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Abstract

In this study, two interest rate models are analysed in context of counterparty credit risk. The goal
of the study is to find a model that performs well on historical simulation for the PFE and EPE. The
two models analysed are the Dynamic Nelson-Siegel model and the Displaced Diffusion model. In the
Dynamic Nelson-Siegel model, a Nelson-Siegel curve is fitted against the historical yield curves. The fit
gives an historical series of the parameter values of the Nelson-Siegel curve, which are modelled via a
stochastic process to obtain future yield curve predictions. In historical backtesting, the classic model
using AR(1) processes for the parameters performs inadequate. Analysis on the underlying assumptions
of the model show that the mean-reverting behaviour that is modeled is the cause. In addition the data is
likely to feature heteroskedastic behaviour, which is not incorporated by the model. An adjusted model
in which one parameter is modeled with a random walk with drift performs well on longer maturity
rates, however shorter maturity rates are not modeled satisfactory. The Displaced Diffusion model uses
a lognormal diffusion process that is shifted to model Libor rates. As it is a Libor market model, all libor
rates are modelled seperately using correlated Brownian motions. The shift parameter allows negative
rates to be modeled, and is initially assumed constant. The backtesting results are mixed; some observed
libor rates are modeled inadequately and some cannot be rejected to come from the Displaced Diffusion
model and thus are modelled correctly. When backtesting the PFE, the results are good at the short
term. At the 2-year window, PFE estimates are not always conservative but the number of excesses are
of medium severity when compared to the probabilities used in the green-orange-red system dictated by
the Basel committee for VaR backtesting.

Keywords: Counterparty Credit Risk, Interest Rate Models, Dynamic Nelson-Siegel, Displaced Dif-
fusion, Historical Backtesting, Model Validation
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Summary

The goal of this study is to find an interest rate model that can be used as benchmark in calculating
the Potential Future Exposure (PFE) and Expected Positive Exposure (EPE), both Counterparty Credit
Risk measures. The reason for this study is that current models sometimes give unsatisfactory results
when the models are used in backtesting.

The available data in the study are euro zero rate curves from 01-01-2007 to 27-02-2019 and thus span-
ning well over 12 years. Data quality is high, in the delivered dataset no points are missing. Preliminary
analysis on the data show multiple phenomena:

• Negative rates are observed

• Interest rates are tested to be heteroskedastic on the short to medium term

• Interest rates are tested to have constant variance on the longer term

• Mean reversion couldn’t be statistically shown

• Correlations between rates are generally high when the maturities are close in the tenor structure,
and near zero for rates further away in the tenor structure

The second and third point together may indicate that different maturities possibly are generated
by different stochastic processes. In addition to the modeling criteria, a benchmark-model is preferably
easy to use and computationally attractive. The two interest rate models that are selected based on
those criteria are the Dynamic Nelson-Siegel model and the Displaced Diffusion model. Dynamic Nelson-
Siegel is analysed because it is computationally attractive and easy to use. It does however feature mean
reversion and doesn’t incorporate heteroskedastic behaviour. Displaced Diffusion on the other hand
satisfies all modeling criteria, save for the constant variance found to be present in the long maturity
rates. As it is a libor-market model it is computationally demanding, as multiple maturity libor rates
have to be modeled and calibrated, including the correlation structure.

The performance of the models is tested by means of backtesting. In the backtesting procedure, partial
series of the historical data are used as backtesting scenarios. These scenarios may overlap. The model
is calibrated to data up to a point in time and subsequently used to make prediction over a time horizon,
using the start of the backtesting scenario as inital condition. These predictions are then compared with
the realised values at the end of the scenario.

In case of testing the empirical distribution, the realised values are compared by tracking the percent-
age of paths lower than the realised values. Via arguments of the probability integral transform, all these
percentages should follow a uniform distribution. In the case of the PFE, the historical performance is
tested by using the simulated rates to price a certain product. For these generated prices, an empirical
quantile is calculated. The performance of the model is then tested by comparing the number of excee-
dences of this quantile. A large number of exceedences of a quantile indicates the model underestimates
risk.

In addition to the backtesting, the models are validated as well. The underlying assumptions of the
models are analysed to find reasons for possible bad performance on backtesting. The validation also
points out possible flaws in the model that could lead to model risk.

Backtesting

The Dynamic Nelson-Siegel model does not perform well on both backtesting the empirical distribution
and the PFE. This hold even for zero rate maturities for which the model seemed to be adequate based
on the initial data analysis. The model is almost always too conservative, except when the model is used
to calculate a Forward Rate Agreement in which ING receives a fixed lag over a long time horizon, then
the model is not conservative enough.
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The Displaced Diffusion model performs well on only part of the libor rates. The short to medium
rates have been found to feature heteroskedastic behaviour, however these rates are not found to be
statistically matching with the Displaced Diffusion paths. The longer maturity rates do seem to fit the
model well. When backtesting the PFE the model performs adequatly, but on the conservative side.

The PFE results of both model using a green-orange-red light system is shown in table 1. A green light
is given when the number of exceedences is lower than the corresponding 95% quantile of the binomial
distribution, with n the number of observations in the backtesting experiment and p the PFE quantile.
An orange light when that number is between the 95% and 99.9% quantile and a red light for a number
of exceedences that falls in the 99.9% quantile. It is clear that Displaced Diffusion performs well overall,
as it is not too conservative that no PFE exceedences are measures, and the number of orange results is
not too much. It is directly clear that Dynamic Nelson-Siegel does not perform well.

Table 1: Results of PFE backtesting

Fixed rate FRA type Maturity
(start x end
in months)

Test window
(in months)

EDNS95% EDNS99% EDD95% EDD99%

K=0.01

payer 6x9 1 0 0 6 3
payer 6x9 3 0 0 8 4
payer 24x36 24 0 0 2 0
receiver 6x9 1 1 0 0 0
receiver 6x9 3 0 0 6 3
receiver 24x36 24 20 0 2 1

K variable

payer 6x9 1 0 0 5 2
payer 6x9 3 0 0 5 2
payer 24x36 24 0 0 0 0
receiver 6x9 1 0 0 1 1
receiver 6x9 3 0 0 0 0
receiver 24x36 24 20 0 3 0

K=-0.01

payer 6x9 1 0 0 5 2
payer 6x9 3 0 0 6 1
payer 24x36 24 0 0 3 0
receiver 6x9 1 0 0 6 3
receiver 6x9 3 0 0 0 0
receiver 24x36 24 0 0 0 0

K=0.05

payer 6x9 1 0 0 0 0
payer 6x9 3 2 0 0 0
payer 24x36 24 0 0 0 0
receiver 6x9 1 0 0 1 1
receiver 6x9 3 0 0 0 0
receiver 24x36 24 20 13 0 0

Model Validation

After the backtesting, the underlying assumptions of both models are analysed. The purpose for both
is different since the difference in performance. Dynamic Nelson-Siegel is analysed to find the reasons
for it’s lacking performance in backtesting. Displaced Diffusion seems to be performing adequatly in
CCR measures, and thus the assumptions need to be analysed to make further improvements and to see
whether model risk is present that may prevent usage of the model in practice.

For Dynamic Nelson-Siegel, the following is found
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• The yield curve fit is adequate. The beta parameters represent level, slope and curvature well.
However in some cases the observed yield curves feature a second slope. In these cases the Svensson
model could be a better fit.

• The assumption that the beta processes are independent is not warranted. The processes show low
correlation over the whole process, however when taking parts of the data, correlations persistently
takes values close to 1 and -1. An analysis is done where the correlation is incorporated in simulation,
estimated based on the daily data in the month prior to the initial value. Results did not improve
statistically, however visually it clearly shows the model becomes less conservative.

• The assumption that the beta parameters follow an AR(1) process is not warranted. The first beta
parameter, corresponding to level, is found to be represented better with a random walk with drift.
The AR(1) processes are sufficient for the other two beta parameters, however the residuals still do
not have constant variance. Conditional Heteroskedasticity could not be shown in the residuals.

• The λ-parameter that determines the time on which the curvature takes it’s maximum has been
analysed by comparing the backtesting results using small changes in it’s value. The original model
estimated λ as the value for which the curvature takes it’s maximum on 2.5 years. The comparative
backtesting shows that maximization on 2 years performs slightly better.

Using the knowledge from validating the DNS model, and adjusted model is proposed. Three changes
are proposed: define λ on 2 years, model β1 as a random walk with drift and model the correlations
between the parameters using the daily parameter process as a proxy. The adjustments improve the
model drastically, and all higher maturity rates fit the model statistically, as well as the 1-month zero
rate. Further improvements can be made by correcting the kurtosis of the model, which is found to be
too low, as well as some inaccuracies in modeling the β3 parameter. Caution should be taken with the
model as the adjustments may be data-specific.

For Displaced Diffusion, the following is found in the validation process

• The shift parameter is fitted using maximum likelihood on all the seperate libor rate models to test
if the assumption of a single constant shift parameter is warranted. Large differences are found; a
small shift fits the shorter rates better, while a larger shift is found to be better for longer maturity
rates.

• The shift parameter presents a hard lower bound and thus the risk that an interest rate attends
values lower than this bound is not in the model. A backtesting experiment in which the shift
parameter was estimated using MLE shows that it happens frequently that the interest rates on
later times are lower than the estimated shift. A solution is to monitor the shift parameter closely
and use conservative expert judgement.

• The residuals when calibrating the model to the entire dataset can’t all be shown to be normal.
The cause are extreme values, which are not captured by the Gaussian residuals.

• On very long time horizons the model can explode when no drift is fitted, and tend to the lower
bound when a negative drift is fitted. On time horizons up to 30 years, this behaviour is not as
pronounced.

It is concluded that, given adjustments, both models have advantages. The Displaced Diffusion model
is perceived as a good model for benchmarking CCR measures. The reason is that the model performs
well in distribution on half of the rates, and is conservative in the cases where the distribution does not
match. Especially in PFE estimation the model is predominantly conservative but not too much, since
PFE exceedences do take place. In addition the model does not need adjustments that are possibly
data-specific, in contrast to the DNS model. A downside of the model is that calibration and simulation
is slow, given the use of a correlation matrix based on all rates.
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1 Introduction

Counterparty credit risk (CCR) is one of the most important and complex fields in risk management.
Gregory (2011) even mentions most market participants see counterparty risk the key financial risk, as a
result of the 2007 crisis. The complexity of the subject is due to the uncertainty that is involved in CCR.
It concerns the risk of a counterparty failing to meet its obligation. Since contracts can change in value
due to changes in the underlying risk factor, this means a default of a counterparty can induce costs to
replace the position that were not there at the inception of a contract. Since the value of a contract can
change in both directions, this risk is bidirectional, which adds to the complexity. Especially economic
downtime makes that a solid CCR policy is necessary to prevent a ”domino” effect in case of default.

Crucial in the quantification of CCR is the use of interest rate models. Given a certain financial
contract or portfolio, movements in interest rate determine whether or not the holder is exposed to this
type of risk. Current popular interest rate models sometimes give unsatisfactory results in estimating
certain counterpart risk measures. This study will examine multiple interest rate models in view of this.

The two risk measures central in this research are the estimation of the Potential Future Exposure
(PFE) and the Expected Positive Exposure (EPE). The PFE can be seen as a CCR-equivalent of the
Value-at-Risk, used in other areas of risk management. It represents a quantile, and broadly speaking
says: ”If our counterparty defaults, how bad does it get?”. The EPE is the average of the positive
exposures over the time horizon of a portfolio. Both risk measures are calculated using the assumption
that the recovery rate is zero and thus after a default, all profitable payments will defer 1.

The main research question is

Which interest rate model can used to benchmark estimations of the Expected Positive Exposure
as well as the Potential Future Exposure?

To be able to answer this question, multiple sub questions are formulated.

• What characterizes the data to be modeled?

• On which criteria is the choice of interest rate models based?

• How do selected models perform in terms of these criteria?

• Why do the models perform as they do?

• What risk is not captured by the models?

These subquestions offer a stepwise approach to give a meaningful answer to the research question.
The first subquestion gives rise to the desirable behaviour potential benchmark models. The second
subquestion adds practical criteria to the model selection process, on which two models can be selected.
The third research question presents a large part of the study, in that it encompasses backtesting of the
models and thus offer insight in the PFE and EPE estimations of the model. The fourth subquestion
has the goal of understanding why the models perform well or not. It allows to specify in what cases the
models can be used as benchmark, and in what cases it is not usable. The fifth subquestion focusses on
the validation of the models. Aspects not included in the model can lead to model risk and need to be
analysed in order to be used in a financial environment.

1.1 Scope

Many aspects are relevant in the world of Counterparty Credit Risk. In this section an overview is given
of the topics that are researched and the aspects that are not.

1Note that non-profitable payments will in almost all cases will not defer, as the counterparty-in-default will be under a
curator, processing payments to be done.
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This study is confined to interest rate models. Other types of financial instruments could be considered
to, such as Forex, Stock and Commodities. However, interest rate derivatives are currently traded in
much higher volumes than other products. In addition, only one currency is used, and any cross-currency
interest rate products are ignored for the purpose of this study.

The focus of this study is on the implementation of two interest rate models, and analyse to analyse
them in a CCR context. As will be reasoned later, the estimation and calibration of parameters is an
important criterion for the models to be used in a risk management environment. Existing methods for
parameter estimation will be used, and no further effort is done to optimize them.

1.2 Structure

The report starts with an overview of the basic mathematical concepts used in the study. This encom-
passes two parts, interest rates including interest rate products and counterparty credit risk. chapter 3 is
devoted to model selection. Literature and analysis on the data lead to criteria for models to be studied.
Baed on these criteria, Diplaced Diffusion and Dynamic Nelson-Siegel are explained to be good contenders
and are described shortly. This is then followed by chapter 4 in which the methodology is presented. The
main focus of the chapter is introducing the backtesting framework that is used for testing the empirical
distribution, the product distribution and the PFE performance. The following two chapters, 5 and 6,
contain the full analysis and validation of Dynamic Nelson-Siegel and Displaced Diffusion respectively.
The results are then summarised and concluded in chapter 7.

2 Background on Interest Rates and Counterparty Credit Risk

In this section an introduction is given to the basic interest rate products and derivatives used as well as
to counterparty risk. It aims to define them mathematically. This section borrows from Gregory (2011),
Gregory (2012) and chapters 11, 12 and 14 of Oosterlee and Grzelak (2019).

