 No inversion inversion n—1 2n — 1 and 2n

Table 2.7: How to deal with the signs of T'erm; and Terms.

As can be seen from Table 2.6 and 2.7, T'ermg is inverted where Term; is not

inverted, and vice versa. This that means we can just invert the result from the
same building blocks. T'ermy; should only be inverted if (a,—1 oper; b,_1) =

—1. In this case, the standard building block inverts this bit, so no extra inver-
sion is needed here.

We can also observe that there are always two extra ones, on position
2n — 1 and 2n. These two bits can be sign-extension bits, which is the
case if (ap_10perib,—1) > 0, or a hot one and a sign-extension bit, if
(@n—10peribp—1) = —1. Termy has two sign-extension bits, also on posi-
tion 2n and 2n — 1. These sign-extension bits can be added together with the
hot-ones form T'erm; and T'ermyg, also on position 2n and 2n — 1. This ad-
dition results in: 227 4 227=1 4 920 4 92n—1 — 92n+1 | 927 Of this sum, the
227 +1 term can be discarded, as the result is truncated at (2n + 1) bits.
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Figure 2.5 gives a 4-bit example of the Half-Adder Encoding in some de-
tail. Note that all squares have the same, one-level functionality. The rounded
squares are the half-adders, which generate a 2, a 1 and a —1 line. The real
squares select one of the bits coming in on the top (or its inverse) depending
on the value of the 2, 1 and —1 lines coming in on the left. Figure 2.6 gives an
8-bit example in the same representation used for the Inversion Selection Tech-
nique. As can be seen from the figure, the Half-Adder Encoding also requires
only 2 rows more than a normal multiply. As setting up the partial products is
hardly more complicated when compared to a normal multiply, this unit should
operate as fast as a normal multiply.

®—

Figure 2.5: A 4 bit example of the Half-Adder Technique. (Note: The black
dot on the top is only shown for clarity. It is easily combined with
the white dot on the bottom of the same column.)

Half-adder encoding remarks: For the Half-Adder Encoding, we have shown
that in two levels of hardware, it is possible to compute n partial products, an
element of “hot-ones”, an element for B, and two hot ones. The first level is
a level of half-adders, which drive three selection lines each. These selection
lines choose which derivate of C is inserted in the partial-product matrix.
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Term;y, which is inverted twice

Terms, which is inverted

Terms, which also is inverted

Termy, the normal multiplication bits
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Figure 2.6: Graphical representation of the Add-Multiply-Add using the Half-
Adder Encoding.

2.5 Conclusions

In this chapter we investigated complex (compound) instructions that could
provide a performance improvement for embedded systems and multimedia
applications if implemented in hardware. Assuming two’s complement repre-
sentation, we propose two techniques for the implementation of such an ex-
pression. Both these two techniques provide a way of efficiently computing
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compound expressions of the general form (A + B) x C + D, in other
words, Add-Multiply-Add operations. We have shown that an unit capable of
computing this expression can also be used to compute various simpler ex-
pressions. For both these techniques, a logic design of the Add-Multiply-Add
unit is derived, where both use a derivate of the Baugh-Wooley scheme [75] to
add up the negative and positive bits from the partial products. The Inversion-
Selection Technique uses the fact that X and —X are “almost equal”. To be
precise: —X = X + 1. We exploit this by multiplying A by C and —B by
C, in which case each pair of rows in the multiplication-array can be merged
into one instead of being added together. The Half-Adder Encoding is similar
to the inversion selection technique in that it also tries to reduce the number of
partial products. The half-adder technique accomplishes this by “preprocess-
ing” (A oper; B) in a way that no carries arise. The result of this operation
is one of {—1,0,1,2}, and has to be multiplied by C. The resulting partial
products are added together with D (or —D). Given the way we compute the
partial products, we should be able to compute (A + B) *C' £ D asfastasa
multiplication.

In the next chapter we will consider a unit which computes the Sum of Abso-
lute Differences, which is a matching criterion used in video compression.
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Chapter 3

Sum and Mean of Absolute
Differences

Video compression is one of the main topics of Multimedia. Within video
sequences, both spatial and temporal redundancy can be exploited for com-
pression. The spatial redundancy is exploited by means of the DCT, and the
temporal redundancy is exploited by transmitting only the differences with a
previous frame and/or the next frame. Temporal compression could be optimal
if the images didn’t change over time. While this is not the case in practical
video sequences, big parts of images generally move only small distances. In
order to reach higher compression rates, compression algorithms try to com-
pensate for the motion between two successive images. In order to do so, a
motion estimation algorithm is needed that “determines” the motion. There
are several algorithms and for a large number of them the Sum of Absolute
Differences serves as maximum resemblance optimization criterion.

In block-based motion estimation [77, 78], that is motion estimation performed
on a set of pixels, every frame is divided into blocks of equal size and for each
block in the current frame a search is performed in the reference frame(s) to
find the block resembling the current block the most. Because a search per-
formed over the whole reference frame for each block in the current frame is
computational intensive and movements in video sequences are usually small,
the search is limited to a search area. After finding the best match for the
current block, the motion vector (i.e. the displacement relative to the current
block) is stored together with the differences between the two blocks. In de-
termining which block in the searching area of the reference frame is the best
match with the current frame, a best match method is employed. The best
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match is usually established with the use of the mean of absolute differences
(MAD) or the sum of absolute differences (SAD). The SAD is the sum created
by adding the absolute difference of each corresponding pixel in the current
and the reference frame. That is the SAD is defined as:

i=15j=15
SAD(z,y,r,s) = Z Z ’A(z+z‘,y+j) - B((z+r)+é,(y+s)+j)l (3.1

=0 j=0

where (z,y) is the position in the current frame and (r, s) is the motion vector
for which the SAD is determined. The MAD is defined as the SAD divided by
the number of pixels in the macro-block, in this case 256.

In this chapter, our primary concern is to propose a hardware solution to the
SAD and the MAD operations. That is, our primary concern is to propose
instructions that have “convenient” hardware implementations, where “conve-
nient” in the context of this discussion mainly means parallel hardware vec-
tor related implementations. The design we propose is optimized for a low
latency, which is needed in several data-dependent Motion Estimation Algo-
rithms, such as the 2-D logarithmic search. We note here that if the division
(shifting) operation is excluded from the MAD then both operations can be
viewed as equivalent. In essence, discussing the SAD operation will also cover
the MAD with an additional shift (divide) of the final result, thus MAD is no
longer considered in the discussion to follow. Given that the SAD operation
is usually considered for a block of 16 by 16 pixels (pels) [77] and because
the search area could involve a high number of these blocks, performing the
SAD operation could be time-consuming if traditional methods are used for its
computation'. We propose a new instruction that is capable of producing the
direct SAD operation. Furthermore we also show that the proposed instruction
is scalable, depending on the constraints of the technology considered for the
design. This is shown by considering a 16x1 sub-block element and an entire
16x16 element and showing that the implementation will require 3 machine
cycles? for a 16x1 sub-block and 4 cycles for a 16x16 block. The 16x16 block
performance is achieved by using hardware proportional in size to a 16x1 sub-
block unit, that is, we achieve a 4 cycle 16x16 block SAD using approximately
16 times the area of the 16x1 SAD.

!Traditional here means that performing SAD requires a number of subtractions with proper
complementation to produce the absolute value which are followed by an accumulation to per-
form the final operation.

2A cycle here is considered to be comparable to the cycle of a high-speed, 2-cycle, 32x32
bit multiplier [70, 79, 41]. Other implementations including systolic array implementations are
also possible.
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This chapter is organized as follows. Section 3.1 gives some background infor-
mation about motion estimation and how it fits in the MPEG standard, followed
by a discussion of the SAD operation. Section 3.2 describes the basic operation
of our proposed Sum-Absolute-Difference unit, and Section 3.3 gives a sample
implementation of the proposed unit. Section 3.4 concludes this chapter with
some remarks and future research directions.

3.1 Background

In MPEG [77, 80], video-sequences are compressed by exploiting both spatial
and temporal redundancies. Spatial redundancies can be seen as small differ-
ences between local pels. In many encoding schemes the spatial redundancies
are exploited using DCT {81, 82, 83] or predictive coding [84]. Temporal
redundancies can be seen as small differences between two successive video
frames. These kind of redundancies can be exploited using predictive coding,
but higher compression rates can be reached by using it together with motion
compensation [85]. As an example, a diagram of the MPEG encoding process
is given below. (Figure 3.1) Because the MPEG standard does not specify the
encoding process, this diagram is only one possible implementation for the
MPEG encoding process. In the diagram, FDCT denotes the Forward Dis-

Color
Conversion

FDCT FQuant VLC

20,

IQuant l

Y
IDCT bitstream OUT
motion estimation j

Figure 3.1: Diagram of a MPEG encoder implementation.
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crete Cosine Transformation, FQuant denotes the Forward Quantization and
VLC denotes Variable Length Coding. The IQuant and IDCT are the inverse
operations needed to reproduce the picture as it is available at the decoder.
The motion estimation block uses these decoded images as reference instead
of original images, because the decoder only has access to decoded images.
Adding “differences from original images” to decoded images which are al-
ready slightly different from the original images, would introduce unnecessary
errors in the decoded images. This introduces an extra amount of computa-
tion in the encoder, which is in the order of the amount of computation in the
decoder.

In MPEG coding, a video sequence is divided into frames. A small fraction of
these frames, the I(ntra-coded) frames, are transmitted without the use of mo-
tion estimation. The P(redictive-coded) and B(idirectionally predictive-coded)
frames use Motion Estimated prediction. Each frame is subdivided into macro
blocks, which are 16 by 16 pels in size. For each macro block a Motion Vector
is computed, which points to the block in a reference frame which it resembles
most. The motion compensated and predicted macro-block is the result of the
subtraction of this most resembling block from the current macro block. The
assumption is that this block can be coded using fewer bits while retaining the
same quality.

Figure 3.2 and 3.3 show the usefulness of Motion Estimation. Without Motion
Estimation, the difference between the two pictures (the moved sun) has to be
coded as difference values (left part of Figure 3.3). Using Motion Estimation,
we can transmit a vector for each block that contains a part of the sun. As the
sun has not changed color, the Motion Compensated difference frame contains
only zeros. In a realistic setting, the Motion Compensated frame will still
contain some values # zero, however, those are small values which can easily
be compressed. Each macro block is further subdivided into 4 basic blocks
of 8 by 8 pels, on which the Discrete Cosine Transform is performed. The
encoding of a video stream is done in several steps. Each of the steps depicted
in Figure 3.1 is explained below. For simplicity, many details regarding the
MPEG standard are left out.

Color conversion In this step the input color-space is transformed into the
YCbCr color-space. Furthermore, the chrominances (color samples) are
sub-sampled by a factor of two in both the horizontal and vertical direc-
tion. Thus, a macro block from the video signal results in four 8 by 8
luminance blocks, one 8x8 Cb block, and one 8 by 8 Cr block. These 8
by 8 blocks are used by the DCT. The 16 by 16 luminance block is used
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by the motion estimation.

Motion Estimation In this step, for each block of 16 by 16 luminance pels
in the current frame, a motion vector is computed. This motion vector
contains the relative position of the block in the reference frame most
closely resembling the current block (either in the past or future). To
exploit spatial redundancies between these difference values, the differ-

‘ ence values are also put through the DCT process.

(-10,0) 0,0)

(0,01\

First picture = Reference Second picture = Current

Figure 3.2: Example of Motion Vectors. The sun has moved to the right. The
reference picture is scanned to find the corresponding piece of sun.

O

Figure 3.3: The left part shows what would be transmitted without motion
vectors. The right part shows using motion vectors. For each
block that has no vector, the vector is simply (0,0). The residual
difference is zero in this example, as all matches are perfect.
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Forward Discrete Cosine Transformation (FDCT) In this step a DCT is
performed on each 8 by 8 blocks which can be either blocks from the
frame or difference blocks. If this is a block of an I frame (reference
frame), the 2D-DCT over this 8x8 block is computed. If the block is a
motion compensated predicted block, e.g. the block minus the block it
most resembles, the 2D-DCT is computed over this motion compensated
predicted block.

Forward Quantization (FQuant) In this step the DCT coefficients computed
in the DCT process are quantized. This step is the main contribution to
the lossy nature of the MPEG coding standard. However, the informa-
tion lost in this step is thought to be (almost) not perceivable, due to
the use of the DCT. If there are constraints on the bit-rate, the quantiza-
tion can be adjusted to meet these constraints. This can result in lower
quality video if the quantization is too coarse.

Inverse Quantization (IQuant) In this step the quantized DCT coefficients
are restored. The same rounding-errors occur here as those that will
occur on the receiver side.

Inverse Discrete Cosine Transform (IDCT) In this step the inverse DCT is
performed on the dequantized coefficients, which results in the original
picture after color conversion. These two last steps are necessary in
order to do the motion estimation on the restored picture, as the receiver
also only has the received picture available.

Variable Length Coding (VLC) In this step the results of the quantization
process are serialized into a bit-stream, using run-length coding and vari-
able length coding (in this case Huffman coding).

The decoding process is depicted in Figure 3.4 which is basically the lower
part of the encoding process.

First, the incoming bit-stream is decoded using variable length decoding. Sec-
ond, the results are fed into an inverse quantization step and an inverse DCT
step. If the blocks are not motion-compensated difference blocks, they can
be directly fed to the output of the decoder. If motion vectors are decoded,
then they are used to fetch data from reference frames, to which the decoded
difference values are added. Worth noting is that the MPEG standard is not
symmetric, meaning that the computational requirements for the encoder and
the decoder are different. For example, the encoder has to put lots of effort
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VLC decode IQuant IDCT

motion compensated predictor

Figure 3.4: Diagram of a MPEG decoder implementation.

in calculating motion vectors, while the decoder just uses the motion vector to
fetch the right blocks from memory.

In this chapter we focus on ways to speed up the motion estimation part of
MPEG encoding, also denoted as motion vector search. There are several
algorithms to compute which block in the reference frame most closely resem-
bles the current block. At one end of the spectrum is the exhaustive search
[84] which is time-consuming, but produces the best possible result, and at the
other end there are several heuristic-based algorithms, which are much faster
at the cost of a possibly less optimal result. Examples of these heuristic-based
search algorithms are the Three Step Search [86] and the Two Dimensional
Logarithmic search [87, 88], which is schematically displayed in Figure 3.5.
The 2-D Logarithmic search uses two phases in the motion vector search. In
the first phase, a fixed step-size equal to 2 is used. The SAD for the center and
four points on a diagonal square around this center are computed. These points
are denoted in the figure with a number 1. The point with minimal SAD will
be the center for the next step. In this case the point (0,-2) is the center of the
next step. The points checked in this step are denoted with a 2 in the figure. If
the point with minimal SAD is the center-point, the algorithm proceeds with
the second phase. This is the case after step 4, in which (-4,-2) is the point
with minimal SAD. In the second phase, the SAD is computed for 8 points at
distance 1 and v/2. The center-point itself is also considered. These points are
denoted with 5 in the figure. Of these nine points, the point with minimal SAD
is chosen as Motion-Vector, which is (-5,-3) in this example.
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Figure 3.5: Graphical representation of the 2-D logarithmic-search.

Note that a point in this algorithm designates a vector, and for each vector a 16
by 16 block of pixels has to be compared. This means that the SAD for a point
is really the SAD of the current macro-block and a block of the reference frame
which is shifted over the vector.The assumption made by these algorithms is
that the global minimum can be reached by following the steepest descent.
If the results are less optimal, larger difference values will result from the
subtraction. This in turn results in larger bandwidth requirements or quality
degradation if bandwidth constraints apply, because coarser quantization must
be applied.

