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Abstract

This research investigates the effectiveness of graph-based data augmentation tech-
niques in improving the performance of DG4b, a deep learning model designed to
estimate bicycle travel times in urban environments. Given the limitations of real-
world cycling datasets, particularly data scarcity and trip-length imbalance, we pro-
pose two augmentation methods: Graph Stitching (GS), which combines segments of
existing trips to form new trajectories, and Graphon-Inspired Trip Generation (GITG),
which uses an empirically estimated transition kernel to simulate realistic trip patterns
through probabilistic sampling. Despite limited improvements, this study establishes
a foundation for future research in graph-based trajectory augmentation. Integrating
richer trip-level features, such as dynamic environmental conditions or behavioral data,
with structural augmentation could lead to more effective training data and improved
model generalization.

1 Introduction

Data augmentation is a widely-used technique in machine learning designed to artificially in-
crease the diversity and volume of training datasets. The approach is particularly beneficial
in deep learning, where extensive data is typically required to train robust and generalizable
models [20]. By generating new training samples through transformations such as rotation,
scaling, cropping, and flipping, data augmentation mitigates overfitting, enhances the gen-
eralization capabilities of models, and improves model performance, especially in scenarios
with limited labeled data [25].

A core challenge addressed by data augmentation is the scarcity and imbalance of
datasets, which frequently hampers the effective training of machine learning models [6].
Real-world datasets are often small or skewed, leading to models that poorly generalize to
new, unseen data [12]. Data augmentation techniques can partially overcome these issues
by synthetically expanding datasets and balancing class distributions, thereby promoting
robustness and reducing sensitivity to irrelevant variations in the input data.

A recent study proposing a graph-based deep learning model DG4b (Dual-Graph ap-
proach for Bicycle travel time estimation) [10] was trained on the cycling dataset SimRa [2].
This dataset suffers from this imbalance, where longer trips (20 minutes) are underrepre-
sented, see figure 1. This introduces an aspect to explore, wether or not this missing data
negatively impacts model performance.

This imbalance could be caused by multiple variables. [14] found that urban trails
primarily support short, utilitarian cycling trips, often replacing short car journeys. |[§]
supports this, stating that people prefer cars or public transport if the journey is perceived
as too long or if the purpose of the journey includes running errands, suggesting that longer
cycling trips become unpleasant if carrying luggage.

Another potential issue for the model could be data scarcity. The collection of cycling
trajectory data presents significant challenges in terms of spatial and temporal representa-
tiveness. Data acquired from fitness tracking applications and GPS-enabled devices often
reflects the behavior of a non-representative subset of cyclists, typically skewed toward more
affluent, fitness-oriented users who engage with platforms such as Strava or Garmin Con-
nect [23]. As a result, coverage tends to be concentrated along popular recreational routes
or commuter corridors, while low-income neighborhoods, rural areas, and less-traveled in-
frastructure remain underrepresented [15]. This bias limits the generalizability of models
trained on such data and may perpetuate inequities in cycling infrastructure planning.
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Figure 1: Trip length distribution in seconds

In addition to spatial and temporal limitations, ethical and privacy concerns pose sub-
stantial barriers to large-scale cycling data collection and use. GPS traces inherently con-
tain personally identifiable information, particularly when ride start and end points coincide
with home or workplace locations [18]. Even when anonymized, trajectory data can often
be re-identified with relatively high accuracy [22]. This raises concerns under data protec-
tion frameworks such as the General Data Protection Regulation (GDPR) in the European
Union, which mandates informed consent and the minimization of identifiable data [9].

Since the DG4b model takes trip specific graphs as input, the focus of this research will
be on graph data augmentation. Several graph augmentation, like Graph Mixup [19] [13],
apply Mixup [29] to graphs by transforming graphs into graphons [26]. We will discuss why
these traditional techniques unfortunately can’t be applied to our problem case.

In this research, we explore two different techniques to improve DG4b model performance
on the SimRa dataset. We introduce a relatively trivial approach and a more data-oriented
approach:

e Graph-stitching, combining two trip graphs creating a new one

e Graphon sampling, sampling new trips from a subset of trips via a graphon aggregate.

2 Background

This section discusses previous work that provides a foundation on which we will expand
on.



2.1 DG4b

Dual-Graph approach for Bicycle travel time estimation is a deep learning model proposed
in [10]. It seeks to estimate the travel time of bike trips in an urban environment. It has
two graph components, a static road line graph and a trip-specific travel graph.