2.1 Interest Rate Products and Concepts

The most basic form of interest rate is the (continuously compounded) money-market account. The idea
is that continuously, at an infinitesimal time, deterministic interest is gained over the initial value. This
initial value is standardised at 1. This gives the following ODE

dM(t) = r(t)M(t)dt (1)

M(t0) = 1

With r(t) deterministic, we can simply integrate to obtain M(t) = e
∫ t
t0
r(s)ds

.
A well known example of an interest rate product is the bond security. It pays interest on a prede-

termined amount, called the notional. This percentage of interest paid based on the notional is called
coupon. At the end of the life-cycle of the contract, called maturity, a final payment is done of the no-
tional in addition to the final coupon. The types of coupon can be either predetermined, or determined
on various times during its lifespan. The first is called fixed-income security, the latter a float-rate note.
A special, very basic type is called the Zero-Coupon Bond

Definition 1 (Zero-Coupon Bond) . The zero-coupon bond, denoted as P (t, T ), pays one unit of
the currency at time T, with no intermediate payments. We have P (T, T ) = 1 at maturity T.

9



Given the Zero-Coupon Bond, the zero rate can be defined.

Definition 2 (Zero rate) . Denoting maturity Ti and ti the date of observation, the zero rate is
the constant rate for which the bond can be priced under continuously compounding as

P (ti, T ) = er
Ti
ti
Ti . (2)

Then rTiti is the zero rate for maturity Ti at time ti

The instantaneous short-rate is defined in the same way as the money-market account described earlier,
as the rate on a riskless investment over an infinitesimal time period from now. The instantaneous forward
rate is instead the instantaneous rate at a future time. Suppose we enter a contract, in which at time T1
we provide a zero-coupon bond with maturity T2, in which we have t < T1 < T2. We denote the price of
this contract at time t as Pf (t, T1, T2). By assuming no-arbitrage and market completeness, if we would
buy two zero-coupon bonds, one with maturity T1 and one with T2, it would follow that

Pf (t, T1, T2) =
P (t, T2)

P (t, T1)
.

The forward rate is defined as the rate in period [T1, T2] such that the value of the contract equals

Pf (t, T1, T2) = e−(T2−T2)rF (t,T1,T2).

Now, by the above two equalities, the forward rate can be specified in terms of the zero-coupon bonds of
the two maturities. We simply equate them to find an expression for rF (t, T1, T2)

Definition 3 (Forward rate) Forward Rate rF (t, T1, T2) is defined as

rF (t, T1, T2) = − logP (t, T2)− logP (t, T1)

T2 − T1
.

Then by letting T1 −→ T2 we define the instantaneous forward rate fr(t, T2) as

fr(t, T2) = − ∂

∂t
logP (t, T2).

Strongly related to the notion of forward rates, is the yield curve. A yield of a bond is the interest
rate implied by a bond based on the price it is traded on. So if a zero-coupon bond with a maturity of
exactly one year costs 99 cents right now, the (implied) interest rate is slightly over 1% on a yearly basis.
Bonds of different maturities feature different yields, which warrants the idea of a yield curve. By the
way the forward rates are defined, the yields are an important tool to assess forward rates.

Based on the current prices for a certain interest rate product at multiple maturities, discount factors
p(ti) can be calculated. Since these maturities are at discrete time points, the entire yield curve is then
interpolated between the discount factors.

The final concept introduced in this section is the (forward) Libor rate.
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Definition 4 (Forward Libor Rate) Using a period τi = Ti − Ti−1, often called tenor, we define
the forward Libor rate lit = l(t;Ti−1, Ti) using the zero-coupon bond price P (t, Ti−1)

lit =
1

τi

P (t, Ti−1)− P (t, Ti)

P (t, Ti)
. (3)

By noting that P (t, T0) = P (t, t) = 1, it is easy to see that for a given tenor structure we can go back
and forth between zero rates and Libor rates, which will be convenient when comparing the different
models.

The bonds as defined before can be seen as one-way transactions. After an initial payment equal to
the present value of the bond, the buyer gains a certain amount of cash over time. A product that differs
in this, is the Forward Rate Agreement. With an FRA, there is a receiver and a payer in the contract.
The payer will have to pay a fixed rate at specific time with respect to a certain notional. The receiver
will receive this fixed rate, and in return will pay a floating rate in return, often based on the Libor rate.

Definition 5 (Forward Rate Agreement) A Forward Rate Agreement (FRA) is an agreement
between two parties in which a fixed rate is exchanged against a floating rate at a specified future
time. At a future instant Ti relative to the inception of the contract, the payer will pay a fixed rate
K over time period τi = [Ti−1 − Ti]. In return, the receiver pays the Libor rate over the same time
period. Forward rate agreements are noted in the text as FRA Ti−1 x Ti.

The payoff of the FRA contract is

V (Ti−1) =
τi(l

i
Ti−1
−K)

1 + τiliTi−1

.

The FRA can be defined assuming a notional on which the interest rates are calculated. In this
definition, the notional is equal to 1, however any notional can be made by summing various FRAs with
the same specifications. Under risk-neutrality, the price of a forward rate agreement (see Oosterlee and
Grzelak (2019)) is given by

V (t0) = P (t0, Ti−1])− P (t0, Ti)− τiKP (t0, Ti).

2.2 Counterparty Credit Risk

When engaging in a trade of some contract with a counterparty, there is always a risk that the counterparty
cannot meet its obligations. Traditional credit risk concerns losses that follow from this. If one would pay
for a zero-coupon bond now from partner Q, and Q defaults 2, a loss has been taken that is not foreseen.
Note that this type of risk is one-sided, in that the issuer of the bond faces no risk when the counterparty
defaults. Counterparty credit risk differs in this, in that it is concerned with profits that are lost when a
counterparty defaults. In addition, derivative contracts in which counterparty risk is important are often
two-sided. This can be best explained by an example of an interest rate swap.

Suppose company X enters in a swap with company Y. Company X pays a fixed rate of 1% every
year for 10 years to Y based on a notional. Company Y pays a yearly rate equal to the Libor rate, which

2assuming a 0% recovery
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is determined two days before the transaction. We assume that at inception, both parties value the
exchange of rates equally, i.e. the value of the contract is zero. However, during the contract’s lifespan,
the value of the contract will change with the Libor rate. In case the Libor rate will be relatively much
larger than the fixed rate, the contract gains in value since it receives a larger rate than the 1% it has to
pay. If in this case company Y defaults, it misses out on its expected profits of the deal. On the other
hand, if the Libor rate is well below 1% and company X defaults, it is company Y who misses out on a
contract with a positive value. This is exactly what counterparty risk is concerned with.

Many risk measures exist to gauge or deal with this type of risk. Before dealing with them, basics
such as Mark-to-Market (MM) and (Expected) Exposures will be clarified. In the previous example, it
was indicated the deal was valued zero at the start. This is often the case with MtM at the start of the
contract. MtM is an intrinsic value of a derivative contract and it is the net present value of all (expected)
payments determined by the contract with respect to the counterparty. An exposure is then defined as
the cost of replacing the derivative contract in case the counterparty defaults with zero recovery. In the
case the intrinsic value is positive, a default of the counterparty means that a loss is incurred, and as
such it is called a positive exposure. If on the other hand the intrinsic value is negative, money is owed
to the counterparty. In the case of a default of the counterparty, there is however nothing gained, as in
most cases a curator takes care of remaining business.

When trying to gain insight in one’s exposures, both the current exposure and the exposure in the
future are relevant. In this research, the focus is on the exposure in the future. Two measures are
in particular important. The first is the Potential Future Exposure. It represents a quantile of the
disptribution of exposures. More specifically, it gives the future exposure against a confidence interval of
certain magnitude. The second is the Expected Positive Exposure, which is an average of the expected
exposure over time. In this, the expected exposure is defined as the expectation of the non-negative
values of the MtM.

The Potential Future Exposure is defined in the same way as the Value at Risk, meaning it is just a
quantile. The main difference is that it is a quantile of the distribution of potential gains instead of the
loss distribution. In addition the PFE is often taken over longer time horizons.

Definition 6 (Potential Future Exposure) The Potential Future Exposure is defined as the α−
quantile for which we have

PFEα = min{ε ∈ R : P (E > ε) ≤ 1− α}. (4)

The EPE can be generally defined as in Ghamami and Zhang (2014).

Definition 7 (Expected Positive Exposure)

EPE =

∫ T

0

EEtdt. (5)

In which EEt is the expected value of the exposure at time t ≥ 0 and T > 0 is the time to maturity
for the longest position.

This general definition is not entirely the same as the definition from the Basel framework. As Bonollo
et al. (2015) remarked, the official definition of Expected Exposure and EPE already incorporates Monte
Carlo simulation in its definition, leading to the following
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Definition 8 (EPE Basel) In the Basel III framework, EPE is defined as

EPE =

∑K
k=1EEk · 4k

T
. (6)

Here EEk, the Expected Exposure, is defined as

EEk =
1

N

N∑
n=1

MtM(tk, Sk,n)+,

with N the number of paths, MtM the mark-to-market value based on the simulated underlying Sk,n
at time tk.

Since the introduction of the EE and EPE measures by the Basel Committee on Banking Supervision,
it has been found that these measures underestimate the risk. The problem is that these measure can
decrease over time, while in general risk does not decrease over time. This has been counteracted by
introducing the Effective EE and Effective EPE. Effective EE is simply a non-decreasing version of the
EE, and the Effective EPE is defined as the mean of this Effective EE. The effective measures are not
used in the further study, as good estimation of the EE and EPE in principle also lead to good estimates
for the effective versions of these risk measures.

3 Model Selection

This chapter starts with a description of the literature review performed. The goal is to gain an under-
standing of which type of models perform well, and which kind of phenomena are generally modelled
in interest rate models. Then some of these phenomena are tested in the data that is provided for this
study. Based on this, a list of criteria is made, on which the models are selected that are central in the
study. These models are defined and described at the end of the chapter.

3.1 Previous reviews of interest rate models

A comparison of various short-term interest rate models is done in Chan et al. (1992). In that study,
various SDE’s of the general form

dr = (α+ βr)dt+ σrydW,

were analysed. With certain values for the parameters, this collapses to various well-known interest rate
models. For example, with y = 0 this is the Vasicek model and with y = 1

2 this is the CIR square root
model. In total there are 8 models compared, including an unrestricted model, in which all parameters
are estimated. The study finds that models with y < 1 are rejected. The reason is that models that
feature a relation between the interest rate volatility and the level of the interest rate score better, leading
to the conclusion that this is one of the most important features of interest rate models. An additional
conclusion is that the parameter β was found to be insignificant, suggesting the mean-reversion is less
important in the short term.

A review more focused on term-structure pricing models is done in Rebonato (2004) and Rebonato
(2003). One of the conclusions from both reviews, is the necessity for fast and easy computations in the
models used. Especially for pricing this is important, since traders need to be able to hedge in matter
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Figure 1: Euro zero rates Figure 2: Libor rates

of seconds. However this is also important in backtesting, as often many rates in different currencies
and different portfolios are analysed. Rebonato continues that the calibration of models is seen as very
important, as well as the ability to model volatility smiles and skews.

In an internal report of ING (see FI/FM-Quants (2019)), the focus is on five criteria. These are the
ability to allow for negative interest rates, fitting of the initial curve, computational complexity, achievable
and stable calibration, and facilitation of real-world scenarios. The later means that the market price of
risk is used to adjust market expectations, and this can be achieved by specifying the dynamics under
the real-world measure.

In Aas et al. (2018) a comparison is done on multiple interest rates under Solvency II. The study
compares the CIR++ model, G++ model and Libor Market model and uses them to find a best estimate
of the liabilities as under the Solvency II framework. The study concludes that, even though the models
are quite different in the simulated process and the mean and volatility of the theoretical distribution,
the resulting best estimates are very close. Because the underlying distribution are different but certain
estimates are very comparable, this can also be interpreted that calibration is of high importance.

This study takes a different view of the research discussed in this section, but also has some similarities.
None of the studies compare and describe the models in a counterparty credit risk setting. In this study,
the models are used to find historical values for the PFE and EPE, and are subsequently compared with
realised values by means of back-testing. In addition, as will be described later in this chapter, the models
analysed will not be nested, such as in Chan et al. (1992). In addition, the choice of models in this study
will enable to compare the usefulness of having multiple factors as opposed to only having one-factor.
Aas et al. (2018) has some similarities with this study, in that it compares quite different models, both in
the distribution of the analysed models as well as the modeled rates. There two main differences are that
in that study is in a Counterparty Credit Risk setting, as well as the strong focus on historical estimation
and back-testing. The aforementioned study is strictly in the risk-neutral world, whereas the efforts in
this study are mainly under the real-world measure.

3.2 The data

The data for this research is the pre-processed zero rates for euro, provided by ING. The zero rates
are effectively the on-date yield on a Zero Coupon Bond. The data encompasses various maturities
T ∈ [30/365, 0.5, 1, 2, 3, 4, 5, 10, 15, 20, 30] in years. The data is in daily intervals. A visualisation of the
zero rates is given in figure 1. The interest rates have been steadily following a downward movement over
the whole time period studied. From the zero rates, the Libor rates can be constructed as described in
chapter 2. They are shown in figure 2.

It is unconventional to use daily data in counterparty credit risk, given the longer time horizons
that are present. In addition there is a strong weekly cycle present in the data, as can be seen in the
autocorrelation function shown figure 3. The remainder of the study uses monthly data, generated by
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Figure 3: ACF of a short-maturity zero rate

Figure 4: Yield curve in ten-week intervals

taking every 20th datapoint.
Another way of visualizing the data is by scatter-plotting the yield curves over time. This is shown

in figure 4. It uses 10 week intervals, and a (sequential) coloring pattern to give insight in the yield curve
movement over time. Darker blue colors show the zero rates at earlier times in the dataset and yellow
colors corespond to zero rates at the end of the dataset. An initial thought from the visual is that higher
maturities seem less volatile than the shorter maturities.. In addition it shows that the interest rates of
shorter maturities - between one month and five years - decreased rapidly in the years after the 2008
financial crisis.