As there are many search-algorithms (see Appendix A for some additional al-
gorithms), which all have different characteristics for implementation in hard-
ware, we will leave the search algorithm to be implemented in software. How-
ever, irrespective of the search algorithm to determine the best resemblance, a
metric is used which indicates the “closeness” between compared blocks. The
two most common metrics found in different search algorithms are the mean
square error (MSE) and the mean absolute difference (MAD). The MSE is
performed by the following (assuming blocks of 16x16 pixels):

MSE(z,y,r,s) =
i:15j.—_15

L 2
256 Z Z (A(r+i,y+j) - B((x+r)+z',(y+s)+j)) (3.2)
i=0 j=0
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The MAD is performed by

MAD(z,y,r,s) =
| i=18s=15

256 Z Z ‘A($+i,y+j) - B((a:+r)+i,(y+s)+j)‘ (3.3)
=0 j=0

MAD can also be rewritten as

SAD(*L'a Y, ")75)

MAD(.'L',y,T’, S) = 256 (34)
where SAD is the summation of the absolute differences, that is:
SAD(:E7 Y, T, S) =
i=154=15
Z Z IA($+i:y+j) - B((I+T)+i,(y+s)+j)| 3.5
i=0 j=0

In these equations (x,y) is the position of the current block and (r,s) denotes
the motion vector, i.e. the displacement of the current block (A) relative to the
block in the reference frame (B). The z and y in Equations 3.2 through 3.5 are
multiples of 16* for MPEG and the values of r and s are determined by the
algorithm. Given that the MAD metric, due to its computational simplicity,
is used more often, we will not consider the MSE in our discussion. In the
section to follow, we introduce a novel approach for the computation of the
SAD which leads to the computation of the MAD with a trivial extension.

3.2 Computing the Sum of Absolute Differences

In this section we proceed by investigating the SAD operation and propose
some possible parallel implementations leading to an instruction proposal for
SAD. The general algorithm computing the Sum of Absolute Differences of
two blocks is depicted in Equation 3.5. A direct approach in computing the
SAD consists of the following steps:

e Compute (4; — B;) for all 16x16 pixels in the two blocks A and B.

*We note that we assume in the remaining of the presentation 16x16 pixel MPEG mac-
roblocks. This assumption is not restrictive as our proposal supports arbitrary block-sizes.
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e Determine which A; — B, are less than zero and produce in that case
B; — A; as the absolute value, else produce 4 — B;.

e Perform the accumulate operation to all 16x16 absolute values.

In order to speed up the computation, we perform a multiplicity of operations
in a single operation. In the case of the computation of the SAD we want to
eliminate the absolute-difference operations. Generally, it is not possible to
eliminate these operations, because of the inability to take an absolute opera-
tion out of a summation.

D 14i = Bi|l #1Y (4 — By)| (3.6)

Our solution to this problem is as follows. By determining the smallest of
both operands and subtracting it from a constant, which is > the maximum
value of a pixel, it becomes possible to eliminate the absolute operations. This
subtraction is a trivial operation, if the constant is chosen correctly.

To achieve our goal, we first briefly describe an unit capable of computing the
SAD of 16x1 pels in parallel, where each pel(pixel) is represented in 8 bits (in
unsigned binary notation).

Determine the smallest of two operands: This is done by inverting one of
the operands, and computing the carry-out which would arise from the
addition of both operands.

Invert the smallest operand and pass both operands to an adder tree:
The smallest operand is inverted, which means that its value changes
to 28 — 1 — X = 255 — X. Both the inverted smallest and the largest
values are passed to the adder-tree, which corrects for this constant
(28 — 1 = 255).

The above two steps can be carried out in parallel for 16 pels. This results in
32 8-bit values, on which the following steps are applied.

Addition of a correction term: The correction term is added to account for
the 2" — 1’s introduced by the inverting of the smallest value.

Reduce the 33 rows to 2: The resulting 32 rows are passed to the adder tree
together with the correction-term. These 33 rows are reduced to 2 rows
by using a counter scheme, see for example [89, 90, 91].
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Reduce the 2 rows to 1 (accumulation): In this final step, a full summation
of the two remaining rows is performed. The carry. out of this addition
is the total sum of all constants, which has to be discarded.

A more thorough explanation of each step follows below, which is using n for
the number of bits to represent the luminance pels and m instead of 16 for the
number of pels on which the unit operates. Note that if /n is a power of 2, we
have a special case which may simplify some computations.

Step 1, (Determining the smallest): Both operands A and B are positive
numbers in binary representation in 7 bits and range from 0 to (2 — 1). The
result of |[A — B| is also in unsigned binary representation, and also has the
same range. To avoid the absolute operation, we can substitute |[A — B| with
A — Bor B — A, depending whether A or B is the smallest. To determine
which one is the smallest, we have to check whether the following inequality
is true or false: B > A, thatis B — A > 0. Generally it is not possible to
subtract two positive numbers without the possibility of producing a negative
result which can not be represented as an unsigned number. If we subtract
A from its maximum value, Z?:_()l 2t = 2™ — 1, the result is always positive
or zero, and therefore representable as an unsigned number. The result of the
subtraction ((2" — 1) — A) is A, the binary bit by bit inversion of A. This can
be concluded from the following equation:

n—1 n—1
A+A = Y a2+ ) @2 (3.7)
=0 =0
n—1
= > (@i +@)2 (3.8)
1=0
n—1
= ) 2=2"-1 (3.9)
=0
Therefore : A = 2" —1—A (3.10)

We still have to check the following inequality:B > A. We rewrite this in-
equality as follows:

B > A
2" _1—-A+B > 2"-1
A+B > 2"
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The last step is possible because we are dealing with natural, non-fractional,
numbers.

The maximum value of A + B is (2" — 1) + (2" — 1) = 2»*! — 2, This
is representable as a n + 1 bit number. The most-significant bit, with weight
2", is computed as the carry-out of the n bit addition. Thus checking whether
A+ B > 2", and hence whether B > A means checking whether the addition
of the bit inverted A and the operand B produces a carry out.

Step 2, (Inverting the smallest value): To compute |A — B| in a single step
(which will improve the computation of the SAD) we can compute separately
A — B and B — A and determine which of the two has a negative result.
Consequently, we could choose (multiplex) between the two results choosing
the “positive” value. There are two drawbacks with this approach. One relates
to the hardware, the other to delay. To perform the entire operation in parallel
we must consider two adders per single operation and pay, in addition to the
adder delay, the multiplexer delay. The two problems can be alleviated by
doing the following. Instead of adding the two input values, we convert the
smallest input value to 2* — 1 — X = X, (that is the one’s complement of
X). In the remaining discussion, these two values form two rows and they are
denoted as a couple.

There are two cases arising from the previous step:

No carry was generated: This implies B % A. In this case we
should invert B to B. As stated previously, the value of B
is equal to the positive number 2* — 1 — B. This number is
again in unsigned binary representation. The value A should be
propagated unmodified. Their sum equals 2* — 1 - B + A =
2" -1+ |A-B|.

A carry was generated: This implies B > A. In this case we should
invert A to A and propagate B unmodified. Their sum equals
2" —-1-A+B=2"-1+4+|A-B]|.

Thus in both cases, the 7+ 1 bit sum of the two values is equal to 2 —1+|A4 —

B|, which is the desired value |A — B| plus a constant of 2* — 1. In the next

step, this constant will be eliminated. It should be noted here, as also indicated
in stepl, that the inversion of the operands A or B is not known a priori. To
determine which operand (A or B) to invert, it is enough to compute the carry
out of the operation A + B (see step] for further elaboration).

D
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Step 2 takes one level of exors and can be performed in the same first cycle.
This step produces two n-bit numbers, which are added in step 4. Figure 3.6
gives a graphical representation of the first two steps. We note here that steps 1
and 2 substitute two adders and multiplexing logic of the output of the adders
with carry-out-detection logic and multiplexing of operands improving both
the hardware and the delay requirements.

A B
Inv. D
Carry_Out Carry_Out
| Carry_generator —L
Exor Exor
-
A_out B_out

Figure 3.6: Graphical representation of the first two steps in computing the
Sum of Absolute Differences (SAD).

Step 3, (Adding a correction term): In order to parallelize the computation
of the SAD, the two previous steps are performed on m couples (that is A,B
operands) in parallel. The 2m rows, the result of step 1 and 2, are positioned
into a matrix which is then reduced (summed) using some well known counter-
scheme and discussed in steps 4 and 5.

Each of the m couples has a sum equal to 2* — 1 + |4; — B;
and B; of length n. Thus the sum of all couples has the value

, assuming A;

m—1
Sum =mx (2" — 1)+ Y |A; — Bj| (3.11)
i=0
which can be rewritten as:
m—1
Sum=mx*2" —m + Z |A; — Bjj (3.12)
i=0

m

Because |A; — B;| is always less than 27, the sum Zi:_ol |A; — B;| will always
be less than m * 2". The desired sum is therefore always representable in
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n + [loga(m)] bits.

For this discussion, we define ¢ = [log(m)].

In order to eliminate the constant m*2* —m from the sum without subtraction,
we have to be able to split the result in two parts. The first part consists of the
lower (q + n) bits, and the higher part consists of the most-significant bit,
with value 297", We now have to make sure that the sum of the constants

equals this most-significant bit, by adding an extra constant. The value of this
Ezxtra_Constant is computed at design-time with the following formula:

Extra_Constant =27 —m 2" +m (3.13)

Note that in the case that m is a power of 2, it simply takes the value m.

After adding this extra_constant, the total sum will be:

Total _Sum = Extra_Constant + Sum
Total _Sum = 29" —m x 2" +m +
m—1
+m*2" —m+ Y |A; — Byl
i=0
m—1
Total Sum = 29" + > |4; — Bj| (3.14)
1=0

Given that 297" is not required to represent the result, it can be discarded
producing the needed Final Sum as:

Final_Sum = Total_Sum — 29"

m—1
Final Sum = 247" + Z |4; — By — 291"
=0
m—1
Final _Sum =) |A; — By| (3.15)
1=0

Step 4, (Matrix reduction): In step 4, we reduce the 2m + 1 rows matrix
resulting from the 2m A and B rows of each n bits and the single constant row
to 2 rows. This matrix reduction can be done in several ways. We could use
for example Lim counters [92], 6-2 counters [91, 93], or a tree of Carry-Save-
Adders (CSA) [89, 90]. The Carry-Save-Adder-Tree approach is used in the




3.3. A Sample Hardware Implementation 53

example in Section 3.3 and shows that for m = 16 and n = 8, 260 CSA’s in 8
levels can reduce the 33 rows to 2.

Step 5, (Final reduction): The last step is the final reduction of the matrix.
This is done using a fast carry-lookahead scheme.

Figure 3.7 shows a graphical representation of a 16x1 unit, that is a unit oper-
ating on 16 couples of elements producing a single output value. The top half
shows 16 times steps 1 and 2 in parallel, and steps 4 and 5 are depicted in the
bottom half. Step 3 is represented by the addition term at the left (16).

16 A, B, A, B, A, B, A,B, A B

) (B (P f) [y

I
= 33 -> 2 reduction \ Rezdl-;t}on

SAD

Figure 3.7: Graphical representation of the SAD computation of a 16x1 block
by using 16 of the blocks from Figure 3.6 in parallel and a
multiplier-like tree reduction.

The concept can be expanded to an array capable of computing the SAD of
16x16 pel blocks. In this case, the 2 rows going into the 2-to-1 reduction
should go into another 32-to-2 reduction unit, together with the 30 rows of
the 15 other units. The result of this 32-to-2 reduction is then reduced by a
2-to-1 final adder. This saves both the execution time and the area of 15 2-to-1
reduction units. For a block diagram of this extension see Figure 3.8

3.3 A Sample Hardware Implementation

As an example, we describe the implementation of a unit which computes the
SAD of two 16x1 blocks, which can be either a row or a column of a 16x16
macro-block. We assume 8 bit values which is common in MPEG.

Step 1, (Determining the smallest): We need 16 parallel blocks to perform
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16 ABABAB ABAB
|

33 -> 2 reduction

I‘GABABAB A B AB

1

L##EUB//

33 -> 2 reduction

6 ABABARB
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16ABABAB A B AB

# # #// )
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|

Figure 3.8: A 16x16 pel SAD computation unit. Note that each block is as-
sumed to take one cycle, thereby making the total number of cy-
cles for this unit equal to 4.

step 1. In each of these blocks, we first need to compute the G,;; of the n bit
addition A + B. This is formed by:
Cout = G} + P x Cyy, (3.16)

In Equation 3.16, P stands for Propagate and G for Generate. Because (), is
always zero in this case, we can ignore F. The remaining term to compute
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is G{. This can be computed in 4 stages using 2x2 And-Or-Invert as the most
complex gate as follows:

Stage 1
Gy = agxbo (3.17)
Gl = arxby (3.18)
Pl = ar+b (3.19)
P! = ar+br (3.20)
Stage 2
Gt = GI+Pl+G§ (3.21)
G5 = G+ P *Gi (3.22)
G3 = G5+ P}+G3 (3.23)
Gy = G+ Pl *Gj (3.24)
P! = P!«P¢ (3.25)
P} = P}« P} (3.26)
P} = Pj«P} (3.27)
Stage 3
Gl = GL+Pl+G5 (3.28)
G = G5+ PG} (3.29)
P] = Pl«P} (3.30)
Stage 4
G = GI+P]*G} (3.31)

It might be convenient to compute@o in the same stage.
Gl = G+ PG} (3.32)
Gl = GI«DP[+G3 (3.33)

Depending on the chosen technology, it might be possible to skip the first stage,
and to merge it with the second stage.
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Step 2, (Inverting the smallest): In the second step, we have to invert the
smallest of A and B. Again, this needs to be done for 16 input-pairs. In terms of
hardware, this operation is merged with the operation in step 1 and performed
as follows.

Stage 5
vV i e{0.7},
Giout = Go+TG+Glxa (3.34)
biour = Gixbi+Glxb; (3.35)

These 5 stages of step 1 and 2 can be executed in the first cycle.

Step 3, (Placing the correction term): In step 3 we place a correction-term
to the terms to be added. Therefore, the number of rows to add up in step 4
becomes 16 * 2 + 1 = 33. The correction term has a predetermined value,
computed at design time with Equation 3.13. This step does not take any
execution time.

Step 4, (Reducing the matrix): In step 4, we perform the matrix reduction.
For a 33-to-2 reduction, a total of 260 Carry Save Adders in 8 levels is suffi-
cient.

Step 5, (Final addition): Step 5 is the final 2-to-1 addition. This is done using
a carry-lookahead scheme.

The last two steps each take one cycle, making the total number of cycles
needed equal to 3.

3.4 Conclusions

In this chapter we addressed some issues associated with the acceleration of
multimedia motion estimation algorithms. We considered for implementa-
tion the Mean Absolute Difference (MAD) and the Sum Absolute Difference
(SAD), two frequently used operations in Motion estimation algorithms. We
proposed instructions for such operations and considered hardware implemen-
tation for the SAD instruction. We excluded the MAD operation because con-
clusions reached for the SAD apply to the MAD as the MAD is trivially com-
puted from the SAD. In particular, we considered two example implementa-
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tions assuming 16x1 and a 16x16 pel blocks. The proposed sample implemen-
tation schemes compute the SAD in 3 or 4 machine cycles respectively. We
were able to propose a hardware execution unit that can perform the SAD in a
small number of cycles, because of the following two reasons:

e we have substituted complex operations (i.e subtract and absolute oper-
ation) with two simple operations (determining and inverting the small-
est).

e we have substituted the subtractions and the accumulation operation by
one multi-operand addition.

This speed advantage is especially beneficial for data-dependent algorithms,
such as the three-step search algorithm. These algorithms need the SAD of the
blocks in their first step to compute the addresses of the blocks in the second
step.

