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SUMMARY

In this thesis, we study deterministic and stochastic abstract evolution equations
which are assumed to be of fractional order, either spatially or spatiotemporally. The
first chapter contains the preliminary concepts necessary to interpret such equa-
tions, and indicates their relations to the subsequent chapters.

In the second chapter, we consider a class of fractional-order linear stochastic par-
tial differential equations of the form

@, +ATX( =W, tel0, T, ye(/2,00),

with zero initial data. The linear operator — A generates a strongly continuous semi-
group on a separable Hilbert space and the spatiotemporal driving noise W< is the
formal time derivative of a cylindrical Q-Wiener process taking its values in this
space. Mild and weak solutions are defined, and these concepts are shown to be
equivalent and to lead to well-posed problems. In the case that the Hilbert space is
L2(D) for some spatial domain D < Rd, these solutions are interpreted as spatiotem-
poral Gaussian random fields (X (t, x)) (1, xe0,71xD- We investigate the temporal and
spatial regularity of the solution process X, the former being measured by mean-
square or pathwise smoothness and the latter using fractional domain spaces of A.
In addition, the covariance of X and its long-time behavior are analyzed. These ab-
stract results are applied to the cases when A := L and Q := L% are fractional pow-
ers of symmetric, strongly elliptic second-order differential operators defined on (i)
bounded Euclidean domains D C R4, or (ii) smooth, compact surfaces M. In these
cases, the solution processes can be seen as spatiotemporal generalizations of the
(Whittle-)Matérn Gaussian random fields widely used in spatial statistics.

In the third chapter, we define a number of higher-order Markov properties for
stochastic processes indexed by an interval T € R and taking values in a real sepa-
rable Hilbert space, and we investigate the relations between them. For the abstract
stochastic equation £X = W, where L is a linear operator and W is a cylindrical Wie-
ner process, we identify two sets of additional conditions under which the locality of
the precision operator £*L becomes either necessary or sufficient, respectively, for
X to possess the weakest Markov property. We apply this theory to the setting of
the preceding chapter by taking £ = (3, + A)Y with A and y as above, and zero initial
dataifinf T > —co. We prove that the resulting solution process satisfies an Nth order
Markov property ify = N € N and conversely demonstrate that a necessary condition
for the weakest Markov property is, in general, not satisfied if y ¢ N. Moreover, com-
plementing the aforementioned link to Whittle-Matérn fields, we again demonstrate
the relevance of this class of processes by showing that an infinite-dimensional ana-
log to the fractional Brownian motion with Hurst parameter H € (0,1) is obtained as

the limiting case of £ = (0; + €Id) Hi; fore | 0.
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X SUMMARY

In the fourth chapter, we turn to the (deterministic) natural Dirichlet problem for
(0 + A)Y on an interval (#,00) with ty € R. That is, instead of considering zero initial
data or taking fy = —oo as in the preceding two chapters, in this chapter we impose
that the solution equals a given function g on all of (—oo, fy]:

@+ A) u(r) =0, t € (fp,00), Y €(0,00),
u(t) =g, te(-oo,nl,

The operator — A now acts on an arbitrary Banach space and generates a semigroup
which is strongly measurable and uniformly bounded. Under the additional as-
sumption that the semigroup is exponentially stable, we show that the Dirichlet
problem is well-posed in an LP-sense with p € [1,00]. For values of y and p such
that LP-solutions are continuous, we show that they satisfy a mild solution formula,
expressing them in terms of the initial data and the semigroup, and generalizing the
well-known variation of constants formula for the first-order abstract Cauchy prob-
lem. Although its derivation relies on the exponential stability assumption, the re-
sulting solution formula remains meaningful for uniformly bounded semigroups.
Moreover, we include a comparison to analogous solution concepts arising from
Riemann-Liouville and Caputo type initial value problems.

Finally, in the fifth chapter, we return to the case of stochastic equations. Namely,
we study the convergence as n — oo of a sequence of semilinear parabolic stochastic
evolution equations of the form

dX, (1) =-A, X, () dt+ F,(t, X, (t)) dt + AW, (1), t€(0,T],
Xn(o) :fn-

posed on a sequence of Banach spaces which approximate a limiting space. The
abstract ‘discrete-to-continuum approximation’ setting is encoded by means of pro-
jection and lifting operators. These allow us to

e compare the linear operators A, semilinear drifts F, and initial data ¢, at dif-
ferent indices n,

¢ define the additive noise dW,, as a projection of cylindrical Wiener noise on the
limiting space, and thus

e formulate conditions on the growth, Lipschitz continuity, and convergence of
the coefficients under which we establish convergence of the associated mild
solution processes X, when lifted to a common state space.

Our framework is applied to the case where the limiting problem is a stochastic par-
tial differential equation whose linear part is a generalized Whittle-Matérn operator
on a manifold M, discretized by a sequence of graphs constructed from a (random)
point cloud. In this setting, we obtain discrete-to-continuum convergence of solu-
tions lifted to the spaces L9 (M) for g € [2,00].



SAMENVATTING

In dit proefschrift bestuderen we deterministische en stochastische abstracte evolu-
tievergelijkingen van fractionele (tijd)ruimtelijke orde. In het eerste hoofdstuk vat-
ten we concepten samen die nodig zijn om dergelijke vergelijkingen te interpreteren
en geven we de verbanden met de daaropvolgende hoofdstukken aan.

In het tweede hoofdstuk behandelen we een klasse van lineaire fractionele sto-
chastische partiéle differentiaalvergelijkingen van de vorm

@+ A'X( =W, tel0,T], ye(/2,00),

met beginwaarde nul. De lineaire operator — A brengt een sterk continue halfgroep
voort op een separabele Hilbertruimte en het tijdruimtelijke ruisproces W< is de for-
mele tijdsafgeleide van een cilindrisch Q-Wienerproces met waarden in deze ruimte.
We definiéren milde en zwakke oplossingen en tonen aan dat deze concepten equi-
valent zijn en goedgestelde problemen opleveren. Deze oplossingen worden gein-
terpreteerd als tijdruimtelijke Gaussische kansvelden (X(, x))(s,xe[o0, 71xD als we als
Hilbertruimte L2(D) nemen, gegeven een ruimtelijk domein D < R4. We onderzoe-
ken de regulariteit van het oplossingsproces X in tijd en ruimte, waarbij tijdsregula-
riteit wordt gemeten aan de hand van kwadratisch gemiddelde of padsgewijze glad-
heid, en ruimtelijke regulariteit via fractionele domeinruimten van A. Daarnaast
analyseren we de covariantie van X en het asymptotische gedrag op lange termijn.
Deze abstracte resultaten worden toegepast op het geval dat A := LA en Q := L@
fractionele machten zijn van symmetrische, sterk elliptische differentiaaloperatoren
gedefinieerd op (i) begrensde Euclidische domeinen D C R¥ of (ii) gladde, compacte
oppervlakken M. In deze gevallen kunnen de oplossingsprocessen worden gezien
als tijdruimtelijke generalisaties van de (Whittle-)Matérn Gaussische kansvelden die
veelvuldig worden gebruikt in de ruimtelijke statistiek.

In het derde hoofdstuk definiéren we een aantal Markov-eigenschappen van ho-
gere orde voor kansprocessen geindexeerd door een interval T < R met waarden in
een reéle separabele Hilbertruimte, en we onderzoeken de onderlinge relaties tus-
sen deze eigenschappen. Voor de vergelijking £LX = W, waarbij £ een lineaire ope-
rator is en W een cilindrisch Wienerproces, stellen we voorwaarden vast die ervoor
zorgen dat lokaliteit van de precisie-operator £*£ noodzakelijk dan wel voldoende
is voor de zwakste Markov-eigenschap van X. We passen deze theorie toe op de
situatie van het vorige hoofdstuk door als operator £ = (3; + A)Y te nemen, met
A en y zoals hierboven gedefinieerd en beginvoorwaarde nul als inf T > —co. We
bewijzen dat het resulterende oplossingsproces een N¢-orde Markov-eigenschap
heeft als y = N € N; omgekeerd laten we zien dat een noodzakelijke voorwaarde
voor de zwakste Markov-eigenschap in het algemeen niet vervuld is indien y ¢ N.

XI



XII SAMENVATTING

Ten slotte tonen we, ter aanvulling op het eerder opgemerkte verband met Whittle—
Matérnvelden, nogmaals de relevantie van deze klasse processen aan door te bewij-
zen dat een oneindigdimensionaal analogon van de fractionele Brownse beweging
met Hurstparameter H € (0, 1) een limietgeval is van £ = (3; + £1d) H+y alse| 0.

In het vierde hoofdstuk richten we ons op het (deterministische) natuurlijke Di-
richletprobleem voor (3, + A)Y op een interval (fy,00) met ) € R. In tegenstelling tot
de vorige twee hoofdstukken, waarin de beginwaarde nul of 7y = —oco was, leggen we
nu op dat de oplossing gelijk is aan een gegeven functie g op (—oo, fl:

(at+A)yu(t):0) IE(t(),OO), YE(OrOO);
u(t)=g(o), te(—co, ).

De operator — A werkt nu op een algemene Banachruimte en brengt een sterk meet-
bare en uniform begrensde halfgroep voort. Onder de verdere aanname dat deze
uniform exponentieel stabiel is, tonen we aan dat het Dirichletprobleem goedge-
steld is in LP-zin voor p € [1,00]. Voor waarden van y en p zodanig dat deze LP-
oplossingen continu zijn, tonen we aan dat ze kunnen worden uitgedrukt met een
milde oplossingsformule, in termen van de beginwaarden en de halfgroep, die de
bekende variatie-van-constantenformule voor het eerste-order abstracte Cauchy-
probleem generaliseert. Hoewel de afleiding gebruikmaakt van de exponentiéle sta-
biliteit, blijft de uiteindelijke oplossingsformule welgedefinieerd voor uniform be-
grensde halfgroepen. Tot slot vergelijken we deze formule met analoge oplossings-
concepten voor beginwaardeproblemen in de zin van Riemann-Liouville of Caputo.

In het vijfde en laatste hoofdstuk keren we terug naar stochastische vergelijkingen.
We bestuderen de convergentie als n — oo van semilineaire parabolische stochasti-
sche evolutievergelijkingen van de vorm

dX, (1) =-Ap X, () dt + F,(t, X, (1)) dt + AW, (1), te(0,T],
Xn(0) =¢&p.

geformuleerd op een rij Banachruimten die een limietruimte benaderen in een ab-
stracte ‘discreet-naar-continuiim’-zin die formeel wordt beschreven aan de hand
van projectie- en liftoperatoren. Deze stellen ons in staat om

 de lineaire operatoren A, semilineaire driftoperatoren F,, en beginvoorwaar-
den ¢, voor verschillende indices # met elkaar te vergelijken,

* de additieve ruis dW,, te definiéren als een projectie van cilindrische Wiener-
ruis op de limietruimte, en daarmee

» voorwaarden te formuleren inzake groei, Lipschitzcontinuiteit en convergentie
van de coéfficiénten, waarmee we de convergentie van de milde oplossingspro-
cessen X, in een gemeenschappelijke toestandsruimte kunnen bewijzen.

We passen onze methode toe op het geval waarin het limietprobleem een stochas-
tische partiéle differentiaalvergelijking is met als lineair deel een gegeneraliseerde
Whittle-Matérnoperator op een gladde variéteit M, die wordt gediscretiseerd door
een rij grafen geconstrueerd op basis van een (willekeurige) puntenwolk. In deze
context verkrijgen we discreet-naar-continutimconvergentie van oplossingen, gelift
naar de ruimte L9(M) voor ¢ € [2,00].



INTRODUCTION

This introductory chapter is devoted to summarizing the common themes which oc-
cur in the subsequent main Chapters 2-5 and illustrating the interrelations between
them and the rest of this thesis. Since the upcoming chapters are all, at least par-
tially, concerned with (stochastic) partial differential equations of fractional order in
space and possibly time, the necessary preliminaries can naturally be divided into
the following categories.

In Section 1.1 we describe how (deterministic) partial differential equations can
be cast into the abstract functional-analytic setting of evolution equations, i.e., ordi-
nary differential equations taking values in (infinite-dimensional) Banach or Hilbert
spaces. An important role is played by the notion of a semigroup generated by a
linear operator on such a space, and in Section 1.2 we focus on the concrete situa-
tion of elliptic second-order operators defined via sesquilinear (or bilinear) forms.
In Section 1.3 we discuss the concept of functional calculus, with the particular
aim of defining fractional powers of (differential) operators which enable us to con-
sider fractional-order evolution equations. The final preliminaries are given in Sec-
tion 1.4, where we consider the probabilistic notions of (Gaussian) random fields
and processes, white noise and stochastic integration; these are used for the stochas-
tic evolution equations considered throughout the subsequent chapters. Section 1.5
provides an outline of the remaining chapters of this thesis and their relation to the
preliminaries from Sections 1.1-1.4.

Throughout this chapter, we assume familiarity with basic concepts from func-
tional analysis, (metric) topology, differential geometry and probability theory, but
we will typically emphasize our notational choices at their first occurrence. We make
no claim of originality of the results comprising this chapter, and in Section 1.6 we
give some further bibliographical notes on the topics treated in this introduction.

1.1. SEMIGROUPS AND ABSTRACT EVOLUTION EQUATIONS

Consider a linear inhomogeneous deterministic partial differential equation of first
order in time and arbitrary order in space. That is, given a time interval J := (fy, T)
(where —oco < fy < T < 00), an open and connected spatial domain @ # D < R4
(where d € N := {1,2,...}), and an inhomogeneity f: J x D — R, we wish to find a



2 1. INTRODUCTION

function u: J x D — R (where the bar indicates the closure) which solves the initial-
boundary value problem

Sult,x)+ Lu(t,x) = f(t,x), (t,x)€]=xD;
u(to, x) = up(x), x€D; (1.1.1)
u(t,x) =0, (t,x) e Jx0D.

Here, L represents a linear operator acting on the spatial variable of u (such as the
Laplace(-Beltrami) operator, see Sections 1.2.3 and 1.2.4), and 8D denotes the (topo-
logical) boundary of D. The initial condition uy: D — R and homogeneous bound-
ary datain (1.1.1) are only prescribed if #p > —oco and 9D # @, respectively.

The aim of this section is to provide a brief introduction to the abstract evolution
equationviewpoint for problems such as (1.1.1), since we will view all the (fractional-
order and possibly stochastic) evolution equations treated in Chapters 2-5 in this
way. The key idea is to interpret u and f as functions of time which take their values
in a space E of functions from D to R. If E has sufficient structure, for instance if it is
a Banach space, then we can cast (1.1.1) into the form of an E-valued (and typically
infinite-dimensional) ordinary differential equation of the form

(1.1.2)

u' () + Au(t) = (1), te];
u(ty) = up € E.

Here, A: D(A) € E — E is an (unbounded) linear operator which models the spatial
(differential) operator L. Its domain D(A) can be used to encode boundary condi-
tions, such as the homogeneous Dirichlet condition in (1.1.1). In other words, the
evolution equation viewpoint consists in removing the explicit dependence on the
spatial variable x € D from the equation by encoding it implicitly into E.

Several definitions of a solution to the abstract Cauchy problem, as (1.1.2) is called,
are given in Section 1.1.3. For this thesis, the most important of these is the notion
of a mild solution, which is used throughout all of Chapters 2-5. It is formulated in
terms of a one-parameter family (S(#)) ;>0 of bounded linear operators on E associ-
ated to A, called a strongly continuous semigroup, which can intuitively be viewed
as an operator-valued exponential function (e~*4);»o. Owing to their central role in
this thesis, the first two subsections of this section are devoted to semigroups. In
the final Subsection 1.1.4 we study the sum operator 9, + A, whose fractional powers
give rise to the equations studied in Chapters 2—4.

1.1.1. SEMIGROUPS OF BOUNDED LINEAR OPERATORS

Suppose that (E, || - ||g) is a Banach space over the complex scalar field C.! Denote
by .Z(E) the space of bounded linear operators on E equipped with the operator

lIn many applications, such as those involving stochastic processes, it is more natural to consider real
Banach spaces. Although throughout this thesis we will be careful to specify the scalar field over which
any given Banach space is considered, we may sometimes apply results to a real Banach space which
are only stated for complex spaces. This can be rigorously justified through the use of complexifica-
tions (see Section 2.B.2 below).
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norm || Tll ¢ (g) = sup <1 | Tl g. Before introducing the notion of a semigroup of
bounded linear operators on E, let us first comment on the case where A itself is
bounded. In this situation, it is immediate from the triangle inequality and submul-
tiplicativity of the operator norm that

i AP i AT Al
—(-A) < — || All =e'"NZ®B <00 forall t=0.
k=0 k! Z(E) k=0 k! 2B

Hence, we can define the family (6™ 150 < Z(E) of operator exponentials by
e =Y —(-Ak, =0, (1.1.3)

since the series on the right-hand side is absolutely convergent in .2 (E). If we in fact
have dim E = n < oo, so that we can identify A with an n x n matrix, then we recover
the definition of the matrix exponential. In this finite-dimensional setting, we can
view (1.1.2) as a linear system of 7 scalar-valued ordinary differential equations with
initial vector ug € C", for which the classical theory yields the unique solution

t [—
u(r) = e~ -4y, +f e =94 f(5)ds forallte]. (1.1.4)
fo

For an unbounded linear operator A: D(A) € E — E, definition (1.1.3) of e~/ is no

longer valid, as the infinite series on the right-hand side does not converge in gen-
eral. However, to certain classes of unbounded operators we can still associate a
one-parameter family (S(¢)) ;¢ of bounded linear operators on E which generalizes
(e~'4) ;>0 and has a number of analogous properties. We start with the following.

Definition 1.1.1. A one-parameter family (S(1)) >0 S -Z(E) of bounded linear oper-
ators on (E, | - ||g) is said to be an operator semigroup if it satisfies S(0) = Idg (the
identity operator on E) and

S(t+8)=S()S(s) forallz,s=0. (1.1.5)

Relation (1.1.5) is called the semigroup law. We are primarily interested in operator
semigroups (S(#)) s=¢ for which the mapping ¢ — S(#) has some additional structure
such as measurability, continuity or (possibly complex) differentiability.

Definition 1.1.2. An operator semigroup (S(#)) =0 S -Z(E) is said to be

e strongly measurable if, for all x € E, the orbit t — S(t)x is strongly measurable
as a mapping from (0,00) to E;

e strongly continuous on J < [0,00) if, for all x € E, the orbit ¢t — S(#)x is continu-
ous as a mapping from J to E;

* uniformly continuous on J < [0,00) if £ — S(¢) is continuous as a mapping from
Jto Z(E).

If the interval J is not explicitly specified, then we mean J = [0,00).
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We remark that the terms strongly and uniformly in the above definitions respec-
tively refer to the strong operator topology (i.e., the coarsest topology on .Z (E) which
renders the evaluation mapping .2 (E) 3 T — Tx € E at x continuous for all x € E),
and the uniform operator topology, induced by the norm | - | (g (and therefore also
known as the (operator) norm topology).

Every strongly measurable semigroup is strongly continuous on J = (0,00) by [109,
Theorem 10.2.3]. An operator semigroup which is strongly continuous on all of
[0,00) is known as a Cy-semigroup.” Therefore, the only additional condition re-
quired for a semigroup to be a Cy-semigroup is that

S(H)x—x inE ast]|0, forallxeE.

We call an operator semigroup (S(%));=o locally bounded if t — S(t) is bounded
in .Z(E) on every bounded subinterval of [0,00). In this case, there exist constants
M € [1,00) and w € R such that the following exponential norm bound holds:

ISl g) < Me™™" forallt=0, (1.1.6)

cf. [114, Proposition G.2.2]. If w = 0 (resp. w > 0), then we say that (S(¢)) ;»¢ is uni-
formly bounded (resp. uniformly exponentially stable), and if in addition M = 1, then
(S(5) =0 is said to be a semigroup of contractions or a contractive semigroup. If M =1
but w < 0, then the semigroup is said to be quasi-contractive.

It turns out, see [109, Theorem 9.4.2], that a semigroup (S(#)) s>¢ is uniformly con-
tinuous if and only if there exists some G € .Z(E) such that S(t) = e’ for all ¢ > 0; we
call G the (infinitesimal) generator of (S(1)) 0.

In the case where (5(?)) ;>¢ is merely strongly measurable and locally bounded, we
can define an unbounded linear operator which plays an analogous role. Its defini-
tion requires us to introduce the resolvent set p(G) consisting of all A € C for which
Aldg —G has a bounded two-sided inverse, in which case R(A,G) = Aldg—G) ! is
called a resolvent operator of G.

Definition 1.1.3. Let (S5(2)) ;>0 be a locally bounded and strongly measurable semi-
group on a complex Banach space E, satisfying (1.1.6) for some w € R. The linear
operator G: D(G) < E — E is said to be the (infinitesimal) generator of (S(1)) = if
fAeC:Red>—-w} < p(G) and, for all x € E and A € C such that Re A > —w, we have

R(A,G)x:f e MS(Hxdr inE. (1.1.7)
0

2This stands for the “Cesaro summability of order 0 of S(t)x to x” (for all x € E). This concept, also
denoted (C,0), was historically defined alongside weaker notions of “summability of S(¢)x near 0,
see [109, Section 10.6]: For instance, Cesaro summability of order 1, denoted C; or (C,1), refers to
semigroups for which % fot S(s)xds — x as t ] 0, and (S(#)) ;=0 belongs to the (even larger) class (A) of
Abel-summable semigroups if A f5° e MS(xdr— xas A —oco.

3Although it is customary in the literature to denote the generator of a semigroup by A: D(A) € E — E,
we reserve this notation for operators in equations such as (1.1.2), so that in applications we will work
with semigroups whose generator is G = —A; see also the signs in (1.1.3)=(1.1.4). The reason is the
author’s preference to let A represent a “non-negative” differential operator in concrete applications
in subsequent sections and chapters.
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If G is the generator of a locally bounded and strongly measurable semigroup
(8(1)) t=0, with constants M € [1,00) and w € R in (1.1.6) and Definition 1.1.3, then
(1.1.7) directly implies A € p(G) and

M
IRA, Gz = m for all A € C such that Re A > —w. 1.1.8)

If (S(1)) =0 satisfies (1.1.6) for another pair of constants M’ € [1,00) and w’ > w, then
we also have A € p(G) and (1.1.7) for all A € C such that ReA > —w'. Indeed, this
follows from the uniqueness of analytic continuations: On the one hand, we know
that A — R(A, G)x is holomorphic on p(G) and blows up at the boundary dp(G) [156,
Propositions 10.28 and 10.29]; on the other hand, A — fooo e M S(H)xdt turns out
to be holomorphic on {1 € C: ReA > —w'}, is bounded on {1 € C: Red > £ — w'}
for all € > 0 (by (1.1.6) with (M’, w')), and equal to R(A,G)x on {1 € C: ReA > —w}
(by (1.1.7)). Applying the above with w’ > 0, we find in particular that the generator
G of a uniformly exponentially stable semigroup (S(#)) ;> always satisfies 0 € p(G).

Generators are closed” since, by definition, their resolvent sets are nonempty. If a
strongly measurable and locally bounded semigroup (S(¢));>0 has a generator, then
itis unique and characterizes the semigroup.

If the semigroup (S(#)) =0 is strongly continuous, then its generator is given by

D(G) = {x € E: 1 (S(1)x - x) converges in E as t | 0};

Gx:li%l%(s(t)x_x) inE, xeD(G). (1.1.9
t

This follows from [73, Chapter II, Theorem 1.10(ii)], which shows that the operator
defined by the right-hand sides of (1.1.9) satisfies the conditions of Definition 1.1.3.
In other words, the generator of a Cy-semigroup is fully characterized by the deriva-
tives of its orbits evaluated at zero. More generally, we have the following relation
between the behavior of orbits of (S(#));>¢ at zero and the domain of its generator,
see [115, Proposition K.1.5(3)]:

DG ={xeE:S(t)x—xinEas t| 0}.

We conclude that a strongly measurable and locally bounded semigroup is a Co-
semigroup if and only if it admits a densely defined generator G, i.e., D(G) = E.

Now we will state our first semigroup generation theorem, i.e., a result providing
necessary and sufficient conditions for a given linear operator to be a semigroup
generator. It is known as the Hille-Yosida theorem for Cy-semigroups.

Theorem 1.1.4 (Hille-Yosida [73, Chapter II, Theorem 3.8]). Let G: D(G) € E — E
be a linear operator on a complex Banach space E, and let the constants w € R,
M € [1,00) be given. The following are equivalent:

(@) G is the generator of a Cy-semigroup (S(t)) ;=0 satisfying (1.1.6).

4An operator A: D(A) € E — E is said to be closed if its graph G(A) := {(x, Ax) : x € D(A)}) is closed with
respect to the graph norm || xllg(4) = llxll g + | Axl .
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(b) G is densely defined and we have

Aep(G) and |RA,GF |y < Ao (1.1.10)
forevery A € (—w,o00) and k € N.
(¢) G is densely defined and we have
AepG) and IR, Gl yp <M (1.1.11)

(Re(A) + w)k
forevery A e C withReA > —w and k e N.
If (1.1.10) or (1.1.11) holds for M =1 and k = 1, then the respective condition is in

fact satisfied for all k € N in view of the submultiplicativity of the . (E)-norm. That
is, in the contractive case, Theorem 1.1.4 reduces to the following.

Corollary 1.1.5 (Hille-Yosida—quasi-contraction case [73, Chapter II, Corollary 3.6]).
Let G: D(G) € E — E be a linear operator on a complex Banach space E, and let the
constant w € R be given. The following are equivalent:

(a) G is the generator of a quasi-contractive Cy-semigroup (S(1)) =9, i.e., it satis-
fies (1.1.6) withweR and M = 1.

(b) G is densely defined and we have

1
Aep(G) and IRW,G)lgw < — forallAe(-woo).

w

(¢) G is densely defined and we have

Aep(G) and |RA, Gl gE < forall A € C with Re 1 > —w.

1
Re()) +w
Thus, we see that the necessary condition (1.1.8) is also sufficient for the genera-

tion of a quasi-contractive Cy-semigroup when combined with density of D(G).

1.1.2. SECTORIAL OPERATORS AND BOUNDED ANALYTIC SEMIGROUPS

Parts of Chapters 2, 3 and 5 are in particular concerned with fractional parabolic
evolution equations. Such equations are characterized by the fact that the semi-
group (S(#)) =0 generated by — A is holomorphi, i.e., complexly differentiable when
extended to some open region in the complex plane. Since a function is holomor-
phic if and only if it is analytic (meaning that it equals its Taylor expansion at ev-
ery point in the region), we use these terms interchangeably. The regions we will
consider are the open sectors centered around the positive real line (with opening
half-angle w € (0, 7)):

2y ={1eC\{0}:argA € (~w,w)}.
The corresponding closed sector is denoted by

T ={0tu{1eC\{0}:argle [-o,0]} =Z,.
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Definition 1.1.6. An operator semigroup (S(f));>¢ S -Z(E) is said to be
* analytic on Z, (with n € (0, 7)) if, for every x € E, the orbit £ — S(#) x extends to a
holomorphic function from Z; to E;

* bounded analytic on Z; if it is analytic on Z; and satisfies
SUDzes, 1S(2)l 25 < o0

* contractive analytic on Z; if it is bounded analytic on X, with

1S(2) |l g <1 forall ze X,;

e an analytic Co-semigroup on X, if it is analytic on Z; and, for every x € E,

S(z)x—xinE as Z;3z—0.