Definition 1 (Road Line Network):
We utilize a line graph representation to emphasize interactions between road segments,
which also offers an effective way to model the road network. The road network is defined
as an undirected line graph G = (V, E), where V is the set of nodes and F is the set of
edges. Each node v; € V corresponds to a specific road segment, and each edge e;; €
represents a connection (i.e., an intersection) between two adjacent road segments v; and
Vi.

Definition 2 (Trip graph): A trip 7; represents a travel route from a starting point to
a destination within a network. The initial data for each trip is a series of GPS coordinates
paired with timestamps. After applying map-matching[11] techniques, each trip-graph can
be characterized by three components: T; = {V;, t;,v;}, where:

o V; = {v},...,v"} represents the sequence of road segments (or nodes) traversed during
the trip;

e t; = wether or not the trip took place during peak hours, ¢; € [0, 1]

e y; = the total duration or the travel time of the trip.

2.2 Dataset

The trip data used in this study is derived from the SimRa dataset! [2], a crowdsourced
mobility dataset collected via a mobile application installed by voluntary users. The dataset
is geographically focused on the Berlin metropolitan area and comprises detailed spatiotem-
poral traces of bicycle trips. For consistency with prior work, we utilize data from January
2025, aligning with the original training period of the DG4b model. This facilitates direct
comparability and ensures that domain-specific patterns present in the original training data
are preserved.

The objective of this study is to integrate augmented trajectory data with the real-
world SimRa dataset. As the SimRa trajectories have been preprocessed into a graph-based
representation, the augmented samples are likewise transformed into graph format to enable
seamless data fusion and model compatibility.

2.3 Graphons

Graphons are symmetric, measurable functions W : [0,1]? — [0, 1] that serve as limit objects
for sequences of graphs. Introduced by Lovasz and Szegedy|[17]| in the theory of dense
graph limits, graphons enable a nonparametric, probabilistic framework for modeling large
networks. They provide a unified representation for various random graph models, including
Erdés-Rényi and stochastic block models, and support the analysis of network convergence,
sampling, and estimation. See figure 2 for a visualization of graphon.

Graphons are closely linked to the theory of exchangeable random graphs|7], where the
graph distribution is invariant under permutations of node labels. This invariance makes

lhttps://www.digital-future.berlin/en/research/projects/simra/
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graphons particularly useful in scenarios lacking node identity, such as population-level
modeling or anonymized graph data.

Graphon Estimation. Multiple strategies have been developed to estimate graphons
from observed graph data. Block-based methods[26] approximate the graphon using piece-
wise constant functions, effectively capturing community structure. Spectral techniques,
such as Universal Singular Value Thresholding (USVT)[5], estimate graphons via low-rank
approximations of the adjacency matrix and are especially effective when the underlying
structure is smooth or low-rank. Kernel smoothing approaches[4] apply Gaussian filters to
adjacency matrices sorted by empirical degree, assuming monotonic latent position func-
tions.

Bayesian formulations treat the graphon as a latent function with a prior over random
arrays|[16], enabling uncertainty quantification and hierarchical modeling. More recently,
Gromov-Wasserstein alignment has been used to compare and interpolate between graph
structures without requiring aligned nodes, inspiring methods for data augmentation and
representation learning[28].

Sparse Graphon Models. Real-world road networks are sparse, spatially embedded, and
typically constrained by geographic factors. Traditional graphon models, while powerful for
modeling exchangeable graphs [17, 3|, assume node-permutation invariance and are typically
designed for dense networks. This makes them poorly suited for representing road systems
directly. However, their probabilistic structure and generative flexibility offer compelling
foundations for hybrid modeling.

Graphons have become a foundational tool in modern graph theory and machine learning,

supporting applications ranging from synthetic graph generation and data augmentation to
structure-aware learning and probabilistic inference on networks.

3 Methodology

In this section, we discuss two methods of graph data augmentation applied to our problem.

3.1 Graph-Stitching

The more simple method we propose is Graph-Stitching (GS). Given a node N, we find two
trips that traverse this node.



Figure 3: Graph Stitching 1. Two directed graph trips red and blue connect at a node.
2. Two new graphs could be sampled, and

e For one of the trips T;, we find the position of IV in the sequence V; and extract the

subset S; = {v},...,vF}, where vf = N.
e For the other trip T}, we extract S; = {vé—, ..+, v} from Vj, where vj- =N.
e The two sequences are then stitched together, creating S;y; = {vl, .. .,N,..., v;’}

This gives us a basic form of graph data augmentation, where we combine two trips to
create a new one.