In the chapter to follow we will introduce an hardwired Paeth codec, which
is of use in coding and decoding images using the Portable Network Graphics
standard.
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Chapter 4

Paeth Prediction and Coding

This chapter describes an execution unit capable of computing the Paeth pre-
dictor [94, 95], as used in the Portable Network Graphics (PNG) standard. The
PNG standard specifies a lossless compression method for real-world pictures.
It features five prediction schemes, of which the modified Paeth predictor [95]
is the most computational intensive. This chapter focuses on a hardware im-
plementation of the Paeth predictor and a hardware Paeth codec, capable of
computing three different quantities:

¢ the Paeth predictor of three inputs,

e the difference of the current pixel and the Paeth predictor of the other
inputs (used for coding),

e the sum of the coded input and the Paeth predictor of the other three
inputs (used for decoding).

It is interesting to note that the results of our investigation suggest that no
more than two cycles are required to perform these operations. The cycle is
assumed to be comparable to a general purpose ALU cycle. It is also noted
that depending on the mode of operation, the proposed mechanism produces
the predictor or the (de/en)-coded pixel value.

The chapter is organized as follows: first we provide some an introducing dis-
cussion by examining an assembly program for a general purpose architecture
performing the Paeth operation. We continue with additional background in-
formation about the PNG standard and the Paeth predictor. In Section 4.3 we
describe the software routines used in the Paeth predictor and the modifica-
tions needed to allow a hardware implementation. In Section 4.4 we describe

59
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an extension of the predictor, the Paeth codec, which can code or decode a
pixel with no additional cycle-time. In Section 4.5 we evaluate the unit and
finally in Section 4.6 we conclude the discussion with some final remarks.

4.1 Introduction

A standard that is gaining popularity in image coding and compression is the
Portable Network Graphic (PNG) [95] standard. The PNG standard has been
created as an alternative solution to Graphics Interchange Format (GIF) [96].
PNG is a lossless compression scheme, based on predictive coding and deflate
compression. The standard is written so that its speed would be high and that
it would benefit from the multimedia extensions of general purpose processors
[18]. One of the key-features of PNG is the ability to choose out of five pre-
dictors for the predictive coding, namely: none, up, left, average and Paeth.
All five predictors can operate with the value of only three adjacent pixels.
These pixels are positioned above, left and left-above the current pixel. Af-
ter the prediction step, the coded pixel data is stored in a bit-stream which is
subsequently deflated using the gzip algorithm [97].

The Paeth predictor is normally computed in software. The routine used for
this is defined in the PNG standard and shown here as Figure 4.1.

int predict (int a, b, ¢ )

{

int p, pa, pb, pc

p=a+b—c /* this is the initial estimate */
pa=abs(p—a) /* distance of each member to the */
pb=abs(p—0b) /* initial estimate */
pc=abs(p—c)

if (pa < pb)and (pa < pc)return (a) /* return */
else if (pb < pc)return (b) /* element nearest to p, */
return (¢) /* in a,b,c tie-break order */

}

Figure 4.1: The Paeth encoding routine according to the PNG specification
[95].

To compute the Paeth predictor on a SunSparc 10 processor, 21 instructions are
needed, including 6 branches. This code is shown in Figure 4.2 for reference.
It should be noted that in the figure all register names have been named to the
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original variable names for readability. Note that the caller expects to see the
result in the register where it stored a. If the code would be scheduled for a
Very Large Instruction Word (VLIW) [3] machine, the computation of pa, pb
and pc could be parallelized, but the number of cycles would still be around 15

(assuming pipelined operations).

_predict:

L2:

L3:

L4:

L9:

L8:

To improve the execution speed, we propose a hardwired Paeth prediction unit,
which computes the Paeth predictor of a set of three input values in two ma-

add a,b,temp
sub temp,c,p
subcc p,a,pas
bneg,a L2

sub 0,pas,pa

subcc p,b,pbs
bneg,a L3
sub 0,pbs,pb

subcc p,c,pcs
bneg,a L4
sub 0,pcs,pc

cmp pa,pb
bg L9
cmp pb, pc
cmp pa,pc
ble L8

cmp pb, pc

ble L8
mov b, a
mov c,a

retl
nop

Figure 4.2; Sparc-10 pseudo assembler code.
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chine cyclesl . As the predictor is selected from the input values, and the critical
path is the control of the output selectors, we can also precompute the differ-
ence or the sum of a fourth input (d) with each of the three inputs. This means
that we are also able to compute the coded or decoded value within the same
two machine cycles. We compute the predictor by directly computing the dis-
tances of the initial estimator (p) to each input, and selecting the input which
has the smallest distance.

The proposed scheme operates as follows:

e Direct computation of the distance of each input to the initial estimate.
o Compare these distances using Carry-generators.

e Select the input with the lowest distance.

For the codec unit, we precalculate three temporal results, which are the sum
(decoding) or difference (encoding) of the current pixel and each of the inputs,
and select one of these precalculated values. Using this scheme, the critical
path is not affected, and yet the number of executed operations is increased.

4.2 Background

In this section we will provide some information about compression of images,
the type of compression schemes and in particular the compression method
used by PNG.

We begin by indicating that pictures may contain information in a structured
way, and this structure introduces redundancy. Redundancy means that all
information may not be necessary to convey the message.

In order to diminish the size of the picture on the storage device (e.g. disk)
or the transmission time over the Internet, we need a method to extract and
describe the redundancy in pictures. There are two basic ways of compression,
lossless and lossy. Lossy compression could be appropriate for photographic
pictures. The decompression of a lossy compressed image results in a similar
but not necessary 100% identical picture. The legitimacy for such a scheme
relies on the fact that “small” differences are not visible or distinguishable to
the human eye, thus losing information can be acceptable.

' A machine cycle assumed here is comparable to the cycle time of a general purpose ALU.
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Lossless compression is mostly used for synthetic pictures, or computer gener-
ated graphics. When decompressing a lossless compressed image, the original
image is restored, which is a 100% identical copy of the original.

PNG has been defined as an alternative solution to GIF and it has been devel-
oped with the following objectives [95]:

e Simple and portable: developers should be able to implement PNG eas-
ily.

e Legally unencumbered: to the best of knowledge of the PNG authors,
no algorithms under legal challenge are used. (Some considerable effort
has been spent to verify this.)

e Well compressed: both indexed color and true-color images are com-
pressed as effectively as in many other widely used lossless format, and
in most cases more effectively.

e Interchangeable: any standard-conforming PNG decoder must read all
conforming PNG files.

e Flexible: the format allows for future extensions and private add-ons,
without compromising interchangeability of basic PNG.

e Robust: the design must support full file integrity checking as well as
simple, quick detection of common transmission errors.

These objectives have resulted in a rather quick adoption by both industry and
the Open Source Software movement. PNG has become the native format for
graphics in Microsoft Office 97 [98] and is also used more and more on the
Internet. In addition, PNG is now in the early stages of international stan-
dardization, thanks largely to its inclusion in the VRML97 standard [99]. It is
expected to become a joint ISO/IEC standard (ISO/IEC 15948) [99] by early
2000.

The “core business” of PNG is the compression of graphical data. This is
achieved using predictive coding (filtering) and standard deflate compression
[97]. In order to improve the compressibility of the data, filtering is used. The
purpose of filtering is the extraction of spatial redundancy by recording only
the differences between the current pixel and its prediction. This prediction
is mostly based on the neighbors of the current pixel. PNG offers five filter
types, namely: None, Up, Left, Average and Paeth. In this chapter, we develop
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Figure 4.3: The definition of a, b, and ¢ according to the PNG specification
[95].

a codec scheme for the Paeth predictor. The other four predictors are trivial to
implement in hardware.

Figure 4.3 gives the naming conventions of the Paeth predictor within the PNG
standard. The pixels denoted with “-” are already transmitted and no longer of
interest, the pixel denoted with “d” is the current pixel and the pixels denoted
with “” will be transmitted in the future. Note that the naming, and as a result
of the naming the tie-break-order, are not identical in the PNG standard and in
the original Paeth predictor as defined in 1991 by Alan W. Paeth [94].

The Paeth predictor is used to achieve compression, as it is anticipated that
the difference between the predictor and the actual pixel will be small. This
is caused by the spatial redundancy in the picture. Pixels generally do not
differ much from their neighbors. The difference between the predicted pixel
value and the actual pixel value is transmitted, after compression using deflate
techniques. The resulting differences are generally small numbers, which need
fewer bits for transmission. In this way compression is achieved.

As indicated earlier the five filters of PNG are None, Up, Left, Average, and
Paeth. The first is very simple, each pixel is predicted as zero. The Up and Left
predictor depend on one of the neighbor pixels. The Average filter depends on
both these neighbors. The Paeth predictor is the most complicated predictor.
It depends on three neighboring pixels. The naming of the neighboring pixels
is shown in Figure 4.3. Summarizing the five predictors and their function, the
following holds true:

None The None filter transmits (d)
Up The Up filter transmits (d — b)
Left The Left filter transmits (d — a)

Average The Average filter transmits (d — (a + b)/2)
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Paeth The Paeth filter transmits (d — Paeth(a, b, c))

The Paeth predictor makes an initial prediction of d with the following for-
mula: Fy = a + b — ¢, where a, b and ¢ are defined according to Figure 4.3.
If the intensity of the picture is gradually increasing of decreasing in that area,
this prediction is perfect. However, this predictor doesn’t fulfill all four criteria
which Paeth defined in his article. Those are:

Identity P(a,a,a) = a (1)
Transposition P(a,b,c) = P(b,a,c) (2)
Complementation P(a,b,c) = P(d',¥,d) (3)
Membership P(a,b,c) € {a,b,c} @

Table 4.1: The criteria for the Paeth predictor.

The first criterion is trivial, if all pixels in some neighborhood have the same
value, it is safe to predict this value.

The second criterion ensures that if rows and columns are interchanged, the
result doesn’t change. This seems contradictory to the tie-break order. How-
ever, in the original Paeth predictor one can’t construct a case where this is
of importance. In the PNG Paeth predictor, the second criterion doesn’t hold
anymore. However, as column and row interchanging is not used in PNG, it is
not important.

The third criterion yields that the inversion of the raster (like a negative of a
photo) results in an inversion of the predictor.

The fourth criterion ensures that the predictor is always within the bounds
of the pixel-value range for each input combination. (No need for clip-
ping/saturation.) This fourth criterion is implemented by selecting the element
closest to (a+b-c) as the predictor. This may yield a less optimal predictor, but
there are no worries about bounds. It means that all computations and com-
parisons within the Paeth predictor should be done using enough precision in
order to produce a correct result.

Figure 4.1 on page 60 gives the software routine to compute the Paeth predic-
tor. The PNG standard [95] deviates slightly from the original Paeth predictor
in that it operates as follows:

1. It defines that all operations are done on 8-bit (byte) quantities. This
simplifies the computations and encourages the use of MMX [18] in-
structions.
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2. It defines a new naming scheme for the incoming pixels, which essen-
tially results in a different tie-breaking order.

3. It defines the pixel left to the current pixel to be the last transmitted
pixel. In case of interlacing, there can be quite a number of pixels “in
between”. The same holds for the vertical direction. The previous line is
interpreted as the previous transmitted line. This technique reduces the
amount of bufferspace needed. The different interlacing schemes ensure
that the a, b, ¢, and d pixels are still the corners of a rectangle.

All these modifications are made in order to make a software implementation
“straight forward” and possibly fast, maybe at the expense of a slightly less
optimal compression. The first modification make the implementation of a
hardware accelerator for the Paeth predictor or even a Paeth codec feasible.

In this chapter, we will assume the definition of the Paeth predictor as given
in the PNG definition [95]. Under this definition, all operations are performed
on 8-bit quantities (bytes). These bytes are interpreted as unsigned binary
numbers. If the image is composed of 16-bit deep RGB values, (48 bits per
pixel), the operations are performed 6 times on 6 bytes independently of each
other. If the data is only black-and-white, 1 bit per pixel, this 1 bit is packed as
a byte and consequently treated as a byte.

Due to the possible interlacing schemes defined in the PNG standard, the pre-
vious received pixel is not necessarily adjacent to the current pixel. This holds
also for the vertical direction. The Paeth predictor selects the previous pixel as
the last transmitted pixel, and the previous line as the last transmitted line. This
might result in a slightly less optimal compression, but decreases the memory-
requirements of the (de)coding process.

4.3 Computing the Paeth predictor

The routine displayed as Figure 4.1 is the Paeth predictor as defined in the
PNG standard [95]. The inputs a, b and c are 8-bit, treated as unsigned binary
numbers. However, the variables internal to the routine are not to be truncated
to 8 bits.

In order to propose a hardware implementation of this routine, we rewrite it.
In Figure 4.4 we can distinguish three steps. These steps will be exposed
in the hardware implementation. In the first step, we compute pas, pbs and
pcs. These are the signed variants of pa, pb and pc, denoted as 10 bit, two’s
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complement intermediate numbers. In the second step, we compute Test 1,
Test 2 and Test_3. The third step is the selection of the right input as the
output.

int predict (inta, b, c)

{

int pas, pbs, pcs

bool Test_1 Test_2 Test_3

pas=(b—c)
pbs=(a—c)
pes=(a+b—2c)

Test 1= (|pas| < |pbs|)
Test 2 =( |pas| < |pes|)
Test3 = (|pbs| < |pcs|)

If Test_1 and Test_2 return (a )
else if T'est_3 return ( b)
return ( ¢ )

}

Figure 4.4: The Paeth Algorithm simplified, so that it can be mapped to hard-
ware. Note that the result of this routine and the original (Figure
4.1) is the same.

The computation of pas, pbs and pcs is done by an adder circuit [39, 48]. As
the range of the unsigned bytes a, b and c is from 0 to ($ — 1), the variable
pes can range from 0 +0 — 2% (28 — 1) t0 28 — 1 + 28 — 1 — 2 % 0, which
is from —2° 4+ 2 to 2° — 2. This range is just covered by a 10-bit two’s com-
plement number, which ranges from —2 to 2° — 1. Although pas and pbs
are representable as 9-bit two’s complement numbers, we also represent them
as 10-bit two’s complement numbers to facilitate the subsequent comparisons
and to preserve the regularity of the unit. In binary notation, this leads to the
following additions:

pas = (b—c¢) = (00b+ 11 + 1) 4.1)
phs = (a—c¢) = (00a + 112 + 1) 4.2)
pes= (a+b—2¢) = (00a+00b+ 18l + 1) 4.3)

As can be concluded from the previous three formulas, a sign-extension takes
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place to make all the input numbers 10 bits long. The negative value of —c is
computed using an inversion and the addition of a hot-one.

The computation of pcs involves a 3 to 1 addition, where one of the operands
is shifted one position to the left (multiplied by 2). This is accommodated by
using an extra level of Full-Adders, which performs a carry-save addition of
the three operands, resulting in a sum and a carry word. These are then added
in a 2-1 binary adder. A graphical representation is shown in Figure 4.5.
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Figure 4.5: The adder used to compute pcs from a, b and c.

After the computation of pas, pbs and pcs, there are several ways to compute
Test 1, Test_2 and Test_3. To compute T'est_1 we have to find out whether
|pas| < |pbs|. We can use a carry-based comparison of pas and pbs. This
means that we add them in some form and that the resulting carry reflects
whether the inequality was true or false.

We first have to adjust the signs of pas and pbs. In order to compare them,
we check whether |pbs| — |pas| > 0. In order to facilitate this, we have to
make sure that pbs has a positive sign and pas has a negative sign. If the sign
is opposite, we invert the operand and add a hot-one to the result. This hot
one is taken care off in the addition. If both pas and pbs are inverted, there
are two hot ones. This means the carry-generator needs a special structure to
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accommodate this. This is implemented as a layer of half-adders, as shown
in Figure 4.6. It should be noted that in the figure bit number 9 is the Most
Significant bit, the Sign-bit. The outputs 0 to 9 are not used, and need not be
computed. They are only shown for clarity.