It is simply said to be a (contractive/bounded) analytic (Cy-)semigroup (without ex-
plicit reference to a sector) if there exists a sector on which it is a semigroup of the
corresponding type.

Some authors impose holomorphy of ¢ — S(#) with respect to the uniform op-
erator topology, i.e., as a mapping from X, to Z(E); see for instance [146, p. 34],
[73, Chapter II, Definition 4.5] and [165, Chapter 2, Definition 5.1]. In view of [113,
Corollary B.3.3], this is equivalent to the “strong (or orbital) holomorphy” which we
require in our definition.

There is a one-to-one relation between bounded analytic semigroups and the class
of sectorial linear operators, which are defined as follows.

Definition 1.1.7. Let A: D(A) € E — E be a linear operator and w € (0,7). We say
that A is w-sectorial with w-sectoriality constant M (w, A), if

o(A)cZ, and M(w,A) :=sup{IARA, AllgE:AeC\Zy}<oo.  (1.1.12)
We denote this by A € Sect(w). The angle of sectoriality of Ais defined as
w(A) = inf{w € (0,7) : A€ Sect(w)}. (1.1.13)

It is clear from the definition that Sect(w;) € Sect(w») whenever w; < w».

If — Ais the generator of a uniformly bounded and strongly measurable semigroup,
then A is sectorial of angle w(A) < %n, cf. [114, Example 10.1.2]. On the other hand,
if A € Sect(w) for some w < %n, which occurs precisely when w(A) € [0, %n), then for
any o' € (o, %n) and z € 1y We can define the (suggestively named) operator

S(z) € Z(E) via the Cauchy type integral

1
S(z)x::—,f e “*R(A,A)xdA, xeE. (1.1.14)
27 T,

The contour of integration is given by I'; o := 0(B.(0) U Z,,), where B,(0) denotes
the open ball with radius € > 0 around the origin in the complex plane. Its shape
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is chosen such that it encloses the spectrum o (A), and to ensure convergence of
the (Bochner) integrals. The contour is oriented downwards, so that o(A) is always
located to the left of an observer traversing the path. That is, we can decompose
Tew Fr U re , u 1"2;, into the rays

- e
't ={re’ :rfromootoe} and I7  :={re '’
E,0)

o : r from € to oo},

and the circular arc

Fgw, ={e e'?: 9 from ' to — o' counterclockwise}.

Im

re f
e,0'
\ -

’
r-,

&,0

Figure 1.1: Illustration of the rays T ", and circular arc F“w, which together comprise
the integration contour 1"6 o used in (1.1.14); the arrows signify its orien-
tation. The spectrum o(A), radius ¢ and opening half-angle w’ are also
indicated.

In the situation described above, depicted in Figure 1.1, A— e **R(A, A)x is inte-
grable on F ., owingto (1.1.12) and the choices of w', zand ¢, whereas its integrabil-
ity on the (bounded) arcT? | is due to continuity. In fact, the mapping A — R(A, A)x
is holomorphic on all of p(A) by [156, Proposition 10.28]. In other words, the “key-
hole” shape of I'; ,» guarantees integrability by avoiding the origin, which is a singu-
larity of the function A — R(A, A)x if and only if 0 € 0 (A). Moreover, it follows from
Cauchy’s integral theorem that the value of the integral in (1.1.14) does not depend
on the particular choices of w' € (w, %n) and € > 0.

As suggested by the notation, the family (S(¢));>¢ defined by (1.1.14) (along with
S(0) := Idg) is a bounded and strongly measurable semigroup; its generator is —A,
see [115, Proposition K.1.11]. In fact, it extends to a bounded analytic semigroup on
> Lo Conversely, if (5(2)) zex,, is a bounded analytic semigroup on some sector X,
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with n € (0, %n) and generator G = — A, then one can apply (1.1.8) to the bounded
semigroups (S(rel™) =0 for all ’ € (0,n) in order to obtain (1.1.12) with w = %n —1.

The equivalence between sectorial operators and bounded analytic semigroups is
summarized by the following theorem. Note that the cited source states the result
for Cyp-semigroups, hence for densely defined generators, but the following more
general formulation follows by essentially the same proof:

Theorem 1.1.8 (Cf. [114, Theorem G.5.2]). Let A: D(A) € E — E be a linear operator
on a complex Banach space E. The following statements are equivalent:

(a) Thereexistsne€ (0, %n) such that — A is the generator of a bounded analytic semi-
group on the sector Z,.

(b) There exists w € (0, %n) such that A € Sect(w).

Denoting the supremum of all admissiblen € (0, %7‘[) in (a) by wres(A), and recalling
the definition of w(A) from (1.1.13), we have

Wres(A) = 37— w(A).

In either of the equivalent situations (a) or (b), the semigroup (S(t)) »¢ is given by the
formula (1.1.14).

Now we collect some important basic properties of bounded analytic semigroups
which are used throughout the sequel of this thesis. Among these is the parabolic
smoothing property which essentially distinguishes the class of analytic semigroups
(S(5) ;=0 from more general ones: After any strictly positive instant ¢ > 0, the oper-
ator S(f) maps E into D(G*) for every k € N, where G: D(G) <€ E — E denotes the
generator, and we have a useful estimate for the norm of GkS(p).

Proposition 1.1.9 ([146, Proposition 2.1.1]). Suppose that (S5(1)) >0 is a bounded an-
alytic semigroup with generator G: D(G) < E — E. It has the following properties:

(a) We have S(1)x € D(G*) for all t € (0,00), x € E and k € N. Moreover, S(t) com-
mutes with G* for every k € N, meaning that

G*S(nx=S(G*x if xeD(G").

(b) For every k € Ny, there exists a constant My € [1,00) such that

IGES(O) 5y < Mt ™% forall t € (0,00).

(c) The function t — S(t) belongs to C*°((0,00); £ (E)); i.e., it has infinitely many
classical derivatives. Its kth derivative is given by

L8 =G*S(1) forallte (0,00) and ke N.

The statements in Proposition 1.1.9 can in fact be extended from integers k to
arbitrary non-negative real numbers a € [0,00). This necessitates a definition of the
fractional power G% of the operator G, which is the subject of Section 1.3.2 below.

We have already noted after equation (1.1.8) that the generator G of a semigroup
(S() =0 satisfies 0 € p(G) if (S(#)) ;=0 is uniformly exponentially stable. If (S(¢)) ;>¢ is
bounded analytic, then by [115, Proposition K.2.3] the converse is also true.
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1.1.3. THE ABSTRACT CAUCHY PROBLEM

We now return to our goal of defining solution concepts for the (inhomogeneous)
abstract Cauchy problem (1.1.2) associated to the operator A and a time interval
J<R. Letalinear operator A: D(A) € E — E on a complex Banach space E be given.
In this section, we restrict ourselves to the following choices of J:

¢ abounded interval J = (0, T), where T € (0,00) is some fixed time horizon;
e the positive half line J = (0,00); or
¢ the entire real line J = R.

The analogous results for arbitrary open intervals J are readily derived from these
cases. If J = (0, T) or J = (0,00), then we consider the abstract initial value problem

{u’(t) +Au(t) = f(1), te];
(1.1.15)

u(0) = up.

1
loc

f: J — Eis astrongly measurable function® which is integrable on bounded subsets
of J. In particular, we have Llloc([O, T};E) = LY(0, T; E) for J = (0, T) (where the latter
indicates a Bochner space). If J = R, then we do not impose an initial value, and the

problem reduces to

Here, ug € E is a given initial value, and we suppose that f € L (J: E), meaning that

u'(t)+Au(t) = f(1), teR. (1.1.16)

The first goal is to define what it means for a function u: J/ — E to be a solution
to (1.1.15) or (1.1.16). This can be done in several ways. We shall collect some defi-
nitions which are commonly encountered in the literature, in order to provide some
perspectives. However, since in Chapters 2-5 we are mainly concerned with LP-
solutions and mild solutions, we will only briefly touch upon the remaining con-
cepts. More details, e.g. regarding the well-posedness and regularity of such so-
lutions in different settings, can for instance be found in [165, Chapter 4] (for Cy-
semigroups) or [146, Chapter 4] (for analytic semigroups).

Inspecting the equations (1.1.15)—(1.1.16), the most obvious (but also restrictive)
solution concept is the following.

Definition 1.1.10 (Strict solution). Let f € C(J;E). A function
ue C'(J;E)n C(J;D(A)) (1.1.17)
is said to be a strict solution to the abstract Cauchy problem (1.1.15) or (1.1.16) if
u'(t)+Au(t) = f(r) forallte ], (1.1.18)
(where ¢’ denotes the classical derivative of u), and u(0) = ug ifinfJ = 0.

We remark that equations (1.1.17) and (1.1.18) together force f € c(J;E). M_ore-
over, since a strict solution u to the initial value problem (1.1.15) belongs to C(J; E)

5Meaning that it can be approximated a.e. by simple functions, see [113, Definition 1.1.14].
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by definition, we have in particular uy = u(0) € D(A). The difference quotients defin-
ing u'(0) also belong to D(A), and thus f(0) — Aup = u/(0) € D(A).

For J = (0, T), aresult towards the converse direction is given by [54, Theorem 8.1]:
The authors prove that if f € WLYP(0, T; E) for some pE [1,00),° then the “compat-
ibility conditions” uy € D(A) and f(0) — Auy € D(A), along with the resolvent esti-
mates (1.1.10) from the Hille-Yosida theorem, are sufficient for the existence of a
strict solution to (1.1.15).

A slightly weaker solution concept is that of a classical solution; note the use of
J instead of J, whose main purpose is to respectively exclude or include the value
at zero (if applicable). Since R = R, it coincides with the strict solution concept
for (1.1.16).

Definition 1.1.11 (Classical solution). Let f € C(J; E). A function
ue C(;E)nC' (J; E)n C(J; D(A)

is said to be a classical solution to the abstract Cauchy problem (1.1.15) if it satisfies
u(0) = ug and
u' () +Au(t) = f(r) forallte].

Since a classical solution u to (1.1.15) satisfies u(t) € D(A) for all ¢ € J, as well as
ue C(J; E), we find ug € D(A) instead of the more restrictive uy € D(A).

The following solution concept does not require continuity of f. Throughout this
section (and thesis), we use the notational convention [ := — [ if s> r.

Definition 1.1.12 (Strong solution). Let f € Llloc(j; E). A strongly measurable func-
tion u: J — E is said to be a strong solution to (1.1.15) or (1.1.16) if it satisfies the
following conditions:

(i) We have u(t) € D(A) for almost every t € Jand Au€ L, (J;E).

(ii) The function u: J — E solves the integrated version of the corresponding ab-
stract Cauchy problem (1.1.15) or (1.1.16): For almost every ¢ € ], we have

1
loc

u(t)+f0tAu(s) ds= uo+f0tf(s) ds (1.1.19)
for the given initial value 1 € D(A) or, respectively,
u(t)+f0tAu(s) ds=u(0) +f0tf(s) ds. (1.1.20)
Note that (1.1.20) implies

t t
u(t)+f Au(r)dr = u(s) +f f(r)dr foralmosteverys,teJ
S S

by writing u(#)—u(s) = u(#)—u(0)—(u(s)—u(0)). Thus, our definition agrees with [115,
Definition 17.3.22].

6This denotes the Bochner-Sobolev space of functions in L (0, T; E) with weak derivatives in L (0, T; E).
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As antiderivatives of locally integrable functions are continuous, see [113, Proposi-
tion 2.5.9], it follows that any strong solution admits a continuous representative, so
that the pointwise evaluation of u in equations (1.1.19) and (1.1.20) is meaningful.
In fact, identifying u with this representative, it turns out to be (classically) differ-
entiable for almost all ¢ € J, for which we have v/ () + Au(t) = f(1), see [115, Equa-
tion (17.3)]. This implies u' = f — Au € Llloc(j; E), hence u is weakly differentiable
and its weak derivative d;u coincides a.e. with «/, again by [113, Proposition 2.5.9].
In particular, it follows that our definition of a strong solution (to (1.1.15)) also co-
incides with [165, Chapter 4, Definition 2.8]. Moreover, combined with the fact that
strong solutions take their values in D(A) almost everywhere, we again derive the
requirement ug € D(A).

The next notion of a solution is slightly more restrictive than that of a strong solu-
tion. It is central to Section 1.1.4 and parts of Chapter 4.

Definition 1.1.13 (LP —solution)._ Let p € [1,00]. A strong solution u: J — E with cor-
responding inhomogeneity f: J — E is said to be an L?-solution if both f and Au
belong to L”(J; E).

Since u’' = f — Au almost everywhere, it immediately follows that u’ € LP (J; E) as
well. Moreover, if J = (0, T), then we can combine (1.1.19) with Hélder’s inequality
(twice) to obtain u € LP(0, T; E) with

1
lullro, ;5 < TP luolle + T (1 Aullzro,;8 + | fllLro,758))-

However, if J is unbounded, then u itself need not be an LP (J; E)-function. In the
case J = (0,00), a necessary and sufficient condition for u € LP(0,00; E) (see, re-
spectively, [115, Corollary 17.2.25 and Proposition 17.2.8]) is that 0 € p(A), i.e., A is
boundedly invertible.

For the definitions stated up to this point, we have not required that the operator A
is associated to a semigroup. In order to define the notion of a mild solution, which
is the main focus of the rest of this thesis, we do need to assume this.

Definition 1.1.14 (Mild solution). Let f € Llloc(j; E). Suppose —A: D(A) < E— E'is
the generator of a strongly measurable and locally bounded semigroup (S(#)) ;=0 on
a complex Banach space E.

o Let uy € D(A). The mild solution to (1.1.15) is the function u: J — E given by the
variation of constants formula

t f—
u(t) :=S(t)u0+f St—9)f(s)ds, te].
0
* The mild solution to (1.1.16) is the function u: R — E given by
t
u(t) ::f S(t—9)f(s)ds, teR.
—00

The mild solutions defined above are bounded and continuous by [115, Proposi-
tion K.1.5(3)] and Proposition 4.2.3(b) in Chapter 4.
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The relation between strong and mild solutions is given by Proposition 4.2.2 be-
low. In particular, it implies that if — A generates a strongly measurable and locally
bounded semigroup (S(#)) =0, then strong solutions to (1.1.15) or (1.1.16) are mild.
Since mild solutions are defined by an explicit formula, they are trivially unique.
Moreover, it can be shown that all the other solution concepts introduced in this
section are also mild solutions. Hence, under the additional assumption that —A
generates (S(#));=>0, we find uniqueness for these types of solutions as well.

1.1.4. THE SUM OPERATOR O; + A AND MAXIMAL L” -REGULARITY

Since Chapters 2—4 are concerned with evolution equations governed by the space—
time fractional (parabolic) operator (3; + A)Y for y € (0,00), we first study the base
operator 9, + A (i.e., y = 1) in some detail here.

Consider the initial value problem (1.1.15) with J = (0, T) and up = 0. As observed
in the previous subsection, we may assume that for almost every ¢ € (0, T), a strong
solution u in the sense of Definition 1.1.12 is (classically) differentiable and satisfies
u'(t) + Au(r) = f(r). It is also weakly differentiable in the Bochner-Sobolev sense,
and its weak derivative d,u coincides almost everywhere with u’'. Now let us inter-
pret the weak derivative as a linear operator

d;: Wy b (0, T; E) < LP(0, T; E) — LP (0, T; E)
(for p € [1,00]) with domain
Wy i, 0, T; E) := {ue WP (0, T; E) : u(0) = 0},
and define A 1): LP(0, T;D(A)) < LP(0, T; E) — L”(0, T; E) by
(A rul(t) == Au(t) forall ue LP(0, T;D(A)) and almost every € (0, T).

We call A, ) the Bochner space counterpart on L” (0, T; E) of the operator A. If the
meaning is clear from the context, we may simply write A or A instead of A, 1).

If u is an LP-solution to (1.1.15) with uy =0 and f € LP(0, T; E), then f belongs to
the image of the sum operator

0r+Apn: W()I"{’g}(o, T; E)nL”(0,T;D(A)) < LP(0, T; E) — L”(0, T; E).
In other words, we can reformulate (1.1.15) with 1 = 0 as the operator equation
@+ Aon)u=f.
We can similarly consider the problems
(0:+Aju=f

for J = (0,00) or J =R, by defining the operators d; and .A; on L (J; E) analogously.
In these cases, we will restrict ourselves to working with operators A whose nega-
tives generate uniformly exponentially stable semigroups, in order to ensure that
LP-solutions belong to LP(J; E). Note that for J = R, the domain of 9; is simply
WLP(R; E) since there is no initial condition. When viewed a linear operator de-
fined according to one of the above definitions, —0; is our first concrete example of
a semigroup generator, cf. [115, Propositions 17.3.16 and 17.3.17]:
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Example 1.1.15. Let /= (0, T) or J = (0,00). For all p € [1,00), the negative —0, of the
Bochner-Sobolev weak derivative, equipped with a homogeneous initial condition,
generates the uniformly bounded Cy-semigroup (7 (£));» of right-shift operators
given by

[T@®f1(s) = f(s— t) forallt=0, feLP(J;E) and almost every s € J.

Here, f: R — E denotes the extension by zero to R of a function f: J — E. See Propo-
sition 2.A.5 below for a proof in the case p =2, J=(0,T) and E = H.

For J = R, the operator —0; even generates a Cy-group (7 (t))¢cr (note the index
set R instead of [0,00)), given by

[T f1(s):=f(s—1) forall teR, fe LP(R;E) and almost every s € R,
but this fact will not be used in this dissertation.

For later use (see Section 1.3.3 and Example 4.4.6), let us record another important
elementary example of a semigroup associated to a differential operator:

Example 1.1.16. Let p € [1,00) and d € N. The heat semigroup on R is the con-
tractive analytic Co-semigroup (H(t));=0 € L”(R?) given, for each ¢ € (0,00) and
felLP (Rd), by the convolution H(?) f := K; * f with the Gauss-Weierstrass kernel

Kt:]Rd—JR defined by Kr(x)::(47rt)_d/2exp(—4—1t||xllﬂzw), xeRY,

Its generator is the Laplace operator on R4 [156, Section 13.6.c], which is formally
given by A = Z?zl 6%. More precisely, it is the weak LP-Laplacian (see [156, Sec-
tion 11.1.e]), an unbounded linear operator on L” (R%) whose domain turns out
to coincide with the second-order Sobolev space W2P[®R%) for p € (1,00). In Sec-
tion 1.2.3 we will consider another precise definition of the Laplacian for p = 2.

The remainder of this subsection is devoted to analyzing some of the basic prop-
erties of 9; + .A;. We begin by showing that 9, + .4; is closable if — A is the generator
of alocally bounded and strongly measurable semigroup:

Proposition 1.1.17. Let p € [1,00]. Suppose that —A: D(A) < E — E generates a lo-
cally bounded and strongly measurable semigroup (S(t)) =0 on the complex Banach
space E, and let the interval ] < R be as in this subsection. If ] = (0, T) or (S(1)) =0 is
uniformly exponentially stable, then the sum operatord; + Ay on LP (J; E) is closable.

Proof. Suppose that (u,),eny € D(0; +.4)) and g € LP(J; E) are such that u, — 0 and
@;+Apu, — gin LP(J;E) as n — oo. Thus, for each n € N, u,, is trivially an LP-
solution to (1.1.15) with uy = 0 or (1.1.16) with right-hand side f, := (0; + Ap)uy,
and thus a strong solution. By Proposition 4.2.2, it follows that u;, is the mild so-
lution, i.e., u, = S* f. Since f — S* f is bounded on L”(J; E) under the current
assumptions (see Proposition 4.2.3(a)), we can apply this operator on both sides of
fn—gtofind u, — S+ gin LP(J;E) as n — oo, and thus S+ g =0. Since v:=S+* g
is the mild solution to (1.1.15) with ug = 0 or (1.1.16) with right-hand side g, and
v =0¢€ LP(J;D(A)), we can once more apply Proposition 4.2.2 to find that v is the
strong solution. Thus, applying 9; + .A; to both sides of S * g =0 yields g = 0. O



1.1. SEMIGROUPS AND ABSTRACT EVOLUTION EQUATIONS 15

As a consequence of Example 1.1.15 and [114, Example 10.1.2], the operator 0; is
sectorial of angle at most %n. In what follows, we will also assume that A is sectorial,
which implies sectoriality of A; (with the same angle). Moreover, 0; and A; clearly
commute. Thus, if 3; and A satisfy the parabolicity condition v(9;) + w(A) < &, then
we can apply the following result to obtain that 8,+.4; in fact has a sectorial extension
(which may coincide with the closure, see item (b)):

Theorem 1.1.18 (Sums of sectorial operators [115, Theorem 16.3.2]). Suppose that
A: D(A) € E — E and B: D(B) < E — E are sectorial linear operators on a complex
Banach space E which have commuting resolvents and satisfy w(A) + w(B) < 7.

Then there exists a sectorial operator C: D(C) € E — E withw(C) < max{w(A),w(B)}
which extends the sum operator A+ B: D(A) nD(B) € E — E. Moreover:

(a) If A or B is injective, then C is injective.

(b) Theoperator C is densely defined if and only if both A and B are densely defined.
In this case, C is the closure of A+ B.

The proof of Proposition 1.1.17 relied on the fact that v := S * g = 0 trivially be-
longed to LP(J;D(A)). Alternatively, we could have used that v is (again trivially)
weakly differentiable with p-integrable derivative. Had we instead supposed that
u, — u for an arbitrary u € LP(J; E), then v := S * g = u would not necessarily sat-
isfy either of these properties. Thus, we cannot easily extend the proof of Proposi-
tion 1.1.17 to show that the sum operator itselfis closed. Under certain additional as-
sumptions (which are typically satisfied in our applications), see Proposition 1.1.20
below, the closedness of the sum operator 3, +.4; on the space L” (J; E) turns out to
be equivalent to the operator A having maximal LP -regularity, defined below.

Although the question whether a given operator A has maximal L”-regularity has
many far-reaching consequences for the study of (nonlinear) evolution equations
involving them, we merely focus on its relation to the sum operator. More detailed
expositions of the subject can for instance be found in [115, Chapter 17], [63], [130]
and [100, Section 9.3].

Definition 1.1.19 (Maximal L”-regularity). Let A: D(A) € E — E be alinear operator
on a complex Banach space E and let p € [1,00].

e If J=(0,T) or J = (0,00), then A is said to have maximal L” -regularity on J
if there exists a constant C € [0,00) such that, for all f € LP(J;E), the abstract
Cauchy problem (1.1.15) with uy = 0 admits a unique LP-solution u: J — E
which satisfies the estimate

lAullzr ey < Cll fllzr:E)- (1.1.21)

o If J =R, then A is said to have maximal L -regularity on R if there exists a
constant C € [0,00) such that, for all f € LP(R; E), the abstract Cauchy prob-
lem (1.1.16) admits a unique L”-solution u: R — E which satisfies the estimate

lullLr e + 1 Aullr®:p) < ClfllLr ®:5)-
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The name “maximal LP-regularity” refers to the fact that, given a function u sat-
isfying u' + Au = f a.e., one cannot expect ©’ and Au to belong to a “better” func-
tion space than f € LP(J; E). Operators with maximal LP-regularity (on any J) are
necessarily closed, see [115, Proposition 17.2.5] (whose proof readily extends to the
J =R case). Thus, we could also add the closedness of A to the definition of maxi-
mal L”-regularity. Under this additional assumption, the existence of a unique LP-
solution for every f € LP(J; E) would automatically imply the estimate (1.1.21); this
follows from an argument involving the closed graph theorem, see [115, Proposi-
tion 17.2.11].

If A has maximal L”-regularity with p € [1,00] on J = (0, T) or J = (0,00), then it
also holds for all sub-intervals (0, T') < J. Such a “restriction property” does not hold
for maximal L”-regularity on R.

A result known as Dore’s theorem [115, Theorem 17.2.15] states that A having
maximal LP-regularity on (0, T) for p € [1,00] implies that — A generates an analytic
semigroup (S(#)) s> on E. If A has maximal L -regularity on (0,00), then (S(#)) t>¢ is
bounded analytic. In contrast, maximal L”-regularity on R does not imply that —A
generates an analytic semigroup.

Under the additional assumption that the semigroup generated by — A is strongly
continuous (i.e., that A is densely defined), we have the following characterization
of maximal regularity in terms of sum operators. The cases (i) and (ii) are proved
in [115, Proposition 17.3.14], whereas (iii) can be established analogously.

Proposition 1.1.20 (Maximal LP-regularity—sum-of-operators characterization).
Let —A: D(A) € E — E be the generator of a Cy-semigroup (S(t)) ;=0 on the complex
Banach space E. Let p € [1,00] and assume that either

(i) J=1(0,T) forsomeT € (0,00);

(ii) J =(0,00) and (S()) =0 is uniformly exponentially stable; or
(ii)) J =R and (S(1)) ;=0 is uniformly exponentially stable and analytic.
Then the following statements are equivalent:

(a) The operator A on E has maximal LP -regularity on J.

(b) There exists a constant C € [0,00) such that the inverse triangle inequality

I u’lle(];E) + 1 Aullrr.py < Cll@; + Apullpr ;g holds for allu e D0, + Aj).

(c) The operatord;+ Ay on LP(J; E) is boundedly invertible.
(d) The operatord;+ Ay on LP(J; E) is closed.

1.2. ELLIPTIC OPERATORS VIA SESQUILINEAR FORMS

In Section 1.1, we introduced the concepts of operator semigroups and their use
for abstract evolution equations, the latter serving as abstracted models of concrete
partial differential equations. The aim of this section is to go beyond the elemen-
tary Examples 1.1.15 and 1.1.16 of differential operators whose negatives generate
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semigroups: We will rigorously define a more general class of “non-negative” differ-
ential operators on a spatial domain, which can be used to concretely define suitable
operators A for use in (fractional) evolution equations in subsequent chapters, see
Sections 2.5 and 5.3.

To this end, in Subsection 1.2.1 we introduce the notion of a sesquilinear form
a: D(a) x D(a) — C, i.e., a mapping on some subspace D(a) of a complex Hilbert
space H which is linear in the first component and conjugate-linear in the second.
We will provide a concise overview of the theory of forms, focusing on identifying
further conditions on a which ensure that the relation

(u, Au) € G(A) ifandonlyif (Au,v)y=a(u,v)forall ve D(a) 1.2.1)

determines a well-defined linear operator A: D(A) € H — H whose negative gener-
ates an analytic semigroup (S(1));>0 S -Z(H). In Section 1.2.2 we specialize to the
case H := L?(D) and investigate when the semigroup (S(#));so is contractive or ex-
tends to LP (D). In Section 1.2.3 we consider the form ay: V x V — C, defined on
a domain D(ay) =V < HY(D) in H := L>(D) (i.e., square-integrable functions with
square-integrable weak derivatives) via the prescription

ay(u,v) ::f (a()Vux) + c@u(x) - Vo(x) dx

D (1.2.2)

+f (b(x)~Vu(x))mdx+f ap(X)u(x)v(x) dx,
D D

where the bars indicate complex conjugation, and a € L*(D; Cxdy b, ce [°(D;CY
and ay € L*°(D). We will motivate why such a form induces a linear operator which,
under an additional ellipticity assumption on the of the principal coefficient func-
tion a, can be naturally interpreted as a (uniformly) strongly elliptic second-order
differential operator (in divergence form) on L?(D).