Some of the properties mentioned in the literature as given before can be roughly checked on the data
to see if they make sense and if they can be used to justify the selection of the models. From the figures
explained just before, it is clear that the models need to facilitate negative interest rates. It is however
not directly clear if the rates are stationary - there seems to be a downward trend in the interest rates.
To gain an impression if this is indeed true in the data, an augmented Dickey-Fuller test (the augmented
version of the test introduced in Dickey and Fuller (1979)) has been done for all zero rates, as well as the
differences of the zero rates. The null-hypothesis of this test is that the rate has a unit root, meaning the
process is not converging to a (constant) long term mean

Based on the first column of table 2 it cannot be rejected that there is a unit root in the time series.
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Though this is somewhat unexpected for interest rates, in this case it is perhaps understandable. The
interest rates in this study are from 2007 until 2019. This time-horizon is on the short side to really see
mean-reverting behaviour. In addition, across this time-period both the effects of the 2007 crisis and the
low-rate policy of the ECB afterwards may have resulted in a forced downward pattern 3. In addition
to the ADF test on the levels, the p-values of the ADF test on the differences of the interest rates is
shown in the second column of table 2. It is convincing that the monthly changes in interest rates are
stationary in the sense that they do not contain a unit root.

In addition to mean-reverting behaviour, one of the important conclusions from the literature review
in the previous section is the dependence of variance on the level of the interest rates. Two statistical
tests are used, respectively a White test (White (1980)) and a Breusch-Pagan test (Breusch and Pagan
(1979)).

The tests for heteroskedasticity need to be applied to some regression model. In this case an AR(1)
process is taken. An AR(1) process can be seen as a discretized Ornstein-Uhlenbeck process, using
Euler-Maruyama as following

rti+1
= rti + (θ − αrti)4t+ σ

√
4tZti = θ4t+ (1− α4t)rti + εti

The White-test has the null hypothesis that the variance of the error term εti of a regression model
is constant. From column 4 of table 2 it is statistically significant that shorter rates do seem to be
heteroskedastic. However, for the longest maturities, it can’t be rejected at the 5% confidence level that
the variance of the errors is constant. The Breusch-Pagan test is different in that it only tests for linear
heteroskedasticity. In the case of the Breusch-Pagan test, the null hypothesis ı́s rejected at the the 5%
level.

The p-values of the test are shown in columns 3 and 4 of table 2. The difference between shorter
and longer maturity rates is striking, and may warrant the idea that different maturity zero rates follow
a different type of process. From these tests, the models that will be tested should in principle feature
heteroskedasticity for shorter maturity rates. Models which have variance dependent on the interest rate
level are expected to perform well on the short and medium range. However at longer maturities this
heteroskedastic behaviour is not observed. A normally distributed process may suffice in this case or even
outperforms heteroskedastic models. For this reason it is important to test both types of models.

Various statistical tests
Zero rate
maturity

ADF on interest
rate

ADF on differ-
ences

White-test BP-test

1-month 0.452 0.000 0.000 0.000
6-month 0.337 0.000 0.000 0.000
1-year 0.286 0.000 0.000 0.000
2-year 0.225 0.000 0.000 0.000
3-year 0.453 0.000 0.000 0.000
4-year 0.555 0.000 0.000 0.000
5-year 0.609 0.000 0.000 0.000
10-year 0.741 0.000 0.109 0.037
15-year 0.809 0.000 0.960 0.776
20-year 0.746 0.000 0.952 0.944
30-year 0.678 0.000 0.623 0.585

Table 2: Statistics and Heuristics

3Note however that detrending the zero rates, by fitting a straight line using OLS, also does not lead to a rejection of
the null hypothesis that the series contains a unit root
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Finally, the distribution of the daily changes in interest rates are analysed to gain an initial insight
in the interest rate distribution. Figure 5 shows the monthly changes of zero rates of various maturities.
It is clear that for especially the shorter maturity rates, the distribution is not bell shaped and has more
extreme observations than a normal distribution. The zero rates with a very high maturity seem to follow
the traditional bell shape of the normal distribution better. This re-enforces the statement made earlier
that the short maturity and long maturity interest rates may follow different types of processes.

3.2.1 Data quality

The data used in the study are the zero rates from 2007-01-01 till 2019-02-28. The data features daily
rates and do not contain any missing values. The data is also tested for stale series, indicating that
missing values were already filled the data was obtained for this study. Around 50 datapoints in the daily
data did not change over the day. All these points were found in the last few years of the data, in the
zero rates with 1 month and 6 month maturity, and are non-consecutive. These rates have shown very
small variance in the mentioned time period, which can explain the stale data points. Moreover, when
taking transforming the data to monthly, only two stale observations remains present. Overall, the data
quality is thus high.

3.3 Model criteria

Using the insights gained fromthe literature and initial data analysis, multiple criteria for the models can
be specified. The criteria can be roughly cast into three categories. The first is the modeling category.
This states which properties of the observed values should be incorporated in the model. Common
properties, as established in the previous section, are mean-reversion in the long term, the ability to
facilitate negative interest rates and/or jumps, and the ability to model the yield curve/term structure.

The second category is computational. As mentioned in Rebonato (2003) in practice some models are
slightly outdated, but still in use because newer models are often computationally infeasible. Models that
have analytical solution are much faster, however this is often not the case for more complex products.
In addition, Rebonato states the importance of calibration.

The third category is the practical use in risk management. In estimating the PFE and EPE, overesti-
mation of risk results in unnecessary capital that needs to be held. On the other hand underestimation of
these risk factors exposes the firm to preventable risk. The accuracy of the model to use it as benchmark
for estimates is part of this category as well.

See table 3 for an overview of the model criteria.

Modeling

Mean-reversion
Negative rates
Volatility smiles
Exact fit of current yield curve
Correlations in the yield curve
Features Heteroskedastic behaviour

Computational

Computational complexity
Ease of calibration
Adaptable under the real-world measure

Practical

Ease of use
Effects on capital requirements
Accuracy in EPE and PFE estimation

Table 3: Criteria for interest rate models
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Figure 5: Histograms of the monthly changes for various zero rates
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3.4 Models of attention

The models need to facilitate negative rates. In addition, only models that focus on modeling the yield
curve and its correlation structure are considered. Given that the rates for different maturities show
different types of behaviour, both a normal and a lognormal will be analysed.

The models researched in this study are the Displaced Diffusion model as introduced by Rubinstein
(1983) and the dynamic Nelson-Siegel model, suggested by Diebold and Li (2006). The latter is based
on the Nelson-Siegel curve introduced in Nelson and Siegel (1987). Both models feature a correlation
structure on the yield curve, and facilitate negative rates. Dynamic Nelson-Siegel offers in addition
flexibility and relatively easy estimation of parameters and simulation. Displaced Diffusion is used as a
Libor market model and thus is harder to calibrate, but models the correlation structure more precisely.

3.4.1 Displaced Diffusion

The Displaced-Diffusion (DD) model as conceived originally by Rubinstein (1983) is used to model a
company in both a risk-free and a risky part, as an opposing model for the classic Geometric Brownian
Motion. The model can also be used for interest rates. As described in Oosterlee and Grzelak (2019) the
DD model can be seen as a shifted log-normal process, which can be considered as first-order approxima-
tion to the Constant Elasticity of Variance model (CEV). According to Rebonato (2003), the CEV model
is popular because on one hand, it features the empirically observed log-normal nature of the forward rate
process, and on the other hand can imply a volatility smile. However, it is computationally demanding.
With the DD process being computationally simpler, but still very similar to the CEV process, the DD
process is very attractive.

From a modeling perspective, the DD process can feature negative rates because of the displacement.
In addition, by modelling the process as log-normal it facilitates that the variance is dependent on the
level of the interest rate, which is a desirable property, as described in section 3.2.

A drawback is that not all parameters are easy to estimate, especially the displacement parameter.
In addition, since the DD process is used as replacement process for the CEV, it is a Libor market model
and needs a lot of high quality data to gain insight in the correlation structure. Because DD models
Libor rates, the zero rates need to be converted to Libor rates first. After simulation, the rates need to
be converted back to zero rates in order to compare results with other models.

Definition 9 (Displaced Diffusion) Displaced Diffusion is a model that models the Libor rate. It
is characterized by the following SDE

dlit = σi
(
βlit + (1− β)lit

)
dW i

t , (7)

with σi the volatility and β the displacement parameter. By setting θ = 1
β (1 − β)lit0 and σ̂i = βσi

This can be seen as a shifted log-normal distribution

dlit + θ

lit + θ
= σ̂idW

i
t . (8)

The model models the Libor rates as a shifted lognormal processes, where the shift is used to account
for negative interest rates. Given the lognormal nature of the model, it can explode over longer time
periods as well as reach the lower bound and never return. Over short to medium periods this should
however not matter. The variance of lt given l0 is dependent on t, as following (using Z as a standard
normal random variable)
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Var(lt) = Var
(
l0exp(−1

2
σ2t+ σ4tZ)

)
= l20exp(−σ2t)Var

(
exp(σ4tZ)

)
= l20exp(−σ2t)

(
exp(σ2t)− 1

)
exp(σ2t)

= l20
(
exp(σ2t)− 1

)
(9)

,
using the variance for a log-normal distribution in the second step. And thus for predictions that are
further in the future, rather high forward rates are possible in this model, as the variance increases with
time. Given that some of the CCR measures are susceptible to large outliers, this is something to look
out for when testing this model.

3.4.2 Dynamic Nelson-Siegel

The dynamic Nelson-Siegel method is slightly different, in that it is not an equilibrium model or no-
arbitrage model. Rather, it models the current yield curve to a Nelson-Siegel curve. One then dynamically
changes the parameters. The model is interesting in all three categories identified in the previous section.
From a modeling perspective, it has strong emphasis on the yield curve, and can incorporate negative
interest rates. It is mean-reverting because the parameters are modelled as AR(1) processes. From a
computational perspective the model can be attractive, however this depends on the ways of estimating
the parameters. Many methods exist, for example using ridge regression as described in Annaert et al.
(2012). In addition, more practical methods are described in Ibáñez (2016). Finally, the model is useful
in a risk management setting, due to the strong focus on forecasting. Diebold and Li (2006) found that
for 1 year predictions and longer, the model shows promising results. Since this is the range in which
counterparty risk measures are estimated, it can be interesting to see how the model performs in EPE
and PFE estimations.

In the model, the Nelson-Siegel curve is parametrised as

yτi(t) = β1,t + β2,t
1− eλtτi
λtτi

+ β + 3, t
(1− e−λtτi

λtτi
− e−λtτi

)
, (10)

in which τi is the maturity. Diebold and Li (2006) use the approach to fix parameter λt to simplify
calculations. Then, using a certain process, the parameters (β1

t , β
2
t , β

3
t ) are dynamically varied to obtain

a forecast for the future yield curve. This yield curve can then be used to obtain future values for the
respective products that depend on the yield curve. In the research by Diebold and Li (2006) the model
was found to perform best in out-of-sample forecast when modeling the parameters as AR(1) processes.

The rationale behind the dynamic Nelson-Siegel model, is that it tries to capture the high dimensional
yield curve dynamics with lower dimensional state dynamics, see Diebold and Rudebusch (2013). It is
tractable via regression when one only considers the three latent variables, and assumes the lambda

constant. The dimensionality reduction is done by using the factor loadings 1, 1−eλtτi
λtτi

and
(
1−e−λtτi
λtτi

−
e−λtτi

)
.

The three latent variables can be explained as following. The β2,t is a short term factor, given that
its loading is a function that starts at one and decays fast to zero. Its effect on the yield curve shape is
that it determines the yield curve slope. The loading on β3,t on the other hand starts at zero, increases,
and then decreases to zero, and thus can be seen as a medium term factor. This represents the curvature
of the yield curve. Finally, β1,t has a constant factor loading and is the long term factor, given that the
other two loadings decay to zero. The parameter β1,t can be understood as the yield curve level.
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4 Methodology

In this chapter the setup for model testing is explained. First, the procedures for parameter estimation
are selected and reflected upon. Then, the general approach is defined. Since the models under scrutiny
are modeling different rates - forward rates, Libor rates and yield curves - a unifying ”numeraire” is
chosen to compare results.

Many of the criteria from chapter 2 are easy to verify - the model allows for negative interest rates or
not, the same holds for mean-reversion. The criteria that are not easily verified, and thus the main focus
of the research forthcoming, are predictive power, the ability to model real-world scenarios and ease of
calibration. These criteria are all connected; assuming a certain parameter as constant (e.g. as done in
Diebold and Li (2006)) may lead to easy estimation of parameters. But they in turn may over-simplify
certain aspects and result in wrong estimates, perhaps underestimating risk.

The models as used are calibrated using historical data, and thus are modeled under the real-world
measure P. The implication is that the forecasts are not risk-neutral.

In addition, Monte Carlo simulation is used in all cases. Binomial-tree methods could be used as
well, however this is more difficult in high dimensional situations. Given that dynamic Nelson-Siegel
is a three-factor model and Displaced-Diffusion is used as a Libor market model with a factor for each
seperate maturity, Monte Carlo is preferred.

In this section it is described how the models are tested. The performance of the models is tested in
three ways. The first is performance of the model on historical backtesting with regards to the empirical
distributions generated by the models. The aim is to test whether the realised interest rates could be
generated by the theoretical models. The second is performance of the models on historical backtesting
in a Counterpart Credit Risk setting. The aim is to test how the models perform historically on the
expected exposures, potential future exposure and indirectly on the expected positive exposure. Finally,
the models key assumptions are validated, including analysis on the normality of residuals and model fit.

Real-World Measure

In this study, the main goal is to find a model that can serve as a benchmark in estimating the PFE and
EPE. The main reason is that the current models in some cases are over-conservative when in historical
backtesting. Since the historical backtesting takes place under the Real-World meaure, the analysis
described in the coming sections takes place under the Real-World measure as well. In most cases,
simulation under the Real-World measure comes naturally, as models will be calibrated using historical
data. However in some cases, a drift needs to be added to the model to be able to capture the ”Market
price of risk”.

4.1 Backtesting the empirical distribution

Then, following most of the internal works of ING from FI/FM-Quants (2019), backtesting is done. The
methodology encompasses multiple tests. First of all, the goodness of the empirical distribution of the
simulated zero rates is tested. This is done by employing the goodness of fit tests of Kolmogorov-Smirnov,
Anderson-Darling and Cramer-von Mises. Second, the goodness of fit of the Expected Exposures is tested.
This uses the same tests as just mentioned, however this time by using the simulated and realised rates
in the pricing functions for a certain portfolio (as will be described shortly after). The third tests are the
actual performance on the various CCR-measures: the PFE, EPE and EEPE.