The test |pbs| — |pas| > 0 is now modified to pbyos + paneg > 0. The test for
carry_out is basically the test for result > 20, We have to keep in mind that
the sign-bit of pas is interpreted as a positive number here, with value 2 in
stead of —2°. We are therefore essentially adding 2°. The binary summation
is therefore: paneq + 20 + phpos > 2'° S0 if Pbyos + paney > 0 the binary
addition pbp,s + paney generates a carry_out. Figure 4.6 gives a graphical
representation of the unit which computes Test 1 from pas and pbs.
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Figure 4.6: The computation of Test 1.

Test_2 and Test_3 are computed using similar logic. The control of two mux-
boxes is trivial. Figure 4.7 gives a graphical representation of the entire unit.

4.4 Implementation of a Paeth codec

A possible extension of this unit is the extension to a Paeth codec, which has
not only the a, b and ¢ input, but also uses the to be encoded or decoded pixel, d.
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Figure 4.7: Proposed implementation of the PNG Paeth predictor.

When the prediction is known, the coding is simply subtracting the prediction
from the actual data.

Coded_Data = Actual_Data — Prediction
= d—pred
Decoding is done by adding the prediction and the received coded data.

Original_Data = Coded_Data + Prediction
= d+pred

These operations are done modulo 256, as defined in the standard [95].

The most obvious accommodation of this addition/subtraction step is after the
multiplexers, but this causes an increase of the latency of the unit. This is
shown in Figure 4.8.
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Figure 4.8: Direct implementation of the PNG Paeth codec.

As the predictor is always equal to one of the input values, and the path from
the input to the data-input of the multiplexers is empty, (as opposed to the path
from the input to the control-input of the multiplexers) the adding/subtraction
step can be accommodated there. Thereby we eftectively make a 2-cycle, 4-
input Paeth codec, with three operation modes:

Code In this mode, the d input is set to the value of the to be coded pixel. The
result is the coded pixel. (Mode=1)

Decode In this mode, the d input is set to the received coded input and the
output is the reconstructed pixel. (Mode=0)
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Predict In this mode, the d input is set to zero and the operation is set to de-
coding. This results in the output reflecting the normal Paeth predictor.
(Mode=0)

The program-notation for this is given in Figure 4.9. A graphical representa-
tion of the implementation of this optimized execution unit is shown in Figure
4.10.

int codec (int a, b, ¢, d, mode)

{

int pas, pbs, pcs

unsigned int Res_a, Res_b, Res_c
bool Test_1 Test 2 Test_3

pas=(b—c)

pbs=(a—c)
pes=(a+b—2c)
Res_a=(d+ (1 —2x*mode) * a)
Res b=(d + (1 — 2 x mode) * b)
Res_c=(d+ (1 — 2 x mode) * c)

Test_1=(|pas| < |pbs|)
Test 2 =(|pas| < |pes|)
Test3 = (|pbs| < |pes|)

If Test_1 and Test_2 return ( Res_a )
else if T'est_3 return ( Res_b)
return ( Res_c)

}

Figure 4.9: The Paeth codec algorithm, with the subtraction before the selec-
tion. This results in a codec which is as fast as a predictor in
hardware.

4.5 Hardware and time estimations

We have presented a sample implementation of a 4-input Paeth codec, capable
of coding and decoding images using the Paeth predictor as described in the
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Figure 4.10: Optimized implementation of the PNG Paeth codec.

PNG standard. It computes which of the inputs to use as Paeth predictor and
in parallel (de)codes the fourth input with all inputs of the predictor. After this
step, the right result is chosen.

The critical path of the codec unit is the control of the output multiplexers. It
is basically two levels of binary adders long. The path to the data-input of the
multiplexers is only one level of adders long. We estimate that the speed of
this unit equals that of a standard two-cycle multiply unit or requires two ALU
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cycles. This estimation is based on the fact that the critical path is basically
two times an adder delay, which is bounded by the ALU cycle time.

The hardware requirements for the proposed unit are relative modest for a 4-
input unit. We need:

2 2-input 10-bit adders
e 1 3-input 10-bit adder
e 3 3-input 10-bit carry-generators

e 2 2-input 8-bit selectors

3 2-input 8-bit adders for the codec unit.

4.6 Conclusions

We presented a Paeth codec, which computes either the Paeth predictor, the
Paeth-coded or the Paeth-decoded pixel with only a two cycle delay. Compared
to a 21 machine instruction SPARC implementation, this is a ten-fold speedup.
The unit is developed for PNG coding, but can also be useful in other graphic
schemes. The hardware requirements for the unit are modest, in the order of 9
10-bit adders.

We compute the Paeth predictor using the following steps:

e Direct computation of the distance of each input to the initial estimate.
e Compare these distances using Carry-generators.

e Select the input with the lowest distance.

The codec variant computes the difference or sum of the value to be en-
coded/decoded in parallel to the first step, it does not alter the last two steps.
The final step remains the selection of the right output. This means no addi-
tional cycles are needed to compute the encoded or decoded pixel value.

In the next chapter we consider hardwired accelerators for Median, Minimum,
Maximum and Mean. We consider such operation for implementation as we
will show a method to compute the Median of three input numbers. The Mini-
mum and Maximum of three input numbers is a trivial extension of this Median
Unit. For the computation of the Mean of the three inputs, we will reuse the
Add-Multiply-Add unit we presented in Chapter 2.




Chapter 5

Median, Max, Min, and Mean

In the previous chapter, the Paeth unit was introduced. This unit is capable of
computing the paeth predictor, which can be used to compress images using
the Portable Network Graphics (PNG) standard [95]. In this chapter we will in-
troduce an extension of the Paeth unit by which it can additionally compute the
Median of three inputs. This median is used in video-deinterlacing, which is
needed for displaying normal (interlaced) video on a non-interlaced computer
screen or a modern, high-end television set. We will further extend the Paeth
logic, so that is can also compute the maximum and minimum of the three in-
puts. Furthermore, we introduce an extension of the Add-Muitiply-Add unit,
described in Chapter 2 by which the Add-Multiply-Add unit can compute the
Mean of three inputs. The overall direction of this chapter is to introduce new
instructions and show that they can be of advantage when compared to their
software equivalent.

The chapter is organized as follows. For background purposes we briefly dis-
cuss video-deinterlacing, a process where broadcasted interlaced video is con-
verted to non-interlaced video. In this process, the median can be used to
compute the missing lines of pixels. Consequently we discuss the potential
performance improvement that could occur when using a hardwired median
unit that performs the median. We furthermore show that such a unit can be
easily build either as a stand-alone unit or as a simple extension of the paeth
unit. We show that the median of three inputs can be performed in one ma-
chine cycle, providing substantial improvement over software solutions which
perform the same functions. Additionally we show that trivial extensions to
the unit can provide the maximum and the minimum of three inputs. Finally
we describe an extension of the Add-Multiply-Add unit to perform the mean

75
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Figure 5.1: Three successive fields of an interlaced video sequence.

operation of three inputs.

5.1 Background

Traditionally, television broadcast is performed using interlaced video. In in-
terlaced video, a frame is divided into lines and only half of the lines of a
frame are scanned and transmitted. This is performed as follows. The video
sequence is divided into even and odd frames, in which the even fields only
contain even lines and each odd fields only contain odd lines. See Figure 5.1
for an example. Note that the first and third frame in the figure only contain
the even lines (starting from 0) and that the middle frame only contains the
odd lines. Interlacing is a form of decimation, where the number of pixels to
be transmitted is halved. Consequently, the after-glow time of the phosphorus
on a television screen has to be long enough to “camouflage” this effect. In
order to display such a video sequence on a non-interlaced screen, such as a
computer-screen, video-deinterlacing must be performed.

Deinterlacing means that the missing pixel-values are “computed” from spatial
or temporal neighbors. Three simple methods exist, namely:

¢ line repetition,
e line averaging,

e line insertion

Line repetition displays each line twice, which results in non-square pixels.
Line averaging uses the average of the pixel above and the pixel below the
current pixel as the value for the current pixel. Both methods are a form of
repetition in space, and they perform well only on moving sequences, where
the lower spatial resolution is not noticed. On still-images the lower resolution
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will be noticeable. The third method, denoted as line insertion, inserts the line
of the previous field. This is therefore a repetition in time, which only performs
well in non-moving sequences, where the previous line indeed contains the
right data. Line insertion comes closest to what we see on a standard television
set, where the after-glow of the phosphorus performs this task. If line insertion
is used on moving scenes, the distortion becomes visible. From the above,
we can conclude that the best method depends on the fact whether there is
movement in (part of) a frame. This in itself is non-trivial to determine.

Median filtering [100] provides an intermediate between the three methods. It
selects the pixel-value which has the middle value of the pixel above, the pixel
below and the pixel from the previous line, where previous means previous in
time. The rationale behind this is that if there is motion, the median will likely
be one of the spatial neighbors and if there is no motion, the median will be the
previous pixel. The median filter thereby effectively chooses the appropriate
method from the above three methods [100, 101].

Consider Figure 5.2 for an operative example of this scheme. This figure shows
the result of three kinds of deinterlacing. On the top row, the original picture
(Wilbur!) is shown as reference. The second row contains two even frames
and one odd frame. The rightmost frame is shifted one pixel to the right, in
order to simulate motion. The third row shows two frames reconstructed with
line repetition, which results in relative low resolution. The fourth row shows
the result of line insertion, which performs ideal in the absence of motion, but
the right picture shows the undesirable result when there is motion between
the frames. The median filter on the last row performs reasonable in both
circumstances.

5.2 Computing the median: the software solution

The median is defined as the middle value of a sorted list of input values. For
an odd number of inputs (three being the odd number in the case considered
here), the median is defined as the value of the middle number of the input
values. For the three input median a number of formulations have been used
to compute the desired result. For example, the three input median can be
computed by the following:

med = a + b+ ¢ —maz(a,b, c) — min(a,b, c) 5.1

'Wilbur is the mascot of the Gnu Image Manipulation Program, GIMP.
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Figure 5.2: Deinterlacing examples.

This gives a mathematically correct result, even if a+b+c would result in an
overflow, as long as no saturatior’ logic is used. The two subtractions will
ensure that the result is within bounds, because two of the inputs are subtracted
from the non-saturated result.

2Saturation means that the result is set to MAX if there is an overflow.
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In a more common approach, the middle input is directly selected, instead of
computing the Max and the Min of the 3-input values and subtracting them of
the sum of the inputs. This approach is implemented in the program of Figure
5.3, which computes the Median of three inputs, a, b, and ¢, and places the
result in the register denoted as a.

_median:
cmp a,b
bge L1
cmp a,c
bge L2
cmp b, c
bge L2
mov C,a
b L2
mov b,a

Ll:
bl L2
cmp b, c
bl L2
mov c,a
mov b, a

L2:
retl
nop

Figure 5.3: SPARC-10 pseudo assembler code for computing the median.

To establish an approximate performance for the code fragment we note that
this program would require between 6 instructions (cmp bge cmp bge cmp retl)
and 9 instructions (cmp bge cmp bge cmp bge mov b retl), depending on the
input values. Due to the branches, the number of cycles for this code tragment
is variable. In the worst case scenario the code fragment requires 9 machine
cycles if we assume that all instructions require at most one machine cycle to
execute

5.3 Efficient computation of the Median

To improve the performance of the computation of the median we propose a
hardware unit which computes the median in two steps as follows:
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Step 1: compute three inequations (¢ > b, b > ¢, a > ¢)

Step 2: select the median based on the outcome of the computations in the
previous step.

This two-step approach is also reported in [100]. In the first step the inequa-
tions are determined and in the second step a decode mechanism is employed.
Certain control logic is also added to make the final selection. In our descrip-
tion we explicitly determine the logic needed to compute the median plus we
provide it incorporated in more complex logic and generalize it to an ALU
type new unit. More specifically the mechanisms we describe perform the
following:

Step 1

In the first step we compute the three inequations: @ > b; b > ¢c; a > c.
As the Paeth computation uses the ten bits wide two’s complement notation of
both b — ¢ and a — c as intermediate results, we will use the same hardware.
As an example we show that the testing of b > c is equivalent to the testing
whether b — ¢ > 0. This is a simple test on the sign-bit of the result of the
subtraction. The inequation holds true if the sign-bit is zero. The carry-out of
the addition is the inverse of this sign-bif . That means that the carry-out is one
if-and-only-if the sign-bit is zero. The computation of the first inequation is
performed in a similar way, we compute the ten-bit, two’s complement number
a — b and use the carry-out of that subtraction.

To summarize, we only have to add one carry-chain generator to the Paeth
logic to perform the computation of the a > b inequation. For the other two
inequations, the logic is already there. Let Test;, Testy and Tests represent
the result of @ > b, b > cand a > c respectively:

Test; <> a>b < 00a+ 116+ 1 > 2"+? (5.2)
Testy <> b>c <« 00b+ 1le+ 1 > 2712 (5.3)
Testy <= a>c¢ < 00a + 116+ 1 > 27+2 (5.4)

Note that the input-numbers are extended with two bits to ten bit inputs. This
stems from the paeth unit, which needs the 10-bit result of b — ¢ and a — c.

*This is a common property of the two’s complement representation. If a negative and a
positive number are added, the result will always be in bounds and the carry-out will always be
the inverse of the sign-bit.




5.3. Efficient computation of the Median 81

We could also pick the 9" bit of this subtraction, thereby reducing the critical
path a little.

Step 2

Based on the three resulting carries, we select one of the three operands as
result, using Table 5.1. The Table 5.1 has four columns. The first three columns
describe the eight output combinations of the comparisons. The fourth column
determines which of the operands needs to be chosen as the median. Note that
two out of the eight combinations cannot occur, as there is no set of a, b, and ¢
for which these conditions hold true. One would need a > b, b > cand a # c.
From the first two conditions, one can deduce that a > ¢, This means that if
Test; and Testy are True, Tests also results in True.

a>b |b>c | a>c | Median
Testy | Testy | Tests
True | True | True b
True True False

True | False | True c
True | False | False a
False | True True a
False | True False c
False | False | True -
False | False | False b

Table 5.1: Median table.

In order to implement the median(a,b,c) instruction we note that the two steps
require three carry generators and the implementation of the logic implied from
Table 5.1. All median requirements can be performed from the logic depicted
in Figure 5.4. This can be proven by the following: the first part of the logic
(the carry-generators) determines which of the three conditions (T'est, Testo
and T'est3) holds true. That is carry generator 1 determines Test; (@ > b),

carry generator 2 determines Testy (b > ¢) and carry generator 3 determines
Tests (a > ¢).

The control of the selectors in Figure 5.4 is deduced as follows: the information
of Table 5.1 is rewritten as the following Karnaugh diagram:

In order to select a, we need a 0 on selector 7. In order to select b we need a 1
on selector 7 and a 0 on selector 6. Finally, to select ¢ we need a 1 on selector
6 and 7. This is shown in the karnaugh diagrams in Figure 5.6.
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Figure 5.4: Implementation of the 3-input Median Filter.
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Figure 5.5: Karnaugh diagram of the select function for the median.

From Figure 5.6 we deduce the following formula’s for the two select signals:
Selectg = Test; @ Testy and Select; = Test, & Tests.

Finally we observe the following. The proposed implementation has as criti-
cal path: one carry generator, one XOR and multiplexing logic. This implies
the unit will not require more than one machine cycle to perform the median,
given the availability of the three inputs. In essence the scheme described in
this section provides substantial advantage over the software solution and the
approach proposed in the previous section. It must be noted that the imple-
mentation reported in Figure 5.4 will most likely require no more than one
machine cycle as it requires less logic stages than are required by a general
purpose ALU design. If the median operation is included in the Paeth unit,
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Figure 5.6: Karnaugh diagrams and formula’s of the two select signals.

the operation may take two cycles. This additional cycle time is viewed as a
performance/hardware tradeoff.