3.2 Hybrid Graphon-Inspired Trip Generation via Empirical Esti-
mation

To generate realistic and structurally coherent trip data, we propose a hybrid graphon-
inspired model that integrates the generative flexibility of graphons with the spatial and
topological constraints of real-world road networks. We will refer to this model as GITG
(Graphon-Inspired trip generation). Unlike classical graphon models, which are designed for
dense, exchangeable graphs|[17], our approach operates on a fixed underlying road network
and estimates a graphon-like transition kernel directly from observed trip data.

Let G = (V,E) be a road network, where each node v € V corresponds to a spatial
location (e.g., an road segment) and each edge (u,v) € F represents an intersection. We
are given a set of observed trips T = {T1,...,Tn}, each represented as a path or subgraph
within G. To model the likelihood of movement between nodes, we define an empirical
graphon Wi, : VXV — [0,1] as a normalized transition matrix based on the observed
co-occurrence of consecutive node pairs in trips:

. freq(i — j)
Wri 5 = A ;
wrip (1) Zke/\/(z‘) freq(i — k)

where freq(: — j) denotes the number of observed transitions from node ¢ to j, and N (i) is
the neighborhood of node i in G. This formulation yields a data-driven, localized connec-
tivity kernel that captures directional travel preferences inherent in real trips.

New synthetic trips are sampled by initiating a random walk on G, starting from a node
drawn according to the empirical distribution of trip origins, and advancing step-by-step
using transition probabilities defined by Wi,ip. This walk is terminated based on a either
stochastic stopping rule (maximum trip length) or when no further feasible transitions are
available (e.g., reaching a dead-end in the network), resulting in a path that reflects empirical
movement behavior while allowing for structural variability.



Figure 4: Hybrid Graphon-Inspired Trip Generation via Empirical Estimation
1. Select trip graphs 2. Combine into large graph, accounting for topological overlap 3.
Compute graphon. This is a visualization of a graphon, where a lighter color indicates a
higher probability of an edge being in a trip graph 4. Sample new trip graphs

This hybrid model benefits from the expressiveness of graphons[3] and the realism of
spatial networks[1]. It also aligns with recent advances in trajectory modeling that integrate
topological priors with data-driven inference[27]|, and serves as a practical augmentation
framework for training and evaluating graph-based learning models on mobility data.

3.3 Setting Node Features

All nodes correspond to a road segment in the static road-line graph, with road segments
varying in length. For each node in the artificial trip sequence, there are corresponding node
features utilized to determine a trips travel time. The speed for which an the artificial cyclist
travels over a road segment, is sampled from a Gaussian Kernel Density Estimate (KDE).
KDE produces smooth continuous values and can handle multi-modality[21], proving ideal
for our situation. The travel time for a node is set by multiplying the road segment distance,
d;, with the sampled speed, s;, giving t; = d; * s;. The DG4b model also incorporates
contextual trip features, specifically the seasonal period (time of year) and whether the
trip occurs during peak travel hours. These values are sampledfrom a random uniform
distribution, where the intervals are [0,3) and [0, 1) respectively.

4 Results and Discussion

In this section we will layout the experiments that we have executed to determine the
effectiveness of our proposed graph data augmentation techniques. We analyze these results
to provide insights into the underlying factors that explain the success or limitations of our
proposed methods.



4.1 Evaluation Metrics

To assess the impact of our augmentation techniques, we will compare the model performance
with the same evaluation metrics introduced by Gao [10]. Model performance is evaluated
using four metrics: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), and Satisfaction Rate (SR). These metrics are defined
as follows:

| T |
RMSE = \| 77 3 (s = 90)% (1)
=1
1 |T: |
MAE = 0 Dl = il 2)
=1
R
MAPE = — 3 |& x 100%, 3)
Tl = | wi
SR:T|Z< Zy i <20%)><100%, (4)
=1 ‘

where 3° and ¢’ denote the ground truth and estimated travel time for trip T}, respec-
tively, and |T;| is the total number of trips evaluated. The Satisfaction Rate (SR) measures
the percentage of trips for which the relative error is within 20%.

RMSE penalizes large errors, indicating if outliers are present. MAE tells the average
error, indicating a more general performance of the model. It is important to note that
MAPE and SR are particularly sensitive to short trips. In such cases, even minor absolute
deviations can lead to large relative errors, potentially skewing the evaluation. Therefore,
while these metrics offer insight into relative performance, they should be interpreted with
caution when analyzing trips of short duration.