The general procedure of backtesting is as follows: The models are calibrated and used to generate
possible future paths for a certain time point. Then, at the next time point this is repeated, and so forth.
Doing this allows to test how the model performs if it were employed against historical data. A key
concept is the backtesting window, with an example shown in figure 6. The first value in the superscript
time points refer to the instance of the time point, he second determines the calibration period. The
initial value of a calibrated model is equal to the observed market value at the time point at the start
of the backtesting window. For example at t0,0 a model is calibrated, and is used to simulate paths. In
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Figure 6: Backtesting example with five-monthly recalibration and four-month overlapping intervals

the case of t0,0, simulated paths are checked against the result at time t4,0. The next window then uses
t2,0 as initial value, however uses the same calibrated set of parameters as used in t0,0. The simulated
results are checked against the results on t6,1. At t5,1, the models are recalibrated. Note however that
the parameters do not change within one backtesting period

Three aspects need to be specified for a backtesting experiment. These are

• Initial recalibration

• Periodical recalibration

• Overlapping intervals

First, models are calibrated initially. Models require a certain amount of data to make meaningful
predictions, and thus a predefined number of daapoints can’t be used as backtesting scenarios, but only
as model input. This period is set at three years for all experiments to follow.

The second is that the models are recalibrated periodically. In the figure this is indicated with the
second subscript. Only the starting point is important for determining whether a recalibration takes
place - it does not change in one window.

The third is that intervals can overlap. This helps in generating more backtesting scenarios, especially
for longer time horizons. If for example a yearly window is chosen, non-overlapping intervals result in only
9 scenarios, given the burn in period. Scenarios that overlap can result in up to 100 scenarios. This does
however lead to the problem that the various backtesting windows have a high correlation. The solution
to this taken is that the pseudo random numbers used for the respecting windows are also overlapping.

The empirical distribution is tested by using that if the theoretical model is equal to the data gener-
ating distribution, the quantiles should match. For every backtesting window, paths are generated. Then
the ratio of paths that are smaller than the observed rate should follow a Uniform(0,1) distribution.

4.1.1 Uniformity tests

The test the uniformity of the quantiles, three tests are used: Anderson-Darling (Anderson and Darling
(1954)), Cramer-von Mises (Cramér (1928),von Mises (1928)) and Kolmogorov-Smirnov (Kolmogorov
(1928),Smirnov (1939),Smirnov (1944)). With these the empirical density function is tested against a
predefined probability distribution in this study.

Definition 10 (Goodness-of-Fit test statistics) Anderson-Darling uses the test statistic

ADn = n

∫ ∞
−∞

[F̃ (s;n)− F (s)]2

F (s)(1− F (s))
dF (s)

Cramér-von Mises uses the test statistic
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CvMn = n

∫ ∞
−∞

[F̃ (s;n)− F (s)]2dF (s)

Kolmogorov-Smirnov uses the test statistic

KSn = sups|F̃ (s;n)− F (s)|

All definitions use F̃ (s;n) to denoted the empirical distribution and F (s) the theoretical CDF

The goodness-of-fit tests all focus on different areas. Anderson darling uses the scaling 1
F (s)(1−F (s))

which leads to a stronger focus on the tail. Cramér-von Mises does not feature such scaling and thus
tests the whole distribution equally. The Kolmogorov-Smirnov test uses that largest difference between
the theoretical and empirical distributions. This can be at all places in the distribution, so there is no
specific focus. The test is strict in the sense that one relatively large deviation in an otherwise good fit
will be rejected. Together, these tests allow to verify the goodness-of-fit from various angles.

When backtesting the empirical distribution as described in the previous section, the theoretical
distribution used is U(0,1) and thus

F (s) = s1[0,1](s)

and the empirical distribution is

F̃ (s;n) =
1

n

n∑
j=1

1[0,s](xj)

in which xj are the fraction of generated paths that are lower than the realised values, from the previous
section. Calculating the test statistics is then straightforward.

4.1.2 Set up of the empirical distribution experiment

Backtesting of the empirical distribution is done over various windows, both overlapping and non-
overlapping. The windows in this study are 1-month, 3-months, 1-year and 2-year. This gives a thorough
overview of the performance of the models an the short to medium range. Ideally, even longer backtesting
windows are taken into account. CCR-measures in practice are calculated over the maturity of the whole
portfolio, which can be as long as 30 years. However, given that the data stretches just over 12 years and
a burn in of 3 years is used, windows that are larger than a few years are not feasible. This is because at
that point all windows overlap to a certain extent, and the number of observations become very low.

The steps in backtesting the empirical distribution are described as following, using 4 the length of
the backtesting scenarios and δ the time between he start of two consecutive backtesting scenarios.

• Take the initial values from starting point ti of the backtesting scenario and if indicated recalibrate
parameters

• Generate MC paths of the interest rate over the backtesting window time horizon until time ti+4,
resulting in an empirical distribution

• Calculate the emperical quantile of the realised interest rate at ti +4.

• Repeat above for ti+1 = ti + δ, until no realised values remain for ti+1 = ti + δ.
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In addition, various maturity rates are tested. Since the data consists of 11 different maturities, for
readability not all rates are shown in the report. The only window which is non-overlapping is the 1
month backtesting window. The other windows are all overlapping. The tested maturities are the 1-
month rate, the 2-year rate, the 5-year rate and the 30-year rate. With these, the short, medium and
long maturity rates are all represented. In addition, these rates all feature different types of behaviour
as analysed in chapter 3. The backtesting set-up is summarized in table 4.

Table 4: Setup of the backtesting experiment for the empirical distribution

Window Overlapping
(y/n)

Tested Maturities

1-month n 1m, 2y, 5y, 30y
3-months y 1m, 2y, 5y, 30y
1-year y 1m, 2y, 5y, 30y
2-year y 1m, 2y, 5y, 30y
5-year y 1m, 2y, 5y, 30y

4.2 Backtesting performance of CCR-measures

This section decribes the backtesting procedure for Counterpart Credit Risk measures. The core of
the backtesting as described in the previous section remains the same - a backtesting window is used
in which sample paths are generated. These paths are then compared against the historically realised
values. However, in the case of CCR-measures, the compared values are not interest rates but rather the
prices of products depending on the interest rates. A model performing well on the distribution level does
not always perform well on the product level. Backtesting of products that are far out-the-money and
far in-the-money often depends more on the tails of the distribution. In addition, by using the simulated
rates in a pricing function, different behaviour is possible than what is modeled in the original model.

The contract used to test the models is a Forward Rate Agreement as described in chapter 2. Since
the price of an FRA depends on the price of specific zero coupon bonds, the Libor rates generated by the
DD model need to be transformed to zero rates. This is done recursively using the definition of Libor
rate in equation . Note that the pricing function can be written such that it also includes the underlying
Libor rate. However it still needs a ZCB price in order to be calculated. In addition, interpolation needs
to be done in some cases. To make interpolation unifying between both models, this is done on the zero
rates when testing both models.

Interpolation is necessary in situations where FRA product is based on rates with a maturity not
included in the generated paths. In these cases, linear interpolation is used. Interpolation is always done
on the zero rates as mentioned before. Note that in the dynamic Nelson-Siegel model, the entire yield
curve is generated. Thus estimates using the dynamic Nelson-Siegel model never need interpolation.

4.2.1 Mark-to-Market testing

The Mark-to-Market value of the products are backtested by incorporating the respective pricing function.
The main goal is to test the performance of the models on the whole distribution of the products. By
doing this, insight is gained in the performance of the model on estimating the EPE. Estimating the EPE
from the market is not possible, since it would in principle require multiple values of the same portfolio
or product on the same date. Both FI/FM-Quants (2019) and Ruiz (2014) mention this, and the solution
suggested in both cases testing the historical distribution of the product following from the model against
historical realised values of the product. When this is modeled correctly, calculation of the EE and EPE
using the theoretical model is reliable.

To test the performance of the model on the MtM values, a backtesting experiment is done. The
backtesting is done in similar fashion as the empirical distribution, such that the MtM distribution is
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tested in it’s entirety. The backtesting procedure can be summarised as following, noting δ the time
between backtesting scenarios and 4 the length of the backtesting scenarios.

• Take the initial values from starting point ti of the backtesting scenario and if indicated recalibrate
parameters

• Generate MC paths of the interest rate over the backtesting window time horizon until time ti +4

• Use a pricing function on both the realised rate and the simulated rates at time ti +4

• Calculate the ratio of paths that are lower than the observed prices, and safe this value.

• Repeat above for ti+1 = ti + δ, until no realised values remain for ti+1 = ti + δ.

Since the empirical distribution of the risk factors are already extensively calculated, only a few
simulation experiments are done for the MtM model. The products used in this study are FRAs, and
their price is a deterministic function of the zero rates at the end of the backtesting scenario. In principle,
the MtM backtesting should yield similar results. To experiment setup is shown in table 5.

Table 5: Setup of the MtM backtesting experiment

Contract Window
FRA6x9 payer 1 month
FRA6x9 receiver 1 month
FRA24x36 payer 24 months
FRA24x36 receiver 24 months
FRA120x180 payer 12 months
FRA120x180 receiver 12 months

The FRA contracts used in the MtM backtesting all are contracts that are values 0 at inception. This

happens when the value for K = P (t0,Ti−1)−P (t0,Ti)
(Ti−1−Ti)P (t0,Ti)

. It is straightforward to show this by substituting

this K in the price of an FRA, which is given in equation 2.1.

4.2.2 PFE exceedence testing

The PFE is tested by counting the number of times a realized value exceeds the calculated value. This
should not happen too often nor too little. In case the realized values cross the PFE significantly more
than 5% of the times, the model underestimates the risk. On the other hand if it happens significantly
less than 5% of the time, the model is over-conservative and can lead to unnecessary reserve capital.

Whether the number of exceptions differs significantly can be tested using the exception counting
test also used for VaR backtesting. The methods described in Kupiec (1995) are used in this study. The
underlying principle is that the number of exceedences in case the realised values come from the theoretical
distribution, the number of observed exceedences can be seen as a binomial distribution B(n, p). The
parameter n is the number of observations and p the probability of exceeding the PFE and thus equal
to the quantile specified for the PFE. This is then compared with the distribution B(n, xn ) in which x is
the number of exceedences. Kupiec (1995) uses the likelihood ratio test statistic to determine if p = x

n ,
defined as

LR = −2ln[(1− p)n−xpx] + 2ln[(1− x

n
)n−x(

x

n
)x]

Under the null-hypothesis that p = x
n this statistic is chi-square distributed with 1 degree of freedom.

And thus the value of the LR statistic found can be compared with the value for the corresponding
significance level in a chi-square table. If the LR statistic is larger, the null hypothesis that p = x

n is
rejected and thus the model is incorrect.
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Ruiz (2014) suggests a similar green-orange-red light approach as is used in backtesting the VaR
for the PFE. The principle is based on much the same as above, but simplifies it by setting thresholds
for which the number of exceedences are suspiciously high (orange) or very unlikely high (red). In the
paper, orange is specified when the likelihood ratio defined earlier exceeds the 95% confidence level of the
cumulative distribution function of the binomial distribution, and red the 99.9 % confidence level. When
using 250 observation, 4 exceedences is the limit for a green rating, meaning the model is conservative in
the respective case. Between 4 and 9 is orange, which shouldn’t happen to often, and 9 or higher is red,
which is problematic. In the backtesting in this study, the number of observations is generally smaller. To
account for this, the Likelihood ratio as defined before is simply compared to the chi-squared distribution
with 1 degree of freedom critical values at both the 95% level and the 99.9% level. The red-orange-green
rating are then given accordingly. When the model is (over)conservative, a green light is given. This is
of importance for the PFE95% in cases where zero exceedences take place - in principle this is unlikely
to happen when the observed values indeed are generated by the theoretical model. However for the
purpose of risk management this is still a green light as it is conservative.

4.2.3 Set up of the PFE backtesting experiment

Backtesting of the CCR measures varies more parameters than the empirical distribution experiment,
which only varies the backtesting horizon. In the case of backtesting the PFE, the type of contract, the
maturity and the window over which the contract is backtested are taken into account. In addition, the
fixed leg is varied in order to gain insight in how the model performs when the contract that is researched
is far in-, at-, or out-the-money.

The type of FRA contract is either payer or receiver, and allows to see if differences exist in these
type of contracts. Given that the interest rates that are used as input in this study have a noticeable
downward trend, it should be the case that when a party benefits from decreasing rates, the PFE behaves
accordingly. That is, when the contract value is going up, the PFE should go up as well. In the case
of a payer contract, the issuer pays a fixed leg and receives a floating leg and thus the contracts value
decreases as the interest rate is is based on decreases. PFE profiles in this case should generally be low.

The maturity of the contract and window of the backtesting determine what rates are used and the
window over which the rates are analysed. An example is the FRA6x9 backtested over 1 month intervals.
The price of an FRA6x9 contract is determined at inception using the 6 month zero rate and the 9 month
zero rate. Then after one month, the value of the contract is determined using the 5 month rate and the
8 month rate.

The choice for which maturity contracts and backtesting windows depend on three thing. What rates
are needed to be tested, what window is tested and the need for interpolation. In principle a cross-
section of all rates need to be examined, each over a short and medium backtesting window 4, whilst
minimizing the need and effects of interpolation. But also some care has to be taken to not let the
number of backtesting experiments blow up. For this reason two contracts are analysed, the FRA6x9
and FRA24x36 contract

The backtesting set-up for the PFE in its entirety is summarized in table 6.