5.4 Extending the Median Unit with Min and Max

Minimum (min) and Maximum (max) of a series of numbers can also be useful
for general purpose architectures. Given that min and max can be obtained
with a trivial extension to the median unit we described in the previous section,
we will describe such an extension in this section. Clearly, once we have
computed the three inequations, it is trivial to select the maximum and the
minimum of the three inputs. In order to select them, we extend the unit with
an extra set of multiplexers, which controls the control-signals to the output
multiplexers.

To comprehend the impact of the one cycle min and max instructions, we con-
sider the implementation of the min and max of three numbers in software
using a common instruction set. The routine implementing this is depicted in
Figure 5.7. This program will take 7 machine cycles to compute the mini-
mum or maximum of the three inputs. Clearly the performance improvement
is rather obvious and substantiates the addition of such instructions.

To compute the min and max of three inputs, we need to determine which input
to select on the basis of the three computed test signals. These selection re-
quirements are deduced from Table 5.2 which determines the operand to select
as min and max output. The implementation of the table can be found in Fig-
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_maximum:

cmp a,b
bge,a L2
mov b,a

L2:

cmp a,c
bge,a L3
mov cC,a

L3:
retl
nop
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_minimum:

L2:

L3:

cmp a,b
ble,a L2
mov b,a

cmp a,c
ble,a L3
mov c,a

retl
nop

Figure 5.7: SPARC-10 pseudo assembler code for the maximum and mini-
mum of three numbers.

ure 5.8. The proof of the implementation can be done following the discussion
of the median with some appropriate additions. It can also be observed that
the additional 3-1 multiplexer is in the critical path. This should not create a
critical path problem. This means our implementation of min, max and median
should still require no more than one machine cycle.

a>b |b>c¢c | a>c || Min | Median | Max
Test; | Testy | Tests

True | True | True c b a
True True False | — - -
True | False | True b C a
True | False | False || b a c
False | True | True C a b
False | True | False | a C b
False | False | True - - -
False | False | False | a b c

Table 5.2: Requirements for Min, Max and Median.

5.5 The mean of three numbers

The mean of three inputs is used in a number of multimedia applications for fil-
tering purposes. Given that division by three can not be achieved with shifting,
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Figure 5.8: Extension of the 3-input Median Filter with a three input max and
min function.

a full division operation has to be performed. This implies that the operation
needs to employ division hardware, which in general is expensive in terms of
performance and/or hardware. In this section we propose a modification of
the add-multiply-add unit of Chapter 2 that allows the entire mean of three
numbers to be performed by the add-multiply-add unit, providing substantial
improvement when compared to the direct implementation of the mean func-
tion by software on an existing instruction set.

In order to compute the mean of three numbers, we perform the following.
Assume that the input numbers, a, b and ¢ are in two’s complement notation
and that each number is representable in 8 bits. Perform the following steps:

Step 1: Compute X and Y as the carry-save sum of A 4+ B + C. In this
step, three eight-bit numbers are converted into two nine-bit numbers,
using a carry-save addition. Both are sign extended to ten-bit, two’s
complement numbers.
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Step 2: Compute ((X+Y)*341+511) using a ten-bit input Add-Multiply-Add

unit described in Chapter 2. The result is a 21-bit number in two’s

: 341 1 511 ;
complement notation. Note that {557 = 3, and 1355 is as close as we

can come to % using 10-bit 2’s complement numbers'.

Step 3: Shift the result 10 positions to the right (discarding the lower 10 and
the three upper bits).

Proof of correctness: Assume the result of the mean-operation is P. This
implies that the sum of A, B and C equals either 3P, 3P + 1 or 3P — 1
(because the mean is equal to one third of this sum, rounded to the nearest
whole number).

If we undo step 3 (the rounding) we observe that the result of step 2 is P
1024 + rest, where 0 < rest < 1023. This means we have to proof that
rest remains within its range for all P which can be expected as output. The
range of the mean of any number of inputs is equal to the range of the input
numbers. This means we have to prove that for all values P can take as a two’s
complement, n-bit number, the rest is within bounds. Consequently we have to
prove whether rest remains within bounds for all P in the output range, taking
the rounding into account. That is P * 1024 + rest equals (SUM ) x 341 + 511
for all input combinations.

There are three cases to consider:

Case 1: Sum=3P

P %1024 + rest = 3P x 341 + 511
P +rest = 511

rest € {0...1023}

P e {-511...512}

Case 2: Sum=3P+1

P %1024 + rest = (3P + 1) * 341 + 511
P+ rest =511 + 341 = 852

rest € {0...1023}

P e {-171..852}

“There is no power of 2 which is dividable by 3, so we have to approximate.
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Case 3: Sum=3P-1

P %1024 + rest = (3P — 1) * 341 + 511
P+ rest = 511 — 341 = 170

rest € {0...1023}

P € {-853...170}

The intersection of these three sets is P € {—171...170}. This covers the
range of the input values, {—128...127}, so the result will be correct for all
input combinations.

Figure 5.9 gives a graphical representation of the mean-of-three unit, imple-
mented using a Carry-Save adder and the Add-Multiply-Add unit introduced
in Chapter 2. It is noted that hardware is added to perform a carry-save opera-

Carry-Save Adder

N

341" "SIt 00
10 10
bit bit
A B C D oo
((A+B)*C+D) op_1
Add-Multiply-Add
3 8 10
bit bit bit
- J

Figure 5.9: Implementation of the 3-input Mean unit using an Add-Multiply-
Add unit.
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tion which may produce a critical path delay problem (the extra logic required
is the XOR of 3 inputs). If this poses a problem, then an additional cycle
could be added in order to perform the mean operation. This would still be
an improvement when compared to an implementation which does not use this
hardware extension. (An addition of three requires already two machine cycles
and then there is a divide instruction to performed).

5.6 Conclusions

This chapter has been dedicated to the introduction of some instructions which
can be implemented with small modifications of the hardware required for the
instructions proposed in the previous chapters. More specifically we have pro-
posed new instructions for the median, the maximum, the minimum and the
mean. All instructions operate on three input numbers and produce a single
output value. For the proposed instructions we have shown hardware imple-
mentations, which indicate the following.

e No complex modifications are required to implement the instructions
using available hardware.

¢ No cycle time penalties would be introduced, (except perhaps for the
mean) if the additional instructions proposed in this chapter are imple-
mented.

In particular it has been shown that one cycle is required to perform the median,
min and max. Depending on the technology, 2 or 3 cycles are required to
perform the mean (the third cycle could be added to avoid critical path delay
problems). Furthermore it has been shown that there are substantial advantages
in using our proposal when compared to software solutions. More specifically
we have shown that performing the median in hardware requires 1 cycle, while
performing the same operation in software using an usual instruction set (e.g.
Sun SPARC) would require 6 to 9 cycles. For min and max, which are also 1
cycle operations, the software solution will require 7 cycles. Finally, the mean
of three number as proposed will require 2 to 3 cycles, which is substantial less
than using a commonly available instruction set which requires two addition
operations and a division.

While this chapter has aimed to include additions to the requirements of previ-
ous instructions to perform new instructions, not all considerations have been
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given to accommodate all instructions to the execution unit(s) of our proposed
set of instructions. Clearly hardware is designed to incorporate the execution
of multiple instructions in a “single” unit. This requirement is rather common
as it is not acceptable to have individual units for individual instructions for
most of the instructions in the instruction set. An example of this in general
purpose machines is the ALU which normally operates on circa 10 to 15 in-
structions, depending on the instruction set. The next chapter is dedicated to
this issue, the design of an execution unit that accommodates multiple instruc-
tion requirements.
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Chapter 6

Putting it all together

In the previous chapters, four different units have been introduced. In Chapter
2 and in [102], we introduced the Add-Multiply-Add unit, capable of comput-
ing (A + B) * C £ D. In Chapter 3 and in [28] we introduced the SAD unit,
capable of computing the Sum of Absolute Differences between two blocks of
pixels data. The Paeth unit we introduced in Chapter 4 and in [103] is an aid in
image compression, Finally, in Chapter 5 we introduced the Median/Min/Max/
unit which can substantially improve the performance of video deinterlacing
and the three input mean unit, which is an extension of the Add-Multiply-Add
unit. The goal of this chapter is to explore which configurations or combina-
tions of these units can be put together so that hardware is saved via hardware
re-use. In building a multimedia extension to a general purpose processor, it
might be more convenient to follow the general processor paradigm which has
few units with each unit used by multiple instructions. That is, it is of interest
to combine the units into one single execution unit.

This chapter is organized as follows. We first describe the instructions and as-
sociated opcodes. This is done in approximately the same style as the SPARC
architecture reference manual [104]. After this specification we conclude with
a sample implementation.

6.1 Instruction Set

We begin by noting that one common aspect of all described units is that they
operate on more than the usual two operands (with the exception of some of
the simpler instructions of the Add-Multiply-Add unit and possibly the SAD
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instruction, which can be computed over any even number of operands). This
suggests combining the units in one general unit, which has at least four inputs.
If two instruction(slot)s are needed to specify the operands for the unit, we
could think of delivering two results as well. This would only need some extra
logic on the output-stage. Note that some combinations would be impossible.
Another solution to this problem is the specification of register pairs. This
register addressing mode implies that only two source registers are specified,
and that the other two source registers are implicit. The machine instruction
ama r2, r6, rS would specify that r5 gets the result of (r2+r3)*r6+r7. This
means if a register is specified as a source register, its “upper neighbor” is
also specified implicitly. The “upper neighbor” of a register is the subsequent
register.

In order to determine the various instructions we first discuss briefly the data-
types used in the instructions. The basic data-types we support are:

unsigned byte (8 bit) This is frequently used for pixel-data, where it contains
one color-component, or the luminance of a pixel.

signed byte (8 bit) This is used for intermediate results.

unsigned half-word (16 bit) This is also used for pixel-data in very high
color-depths. The PNG standard supports this, but states that the 16
bits should be treated as two independent bytes.

signed half-word (16 bit) This is used for audio samples.

unsigned word (32 bit) This is used for intermediate resuls.

signed word (32 bit) This is used for intermediate results.

unsigned double-word (64 bit) This is used for intermediate results.

signed double-word (64 bit) This is used for intermediate results.

The base of our representation is 2. The bit enumeration is from high to low,
which means that the most significant bit has the highest number and the least
significant bit has the number 0. We note that all signed numbers are repre-
sented as two’s complement numbers. The supported instructions can be found
in Table 6.1, from which it can be observed that the instructions have been di-
vided into 4 categories.Furthermore the instructions are divided according to
the required number of inputs. The specifics of all categories are reported in
the following subsections.
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L] input 2input | 3 input 4 input j
Add-Multiply-Add unit
Negate Add Add-Multiply Add-Multiply-Add

Subtract | Subtract-Multiply | Add-Multiply-Subtract
Multiply | Multiply-Add Subtract-Multiply-Add
Multiply-Subtract | Subtract-Multiply-Subtract
Add-Add
Add-Sub
Sub-Add
Sub-Sub
Mean

Sum-Absolute-Difference unit
SAD Stream | SAD_2 | SAD_Accumulate | SAD_4
Paeth unit
Pacth_PNG Paeth_PNG_Encode
Pacth_PNG_Decode

Minimum Maximum Median unit

Min Min encode
Min decode

Max Max encode
Max decode

Median Median encode

Median decode

Table 6.1: Instruction set.

The SPARC architecture [104] explicitly specifies the possibility of a co-
processor and also reserves some opcode space for such a co-processor. The
general form of instructions executed by the co-processor is specified in Fig-
ure 6.1. In the following text we will assume a SPARC [104] Coprocessor-like

Not affecting Condition Codes:

‘10|rd ‘110110|rsl [opc |r82 ‘
31 29 21 18 13 1 0

Affecting Condition Codes:

ﬁOer ’IIOIIIIrsl Topc 1rs2 ]
31 29 21 18 13 1 0

Figure 6.1: The operation format specifying two source register pairs.
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implementation, with two of the four source registers are implicitly following
from the register number of the other two registers. In other words, if register
r2 is specified as rsl (source register 1) then the value of rsla is the value of
register r2 and the value of rs1b is the value of register r3. This method is also
used to specify operands which cannot be held in one register to the floating-
point unit. We assume an extension to version 8 of the SPARC architecture
manual, as we assume all registers to be 64 bit wide.

For the Neg, Add, Sub, Sad_Stream and SAD.2 instructions, which use only
one source register(pair) the format is specified in Figure 6.2.

Not affecting Codition Codes:

{lOlrd ‘IIOIIO[rSI Topc lunused |
31 29 24 18 13 1 0
Affecting Condition Codes:

110 | rd [ 110111 [rsl | opc | unused |
31 29 24 18 13 1 0

Figure 6.2: The operation format specifying one source register pair.

Bit-numbers 31 and 30 are 1 and 0 respectively, which specifies a type 3 coded
instruction {104, p. 149]. Furthermore, bits 24 to 19 are fixed at 110110 for
an instruction that doesn’t change the condition codes or 110111 for an in-
struction that does affect the condition codes. Nine bits, denoted as opc and
numbered 13 through 5 in the above figures, can be used to specify one of 512
possible coprocessor instructions. While this seems a huge number, we will
show that we will use almost all of these nine bits. Bits 29 through 25 are used
to specify one of the 32 registers as destination register. Bits 18 through 14 and
bits 4 through 0 specify the two source registers, rs1 and rs2 respectively. This
approach needs 10 bits of the 32 bits of the instruction to specify the source
operands. We should note that all operations are register-to-register operations.
For this version of the instruction set we do not support direct memory opera-
tions or operations using immediates. As most of our instructions use 4 source
operands, and we do not want to spend 20 of the 32 bits of the instruction for
the specification of the source registers, we use a partial implicit register ad-
dressing scheme. We feel that although this might harm flexibility, it is still
flexible enough to be useful. In our partial implicit register addressing scheme
only two source registers are specified, the other two are the “upper neighbors”
of the two specified registers. The “upper neighbor” of a register is the register
which has its number incremented by one. That is, if we specify r4 and r9 as
source registers in an instruction, the hardware will use the contents of r4, r5,
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r9 and r10 as the operands of the instruction.

The floating point processor of the SPARC processor uses a similar scheme in
order to work with floating point numbers which use more bits than a register is
wide. A floating point number is then loaded into r4 and r5 for instance. While
the floating point unit generates a trap whenever a source register is not aligned
properly, our unit explicitly allows the specification of “odd” source registers
to specify a register pair. While in floating point notation the two parts are
used to specify one value, the register pairs of our coprocessor unit contain
two independent values. As a side note it should be noted that the “upper
neighbor” of r31 is assumed r0. In the discussion of the instructions, rsl
is used to denote source register 1 and rs2 is used to denote source register 2.
Furthermore, rsla is the same register as rs1, and rs1b is the “upper neighbor”
of rs1. Equivalently, rs2a specifies the same register as rs2, and rs2b is the
“upper neighbor” of rs2.

In the following subsections we describe all the instructions which our pro-
posed unit can execute.

6.1.1 Add-Multiply-Add Instructions

This subsection describes the Add-Multiply-Add family of instructions. The
mnemonics of each instruction are in the column denoted as opcode. The
column opc defines the bit settings of bits 13 through 5 of the opcode and the
column denoted as operation gives a general description of the operation that
is performed. '

Supported data types:

The Add-Multiply-Add instructions operate only on 32-bit, signed or
unsigned inputs.

opcode | opc operation

AMA | 00x111100 | Add-Multiply-Add

AMS | 00x111101 | Add-Multiply-Subtract
SMA | 00x111110 | Subtract-Multiply-Add
SMS 00x111111 | Subtract-Multiply-Subtract
MA 00x110100 | Multiply-Add

MS 00x110101 | Multiply-Subtract

AM 00x011110 | Add-Multiply

SM 00x011111 | Subtract-Multiply
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opcode | opc operation
AA 00x101110 | Add-Add
AS 00x101111 | Add-Subtract
SA 00x101110 | Subtract-Add
SS 00x101111 | Subtract-Subtract
ADD 00x001110 | Add
SUB 00x001111 | Subtract
MUL | 00x010100 | Multiply
NEG 00x000010 | Negate

Chapter 6. Putting it all together

opcg, which is denoted as x in the above table is used to select between signed
and unsigned operation.