The results in this section will be formulated for complex Hilbert spaces and, ac-
cordingly, complex-valued forms. They remain true when working instead on a real
Hilbert space H; in this case, one can simply remove the complex conjugates and
real parts from the assumptions and statements.

1.2.1. SESQUILINEAR FORMS AND SEMIGROUPS

Definition 1.2.1 (Sesquilinear form). Let D(a) be a given subspace of a complex

Hilbert space H. A mapping a: D(a) x D(a) — C is called a sesquilinear’ form, with

domain D(a), if it is linear in the first argument and conjugate-linear in the second:
alaiuy + azus, v) = araluy, v) + aza(uy,v) forall @y, ar € Cand uy, uy, v e D(a);
a(u, Brv1 + Povr) = Ea(u, V1) +Ea(u, vp) forall 8,8, € Cand u, vy, v2 € D(a).

If H is instead a real Hilbert space, then we say that a: D(a) x D(a) — R is a bilinear
form if it is linear in both arguments. In order for a sesquilinear form to induce an

"Derived from the Latin prefix sesqui- (“one-and-a-half-"), referring to the fact that we count conjugate
linearity as “half-linearity”.
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operator exhibiting the type of properties that we wish to use the remainder of this
thesis, we need to impose more structure. We start with the following.

Definition 1.2.2 (Accretivity and coercivity). A sesquilinear form a: D(a) x D(a) — C
on a complex Hilbert space H is said to be accretive if

Rea(u,u)=0 for all u € D(a).
It is called coercive if there exists a constant 6 € (0,00) such that
Rea(u,u) =0\ullg for all u e D(a).
For an accretive sesquilinear form a: D(a) x D(a) — C on H, it holds that
(U, V) g = %(a(u, v) +W) +{u, vy, u,veD(a),

defines an inner product on its domain D(a), which induces the norm

lullq = /<, uya = /Rea(u, u) + | ull3,.

If the space D(a) is complete with respect to this norm, then we say that a is closed:
Definition 1.2.3 (Closedness and continuity). An accretive sesquilinear form a with
domain D(a) on a complex Hilbert space H is said to be

o closed if (D(u), (-, -)u) is a Hilbert space;

e continuous if there exists a constant C € [0,00) such that

la(u, v)| < Cllullallvlle forall u,veD(a). (1.2.3)

We are mainly interested in sesquilinear forms which can be used to define linear
operators. To this end, we need to assume that the form a on H is densely defined,
just as for linear operators, this means that the domain D(a) is dense in H. Our next
definition is a slightly more precise version of (1.2.1).

Definition 1.2.4 (Operator associated to form). Leta: D(a) x D(a) — C be a densely
defined sesquilinear form on a complex Banach space H. The linear operator A as-
sociated to a is the operator A: D(A) € H — H defined by

D(A) = {u € D(a) : there exists y € H such that (y, vy = a(u,v) forall v e D(a)},
Au:=y (with y as above) for all u € D(A).
The assumed density of the domain D(a) in H ensures that y € H in the above def-

inition is unique, and thus that A is well-defined. For a sesquilinear form a satisfying
all the above properties, we have the following result:

Proposition 1.2.5 ([164, Proposition 1.22]). Suppose that a: D(a) x D(a) — C is a
sesquilinear form on a complex Banach space H which is densely defined, accretive,
closed and continuous. Then the linear operator A: D(A) € H — H associated to a is
densely defined and satisfies

1
-Aep(A) and ||(/11dH+A)‘1||§g(H)_Z forall A € (0,00).
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By the contraction case of the Hille-Yosida generation theorem (Corollary 1.1.5
with w = 0), it follows that — A is the generator of a Cy-semigroup (S(t)) ;o of con-
tractions on H if A is associated to a densely defined, accretive, closed and continu-
ous sesquilinear form. In fact, more can be said:

Theorem 1.2.6 ([164, Theorem 1.52]). Suppose thata: D(a)xD(a) — C is a sesquilin-
ear form on a complex Banach space H which is densely defined, accretive, closed and
continuous. Let A: D(A) € H — H denote the linear operator associated to a.

Then — A is the generator of a contractive Cy-semigroup (S(1)) =0 S -Z (H). More-
over, for all € € (0,1], the semigroup (e €'S(t)) ;=0 generated by —(A+ eldy) extends to
a contractive analytic semigroup on X, wheren = %n —arctan(C/¢€) and C € [0,00) is
the continuity constant from (1.2.3).

In particular, it follows that (S(1)) ;>0 itself is analytic, but not necessarily bounded
analytic on the corresponding sector (even though it is contractive on the positive
real line). In order to identify a class of sesquilinear forms whose associated Cy-
semigroups are in fact contractive analytic, we define the notion of sectorial forms.

Definition 1.2.7 (Sectoriality). Let w € (0, %7‘[]. A sesquilinear form a with domain
D(a) on a complex Hilbert space H is said to be w-sectorial if

a(u,u) ez, forallueD(a).

It is immediate that sectoriality implies accretivity (since this is in fact the same
as %n-sectoriality). Ifw< %n, then by [156, Proposition 13.42], w-sectorial sesquilin-
ear forms are continuous with continuity constant 1+ tanw. Thus, if such a form
is moreover densely defined and closed, then it satisfies the hypotheses of Theo-
rem 1.2.6 and —A generates an analytic semigroup (S(#));=0. The following result
states that (5(1));>0 is in fact contractive analytic, and that A is then w-sectorial by
Theorem 1.1.8. It is a direct consequence of the Lumer-Phillips generation theorem

for analytic contraction Cy-semigroups on Hilbert spaces, see [156, Theorem 13.35].

Theorem 1.2.8 ([156, Theorem 13.40]). Leta: D(a) x D(a) — C be a sesquilinear form
on a complex Banach space H which is densely defined, closed and w-sectorial for
some w € (0, %n). Let A: D(A) € H — H denote the linear operator associated to a.
Then — A is the generator of a Cy-semigroup (S(1)) =0 € -Z(H) which extends to an
analytic Co-semigroup of contractions on the sector Z,, withn = %7‘[ -w.

1.2.2. POSITIVITY AND LP-CONTRACTIVITY OF SEMIGROUPS ON L?

In this section we specialize to the typical case where H := I2(S, o, v;C)isa Lebesgue
space of square-integrable complex-valued functions on a o-finite measure space
(S,.47,v), typically abbreviated to L?(S). Let Hg := L?(S, <, v;R) denote its real-valued
counterpart; as before, upon omitting real parts and complex conjugates, all the
results in this subsection carry over the real setting, i.e., the case where we take
H := Hp to begin with. Moreover, let H := {f € Hg : f(x) = 0 for v-a.e. x € S} de-
note the cone of non-negative real functions.
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Definition 1.2.9. Let (S, 2,v) be a o-finite measure space. A strongly measurable
and locally bounded semigroup (S(£)) ;=9 on H := L?(S) is said to be

e positiveif S(t)HY H]E for all £ € [0,00);

e L*®-contractive if, for every ¢ € [0,00) and u € L2(S) N L*°(S), we have

IS ullzoosy < llutllzoo(sy;

* sub-Markovian if it is both positive and L*°-contractive.

The term sub-Markovian has the following relation to the (simple) Markov prop-
erty, mentioned briefly in Section 1.4.3 and defined precisely in Section 3.3.1. As
remarked in the latter section, any (real-valued) simple Markov process (X (#)) ;= is
characterized by a family (T ;)o<s<; of transition operators on the space By (R;R) of
bounded measurable functions from R to R. A Markov process is said to be time-
homogeneous if T ; = Tp ;s for all 0 < s < ¢; in this case, the Chapman-Kolmogorov
relation of (T 1)o<s<t, see (TO3) in Section 3.3.1, renders S(¢) := Tp,; a semigroup on
Bp(R;R). Moreover, property (TO1) and equation (3.3.1) of that section imply that
(S(1) =0 is positive and L*°-contractive, respectively. Lastly, property (TO2) asserts
that S(#)1r = 1p for all £ = 0in this case. In general, a sub-Markovian semigroup may
fail to satisfy the latter property, justifying the prefix.

If a Cp-semigroup (S(?)) =9 of contractions on I2(S) is also L*°-contractive, then,
for t € [0,00) and p € [2,00], one can extend S(¢) from L2(S) N LP(S) to a contraction
on L (S) by means of the Riesz-Thorin interpolation theorem. By density, it can then
be shown that (S(#)) ;>0 can in fact be viewed as a Cy-semigroup of contractions on
LP(S). For symmetricbilinear forms on the real Hilbert space Hg = I2(S;R), meaning
that a(u, v) = a(v, u) for all u, v € D(a), we can characterize the positivity and L*>-
contractivity of its associated semigroup in terms of the Beurling-Deny criteria:

Theorem 1.2.10 (Beurling-Deny [164, Corollary 2.18]). Leta: D(a) x D(a) = R bea
densely defined, symmetric bilinear form on L?(S;R) for which there exists ann € R
such that the form a +n defined by

la+nl(u, v) = a(w, v) +7{u, V)25, Uu,veD(a), (1.2.4)
is accretive, continuous and closed. Let A and (S(t)) ;=0 respectively denote the linear
operator and contraction Cy-semigroup associated to a. The following are equivalent:

(a) (S(1))s=0 Is positive.

(b) Foreveryue D(a), we have|u| € D(a) and a(lul,|ul) < a(u, u).

Supposing that either (and thus both) of the above conditions are satisfied, the follow-
ing statements are equivalent as well:

(©) (S(1) =0 is sub-Markovian.

(d) ForeveryueD(a)n HY, we havel AueD(a) anda(l A u, 1A u) <alu,u).
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1.2.3. ELLIPTIC DIFFERENTIAL OPERATORS ON A EUCLIDEAN DOMAIN

In this section, we show how the theory of sesquilinear forms can be used to define
a second-order elliptic differential operator on a Euclidean domain D < R? which
generates a semigroup on L?(D). We begin by stating the rigorous definition of the
sesquilinear form ay defined by (1.2.2) and deriving some basic properties.

GENERAL ELLIPTIC OPERATORS IN DIVERGENCE FORM

Definition 1.2.11 (Uniformly strongly elliptic form). Let D < R be an open and
connected Euclidean domain, and let the coefficient functions a € L®(D;C%*4),
b,c € L®(D;C%) and ag € L®(D;C) be given. Suppose that the principal coefficient
function a = (a j k)? kel is elliptic, i.e., there exists a constant § € (0,00) such that

d d
essmfR Z Z ajr(x)§ ;¢ k>9||£|| forallfe(Cd, (1.2.5)

where essinf denotes the essential infimum.

For a closed linear subspace V of the Sobolev space H!(D) := W!?(D) such that

—__HYD
H} (D) < V < H (D), where H} (D) := C® D) P we define the ( uniformly) strongly

elliptic sesquilinear form ay: V x V — C on L?(D) by (1.2.2) for all u, v € V, where
the gradients are interpreted in the weak sense.

We will now motivate why the operator associated to the form ay from Defini-
tion 1.2.11, denoted Ly, can rightfully be interpreted as an elliptic second-order

differential operator on L*(D). Consider first the coefficient functions (a]k)] k=1’

(br)? =1 and ap, all belonging to L>(D;C). These determine a general second-order
differential operator L which acts on functions u: D — C as

d d d
=2 D ajkdx O u+ ) brdyu+au, (1.2.6)
j=1lk=1 k=1

where 9,; = % denotes the (classical or weak) partial derivative in the direction of
]

the jth standard unit vector in R?. Since the double summation on the right-hand
side of (1.2.6) contains the highest-order derivatives, we say that its terms comprise
the principal part of L. We call L a (uniformly) strongly elliptic operator if its princi-
pal part is elliptic, i.e., if (1.2.5) is satisfied.

Equation (1.2.6) can be interpreted in a pointwise sense if # admits classical partial
derivatives up to second order (e.g., if u € C2(D), which denotes the space of twice
continuously differentiable functions on D). If, in addition, the principal coefficient
functions (a jk);i’ —; admit classical first-order partial derivatives, then the product
rule implies that the action of L can be written as

d

d d
== D O (@jdg )+ Y bpds u+aou,
j=1k=1 k=1

setting by := Ek +Z;.i:1 axj ajk forall ke {1,...,d}.
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Turning back to the matrix-valued function a := (a jk)? we1: D — C%*4 and the
vector field b := (bk)gzl: D — C4, and using nabla notation for the gradient and

divergence, we can express this more concisely as
Lu=-V-(aVu)+b-Vu+agu.

This representation of L is said to be in divergence form, since its first (principal)
term is the divergence of a vector field. In fact, the most general formal definition of
a second-order operator in divergence form is

Lu=-V-(aVu+cuw)+b-Vu+apu, (1.2.7)

where b, ¢ € L%°(D;C?%) are as above.

If the components of a and c are differentiable, then we can again use the prod-
uct rule to find a transformation of the coefficient functions which allows us to cast
the representation (1.2.7) into the shape of (1.2.6) for every u € C?(D). In general,
however, the divergence form definition (1.2.7) is meaningful for a larger class of
functions than C2(D). In fact, it naturally leads to a weak definition of the oper-
ator L, which turns out to be particularly suited for viewing elliptic operators in a
functional analytic framework. Indeed, let us multiply both sides of the equation by
the complex conjugate of a test function v € C}(D) (where the subscript ¢ indicates
compact support) and integrate over D:

fDLu(x)Tx)dx: —fD V- (a(x)Vu(x) + c(x)u(x)v(x) dx
+fD(b(x)-Vu(x))mdx+fDao(x)u(x)mdx.
Integrating by parts now yields
—fD V-(a(x)Vu(x)+c(x)u(x))ﬁdx:fp(a(xwu(x)+c(x)u(x))-Vv—(x)dx,

keeping in mind the compact support of v. Combining the previous two displays
with (1.2.2) and using L[2(D)-inner product notation, we find (Lu, v)2p) = av (1, V)
for all v € C1(D) (without specifying V for the moment), cf. Definition 1.2.4.

Having motivated Definition 1.2.11, let us now study some essential properties of
the form ay: V x V — C on L?(D). Firstly, its strong ellipticity guarantees that it
satisfies a Garding inequality, i.e., there exists a constant 17 € R such that

Reay (u, w) +7lluly, p, = 30Iulfy p, forallue V.
In particular, the form ay +1n defined by (1.2.4) is accretive. Moreover, it is continu-
ous and closed; the estimates verifying these facts can for instance be found on [164,
pp. 100-101]. Since H'(D) is dense in L?(D), and contained in V = D(a) by defini-
tion, the form is also densely defined. Thus, if Ly : D(Ly) < L%(D) — [%(D) denotes
the linear operator associated to ay, then by Theorem 1.2.6 —Ly generates a con-
tractive Cy-semigroup (Sy (1)) =0 on L?(D) which extends to an analytic semigroup.
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The choice of V serves to impose different types of boundary conditions on the
operator Ly. Common choices include the homogeneous Dirichlet, Neumann and
mixed boundary conditions, which respectively correspond to

1
V= H,(D):= ey P,

V:=HY(D), and

H'(D)
Vi={ulp:ueCXRI\I)} for some closed subset ' 8D, (1.2.8)

where u|p: D — C denotes the restriction of u: R — C to D. Intuitively, the (ho-
mogeneous) Dirichlet boundary condition should be interpreted as imposing u = 0
on 0D asin (1.1.1), whereas the Neumann condition corresponds to

(aVu+cu)-A=0 ondD,

where 71 denotes the outward-pointing unit normal vector to dD. Mixed boundary
conditions correspond to imposing Dirichlet conditions at I' € 8D and Neumann
conditions at 9D \I'. In particular, mixed boundary conditions with I = 3D simply
coincide with Dirichlet conditions. On the other hand, taking I" := @ in (1.2.8) yields

~ H' (D)
Vi=H' D) ={ulp:ue CPRH}

and the corresponding boundary condition is known as the good Neumann condi-
tion. If the boundary 8D is smooth enough, for instance Lipschitz continuous (the
minimal assumption used in this thesis), then we have H LDy = HY(D), so that the
good and regular Neumann conditions coincide.

SYMMETRIC ELLIPTIC OPERATORS WITH REAL-VALUED COEFFICIENTS

In the subsequent chapters of this thesis, we are primarily interested in symmetric
elliptic differential operators with real coefficients, i.e., whose forms satisfy c = b = 0,

aeL*® (D;Rfyxn‘f) and ag := k2 for some x € L°(D;R). Thus, the sesquilinear form

from Definition 1.2.11 reduces to the symmetric form ay given by
ay(u,v) =[ a(x)Vu(x)-Vv(x) dx+f Kz(x)u(x)v(x) dx forallu,veV. (1.2.9)
D D

Hence, the associated operator Ly : D(Ly) < I2(D) - I2(D) is formally given by
Lyu=-V-(aVu) +x*u. (1.2.10)

In particular, we mention the important example of the Laplace operator Ay, whose
negative is obtained by taking a =Idps and x =0, i.e,,

—Ayu=-V-(Vu).
In the present setting, the natural counterpart of the ellipticity condition (1.2.5) is

the existence of 0 € (0,00) such that

d d
essinf )" ) ajr(0)&;Ex 2 0NEIE, for all ¢ € RY;
x€D j=1lk=1
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note that the vectors ¢ are in R? instead of C?. In fact, together with the symmetry
of the components of a, the above condition implies

d d _
essinf )_ )" ajr(0&;& = 0¢1%, foralléeC?,
x€D 3 j=1

which is stronger than (1.2.5) since it implies that the left-hand side is real, hence the
real part does not need to be taken. In particular, it follows that a(u, u) € [0,00) for
all u € V, hence by Theorem 1.2.8 it holds that —Ly generates a contractive analytic
Co-semigroup (Sy (1)) ¢=0 €L (L2(D)) on the sector Z, for all € (0, %n). Thus, by
Theorem 1.1.8, Ly is a sectorial operator of angle w(Ly) = 0.

With homogeneous Dirichlet, Neumann or mixed boundary conditions, (1.2.9) re-
stricts to a symmetric real form on L%(D;R) whose associated semigroup (Sy (1)) =0
is positive and L>(D)-contractive by [164, Corollaries 4.3 and 4.10], respectively. It
follows that (Sy (£)) ;>0 is bounded analytic on L” (D) for all p € [2,00) by [164, Propo-
sition 3.12]. We finalize this subsection by recording a result regarding the spectral
asymptotics of L. We state it in detail for the case of a bounded domain D C R? and
homogeneous Dirichlet boundary conditions V = Hé (D). Under additional smooth-
ness assumptions on the boundary of D, similar asymptotics also hold in the case of
Neumann boundary conditions, see for instance the survey [10].

Theorem 1.2.12 (Weyl’s law, cf. [61, Theorem 6.3.1]). LetD C R4 be a bounded re-
gion. Consider the form ay from (1.2.9) with domainV = H& (D) and coefficient func-
tions a € L®(D;RExD), x € L®°(D;R). Then the associated operator Ly has empty
essential spectrum and compact resolvents, and there exist c,C € (0,00) such that its
increasing sequence (1) jen of positive eigenvalues satisfies the two-sided estimate

¢j<2;=Cj"" forall jeN. (121D

1.2.4. SYMMETRIC ELLIPTIC OPERATORS ON A MANIFOLD

Since certain problems are more naturally formulated on curved spaces, see for in-
stance Sections 2.5.2 and 5.3.1 below, we end this section with a brief summary of
how symmetric elliptic differential operators of the form (1.2.10) can be defined on
a Riemannian manifold instead of a Euclidean domain. In order to sketch the con-
text, we introduce some notation from (Riemannian) manifold theory. Precise def-
initions of basic concepts such as manifolds and smooth mappings between them,
as well as proofs of the statements below regarding tangent spaces and vector fields,
can be found in a textbook such as [98].

Let M be an m-dimensional connected smooth manifold (m € N). Its tangent
space TxM at a point x € M can be defined as consisting of precisely those linear
maps vy: C*(M;R) — R which satisfy the following version of the product rule:

vx(fg) = v (NgX) + f(x)vye(g) forall f,ge C®°(M;R).

An element v, € T, M is called a tangent vector, and its action v, (f) € R on a smooth
function f € C*°(M;R) can intuitively be interpreted as the directional derivative of
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f at the point x € M in the direction v,. The tangent space Ty M forms a vector
space of dimension m.

The disjoint union TM := | |xepm Tx M of all the tangent spaces associated to M
is called the tangent bundle of M. Since TM can be shown to admit a manifold
structure as well, we can speak of a smooth mapping v: M — T .M, which we call a
vector field if it is a section of T M, i.e., we have v(x) € T M for every x € M.

Since, for x € M, the tangent space T, M is a vector space, we can define the
cotangent space of M at x by Ty M = (TyM)* := £ (TxM;R), as well as the covector
bundle T* M = |yep T M, whose smooth sections are called 1-forms (also known
as covector fields). To any f € C*°(M;R) we associate a 1-form df: M — T*M
called the exterior derivative of f, which is defined by [df(x)](vy) = vi(f) for all
x€ M and vy € T, M.

Now suppose that M is a Riemannian manifold, i.e., there exists a collection of in-
ner products ({-, -) 1, M) xepm 0On the spaces (TxM) xe pq which depends smoothly on
x in the sense that x — (v(x), w(x)) r,p belongs to C*°(M;R) for every pair of vector
fields v, w: M — TM. For every x € M, the inner product (-, -) 1, r( renders Ty M
a Hilbert space, so that it can be identified with its dual via the Riesz isomorphism
Jx: TyM — (TxyM)*. This allows us to define the gradient of any f € C*°(M;R) as
the vector field Vo f: M — TM given by Vo f(x) := ];1 df(x) for all x € M. Un-
packing these definitions, we find that the value of the gradient Vo f at x € M is
characterized by the relation

(VN fx), vy m = vx(f) forall vy e Ty M.

Moreover, we note that the Riemannian structure of M enables the construction of
the Lebesgue o-algebra on M, and the resulting measurable space can be equipped
with the complete and Radon Riemann-Lebesgue volume measure Vol [5, Chap-
ter XII, Section 1].

We have now collected all the ingredients to make sense of an analog to the sym-
metric sesquilinear form (1.2.9) on a Riemannian manifold M. Namely, given any
k € C*°(M;R) and a smooth section a: M — | yepr Z (T M), we define

anm(u,v) = me(x)VMu(x),VM v(x)) 1, pm d Vol pg (%)
+f K% (0 (u(x), v(0)) 7, dVola (%), 1, v e CP(MR).
M

Now suppose that a(x) € £ (TyM) is self-adjoint (with respect to the Riemannian
inner product) for every x € M, and that there exists a constant 6 € (0, 00) such that

(a(X) vy, vy T M 2 0l vxllszM forall xe M and v, € T M.

Then there exists a closed extension to H'(M) of ax which is moreover sectorial
and densely defined, and satisfies the Beurling-Deny criteria, so that the negative of
its associated operator L : D(Lnq) € L2(M) — L?(M) generates a positive contrac-
tive analytic Cy-semigroup (S () s=0 on LP (M) for all p € [2,00), cf. [60, Chapter 5].
In particular, this holds for the Laplace-Beltrami operator A4 obtained by taking
a(x) =Idr, r forall xe M.




26 1. INTRODUCTION

Finally, if we additionally assume that the manifold M is compact and that x? is
strictly bounded away from zero, i.e., there exists a constant ki, € (0,00) such that
x(x)% = Kfn in>0 for all x € M, then we also recover that Ly has a discrete spectrum
of positive eigenvalues (1;) jey which satisfy the Weyl asymptotics (1.2.11); see for
instance [190, Chapter XII, Theorem 1.3]. The extra assumption on x? is needed to
ensure that 0 ¢ o(L ) since, unlike the Dirichlet Euclidean case, we consider here
a domain without boundary, and accordingly there is no boundary condition which

excludes nonzero constant functions from D(L r4).

1.3. FUNCTIONAL AND FRACTIONAL CALCULUS

Throughout Chapters 2-5, we are often faced with questions of the form: Given an
(unbounded) linear operator A: D(A) < E — E on a (complex) Banach space E and a
(complex-valued) function f, how can one define a (bounded or unbounded) linear
operator f(A) in a consistent way? The most common application (used in each of
Chapters 2-5) is to define fractional powers A% := f,(A), where f,(2) := 2% for a € R,
but we will also deal with more complicated functions such as incomplete gamma
functions in Chapters 3 and 4. Answering this question is the goal of functional cal-
culus, which is the subject of this section.

In Section 1.3.1 we present the various definitions that are used in this thesis. This
is followed by Section 1.3.2, where we focus on the particularly important example
of fractional powers. Finally, in Section 1.3.3 we go one step further and specialize to
the case where A is a (first or second order) differential operator, bringing us into the
realm of fractional integration and differentiation (collectively known as fractional
integro-differentiation or fractional calculus).

1.3.1. ABSTRACT FUNCTIONAL CALCULI

An abstract functional calculus consists of three ingredients: A class of admissible
linear operators A, a space of £ of scalar-valued functions f (called the domain of
the functional calculus) and a rule for defining f(A), in such a way that the map-
ping f — f(A) respects the operations on the function space £ (e.g., linearity and
multiplicativity) for any fixed A.

In the previous section we have already encountered some examples of operators
which can be seen as f(A) for certain operators A and functions f:

e If A € p(A), then the resolvent operator R(A, A) € Z(E) can be viewed as fj (A)
for the function f}(z) :== (1 - z)" L

e If — Ais the generator of a semigroup (S(#)) =0 S -Z(E), then for every ¢ € [0,00)
we can interpret S(¢) as f;(A) for f;(z) := e~'* (or as fi(tA)).

Building upon these observations, we will define the (extended) Dunford and Phillips
functional calculi, respectively, which will be used throughout this thesis: Indeed,
the Dunford and H*-calculus are used in Chapters 5 and 2, respectively, and the
Phillips calculus is used implicitly or explicitly in Chapters 2—-4 (mostly to define frac-
tional powers, see also Theorem 1.3.6 below). Afterwards, we also briefly introduce
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the spectral functional calculus which is used to define fractional powers for a class
of differential operators on a graph or manifold in Section 5.3.