4.3 Model Validation

In the validation of the models, various assumptions are verified. As the underlying assumptions and
parameters are different between the models, different approaches are taking. However, some overlap
can be found between the assumptions. The assumptions verified are generally driven by earlier found
remarks. In both models the residuals of the models are tested using normality tests. In addition, the
residuals are tested for heteroskedasticity, as this was found for some maturities in the data at earlier
times. Testing the residuals of a model over the whole dataset allows to obtain insight in the fit of

4As with the backtesting of the empirical distribution, longer backtesting windows longer than 5 years are not feasible
given the time horizon of the dataset
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Table 6: Experiment setup for testing PFE

Fixed rate FRA type Maturity
(start x end
in months)

time since in-
ception

K=0.01

payer 6x9 1 month
payer 6x9 3 months
payer 24x36 24 months
receiver 6x9 1 month
receiver 6x9 3 months
receiver 24x36 24 months

K variable

payer 6x9 1 month
payer 6x9 3 months
payer 24x36 24 months
receiver 6x9 1 month
receiver 6x9 3 months
receiver 24x36 24 months

K=-0.01

payer 6x9 1 month
payer 6x9 3 months
payer 24x36 24 months
receiver 6x9 1 month
receiver 6x9 3 months
receiver 24x36 24 months

K=0.05

payer 6x9 1 month
payer 6x9 3 months
payer 24x36 24 months
receiver 6x9 1 month
receiver 6x9 3 months
receiver 24x36 24 months

the model. It also can show if the assumption of a driving normal distribution, as both models use,
is warranted. Frequent extreme observations for example will result in rejection of normality of the
residuals. In both models parameters are tested for sensitivity. In the case of the dynamic Nelson-Siegel
model, this is done via the λ parameter which determines where the curvature takes it’s maximum. In the
case of Displaced Diffusion, this is the shift parameter which determines the lower bound of the model,
but also the size of the volatility parameter. In addition both parameters are assumed constant, which is
an assumption that needs to be verified whether it is warranted based on the data. The models are then
tested on other types of behaviour. In the case of DNS, this is the inherent mean reverting behaviour of
the underlying AR(1) processes for the parameters. In the case of DD, this is the long term behaviour
given the lognormal nature of the rates. The correlations of both models are analysed as well. For DNS
this is the correlation between the parameter processes. For DD this is the correlation structure inherent
to the model. Finally, the fit to the original yield curve is analysed. This is only relevant for DNS, as
the DD model uses the current yield curve as starting point. In DNS the yield curve is approached using
a Nelson-Siegel curve. Some types of yield curves may not be possible to be modeled as a Nelson-Siegel
curve leading to possible mistakes in the estimation.

5 Dynamic Nelson-Siegel

In this chapter, all steps described in chapter 4 on methodology are performed on the dynamic Nelson-
Siegel model. Before doing that, the calibration and simulation procedures are described.
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5.1 Calibration

The dynamic Nelson-Siegel model is a three factor model, and for all three risk factors three parameters
need to be estimated. In addition there is a ”price of risk” parameter λt. The essence of the model is
relatively simple. In the first step, one needs to fit the Nelson-Siegel curves to all historical yield curves.
Then in the second step, one estimates the processes underlying the parameter processes obtained in the
first step.

As mentioned before there are many ways of doing the first step. In this study the approach of Diebold
and Li (2006) is taken, in which the parameter λt is taken as a constant. It is chosen to be the value for
which the factor loading for curvature takes it’s maximum on the medium term, i.e.,

argmaxλt

(
1− e−λtτ

λtτ
− e−λτ

)

The industry practice is to take either 2 or 3 years for τ . In the aforementioned research, 2.5 years is
taken as compromise. Using this constant value, obtaining the historical parameter processes can be done
by using Ordinary Least Squares.

The parameters β1, β2, β3 are assumed to follow independent AR(1) processes. Note that the specifi-
cation of the AR(1) models used in this study is

Xt+1 = µ(1− φ) + φXt + εt+1, εt+1 ∼ N(0, σ2)

The reason is that this way, the process is easily written in the form

Xt+1 − µ = φ(Xt − µ) + εt+1, εt+1 ∼ N(0, σ2) (11)

Which helps in both simulating, by instead simulating Yt = Xt−µ, as well as in estimating parameters.
The parameters of interest are µ, φ, σ for each of the betas. The parameters µ and φ are simply estimated
by performing linear regression on the function xi+1 = xi + 1. Then σ is obtained by the square root of
the sample variance of the residuals of the model.

5.2 Mathematical properties of the yield curve

In this section, mathematical properties of the yield curve are described. By noting the factorloadings of
curvature and slope as L1,τi , L2,τi , the notation of the DNS yield curve can be simplified as

yτi(t+ n) = β1,t+n + β2,t+nL1,τi + β3,t+nL2,τi . (12)

in which τi is the maturity. The mean of the zero rate maturity processes, given the current Nelson-Siegel
curve (i.e. with the β’s known) is

E[y(t+ n)|Ft] = E[β1(t+ n) + β2(t+ n)L1,τi + β3(t+ n)L2,τi |Ft]
= E[β1(t+ n)|Ft] + E[β2(t+ n)|Ft]L1,τi + L2,τi E[β3(t+ n)|Ft]
= µ1(1− φn1 ) + β1(t)φn1 + L1,τi(µ2(1− φn2 ) + β2(t)φn2 ) + L2,τi(µ3(1− φn3 ) + β3(t)φn3 )

:= µ̂n.

It is now clear that, given the auto-regressive coefficients are in (−1, 1), for n large the yield curve
process is mean reverting to µ1 +L1µ2 +L2µ3. Following similar steps, using that the individual AR(1)
processes are independent, the variance is
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Var(y(t+ n)|Ft) = Var(β1(t+ n)|Ft) + (L1,τi)
2Var(β2(t+ n)|Ft) + (L2,τi)

2Var(β3(t+ n)|Ft)

= σ2
1

1− φ2n1
1− φ21

+ (L1,τi)
2σ2

2

1− φ2n2
1− φ22

+ (L2,τi)
2σ2

3

1− φ2n3
1− φ23

:= σ̂2
n,

in which σ2
i is the variance of the noise term εi. Since the AR(1) processes are independent Gaussian

processes, their linear combination is also a Gaussian process.Using this, it is straightforward to construct
a confidence interval, using α = 0.05 for illustrational purposes, of the form

[µ̂n − 1.96σ̂n, µ̂n + 1.96σ̂n].

Furthermore, the correlations in the yield curve can be calculated exactly. Any two zero rates are a
linear combination of three independent normal random variables, and thus the correlation is as following

Corr(Z1 + L1,1Z2 + L2,1Z3;Z1 + L1,2Z2 + L2,2Z3)

=
Cov(Z1 + L1,1Z2 + L2,1Z3, Z1 + L1,2Z2 + L2,2Z3)√
V ar(Z1 + L1,1Z2 + L2,1Z3)V ar(Z1 + L1,2Z2 + L2,2Z3)

=
Cov(Z1, Z1) + L1,1L1,2Cov(Z2, Z2) + L2,1L2,2Cov(Z3, Z3)√

(σ2
1 + L2

1,1σ
2
2 + L2,1σ2

3)(σ2
1 + L2

1,2σ
2
2 + L2

2,2σ
2
3)

=
σ1 + L1,1L1,2σ2 + L2,1L2,2σ3√

(σ2
1 + L2

1,1σ
2
2 + L2,1σ2

3)(σ2
1 + L2

1,2σ
2
2 + L2

2,2σ
2
3)
,

in which it is used multiple times that for X,Y ∼ N(µ, σ2) with X,Y independent, X + Y ∼ N(µ +
µ, σ2 + σ2). This expression for the correlation structure implied by DNS can later be used to test the
theoretical correlation structure of the yield curve against the historically observed correlations.

5.3 Simulation

Though the confidence interval derived before is very convenient for PFE estimation, since it is defined
as a quantile, it is still useful to perform simulation. On one hand, this is because definitions in Basel are
based on simulations, on the other hand because the effective EPE estimation is path dependent. Given
the underlying AR(1) process it is convenient to substitute and model a process without a constant (see
equation (11) and thereafter).

Then, the process for n steps ahead can be simulated by using

Xt+n = φnXt +

n−1∑
i=0

φiεt+n−i.

For one path, this can be expressed using the following matrix form.
Xt+1

Xt+2

...
Xt+n−1
Xt+n

 =


φ1

φ2

...
φn−1

φn

Xt +



φ0 0 . . . . . . 0

φ1 φ0
. . .

...
...

. . .
. . .

...
φn−2 φ0 0
φn−1 φn−2 . . . φ0




εt+1

εt+2

...
εt+n−1
εt+n

 .

This is easily and efficiently simulated for n steps and multiple paths p. The paths are expressed as
the columns in the following matrix form
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Xt+1,1 . . . Xt+1,p

...
. . .

...
Xt+n,1 . . . Xt+n,p

 =

φ
1 . . . φ1

...
. . .

...
φn . . . φn

Xt +

 φ0 . . . 0
...

. . .
...

φn−1 . . . φ0


εt+1,1 . . . εt+1,p

...
. . .

...
εt+n,1 . . . εt+n,p

 .
Using this, the entire simulation of the process of one dynamic Nelson-Siegel parameter for multiple

paths is simply a matrix-multiplication and addition. Within the current format, no extra variance-
reducing techniques are employed.

5.4 Performance Backtesting

In this section, the empirical distribution and PFE are tested against historical data. Some parameters
are equal throughout this section, to be able to test the relevant aspects of the model. Recalibration
is done on a half-year basis. The FRA used in PFE calculations varies in run time and duration, and
in addition is tested for various values of the fixed leg, as explained in the setup of the backtesting
experiment. By doing this it is possible to get an indication of how the model performs when backtesting
the PFE of an out-of-the-money, at-the-money and in-the-money Forward Rate Agreement.

5.4.1 Empirical distribution

First the empirical distribution is tested. The dynamic Nelson-Siegel model is used to generate paths
and these are subsequently checked against the realized values, as described in chapter 4. Figure 7 shows
an overal example of the backtesting, with non-overlapping intervals. The 2 year zero rate is shown,
and similar results hold for other maturities. From the figure it is clear that the variance remains stable
over time, even when interest rates are lower. In addition it is visible that the realized interest rates
tend to the middle or lower part of the generated paths. This is a strong indication that the simulated
distribution may not fit the data particularly well.

Figure 7: Example backtesting paths against the 2-year rate

Various backtesting horizons with overlapping and non-overlapping intervals have been chosen. The
goodness of fit of one month intervals all return a p-value of zero. The hypothesis that the real world
rate follows a dynamic Nelson-Siegel model with recalibration as described earlier is strongly rejected.
The same result also applies to longer time horizons, using 3-month non overlapping intervals, 1 year
overlapping intervals, 2 year overlapping intervals and 5-year overlapping intervals. This is in contrast
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with Diebold and Li (2006), who perceived particular success on the medium term, using 1 year prediction
intervals.

Before continuing to the PFE testing, some evidence is shown on why the predictions do not perform
well on the historical data. Figure 8 shows the quantiles of the realized values against the generated
empirical distribution. The realized rates never belong to the upper quantiles, as the x-axis stops at 0.6.
The dynamic Nelson-Siegel model assigns thus a too high probability of the interest going up by a large
amount.

Figure 8: Histogram of the quantiles of realized values against the empirical distribution

As an example for this behaviour, non-overlapping paths are generated over a 2-year horizon. The
result is shown in figure 9. The issue with the model is that is tends to some long term mean because of
the mean reverting behaviour of the model, which is problematic.

Figure 9: Backtesting using 2 year non-overlapping intervals

5.4.2 MtM backtesting

In this section the results of the MtM backtesting experiment are presented. Table 7 contains the results
of the goodness-of-fit tests for the dynamic Nelson-Siegel model. Most of the tests fail, which is as
expected based on the results of the backtesting experiment for the empirical distribution.
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Table 7: Results of of the MtM backtesting experiment

Contract Window KS CvM AD
FRA6x9 payer 1 month 0.000 0.000 0.000
FRA6x9 receiver 1 month 0.000 0.000 0.000
FRA24x36 payer 24 months 0.000 0.000 0.000
FRA24x36 receiver 24 months 0.000 0.000 0.000
FRA120x180 payer 12 months 0.000 0.000 0.000
FRA120x180 receiver 12 months 0.000 0.000 0.000

5.4.3 Backtesting the PFE

In this section the backtesting results are presented on estimating the PFE. Based on the previous results
it is expected that for payer FRAs, the PFE will overestimate risk as the model overestimated the
probablity of rates going up. Conversely for receiver FRAs, it is expected that the PFE underestimates
risk. Because of readability the full PFE profiles are shown in Appendix A, section 8.1. Only some PFE
profiles are used as an example. The full results are shown in table 8.

The experiments using a fixed rate of K = 0.01 is used as an example, as the other results are similar.
The full results are show in appendix A in figures 27 to 32. For most contracts, the PFE as estimated
by the DNS model is overconservative, as can be seen from both the exceedences in table 8.1 and the
mentioned figures. The exception is the case of a RA24x36 receiver contract, in which far too many
exceedences are observed. All these are observed at the start of the backtesting. The cause is that the
interest rates of the relevant maturity show a very sharp downward movement at the places where the
model underestimates the PFE. Conversely, the PFE estimates for the FRA24x36 payer contract are
far more conservative, being an indication that the DNS models probability mass lies above the realised
distribution. This is a direct consequence of what is shown in figure 9 - the mean reversion property of
the model calibrated on data up to the start of the backtesting window is too strong on a 2 year time
horizon. The results for the other values of K are similar.

5.5 Model Validation

In this section the key assumptions of the dynamic Nelson-Siegel model as identified throughout the
report. It starts with analysing the yield curve fit, in which various aspects of the fit of a Nelson-
Siegel curve are analysed. Then the underlying assumptions of the beta processes are analysed, first the
independence of the modeled processes and then the betas as AR(1) processes. Finally, the assumption
of λ being a constant, maximizing the curvature on the 2.5 year time horizon, is analysed.

5.5.1 Yield curve fit

Estimation of the values is done by regression using ordinary least squares, in which βt−1 is used as
independent variable, to predict dependent variable βt. The values for µ, φ are easily obtained, and the
variance of ε is subsequently obtained from the residuals. Some tests and heuristics about the fit, some
also done in Diebold and Li (2006), are

• the Nelson-Siegel curves need to fit the yield curves well

• the correlations between the estimated β’s need to be small, to warrant the assumption that the
parameters are independent processes

• the parameters need to resemble level, curvature and slope of the yield curve

• the range of interest rates needs to be realistic
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Table 8: Exceedences of the PFE for DNS

K contract time #Obs. 95% 99 % LR95% LR99%

K=0.01

6x9 payer 1 month in 112 0 0 11.489 2.251
6x9 payer 3 months in 110 0 0 11.285 2.211
24x36 payer 24 months in 89 0 0 9.130 1.789
6x9 receiver 1 month in 112 1 0 5.951 2.251
6x9 receiver 3 months in 110 0 0 11.285 2.211
24x36 receiver 24 month in 89 20 0 24.162 1.789

K variable

6x9 payer 1 month in 112 0 0 11.489 2.251
6x9 payer 3 months in 110 0 0 11.285 2.211
24x36 payer 24 months in 89 0 0 9.130 1.789
6x9 receiver 1 month in 112 0 0 11.489 2.251
6x9 receiver 3 months in 110 0 0 11.285 2.211
24x36 receiver 24 month in 89 20 0 24.162 1.789

K= -0.01

6x9 payer 1 month in 112 0 0 11.489 2.251
6x9 payer 3 months in 110 0 0 11.285 2.211
24x36 payer 24 months in 89 0 0 9.130 1.789
6x9 receiver 1 month in 112 0 0 11.489 2.251
6x9 receiver 3 months in 110 0 0 11.285 2.211
24x36 receiver 24 month in 89 0 0 9.130 1.789

K=0.05

6x9 payer 1 month in 112 0 0 11.489 2.251
6x9 payer 3 months in 110 2 0 3.070 2.211
24x36 payer 24 months in 89 0 0 9.130 1.789
6x9 receiver 1 month in 112 0 0 11.489 2.251
6x9 receiver 3 months in 110 0 0 11.285 2.211
24x36 receiver 24 month in 89 20 13 24.162 41.761

• The correlations in the theoretical yield curve match the observed correlations

The last item is not tested in previously mentioned study. This is done by comparing the long term
correlations dictated by the DNS model (as described in section 5.2) with the observed correlations in
the yield curve.