(un)signed | Operator length | opg
unsigned | word 0
signed word 1

Suggested Assembly Language Syntax

ama rsl,rs2,rd
ams rsl,rs2,rd
sma rsl,rs2,rd
sms rsl,rs2,rd
ma  rsl,rs2,rd
ms  rsl,rs2,rd
am  rsl,rs2,rd
sm  rsl,rs2,rd
aa rsl,rs2,rd
as rsl,rs2,rd
sa rsl,rs2,rd
$s rsl,rs2,rd
add rsl,rd

sub  rsl,rd

mul rsl,rs2,rd
neg rsl,rd

The semantics of all instructions is as follows.

e In the Add-Multiply-Add (AMA) instruction the contents of rsla is
added to the contents of register rslb and the result is multiplied by
the contents of register rs2a. The contents of register rs2b is added to
the result, and the final result is written to register rd.

e In the Add-Multiply-Subtract (AMS) instruction the contents of rsla is
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added to the contents of register rslb and the result is multiplied by the
contents of register rs2a. The contents of register rs2b is subtracted
from this, and the final result is written to register rd.

¢ In the Subtract-Multiply-Add (SMA) instruction the contents of rs1b is
subtracted from the contents of register rsla and the result is multiplied
by the contents of register rs2a. The result is added to the contents of
register rs2b, and the final result is written to register rd.

e In the Subtract-Multiply-Subtract (SMS) instruction the contents of rs1b
is subtracted from the contents of register rsla and the result is multi-
plied by the contents of register rs2a. The contents of register rs2b is
subtracted from the result, and the final result is written to register rd.

e The Multiply-Add instruction (MA) ignores the contents of register
rslb, and multiplies the contents of register rsla with the contents of
register rs2a. To this result the contents of register rs2b is added and
the final result is written to register rd.

¢ The Multiply-Subtract instruction (MS) multiplies the contents of regis-
ter rsla with the contents of register rs2a. From this result the contents
of register rs2b is subtracted and the final result is written to rd.

e The Add-Multiply instruction (AM) adds the contents of register rsla to
the contents of register rs1b. This result is multiplied with the contents
of register rs2a and written to rd.

e The Subtract-Multiply instruction (SM) subtracts the contents of register
rs1b from the contents of register rsla. This result is multiplied with the
contents of register rs2a and written to rd.

e The Add-Add instruction (AA) adds the contents of registers rsla, rslb
and rs2b and writes the result to register rd.

e The Add-Subtract instruction (AS) adds the contents of registers rsla
and rs1b and subtracts the contents of register rs2b. The result is written
to register rd.

e The Subtract-Add instruction (SA) subtracts the contents of register
rs1b from the contents and rs1b and adds the contents of register rs2b.
The result is written to register rd.

o The Subtract-Subtract instruction (SS) subtracts the contents of registers
rslb and rs2b from rsla and writes the result to register rd.




98 Chapter 6. Putting it all together

e The Add operation (ADD) adds the contents of registers rsla and rslb
and writes the result to register rd.

e The Subtract operation (SUB) subtracts the contents of register rslb
from the contents of rsla and writes the result in register rd.

e The Multiply operation (MUL) multiplies the contents of register rsla
and the contents of register rs2a and writes the result in register rd.

o The Negate operation (NEG) negates the contents of register rslb and
writes the result to register rd.

This can be summarized by the following table, which specifies the mathemat-
ical operation for each of the above instructions.

opcode | formula

AMA | rd < (([rsla]+[rs1b])*[rs2a])+{rs2b]
AMS rd + (([rsla]+[rs1b])*[rs2a])-[rs2b]
SMA rd + (([rs1a]-[rs1b])*[rs2a])+[rs2b]
SMS rd + (([rsla]-[rs1b])*[rs2a])-[rs2b]

MA rd <— (({rsla] )*[rs2a])+[rs2b]

MS rd « (({rs1a] )*[rs2a])-[rs2b]

AM rd « (([rsla]+[rs1b])*[rs2a])

SM rd < (([rsla]-[rs1b])*[rs2a])

AA rd < (([rsl1a]+[rs1b]) )+[rs2b]

AS rd + (([rsla]+[rs1b]) )-[rs2b]

SA rd < (([rs1a]-[rs1b]) )+[rs2b]

SS rd < (([rsla]-[rs1b]) )-[rs2b]

ADD rd < (([rsla]+[rs1b]) )

SUB rd < (([rs1a]-[rs1b]) )

MUL rd < (([rsla] )*[rs2a])

NEG rd «+ ( -[rs1b]))

As we will show in the implementation section of this chapter, the Add-
Multiply-Add group of instructions only operates on 32 bits wide words. These
inputs can be either signed or unsigned. As all registers are 64 bits wide, and
the result of the Add-Multiply-Add unit is in general 2n + 1 = 65 bits wide,
we store the most significant bit in the condition codes.

General description:

The Add-Multiply-Add family of instructions takes four operands, of
which the first two, specified by rsla and rslb, are summed or sub-
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tracted and multiplied by the third operand, specified by rs2a. Finally,
the fourth operand, specified by rs2b, is added or subtracted.

Overflows:

The Add-Multiply-Add family of instructions can easily generate an
overflow, as the result is in general 2n+1 bits wide for n-bit input num-
bers, see Section 2.1. As our unit only operates on 32-bit inputs and the
result is still a 64-bit register, we only have to store one extra bit. This
bit is stored in the condition codes.

Traps:
None.

Notes to the implementor:

The connection of the opcode-bits to the implementation of the execu-
tion unit are given in the following table:

opcy | 0Py of AMA

opcy | op; of AMA

opce | Block A to zero

opcs | Block B to zero

opey | Block Cto 1

opcs | Block D to zero

opce | Unsigned (0) or Signed (1) operation
opcy | 0 to specify AMA operation

opcg | 0 to specify AMA operation

6.1.2 Mean3 Instruction

The Mean3 instruction computes the mean of three input numbers.

Supported data types:

The Add-Multiply-Add instructions operates only on 32-bit, signed or
unsigned inputs.

opcode | opc operation
MEAN3 | 11xxxxxx0 | Mean of the three inputs

e The Mean3 instruction computes the mean of rsla, rslb and rs2a and
writes the result in rd.
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Suggested Assembly Language Syntax
mean3 rsl,rs2,rd

opcode | formula
MEAN3 | rd ¢ ([rsla]+[rs1b]+[rs2a])/3

General description:

The Mean of Three operation computes the mean of three input numbers,
specified as the contents of rsla, rslb and rs2a. This is done by using
the Add-Multiply-Add hardware.

Traps:

None.

Notes to the implementor:

Note that for n-bit inputs, the Add-Multiply-Add hardware needs to be
n + 2 bits wide and the shifter on the bottom of the tree-reducer needs to
arithmetically shift the result over n + 2 bits to the right, neglecting any
bits shifted out. As we also want to support unsigned operation, another
bit is added to the width of the needed Add-Multiply-Add unit.

6.1.3 Sum of Absolute Differences (SAD) Instructions

We describe two architectural implementations of the SAD instruction. The
first implementation fits in the scheme of four source registers and one des-
tination register, where two of the four source registers follow implicit from
the other two source registers. The second architectural implementation is
a streaming mode implementation, which operates on two implicit registers,
which are loaded using a special stream-load instruction. We do not supply a
MAD instruction, as the rounding should not take place before the final addi-
tion.

Supported data types:

The Sad instructions operate on bytes or half-words, unsigned inputs.
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SAD-Register

opcode | opc operation

SAD 01xxxxx00 | Sum of Absolute Differences

SAD2 | Olxxxxx11 | Sum of Absolute Differences

SADa | 01xxxxx0l | Sum of Absolute Differences Accumulated

The semantics of the Sum of Absolute Differences instructions are as follows:

e The Sum of Absolute Differences (SAD) instruction computes the Sum
Absolute Difference of the sub-words of rsla and rslb and the sub-
words of rs2a and rs2b and stores the result in register rd.

o The Sum of Absolute Differences (SAD2) instruction computes the Sum
Absolute Difference of the sub-words of rsla and rsib and stores the
result in register rd.

e The Sum of Absolute Differences Accumulated (SADa) instruction
computes the Sum Absolute Difference of the sub-words of rsla and
rslb, adds this to the contents of register rs2a and stores the result in
register rd.

(un)signed | Operator length | opg
unsigned | byte 0
unsigned half-word 1

Suggested Assembly Language Syntax
sad  rsl,rs2,rd

sad2 rsl,rd

sada rsl,rs2,rd

opcode | formula

SAD rd < SAD([rs1a],[rs1b],[rs2a],[rs2b])
SAD2 | rd + SAD([rsla],[rs1b])

SADa | rd < [rs2a]+SAD([rslal,[rs1b])

General description:

The four input registers, specified as two register pairs, are subdivided
into bytes or half-words. For each pair of bytes or half-words, the small-
est is subtracted from the largest. The results of these subtractions are
accumulated, together with rd in case of accumulation, and written to
rd. Note that the actual implementation operates slightly different to
allow faster operation. See Chapter 3.
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Overflow:

None. Using a 16 bit result half-word is sufficient for a 16x16 bytes
SAD and a 24 bit result word is sufficient for a 16x16 half-word SAD.

Traps:

None.

Notes to the implementor:

Note that the actual subtraction of the smallest does not take place. In-
stead, the smallest of each pair of inputs is inverted (subtracted from
2™ — 1and a constant is added to accommodate for this. See Section
3.2. This constant is equal to 2 — n % (2P — 1), where q is the number of
bits in the destination register, n is the number of pixels the unit operates
on and p is the width of the source operands.

SAD-Streaming

This section describes the opcodes for the streaming mode of SAD. We assume
there are two implicit source registers, which are loaded by a special autoin-
crement load instruction. The length of this register is not defined within the
architecture. However, there is a special, implementation dependent register
from which the length of the registers can be deduced during runtime. Note
that the length of the source registers is anticipated to be equal to the memory-
bandwidth of the processor. In other words, we assume that the processor
will be able to process at least 8 pixels in parallel. Note also that the speci-
fied source register is a general purpose register containing the SAD over the
previous pixels.

opcode | opc operation
SADs | 01xxxxx10 | SAD-Streaming-mode

Suggested Assembly Language Syntax
sads rsl,rd

opcode | formula
SADs | rd « rsla + SAD([Implicit Reg_1], [Implicit Reg_2])

General description:

This instruction operates on pairs of unsigned bytes or pairs of unsigned
half-words. The input registers are split in the appropriate number of
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items and for each pair the smallest is subtracted from the largest. After
this step all bytes or half-words are summed up together with a constant
and source register rla to form the result, which is written to rd.

Note that this instruction is capable of accumulation by specifying the
same register as source and destination. Therefore a separate SADsa
instruction (SAD-Streaming-Accumulating) is not necessary.

Overflow:

None. Using a 16 bit result half-word is sufficient for a 16x16 bytes
SAD, using a 24 bit result word is sufficient for a 16x16 half-word SAD.

Traps:

Note that the width of the implicit source registers is not specified.
Therefore, the programmer does not know how many cycles are needed
to do a full block. The SADs instruction will generate a trap if an attempt
is made to read further then a block.

Notes to the implementor:

Note that the actual subtraction of the smallest doesn’t take place. In-
stead, the smallest is inverted and a constant is added to accommodate
for this. See Section 3.2. This constant is equal to 2 — n x (27 — 1),
where g is the number of bits in the destination register, n is the number
of pixels the unit operates on and p is the width of the source operands.

6.1.4 PAETH Instructions

The Paeth family of instructions is used in PNG [95] encoding and decoding.

opcode | opc operation

PAE 100000000 | Compute Paeth predictor

PAEE | 100000011 | Encode pixel using the Paeth predictor
PAED | 100000010 | Decode pixel using the Paeth predictor

The semantics of the Paeth instructions are as follows:

o The Paeth (PAE) instruction computes the Paeth predictor from the con-
tents of registers rsla, rslb, and rs2a and writes the result to register
rd.

e The Paeth-Encode (PAEE) instruction computes the Paeth predictor
from the contents of registers rsla, rslb, and rs2a and subtracts this
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value from the contents of register rs2b. The result is written to register
rd.

e The Paeth-Decode (PAED) instruction computes the Paeth predictor
from the contents of registers rsla, rslb, and rs2a and adds this value
to the contents of register rs2b. The result is written to register rd.

Suggested Assembly Language Syntax
pae  rsl,rs2,rd
paee rsl,rs2,rd
paed rsl,rs2,rd

opcode | formula

PAE rd < Paeth_predict([rs1a],[rs1b],[rs2a])

PAEE | rd < [rs2b]-Paeth_predict([rs1a],[rs1b],[rs2a])
PAED | rd + [rs2b]+Paeth_predict([rsla],[rs1b],[rs2a])

General description:

The Paeth instructions compute the Paeth predictor according to the
PNG [95] standard. The Paeth instructions only operate on unsigned
bytes. Each input register is split in the appropriate number of bytes,
and for each byte the operation is performed independently and in par-
allel. The Paeth predictor is defined as the value of that input a,b or ¢
which is closest to a + b — ¢ in the tie-break-order a, b, c. Where a
is the pixel left from the current pixel, b is the pixel above the current
pixel, and c is the pixel left-above the current pixel, see Figure 4.3. Note
that the PNG standard [95] specifies the Paeth predictor slightly different
then Paeth [94] defined it originally.

Traps:

None.

Notes to the implementor:

The connection of the opcode-bits to the implementation of the execu-
tion unit are given in the following table:
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opey | opg of PMMM

opcy | opy of PMMM

opcy | Mode of PMMM

opcs | Block D to zero

opcy | 0, as the Paeth predictor is only defined for unsigned byte
opcs | 0, as the Paeth predictor is only defined for unsigned byte
opcg | 0, as the Paeth predictor is only defined for unsigned byte
opcr | 0 to specify PMMM operation

opeg | 1 to specify PMMM operation

6.1.5 MMM Instructions

The MMM family of instructions includes the Median, Minimum and Maxi-
mum of three inputs. These operations are available for all defined data-types.

opcode | opc operation

MED 10xxx1101 | Median

MEDE | 10xxx1111 | Encode using the Median
MEDD | 10xxx1110 | Decode using the Median
MIN 10xxx0101 | Minimum

MINE | 10xxx0111 | Encode using the Minimum
MIND | 10xxx0110 | Decode using the Minimum
opcode | opc operation

MAX 10xxx1001 | Maximum

MAXE | 10xxx1011 | Encode using the Maximum
MAXD | 10xxx1010 | Decode using the Maximum

The xxx in the table above defines the dataformat of the operands of the in-

struction. This is shown in the following table.

(un)signed | Operator length | opg | opcs | opcy
unsigned | byte 0 0 0
signed byte 1 0 0
unsigned | half-word 0 1 0
signed half-word 1 1 0
unsigned | word 0 0 1
signed word 1 0 1
unsigned | double-word 0 1 1

L signed double-word 1 1 1

The semantics of the MMM family of instructions is as follows:
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The Median instruction (MED) computes the Median of the contents of
registers rsla, rslb and rs2a and writes the result to register rd.

The Median Encode instruction (MEDE) computes the Median of the
contents of registers rsla, rslb and rs2a. This value is subtracted from
the contents of register rs2b and the result is written to register rd.