DUNFORD AND H®-CALCULUS FOR SECTORIAL OPERATORS

We start with the Dunford calculus for sectorial operators and functions belonging to
a Hardy space HP (£,,), which for p € [1,00] and w € (0, 7) denotes the Banach space
consisting of holomorphic functions f: %, — C for which the norm

”f”Hp(Zw) = sup || t— f(telv) ”LP((O,oo),fl dp)
VE(—w,w)

is finite, where L ((0,00), t~! d¢) indicates the LP-norm with respect to the measure
B~ fB t~1dt on (0,00). Note that H®(Z,) reduces to the space of bounded holo-
morphic functions on X, equipped with the supremum norm.

Definition 1.3.1 (Dunford calculus). Let A: D(A) € E — E be a sectorial linear op-
erator of angle w(A) € [0,7), and suppose that f € H'(Z,) for some w € (w(A), ), so
that the Cauchy integral formula implies, for o’ € (w(A), w),

f(z)zi,f f(/l)(/l—z)fldﬂt forall ze Zy 4.
2mi Joz,,
Then we can define f(A) € Z(E) by
1
f(A) - E_[ﬁzw, f(A)R(/l) A) d/ly

this operator is well-defined in the sense that the expression on the right-hand side
does not depend on the choice of w'.

By [114, Theorem 10.2.2], the mapping f — f(A) from H'(Z,) to Z(E) is linear
and multiplicative in the sense that (fg)(A) = f(A)g(A) whenever f,ge H l(z,) are
such that fge H 1 (Z4). We now discuss some circumstances under which we can
extend this mapping to a larger class of functions.

Before moving on to this extended Dunford calculus, we first briefly record the con-
cept of a bounded H*°-calculus. It is used as an assumption for parts of Chapter 2
(see Assumption 2.3.1(iii)), and it is related to the concept of maximal L”-regularity
discussed in Section 1.1.4. A sectorial linear operator A: D(A) € E — E of angle
w(A) € [0,7) is said to have a bounded H*(Z,,)-calculus for w € (w(A),n) if there
exists C € [0,00) such that

If (Al 2@ < Clflaee, forallfeH (Z,)nH®(E,), (1.3.1)

and we let w g~ (A) denote the infimum of all w € (w(A), ) for which Ahas abounded
H*(Z,))-calculus. Whether a given operator has a bounded H*-calculus is a highly
nontrivial question whose answer has some far-reaching consequences (see [114,
Chapter 10]). We only mention here that, by [115, Corollary 17.3.6], any operator A
admitting a bounded H*-calculus with w g (A) < %n has maximal L -regularity on
(0,00) forall p € (1,00).
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Now we extend the Dunford calculus into another direction, which does not im-
pose such strong requirements on the operator A. Firstly, for w € (w(A), 1) we intro-
duce the vector space £(Z,,) of holomorphic functions f: Z, — C of the form

f(@)=folz)+ad+2) "' +b,
where fy € H'(Z,) N H®(Z,) and a, b € C.° For f € £(Z,), we can naturally define
F(A) = fo(A) + aldg +A) "L + bldg € Z(E),

and the mapping f — f(A) is linear and multiplicative on £(Z,) by [115, Propo-
sition 15.1.4]. Examples of such functions include z — z™(1 + z) ™" € £(Z,) for all
w € (0,7) and n,m € Ny with m = n, and z — e %% e £, forall w € ((),%71) if
(e Z%n_w. Wehave [z— z"(1+2)""](A) = A™(Idg +A)~"if Ais sectorial [115, Exam-

ple 15.1.5], and if w(A) < %n, the operators [z — ¢~%#](A) coincide with the analytic
semigroup S({) given by (1.1.14), see [115, Theorem 15.1.7].

Finally, we can extend the Dunford calculus for a given sectorial linear opera-
tor A beyond the class £(X,) (where w € (w(A), 7)) by means of regularizing func-
tions. We say that p € £(Z,,) is a regularizer for a holomorphic function f: 2, — C
if of € £(Zy) and p(A) € Z(E) is injective, in which case we define the (possibly
unbounded) linear operator f(A): D(f(A)) € E — E by

D(f(A) :={xeE:[pfl(AxeR(p(A)},
fAx:=0A) Hofl(Ax, xeD(f(A),

where we view the inverse of an injective (but not necessarily surjective) operator
T: D(T) € E — E as an (unbounded) linear operator 7~': D(T~!) ¢ E — E whose
domain D(T™Y) is the range R(T) of T. By [115, Proposition 15.1.9], the defini-
tion of f(A) does not depend on the choice of regularizer. The resulting mapping
f — f(A) is called the extended Dunford calculus, and it satisfies analogous proper-
ties to linearity and multiplicativity for unbounded linear operators, see [115, Propo-
sition 15.1.12].

PHILLIPS CALCULUS FOR SEMIGROUP GENERATORS

Let C, :={ze C:Rez > 0} and @Jr :={z € C: Rez = 0} denote the open and closed
right-half planes of the complex plane, respectively.

Definition 1.3.2 (Phillips calculus). If —A is the generator of a uniformly bounded
and strongly measurable semigroup (S(1)) ;0 €-Z(E) and f: C, — C is the Laplace
transform L[u] of a complex Borel measure u of bounded variation on [0,00), i.e.,

flz)= f e du(s) forallzeC,,
[0,00)

81t is convenient to take foeH 1 (Zw) N H%®(Z,,) instead of the seemingly more natural fy € H 1 (Zw), see
the discussion below [115, Definition 15.1.3].
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then we can define f(A) € Z(E) by

fA) = f S(s) du(s).
[0,00)

The operators defined in Definitions 1.3.1 and 1.3.2 coincide whenever — A gener-
ates a uniformly bounded and strongly measurable semigroup and f = L[u] extends
to a function in H(Z,) for some w € (%n, m) by [100, Proposition 3.3.2]. For this
reason, we typically use the same notation f(A) for both.

The Dunford and Phillips calculi follow a common recipe for defining operators
f(A): Identify a “prototypical” class of functions f for which the definition of f(A) is
natural (respectively, the resolvent operators R(A, A) = [(1 — 2)"1(A) and the semi-
group S(t) = [e”'#](A)), along with a larger class of scalar-valued functions which
can be expressed in terms of those basic functions (e.g., using integral transforms),
and define f(A) by substituting the “prototypical” operators into this relation.

SPECTRAL CALCULUS FOR OPERATORS WITH DISCRETE SPECTRA

The definition of the following spectral functional calculus is of a different form than
the previous two. It applies to linear operators on a separable Hilbert space with an
orthonormal eigenbasis whose positive real eigenvalues only accumulate at infinity,
such as the symmetric elliptic operators from Section 1.2. More specifically, it is used
to define fractional powers of differential operators in Section 5.3.1.

Definition 1.3.3 (Spectral calculus). Let A: D(A) € H — H be alinear operator on a
separable (real or complex) Hilbert space H. Suppose that there exist (y;) jen € H
and an increasing sequence (1) jeny < (0,00), accumulating only at infinity, such that
Ay = Ajy; for every j € N. Then for any f: (0,00) — C we can define an (un-
bounded) linear operator f(A) by

D(f(A) = {x(—: H: Y [y pyafA))? <oo},
j=1

FAx:=) xypuf(Ajy;, xeD(f(A).

j=1

This calculus coincides with the previous two whenever applicable, which ulti-
mately follows from the facts that R(z, A)y; = (z- A j)’11// j (easily verified directly)
and S(D)y; = e N tl[/j (by spectral mapping, cf. [73, Chapter IV, Theorem 3.6]).

1.3.2. FRACTIONAL POWERS OF SECTORIAL OPERATORS

As mentioned earlier, the most common application of functional calculus (appear-
ing in this dissertation) is the definition of fractional powers A* (where a € R).? In
order to define these, let A be a sectorial operator on a complex Banach space E and
note that the function f, : C\ (—00,0] — C given by f, (z) := 2% := ®!°87 (taking the

9We only use real powers a € R in this dissertation, but complex powers can be defined in the same way.
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principal branch of the complex logarithm) belongs to the domain of the extended
Dunford calculus, which we use to define A% := f, (A). Indeed, f, is holomorphic on
the given domain, as is the family of functions g, ,: C — C defined by

Om,n(2) = Z"1+27™" zeC,

and indexed by n, m € Ny. Moreover, we have g, fo € £(Z,) for any w € (0,7) if
either n > a > 0, or a = 0 with n,m = 1, or a < 0 with m > —a, and the operator
Om,n(A) = A™(Idg+A)~""""" is injective if A is injective or m = 0. Together, we find:

° po,n is aregularizer for f, if n > a > 0;

° pn,nis aregularizer for f, if @ <0, n > —a and A is injective;
and in these cases we define A% := f;,(A). The following theorem summarizes some
basic properties of fractional powers which will be used throughout this thesis. More

details and the proofs of these statements can be found in [115, Proposition 15.2.3,
Theorems 15.2.5 and 15.2.7, Corollary 15.2.10].

Theorem 1.3.4. Let A: D(A) € E — E be a sectorial linear operator on a complex
Banach space E. Its fractional powers satisfy the following properties:

(@) Ifa >0 and A is densely defined, then A% is densely defined.

(b) Forallne Ny (orn e Z if A is injective), we have f,,(A) = A" with equal domains,
where the right-hand side indicates A composed with itself n times.

(c) If A is injective, then A% is injective for all a € R and A% = (A%~ = (A™H)@
with equality of domains.

(d) Ifay > ay >0, then D(A*) < D(A%?); similarly for a, < a; <0 if A is injective.

(e) If ay,az > 0, then A%1%%2 = A% A%2 with equality of domains; the same holds
for ay,as <0 if A is injective.

(f) For any a € (0,n/w(A)) (with the convention that n/w(A) = oo if w(A) = 0),
the operator A% is sectorial with w(A%) = aw(A) and for all B € (0,00) we have
(AP = A%B with equality of domains.

(g If A is injective and A™" is bounded (that is, we have 0 € p(A)), then A~% is
bounded for all a > 0.

Next we present two representation formulae for certain fractional powers, proved
in [115, Theorem 15.2.13 and Corollary 15.2.15]. The first of these is the Balakrish-
nan representation, which was historically the first formula in the literature for frac-
tional powers of a general sectorial operator. We only present it for a € (0, 1); higher-
order counterparts can be derived by splitting a into integer and fractional parts and
using Theorem 1.3.4(b),(e).

Theorem 1.3.5 (Balakrishnan representation). Let A: D(A) € E — E be a sectorial
linear operator on a complex Banach space E and let w € (w(A), ). Then we have

« sinTa
A%x =

[e.0]
~ f 1L (tldg+A)tAxdt foralla e (0,1) and x € D(A).
0
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If, moreover, A is injective, then we also have

1 (o)
A—“x:smﬂ”“f 9 (t1dg+A) 'xdt forallae(0,1) andx € R(A). (1.3.2)
0

An application of the Balakrishnan representation—in particular, formula (1.3.2)
for negative powers—is the numerical approximation of (stochastic) PDEs of frac-
tional order. Namely, it allows to express the solution operator of a fractional prob-
lem as an integral over integer-order problems perturbed by a real parameter. After
changing variables to obtain an integral over R, one can truncate and approximate
it using a sinc quadrature for efficient computations; see [30, 31, 35, 50, 107].

The second representation of fractional powers applies in the case where — A gen-
erates a strongly measurable and uniformly bounded semigroup. In this case, one
can insert the Laplace transform representation (1.1.7) of the resolvent operators
R(t,—A) = (¢tIdg +A)~! into Theorem 1.3.5 to derive the following theorem.

Theorem 1.3.6 (Phillips representation). Let —A: D(A) € E — E be the generator of
a strongly measurable and uniformly bounded semigroup (S(t)) ;=90 on a complex Ba-
nach space E. Then we have, for all a € (0,1) and x € D(A),

1
IT'(-a)l

a _;‘/‘oo -a — foo —a-1(, _
Ax—r(l_a) A 7 *S(nAxdt = | t (x-S()x) dt. (1.3.3)

If, moreover, A is injective, then we also have
1 o0
A% = —f t971S(txdt  forall x € R(A). (1.3.4)
I'(a) Jo

The name Phillips representationis in reference to the analogy between (1.3.4) and
the following Laplace transform identity (see [100, Lemma 3.3.4]):

1 o0
z_“:ﬁf t* 1e72dr forall ze C with Rez € (0,00).
0

Note that (1.3.2) and (1.3.4) hold for all x € E if A is boundedly invertible. If (S(#)) ;>0
is uniformly exponentially stable, then (1.3.4) holds without the “x” on either side,
i.e., it becomes an equation in .Z(E), which in fact remains valid for all « € (0,00).

1.3.3. FRACTIONAL INTEGRATION AND DIFFERENTIATION

Among the class of fractional powers A%, the most natural concrete choices of base
operators A (as well as the first historical instances) are differential operators. In this
section we specialize to such operators, viewed as acting on either temporal or spa-
tial LP-spaces (in general one could also consider spaces of, for instance, continuous
functions), and investigate the resulting formulae.

Spatiotemporal extensions of the fractional time derivatives and integrals defined
in the first part of this section are central to Chapters 2—4. We subsequently consider
fractional (shifted) Laplacians on R?, which are related to the Matérn class of Gaus-
sian random fields considered in Example 1.4.5 below. In the last part of this section,
we briefly introduce fractional-order Sobolev spaces, which are used in Chapter 2 to
measure spatial regularity of solutions to fractional stochastic evolution equations.
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FRACTIONAL TIME INTEGRALS AND DERIVATIVES
Consider the (weak) derivative operator 0; acting on LP(J; E) on an interval J = (0, T)
or J = (0,00), with domain D(9;) = 0 {0} P (J; E). Recall from Example 1.1.15 that -0,

generates the uniformly bounded Cy-semigroup (7 (¢));=0 of right translations on
LP(J; E); substituting it into (1.3.4) yields

;% f(1) = @ )f (t-9)%1f(s)ds forae.te] (1.3.5)

and any f € LP(J; E) and a € (0,1). The right-hand side is known as the ath-order
Riemann-Liouville fractional integral of f, see [179, Definition 2.1]. For positive
powers a € (0,1) and f e W, {0} P (J; E), we obtain from (1.3.3):

a?f(t) = 1_,(1 f (t— S)_a asf(s) ds (1.3.6)
= m_a”f() s - fa-9)ds; (1.3.7)

recall that f denotes the extension of f by zero. Expressions (1.3.6) and (1.3.7) are
known as the Caputo [121, Section 2.4] and Marchaud fractional derivatives [179,
Section 5.4], respectively. Since 8¢ = 9, 6_(1_“) with equality of domains by Theo-
rem 1.3.4(c) and (e), we can apply (1 3.5) w1th 1—a>0tofind

IGE af(t $)"%f(s)ds

for all f € LP(J;E) such that 6‘;"1f € Wol{g} (J; E) and a.e. t € J. This is known as
the Riemann-Liouville fractional derivative, see [179, Definition 2.2]. Note that the
Caputo derivative can be derived analogously by instead using 8% = 3%79;.

The fractional integrals and derivatives introduced above can be deﬁned for func-
tions on the entire real line by slightly modifying the formulae and the class of admis-
sible functions. For instance, if f: R — E is such that the integral on the right-hand
side converges in some appropriate sense (see [179, Section 5.1]), then we can define

its Riemann-Liouville integral as

t
9,%f(1) = ﬁf_ (t—9)*"1f(s)ds forae. teR.

Note that the above examples of fractional (time) integrals and derivatives are
all representations of the same operator 0 (valid for possibly different classes of
f), which is unambiguously defined by applying the Dunford calculus to the weak
derivative operator on WOI, ’{’5} (J; E) or WhP(R; E). The situation is different, however,
if we consider d; on the domain of functions in WP (J; E) on J < (0,00) which do
not necessarily vanish at zero: Its negative no longer generates a semigroup, so the
above argument does not generalize, and the commonly used extensions of, for in-
stance, the Caputo and Riemann-Liouville fractional derivatives for functions with
nonzero initial values no longer coincide owing to their different boundary terms.
This leads to the question of how to naturally impose initial data in fractional (par-
tial) differential equations, which we investigate more thoroughly in Chapter 4.
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BESSEL AND RIESZ POTENTIALS; FRACTIONAL LAPLACIANS

Now we turn to multivariate functions f: R% — R, where the natural object of study
becomes the (shifted) Laplace operator x2—AonL” (Rd) with x € [0,00),d € {2,3,...}
and p € [1,00). Its negative —k? + A generates the contractive analytic Cy-semigroup
(e"(zt H(1)) >0, recalling the heat semigroup from Example 1.1.16. Substituting its
definition into the Phillips representation (1.3.4) and changing the order of integra-
tion yields, for all s€ (0,2), f € LP(RY) and x € RY,

(47.[)—'1/2
[(s2) Jra

k> =) f 0 =

o 2= L x=y|?
f ‘[Td_le KT lx=ylsg dr|f(y) dy; (1.3.8)
0

note that we consider a = s/2 so that s indicates the order of the operator. The inte-
gral inside the brackets is equal to

24T () Ix-yIS,? ifx=0andse(0,d);  (1.3.9)

2 T = YIS P Kigog o tkllx -~ Yliga) K, 5 € (0,00)

where K(;_g) /2 denotes a modified Bessel function of the second kind. The first case
follows by the change of variables 7’ := illx - yII% dT_l and the definition [163, Equa-
tion (5.2.1)] of the gamma function; the second case is due to [161, Part I, Equa-
tion (5.34)]. Note that both relations hold for larger ranges than s € (0,2) (if d > 2).
For « € (0,00), the fact that (1.3.8) holds for all s € (0,00) could already be deduced
from the uniform exponential stability of (e""2 YH(t)) =0, and we obtain

d-s

2

1= 15D Kig-g2 (cllx = yllga) f () dy,

(1.3.10)
which in the case x = 1 is known as the Bessel potential. For k = 0, we can take the
formula derived above as a definition of the Riesz potential for s € (0, d):

I f f

25w P 0l2) Jre | x— yld2s

K2 — A" F(x) = S—f
! 221 2m)2r (s/2) JRY

I f(x):= (1.3.11)
This can be viewed as a multi-dimensional analog to the Riemann-Liouville frac-
tional integral. One can derive an expression similar to (1.3.11) for the positive-order
fractional Laplacian (~A)”? by formally substituting the heat semigroup into (1.3.3),
interchanging integrals and evaluating the inner integral with analog to (1.3.9). How-
ever, in this case the interchange of integrals cannot be rigorously justified, and this
isreflected in the fact that the resulting singular integral formula must be interpreted
in the principal value sense, i.e.,

(s -
3 f f) - f()

2=592|T (=s/2)| rl0 JRA\B, (x) ||x—yllﬂ‘§;s

N f(x) = dy, xeR<

Lastly, we mention that one can define the sth fractional power of k> — A on R as a
Fourier multiplier operator with the symbol ¢ — (K% + 1< ”]lzk d)S/ 2. To see this, note that
the convolution kernels in (1.3.10) and (1.3.11) are the inverse Fourier transforms of
& (K% + IIchI]%d)“/2 and ¢ — [¢]I3,, respectively, see [186, Chapter V, Sections 1 and 3].
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FRACTIONAL SOBOLEV SPACES

Given p € [1,00) and an open set D < R4, recall that W7 (D) denotes the first-order
Sobolev space of functions in LP (D) whose weak partial derivatives all belong to
LP (D) as well. For s € (0, 1), we define the Gagliardo seminorm

1p
lu(x) — u(y)|?
[u] WspP (D) = f —d-iJ-/Sp dx dy y
PID x =yl

along with the Sobolev-Slobodeckij space W*? (D) = {u € LP(D) : [ulwsrp) < 00},
which we equip with the norm [ullys»p) = (IIuIIfP(D) + [u]’svsvnm))un to render it
a Banach space. Then for any s € (0,1] we can define W*™1'?(D) as the space of
functions in W7 (D) whose partial derivatives belong to WP (D), and recursively
repeat this process to extend the definition of W%” (D) to any s € (0,00). In the case
p = 2 we use the special notation H*(D) := WS2(D).

IfD=R4 pe(l,00) and s € (0,00), we can also define the Bessel potential space
HP(RY) of functions u for which || ull gs.pray = (1= A)Slzulle(Rd) is finite (the lat-
ter operator being defined as a Fourier multiplier). The notation is consistent since,
for p = 2, it holds that H?(R%) = HS(R?) := WS?(R%), see parts (v) and (vii) of the
proposition in [178, Section 2.1.2]. This observation raises the question if there is a
relation between H*(D) and the fractional domain spaces (D(L"?), [[L"? - |2 (D)) as-
sociated to more general elliptic second-order differential operators L on D < R¥.
The answer depends on the regularity of the coefficient functions and the smooth-
ness of the boundary 0D; see Lemma 2.5.5 below for some results in this direction.

1.4. STOCHASTIC PROCESSES AND RANDOM FIELDS

The final class of prerequisites for this dissertation belongs to the realm of proba-
bility theory. Chapters 2, 3 and 5 are all concerned with stochastic evolution equa-
tions in space and time, whose solutions can be viewed as spatiotemporal random
fields or (function space valued) stochastic processes. In particular, Chapters 2 and 3
deal with linear stochastic partial differential equations (SPDEs) whose solutions are
Gaussian random fields (GRFs). Thus, in Sections 1.4.1 and 1.4.2 we describe GRFs
and how they arise from linear SPDEs, respectively. In Section 1.4.3 we instead focus
on (vector-valued) stochastic processes, including important examples such as Wie-
ner processes, and describe how to define stochastic integrals with respect to the
latter. This provides a way of defining mild solutions to stochastic evolution equa-
tions, which is the main solution concept used throughout Chapters 2, 3 and 5. In
this last section we also briefly mention the Markov property, which is the subject of
Chapter 3 (and explained in more detail there).

Let (Q, F,P) denote a complete probability space (meaning that F contains the
collection AMp of P-null sets), and let (E, || - ||g) be a separable Banach space over
the real scalar field. A mapping Z: Q — E is said to be an E-valued random vari-
able if it is (strongly) measurable. Note that since E is separable, the notions of
strong measurability (in terms of a.e. approximation by simple functions) and “nor-
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mal” measurability (in terms of pre-images) coincide, see [113, Corollary 1.1.10]. If
Z e LY(Q;E), then E[Z] = Jo Z(w) dP(w) denotes its expectation (or expected value).
A collection (X(x)) ye7 of E-valued random variables indexed by an arbitrary set Z
is said to be an E-valued random field. We call a random field spatial if T := D < R¢
is a (Euclidean or curved) domain, and spatiotemporal if 7 := J x D for some (time)
interval J € R. A collection (X (#))cy indexed by J is called a stochastic process. The
mappings Z 3 x — [X(x)](w) € E for w € Q are called the trajectories or sample paths
of (X(x))xez. If the index set 7 is a measurable space (S, <), as is the case for J, D
and J x D, then (X (x)) yes is said to be measurableif (w, x) — [X(x)](w) is measurable
with respect to the product o-algebra F ® 7 (as usual, E is equipped with its Borel
o-algebra B(E)). Although we will only encounter real-valued random fields in this
thesis, we shall frequently use stochastic processes taking values in function spaces
such as E = L9(D) for g € [2,00) or E := C(D) to represent spatiotemporal fields.

1.4.1. GAUSSIAN RANDOM PROCESSES AND FIELDS: TWO VIEWPOINTS

In this section we introduce two different but related definitions of this notion.

Definition 1.4.1. A random field (or process) (X (x))yez indexed by a set Z (most
often J, D or J x D) is said to be Gaussian if its finite subcollections are Gaussian. L.e.,
forne Nand xy,...,x, € Z, the R"”-valued random vector (u(x,-))lfl:1 is multivariate
normal. Its mean vector m = (m j)]’.‘:l € R and covariance matrix Q = (Q; j);szl
satisfy m; = u(x;) and Q;; = p(x;, x;), respectively, where u: 7 —Rand p: TxZ — R
are defined by

u(x)=E[X(x)] and p(x,y)=E[(X(x)-px)X@) -pu], x,yeI. 1.4.1)

The mean function u and covariance function p fully characterize a Gaussian ran-
dom field. It is immediate from (1.4.1) that a covariance function g is necessarily
symmetric and non-negative definite, i.e., p(x,y) = p(y,x) and p(x,x) = 0 for all
x,y € Z. Conversely, by Kolmogorov’s extension theorem [172, Chapter 1, Theo-
rem 3.2], we can associate a random field on indexed by Z with any u: 7 — R and
symmetric non-negative definite p: Z xZ — R.

A Gaussian random field with u = 0 is called centered or mean-zero. Since any
field can be made centered by subtracting its mean, we will often restrict ourselves
to mean-zero Gaussian random fields for notational convenience.

Under some further regularity conditions, a Gaussian random field can alterna-
tively be viewed as a Gaussian random variable taking its values in a function space.
To illustrate this, consider a measurable centered Gaussian random field (X (x)) yep
with square-integrable trajectories on a bounded domain D C R?. In this case, the
family (X, u)2(p)) ye12(p) i also a Gaussian random field, cf. [27, Example 2.3.16].
As such, it is fully characterized by the values of

E[(X, u) 120p)¢X, V) 2(py] forall u,ve L*(D).

If, in addition,
x—p(x,x) belongsto L'(D), 1.4.2)
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then by Fubini’s theorem we have

EKX, u) 12(p) (X, V) 12(p)] :E[(fDX(y)u(y) dy)(fDX(x)v(x) dx)

(1.4.3)
=f ([ EX(n)Xx)]u(y) dy)v(x) dx=<(Cu, V) 12(p),
p\Up
where the covariance operator C: L?>(D) — L?(D) is given by
Cu(x) = f ox, puy)dy, uel?D), ae xeD. (1.4.4)
D

In other words, the covariance operator is an integral operator on L?(D) with inte-
gration kernel p: DxD — R. For this reason, g is sometimes referred to as the covari-
ance kernel of (X (x))xep. We see from (1.4.3) that C is symmetric (hence bounded
by the Hellinger—Toeplitz theorem) and non-negative definite, the latter meaning
(Cu,uyj2pyz0forall ue L2(D). By (1.4.2), we in fact have trC = fD o(x,x) dx < oo,
where the frace of an operator T € .Z(H) on a separable Hilbert space H is defined
bytrT := Z‘J’.‘;l (Tej, ej)y for any orthonormal basis (e;) jen of H. We will see that the

random field X, when viewed as an L2(D)-valued random variable, is Gaussian in
the sense of the following definition.

Definition 1.4.2. A measure u on a real and separable Hilbert space H (equipped
with the Borel o-algebra B(H)) is said to be Gaussian if, for all h € H, the measure
B— u({-,x)g € B) on (R, B(R)) is Gaussian. A random variable Z: Q — H is said to
be Gaussian if its law Po Z~! is a Gaussian measure on H.

Gaussian measures on real separable Hilbert spaces H admit the following char-
acterization in terms of their Fourier transforms, defined for any measure p by

f: H—C, ih) ::f exp(i{x, b)) du(x), he H.
H

Theorem 1.4.3 ([27, Theorem 2.3.1]). A measure p on a real and separable Hilbert
space (H,B(H)) is Gaussian if and only if there exist m € H and a symmetric, non-
negative definite operator Q € £ (H) with finite trace such that

fi(h) = exp(i(m, h); — 1(Qh,hyy) forallhe H.