The first item is can be verified by looking at the fit of the curves and the residuals. In figure 10 the
yield curve at the various times is shown. The shape seems to be good for most of the dates, but it is by
no means a perfect fit. Especially outliers are skewing the fit. For pricing this is an undesired aspect of
the model, since it is not able to replicate the prices of the initial contracts. However, for out-of-sample
forecasts, this is not necessarily an issue.

The second item is easily verified, by simply checking the correlations between the processes. These
are all below 0.4, which makes it reasonable to assume that the processes are independent. Diebold and
Li (2006) stop here, however next section of this report will give a more critical look to this assumption.

The third item concerns the modeling of level, slope and curvature of the processes. Diebold and Li
(2006) define the level as the limit in maturity of the yield curve, however since the data has 30 years as
longest maturity, 30 years is taken instead. The slope of the yield curve is defined as the 30-year yield
minus the 1-month yield and the curvature as two times the 2-year maturity zero rate, minus the sum
of the 10-year and 3-month zero rates. Figure 11 shows plots of level, slope and curvature against the
respective β-parameters. The fit is good, even though some periods are shifted to some extent. The
correlation between β1 and the level is 0.99, between β2 and slope -0.96 and between β3 and curvature is
0.99, and thus resemble the stylized features well.

The estimated parameters are shown in table 9. Then using the formulation of section 4 the long
term mean and variance of the process can be determined.
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Figure 10: The yield curve versus the fitted Nelson-Siegel curve

Table 9: Dynamic Nelson-Siegel parameters

AR(1) parameters
Parameter
Process

AR-coefficient γi Constant µi Noise volatility σi

β1 0.9879 0.0288 0.00228
β2 0.9295 -0.0161 0.00357
β3 0.8140 -0.0290 0.00905

Using these parameters, it is straightforward to derive exact confidence intervals, as described in
section 4. In figure 12, the 95% confidence interval is shown for a very long time horizon (1000 weeks,
thus about 20 years). From the figure it is clear that, because of the relatively high auto-regressive
parameters, quite some changes are expected even in the very short term. In addition the model seems
to attach a low probability that the rates go beyond 5%, even over a 20 year time horizon. This reflects
the calibration dataset well. Figure 13 then shows 50 paths forecasted using the methods described in
section 4. The modeled interest rates are within realistic bounds of what is observed in the dataset.

The fifth item can be verified by using the exact expression for the yield curve correlation in section
5.2. Figure 14 shows the yield correlations for a fitted DNS model after 10 years 5. Although the scales
are slightly different, the correlation structure resembles the observed correlation structure of the yield
curve very well. The good fit suggests the use of level, slope and curvature as principal components for
the yield curve are well chosen.

5This is because the volatilities in the correlation are those of an AR(1) process, and thus a long time horizon is used to
be able to use the long term variance
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Figure 11: The parameters of DNS against their stylized counterparts

Figure 12: 95% CI for the 2-year zero rate under DNS

Figure 13: 50 paths for the 2-year zero rate under DNS
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Figure 14: Theoretical versus Observed yield correlation

Figure 15: Moving correlation and sample paths of β1, β2

5.5.2 Modeling β’s as independent processes

In chapter 5 the fit of the β’s was tested using much of the same results as Diebold and Li (2006). One
of the main assumptions in the model is that the β’s are modelled independently, and correlations over
the whole process are low. There is however reason to believe the parameters vary in how much they
are correlated. Figure 15 shows the correlation between β1 and β2 over time, using a window of 50
observations. It is evident that the assumption of no correlations does not hold. Especially the later
periods, as shown on the right side of figure 15 show that the respective β’s move in opposite direction.

This observation can also explain the difference in behaviour between shorter maturity rates and
longer maturity rates. Longer maturity rates predominantly depend on β1, as the factor loadings of the
other β’s are close to zero. And thus longer maturity rates are driven by normal increments. However
for the shortest maturities, where the factor loading of β3 is still very low, the process is modeled as a
linear combination of β1 and β2. Given their strong negative correlation in the more recent part of the
dataset, this results in very low variation, as is observed in reality.

Similar results are found for the correlation structure between β1 and β3 as well as between β2 and
β3. It is thus recommended to model the correlation structure in order to better match the interest rates
across all maturities. There are many possibilities for this to research in future studies. Suggested ways
of modeling the correlation structure are using time dependent or stochastic models. In addition given
the abrupt changes in correlation, potential models can use regime switching.
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Figure 16: ACF and PACF plots of the β’s

5.5.3 Modeling β’s as AR(1) processes

The work of Diebold and Li (2006) concludes that the model performs best on long horizons when the
β-parameters are modeled as AR(1) processes. However using the same approach, results are not as
optimistic in this study. In this section, various tests are done to analyse whether the choice of AR(1)
processes is justified. In addition, different models are proposed based on this analysis and are tested on
a small scale.

Tests on the β series

As a heuristic to determine the order and type of an ARMA(p,q) process, Shumway and Stoffer (2005)
suggest to examine the autocorrelation function (ACF) and partial autocorrelation function (PACF). For
AR(p) processes, the ACF tails off and the PACF cuts off after lag p. As can be seen in figure 16, this
is the case for all β parameters and thus suggest that an AR(1) process might be viable.

However AR(1) processes are stationary. And thus an Augmented Dickey-Fuller test is done on the
beta processes to check whether they are stationary. The results are shown in the first column of table
10. Based on this,the null-hypothesis that the time series of the β1 parameter is non-stationary cannot
be rejected. This is puts a serious doubt on whether the use of an AR(1) process to model β1 is justified.

Next, the differences of the β processes are tested for normality, as the increments of AR(1) processes
are normal. The normality tests used are Anderson-Darling, Cramer-von Mises and Kolmogorov-Smirnov.
All tests are done with respect to a normal distribution with mean and variance determined by the sample
mean and sample variance over the whole time series. The respective p-values are shown at the right-hand
side of table 10. The conclusion can be made that the increments of β1 are normally distributed, but
that is not the case for β2 and β3.

Two main causes have been found in the study that can explain why the tests fail for β2 and β3.
The first is that the tails of the observed interest rates are fatter than the theoretical distribution. The
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Table 10: ADF test on the β processes and Normality tests on the β differences

differences ADF AD CvM KS
β1 0.799 0.430 0.531 0.567
β2 0.041 0.005 0.009 0.002
β3 0.000 0.000 0.002 0.003

Figure 17: Difference plots of β1, β2, β3 (from left to right)

kurtosis for the difference processes of β1, β2, β3 are 2.22, 9.48 and 23.39 respectively, and thus only the
tails for the first process are close to a normal distribution. The second explanation found is that the
variance of the differences do not seem to be constant over time. Both explanations can be seen in figure
17. The middle figure shows the β2 differences and the right-hand figure the β3 differences, both exhibit
extreme values and tapering behaviour, indication non-constant variance.

Based on the observed diminishing variance for β2 and β3 and the earlier formulated hypothesis
that interest rate variance may be dependent on the interest rate level, something interesting has been
found. When rescaling the aforementioned differences by dividing them by the values for β1, most of the
normality tests cannot be rejected. In other words, the variance of β2 and β3 may be dependent on the
yield-curve level. 6

Tests on the fitted AR(1) models

This section analysed the fitted AR(1) models. The previous section indicates in some cases such as the
acf plots, that AR(1) may be good for β2 and β3. This section presents deeper analysis of the fit of the
AR(1) models.

The residuals of the fitted AR(1) processes are shown in figure 18. The first thing to note is that the
residuals are very similar to the differences shown in figure 17. This can be explained by the fact that the
autoregressive parameters are relatively high, and relatively small constant. When subtracting βi from
the AR(1) process equation, the following is obtained

βi = µ+ φβi−1 + εi

βi − βi1 = µ+ φβi−1 + εiβi1

βi − βi1 = µ+ (φ− 1)βi−1 + εi.

Since the left-hand side is equal to the difference, and the right-hand side tends to a normal distri-
bution for φ close to one. Because of the similarities between the residuals and the differences, the same
observations hold - extremes are not captured well in the model, as is the tapering variance over time.

6Note that dependence on the yield-curve level is different from the dependence of variance on the interest rate level as
is present in a log-normal model, as the dependence does not come from the level of the process itself.
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Figure 18: Residuals of the fitted AR(1) processes

Table 11 shows the results of the normality tests, as well as a Ljung-Box test and White test on the
residuals. The tests confirm the observations made earlier: The normality tests indicate the residuals
of the β1 model are normal, but not for β2 and β3. In addition the White-test confirms (at the 5%
significance level) that the variance of the residuals of the latter processes are not constant. Finally, the
Ljung-Box test cannot reject the null-hypothesis that the residuals contain no serial correlation. This
indicates that modeling the variance of the processes with conditional heteroskedasticity (such as ARCH
and GARCH models) may not be the correct choice.

Table 11: Normality, Ljung-Box and White tests on the AR(1) residuals

process AD CvM KS LB White
β1 0.435 0.512 0.567 0.299 0.666
β2 0.013 0.020 0.013 0.363 0.000
β3 0.001 0.002 0.006 0.272 0.045

5.5.4 Assuming λ as a constant

λ has been assumed to be constant in similar ways as described in Diebold and Li (2006) and in Nelson
and Siegel (1987). The result is that the factor loading of the curvature is always maximized at 2.5 years.
However is is very well possible that the curvature has its maximum at different times, see for example
week 100 in figure 10.

The parameter λt is fixed, and some variations can be applied to analyse whether the model is sensitive
to changes in λ. Table 12 shows the backtested distribution with λ being calibrated to 2 and 3 years
respectively, as opposed to the 2.5 years mentioned earlier. The choice of λ has an impact on the outcomes
for the backtesting of the 30 year maturity. With the 2 year version, it is no longer possible to reject that
the zero rate follows from the DNS model at the 5% confidence level.

The observed improvement in backtesting results for the 30 year rate for λ = 0.8966 can be explained
by the fact that it represents the level of the yield curve. As shown in section 5.5.1, β1 and the level are
highly correlated. When the curvature’s maximum is shifted to the left, the value of the factor loading
of the curvature becomes lower and thus is included to a smaller extent in the 30-year rate process.

5.6 Adjusting the DNS model

Given the poor results of the base DNS as described in Diebold and Li (2006), the results from the model
validation is used to test an adjusted version of the model. Three main findings from the model validation
are used in this adjusted model:

• Use λ such that is optimizes the curvature on 2 years

• Model β1 as an random walk with drift
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Table 12: Goodness of fit with different values of λ

t maturity KS CvM AD

t=2 & λ = 0.8966
1 month 0.000 0.000 0.000
2 years 0.000 0.000 0.000
30 years 0.117 0.057 0.000

t=3 & λ = 0.5877
1 month 0.000 0.000 0.000
2 years 0.000 0.000 0.000
30 years 0.000 0.000 0.000

• Model the correlation structure using the most recent daily data

The first two have been treated extensively in the model validation. The third one is a practical
solution to the correlation modeling. Since correlation is not observed directly, the approach uses the
data points between the monthly data as proxy. This way a correlation structure can be obtained that
is close to the instantaneous correlation.

Using the same backtesting settings as previously, the results improve drastically in comparison with
the original model. The p-values for the uniformity tests are shown in table 13. The original model
resulted in 0 p-values for all zero rate maturites. The improved model can’t be rejected to be the data
generating model for the shortest and longest few maturities at the 5% significance level. The model
is still far from perfect, even with the improvements. Many rates are rejected to be generated by the
theoretical model. As the p-values for the Anderson-Darling test are lower, this is likely because of the
extreme values modeled incorrectly.

Table 13: Goodness of fit for the adjusted DNS model

maturity KS CvM AD
1 month 0.460 0.445 0.096
6 month 0.375 0.299 0.016
1 years 0.073 0.016 0.000
2 years 0.026 0.029 0.000
3 years 0.015 0.064 0.000
4 years 0.084 0.047 0.001
5 years 0.051 0.042 0.003
10 years 0.099 0.141 0.083
15 years 0.103 0.206 0.142
20 years 0.336 0.355 0.226
30 years 0.304 0.322 0.199

The adjusted model is by no means suitable to be employed in practice exactly as described in this
section, but rather serves as a ”proof of concept”. First of all the model has some problems with modeling
the kurtosis. This can be seen in figure 19. The characteristic ”flying-bird” shaped empirical distribution
indicates that the model features lower kurtosis than the realised values, as also is mentioned in Ruiz
(2014). Additionally, all rates that are statistically a bad fit coincide with rates that depend on the
curvature, modeled by β3. Closer inspection of the backtested β3 process shows that during one interval
the auto-regressive parameter is estimated to be close to zero. This happens between 2012 and 2015, as
can be seen in figure 11 in the plot of β3 against curvature. The model calibrated on this period a low
probability of an upward period, however an upward period is in fact observed afterwards. The simulated
paths for zero rates with maturities between 1 year and 5 years all have multiple entries in the empirical
distribution equal or close to one because of this period. One solution to this problem, as also adopted in
another way in one of INGs models (FI/FM-Quants (2019)), is to constraint changes in parameter values
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Figure 19: Improved DNS - empirical versus the theoretical distribution

in such a way that they can’t change by more than a percentage of the previous value.
In addition, the calibration of the correlations uses the daily rates of the previous month in the

backtesting window as proxy for the monthly instantaneous correlation. This assumption has to be
verified in more detail.