The Median Decode instruction (MEDD) computes the Median of the
contents of registers rsla, rslb and rs2a. This value is added to the
contents of register rs2b and the result is written to register rd.

The Minimum instruction (MIN) computes the Minimum of the contents
of registers rsla, rs1b and rs2a and writes the result to register rd.

The Minimum Encode instruction (MINE) computes the Minimum of
the contents of registers rsla, rslb and rs2a. This value is subtracted
from the contents of register rs2b and the result is written to register rd.

The Minimum Decode instruction (MIND) computes the Minimum of
the contents of registers rsla, rslb and rs2a. This value is added to the
contents of register rs2b and the result is written to register rd.

The Maximum instruction (MAX) computes the Maximum of the con-
tents of registers rsla, rslb and rs2a and writes the result to register
rd.

The Maximum Encode instruction (MAXE) computes the Maximum of
the contents of registers rsla, rslb and rs2a. This value is subtracted
from the contents of register rs2b and the result is written to register rd.

The Maximum Decode instruction (MAXD) computes the Maximum of
the contents of registers rsla, rslb and rs2a. This value is added to the
contents of register rs2b and the result is written to register rd.

Suggested Assembly Language Syntax

med
mede rsl,rs2,rd

rsl,rs2,rd

medd rsl,rs2,rd
min
mine  rsl,rs2,rd
mind rsl,rs2,rd

rsl,rs2,rd

max
maxe rsl,rs2,rd
maxd rsl,rs2,rd

rsl,rs2,rd
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opcode | formula

MED rd <~ Median([rs1a],[rs1b],[rs2a])
MEDE | rd + [rs2b]-Median([rsla],[rs1b],[rs2a])
MEDD | rd < [rs2b]+Median([rs1a],[rs1b],[rs2a])
MIN rd < Min([rs1a],[rs1b],[rs2a])

MINE | rd « [rs2b]-Min([rs1a],[rs1b],[rs2a])
MIND | rd < [rs2b]+Min([rsla],[rs1b],[rs2a])
MAX rd < Max([rs1a],[rs1b],[rs2a])

MAXE | rd + [rs2b]-Max([rs1a],[rs1b],[rs2a])
MAXD | rd < [rs2b]+Max([rs1a],[rs1b],[rs2a])

General description:

The Median, Minimum and Maximum operations can operate on bytes,
half-words, words and double-words, both signed and unsigned. This
has to be encoded into the op-code, which takes 3 bits.

Overflows:

For the MED, MIN and Max operations, overflow is not possible, as one
of the inputs is simply selected, the result will always be within bounds.

For the Encoding and Decoding instructions, all adding and subtracting
is done modulo 2", which means a wrap-around takes place in case of
overflow.

Traps:

None.

Notes to the implementor:

The operations are defined for unsigned inputs. If the operations are
needed for signed numbers in two’s complement notation, an inversion
of the sign-bit on the inputs of the comparing full-adders will ensure
proper operation. With this inversion, the range of the input numbers is
shifted from {—2"71..27"1 — 1} 10 {0...2" — 1} effectively. Because
all operations are comparisons and selection (that is no arithmetic oper-
ations are performed) the right result will be selected. As the selectors
operate on the unmodified inputs, the right result will appear on the out-
put.

The connection of the opcode-bits to the implementation of the execu-
tion unit are given in the following table:
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opcy | opg of PMMM

opcy | op1 of PMMM

opca | Mode of PMMM

opcs | Block D to zero

opcy | Datatype, see above

opcs | Datatype, see above

opce | Datatype, see above

opcr | 0 to specity PMMM operation
opcg | 1 to specify PMMM operation

6.2 Sample implementation

In this section we describe a possible implementation of the unit by describing
a general data-flow. Control logic is not discussed here, as it is dependent on
various other factors, such as decoding, accessing registers, structural hazards
etc. Moreover no specific unit logic implementation details, such as adders,
multipliers and carry-logic etc, are presented and they are left to individual
designers.

The general data-flow of the execution unit we propose is described in Figure
6.3. The unit, denoted as SPIL!, is designed to operate on four inputs, denoted
by the source registers rsla, rslb, rs2a, and rs2b. Control logic signals are
added to determine the correct flow of data. The unit comprises a number of
blocks, denoted as subunits, which are described in the following text.

The subunit PacthMMM, computing the Paeth, Median, Minimum and Maxi-
mum related operations is described in Figure 6.4. In this figure the data inputs
are called A, B, C and D. These are connected to rsla, rslb, rs2a and rs2b
respectively. The three control signals, op. 1, op. 2 and mode are used to con-
trol the operation of the unit. These three inputs are decoded from the opcode.
All data inputs A, B, C, and D are 64 bits wide. These inputs can be split into
several smaller parts, namely eight times 8 bits, four times 16 bits or two times
32 bits. For clarity, this is not shown in the figure. Furthermore, the inputs
can be signed or unsigned. The unit was originally designed for unsigned in-
puts. A trivial adaptation makes it possible to operate on signed inputs in two’s
complement as well. We should note that this is not defined for the Paeth oper-
ations, because the PNG standard [95] explicitly states that all operations are
carried out on bytes, which have to be interpreted as unsigned.

'The spil is the most important, vertical axis of a mill. We have chosen this name, because
it is an important execution unit in our project, called Molen (Mill)
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Figure 6.3: The SPIL unit.

We describe the operation for one eight bit slice of the PaethMMM unit, oper-
ating on unsigned data. In the SPIL unit, eight of these units are present and
operate in parallel. In order to operate on larger data types, several signals have
to be chained together.

The operation of the PacthMMM unit is as follows: Carry-generator 1 and
Adders 2 and 3 are used for the comparison of inputs A, B, and C. Based on
these results, MTest_.1, MTest_2 and MTest_3, the dashed block denoted
as Min, Max and Median determine which of the inputs has to be selected for
these operations. At the same time, Adders 2, 3 and 4 compute the intermediate
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Figure 6.4: The total PacthMMM unit

results pas, pbs and pcs. These are compared in blocks 8, 9 and 10, which
determine which of them has the lowest absolute value, as described in Section
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4.3. This results in three similar test-signals, Test. 1, Test.2 and Test 3.
The dashed block denoted as Pacth determines which of A, B, and C is to
be selected as the Paeth predictor. Selectors 11 and 12 are used to determine
which of the four functions is shown on the outputs. Selectors 13 and 14 select
the actual value. This can be the value A, B or C if input D is blocked, or
(D-A), (D-B), (D-C) in case of encoding or (D+A), (D+B), (D+C) in case of
decoding. Using these precalculated values it is possible to compute the Paeth-
encoded value in the same number of cycles as needed to compute the Paeth
predictor. Note that these additions and subtractions are done modulo 2, in
accordance with the PNG specification [95]. Finally we state that in case of an
instruction is executed on the PaethMMM unit, the bottom multiplexer (C) of
the SPIL unit (Figure 6.3) needs to select its left input.

We assume the Mean3 instructions work only on 32-bit values. In order to
accommodate unsigned numbers, we will internally use 33 bits. That is we
sign-extend with a zero if we operate on unsigned numbers and with the proper
sign if we operate on signed numbers. As we need two extra bits in order to
get the required precision, we need an Add-Multiply-Add unit which is 35 bits
wide.The Mean3 part of Figure 6.3, is represented in more detail in Figure 6.5.
It supplies the internal Add-Multiply-Add unit with the intermediate results
of the carry-save addition of rsla, rslb and rs2a, (input A and B) and the
constants 2%°/3 (input C) and 23* — 1 (input D). These four inputs are used
in an add-multiply-add instruction, and the result is shifted to the right over 35
bits.

rsla rslb rs2a

Carry-Save Adder

Ry 2y 32 /——

nay/CIREE

35 35
C D )

ﬁ
> O
w3

Figure 6.5: Graphical representation of the Mean.

The Add-Multiply-Add logic needed for the MEAN3 instruction is also avail-
able for general use. The 35 bit wide unit can support both signed and unsigned
32-bit words. For unsigned operation, we sign-extend the 32-bit inputs with
zero’s and for signed operation we sign-extend the 32-bit inputs with their own
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Figure 6.6: Eight-bit example of setting up the partial products for the Add-
Multiply-Add unit using the Inversion Selection Technique.

sign-bit. After this sign-extension we can treat the inputs as signed, 35 bit val-
ues.

The Add-Multiply-Add subunit is represented in Figure 6.6. The inputs of the
Add-Multiply-Add unit come from multiplexer (A), which chooses between
the output of the Mean3 unit, depicted in Figure 6.5, or the direct inputs of
the total unit. This multiplexer can also block one or more of the inputs, by
which it enables the computation of several simpler expressions, such as the
Add-Add instruction and Multiply-Add instruction.

The Add-Multiply-Add unit can operate in two different ways, explained in
Chapter 2. The Inversion Selection Technique uses the fact that — X is almost
equal to X. To be precise, —X = X +1. Therefore we can rewrite for instance
(A-B)*xC+ Das (AxC)+ (Bx*—C) + D, which can be rewritten as
(AxC)+ (B*(C+1))+D==(A*C)+ (B*C)+ B+ D. As agiven
bit of C can only be 1 or 0, and the corresponding bit of C is 0 respectively 1,
we are essentially multiplexing A and B instead of adding them together. The
Half-Adder Technique uses half-adders to pre-add A and B. Depending on the
“per-bit” sum, which can be either —1, 0, 1, or 2, C is inserted in the product
matrix as —C',0, C or 2C respectively.

The SAD unit of Figure 6.3 is depicted in more detail in Figure 6.7. This figure
shows the configuration of a SAD operation on unsigned bytes as pixels. The
operation takes place on 16 pixels in parallel, using 32 bytes as input. For each
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Figure 6.7: Graphical representation of the SAD computation of a 16x1 block
of bytes using 16 of the blocks from Figure 3.6 in parallel. The
summation of the constant and the operands is performed in the
trec of Figure 6.8.

pair of input bytes, it is determined which of them is the smallest. This is done
by inverting the first operand and adding the result to the second operand. The
carry out of this addition determines which of them is the smallest. Then the
smallest of each pair of inputs is inverted. Note that the figure shows the con-
figuration for unsigned bytes as input. By coupling unit 0 and 1 it is possible to
operate on 8 couples of half-words as well. In that case the carry-out of unit 0
is used as carry-in for unit 1. The carry-out of unit | is then used to determine
which of the operands has to be inverted. The constant 16 should be changed
to 8 in that case.

As a common ground for the requirements of both the SAD subunit and the
Add-Multiply-Add subunit we note that a reduction array is needed. The Add-
Multiply-Add subunit needs .+ 2 rows, which means 37 in this case. The Sum
of Absolute Differences subunit needs 33 rows. The width at the top needed
by the Add-Multiply-Add subunit is 34. These requirements are combined
to the tree-reduction logic matrix of Figure 6.8. The implementation of such
a reduction system is not pursued in detail. We only note that a number of
different approaches are available, such as a Wallace tree [89], Lim counters
[92], 4-2 or 6-2 counters [91] and other schemes such as those described in
[93, 105, 106, 107]. In case of a Mean3 instruction a shift over 35 bits should
occur after the tree-reduction. The input of the tree reduction logic is either
originating from the SAD or the AMA unit. Multiplexer (B) chooses between
these two inputs.
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Figure 6.8: Matrix reduction requirements of the Add-Multiply-Add and the
Sum-Absolute Differences unit.

6.3 Conclusions

In this chapter, we introduced the instructions and opcodes which can be
executed using the hardware execution units we proposed in this dissertation.
These opcodes are specified as if the hardware would be implemented as a
SPARC Coprocessor. SPARC is only used as a common reference frame here,
as we feel that this unit can be implemented as an add-on to all modern proces-
sors. The second part of this chapter dealt with some implementation issues.
We will now continue with the final remarks and conclusions of this disserta-
tion.
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Final Remarks and Conclusions

This chapter is dedicated to some final remarks regarding our investigation.
It is organized in three parts. In the first part we briefly discuss the overall
conclusions we have derived throughout the investigation. The second part
discusses briefly the original contributions of the dissertation. The final part
proposes some new research directions.

The overall conclusions and general findings of this dissertation are as follows:

¢ In Chapter 2 we have shown two ways of computing compound expres-
sions of the general form (A + B) x C 4+ D. We have shown that an
unit capable of computing this expression can also be used to compute
various simpler expressions. We have proposed two general schemes
implementing this expression.
The Inversion-Selection Technique uses the fact that X and —X are “al-
most equal”. To be precise: —X = X + 1. We exploit this by mul-
tiplying A by C and —B by C, in which case each pair of rows in the
multiplication-array can be merged into one instead of being added to-
gether.

The Half-Adder Encoding is similar to the inversion selection technique
in that it also tries to reduce the number of partial products. The half-
adder technique accomplishes this by “preprocessing” (A open B) in
a bitwise manner, using a carry-save adder. The result of this operation
is one of {—1,0,1,2}, and has to be multiplied by C. This operation
is trivial. The resulting partial products are added together with D (or
-D).

Given the way we compute the partial products, we should be able to
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compute (A £ B) « C + D as fast as a multiplication.

In Chapter 3 we have investigated the Sum of Absolute Differences
(SAD) operation, an operation frequently used by a number of algo-
rithms for digital motion estimation. For such an operation, we proposed
a single vector instruction, which can be performed (in hardware) on an
entire block of data in parallel. We investigated possible implementa-
tions for such an instruction. Assuming a machine cycle comparable to
the cycle of a two cycle multiply, we showed that for a block of 16x1
or 16x16, the SAD operation can be performed in 3 or 4 machine cycles
respectively. The proposed implementation operates as follows: first we
determine in parallel which of the operands is the smallest in a pair of
operands. Second we compute the absolute value of the difference of
each pair by subtracting the smallest value from the largest one and fi-
nally we compute the accumulation. The operations associated with the
second and the third step are performed in parallel resulting in a multi-
ply (accumulate) type of operation. Our approach also covers the Mean
Absolute Difference (MAD) operation, except for the shifting (division)
operation.

We are able to perform the SAD in a small amount of cycles because of
the following two reasons:

— we have substituted complex operations (i.e the subtract and ab-
solute operation) with two simple operations (determining and in-
verting the smallest).

— we have substituted the subtractions and the accumulation opera-
tion by one multi-operand addition.

This speed advantage is especially beneficial for data-dependent algo-
rithms, such as the three-step search algorithm. These algorithms need
the SAD of the blocks in their first step to compute the addresses of the
blocks in the second step.

In Chapter 4, we presented a Paeth codec, which computes either the
Paeth predictor, the Paeth-coded or the Paeth-decoded pixel with only
a two cycle delay. Compared to a 21 machine instruction SPARC im-
plementation, this is a ten-fold speedup. The unit is developed for PNG
coding, but can also be useful in other graphic schemes. The hardware
requirements for the unit are modest, in the order of nine 10-bit adders.

We compute the Paeth predictor using the following steps:
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— Direct computation of the distance of each input to the initial esti-
mate.

— Compare these distances using Carry-generators.

— Select the input with the lowest distance.

The codec variant computes the difference or the sum of the current pixel
and the values to be encoded/decoded in parallel to the first step, it does
not alter the last two steps. The final step remains the selection of the
right output.

In Chapter 5 we introduced some instructions, which can be imple-
mented with small modifications of the hardware required for the in-
structions proposed in the previous chapters. More specifically we pro-
posed four new instructions for the median, the maximum, the minimum
and the mean. All instructions operate on three input numbers and pro-
duce a single output value. For the proposed instructions we showed
hardware implementations, which indicate the following:

— No complex modifications are required to implement the instruc-
tions using available hardware.
— No cycle time penalties should be introduced, (except perhaps for

mean) if the additional instructions proposed in this chapter are
implemented.