In this case, we write X ~ N(m, Q) and it holds for all h,u € H that

(m,hyg = fH(x, hygdu(x) and (Qh,u)y =[H(x— m, h) g{x—m, uy g du(x).

Before returning to random fields, we note that in the course of the proof of [27,
Theorem 2.3.1] it is observed that any Gaussian random variable Z: Q — H with
mean m and covariance Q can also be expanded as a series. To this end, we note
that since Q is a non-negative operator with finite trace, there exists an orthonormal
basis (e;) jeny and a sequence of eigenvalues (A ;) jew < [0,00) such that Qe; = A;e; for
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all jeNandtrQ = Z‘]’.‘;l A;j <oo. Given a sequence (¢ ;) jen of independent standard
normal (real-valued) random variables on Q, we have the following Karhunen—Loéve
expansion of Z:

(e8]
Z=m+Y Af¢jej; (1.4.5)
j=1

this series converges P-a.s. and in L2(Q; H).
Now we turn back to the Gaussian random field (X (x))ep viewed as a random
variable X: Q — L?(D). The Fourier transform of its law satisfies

PoX~T(u) = E[exp(i(X, 10 2p))] = exp(~ 3 E[(X, )32, ]) = exp(=3 (Cuty td 2 )

for all u € L2(D). Here, we used the change of variables formula for Lebesgue in-
tegrals, the Gaussianity of the real-valued random variable (X, u)2p), and (1.4.3),
respectively. Thus, by Definition 1.4.2 and Theorem 1.4.3, it follows that X is a Gaus-
sian L?(D)-valued random variable with 7 = 0 and Q = C. Conversely, we can asso-
ciate a measurable Gaussian random field (X (x)) xes to any centered Gaussian mea-
sure on L%(S) for some measure space (S, «7,v), see [27, Example 3.5.12].

1.4.2. GAUSSIAN WHITE NOISE AND LINEAR SPDES

The Gaussian random fields from Chapters 2 and 3 are all given by solutions to linear
SPDEs driven by Gaussian noise. In this section, we focus on the relation between
such fields and equations. To this end, we first define Gaussian white noise #' on do-
mains (S,./) such as J € T (temporal), D < R4 (spatial) and J x D (spatiotemporal),
and subsequently indicate how one can interpret equations of the form LX = %"

Intuitively, Gaussian white noise refers to a completely uncorrelated Gaussian ran-
dom field. Because a multivariate Gaussian random variable is uncorrelated if its
covariance matrix is diagonal (say the identity matrix, in order to normalize the
variance), it is tempting given the discussion from the previous section to define
Gaussian white noise # as an L?(S)-valued mean-zero Gaussian random variable
with covariance operator Id;2 ). However, since the identity operator on an infinite-
dimensional Hilbert space has infinite trace, it does not define a proper L2(S)-valued
Gaussian random variable for S as above in view of Theorem 1.4.3. Despite this, the
left- and right-hand sides of (1.4.3) are still meaningful for C =1d;2p), leading us to
the following definition.

Definition 1.4.4. Let H be areal and separable Hilbert space. A centered real-valued
Gaussian random field (% (h)) ey on (Q, F,P) is said to be an H-isonormal process
ifE[# (w)# (h)] =(u,h)yy forall u,he H.

An L?(S)-isonormal process is said to be spatial, temporal or spatiotemporal white
noiseif S=D, S=J or S=J x D, respectively.

Let us briefly comment on the other two informal ways to interpret white noise
suggested by the previous section, and the obstacles to making them rigorous. If we
wish to view white noise as a Gaussian random field in the sense of Definition 1.4.1,
then its kernel would need to be the Dirac delta p(x, y) := 6 (x — y) in order to obtain
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C =1dj2g in (1.4.4), which is not a well-defined function. On the other hand, if we
want to consider Gaussian white noise as a formal Karhunen-Loeéve series expan-
sion, then by (1.4.5) we would have # = Z‘]’.‘il ¢jej, where (€j) jen is an orthonor-
mal basis of L2(S) and &) jeN are independent standard normal random variables.
This series does not converge P-a.s. or in L?(Q; L?(S)). However, if S := D C R is
bounded with sufficiently smooth boundary, then the series can be shown to con-
verge in a larger space in which I[%(D) has a Hilbert-Schmidt'° embedding (i.e., a
negative-order fractional Sobolev space; see for instance [30, Proposition 2.3]).

Given an H-isonormal process on a real separable Hilbert space H and an (un-
bounded) linear operator L: D(L) € H — H admitting a bounded inverse L™}, we
can consider the linear stochastic partial differential equation

LX=%. (1.4.6)
For such X, we can formally compute that
(X, hyg =(L7'LX, hyy =(LX, (L") Wy =(#,(L"H*hyy forall he H,
which implies, by the definition of H-isonormal processes,
ENX, wy (X, byl = (L) u, (LY Ry =L "L Y u, by forallu,he H.

This motivates us to interpret a centered Gaussian random field X with covariance
operator Q = L YL H* asa generalized solution to (1.4.6). However, in order for
this to be meaningful one needs that L~ 1(L~Y* has finite trace, which is equivalent
to L™! being a Hilbert-Schmidt operator. If L™! is merely bounded, then we may
still formally consider it as the “covariance operator” of a Gaussian random field in a
generalized sense. This is seen in the next example, which forms a crucial part of the
background of Chapters 2 and 3 (see the respective introductory sections for more
information).

Example 1.4.5 (Matérn Gaussian random fields). Givenv,x, o2 € (0,00), let us define
kmat : [0,00) — (0,00) by setting kyjar(0) = 02 and

2

vt () = (k1) Ky (xr), re(0,00),

o
2v=1T(v)
where we recall that K, denotes a modified Bessel function of the second kind. Note
that the normalizing prefactor is chosen such that ky(r) — 02 as r — 0. Given a
domain D < RY, the symmetric and positive definite function gyae: D x D — (0,00)
defined by pmat(x,y) == kmat(|x — ylga) for x,y € D is known as a Matérn covari-
ance function, giving rise to a Matérn Gaussian random field (X (x)) yep- This three-
parameter class of covariance functions, introduced by Matérn in [149], is widely
used in spatial statistics [187].

10An operator T € .Z(H; K) between separable Hilbert spaces H and K is said to be Hilbert-Schmidt if
YjenllTe;j II% < oo for any orthonormal basis (e;) jeny of H. The space of Hilbert-Schmidt operators
% (H;K) is a Hilbert space with respect to the inner product (7, 5)32 (U:H) = ZjeN ( Tej , Sej)H, which
can be shown to be independent of the choice of orthonormal basis.
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If D C R¥ is bounded, then by the discussion above we have that X can be seen as
a L?(D)-valued Gaussian random variable with covariance operator

o? v
Cu(x) = mfp("”x_y”Rd) Ky (xllx = yllpa)u(y) dy. (1.4.7)

If D = R, then we can still speak of a Matérn Gaussian random field (X (x)) g« With
covariance kernel pyac. Substituting D = R¢ into (1.4.7) would yield the operator

_T(v+df2)

C= W(47T)d/2K2VO'2(K2 _A)—(2V+d) € .,%(LZ(Rd))

(by comparison with formula (1.3.10) for the Bessel potentials), which does not have
finite trace (for instance because its spectrum is continuous, meaning that it cannot
be compact). However, this does show that the unique stationary solution (meaning
that its covariance kernel p(x, y) depends only on || x — y|ga) to

&2-NPX=% onR% (1.4.8)

is a Matérn Gaussian random field with smoothness parameter v = 23—d/2 whenever
B > d/a. The connection between the Matérn class and SPDEs was first observed
by Whittle [196]. If we instead consider (1.4.8) with the (e.g. Dirichlet or Neumann)
Laplacian on a bounded domain D C R4, then its solution is called a Whittle-Matérn
field. The solution to (1.4.8) with (k? — A)P replaced by LP for some general elliptic
differential operator L on a Euclidean or curved domain (see for instance Section 1.2)
is said to be a generalized Whittle-Matérn field.

1.4.3. STOCHASTIC PROCESSES, FILTRATIONS AND INTEGRATION

In this subsection we focus on (E-valued) stochastic processes (X (1)) e, i.e., the case
where the index set J € R is an interval (interpreted as time), and on the stochastic
integration of such processes. These notions are used to define mild solutions to
stochastic evolution equations in Chapters 2, 3 and 5 (note that the equations are
allowed to be nonlinear in the last chapter).

Suppose that the probability space (Q2, F,P) is filtered, meaning that there exists a
filtration (F}) ey, which is a family of o-algebras satisfying F; < Fs < F forall s, € J
such that ¢ < s. Moreover, we will assume that this filtration is complete and right-
continuous, by which we mean that ANp € F; and F; = s, Fs for every t € J, re-
spectively. We say that a stochastic process (X (1)) ey is adapted to (Fy) ey if X(2) is
F:-measurable for each t € J; it is said to be predictable if it is (strongly) measurable
with respect to the predictable o -algebra

Prxa:=0((s,t] x Fg:s,t € Jsuch that s < t and F; € Fy). (1.4.9)

Here, 0 (%) denotes the o-algebra generated by a family of sets Z. Given an indexed
family (%)) jez we define \ jez % := 0(Ujez %;). The filtration generated by a ran-
dom variable Z: Q — E is given by 0(Z) := {{Z € B} : B € B(E)}, and the filtration
generated by a stochastic process (X(t)):cy is denoted by F, tX =0(X((#):te]). Two




40 1. INTRODUCTION

o-algebras @, 2% are independent (denoted @] L o) if P(A; N A2) = P(A1)P(A2)
whenever A; € @/ and A, € 4. In case & = o(Z) for a random variable Z, we
simply write Z Ll <. The processes (X(#));e; and (X (1)) rey are modifications if
P(X(t) = X(1) = 1 for all ¢ € J, and indistinguishableif P(X(t) = X(t) for all t € J) = 1.

REAL-VALUED PROCESSES; (FRACTIONAL) BROWNIAN MOTION

One of the most important real-valued stochastic processes is the following:

Definition 1.4.6 (Brownian motion). A real-valued Gaussian process (B(t))s>o on
(Q, F,P) is said to be a Brownian motion if it is centered, its trajectories are continu-
ous and we have and E[B(#)B(s)] = sA t for all s, = 0.

Given a filtration (F;) >0, we say that (B(#)) ;>0 is an (Fy) ;=0 -Brownian motion if it
is (F) r=0-adapted and its increments are independent with respect to (F;) ;=0, mean-
ing that B(t) — B(s) L Fsforall t=s=0.

Brownian motion can be constructed from an L?(0,00)-isonormal process # as
follows. Firstly, it is easy to check that B(#) :== % (1y9,1)) yields E[B(t)B(s)] = s A ¢ for
all 5, ¢ = 0. From this, it can be derived that E[(B(#) — B(s))?] = |t - s|, so that (B(£)) ;>0
has a modification whose trajectories are (Holder) continuous by the Kolmogorov—
Chentsov continuity theorem [138, Theorem 2.9].

Another important property of Brownian motion is the fact that it is a Markov pro-
cess. Intuitively, this means that its “past” and “future” are independent of each
other given knowledge of the “present”. In the simplest and most common defi-
nition of the Markov property (the simple Markov property), the past, present and
future relative to a time ¢ € J are represented by the o-algebras F;, o(B(¢)) and
o(B(s): s> 1), respectively. However, there also exist more general definitions, some
of which are explored in Section 3.3.

The following definition, first introduced by Mandelbrot and Van Ness [147], en-
tails a non-Markovian generalization of Brownian motion.

Definition 1.4.7 (Fractional Brownian motion). A real-valued Gaussian stochastic
process (Bg (1) s=0 on (Q, F,P) is said to be a fractional Brownian motion with Hurst
parameter H € (0,1) if it is centered, its trajectories are continuous and we have
E[B(0)B(s)] = (1?7 + s> - |t — s|*7) forall 5,1 = 0.

Note that for H = %, fractional Brownian motion reduces to regular Brownian mo-
tion. Next, we claim that a fractional Brownian motion can be expressed in terms of
a stochastic integral with respect to a (non-fractional) fwo-sided Brownian motion.
Such a process (B(f)) R is constructed from two independent Brownian motions
(B1(1)) =0 and (B2 (1)) =0 by setting B(¢) := By (t) for ¢ € [0,00) and B(t) := Bz (—t) for
t € (—00,0), and one can integrate functions f € L2(R) with respect to it as follows:
First define, for elementary functions of the form f(¢) = 27:1 Lia;,p;) (1) xjwithneN,
xjeRand —co<aj<bj<ooforall je{l,...,n},

n

fRf(t) dB(1):=)_[B(bj) - B(aj)]x;.

j=1
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Then [, f (1) dB(2) is a well-defined element of L?(Q2) and we have the It6 isometry

N/Rf(t) dB(1) =112y (1.4.10)

L2(Q)

which allows us to define [ f (1) dB(2) € L*(Q) for any f € L*(R) by density. In par-
ticular, any function k: R x R — R such that k(z, -) € L2(R) for all ¢ € R can be used
as an integration kernel to define a process

X(1) :=fk(t,r)dB(r), teR. (1.4.11)
R

Then (X(#)) e is easily seen to be centered and Gaussian. Moreover, combining the
It6 isometry (1.4.10) with the polarization identity yields the covariance kernel

E[X(0X(8)] =(X(8), X () 12(qq) = <k(2, ), k(S, D) 2wy =ka(t, rk(s,r)dr

for all s, t € J. Therefore, its covariance operator is given by

C’f(t):f(f k(t,r)k(s,r)dr)f(s)ds,
rR\JR

for which one easily checks C = Ty T}/, where Ty € & (L?(R)) denotes the integral
operator Ty f (1) == fR k(t,r) f(r)dr associated to k. In particular, if T} = L7! s the
inverse of some linear operator L: D(L) < L[%2(R) — I2(R), then the process defined
by (1.4.11) can be seen as a solution to LX =% on R.

It was already shown in the original work of Mandelbrot and Van Ness [147] that,
indeed, there exists a kernel k := Ky such that (1.4.11) yields X = Bpy; see (3.5.2)
and the rest of Section 3.5.1 for more details. An alternative to their definition is the
Riemann-Liouville fractional Brownian motion (BEL(t)) ¢=0, given by

1 t
B¢ :=—f t—-nH""2dB(r), He(0,1), t € [0,00).
g (1) T(H+1/2) 0( ) (r) 0,1) [0,00)
This is a restriction to [0,00) of the process (1.4.11) with k(z,s) == m(t —pH-12
if t=r =0 and k(¢,s) := 0 otherwise. In view of the preceding discussion and the
results of Section 1.3.3, this process can be seen as a solution to the (time-fractional)
SPDE

(1.4.12)

2 x = on (0,00);
X(0) =0.

In particular, we can view a regular Brownian motion B as a solution to 8, X = %/,
i.e., as integrated white noise.

STOCHASTIC INTEGRATION WITH RESPECT TO CYLINDRICAL WIENER PROCESSES

Finally, given a real and separable Hilbert space H, we describe an H-valued analog
to Brownian motion and a class of operator-valued functions which can be inte-
grated with respect to it. Namely, for interval J = (0, T) with T € (0,00] we introduce
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the notion of a cylindrical Wiener process (W (1)) c;. If H = L*(D) for D < R, then
the formal time derivative (W (¢)) ;e of such a process is interpreted as spatiotempo-
ral white noise. In particular, for any ¢ € J we wish to interpret W () as white noise
in space; as discussed in Section 1.4.2, this means that (W (f)) ¢y cannot be a proper
H-valued stochastic process. One way of circumventing this issue is to first define
Q-Wiener processes (WQ(1)) ¢y for Q € Z(H) with finite trace, whose increments
WQ(t) - WQ(s) are H-valued centered Gaussian random variables with covariance
Q, and subsequently defining a cylindrical Wiener process as an H-valued Q-Wiener
process for which there exists a Hilbert-Schmidt embedding 1: H — H and Q := 11",
see [144, Section 2.5].

For the purposes of this introduction we take the alternative, more direct route
of identifying a cylindrical Wiener process W with an L?(J; H)-isonormal process
(W (W) per2 (.1 see [157, Definition 2.2]. Let a real Banach space E be given and
consider an elementary operator-valued function ®: | — Z(H;E) of the form

n
D(1) = Z l(aj,bj](t)hj ® Xj
j=1
where ne€N, —co<a; <bj<ooand (hj,x;) € HxEforall j€{l,...,n}, and the rank-
one operator h; ® x; € Z(H;E) is given by [hj® xjl(u) = (hj,uygx; for u € H. For
such a process, we set

n
fCD(t) AW @) = ) # (L, b, (D Rj)xj € L2 (O B). (1.4.13)
J j=1
If we moreover assume that the Banach space E has Rademacher type 2 (see [157,
Definition 4.1]), then by [157, Proposition 4.2] there exists a constant C € (0,00) such
that, for all elementary functions ® as above,

H‘/(D(t) dW(r)
J

= Cl®l 23y (a0 (14.14)
L2(QE)
where, y(H; E) denotes the space of y-radonifying operators [157, Definition 3.1],
and by density we can define f,(b(t) dW (¢) for any ® € L*(J;y(H; E)). In case that
E = K is actually a Hilbert space, then y(H; K) is isometrically isomorphic to the
space % (H; K) of Hilbert-Schmidt operators from H to K [114, Proposition 9.1.9],
and we recover the following It isometry

Hftl)(t) dWw(z)
]

v Pl o) (1.4.15)

so that accordingly the natural space of integrands is L (J;.% (H; K)). See the survey
article [157] for more details, as well as for extensions to more general Banach spaces
E and stochastic integrands.

1.5. OUTLINE OF THE DISSERTATION

We will now briefly summarize the contents of Chapters 2-5 and indicate their rela-
tion to the concepts discussed in Sections 1.1-1.4.
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In Chapter 2 we study an extension to space-time of the generalized Whittle—
Matérn fields from Example 1.4.5. To this end, we combine the subjects from Sec-
tions 1.1, 1.3 and 1.4 by defining mild solutions to abstract linear fractional stochas-
tic evolution equations of the form (0;+ A)Y X = W@ for Y € (1/2,00) on J = (0,T)
with zero initial data. The operators A and Q can for instance be fractional powers
LP and L™* (respectively) of elliptic spatial differential operators such as the ones
defined in Section 1.2. In this case, we find that the spatiotemporal solutions gener-
alize Whittle-Matérn fields in terms of their smoothness and covariance structure,
which depend on the interplay of the fractional parameters «, § and y. The same
class of processes is considered in Chapter 3, both on J = (0, T) with zero initial con-
ditions and on J = R, where the focus is instead on establishing Markov proper-
ties of solutions. We define appropriate notions of higher-order or weak Markovian-
ity for processes (X (?)) s taking their values in a Hilbert space U, which allows us
to separately consider the temporal Markov property of the spatiotemporal fields.
We show that such a property is satisfied if y € N (and, in general, not satisfied if
v € (1/2,00) \ N)). We also prove that, for y € (1/2,3/2), the mild solution processes of
the equations (8, + £Idy)? X = WQ converge to a U-valued counterpart of the frac-
tional Brownian motion from Definition 1.4.7 as € | 0 (as suggested by (1.4.12)).

We noted in Section 1.3.3 that, although the various definitions of fractional dif-
ferentiation on (0,00) are unambiguous in that they coincide (on their common do-
mains) whenever they are applied to functions vanishing at zero, the same does not
hold for functions which take on a nonzero value there. In this case, the different
definitions of fractional differentiation each yield different outcomes, and in partic-
ular there is no clear natural candidate for a solution concept of (deterministic) frac-
tional equations such as aiu = f on J = (ty,00) with u(#y) # 0. Therefore, in Chapter 4
we take a different approach by studying the equation (3; + A)’u = f for s € (0,00)
on J, for which we can instead impose the values u(#) at all past times ¢ € (—oo, ]
provided that — A generates a uniformly exponentially stable (and strongly measur-
able) semigroup. For this problem, we derive a mild solution formula expressing u in
terms of the semigroup, the initial data and the forcing function f, and we compare
it to analogous solution formulae stemming from Riemann-Liouville and Caputo
type derivatives (see the first half of Section 1.3.3). Although its derivation relies on
uniformly exponential stability, the resulting mild solution formula remains mean-
ingful for merely uniformly bounded semigroups.

Finally, in Chapter 5 we turn to semilinear stochastic evolution equations, posed
on a sequence of Banach spaces (indexed by n € N := Nu {oo}) which, in an abstract
sense, approximate another Banach space in which they are uniformly embedded.
Their coefficients can be compared by means of projection and lifting operators be-
tween the various Banach spaces, allowing us to formulate sufficient conditions for
convergence of the lifted mild solution processes as n — co. As an example, we
consider a semilinear stochastic partial differential equation whose linear part is a
generalized Whittle-Matérn operator on a manifold M (see Example 1.4.5 and Sec-
tion 1.2.4), discretized by a sequence of geometric graphs. We demonstrate that this
setting fits into the abstract framework described above, from which we obtain con-
vergence of mild solutions when lifted to L7(M) for g € [2,00].
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1.6. BIBLIOGRAPHICAL NOTES

SECTION 1.1

References for one-parameter semigroups of bounded linear operators and their
applications to abstract Cauchy problems include [9, 73, 109, 146, 165, 200, 201].
Most of these references only deal with the important subclasses of, for instance,
Cp-semigroups or (bounded) analytic semigroups. We refer to [115, Appendix K] for
a self-contained introduction to the case of measurable semigroups, which we use
in Section 1.1 since the results of Chapter 4 are stated in this generality. An overview
of the subject of maximal LP-regularity is given in [130]; see also [115, Chapter 17]
and [100, Section 9.3].

SECTION 1.2

The results collected in Sections 1.2.1-1.2.3 regarding sesquilinear forms and their
applications to elliptic differential operators on Euclidean domains are taken from
the monograph [164] and parts of [156, Chapter 12 and Section 13.4.c]. For operators
on manifolds (see Section 1.2.4), we refer to [60, Chapter 5] and [190].

SECTION 1.3

An overview of the subjects of functional calculus and fractional powers for sectorial
operators can be found in the monograph [100], as well as in [115, Chapter 15]. In
particular, the subject of bounded H*-calculus and its implications are treated for
instance in [63, 130] and [114, Chapter 10]. We also mention the dedicated treat-
ment of fractional powers given in [148]. Classical references regarding fractional
integration and differentiation include [121, 169, 179].

SECTION 1.4

Standard references on (continuous-time) stochastic processes and stochastic dif-
ferential equations include [97, 119, 138, 162, 172]. A detailed treatment of (Gaus-
sian) random fields, viewed as collections of random variables, is given in [3]. For
extensive overviews of the subject of Gaussian measures and random variables on
normed spaces, we refer to [27, 139]. We remark that certain Gaussian random fields
to which we cannot associate a Gaussian measure on L?, such as the Matérn field
on R4 from Example 1.4.5, can be related to more general rigorously defined objects
such as cylindrical measures or processes [173, 193] or generalized processes (in the
sense of generalized functions) [85, Chapter III]. These approaches are outside of
the scope of this introduction since we were only concerned with the intuitive inter-
pretation of the Matérn field as the solution of an SPDE. The standard references for
vector-valued stochastic integrals with respect to (cylindrical) Wiener processes and
their relation to SPDEs are [56] and [144].



ANALYSIS OF FRACTIONAL
PARABOLIC STOCHASTIC
EVOLUTION EQUATIONS

The contents of this chapter are based on the article [125], which is joint work with
Kristin Kirchner.

2.1. INTRODUCTION TO CHAPTER 2
2.1.1. BACKGROUND AND MOTIVATION

Gaussian processes play an important role for modeling in spatial statistics. Typical
applications arise in the environmental sciences, where geographically indexed data
is collected, including climatology [4, 180], oceanography [22], meteorology [103],
and forestry [20, 117, 149]. More generally, hierarchical models based on Gaussian
processes have been used in various disciplines, where spatially dependent (or spa-
tiotemporal) data is recorded, such as demography [62, 166], epidemiology [137],
finance [76], and neuroimaging [152].

Since a Gaussian process (X(j)) jez is fully characterized by its mean and its co-
variance function, second-order-based approaches focus on the construction of ap-
propriate covariance classes. In the case that the index set Z is given by a spatial
domain in the Euclidean space Z =D < R4 the Matérn covariance class [149] is an
important and widely used model. The Matérn covariance function is given by

o(x, ) =27V a? [T )] k| x = yllga) 'Ky (Kl x = Yllga), x,y€D, @2.1.1)

where K, denotes the modified Bessel function of the second kind. It is indexed
by the three interpretable parameters v, x, o € (0,00), which determine smoothness,
correlation length and variance of the process. It is this feature that renders the
Matérn class particularly suitable for making inference about spatial data [187].

For spatiotemporal phenomena, the following two difficulties occur:

45
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1. Tt is desirable to control the properties of the stochastic process named above
(in particular, smoothness and correlation lengths) separately in space and
time. For this reason, considering (2.1.1) in d + 1 dimensions is not expedi-
ent and it is a difficult task to construct appropriate spatiotemporal covariance
models, see e.g. [51, 79,92, 170, 171, 188].

2. Second-order-based approaches require the factorization of, in general, dense
covariance matrices, causing computational costs which are cubic in the num-
ber of observations. The two common assumptions imposed on spatiotempo-
ral covariance models to reduce the computational costs—separability (factor-
ization into merely spatial and temporal covariance functions) and stationarity
(invariance under translations)—have proven unrealistic in many situations,
see [52, 150, 188]. In particular, Stein [188] criticized the behavior of separable
covariance functions with respect to their differentiability.

Owing to these problems, the class of dynamical models has gained popularity.
The name originates from focusing on the dynamics of the stochastic process which
are described either by means of conditional probability distributions or by repre-
senting the process as a solution of a stochastic partial differential equation (SPDE).
The latter approach was originally proposed in the merely spatial case, motivated
by the following observation made by Whittle [196]: A stationary process (X (X)) xeD
indexed by the entire Euclidean space D = R which solves the SPDE

K*-A)PXx) =W, xeD, 2.1.2)

has a covariance function of Matérn type (2.1.1) with v = 28 —d/2. Here, A denotes
the Laplacian and W is Gaussian white noise. This relation gave rise to the SPDE
approach proposed by Lindgren, Rue, and Lindstrom [142], where the SPDE (2.1.2)
is considered on a bounded domain P C R¢ and augmented with Dirichlet or Neu-
mann boundary conditions. Besides enabling the applicability of efficient numeri-
cal methods available for (S)PDEs, such as finite element methods [29-31, 50, 107,
142] or wavelets [32, 104], this approach has the advantage of allowing for

(a) nonstationary or anisotropic generalizations, by replacing the operator x> — A
in (2.1.2) with more general strongly elliptic second-order differential opera-
tors such as

(Lv)(x) =x*(x)v(x) = V- (a(x) Vv(x)), x€D, (2.1.3)

where x: D — R and a: D — R%*4 are functions [14, 29-31, 50, 80, 107, 142];

sym
(b) more general domains, such as surfaces [33, 107] or manifolds [104].