The first result of this section is the way the model improvements were found. Rather than viewing
the dynamic Nelson-Siegel approach as a fixed model, it is recommended to use it as a framework. The
parameters may be modelled via different processes in that framework, possibly including stochastic
volatility or correlation. It is recommended to analyse the parameter processes carefully, and model them
accordingly.

The second principle that may have a wider application is the use of the intra-scenario data in
estimating certain parameters. In this study, the default timestep between backtesting scenarios is one
month. But since daily data is available during these monthly windows, it can serve as natural proxy for
instantaneous parameters.

6 Displaced Diffusion

This chapter describes the full analysis of the Displaced Diffusion model. In section 6.1 the calibration of
the model is explained, followed by the simulation equations in section 6.2. After the model is specified,
the backtesting results are shown and explained in section 6.3. The model is validated in section 6.4 to
gain insight in the risks of the model and the situations in which the model performs inadequate.

6.1 Calibration

The DD model is seen in this context as an approximation to the CEV-LLM. The instantaneous correla-
tions matrix need to be estimated by historical data. The volatilities for the various tenors can be easily
estimated via historical data by using l̂iti + θ = liti with the latter being log-normal. It is then easy to

see, using Ito’s lemma, that ln(l̂iti + θ) = ln(lit0 + θ)− 1
2σ

2
i (ti − t0) + σi(W

i
ti −W

i
t0).

Volatility

Then the historical volatility can be obtained by using
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And thus by adding θ to the observed Libor rates and then taking the log-differences, historical
estimates for σi can be obtained as

σi =

√√√√√Var
(

ln
l̂iti

+θ

l̂iti−1
+θ

)
4t

, (14)

in which ti − ti−1 = 4t is fixed. Estimating the volatility in this way does depend on the choice of θ,
since the added term doesn’t cancel out in calculating the sample variance. This is however as expected,
as shown in Oosterlee and Grzelak (2019) a displaced diffusion model with shift parameter β can be seen
as a shifted log-normal parametrised as

d(lt + θ)

lt + θ
= σ̂iβdWt,

with θ = 1
β (1− β)lt0 and the estimate for σi equal to σ̂iβ. Intuitively this behaviour is expected. Since

the entire distribution is shifted and volatility is dependent on the level of the interest rate, the estimated
variance will naturally change.

Displacement parameter

Then, a way to estimate the displacement parameter has to be decided. One approach is to use expert
opinion. Another is to use a maximum likelihood method, as for example described in Fries et al. (2017).
Since the estimation of the parameters σi as described before in fact depends on the shift θ by means
of the log-differences, these have to be taken into account in the maximum likelihood estimation. Fries
et al. (2017) derived that the log-likelihood function is equal to

θ = arg maxθ

( n∑
i=1

log(f(lti+1
; lti , θ)),

)
in which

f(lti+1 ; lti , θ) =
1√

2πσ(θ)(lti+1
+ θ)

exp
(
− 1

2

log(lti+1 + θ)− log(lti + θ)

2σ(θ)2
.
)
.

An important remark has to be made here, in that this method generally results in different estimates
of displacement parameters for every maturity (subscript i, left out in the formulations just shown). The
representation of the Displaced Diffusion model from Oosterlee and Grzelak (2019) allows for differences
in shifts depending on the initial values lt0 . However as discussed in a later chapter this is not enough
to account for the rather large difference in estimated shift parameters between shorter and longer Libor
forward rates. One solution is to fix the displacement parameter and optimize the above function for all
maturities at once.
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Correlation structure

The last parameter that has to be estimated is the correlation. Using the definition of correlation, the
sample correlation is equal to

Corr(ln
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, ln
ljti
ljti−1

) =
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ljti−1

)

σiσj4t
.

The covariance of the log-differences can be determined as following
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The various covariances in the third step are easy to calculate using dW i
t dW

j
t = ρi,jdt and thus con-

structing a correlated increment using W j
t = ρi,jŴ

i
t +
√

1− ρ2i,jŴ i
t , with the hat implying independence.

In addition it is used that Cov(Wt,Ws) = min(t, s). But then using simply the correlation between the
observed log-differences can be used to estimate ρi,j for all i, j.

The DD models every Libor rate in the term structure as a shifted lognormal process correlation to
all other rates. Thus the estimation uses the correlation matrix of the differences on which the above
derivation is applied.

Drift

Because the model is estimated in a risk-neutral setting, a drift is added to the model and estimated.
Assuming σ given, it holds that

E
[
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]
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2
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2
σ2)4t.

And thus the drift is estimated as
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+
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2
σ2.

Note that liti denotes the DD rate with the shift added, and thus is positive.

6.2 Simulation

The basis for the simulation is an Euler-Maruyama scheme. The processes are discretised as

l̂it+4t + θ = l̂it + θ + µ(l̂it + θ)4t+ σi(l̂
i
t + θ)4W i

t ,
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in which4W i
t+4t = W i

t+4t−W i
t ∼ N(0,4t). Then, by substituting l̂it+θ = lit, one step can be calculated

as

lit+4t = lit(1 + µi4t+ σi
√
4tZi).

Since the modeled increments are independent, this can be substituted recursively to simulate k steps
as following

lit+k4t = lit

k∏
j=1

(
1 + µi4t+ σi

√
4tZij

)
.

In this, Zi a standard normal random variable. Given θ, σi this is straightforward to simulate for every
separate process. However, since multiple correlated paths are simulated, the corresponding correlated
Brownian motions need to be build first. Given the correlation matrix as estimated in the previous
section, this is easily done by using a Cholesky decomposition. Now, for i ∈ {1, ..., 11} Libor-maturities
and k steps, one entire MC simulation of all maturities can be calculated usingl

1
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When simulating this, it is very convenient to do this as a cumulative product. Then, for every path
one has to simulate one standard normal correlated matrix. This can be done by using the lower Cholesky
decomposition L and an uncorrelated standard normal matrix Ẑ as

Z =

Z
1
1 . . . Z11

1
...

. . .
...

Z1
k . . . Z11

k

 = LẐ.

6.3 Performance backtesting

In this section, the results of the backtesting of DD is presented. First, the empirical distribution is
analysed in section 6.3.1. Then section 6.3.1. continues with the backtesting results of the PFE.

6.3.1 Empirical distribution

In this section the empirical distribution is tested. The Displaced Diffusion model is used to generate
paths and these are subsequently checked against the realized values, as described in chapter 4. Figure 20
shows an overal example of the backtesting, with non-overlapping intervals. Qualitatively, the empirical
distribution appears to be of lower variance at the lower interest rates. In contrast with the results of
the dynamic Nelson-Siegel model, this results in smaller quantiles as well, enabling better results on the
PFE estimation.

The result should be an uniform distribution. The results for a non-overlapping backtesting experi-
ment with one month windows are shown in table 14.

Table 14: Goodness of fit on one month intervals

maturity KS CvM AD
1 month 0.001 0.000 0.000
2 years 0.079 0.110 0.000
5 years 0.000 0.000 0.000
30 years 0.123 0.054 0.041
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Figure 20: 6-month non-overlapping backtesting sample paths against the 2-year zero rate

It is clear that the model does not perform very well on the short to medium term, and it is rejected
at the 5% confidence level that the realized values come originate the theoretical model. However for the
longest maturity, it cannot be rejected that the data could come from the theoretical distribution.

For 3-month overlapping intervals the results remain the same. The results are shown in table 15.

Table 15: Goodness of fit on three month intervals

maturity KS CvM AD
1 month 0.001 0.000 0.000
2 years 0.003 0.007 0.000
5 years 0.008 0.011 0.001
30 years 0.038 0.02 0.018

As a final experiment the model is tested on a one year and two year overlapping intervals. The
results are shown in table 16 and table 17 respectively. It is clear that the model does not perform well
on longer backtesting windows in terms of empirical distribution.

Table 16: Goodness of fit on one year overlapping intervals

maturity KS CvM AD
1 month 0.001 0.000 0.000
2 years 0.000 0.000 0.000
5 years 0.006 0.001 0.000
30 years 0.058 0.011 0.005

To gain insight in why exactly the distributions cannot be verified to be the sample, figure 21 shows
the empirical distribution for the 2-year overlapping backtesting window against the theoretical U(0, 1)
distribution. In the 5 year rate predictions, lower quantiles are over represented. For the 2 and 30 year
rate forecasts this is the opposite and the realised values are more often found in the higher quantiles of
the generated distributions.

6.3.2 MtM backtesting

In this section the results of the MtM backtesting experiment are presented. Table 18 contains the
results of the goodness-of-fit tests. Most of the tests fail, which is as expected based on the results of
the backtesting experiment for the empirical distribution. However the model does perform well on the
FRA120x180 contract.
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Table 17: Goodness of fit on two year overlapping intervals

maturity KS CvM AD
1 month 0.000 0.000 0.000
2 years 0.001 0.003 0.003
5 years 0.000 0.000 0.000
30 years 0.063 0.031 0.013

Figure 21: Empirical plot for the 2,5 and 30 year maturities versus the theoretical

6.3.3 PFE backtesting

The number of exceedences of the PFE for various FRA contracts is shown in table 19. The results
are mixed. In some cases the model seems to perform well, but for some contracts the model is on the
conservative side. There is one case where the number of exceedences is too high. However it is perfectly
possible in this many tests that one of the values exceeds the 95% quantile of the chi-squared distribution.

Figure 22 shows the situations in which the model isn’t conservative at the 95% confidence level.
There are two possible explanations for the large number of exceedences even at the PFE99%.

• Initial calibration period is too short, as all the exceedences take place at the start

• half-yearly recalibration is too slow to catch the increased volatility present at the start. The PFE’s
can be seen to be increasing even after the higher volatility period.

Overall the model performs well and is on the conservative side. It falls under the green light for
all but one value, which is orange, meaning the excess is manageable. As Ruiz (2014) mentions, the
ideal result is lots of green lights, a few orange and no red light. This is the case in the backtesting as
performed in the study.

6.4 Model Validation

In this section, the underlying assumptions of the DD model are analysed. The goal is to research if there
are critical errors following from these assumptions, that can lead to model risk in certain cases. Three
assumptions are researched:

• The constant shift incorporated in the model. The assumption of using a constant shift is research,
as well the possibility of including the shift parameter in the calibration process.

• The use of a normal distribution for generating increments.

• The long term behaviour of the model.
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Table 18: Results of of the MtM backtesting experiment

Contract Window KS CvM AD
FRA6x9 payer 1 month 0.000 0.000 0.000
FRA6x9 receiver 1 month 0.000 0.000 0.000
FRA24x36 payer 24 months 0.000 0.001 0.001
FRA24x36 receiver 24 months 0.000 0.000 0.000
FRA120x180 payer 12 months 0.065 0.113 0.009
FRA120x180 receiver 12 months 0.000 0.000 0.000

Figure 22: PFE’s of the FRA6x9 payer with K=0.01 after 3 months

6.4.1 The shift parameter

The model is bounded below by the shift parameter, and thus any scenario involving even lower interest
rates is deemed impossible. In principle, this is somewhat undone by re-calibrating the model frequently,
including a review of the used shift parameter. This way, sharp movements towards the initial lower
bound may make that a lower shift parameter should be used. There is still a problem when estimating
the CCR measures over longer time horizons. As mentioned before (in Actuarial Association of Europe
(2016)), European policy on for example a cashless society could mean that interest rates go even lower.
In such cases, even if improbable, risk will be severely underestimated.

In addition to the shift parameter being a hard lower bound, one constant shift parameter is assumed
for the model for all of the Libor rates. To verify whether this assumption is feasible, the shift parameter
has been estimated using the maximum likelihood method as described in section 6.1. The shift is
estimated separately for every process using a maximum shift of 0.4, or 40%, as an arbitrary maximum
for optimisation purposes. The results are shown in table 20.

Longer maturities are estimated to have a larger shift (about -7% is estimated to be the lower bound
for the 5-year) than shorter maturities (about -0.5 % seems to be the lower bound). This result can be
explained as following. Looking at the Libor rate between one month and half year, it is quite clear the
variance of the process is close to zero. Since the DD model is dependent on the level, and the estimated
volatility is not close to zero, it must be concluded that if the process is indeed a shifted lognormal
process, then the process is close to its minimum.

On the other hand for processes with maturities further in the future, large variance is still present
even at values close to 0%. Since there is reason to believe the interest rate variance is dependent on the
level (see chapter 2), the conclusion that these rates can become quite more negative is not far-fetched.
An economic interpretation of the bounds on interest rates is given in Actuarial Association of Europe
(2016). It is mentioned that in the current economy the interest rates are mainly bounded because of the
cost of holding cash, and the risk of the crowd making a mass retrieval in case of too low interest rates.
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Table 19: Exceedences of PFE for DD

K contract time #Obs 95% 99 % LR95% LR99%

K=0.01

6x9 payer 1 month in 112 6 3 0.029 2.184
6x9 payer 3 months in 110 8 4 1.055 4.606
24x36 payer 24 months in 89 2 0 1.771 1.789
6x9 receiver 1 month in 112 0 0 11.490 2.251
6x9 receiver 3 months in 110 6 3 0.047 2.253
24x36 re-
ceiver

24 month in 89 2 1 1.771 0.013

K variable

6x9 payer 1 month in 112 5 2 0.070 0.566
6x9 payer 3 months in 110 5 2 0.049 0.599
24x36 payer 24 months in 89 0 0 9.130 1.789
6x9 receiver 1 month in 112 1 1 5.951 0.013
6x9 receiver 3 months in 110 0 0 5.782 0.009
24x36 re-
ceiver

24 month in 89 3 0 0.559 1.789

K= -0.01

6x9 payer 1 month in 112 5 2 0.070 0.566
6x9 payer 3 months in 110 6 1 0.047 0.009
24x36 payer 24 months in 89 3 0 0.559 1.789
6x9 receiver 1 month in 112 6 3 0.029 2.184
6x9 receiver 3 months in 110 0 0 5.782 0.009
24x36 re-
ceiver

24 month in 89 0 0 9.130 1.789

K=0.05

6x9 payer 1 month in 112 0 0 11.490 2.251
6x9 payer 3 months in 110 0 0 11.285 2.211
24x36 payer 24 months in 89 0 0 9.130 1.789
6x9 receiver 1 month in 112 1 1 5.951 0.013
6x9 receiver 3 months in 110 0 0 11.285 2.211
24x36 re-
ceiver

24 month in 89 0 0 9.130 1.789

However in the case of a cashless society, such a lower bound ceases to exist. While a cashless society is
not the case in the very near future, it is certainly possible in the medium or far future.