4.2 Experiment set-up

After generated trips are augmented to the original data, we split the augmented data into a
train and validation set. The test set remains untouched, to ensure each dataset performance
receives fair evaluation. Furthermore, artificial data is only added to train and validation
set, meaning that original data retains its original split. Each variation of the mentioned
data augmentation techniques will generate a set of 10000 artificial trips. The DG4b model
will always run with a learning rate of 0.001, a random seed of 42, and a training batch size
of 1024.

4.3 Model performance on augmented data

In ths section we will be performing two different experiments to explore the influence and
feasibility of our data augmentation techniques. First we will train the model on the original
and augmented data, using 10000 augmented trips. For the second experiment, we generate
10000 trips while attempting to minimize the amount of short trips in the augmented data.



Table 1: Performance comparison for different augmented datasets and the original dataset.
The best performing data is marked red and if an augmented dataset outperforms the
original dataset it is marked in blue. A score is also marked blue if it equalizes the raw data
performance (this is only applicable to SR)

‘ Total ‘ Short (<8 min) ‘ Medium (8 & 16 min) ‘ Long (>16 min)

| RMSE MAE MAPE SR |RMSE MAE MAPE SR |RMSE MAE MAPE SR |RMSE MAE MAPE SR
DG4b Raw Data | 473.82 145.05 18.05 69.0| 82.54 5624 235 59.0 | 15497 111.32 1586 72.0 | 793.39 2655 1461 76.0

499.77 153.75 19.52 68.0]81.96 57.82 26.84 58.0 |147.44 107.68 1541 73.0 |840.11 292.93 15.97 73.0
GS leave out short trips | 474.64 151.06 20.31 67.0| 86.43 59.88 29.18 57.0 | 151.96 110.86 15.88 71.0 |794.95 280.02 15.52 74.0

467.42 148.68 19.45 68.0| 89.80 57.22 26.48 59.0 | 158.22 114.34 16.36 71.0 | 780.75 272.47 15.26 75.0
GITG exclude short trips | 471.85 148.3  19.08 69.0 | 84.87 56.43 25.75 60.0 | 153.72 1114 15.95 72.0 | 789.91 274.89 15.28 76.0

For GS we do this by leaving out short trips from the sampling pool. In the case for GITG,
we do this by setting the minimum amount of edges for an artificial trip to 100. With both
techniques, short trips will still be generated but in smaller quantities. This caused by two
reasons: 1. GS samples small node sequences from two different trips, resulting in a short
end trip. 2. GITG’s stopping condition can be met when there are no more edges to be
sampled from. For augmented data trip distribution, see the Appendix.

We also compare the model performance on three different trip categories: short (<8
minutes), medium (8-16), and long (>=16 minutes), as defined by [10]. The results are
displayed in table 3. Unfortunately, there is no dataset that outperforms the raw data on
every metric at the same time.

4.4 Graph Stitching performance

When evaluating the performance metrics associated with the GS-generated trips, we ob-
serve a negative overall impact on model performance, with improvements limited primarily
to medium-length trips. This improvement may be attributed to the relative underrepre-
sentation of medium-length trips in the original dataset, suggesting that the augmentation
process enhances the model’s ability to generalize by expanding this subset.

In contrast, performance on longer trips deteriorates significantly. A plausible explana-
tion is that GS-generated trajectories for these longer trips may include implausible road
segment sequences or unrealistic route choices, which could introduce noise and reduce the
model’s ability to learn meaningful patterns. This is consistent with the increased com-
plexity and contextual dependence of long trips, which are not adequately captured by the
current augmentation approach.

Furthermore, the GS method does not yield noticeable improvements for short trips.
This may be due to the high variability inherent in short cycling trips, which are more
susceptible to external factors such as traffic signals, intersections, and stop-and-go behavior.
As highlighted by Gao et al. [10], such factors introduce stochasticity that our augmentation
method does not currently model, thereby limiting its effectiveness for this segment of the
data.



4.5 Graphon-Inspired Trip generation performance

An analysis of model performance using GITG-augmented data reveals that GITG gener-
ally underperforms slightly relative to the raw dataset, although it demonstrates marginal
improvements in certain cases. Notably, when GITG-generated trips are incorporated into
the training set, we observe an improvement in RMSE for long trips, suggesting that the
additional data does not introduce substantial outliers or anomalous trajectories that could
destabilize the models learning process. This interpretation is further supported by the
consistency of SR scores with those observed for the unaugmented data, indicating that the
model maintains a reasonable approximation of travel times.