In the SPDE (2.1.2) the fractional exponent § defines the (spatial) differentiability
of its solution, see e.g. [50]. A realistic description of spatiotemporal phenomena ne-
cessitates controllable differentiability in space and time. This motivates to consider
the space-time fractional SPDE model

(a[ +Lﬁ)YX(t, X =W(t,x), tel0,T], xeD,
2.1.4)

X(0,x) = Xo(x), xeD,
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where L in (2.1.3) is augmented with boundary conditions on 0D, (Xp(x)) xep is the
initial random field, )/ denotes space-time Gaussian white noise, and T € (0,00) is
the time horizon. Whenever § =y = 1, the SPDE (2.1.4) simplifies to the stochastic
heat equation and this spatiotemporal model had already been mentioned in [142]
and it was used for statistical inference in [42, 184]. The novelty and sophistication
of the SPDE model (2.1.4) lies in the fractional power y € (0,00) of the parabolic op-
erator. Notably, it is the interplay of the parameters § and y that will facilitate con-
trolling spatial and temporal smoothness of the solution process. For D = R4, this
has recently been investigated via Fourier techniques in [140], see also [6, 44, 120].
Besides the aforementioned benefits of the SPDE approach and in contrast to the
SPDE (3! + LF) X =V, considered for instance in [34, 64], the SPDE model (2.1.4)
furthermore exhibits a long-time behavior resembling the spatial model (2.1.2).

2.1.2. CONTRIBUTIONS

We introduce a novel interpretation of (2.1.4) with X, = 0 as a fractional parabolic
stochastic evolution equation, and correspondingly define mild and weak solutions
for it. To this end, we first give a meaning to fractional powers of an operator of the
form 0, + A, where — A generates a Cy-semigroup. Generalizing the approach taken
for y = 1in [56, Chapter 5], we prove that mild and weak solutions are equivalent un-
der natural assumptions, and we investigate their existence, uniqueness, regularity,
and covariance. Our main findings are that the problem (2.1.4) is well-posed, and
the properties of its solution X with respect to smoothness and covariance structure
generalize those of the spatial Whittle-Matérn SPDE model (2.1.2) and relate to the
parameters 3,y € (0,00) in the desired way. Restricting the analysis to a zero initial
field is justified by our primary interest in regularity related to the dynamics of (2.1.4)
and the long-time behavior of solutions.

In comparison with [25, 26, 143, 160, 189]—the only previous works on an equa-
tion of the form (3, + L)Y u = f known to the authors—the main contributions of this
chapter, besides considering a stochastic right-hand side, are the fractional power
in (2.1.4) and the method of proving regularity using semigroups. As opposed to
the extension approach in [25, 26, 143, 160, 189], this setting does not require a Eu-
clidean structure in space.

2.1.3. OUTLINE

Preliminary notation and theory will be introduced in Section 2.2. In Section 2.3 we
give a meaning to the parabolic operator 9, + A and its fractional powers in order to
introduce well-defined mild and weak solutions of (2.1.4) with Xy = 0. Subsequently;,
we analyze these in terms of spatiotemporal regularity. Section 2.4 is concerned
with the covariance structure of solutions. Finally, in Section 2.5 we apply our re-
sults to the space-time Whittle-Matérn SPDE (2.1.4) considered on a bounded Eu-
clidean domain or on a surface. This chapter is supplemented by two appendices:
Appendix 2.A contains several technical auxiliary results used in the proofs of Sec-
tion 2.3. Appendix 2.B collects some definitions and results from functional calculus.
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2.2. PRELIMINARIES FOR CHAPTER 2

In this section we only highlight notation which deviates from the previous chapter
or was not used there.

2.2.1. NOTATION

The sets N :={1,2,3,...} and Ny := N U {0} denote the positive and non-negative in-
tegers, respectively. We write s A t (or sV £) for the minimum (or maximum) of two
real numbers s, f € R. The real and imaginary parts of a complex number z € C are
denoted by Re z and Im z, respectively; its argument, denoted arg z, takes its values
in (—m,7m]. We write 1p for the indicator function of a set D. The restriction of a
function f: D — E to a subset Dy < D is denoted by fIp,: Do — E; the image of
Dy under a linear mapping T is written as TDy. Given two sets &7, 2 and map-
pings #,9: & x 2 — R, we use the expression .7 (p, q) Sq 9 (p, q) to indicate that
for each g € 2 there exists a constant Cy € (0,00) such that .% (p, q) < C4%¥ (p, q) for
all pe &. We write .7 (p, q) ~4 ¢ (p, q) if both relations, .7 (p, q) Sq; 4 (p,q) and
Y (p,q) Sq F (p, q), hold simultaneously.

2.2.2. BANACH SPACES AND OPERATORS

If not specified otherwise, E or F denote separable Banach spaces. We instead write
H or U if we work with separable Hilbert spaces and wish to emphasize this. The
scalar field K is either given by the real numbers R or the complex numbers C. A
norm on E will be denoted by | - || and an inner product on H by (-, -) y. We write
I for the identity operator. The notation E — F indicates that E is continuously em-
bedded in F, i.e., there exists a bounded injective map from E to F. The dual space

of E is denoted by E*. We write E_OE for the closure of a subset Ey < E with respect to
the norm on E; the superscript may be omitted when there is no risk of confusion.
The Borel o-algebra of E is denoted by B(E).

We write T* € £ (F*; E*) for the adjoint operator of T € Z(E; F). In the case that
T € £(U; H), we identify U* = U and H* = H via the Riesz maps, so that T* belongs
to £ (H; U). An operator T € .Z(H) is said to be self-adjoint if T* = T, nonnegative
definite if (Tx, x) 7 = 0 holds for all x € H, and (strictly) positive definite if there exists
a constant 0 € (0,00) such that (Tx,x)y = 9||x||2H holds for all x € H. The identity
operator on a normed space is denoted by I in this chapter.

The range of a linear operator A: D(A) € E — E is denoted by R(A). If G(A) € G(A)
for another linear operator A on E, then A is called an extension of A and we write
Ac A. If G(A) is the graph of a linear operator, then we call this operator the closure
of A, denoted A.

2.2.3. FUNCTION SPACES

Let a measure space (S,.<7, 1) be given. We abbreviate the phrases “almost every-
where” and “almost all” by “a.e.” and “a.a.”, respectively.

We say that a function f: S — E is strongly measurable if it is the p-a.e. limit of
measurable simple functions. For p € [1,00], the Bochner space of (equivalence
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classes of) strongly measurable, p-integrable functions is denoted by LP(S; E). It
is equipped with the norm

_ {(fs IF@IP dp)” it peil,oo),
I fllLps;E) = ,
esssup,sllf(Dlg  if p=oo,
where esssup denotes the essential supremum. The norm on I2(S; H) is induced by
the inner product (f, g) r2(s.zr) == J(f (£), () gr dpu(2).

Now let S be an interval S := J € R, equipped with the Borel o-algebra and the
Lebesgue measure. The space of continuous functions from J to E will be denoted
by C(J; E) or C%0(J; E) and be endowed with the supremum norm. For a € (0, 1], we
consider the space C%(J; E) of a-Hélder continuous functions with norm

I fllcoas.p = 1flcoagsg + I fllcy;p,

where | flcoa g = SUP; seg 125 | f(E) = f(S)IE/E— s|% is the a-Holder seminorm. For
neNpand 0 < a < 1, the space C"™*(J; E) consists of functions whose nth derivative
exists and belongs to C%(J: E). On this space we use the norm

n-1
Iflcnagey =1 £ I coagsy + Y. 1 ®l e,
k=0

where f® denotes the kth derivative of f. Moreover, we define

C®(J;E) = [ C"°U; E).
neN

We say that f € C'™%(J;E) is compactly supported if the support of f, defined by
supp f={teJ: f(t) # 0}], is compact. The space consisting of such functions is de-
noted by C**(J; E). If f vanishes at a point € J, then we write f € Cy', (J; E). The
spaces C°(J; E) and ng 5 (J; E) are defined analogously.

For an open interval J, we say that u € L2(J:E) belongs to H(J; E) if there exists
a function v € L2(J; E) such that f] v(np(r) de = —f] u(t)¢' (1) dt for all ¢p € C°(J;R).
The function 0,u := v is called the weall/<2 derivative of u and the norm on H!(J; E) is
Nl gz = (132 g + 18:ull7, ) . The completion of C°((0,00); E) with re-
spect o || - | g1 (,00;5) defines the space H(}’{O} (0,00; E). Elements of H&,{O} (J; E) are
restrictions of functions in H(}' 100,00, E) to J < (0,00).

Whenever the function space contains functions mapping to E = R, we omit the
codomain, e.g., we write LP(S) := L”(S;R) for the Lebesgue spaces.

2.2.4. VECTOR-VALUED STOCHASTIC PROCESSES

Throughout this chapter, (2, F,P) denotes a complete probability space equipped
with a normal filtration (F;) ;»¢. Statements which hold P-almost surely are marked
with “P-a.s.”. The expectation of Z € L' (Q; E) is denoted by E[Z].
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An E-valued stochastic process X = (X(#))sco,; indexed by the interval [0, T,
T € (0,00), is called integrable if (X () ejo,71 < LP (Q; E) holds for p = 1, and square-
integrable if this inclusion is true for p = 2. For a self-adjoint strictly positive oper-
ator Q € Z(H), (WQ(£) >0 denotes a cylindrical Q-Wiener process with respect to
(F#) =0 which takes its values in H, cf. [144, Proposition 2.5.2]; if Q = I, we omit the
superscript and call (W (#)) ;=9 a cylindrical Wiener process.

2.3. ANALYSIS OF THE FRACTIONAL STOCHASTIC
EVOLUTION EQUATION

The aim of this section is to define and analyze solutions to the following stochastic
evolution equation of the general fractional order y € (1/2,00):

@, +AYX(r) = W), relo,Tl, X(0)=0. (2.3.1)

We interpret this as an abstraction of (2.1.4) with X, = 0. As noted in the introduc-
tion, we restrict the discussion to a zero initial field, since we are primarily interested
in properties resulting from the dynamics of the SPDE (2.1.4), respectively (2.3.1),
and the long-time behavior for 0 < T < oo of its solution. We also note that impos-
ing non-zero boundary data for fractional problems is, in general, highly non-trivial,
see e.g. the recent works [1, 7] on the fractional Laplacian.

In Subsection 2.3.1 we investigate the parabolic operator B, which is defined as
the closure of the sum operator 9; + A on an appropriate domain. In particular, we
consider the Cy-semigroup generated by — 3, which is used to define fractional pow-
ers BY for y € R. Interpreting the expression (3; + A) appearing in (2.3.1) as BY, we
use this result to define mild solutions in Subsection 2.3.2. In this part, we further-
more introduce a weak solution concept for (2.3.1), and prove equivalence of the two
solution concepts as well as existence and uniqueness of mild and weak solutions.
Spatiotemporal regularity of solutions is the subject of Subsection 2.3.3.

2.3.1. THE PARABOLIC OPERATOR AND ITS FRACTIONAL POWERS

In this subsection we define the parabolic operator /3 and fractional powers BY. We
start by formulating several assumptions on the linear operator A, to which we shall
refer throughout the remainder of this chapter. Recall the semigroup theory from
Section 1.1; for a more extensive overview of the theory of Cy-semigroups, we refer
the reader to [73] or [165]. The complexification of a normed space or operator is
indicated by the subscript C; see Section 2.B.2 in the appendix for details.

Assumption 2.3.1. Let H be a separable Hilbert space over the real scalar field R.
We assume that the linear operator A: D(A) € H — H satisfies

(i) —A generates a Cy-semigroup (S(£)) 0.
Sometimes we additionally require one or more of the following conditions:
(i) (S(#)s=0 is bounded analytic, see Definition 1.1.6;

(iii) Ac admits a bounded H*-calculus with w g (Ac) < 7, see (1.3.1);
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(iv) Ahas a bounded inverse.

Under Assumption 2.3.1(i), Lemma 2.B.3 allows us to use several results from [73,
100, 165] for Cy-semigroups and their generators on complex spaces also for (S(£)) ;o
and —A. For instance, by [73, Theorem I1.1.4] and [165, Chapter 1, Theorem 2.2] the
operator A is closed and densely defined, and the Cy-semigroup (S(#)) ;>0 satisfies

AMe[l,00), weR: ISOlgun =IScOl gy < Me™ V0.  (23.2)

If the conditions (i), (ii) and (iv) are satisfied, then (2.3.2) holds for some w € (0,00),
see e.g. [165, p. 70], i.e., (S(#));=0 is exponentially stable. Moreover, we recall that
Assumption 2.3.1(ii) is equivalent to sectoriality of Ac with w(Ac) < 7 by Theo-
rem 1.1.8, and that consequently condition (iii) implies (ii) since w(Ac) < Wy~ (Ac)
by Remark 2.B.2. Whenever the conditions (i) and (ii) are satisfied, we have the fol-

lowing useful estimate (see [100, Proposition 3.4.3]):
Vcel0,00): IASOl gy = I1AGScON 2ipe) Sct™¢ VEE(0,00). (2.3.3)

As a first step towards defining the parabolic operator B, we define the Bochner
space counterpart A: D(A) < L?(0, T; H) — L?(0, T; H) of Aby

[Av1(9) = Av(9), veD(A), a.a.9€(0,T),

_72 . — 2 . . . (2.3.4)
D(A) =L?(0, T;D(A) :={v € L7(0, T; H) : | Av(:)ll ;20,711 < 00}-

The Cy-semigroup (S(?)) ;=9 on H, generated by — A, can be associated to a family of
operators (S(1)) ;=0 on L?(0, T; H) in a similar way:

SOV =S v(@d), t=0, veL?0,T;H), aa. de(0,T). (2.3.5)

It turns out that (S(2)) ;=0 < -Z(L2(0, T; H)) is again a Cp-semigroup, with infinitesi-
mal generator —A, see Proposition 2.A.3 in Appendix 2.A.

In addition, recall from Example 1.1.15 the family of zero-padded right-translation
operators (7 (1)) ;=0 on L2(0, T; H), defined by

[TV =0 -1, t=0, vel?0,T;H),aade(0,T), (2.3.6)

where U € I2(—oo, T; H) denotes the extension of v by zero to (oo, T). As shown in
Proposition 2.A.5 in Appendix 2.A, also (7 (£)) ;20 € -Z(L*(0, T; H)) is a Cp-semigroup
and its infinitesimal generator is given by —d;, where

8,: D@®,) S L*©0,T; H) — L*(0, T; H),  D(@;) = Hy 0, (0, T; H), (2.3.7)

denotes the Bochner-Sobolev vector-valued weak derivative. We point out that the
domain D(0;) = Hé,{o} (0, T'; H) encodes the zero initial condition of the SPDE (2.3.1).
Furthermore, note that it readily follows from the definitions in (2.3.5) and (2.3.6)
that, for all £ >0, every v € L?>(0, T; H), and a.a. 9 € (0, T),

[SOT@vID) = [T (S vIO) =SH (D~ 1),
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i.e., the semigroups (S(#)) ;>0 and (7 (£)) ;o commute.
We now recall the sum operator 9, + .A: DO, +.4) < L?(0, T; H) — L?(0, T; H) de-
fined on its natural domain, as introduced in Section 1.1.4. That is,

@+ Av:=08;v+Av, veD®;+A) =Hy 0, T; H)nL*(0,T;D(4),  (2.3.8)

with A4 and 0; as given in (2.3.4) and (2.3.7), respectively. The next proposition shows
that the closure of —(9; + .A) again generates a Cp-semigroup, namely the product
semigroup of (S() =0 and (7 (1)) t=0-

Proposition 2.3.2. Let Assumption 2.3.1(i) be satisfied. The closure 5 := 9, + A of
the sum operator 0, + A defined in (2.3.8) exists and —I3 generates the Cy-semigroup
(S(OT (1) =0 on L?(0, T; H), which satisfies

ISOllgun FOSI<T,
||S(t)T(t)||g(Lz(0,T;H)):||T(t)S(t)||g(Lz(0,T;H)):{0 2 ;DT

where (S(1)) =0 and (T (1)) t=0 are defined as in (2.3.5) and (2.3.6), respectively.

Proof. By the commutativity of the semigroups (S(#)) s> and (7 (¢)) =0, we may con-
clude that (7 (£)S(1)) =0 is a Cy-semigroup whose generator is an extension of the
operator —(8; +.4), and has a domain containing Hy , (0, T; H) N L*(0, T;D(A)) as
a subspace that is dense with respect to the graph norm, see [73, Example 11.2.7].
Subsequently, Lemma 2.A.2 shows that the generator is the closure of —(9; +.4).

Fix t € [0, T). The inequality ||T(f)5(f)||$(L2(0,T;H)) = [IS() | follows by the
contractivity of 7 (¢) and the operator norm isometry from Lemma 2.A.1(a). Now we
turn to the reverse inequality. By definition of the operator norm on .Z(H), there
exists a normalized sequence (xy),en in H such that [[S(8)x,llz = IS()l 2 — %
holds for all n € N. Correspondingly, let the sequence (vy,) sy in L?(0, T; H) be de-
fined by v, (9) == (T - t)‘”zl(o,T_t) () xy, for every 9 € (0, T) and all n € N. Note that
lvnll2,7;m =1 forevery ne N, and

17 (S (1) Unllzz, 1 = T — t)_llzl(t,T) 20, ISxn g = IS 2 — %

As this holds for all 7 € N, we conclude that | 7T (DS ()| 220,111 = 1Sl 2. The
final assertion for ¢ = T follows from the fact that 7 (1) =0 for t = T. O

Remark 2.3.3. The closure B =0, + .A appearing in Proposition 2.3.2 raises the ques-
tion of when the sum operator itself is closed. As discussed in Section 1.1.4, the an-
swer is intimately related to the subject of maximal LP-regularity. In the Hilbertian
setting, the sum turns out to be closed under Assumptions 2.3.1(i),(ii). Indeed, [0]c
has a bounded H*-calculus with @y ([8/]¢c) < 7 since (7 (£)) =0 and (Tc(2)) =0 are
contractive, see [114, Theorem 10.2.24]. By Assumption 2.3.1(ii) and Theorem 1.1.8,
we have w(Ac) < 7, and the same follows for Ac by applying Lemma 2.A.1(a) to its
resolvent operators. Thus, we may conclude with [130, Theorem 12.13] that [0;+.A]¢
is closed, so that the same holds for 9, + A.
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Under the above assumptions, we can define fractional powers of the parabolic
operator using the Phillips representation (see (1.3.4) and the subsequent remarks):

0o T
B"'::%}/)fo sY_lS(s)T(s)ds:%}/)[0 SIS T(s)ds, ye(0,00). (2.3.9)

Note that this yields a well-defined bounded linear operator on L%(0, T; H), since
the product semigroup (S(#)7 (#))¢=0 was seen to be exponentially stable (in fact,
eventually zero) in Proposition 2.3.2.

The next result shows that the pointwise evaluation of 37" f at ¢ € [0, T] is mean-
ingful, provided that y > 1.

Proposition 2.3.4. Suppose Assumption 2.3.1(i) and let p € (1,00),y € (1/p,00). Then

=Py pfr [(Bypflt):= f(t $) st - )f(s)ds Vtel0,T], (2.3.10)

I'(y)

defines a bounded linear operator, mapping f € LP (0, T; H) into Cy ([0, T1; H).
In particular, if y € (1/2,00), we have for the negative fractional parabolic operator
B~ defined by (2.3.9) when acting on f € L*(0, T; H) the pointwise formula

(B f1(1) = [By 2 f1(1) = f(t $)V 1St - )f(s)ds Vrel0,T]. (2.3.11)

I'(y)

Proof. By [56, Proposition 5.9], for p € (1,00) and y € (1/p,00), the operator %, ,, de-
fined by (2.3.10) maps continuously from L? (0, T; H) to Cy,0; ([0, T1; H).
Next, note that for all f € L[%(0, T; H) and a.a. t € [0, T], we obtain by (2.3.9)

00 t
[B‘Yﬂ(t):% f sY*[S(s)T(s)f](r)ds:% f SIS f(E—s) ds

o )f (t=$)771S(t—5)f(5) ds = [By,2f1(D).

Thus, by the first part of this proposition, for every y € (1/2,00), we have that R(577) is
contained in Cy j0; ([0, T']; H) and the above identities hold pointwise in £ € [0, T]. O

Remark 2.3.5. Propositions 2.3.2 and 2.3.4 require only Assumption 2.3.1(i), i.e., that
— A generates the Cy-semigroup (S(#)) 0. Exponential stability or uniform bound-
edness of (S(¢)) ;>0 are not needed, since we consider linear operators on I12(0, T; H)
(instead of L2(0,00; H)), allowing us to use uniform boundedness of (S(#)) > on the
compact interval [0, T] to derive exponential stability of (S(£)7 (1)) t=0-

In what follows, we may also consider the operator B~"* := (B7")*. More specif-
ically, we will use it in the next section to define a weak solution to the fractional
parabolic SPDE (2.3.1). The following lemma provides useful results for the adjoint
B~Y* which are analogous to those for B~ in Proposition 2.3.4. For ease of presen-
tation, the proof has been moved to Subsection 2.A.3 of Appendix 2.A.
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Lemma 2.3.6. Suppose Assumption 2.3.1(i) and lety € (1/2,00). The adjoint negative
fractional parabolic operator B~"* maps g € L*(0, T; H) into Co 1, ([0, T1; H), and

1

BT =
[ gl(s) o

T
f (-9 S(t-95)]* gy dt Vselo,T). (2.3.12)
N

Finally, we note that B~"* = (3*)77. To see that the fractional power on the right-
hand side is indeed well-defined, we use [165, Chapter 1, Corollary 10.6] and con-
clude that —53* is the generator of the Cy-semigroup ([S(#)7 (£)]*) t=0, which clearly
inherits the exponential stability from (S(#)7 (£)) 1=0 since their norms are equal. The
identity is then obtained as follows,

1 (> R Y
B = (—f SISO T(s) dS) = —f STUS(T ()] ds=(B*)7,
r'(y) Jo r'(y) Jo
where the first and last identities are due to (2.3.9) and the second is a consequence
of the general ability to interchange Bochner integrals and duality pairings.

2.3.2. SOLUTION CONCEPTS, EXISTENCE AND UNIQUENESS
We now turn towards defining solutions to (2.3.1) for fractional powers y € (0,00).
Recall from Section 2.2 that (Q2, F,P) is a complete probability space equipped with
anormal filtration (F;) =0, and that (W?(1)) ;s is a cylindrical Q-Wiener process on
H with respect to (F) =0, where Q € Z(H) is self-adjoint and strictly positive.
Having defined and investigated the parabolic operator B, its domain and its frac-
tional powers, we are now in particular able to invert the fractional parabolic oper-
ator BY. Equation (2.3.11) suggests the following definition of a fractional stochastic
convolution as a mild solution to (2.3.1).

Definition 2.3.7. Let Assumption 2.3.1(i) hold and define, for y € (0, c0), the stochas-
tic convolution

t
Zy(t):Lf (t—9)"1S(t-5)dW(s), te[0,T). (2.3.13)
I'(y) Jo

A predictable H-valued stochastic process Zy = (Z, (1)) ¢e(o, 17 is called a mild solu-
tionto (2.3.1) if, for all ¢ € [0, T, it satisfies Z, (t) = Zy (1), P-a.s.

We first address existence and mean-square continuity of mild solutions. Further-
more, we adapt the Da Prato-Kwapieri-Zabczyk factorization method (see [53], [56,
Section 5.3]) to establish the existence of a pathwise continuous modification.

Theorem 2.3.8. Let Assumption 2.3.1(i) be satisfied and lety € (0,00) be such that
35€0,7): T||ﬂ‘1‘53(t)Q%\|2 dr< (2.3.14)
yY) - o % (H) Q. 0.

The stochastic convolution Z},(t) in (2.3.13) belongs to L2(Q; H) ior allte[0,T] ifand
only if (2.3.14) holds with 6 = 0. In this case, the mapping t — Z,(t) is an element of
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C([0, T1; LP(Q; H)) for all p € [1,00); in particular, there exists a mild solution in the
sense of Definition 2.3.7, and it is mean-square continuous.

Whenever (2.3.14) holds for some 6 € (0,7), then for every p € [1,00) there exists a
modification onJ, with continuous sample paths belonging to LP (Q; C([0, T1; H)). In
particular, the mild solution has a modification with continuous sample paths.

Proof. We first consider the case 6 = 0 in (2.3.14). By the It6 isometry (see e.g. [144,
Proposition 2.3.5 and p. 32]), we obtain the identity
~ ) B
: ;

1 T -1 1.2
1€[0,T IT(Y)lzfo I S(I)QZH‘%(H)dL

Therefore, Zy(t) e [2(Q; H) h~olds for all ¢ € [0, T] if and only if (2.3.14) is satisfied
with § = 0. The fact that ¢ — Z, (¢) belongs to C([0, T1; LP(Q; H)) for all p € [1,00) will
be shown in greater generality in Proposition 2.3.18.

Moreover, note that Zy : [0, T1 x Q — H is measurable and (F¢) s¢[o,7)-adapted, and
that mean-square continuity implies continuity in probability, so that we may apply
[167, Proposition 3.21] to conclude that there exists a predictable modification Z, of
Zy. Then, Zy is a mild solution to (2.3.1) in the sense of Definition 2.3.7.

Now suppose that (2.3.14) holds for some 6 € (0,y) and let p € (/5 v 1,00). By
the above considerations, ZY_5 and Zy exist as elements of C([0, T];LP(Q; H)). In
particular, we have

Zy_5€LP (0, T;LP(Q; H)) = LP(Q; L7 (0, T; H)),

where the latter identification holds by Fubini’s theorem. For this reason, there exists
a set Qg € F with P(Qg) = 0 such that

VoeQ§=Q\Qy: Z,_5(-,w) € LP(0,T; H).
We recall the linear operator
Bs,p: LP(0,T; H) — Co, 103 (10, T; H)
from (2.3.10) and claim that the process Z, defined for ¢ € [0, T] and w € Q by

0 if (t,w) € [0, T1 x Qo,

is the desired continuousAmodiﬁcation of Zy. To this end, ﬁrAstly note that for every
w € Q the mapping ¢ — Zy(t,w) indeed is continuous and Z, € LP(Q; C([0, TA]; H));
this follows from Proposition 2.3.4 since & € (1/p,00). In order to show that Zy is a
modification of Zy, we fix ¢ € [0, T'] and employ formulas (2.3.10) and (2.3.13) along
with the semigroup property to obtain that

1

Zy () = [Bs,p Zy-5] (1) = 6

t
f(t—s)‘s_IS(t—s)Zy,,s(s)ds
0

_;I_ﬁ—l _ 3_7—5—1 _ Q
_F(6)F(Y—5)f(>(t $071s(t s)[fo (5= 0155 —r) dw?mr) ] ds

—; ! S _ 0-1 _ y—ﬁ—l _ Q
_r(a)r(y_a)fofo“ $)° (s=n)TT Sk - dW¥(r)ds,  (2.3.15)
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P-a.s. We set My := sup,¢ (.11 1S()| i, Kr = fOT l 1-35(1) Q2 H;Z(H) dt and find

frre 5-1 —6-1 12 V2
fo[fo (=927 s = 0TS = Q2 [y dr] - ds

~ ! o[ [° y—6-1 12 Yz
sMTfO (t=s) [fo [(s=m S(s—r)QZ||$2(mdr] ds

~ ! s 2 MrpT°VK
— 5-1 -1-6 L2 T T
_MTfO (t—ys) [fo R4 S(r)Q2||gz(H)dr] dssT<oo

This estimate shows that
1
s 10,0(8)1(0,9 ()t =2 (s =) 07LS(t~ )Q2 € L} (0, T; L*(0, T; L2 (HD)),
and the stochastic Fubini theorem [167, Theorem 8.14] may be used in (2.3.15),
yielding

5 o 1 [ 5-1 —6-1 Q
Zy(t)—m/(; [fr (=57 s =07 ds| St - r) dWR(), P-as.