In particular it has been shown that one cycle is required to perform the
median, min and max. The mean may require 2 or 3 cycles (the third
cycle could be added to avoid critical path delay problems) depending
on the technology used to implement the units. Furthermore it has been
shown that there are substantial advantages in using our proposal when
compared to software solutions. More specifically we have shown that
performing the median in hardware requires 1 cycle, while performing
the same operation in software using an usual instruction set (e.g. Sun
SPARC) would require 6 to 9 cycles. For min and max, which are also
1 cycle operations, the software solution will require 7 cycles. Finally,
the mean of three numbers as proposed will require 2 to 3 cycles which
will be substantial less than using a commonly available instruction set
which requires two addition operations and a division.

In Chapter 6, we introduced the instructions and opcodes which can be
executed using the hardware execution units we proposed in the previous
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chapters. These opcodes are specified as if the hardware would be im-
plemented as a SPARC Coprocessor. SPARC is only used as a common
reference frame here, because we feel that this unit can be implemented
as an add-on to all modern processors. The second part of this chapter
dealt with some implementation issues.

7.1 Contributions

The main original contributions of this dissertation are as follows:

e We have shown that a number of true data dependencies, which have

been identified to be present in large percentages in embedded system
applications as shown by [74], can be captured by an unique expres-
sion: (A &£ B)* C £ D. Consequently, assuming two’s complement
representation, we propose two schemes for the implementation of such
an expression. Both schemes require no more machine cycles than the
number of machine cycles needed for the multiplication of two numbers.

For a very frequent motion estimation operation, the Sum of Absolute
Differences (SAD), we proposed a vector instruction and we investi-
gated possible implementations for such an instruction. Assuming a ma-
chine cycle which is comparable to the cycle of a two cycle multiply, we
have shown that for a block of 16x1 or 16x16, the SAD operation can be
performed in 3 or 4 machine cycles respectively.

We proposed a hardwired solution for the paeth predictor used in the
Portable Networks Graphics standard. Moreover we proposed a hard-
ware Paeth codec capable of computing three different quantities: the
Paeth predictor of three inputs, the difference between the current pixel
and the Paeth predictor of the other inputs (Coding), and the sum of
the coded input and the Paeth predictor of the other three inputs (De-
coding). These computations are performed within two cycles, where a
cycle is comparable to a general purpose ALU cycle. Depending on the
mode of operation, the proposed mechanism produces the predictor or
the (de/en)-coded pixel value.

We have shown that without additional cycle time penalties an exten-
sion of the Paeth unit is possible by which it can additionally com-
pute the Median of three inputs [100]. This median is used in video-
deinterlacing, which is needed when displaying normal video on a non-
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interlaced computer screen or a modern, high-end television set. We
have also shown that the median operation can be computed by itself in
one machine cycle.

e We have introduced a number of new instructions and shown that these
instructions can be implemented with trivial additions to the multiply (or
multiply-add) hardware together with other well known instructions, for
example multiply, multiply-add, multiply-subtract. We have also shown
that the remaining instructions can be executed by a new execution unit,
which is no more complex than a traditional ALU design.

e As a minor contribution we have shown that using the Paeth extended
logic, it is trivial to compute also the maximum and minimum of the
three inputs. Furthermore, we introduce an extension of the Add-
Multiply-Add unit, described in Chapter 2 whereby the Add-Multiply-
Add unit can compute the Mean of three inputs.

7.2 Future research directions

There are a number of open questions left out from our investigation. In the
final section of this dissertation we mention some possible ways to continue
our research. In our opinion, research could be continued in the following
areas.

¢ Although we have proposed several hardwired execution units, we did
not perform an “exhaustive” search to find all possible operations which
could improve the performance if implemented in hardware. While ob-
viously such “exhaustive” search is not quite possible, finding new func-
tional requirements is a desired research direction because it may expand
the units we propose with some trivial additions.

e Our proposal can be considered only the beginning of an architectural
proposal. We did not perform an overall estimation of performance
gains in multimedia benchmarks. While our approach is the first step
to propose an architecture, performance evaluations should additionally
be carried out to further justify the instruction set. We believe this is
another important research direction to be followed as a continuation of
our research.

e Our investigation has been especially tuned to the execution stages of
the pipeline. No special considerations have been paid to the memory
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interfacing. Due to the nature of applications and the substantial amount
of data movement, special attention should be paid to such a data move-
ment instruction set. Clearly this is another important direction which
future investigations should follow.

e On the design aspects we did provide strong evidence of meeting the
cycle time requirements. We believe that certain units such as the Paeth
unit could have even better cycle times then general purpose ALU like
execution stages. We have not addressed such possibility, as the “sili-
con” design was not the objective of this dissertation. We believe that
producing an implementation in silicon of this unit is also another direc-
tion to be followed in the near future.
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Samenvatting

In dit proefschrift onderzoeken we de mogelijkheden om een hardware im-
plementatie te maken van units die van samengestelde expressies uitrekenen.
De focus ligt hierbij op samengestelde bewerkingen die veel voorkomen in
multimedia applicaties. De eerste groep van samengestelde expressies die
we bekijken kan worden beschreven als Optel-Vermenigvuldig-Optel (Add-
Multiply-Add) expressie. Voor deze familie van expressies laten we zien dat
een hardware unit gebouwd kan worden die ongeveer dezelfde logische struc-
tuur heeft als de unit voor de normale vermenigvuldig instructie. Dit impliceert
dat de Optel-Vermenigvuldig-Optel instructie net zo snel is als een gewone ver-
menigvuldiging, wat een significante versnelling kan opleveren in multimedia
applicaties. Verder laten we zien dat twee veelgebruikte operaties video com-
pressie, de Som van Absolute Verschillen en het Gemiddelde van Absolute
Verschillen, in hardware geimplementeerd kunnen worden, waarbij het resul-
taat in ongeveer dezelfde tijd kan worden uitgerekend als een vermenigvuldig-
ing. Onze aanpak kan eenvoudig worden uitgebreid tot de berekening van de
Som van Absolute Verschillen van een 16 bij 16 pixels groot blok in niet meer
dan twee maal de tijd benodigd voor een vermenigvuldiging. Verder stellen we
een Coder-Decoder structuur voor in hardware, die de Paeth predictor van de
Portable Network Graphics (PNG) standaard berekend. We laten zien dat ook
deze unit niet meer tijd nodig heeft als een vermenigvuldiging, en we brei-
den deze unit tevens uit met de operaties mediaan, minimum en maximum.
Verder breiden we de Optel-Vermenigvuldig-Optel unit nog iets uit zodat deze
in staat is om het gemiddelde van drie inputs te berekenen. Tot slot stellen we
twee ontwerpen voor, die samengesteld zijn uit bovenbeschreven onderdelen.
De eerste unit voorziet in alle operaties die aan vermenigvuldigen gerelateerd
zijn, de tweede is voor alle operaties van de Paeth, mediaan, minimum en
maximum groep. Beide units worden gecombineerd tot één unit, die 32 ver-
schillende instructies kan uitvoeren.
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Appendix A

Motion Estimation

In this appendix we give some additional background information on motion
estimation, and we describe some common algorithms used for motion esti-
mation. There are two basic kinds of motion estimation, namely true motion
estimation, which is used for scan-rate conversion, and block-based motion
estimation for motion compensation which is used in video compression algo-
rithms. In the second kind of motion estimation, the algorithms are optimized
to find the best match of a given block with respect to a given reference frame.
Motion estimation for scan rate conversion is used to calculate intermediate
frames, which were never received. For each pixel in this intermediate frame,
a value is computed using the (per pixel) motion vector of the previous frame to
the next frame. Basically, the motion between two received frames is divided
in two equal steps and the intermediate result is inserted as a new frame.

In the following two sections, we will show some of the algorithms used for
the two kinds of motion estimation. The emphasis is on block-based motion
estimation, which is in the scope of this dissertation.

A.1 True Motion Estimation

True motion estimation is used in scan-rate conversion, video-deinterlacing,
and surveillance video systems. One of the algorithms used is 3-D Recursive
Search Block Matching [108]. This is used in scan-rate-conversion for 100Hz
televisions, which display frequency is 100Hz, where the transmission is only
50Hz interlaced. Two estimators are used for the current vector, which both
produce 4 candidate-vectors. The candidate-vector with a minimal Sum of Ab-

135




136 Appendix A. Motion Estimation

solute Differences (SAD) associated is selected. The estimators that are used
are the blocks top-left and top-right from the current block. These estimation-
directions are perpendicular, at 45 and -45 degrees, thereby trying/ensuring
that convergence is reached in at least one direction.

Substantial attention is paid to the computation of “nice guesses” for the mo-
tion vector. With these guesses, the motion vector is computed. It should be
noted that knowledge from other blocks in the current frame, and from other
blocks in the past frames is used to determine the motion. Smoothness in the
motion-plane is one of their main goals, there are “penalties” for discontinu-
ities in the velocity-plane.

The “criteria” used for this algorithm are: Modified Mean Square Error
(M2SE), (spatial) Smoothness of the vector field and Operation Count. In all
three criteria, their 3D-Recursive Search algorithm performs well to very well.
In other words, it is very suitable for block-matching in applications such as
consumer field-rate conversion.

A.2 Block-Based Motion Estimation

In this section we discuss block-based motion estimation. As an example we
show the simplest, but most compute intensive motion estimation algorithm
in some detail. We show that it can be divided into layers, which we also
encounter in the other algorithms. The simplest motion estimation algorithm
is exhaustive search. This is the only algorithm which guarantees to find the
global minimum within the bounds of the search range. It is therefore often
used as a standard against which other algorithms are compared. For this dis-
cussion, we use macro-blocks of 16 by 16 pixels and a search range of + 7
pixels. The exhaustive search operates in one single step. The control is there-
fore data-independent, which makes it a suitable algorithm for implementation
in hardware. As candidate motion vectors, all 15 = 225 possible motion
vectors are used. For each candidate motion vector, the SAD over the current
block and a block of the reference frame is computed. The block of the refer-
ence frame has coordinates of the block in the current added with the motion
vector.

The SAD for motion vector (a, b) for a current block which has top-left coor-
dinates at (z, y) is defined as:

15 15

SAD(z,y,a,b) = Z Z |A(w~|—i,y+j) - B(m+a+i,y+b+j)| (A.1)
i=0 j=0
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where A is the current frame and B the reference frame. For each candidate
motion vector, the SAD is computed. This takes 256 subtract absolute op-
erations and 255 additions. If we neglect the absolute operation, this is 511
operations. However, the test for negative is probably the most expensive op-
eration, as it introduces data-dependency into the control of the program. For
each block, 225 candidate motion vectors have to be evaluated, making a to-
tal of 225*%511=114975 operations per block. For each frame, consisting of
720*480 pixels, 1350 blocks have to be evaluated. This makes the number
of operations 1.552e+08. For one second of video at 25 Hz, it would require
3.880e+09 operations.

Most of the algorithms described below try to reduce this number by reducing
the number of candidate vectors. We introduce the different layers in motion
estimation in some more detail below.

One second of video: One second of video consists of 25 frames. From the
top down, we see one second of video. This is our (arbitrary) starting point.
The frames can be coded using the scheme of Figure A.1. Note that this is not
standardized and therefore each encoder can choose its own strategy.

This scheme repeats after 12 frames. Based upon the position of the frame (in
time), each frame is put into one of three categories:

I These are the Intra-coded frames. No motion estimation is used in the com-
pression of these frames. These frames are needed to accommodate
scene changes and they are used as anchor points for the motion esti-
mation.

P The Predictive-coded frames are predicted with respect to the closest I
frame.

B The Bidirectionally Predictive-coded frames are predicted with respect to
either the preceding or following P or I frame. These frames benefit the
most from Motion Estimation and Compensation.

Each frame is then processed according to the category in which it is put.

S IN S NSNS / NS
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Figure A.1: 25 of frames of video, subdivided into I, B and P frames.
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Note that this is a layer of the encoding scheme, and not a layer of motion
estimation. We have included it to put things in perspective.

The frame layer: We have one or two reference frames and one current frame.
Now that we have determined for each frame how it should be coded, we can
subdivide the frame in basic blocks of 16 by 16 pixels. In this layer decimation
can take place, in that different algorithms are used for different blocks. In
general, all blocks are treated the same. However, the sub-sampled motion
field estimation algorithm [109] uses a checkerboard approach, where for all
black blocks the motion vector is computed using a standard algorithm, and for
all white blocks only the motion vectors of the four neighbors are evaluated.
Figure A.2 gives a graphical representation of this decimation. In the figure
the motion vectors of the black blocks (depicted gray for clarity) are computed
using an arbitrary scheme, e.g. full-search. The resulting motion vectors are
indicated with arrows in each block. For the white blocks, only the motion
vectors of the neighboring black blocks are candidate motion vectors. This
means only four motion vectors need to be evaluated.

Figure A.2: Sub-sampled Motion-Field Estimation.

Other approaches to reduce the cost in this layer include the telescopic search
algorithm, which uses the motion vectors obtained for the previous frame as
guideline for the search, see [78].

The candidate motion vector layer: We have one block in the current frame
and one or two reference frames. This is the layer where most motion estima-
tion algorithms try to eliminate operations. The exhaustive search evaluates
all possible 15? motion vectors and chooses the vector resulting in the lowest
SAD. Other algorithms try to do some sort of binary search to minimize the
criterion. In the first step, the center and four to eight other motion vectors
on a search step distance from the center are evaluated (where the search step
starts at half the search range). The motion vector resulting in the lowest SAD
is chosen as the center for the next step, where the search step is halved. Once
the search step equals one, the algorithm terminates and the motion vector




A.2. Block-Based Motion Estimation 139

resulting in the lowest SAD is chosen.

Two common examples are the Three Step Search (Figure A.3(a)) and the 2-
D Logarithmic Search (Figure A.3(b)), which is described in more detail in
Chapter 3.

(a) Three Step Search (b) 2 Dimensional Logarithmic Search
Figure A.3: Graphical representation of two common algorithms.

The decimation layer: In this layer we have a current block and a candidate
motion vector, which refers to a block in a reference frame. The decimation
layer is not always present. It tries to minimize computations by selecting
only a fraction of the pixels of each frame for inclusion in the SAD criterion.
The fraction is typically i, that is a decimation takes half of the pixels in both
horizontal and vertical direction. Special care has to be taken to use suitable
decimation schemes that do not introduce artifacts.

The criterion layer: In this layer we have a number of pixels from both the
current frame and the reference frame. In the criterion layer, a metric for re-
semblance is computed over the pixels. Most algorithms specify that a given
metric should be used, but it is really a separate issue. A commonly used met-
ric is the Sum Absolute Difference (SAD), which is defined above (Formula
A.1). A derived metric is the Mean Absolute Difference, which is equal to the
SAD divided by the number of pixels in a block. This number is almost always
a power of 2, so the division is a simple shift operation.

One of the more complex metrics is the Mean Square Error, which is defined
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as:

MSE(z,y,a,b) =

'Mn

i
(=

Z (Aatig+s) — Blatarigrors) (A2)
3=0

for a block on position (z,y) and a motion vector (a, b).

As the objective of the criterion is to estimate the achievable compression rate
using a certain motion vector, a theoretical criterion would be the number of
bits needed to be transmitted for a given motion vector. In normal circum-
stances this is computational prohibitive, as the 2D-Dicrete Cosine Transform
(DCT) would have to be computed for each candidate motion vector.

After the Motion Estimation: After a motion vector has been found for a
certain macro block, a motion compensated block is computed by simply sub-
tracting the block where the motion vector points to from the current block.
This is also done for the two chrominance blocks, where the sub-sampling has
to be taken into account. This motion compensated block is then subdivided
into 4 basic blocks. From these blocks, the 2D-DCT is computed, which is
(after Variable Length coding) transmitted to the receiver together with the
motion vector.