However, GITG consistently exhibits inferior performance on MAE and MAPE metrics,
implying that the inclusion of generated trips does not enhance the model’s capability for
fine-grained or precise time estimations. Moreover, similar to the GS augmentation, GITG
performs poorly on short trips. This likely stems from the shared approach used for synthe-
sizing trip-level features-such as average speed and classification into (off-)peak hours-which
does not account for external factors (e.g., traffic signals, stop frequency, or urban density)
that disproportionately affect short-trip dynamics. Consequently, these limitations may
hinder the model’s ability to accurately learn from or generalize over short trip data.

4.6 Augmented Data as Sole Training Source

To determine the individual performance of our augmentation techniques, we run an exper-
iment in which we remove the original raw data. For both GS and GITG we generate 20000
trips and train DG4b on these separately. We chose 20000 trips because this approximately
resembles the amount of trips the original training set contains. The results can be seen
in table 2. According to the results, the model performs better or equal on GITG data for
all metrics when compared to training on only GS data. This can be explained by GITG
producing data that exhibits greater variability when it comes to route selection, as GS trips
consist of only two subtrips, limiting features such as trip length. The marginally better
performance of GITG over GS suggests that GITG has greater potential to be a feasible
graph data augmentation technique then GS.

Table 2: Performance comparison for training the DG4b model on only augmented data

Method

‘ Total ‘ Short (<8 min) ‘ Medium (8 & 16 min) ‘ Long (>16 min)

|RMSE MAE MAPE SR |RMSE MAE MAPE SR |[RMSE MAE MAPE SR | RMSE MAE MAPE SR

GS Only augmented trips 649.26 246.52 29.18 33.0| 111.92 93.67 34.67 23.0|213.04 181.33 26.07 35.0|1087.16 460.65
GITG Only augmented trips | 646.92 243.69 28.82 33.0|110.66 92.53 34.27 23.0|210.87 179.2 25.77 36.0|1083.57 455.47

26.56 40.0
26.17 41.0

4.7 Using varying amounts of augmented trips

To further experiment with the augmentation techniques, we generated multiple sets of aug-
mented data varying in size. The increased amount of trips gave similar results as discussed
above. All model performance results and generated data distributions are displayed in the
Appendix.



5 Responsible Research

he importance of conducting research responsibly and ethically is paramount, particularly in
studies involving human mobility data. In this project, we have taken comprehensive mea-
sures to ensure that our research adheres to high standards of transparency, reproducibility,
and integrity.

To support reproducibility, all experiments were conducted in a controlled and well-
documented environment. Each step in the data processing, model training, and evaluation
pipeline has been thoroughly recorded to allow for independent verification and replication of
results. The data augmentation techniques introduced in this study were applied multiple
times under consistent experimental conditions to assess the stability and robustness of
their influence on model performance. This repeated experimentation ensures that reported
outcomes are not artifacts of random variation or single-run anomalies.

All code, scripts, and generated data associated with this research are archived and can
be made available upon request, enabling other researchers to replicate our methods, build
upon our findings, or perform independent validations. This commitment to open scientific
practice enhances the reliability of our conclusions and fosters collaborative advancement in
the field.

In handling real-world cycling data, we recognize the significant ethical responsibility
to protect user privacy. The dataset used in this study-the SimRa cycling dataset-has
been preprocessed by its custodians to ensure full compliance with privacy regulations.
According to the dataset providers, all personally identifiable information has been removed
or obfuscated, and the data has been anonymized such that individuals cannot be reidentified
[2]. As researchers, we have further refrained from implementing any procedures that could
compromise this anonymization or reverse-engineer sensitive details.

By maintaining a strong emphasis on ethical data handling, privacy preservation, and
research transparency, this study contributes to a responsible research culture that respects
both scientific rigor and individual rights.

6 Conclusions and Future Work

The results of our experiments indicate that the proposed data augmentation techniques do
not lead to overall improvements in the performance of the DG4b model for bicycle travel
time estimation. While the Graph Stitching (GS) method demonstrates performance gains
for medium-length trips, it exhibits reduced effectiveness for short and long trips, suggesting
limited generalizability across the full distribution of trip lengths.

The Graphon-Inspired Trip Generation (GITG) approach achieves better average perfor-
mance compared to GS, likely due to its probabilistic modeling framework, which facilitates
the generation of synthetic trips with more realistic spatial patterns. Nevertheless, neither
augmentation method results in substantial improvements in prediction accuracy or preci-
sion. Although the models trained on the augmented datasets are able to approximate travel
times reasonably well, they consistently underperform in terms of fine-grained estimations,
as reflected by elevated MAE and MAPE scores.