Using the change of variables u(s) := % and [163, Formula 5.12.1], we derive that

t 1 _
(t—r)lfyf (t—s)571(s—r)77571 ds:f (1—u)571u77571 du:m—é)l—‘(é),
. 0 I'(y)

which shows that Z},(t) = Z},(t) holds P-a.s. Since £ € [0, T] was arbitrary this implies
that 27 is amodification of Zy, and completes the prooffor p € (1/5v1,00). Finally, the
case p € [1,1/5 v 1] follows from the nestedness of the L” (Q; C([0, T]; H)) spaces. O

In order to provide a more rigorous justification for the Definition 2.3.7 of a mild
solution to (2.3.1), we proceed as follows: We seek a further suitable solution con-
cept of a weak solution, which follows “naturally” from (2.3.1) using L?(0, T; H) inner
products, and show that weak and mild solutions are equivalent. For this, we first
define the weak stochastic It6 integral for f: (0,T) — £ (H) and g: (0, T) — H by

t r_
fo (f(5)dWO(s),8(5)) = fo fe(9)dw(s), telo,T],

where [ Q2 [£(5)1*g(s)||%, ds < oo and fy: (0, T) — Z(H;R) is defined by
fg(s)x =(f(s)x,g(s))y VxeH, Vse(0,T),
cf. [144, Lemma 2.4.2].

Definition 2.3.9. Let Assumption 2.3.1(i) hold and let y € (0,00). A predictable H-
valued stochastic process Y := (Yy (£)) te[o, 1) is called a weak solution to (2.3.1) if it is
mean-square continuous and, in addition,

T
vy eDMB"): <Yy,BY*w>L2(0yT;H)=fO (AW, (1)), P-as. (2.3.16)
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Remark2.3.10. Fory = 1, anatural weak solution concept is the formulation given in
[167, Definition 9.11]: A predictable H-valued process (Y1 (£)) se[o, 7] is @ weak solution
to (2.3.1) if sup¢(g, 7y 1 Y1 (D)l 2,11y <00 and, forall t€ [0, T] and y € D(A"),

t
<Y1(r),y>H=—f0 Yi(9), A"y ds+(WQ(0),y),, P-as.

Provided that Assumption 2.3.1(i) and (2.3.14) are satisfied, by [167, Theorem 9.15]
an H-valued stochastic process is a weak solution in this sense if and only if it is a
mild solution in the sense of Definition 2.3.7 with y = 1.

In the next proposition we generalize this result to an arbitrary fractional power y
and show that, under the same conditions, the mild solution in the sense of Defini-
tion 2.3.7 is equivalent to the weak solution in the sense of Definition 2.3.9.

Proposition 2.3.11. Suppose that Assumption2.3.1(i) holds and lety € (0,00) be such
that (2.3.14) is satisfied. Then, a stochastic process is a mild solution in the sense of
Definition 2.3.7 if and only if it is a weak solution in the sense of Definition 2.3.9.
Moreover, mild and weak solutions are unique up to modification. If one requires
continuity of the sample paths, mild and weak solutions are unique up to indistin-
guishability.

Proof. First, we show that a mild solution Z, is a weak solution. Note that mean-
square continuity follows from Theorem 2.3.8. Fix an arbitrary ¥ € D(B3"*). Then,

1 T t
(Z},,By*tsz(o,T;H):TwL <f0 (t—s)Y‘ls(t—s)dWQ(s),[BY*u/](t)> dr
H
1 T pT
=mf0 fo (10,0(8)(t =) 1S(t— ) dWU(s), B yl(0)ydt (2.3.17)

holds P-a.s. Here, we used that (f;f f(s)dWQ(s),x), = [y (f(s) dWQ(s), x)  for all
f:(0,T)— Z(H) and x € H, which readily is derived from the definition of the weak
stochastic integral and the continuity of inner products. We now would like to apply
the stochastic Fubini theorem, see e.g. [167, Theorem 8.14], in order to interchange
the inner weak stochastic integral and the outer deterministic integral. Again by the
definition of the weak stochastic integral we have, for a.a. £ € (0, 7),

T T
f (1o,n(r—9""'S(t-9) dWQ(S),[BY*W](tDH:f (s, 1) dW(s), P-as,
0 0

where the integrand ¥ (s, t): H — R is deterministic and, for s, t € (0, 7), defined by
W(s, 0)x:=(1,n(s)(t— YISt - 9)x, [BY*y] (t)>H Vxe H. (2.3.18)

Thus, the usage of the stochastic Fubini theorem is justified if t — W(:, t)Q% is in
LY0, T; L2(0, T; % (H;R))). Given an orthonormal basis (gj) jen for H, we obtain

¥ Q% |, e = TR (5) (=)' S(t - Q7 gj, B *y1(1)) |
]:

<10t~ Q| 1y | 1B w10 |
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by the Cauchy-Schwarz inequality on H. From this, it follows that

1 T T 1,2 1/2
||tH\P("t)QZ||L1(O,T;LZ(O,T;fz(H;R))):fo (fo ”\P(S’t)anfz(H;R)ds) de

- S[)T(Lt||(t_s)y_ls(t_s)Q%||i”2(H) ” [By*w](t)”?{ds)]/zdt
Toptoo - " *
:fo (fo |7 89)Q7 [, 4y ds) BT w10, de
g 1 172
5T1/2||BY*1//||L2(0,T;H)(f0 ||szls(s)Q§||2‘Zé(H)ds) <00,

where we used the Cauchy-Schwarz inequality on L2(0, T) in the last step. Owing to
(2.3.14), the integral in the final expression is finite. Applying the stochastic Fubini
theorem to (2.3.17), taking adjoints in (2.3.18) and using the continuity of the inner
product (-, -) i gives

. 1 T pT
(Zy, B ) 120, 1;m) :Fﬂfo fo W(s, 1) dr dW(s)

’ Q 1 ! y-1 *IBY*
_fo <dw (S)'Ty)fs (t— )7V S(t— 91" w](t)dt>H

T T
:fo <dWQ(s),[B‘Y*BY*w](s))H=f0 (AW9(s), (),  P-as,

where we used (2.3.12) in the third line. Therefore, Z, is a weak solution.
Conversely, suppose that Yy is a weak solution, let an arbitrary ¢ € L2(0,T; H) be
given and set ¢ := B~7*¢ € D(BY*). Substituting this into (2.3.16) gives

T
<YY’¢>L2(O,T;H):f0 (dw(n), B ¢l())y, P-as.

Let (Zy(t)) tef0,1) be the stochastic convolution in (2.3.13). Since the condition for the
stochastic Fubini theorem still holds after replacing BY*y by ¢ in (2.3.18), the proof
of the previous implication can be read backwards to see that

Voe 20, T;H): P((Yy, @) 20,1m) = (Zpy Dr20,m5m) = 1

By separability of H, also IP’(YY = Z, in L2(0, T; H)) = 1 holds so that by Fubini Yy = Z,
in L?(0, T; L*(; H)) follows. Since both ¥, and Z, are mean-square continuous, this
shows that, for all 7 € [0, T], Yy (¢) = Zy(t) in L2(Q; H). Therefore, for all £ € [0, T], we
have that Y, (f) = Z, (1), P-a.s,, i.e., Yy is a mild solution.

It thus suffices to prove uniqueness only for mild solutions. By Definition 2.3.7,
mild solutions are modifications of the stochastic convolution ZY in (2.3.13), hence
of each other. If two mild solutions are moreover known to have continuous sample
paths, then they are indistinguishable by [167, Proposition 3.17]. O
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2.3.3. SPATIOTEMPORAL REGULARITY OF SOLUTIONS

In this section, we will investigate spatiotemporal regularity of the mild solution Z,
in Definition 2.3.7. We start by stating our main results, Theorem 2.3.12 and Corol-
lary 2.3.13, in the first subsection. In the second subsection we derive a simplified
condition for spatiotemporal regularity, which is easier to check in applications and
sufficient whenever A satisfies Assumptions 2.3.1(i),(iii), (iv), see Proposition 2.3.14.
In addition, we explicitly discuss the setting of a Gelfand triple V— H= H* — V*
in the case that the operator A is induced by a (not necessarily symmetric) bilinear
form a: V x V — R which is continuous and satisfies a Garding inequality. The final
subsection is devoted to the proof of Theorem 2.3.12.

MAIN RESULTS
In Theorem 2.3.12 below, temporal regularity is measured by the number of deriva-
tives n € Ny as well as the Holder exponent 7 € [0,1). Spatial regularity is expressed
by means of vector spaces which are defined in terms of fractional powers of A as
follows:

H3:=D(A™),  (xy) o =(A"xA"y), oel0,00).
For o € (0,00), HZ is a Hilbert space provided that Assumptions 2.3.1(i),(ii),(iv) are
satisfied. In this case, we have the embeddings HZ/ — HZ — Hforalle' =0 = 0.
Note, in particular, that we do not need to assume that A is self-adjoint.
Theorem 2.3.12. Suppose that Assumptions 2.3.1(1),(ii) are satisfied and let n € Ny,
0 €[0,00) andy € (%5~ + n,00), where r € (0,01 is such that Q% € Y (H; HZ). In the

case that o € (0,00), suppose furthermore that Assumption 2.3.1(iv) is fulfilled. Under
the condition

T 1
fo |77 S(0Q2 | 41y A <00, (2.3.19)
the mild solution Zy (or, equivalently, the weak solution Yy ) in the sense of Defini-
tion2.3.7 (or 2.3.9) belongs to C™°((0, T1; LP(©; HY)) for every p € [1,00).

If additionallyy = n+ 71 + % and A””*%’YQ% € % (H; HY) hold for someT € (0,1),
then we have Z, € C'"* ([0, T1; LP (Q; Hg)) forevery p € [1,00).

An application of the Kolmogorov—Chentsov continuity theorem, see e.g. [49, The-
orem 3.9], allows us to (partially) transport the temporal regularity result of Theo-
rem 2.3.12 to the pathwise setting, as seen in the next corollary.

Corollary 2.3.13. Suppose that Assumptions 2.3.1(i),(ii) are satisfied. Let o € [0,00),

r€[0,0], y € (%£,00) and 7 € (0,1) be such that Q% € X(H;Hg) andy =T+ % If
o € (0,00), suppose also that Assumption 2.3.1(iv) holds. If the condition

T
|AT+277 Q2 (A +f0 |1 s0Q? ”fi’”z(H:HZ) df<oo

is satisfied, then for all p € [1,00) and every T’ € [0, 1) there exists a modification Zy of
the mild solution Zy (or, equivalently, of the weak solution Yy ) in the sense of Defini-
tion 2.3.7 (or 2.3.9) such that Z, has t'-Hélder continuous sample paths and belongs

to LP(Q; C>7 (10, TT; HY)).
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Proof. We firstinvoke Theorem 2.3.12 with n =0 and 7 € (0, 1) to establish that Z, be-
longs to C%7 ([0, T1; L9 (< Hg)) for every g € [1,00). The result then follows by choos-
ing g = 1 sufficiently large, applying the Kolmogorov—Chentsov continuity theorem
(see e.g. [49, Theorem 3.9]), and using nestedness of the L” spaces. O

A SIMPLIFIED CONDITION AND ITS APPLICATION TO THE GARDING INEQUALITY CASE
Whenever also Assumption 2.3.1(iii) holds, it is possible to replace the condition
in (2.3.19) by one which is simpler to check in practice. In this case, the operator A
satisfies square function estimates (see Section 2.B.2), one of which is used to prove
the next result.

Proposition 2.3.14. Let Assumptions 2.3.1(i),(iii),(iv) be satisfied. Let 0,6 € [0,00)
andy € (3+6,00)n[1+8+ %L, 00), wherer € (0,01 is taken such that Q% € £ (H; H').
Then it holds that

1o 1 1, 1
110500 gy dr =00 14747 g gy

Proof. Applying Lemma 2.B.4, see Appendix 2.B, with a:=y -6 — % € (0,00) and x :=
A%+5+%_7Q%y € H for y € H shows that

foo||rY‘l“SAY“"%S(t)A‘”%‘YQ%y”z- dimge |42 Q2y|%e VyeH
0 HY (y,0) HY :

Summing both sides over an orthonormal basis for H and using the Fubini-Tonelli
theorem to interchange integration and summation on the left-hand side yields the
desired conclusion. O

Remark 2.3.15. Proposition 2.3.14 shows that under the additional assumption that
Ac admits a bounded H*-calculus with w g~ (Ac) < 7, which e.g. is satisfied when-

ever A is self-adjoint and strictly positive, it suffices to check that y > n + w,

Y=n+ w and that the Hilbert-Schmidt norm ||A”+T+%_7Q% ||$2(H;Hz) is
bounded to conclude the regularity results of Theorem 2.3.12. This condition coin-

cides with the one imposed in [128, Section 4, Theorem 6] to derive regularity in the
non-fractional case y =1for p=2,0=0,n=0and 7 € [0, 1/2].

Corollary 2.3.16. Let§ € [0,00) and y € (3 +8,00). Suppose that A satisfies Assump-
tion2.3.1(i) and that there exists a constantn € [0,00) such that A:= A+n] satisfies As-

sumptions 2.3.1(i),(iii),(iv) and E‘H%_VQ% € %, (H). Then, the mild solution Z, in the
sense of Definition 2.3.7 exists and belongs to C([0, T1; L (Q; H)) for every p € [1,00). If
6 >0, then for every p € [1,00) there exists a modification of Zy in LP(Q;C([0, T); H))

which has continuous sample paths.

Proof. Note that S(1) = "’ S(#) holds for every t =0, where (8(8)) ;>0 denotes the Co-
semigroup generated by —A. Hence, by Proposition 2.3.14 we find that

T T
[ 10 sw@d g ar= e [ 10800} o

S €M il ”ffz(H) < oo.
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The claim now follows from Theorem 2.3.8. O

We illustrate the utility of Corollary 2.3.16 in the following example. It is concerned
with the case that A is induced by a continuous bilinear form a: V x V — R, where
V — H is dense in H, and a is not necessarily coercive on V; see also Section 1.2.
We note that this setting applies to a variety of important applications, including
symmetric and non-symmetric differential operators of even orders.

Example 2.3.17. Let (V,(-,-)y) be a Hilbert space which is densely and contin-
uously embedded in H. Let A: D(A) € H — H be associated to a bilinear form
a: V x V — R which is bounded and satisfies a Garding inequality, i.e., there exist
constants ag, @; € (0,00) and 7 € [0,00) such that

la(u, V)| = arllulviiviv Vu,veV, (2.3.20)

alu,u) = agllull?, —nllul? Yuev. (2.3.21)

The Garding inequality (2.3.21) can be interpreted as coercivity of the bilinear form
a(u, v) := a(u, v) + n{u, vyy on V, associated with A = A+ nl, while (2.3.20) implies
that @ is bounded. The complexified sesquilinear form ¢ : Vg x Vo — C, which is de-

fined analogously to (2.B.1) and induces the operator ﬁc, inherits the boundedness
and coercivity from a. Thus, there exist @, &@; € (0,00) such that

lac (u, ) = @ llullve vllve Yu,ve Vg,

Redc (u, u) = @ollullf, YueVe.

Therefore, c?ollullf,(C <Redc(u, u) < lac(u,w)| < a; IIuII%/C < g—(‘)Re ac (u, u) follows for
every u € Vg. If Vo # {0}, these estimates imply that @y < @; and

R N R @2 V2
|Imac(u,u)|=\/|a@(u,u)|2—|ReaC(u,u)|2s(6—5—1) Redc(u,u) Yue Ve.
0

This shows that —ﬁ(c generates a bounded analytic Cy-semigroup (§(c(t))t20 of con-
tractions on Hg by Theorem 1.2.8. Applying [114, Theorems 10.2.24 and 10.4.21] and
using that w(ﬁc) € [0, %), since (§(c(t))t20 is bounded analytic (see Theorem 1.1.8),
we find that A admits a bounded H*-calculus of angle w y~(A¢) = w(Ac) € [0, %).
Thus, we are in the setting of Corollary 2.3.16. In particular, the existence of a mean-
square continuous mild solution to (2.3.1) for y > % follows if I|E%’7’Q% ., () < oo.

THE PROOF OF THEOREM 2.3.12

We split the proof of Theorem 2.3.12 into several intermediate results. Before stating
and proving these, we introduce the following function, which generalizes the inte-
grand in (2.3.13) used to define mild solutions. Given a € R, b € [0,00) and o € [0,00),
define @, ;: (0,00) — £ (H; H}) by

Dup(0) = t"APS(HQ2, e (0,00). (2.3.22)
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Note that a mild solution Z, in the sense of Definition 2.3.7 satisfies the relation
1 t —
Vtel0,T]: Z,(nH= —f Dy _10(t—5)dW(s), P-a.s,,
Tl T

where W(t) = Q‘% wWe), t=0,isa cylindrical Wiener process.

The first result quantifies spatial regularity of the continuous-in-time stochastic
convolution with ®, 5, in LP(Q; Hg)-sense. Recall from Section 2.2 that (W (1)) =0
denotes an (arbitrary) H-valued cylindrical Wiener process with respect to (F7) 0.

Proposition 2.3.18. Let Assumption 2.3.1(i) hold, and let a € R, b,0 € [0,00) and
T € (0,00) be given. Ifo # 0, then suppose moreover that Assumptions 2.3.1(ii),(iv) are
satisfied. If the function @ j, defined in (2.3.22) belongs to L*(0, T; %>(H; HY)), i.e.,

T
2
j(; 1®g,p(1) ”%(H;Hg) dt < oo,

then t — fotha'h(t— s) dW (s) belongs to C([0, T];U’(Q;Hg)) forall p € [1,00).

Proof. We first note that the assumption @, j € 12(0, T; % (H; Hg)), combined with
the Burkholder-Davis—Gundy inequality (see [144, Theorem 6.1.2]) and the contin-
uous embedding

L2 H) — LP(QHY),  pell,2), 0€0,00), (2.3.23)

imply that fj @, (¢ —s) dW (s) indeed is a well-defined element of L” (Q; HY) for all
t€[0,T] and every p € [1,00).

It remains to check the L” (Q; Hg)-continuity of t— fot D, p(t—5)dW(s). For fixed
te[0,T)and he (0, T — ], we split the stochastic integrals as follows:

t+h t
f qna,b(r+h—s)dW(s)—f @, p(t—5)dW(s)
0 0

t+h t
=f @, p(t+h—s) dW(s)+f [@gp(t+h—3)—Dgp(t—5)]dW(s).
t 0

For p € [2,00), the Burkholder-Davis—Gundy inequality yields

t+h t
M Dy p(t+h—s) dW(s)+f (@ (t+h—8)— Dy p(t—5)] dW(s)H _
' 0 LP (@)

t+h ) 1/2
< - .
Sol[ 10t n=9l, 1 as]

t 1/2
2
[ | NPapt+ 1= 9= @plt=91, g o ds

1/2

h 1/2 t
_ 2 _ 2 )
= [ 10 @Iy, gy ] [ [ 100+ =01 e 0]

where u:=t+h—-sand r:=t—s. Since ®,p € L2(0, T; %, (H; Hg)) the first integral
tends to zero as & | 0 by dominated convergence. The second term tends to zero by
Lemma 2.A.4, see Appendix 2.A.
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For t € (0, T] and h € [-t,0), the difference of stochastic integrals can be rewritten

using [y = OHh + [/ ,- Thus, we obtain, for every p € [2,00), the bound

t+h t
”[ cba,b(mh—s)dW(s)—f cba,,,(r—s)dW(s)” ,
0 0 LP(Q;HY)

1/2

-h 1/2 t
2 2
Sp[fo 190, (), i, 4 | +[f P40 = Py ey |

where we again used the change of variables r := t — 5. Both terms on the last line
tend to zero, again by dominated convergence and Lemma 2.A.4, respectively.
Finally, we note that the result for p = 2 implies that for p € [1,2) by (2.3.23). O

Furthermore, we obtain the following result regarding the temporal Holder conti-
nuity of the stochastic convolution with the function @, ;, in (2.3.22).

Proposition 2.3.19. Let Assumptions 2.3.1(i),(ii) hold, let T € (0,00), a€ (—%,oo),
b,0 € [0,00) and T € (0, a+ %] N (0,1). Ifo # 0, then suppose that Assumption 2.3.1(iv)
holds as well. I]‘A‘“‘%+h+7Q% € %(H; HY) and ®,, is defined by (2.3.22), then
t— fo ©qp(t—s) dW(s) belongs to CT ([0, T); LP(; HS)) for all p € [1,00).

Proof. Fort€[0,T)and he (0, T — ], we obtain

t+h
Hf qaa,b(Hh—s)dW(s)—f
0 0

< Hfot[q)“"’(” h=35)—®gp(t—5)] dW(s) ”

t

Dy (- 5) AW (s) HLP(Q_HU)
TTA

LP(Q;H)

t+h 1
—a-L+b+t H1
+”[ @ (t+h—s)dW(s)H  <pan WA TR .
, a,b LP (@) (p,a,7) “ Q Hffz(H,HZ)

by Lemmas 2.A.6 and 2.A.7, see Appendix 2.A. The analogous result for the case that
t € (0,T] and h € [—t,0) follows upon splitting fot = 0t+h+ ftih and applying the

lemmas with 7:=t+ he[0,T) and h:=—he (0,T - f]. O

We now investigate temporal mean-square differentiability. To this end, we need
the following estimate which is implied by (2.3.3): For all a e R, b € [0,00), we have

Veel0,00): 10gp(0xlly Se 97 AP Q2 x|, VxeD(AP™°Q2).  (2.3.24)

The next lemma records some information about the derivatives of @, ; in (2.3.22).

Lemma 2.3.20. Let Assumptions2.3.1(i),(ii) be satisfied, and leta€ R, b, o € [0,00). If
o € (0,00), suppose furthermore that Assumption 2.3.1(iv) holds. Then, the function
@, p defined by (2.3.22) belongs to C*((0,00); £ (H; Hg)) with kth derivative

k

d k o . 1 k
7 Qb =2 Cajit” E=DAPIS(1)Q7 = Y CajkPaii-jbrj (1), (2.3.25)
j=0 j=0
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where Cqj i = (_1)1'(?) Hf;lj(a— (k=j)+1) foracR, jkeNy, j<k.
Moreover, ifr € [0,2b+0] is such thatQ% e ZH;H ') and the integer n € Ny satisfies

n<a-b-%", then ®,p has a continuous extension in C"([0,00); £ (H; HZ)) with
all n derivatives vanishing at zero.

Proof. Since (5(1)) =0 is assumed to be analytic, S(-) is infinitely differentiable from
(0,00) to £ (H), with jth derivative (—A)’ S(-) and, for t € (0,00), € := %,

(47 25()] V(1) = [S(- —e) AP 2 S(e)] V(1)
= (A S(t-e) AP ZS(e) = (=1)] ATPTZ §(p).

Here, the 'limits for the c_ierivatives are taken in the .2 (H) norm. This is equivalent to
[APS()1V (1) = (-1)/ A7*PS(1) with respect to the £ (H; H9) norm. The expression
for the kth derivative of @ j thus follows from the Leibniz rule.

Now let r € [0,2b + 0], n € Ng be such that n < a— b— %" and Q% € ¥ (H; HZ). To
prove the second claim, we derive that for all k € {0,1,...,n} and ¢ € (0,00)

k
_ H y Cayjykta—(k—j)Ab+j+”T”S(t)A%Q%
j=0

dk
“ W (Da,b(t)

L (H;HS) Z(H)

Stabkro 17 Q2 | 2z

by applying (2.3.24) to each summand with ¢ := b+ j + 5 = 0. Furthermore, since
a-k-b-%" =2 a-n-b- %" >0, the above quantity tends to zero as ¢ | 0. Hence,

extending t — :—;@a,b(t) by zero at ¢t = 0 gives a function in C([0,00);.Z(H; Hg))
for all k € {0,1,..., n}. Inductively it follows then that the kth derivative of the zero
extension is the zero extension of the original kth derivative. O

Proposition 2.3.21. Let o € [0,00), and whenever o € (0,00) require additionally As-

sumptions 2.3.1(1),(i1), (iv). Suppose that ¥ € H o, (0, T; %> (H; H})) and let W' denote

its weak derivative. Then the stochastic convolution t — [ ¥ (t—s) dW (s) is differen-
tiable from [0, T] to LP (Q; Hg) forall p € [1,00), with derivative

d rt t
af Y(t—s)dW(s) zf Y (t-s)dW(s) VYrelo,T]. (2.3.26)
0 0

Proof. Forte[0,T)and h e (0, T — t], we can write

1 t+h t t
—[ ‘P(t+h—s)dW(s)—f ‘y(t—s)dW(s)]—f V(- 5)dW(s)
hlJy 0 0
t Q) _ t+h
=f [\P(”h 9 -w s)—\P’(t—s)]dW(s)+l W(t+h—s)dW(s)
0 h hJ:

. rht ht
0 [
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For t € (0, T] and h € [-t,0), we instead have
1 t+h
il
=f”h[‘1’(t+h—s)—‘~1’(t—s)
0 h

t t
Y(t+h-ys) dW(s)—f ‘P(t—s)dW(s)] —/ Yt —s)dW(s)
0 0

—‘I”(t—s)] AW (s)
t

1 t o
-— ‘P(t—s)dW(s)—[ V(t—-s)dW(s) = I +1 +II.
hJeen t+h

We first deal with the terms Igi. Note that ¥ € H(} 0 0, T; % (H,; Hg)) implies that

W(w = [ Y'(r)dr for all u € (0,|h]), see [74, Section 5.9.2, Theorem 2]. In con-
junction with the Burkholder-Davis—Gundy inequality (combined with the embed-
ding (2.3.23) if p € [1,2)) and the Cauchy-Schwarz inequality, this leads to

. 1 ¢ rlnl , 112
1 Ny S g, 12000,
e 2 ,
sm[fo (fo I (M 2,11, 72) dr) du] = 1l 20, 112 1119y
Moreover, we find that
B t 1/2
1 Wiy o [ 19/ 0= 90 e, ]

|h| 1/2
_ ! 2 _ ! .
= [fo W ', 1,2 d”] =¥l r200,1n15.2 11119 -

Since ¥’ € L*(0, T; %, (H; HY)), we have that "1 20, s 2y a:ayy — O @s b — 0 by

dominated convergence. Thus, it remains to deal with the Ilhi terms. For the case
of positive h, we find using the definition of the difference quotient Dj, (see Equa-
tion (2.A.6) in Subsection 2.A.4) that

LW+ h—s)—W(L—5) 2 2
n o < - -
“II ||Lp(Q;Hg)Np [f() ” h W(r—ys) %(H;Hﬂ) ]
[
0 h 25 (H;HG)
=1Dn¥ =¥'ll 20,1, 2, (111 -
For the case of negative h, we arrive at
- Hh W (t+h—-s) - (t- ) 2 /2
h < —Y(t— ‘
(8 ”LP(Q;HZ) ~p [fo h =) L5 (H;HY) ]
[ ot
—h h Lo (H;HY)

!
1DRY =¥l 12, 5.2 (113109

The convergence limy,_.q || lhi II @) = 0 follows then from Proposition 2.A.8. O
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We are now ready to prove Theorem 2.3.12.