Finally, for maturities of 10, 15 and 20 years, the maximum likelihood does not seems to converge to
a realistic value. Note that a bound of 0.4 is set for finding the optimal value. This might indicate that
the shifted lognormal process may not be the correct process for these Libor rates.

Including the shift parameter in calibration

Given the availability of a calibration method for the shift parameter, it is interesting to see if it is viable
to include in the calibration of the backtesting. However, one of the main model risks of the DD model
is when interest rates go lower than the lower bound. It is tested if this happens when calibrating the
data historically and checking the obtained values for theta against the minima observed over the two
years following.

It turns out that it happens frequently that the shift parameter, when estimated using data up to a
point, is exceeded within two years by the realised rates. This not only shows that this way of estimating
the shift can lead to model risk, it also stresses the importance of having a conservative value for theta.
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Table 20: Maximum-Likelihood of the shift

maturity Shift
1 month 0.0042
6 months 0.0036
1 year 0.0044
2 years 0.0066
3 years 0.0128
4 years 0.0291
5 years 0.0685
10 years 0.3999
15 years 0.3999
20 years 0.3999
30 years 0.0318

Backtesting using different shifts

From section 6.3 it is clear that the DD model does not perform on all maturities. Based on the finding
that the shift might differ for the various zero rates, the backtesting is repeated on small scale for θ = 0.005
and θ = 0.05. In addition this can provide some insight in the sensitivity of the backtesting to changes
is the shift paramater

It is expected for the large theta to see better results for high maturity rates, and the small theta
for shorter maturity rates. The backtesting is only done on the empirical distribution, using monthly
non-overlapping intervals. The results are shown in table 21 and table 22. The model perform better for
the shortest rate when θ = 0.005, and for the 5 year rate when θ = 0.05, compared to the original case
when using 0.02 as shift. The statistical tests however still predominantly reject that the observed values
come from the respective distribution at the 5% confidence level.

Table 21: Goodness of fit for θ = 0.005

maturity KS CvM AD
1 month 0.041 0.053 0.044
2 years 0.010 0.023 0.008
5 years 0.0 0.003 0.001
30 years 0.196 0.246 0.169

Table 22: Goodness of fit for θ = 0.05

maturity KS CvM AD
1 month 0.000 0.000 0.000
2 years 0.000 0.000 0.000
5 years 0.005 0.018 0.025
30 years 0.109 0.054 0.042

6.4.2 Normality of residuals

In this section, the residuals over the whole dataset are analysed. This is provides a general overview
of the fit of the model. In addition some conclusions can be derived on the correctness of modeling
randomness via (standard) normal random variables.
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Figure 23: Residuals of the DD model

The principle of obtaining the standardized residuals is straightforward. Given that the discretized
log returns including shift are modeled as

log(
lti+1 + θ

lti + θ
) = (µ− 0.5σ2)4t+ σ

√
4tZ

with Z ∼ N(0, 1), the residuals are simply obtained by isolating Z. The result is:

Z =
log(

lti+1
+θ

lti+θ
)− (µ− 0.5σ2)4t

σ
√
4t

The parameters µ, σ are estimated as described in section 6.1, and a shift of 2% is used. The residuals
are shown in figure 24 for all Libor rates. The residuals seem stationary, however some larger deviation
are seen. This is rather uncommon for a normal distribution.

The normality tests are performed on the residuals to verify the normality assumption statistically.
The Anderson-Darling test, Cramer-von Mises test and Kolmogorov-Smirnov are used, with reference to
a standard normal distribution. The results are shown in table 23.

Table 23: Goodness of fit for θ = 0.05

maturity KS CvM AD
1 month 0.004 0.003 0.003
6 month 0.000 0.000 0.000
1 years 0.014 0.007 0.005
2 years 0.199 0.323 0.210
3 years 0.136 0.213 0.260
4 years 0.006 0.035 0.037
5 years 0.013 0.031 0.028
10 years 0.457 0.200 0.154
15 years 0.085 0.064 0.035
20 years 0.101 0.060 0.046
30 years 0.169 0.065 0.034

The results are mixed. As was analysed in chapter 3, heteroskedastic behaviour could not be rejected
for shorter maturity rates. Since this is one of the main modeling features of the Displaced Diffusion
model, it is expected to see a good fit for the shorter maturity rates. However for the shortest three
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Figure 24: Residuals of the 1 month and 5 year libor rate

maturities, all normality tests are rejected at the 5% confidence level. Then the early mid maturities are
convincingly normally distributed, as expected. The late mid maturities are again rejected at the 5%
confidence interval. The longer maturities seem to have normally distributed residuals, only for the tails
of the distribution this is rejected at the 5% level.

The plots from figure 24 seem to have more extremes than one would expect from a standard normal
distribution. In addition the statistical tests fail mostly on Anderson-Darling, which has a heavier weight
on the tails of the distribution. Thus the assumption of an underlying normal distribution is not entirely
correct and the reason is likely to be in the tails of the distribution.

Finally, the residuals still seem to feature heteroskedastic behaviour in the cases where the goodness-
of-fit tests fail. Figure 24 show the residuals of the 1 month and 5 year Libor rate. It is apparent that the
1 month residual variance still depends on the level of the rate. This may indicate that the approximation
of the CEV model by the DD model is incorrect in this case. It is recommended to study the use of the
CEV, as it can model the y parameter in the SDE Chan et al. (1992) researched (see section 3.1).

6.4.3 Long term behaviour

The Displaced Diffusion model with a drift under the real world measure can behave in two different ways
on the very long time horizon. It mainly depends on the sign of the drift parameter. If it is negative, the
process on the long term will tend to the lower bound - the shift. When it is positive, the process is not
bounded above. In earlier chapters, some example paths were generated to show the overall behaviour of
the the theoretical model.

There are 100 paths are generated over a 83 year horizon using both the model fitted with a drift
and without to see the long term behaviour. The 83 year horizon is based on 1000 steps using monthly
intervals. All paths for the 3 year Libor rate with drift are shown in figure 25 and with drift in figure 26.
It is clear that the long term behaviour can explode over very long time horizons when not including a
drift. In contrast, when including a drift the model tends to the lower bound over time. In principle this
is as expected. This behaviour also holds for the other maturity Libor rates.

However it is worth to mention that products in a counterparty credit risk setting are tested over the
time they run. It is not common for products to run over 30 years. In that time frame (around the 500th
observation in the long term plots), behaviour is still somewhat reasonable, given that Libor forward
rates are modeled. Thus it can be concluded that the long term behaviour is realistic for reasonable long
term behaviour, but caution has to be taken in the case of extremely long time horizons.

7 Conclusion

In this report, analysis is done on the dynamic Nelson-Siegel and Displaced Diffusion models when used
in a counterparty credit risk setting. The models are used to calculate the PFE. They have then been
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Figure 25: Long term behaviour without drift Figure 26: Long term behaviour with drift

backtested against historical data and performance on PFE estimation has been done. At the beginning,
some analysis has been done on the specific time series to gain a better understanding of when models
perform stronger than at other times.

In this report, analysis is done on the dynamic Nelson-Siegel and Displaced Diffusion models when
used in a counterparty credit risk setting. Based on literature and preliminary data analysis,

Some evidence has been found that the interest rate processes for shorter maturities are heteroskedas-
tic. Another observation done, based on the statement just made, is that shorter and longer maturity
interest rates could follow different processes. In addition the interest rates do not seem to feature mean
reverting behaviour. However, the timespan used in this study is just over 12 years of data - often not
enough to show true mean reverting behaviour.

Given that Displaced Diffusion features heteroskedastic behaviour but no mean reversion, one would
expect that it should outperform the dynamic Nelson-Siegel model. This is the case in our study. The
results show the following

• Dynamic Nelson-Siegel is in most cases overconservative. The reason being that an AR(1) process
does not capture the behaviour of β1 well and because of that the auto-regressive parameters are
too large.

• Dynamic Nelson-Siegel is underestimating risk when using longer backtesting windows and on
contracts that are out of the money. The reason is that the model tends to increase to a mean,
while in reality the interest rates predominantly have been going down.

• Displaced Diffusion performs better, both in backtesting the empirical distribution and the PFE. In
most cases, the model is on the conservative side, the PFE exceedences are tested to be statistically
plausible. The model seems to be too conservative with receiver contracts, given the downward
trend captured in the model. In addition, the model is overconservative when the fixed leg is much
higher than the actual rates.

Even though the results for backtesting of the PFE are useable in some cases for the Displaced
Diffusion model, the model does not always perform well at the empirical distribution. This is especially
the case for longer time horizons and for shorter maturity rates. It is therefor concluded that the model
can be used as benchmark for shorter maturity contracts that are at- or in-the-money.

Recommendations for future study

It is recommended to challenge the models over longer time horizons using a larger data set. In the
current study, with a burn in time of 3 years, one can only use backtesting windows of a couple of years
at best, without compromising the number of scenario’s. In addition, overlapping windows need to be
used for all time horizons longer than a couple of months, for the same reason.
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The use of daily rates as proxy for the instantaneous correlation matrix used for the adjusted DNS
model is recommended to study more closely. Especially for parameters that are not observed in the
market, the daily subset of data can represent a useful way of estimation. Given that CCR analysis is
often done over longer time horizons with relatively large step-sizes, it may be relevant for other models
as well, not just for the DNS model.

Model recommendations

It is recommended use the dynamic Nelson-Siegel model as a framework rather than a fixed model.
Diebold and Li (2006) analyse various different types of models for the beta parameters (from random
walks to vector-autoregressive models) and come to the conclusion that AR(1) models are best. However
as reasoned in the conclusions, that result can be put to doubt on the data in this study, especially for
the β1 parameter representing the level of the yield curve. When analysing the parameters, different
processes were found to be more fitting. In addition, the correlation may be modelled. It is suggested to
perform multiple analyses on the processes and their dependencies to find a suitable model.

The assumption that all zero rates (or Libor rates) follow the same type of process can be challenged,
as written in the conclusions. One solution is given by the previous recommendation - since the beta
parameters in the dynamic Nelson-Siegel model affect different maturities in different ways, using different
processes for these respective parameters can in principle model this. Other possibilities are regime-
switching processes such as for example described in Hamilton (2008), but in which one lets the different
rates switch from regime independently. Regime switching models are also a good option because of their
macro-economic interpretation. Many of the interest rates are forced to be low by ECB policy. Once the
lower rate policy is lifted, the regime of interest rates are likely to change.

A single constant as shift parameter might be too restrictive. It is recommended to check if the shift is
still realistic every time the model is recalibrated. One way to do this is as done in chapter 6 - by finding
the various shifts by maximum likelihood estimation. However, that method does not work equally well
on all maturities, so some care is required. In addition it was found that in calibrating the shift on part
of the data, and backtesting on the two years after, it happens often that the realised rates attend values
lower than the estimated lower bound. This is in important model risk. It is suggested to take the expert
based estimation, taking into account the most negative observed zero rates till date. This should include
other currency/national rates that are low.
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8 Appendix A: PFE profiles

8.1 Dynamic Nelson-Siegel

In this section, the PFE’s that are calculated in the backtesting of the Dynamic Nelson-Siegel model are
show against the realised values of the FRAs that are tested. The plots represent all the backtesting
experiments described in table 6.

8.2 Displaced Diffusion

In this section, the PFE’s that are calculated in the backtesting of the Displaced Diffusion model are
show against the realised values of the FRAs that are tested. The plots represent all the backtesting
experiments described in table 6.
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FRA using a 1% fixed leg

Figure 27: FRA6x9 payer after 1 month Figure 28: FRA6x9 receiver after 1 month

Figure 29: FRA24x36 payer after 24 months Figure 30: FRA24x36 receiver after 24 months

Figure 31: FRA6x9 payer after 3 months Figure 32: FRA6x9 receiver after 3 months
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FRA using a variable fixed leg

Figure 33: FRA6x9 payer after 1 month Figure 34: FRA6x9 receiver after 1 month

Figure 35: FRA24x36 payer after 24 months Figure 36: FRA24x36 receiver after 24 months

Figure 37: FRA6x9 payer after 3 months Figure 38: FRA6x9 receiver after 3 months
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FRA using a 5% fixed leg

Figure 39: FRA6x9 payer after 1 month Figure 40: FRA6x9 receiver after 1 month

Figure 41: FRA24x36 payer after 24 months Figure 42: FRA24x36 receiver after 24 months

Figure 43: FRA6x9 payer after 3 months Figure 44: FRA6x9 receiver after 3 months
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FRA using a -1% fixed leg

Figure 45: FRA6x9 payer after 1 month Figure 46: FRA6x9 receiver after 1 month

Figure 47: FRA24x36 payer after 24 months Figure 48: FRA24x36 receiver after 24 months

Figure 49: FRA6x9 payer after 3 months Figure 50: FRA6x9 receiver after 3 months
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FRA using a 1% fixed leg

Figure 51: FRA6x9 payer after 1 month Figure 52: FRA6x9 receiver after 1 month

Figure 53: FRA24x36 payer after 24 months Figure 54: FRA24x36 receiver after 24 months

Figure 55: FRA6x9 payer after 3 months Figure 56: FRA6x9 receiver after 3 months
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FRA using a variable fixed leg

Figure 57: FRA6x9 payer after 1 month Figure 58: FRA6x9 receiver after 1 month

Figure 59: FRA24x36 payer after 24 months Figure 60: FRA24x36 receiver after 24 months

Figure 61: FRA6x9 payer after 3 months Figure 62: FRA6x9 receiver after 3 months
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FRA using a 5% fixed leg

Figure 63: FRA6x9 payer after 1 month Figure 64: FRA6x9 receiver after 1 month

Figure 65: FRA24x36 payer after 24 months Figure 66: FRA24x36 receiver after 24 months

Figure 67: FRA6x9 payer after 3 months Figure 68: FRA6x9 receiver after 3 months
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FRA using a -1% fixed leg

Figure 69: FRA6x9 payer after 1 month Figure 70: FRA6x9 receiver after 1 month

Figure 71: FRA24x36 payer after 24 months Figure 72: FRA24x36 receiver after 24 months

Figure 73: FRA6x9 payer after 3 months Figure 74: FRA6x9 receiver after 3 months
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