We attribute this shortfall to the limited treatment of non-routing contextual factors,
such as traffic conditions, signal delays, and cyclist behavior, which are particularly in-
fluential in short trips and contribute significantly to travel time variability. Our current
augmentation methods do not simulate these external influences, which likely constrains the
model’s performance.
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Despite these limitations, the findings of this study open promising directions for fu-
ture work. Specifically, future research could investigate integrating more realistic trip-level
features; such as dynamic traffic data, elevation profiles, or stop frequency into the augmen-
tation process. When combined with graph-based techniques like those explored here, such
enhancements could yield synthetic datasets that are not only structurally plausible but also
behaviorally rich, thereby improving model accuracy and generalization.
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A Appendix

Table 3: Performance comparison for different augmented datasets and the original dataset.
The best performing data is marked red and if an augmented dataset outperforms the
original dataset it is marked in blue. A score is also marked blue if it equalizes the raw data
performance (this is only applicable to SR)

Method ‘ Total ‘ Short (<8 min) ‘ Medium (8 4 16 min) ‘ Long (>16 min)

|RMSE MAE MAPE SR |RMSE MAE MAPE SR |RMSE MAE MAPE SR |RMSE MAE MAPE SR

DG4b Raw Data

473.82 145.05 18.05 69.0‘82.54 56.24  23.5 59.0‘154.97 111.32  15.86 72.0‘793.39 265.5 14.61 76.0

GS 5000 trips 468.05 147.71 19.34 70.0 | 87.53 574 26.81 61.0 | 152.24 109.24 15.66 73.0 |783.23 274.17 15.25 75.0
GS 10000 trips 499.77 15375 19.52 68.0 | 81.96 57.82 26.84 58.0 |147.44 107.68 15.41 73.0 |840.11 292.93 15.97 73.0
GS 20000 trips 470.87 158.79 22.16 65.0 | 100.81 66.08 32.58 55.0 | 166.73 119.31 17.02 70.0 | 783.84 288.61 16.48 70.0
GITG 5000 trips 472,39 149.71  19.85 68.0 | 89.44 58.99 27.46 59.0 | 159.86 117.54 16.84 69.0 | 789.22 270.74 14.98 77.0
GITG 10000 trips 467.42 148.68 19.45 68.0 | 89.89 57.22 26.48 59.0 | 158.22 114.34 16.36 71.0 | 780.75 272.47 15.26 75.0
GITG 20000 trips 458.01 154.26 21.96 66.0 | 105.73 67.64 33.18 54.0 | 166.5 117.42 16.78 71.0|760.63 27549 155 74.0

GS Exclude short trips - 5000 trips 473.22  149.96 19.94 68.0 | 9423 59.11 28.04 58.0 | 153.07 110.98 15.97 72.0 | 791.37 277.44 1548 75.0
GS Exclude short trips - 10000 trips 474.64 151.06 20.31 67.0 | 86.43 59.88 29.18 57.0 | 151.96 110.86 15.88 71.0 | 794.95 280.02 15.52 74.0
GS Exclude short trips - 20000 trips 476.71 150.21 19.93 68.0 | 88.7 5836 28.21 58.0 | 148.28 109.31 15.62 72.0 | 798.96 280.49 15.6 T74.0

GITG Exclude short trips - 5000 49547 149.1  20.04 68.0 | 86.11 60.98 29.59 55.0 | 146.44 106.5 1528 74.0 |832.36 277.2 14.88 77.0
GITG Exclude short trips - 10000 trips | 471.85 148.3  19.08 69.0 | 84.87 56.43 25.75 60.0 | 153.72 111.4 15.95 72.0 | 789.91 274.89 1528 76.0
GITG Exclude short trips - 20000 trips | 502.4 160.45 20.9 65.0 | 89.62 62.51 29.2 57.0 | 157.88 114.71 16.41 70.0 | 842.16 301.32 16.74 70.0

Below are the time travel distributions for the generated datasets.

1. For the first six graphs, we generate 5000, 10000, and 20000 trips for both GITG and
GS, without constraints

2. For the next six graphs, we attempt to minimize the amount of short trips. For GS,
we remove short trips from the GS pool. This means that only stitch medium and
long trips together. For GITG, we set the minimum amount of edges to be generated
to be 100.
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Figure 5: Time travel distributions for generated data
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