Proof of Theorem 2.3.12. We first claim that the mild solution, interpreted as a map-
ping Z,: [0, T] — LP(Q; Hg), is n times differentiable and that, for all k € {0,1,...,n}
and ¢ € [0, T, its kth derivative satisfies

1 [t -
ZW (1) = —f o (t-s)dW(s), P-as., 2.3.27
y (1) T Jo y-1,0L =) dW(s) a.s ( )

k)

where <D§, 1 o is the kth derivative of ®,_ o given by (2.3.25), and W is the cylindrical

Wiener process W (t) := Q‘% WQ(t), t = 0. We prove this by induction with respect
to k. For k = 0, the identity (2.3.27) follows from Definition 2.3.7 and (2.3.22). Now
let k€ {0,1,...,n— 1} and suppose that Zy is k times differentiable and (2.3.27) holds.
Then, the induction hypothesis and Lemma 2.3.20 show that, for all ¢ € [0, T1],

dk+1

Z, (1) = iZ(k)(t)= i[Lftcb(’“ (t—5) dW(s)
v de ™ delrey) Jo 710

dk+1 Y

1 d (& —
=—— Co1ikDy_1—(k—i i(t—5)dW(s), P-a.s.
ol 2 Gt ®retieep 0= 9 AW
Fixing an arbitrary j € {0,1,..., k}, it suffices to verify that ¥ := ®,_;_(;— j) ; satisfies
the conditions of Proposition 2.3.21, so that (2.3.26) holds for the cylindrical Wiener
process W. Indeed, having proved this for an arbitrary j, by linearity

k+1 1

t k
R — X ! _ —
drk+1 Zy(t) - I'(y) L jgocy_l']'kq)y—l—(k—j),j(t s)dW (s)

1 ¢ .
"ty | @9 dwe, Pas,

follows, where the latter identity is an equality of the operator-valued integrands.
Using (2.3.3) with ¢ = b, the identity A%tba'h(t) = 2“(t/2)“AbS(t/2)A% S(t/Z)Q%
and a change of variables u := /2, we observe that

de iz
>

T
2(a-b) || 2% 31
19a,bll 120,152 11325 Stab) fo 2"V AZS(t12Q? | 'y

(2.3.28)

T 1/2
— 2 .
= [f() ”q)“_b'o(tlz)”fg(H;HZ)?] = ”q)ﬂ—b,o”Lz(O,T;fz(H;HZ))

holds for all ae R and b € [0,00). For ¥ = @y 1_(k—j),j Weuse (2.3.28) to obtain

"\P”LZ(O,T;%(H;HX)) Sk 1Py-1-k0l 2 (0,5 %y (H; E%))-
The norm on the right-hand side is finite by (2.3.19), since k < n—1 < n. Next, noting
thaty—1-k—- %% 2y —n—- %L >0, the second assertion of Lemma 2.3.20 implies
that t — ¥(¢) has a continuous extension in Cy ([0, T1;.Z (H; Hg)). Furthermore,
also by Lemma 2.3.20, ¥ is differentiable from (0, T) to £ (H; Hg ), with derivative

W= (y—1= (k= NPyo1-k-j)-1,j = Py-1-(k—j), j+1-
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Applying the triangle inequality and (2.3.28) then shows that

!
N 20,72 (11 Sk 1Py—1-n.0ll 20,7525 11119y

where the norm on the right-hand side is finite by (2.3.19), as k + 1 < n. Since itholds
that % (H; H") — Y (H, H") Lemma 2.A.9 implies that ¥ € H, 0 0 0, T;.%(H,; HZ)).
Thus, we may 1ndeed use Pr0p0s1t10n 2.3.21, and the differentiability follows.

It remains to show that the nth derivative Z}(,”) is (Holder) continuous, i.e., that we

have Z)(,") e COT([0, T; LP (& HU)). To this end, we use (2.3.27) and (2.3.25), and write
Vtel[0,T]: Z;’”(t) e )Z y— 11"[ y—1-(n—j),j (E=$) dW(s), P-a.s.

The case 7 = 0 (i.e., continuity) follows after applying, for all j € {0, 1,..., n}, Propo-
sition 2.3.18 with a = y—1-(n—j) and b = j. Note that ®)_;_(,— ) ; indeed is
an element of L%(0, T; % (H; Hg)) for all j € {0,...,n} by (2.3.19) and (2.3.28). For
7€(0,y-n- %] n(0,1), the Holder continuity of Z}(,") follows from Proposition 2.3.19
which we may apply, for all j € {0,1,...,n}, witha=y—-1-(n—j) and b = j, since
A””+%‘7’Q% € % (H; HY) is assumed. O

2.4. COVARIANCE STRUCTURE

In this section, we study the covariance structure of solutions to (2.3.1). More specif-
ically, we consider the mild solution process (Zy (1)) 0,77 from Definition 2.3.7. The
covariance structure of Z, will be expressed in terms of the family of covariance op-
erators (QZY (s, D)5 rer0,11 € -Z (H) which satisfies, for all s, ¢ € [0, T'], that

(Qz, (5, )%, y)n =E[KZy () —E[Zy (9], x) u{Zy () —E[Z, (D), y)u] VYx,y€ H. (2.4.1)

Note that this family is well-defined whenever Z, is square-integrable, e.g., under
the assumptions made in Theorem 2.3.8. Note also that ]E[Zy(t)] =0forall t€][0,T].

We present three results on the covariance operators of the mild solution Z,. The
most general result is Proposition 2.4.1, which provides an explicit integral represen-
tation of Qz, (s, 1). Corollary 2.4.2 is concerned with the asymptotic behavior of the
covariance operator Qz, (, f) as t — co. Subsequently, in Corollary 2.4.3 we consider
a situation in which the covariance is separable in time and space, and prove that
the temporal part is asymptotically of Matérn type.

Proposition 2.4.1. Let Assumption 2.3.1(i) be satisfied and let y € (0,00) be such
that (2.3.14) holds. The covariance operators (Qz, (s, 1))s te(0,1) Of Zy admit the rep-
resentation

1 SAL
Qz, (s, 1) = e )Zf [(s= ) (t—n"'S(t—rQIS(s—n)]* dr. (2.4.2)

Proof. Square-integrability of Z, is a consequence of Theorem 2.3.8 and (2.3.14). In
order to prove the integral representation (2.4.2), for s € [0, T], r € (0,s) and x € H,
we define f(s,7;x) € Z(H;R) by

fls,r;0z:=T1 Nz, (=" S(s—r*x)y, z€H.
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We proceed similarly asin [123, Lemma 3.10] and obtain (2.4.2) from the It6 isometry
combined with the polarization identity:

S t
EKZy(8), ) u{Zy (1), )] =E fo fls,r;0dwWr) fo f&,T)dwem)

:fow(f(s,r;x)Q%,f(t, r;y)Q%)gz(H;R) dr

1

CTo?
Then, (2.4.2) follows from exchanging the order of integration and taking the inner

product, which is justified since (0, sA 1) 3 r — [(s— ) (t— )] 1S(t—r)QIS(s—1)]* x
is integrable by (2.3.14). O

SAt
fo ((s—r)(t—=n]""XS(t-rQIS(s—)*x, y) g dr.

By imposing more assumptions on the operator A, one can obtain explicit repre-
sentations of the asymptotic covariance structure of Z, as r — oo, as the next two
corollaries show. Note that, if (2.3.14) holds for 6 = 0 and T = oo, in Definition 2.3.7
the stochastic convolution Zy and the mild solution Z, are well-defined on the infi-
nite time interval [0, 00). It is thus meaningful to consider the asymptotic behavior.

Corollary 2.4.2. Let Assumptions2.3.1(i),(ii),(iv) be satisfied and lety € (1/2,00). Sup-
pose that (2.3.14) holds for 6 =0 and T = oco. If for every t € [0,00) the operator S(t) is
self-adjoint and commutes with the covariance operator Q of W<, we have

lim Qz, (1,0 =T(y - 1/2) [2vaT] A2 Q  in L(H).

—00

Proof. Starting from the identity (2.4.2) for a fixed ¢ = s € [0,00), we recall the self-
adjointness of the operators (S(¢)) ;¢ and the commutativity with Q to obtain that

1

QZy(t» 1= ry)z

t
f(t—r)Z(Y—US(t—r)QS(t—r)dr
0
1-2y
['(y)?

where we also used the semigroup property and the change of variables u := 2(¢ - r).
Now we interchange the bounded linear operator Q with the integral, and pass to
the limit t — oo in £ (H), which by (1.3.4) with a := 2y — 1 € (0,00) gives

lim Qz, (1,1) = 21Ty - DT 2AT2 Q=T (y - 12) [2v/aT(p)] ' A2 Q.

t 2t
:%f (t-r?2Q8@t-2r)dr = f w2 2QS(u) du,
'y Jo 0

The last equality was obtained by applying the Legendre duplication formula for the
gamma function [163, Formula (5.5.5)] to 'y — 1) =T'2[y — 1/2]). O

Corollary 2.4.3. Suppose the setting of Corollary 2.4.2 and let A =« 1 for x € (0,00).
Then the covariance function of Z, is separable and its temporal part is asymptotically
of Matérn type, i.e., there is a function 0 z, : [0,00) x [0,00) — R such that

Vs, t€[0,00): Qz/(s,1)=p0z,(s1)Q,
3=V 12y

W (K|]’l|) (2.4,3)

VheR\{0}:  lim oz, (1,1+h) = |k 2K
t—o0 Y

1
2
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Remark 2.4.4. On the right-hand side of (2.4.3), one recognizes the Matérn covari-
ance function (2.1.1) with smoothness parameter v = y —1/2, correlation length pa-
rameter x and variance o2 = k12T (y — 1/2)[2\/aT ()] "

Proof of Corollary 2.4.3. For s,t =0, the integral representation (2.4.2) yields

1 SAT
Qz,(s,0) = TR fo (s—n-n e 20 drQ=pz (5,0 Q,

where we moved the bounded operator Q € £ (H) out of the integral. Next, we fix
h € (0,00), let t € [0,00) and perform the change of variables u:= h +2(¢t —r),

21 2y

2t+h
o )zf [(u+h) (-] e ™" du.

Q%,(l‘,[+h) %,(l+h t) =

Thus, by passing to the limit  — co, we obtain

. _21_2), R 2\Y-1 _—«xu
[lggogzy(t,mh)—r(y)th (u”—h7)"" e du

21 2}’

21-2y (2h)Y-%r(y)
T2 1 (kh),

S Llu— (-1 "1 e
[u (u ) (h, )(LL)](K) F(Y)Z \/ﬁKYﬁ% Y"

where L[f](x) denotes the Laplace transform of the function f: [0,00) — R evalu-
ated at x, and the last identity follows from [161, Chapter [, Formula (3.13)]. O

2.5. SPATIOTEMPORAL WHITTLE-MATERN FIELDS

In this section, we demonstrate how the results of the previous Sections 2.3 and 2.4
can be related to the widely used statistical models involving generalized Whittle—
Matérn operators (2.1.3) on H = L2(X), where X =D - R? is a bounded domain in
the Euclidean space (see Subsection 2.5.1) or asurface X = M (see Subsection 2.5.2).

2.5.1. BOUNDED EUCLIDEAN DOMAINS

Throughout this subsection, let @ # D C Rebea bounded, connected and open do-
main. In order to rigorously define the symmetric, strongly elliptic second-order
differential operator L, formally given by (2.1.3), as a linear operator on L2(D), we

make the following assumptions on its coefficients x: D — R and a: D — Rfyﬁ‘f , as

well as on the spatial domain D C R¥.

Assumption 2.5.1 (Euclidean domain—minimal conditions).
(i) D has a Lipschitz continuous boundary 9D;
(i) aeL™(D; ngﬁlﬁi ) is strongly elliptic, i.e.,

30>0: essinffTa(x)fzﬂllfll]%d VEERd;
xeD

(iii) x € L*(D).
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Under these assumptions, we introduce the bilinear form
ar: Hy(D) x H (D) — R, ar(u, v) :=(aVu,Vv)2p) + «*u, V) 12(Dys

which is symmetric, continuous and coercive. We say that u € H(} (D) belongs to the
domain D(L) of the differential operator L if and only if |az (u, v)| <y vl 12¢py holds
for all v € H} (D). In this case, we define Lu as the unique element of L*(D) which
satisfies the relation ay (i, v) = (Lu, v)2(p) forall ve Hé (D).

By the Lax-Milgram theorem the inverse L™! € .2 (L*(D); Hy (D)) exists and can be
extended to L™! € Z(H, (D)*; H; (D)). Moreover, it is a consequence of the Rellich-
Kondrachov theorem (see [2, Theorem 6.3]) that L~! is compact on L?(D). For this
reason, the spectral theorem for self-adjoint compact operators is applicable and
shows that there exist an orthonormal basis (e;) jeN for L2(D) and a non-decreasing
sequence (4;) jen of positive real numbers accumulating only at infinity such that
Lej=Ajejholdsforall j € N. Furthermore, the eigenvalues of L satisfy the following
asymptotic behavior, known as Weyl’s law (see Theorem 1.2.12):

Aj=j7* VjeN. (2.5.1)

In this setting, for two differential operators L and L on L?(D) with coefficients a,x
and 4, k, respectively, we obtain the following corollary from the regularity results in
Section 2.3 for spatiotemporal Whittle-Matérn fields, where A:= Lf and Q := L™

Corollary 2.5.2. Let a,f,0 € [0,00), set 1 = % Ao iff>0andr =0 if =0, and

suppose that n€ No, 1€ [0,1) andy € (n+ w,oo) are such that
yzn+HEVED gng By > 224 B(n+r+ B2 (2.5.2)

LetL: D(L) € HY(D) — L*(D) and L: D(L) € H} (D) — L*(D) be symmetric, strongly
elliptic second-order differential operators as defined above, cf. (2.1.3). Suppose that
Assumption 2.5.1(i) holds for D C RY% and that the coefficients a,x of L and @,&
of L satisfy Assumptions 2.5.1(ii),(iii). Assume moreover that L and L diagonalize
with respect to the same orthonormal basis (e;j) jen for L2(D), i.e., there exist non-
decreasing sequences (Aj)jeN, (Xj)jeN of positive real numbers such that Lej = Aje;
andLej=Ajej forall j eN.

Then, setting A = P and Q:= L% the mild solution Zy to (2.3.1) in the sense of
Definition 2.3.7, see also (2.1.4), belongs to C'™* ([0, T1; LP (Q; HZ)) forall p e [1,00). If
the above conditions hold with n =0 and 7 € (0,1), then for every p € [1,00) and all
7' €[0,7) the mild solution Z, has a modification Z, € L (Q; C*" (0, T1; HY)).

Proof. By the spectral mapping theorem for fractional powers of operators, see e.g.
[148, Section 5.3], we obtain that Ae; = LFe; = Afej and Qej =L %e; = I]T“ej. In
particular, A inherits the self-adjointness and strict positive-definiteness from L.
This readily implies that 0 € p(A). It follows from [114, Proposition 10.2.23] that
Ac admits a bounded H*°-calculus of angle g~ (Ac) = 0, showing that Assump-
tions 2.3.1(i)—(iv) are satisfied for A.
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Furthermore, we note that, for every o,s € [0,00), we have that H] = Hgﬁ and
the spaces H; and H% are isomorphic. The latter fact follows from the asymptotic

behavior (2.5.1) of the eigenvalues (1) jen and A j)jeN, since L and L have the same
eigenfunctions. Thus, we obtain that Q% =17 e Z(H; Hg‘) c .Z(H; H;‘).

Since y € (% +n,00) N [% +n+ %, 00) is assumed, by Proposition 2.3.14 (see also
Remark 2.3. 15) the condition (2.3.19) of Theorem 2.3.12 is equivalent to requiring

that A" 27YQ2 € % (H; HY9). Since also y € (%~ +n,00)n[n+T+1,00), we therefore
conclude with Theorem 2.3.12 that it suffices to check that the quantity

|z IIJZ(H)—IlLﬁ BN o

00 26(% )~ (2.5.3)
— Z”Lﬁ +n+r+2 -7) i3 “H Z’l +"+T+ Y)/lja

is finite. Indeed, applying Weyl's law (2.5.1) to both L and L, it follows that

26(% +n+ + -Y)5— S .4 Loy _gy_a
Z/l Plaanet )/lja;(a,ﬁ,%tr,n,r) z‘,ld[ﬁ(mpr #)-prgl,
j=1

so that (2.5.3) is finite if and only if (2.5.2) holds, as we assume. Then, given any
p € [1,00), Theorem 2.3.8, Theorem 2.3.12 and Proposition 2.3.14 yield the existence
of a mild solution Z, € C™*([0, T1; LP (Q; Hg)), which is unique up to modification.
The last assertion for n =0 and 7 € (0,1) follows from Corollary 2.3.13. O

The spatial regularity obtained in Corollary 2.5.2 is measured using the spaces

HZ = Hfg. It would be more practical to express this in terms of fractional-order
Sobolev spaces H*(D), s = 0. This raises the question of how H; and H*(D) relate.
The answer to this question depends on the smoothness of the coefficients a,x and
of the boundary dD. We therefore introduce two additional sets of assumptions:
Assumption 2.5.3 is only slightly more restrictive than the minimal conditions of As-
sumption 2.5.1, whereas Assumption 2.5.4 requires a high degree of smoothness.

Assumption 2.5.3 (Euclidean domain—H’ 2 (D)-regular setting).
(1) D isconvex.

(i) a: D —R&xdis Lipschitz continuous, i.e.,
laij(x)—a;;j(y)l Slx=yllga Vx’J’ET)r Vi, jefl,...,d}

Assumption 2.5.4 (Euclidean domain—smooth setting).
(i) The boundary 8D is of class C*;
(i) a;j€ C*(D) holds forall i, j € {1,...,d}, i.e., for all entries of a;
(iii) x € C®(D).

The results of the next lemma are taken from [50, Lemma 2] and [28, Lemma 3.4].
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Lemma2.5.5. LetL: D(L) € H(} (D) — L*(D) be a symmetric second-order differential
operator as defined as above, cf. (2.1.3). Then, the following assertions hold:
(@) If Assumption 2.5.1 is satisfied, then Hz — H*(D) for all s € [0,1]. Moreover, the
norms || - ”Hi and || - |l gs(py are equivalent on Hi forse[0,1]\ {1/2};

(b) If Assumptions2.5.1 and 2.5.3 are satisfied, then

(0 ) = (HY D) Hy (D), | - lsepy) - Vs € 11,205

(¢) If Assumptions 2.5.1 and 2.5.4 are satisfied, then Hi — H%(D) for all s € [0,00),
and the norms || - ”Hi’ I - | gs(py are equivalent on Hifor all s € [0,00)\ &, where

¢:={2k+12: keNy} is called the exclusion set.

Combining Lemma 2.5.5 with the results of Corollary 2.5.2 shows that the mild
solution Z, is an element of C™" ([0, T1; LP (Q; HPF (D)), provided that o € [0, s'],
where s’ € [1,00) is prescribed by the smoothness of the coefficients a,x and the
boundary D via Lemma 2.5.5(a), (b) or (c). Note that we do not have to take the
exclusion set ¢ into account, as we only need the embedding H z — H*(D).

Lastly, we consider the covariance structure of the mild solution, as treated in
the abstract setting in Section 2.4. The most illustrative results are the asymptotic
formulas presented in Corollaries 2.4.2 and 2.4.3, which we translate to the current
setting in Corollary 2.5.6. We see that (Whittle-)Matérn operators are recovered as
marginal spatial or temporal covariance operators.

Corollary 2.5.6. Consider the setting of Corollary 2.5.2 with L=1L, i.e., Q:= L% Let
a, B € [0,00) andy € (1/2,00) be such that By > %(% —a+f), and let Z, be the mild
solution in the sense of Definition 2.3.7. Then the asymptotic marginal spatial covari-
ance of Zy satisfies

lim Qz, (1, n =Ty ~/2) [2vAT ()] LA i 212 (D).

For 8 = 0, the covariance of Zy is separable in the sense that there exists a function
0z, [0,00) x [0,00) — R such that

Qz,(s,1)=pz,/(s,1) L™% Vs, t€(0,00),
and for all h € R\ {0} we have

lim Qz, (¢, ¢+ 1) =22V [Var ()] A2 K,y ()L™ in Z(X(D)),

Proof. Existence and uniqueness of the mild solution Zy follow from Corollary 2.5.2
with L =L and n =7 = ¢ = 0. Recall from its proof that the operator A satisfies As-
sumptions 2.3.1(i)—(iv). Note also that A = LAis self-adjointand Q=L"%€ ZL(L2(D))
commutes with A, so that it also commutes with S(¢) for all ¢ € [0,00), cf. [100, Theo-
rem 1.3.2(a)]. All assertions follow thus from Corollaries 2.4.2 and 2.4.3. O



2.5. SPATIOTEMPORAL WHITTLE-MATERN FIELDS 73

Remark 2.5.7. The asymptotic results obtained in Corollary 2.5.6 are in accordance
with the marginal spatial and temporal covariance functions derived in [140, Sec-
tion 3, Proposition 1 and Corollary 1] for the case of the operator L = y% — A acting
on functions defined on all of R2 where Ys € (0,00). Note that, in order to exploit
Fourier techniques, in [140] the “time” variable t is an element of the whole real axis,
t € R, instead of only its non-negative part.

Remark 2.5.8. Corollaries 2.5.2 and 2.5.6 explain and justify the roles of the parame-
ters &, f and y. They control three important properties of spatiotemporal Whittle—
Matérn fields. Besides the temporal and spatial smoothness, measured respectively
by the quantities n+1 and o, we identify a third degree of freedom: The degree of sep-
arability, expressed by the ratio % € [0,00]. Indeed, if% = oo, i.e. f =0, we observe
that the covariance of the field is separable and that its temporal and spatial behav-
ior are exclusively governed by the parameters y and a, respectively. In contrast, if
% =0,i.e. @ =0, the SPDE is driven by spatiotemporal Gaussian white noise and the
“coloring” of its solution is fully determined by the fractional parabolic differential
operator (9, + LF)".

2.5.2. SURFACES

In this subsection, we provide a brief demonstration of how the above results can be
extended to spatiotemporal Whittle-Matérn fields on more general spatial domains.
More precisely, we consider a smooth, closed, connected, orientable and compact
2-surface M immersed in R and endowed with the positive surface measure v 5
on B(M), induced by the first fundamental form. An important example of such a
surface is given by the 2-sphere, M = S2

On H := ?>(M), we consider the following analog of the symmetric, strongly ellip-
tic second-order differential operator from Subsection 2.5.1, formally given by

Lu=-V-(aVpu) +x°u,  ueD(L) S L*(M),

where V- and V, denote the surface divergence and the surface gradient, re-
spectively, see Section 1.2.4. We record the precise conditions on the surface M and
on the coefficients a,x in Assumption 2.5.9 below; with regard to smoothness, they
are analogous to the setting of Assumption 2.5.4 in the case of a bounded Euclidean
domain.

Assumption 2.5.9 (Surface—smooth setting).

(i) a is a symmetric tensor field, i.e., a(x): TyM — Ty M is linear and symmet-
ric for all x € M, where Ty M denotes the tangent space of x. Moreover, a is
smooth and strongly elliptic in the following sense:

30>0: VxeM,VEeTeM: & a(x)é =012,

(i) The coefficient x: M — R is smooth and bounded away from zero, i.e., there
exists kg € (0,00) such that |x(x)| = k¢ for all x € M.
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The conditions in Assumption 2.5.9 are sufficient to ensure that L: H] — (H})* is
boundedly invertible, and has a compact inverse on L?(M). This allows us to find
an orthonormal basis (e;) jeN for L>(M) and a non-decreasing sequence of positive
real eigenvalues (A;) jeny of L accumulating only at infinity, as in Subsection 2.5.1.
Moreover, fractional powers L? are well-defined for all § € R, the sequence of eigen-
values still satisfies Weyl's law (2.5.1) (with d = 2), and a spectral mapping theorem
holds, cf. [190, Theorems XII.1.3 and XII.2.1]. These facts are sufficient to repeat the
proofs of Corollaries 2.5.2 and 2.5.6 yielding the analogous results, with d = 2 and
other obvious modifications to the conditions. In particular, the analog of Corol-
lary 2.5.2 on the surface M implies regularity of the solution process in the space
C™ ([0, T1; LP (; HP? (M))).

An important difference from the (smooth) Euclidean setting of Assumption 2.5.4
is that under Assumption 2.5.9, the Sobolev space H*(M) and H ) are isomorphic for
every s € [0,00), see [190, Example XII.2.1]. In other words, the absence of a bound-
ary M implies that one does not need to exclude the exception set & from the ad-
missible exponents s in the analog of Lemma 2.5.5(c).

APPENDIX TO CHAPTER 2
2.A. AUXILIARY RESULTS

Throughout this section, H denotes a separable Hilbert space which, if not specified
otherwise, is considered over the real scalar field R.

2.A.1. BOCHNER COUNTERPARTS

The first auxiliary result records relations between a (possibly unbounded) linear
operator A: D(A) € H — H and its Bochner space counterpart A which is defined
on a subspace of L2(0, T; H), where T € (0, 00).

Lemma 2.A.1. Let T € (0,00) and A: D(A) € H — H be a linear operator on a real or
complex Hilbert space H. Consider the associated operator A on L*(0, T; H) as defined
in (2.3.4). Then, the following hold:

(@) A is bounded if and only if A is bounded, and in that case we have
||~A||$(L2(O,T;H)) = ||A||_$(H);

(b) Aisclosed if and only if A is.

Proof. 1If Ais bounded, then the inequality ||-A||,g( 120,7:m) = 1Al ) is easily veri-
fied. Now suppose that A is bounded. Then for all x € H we have

1 _1
IAxl g = 1T~ 10,1 ® Axll 1200, 15 = AT 100,17 ® D)l 20,7 11)
-1
= ”A”(Z(LZ(O,T;H)) T /ZI(O,T) ® x”LZ[O,T;H) = "A”,Z(LZ(O,T;H)) lxll .

Here, given f: (0,7) — R and x € H, the function f ® x: (0, T) — H is defined by
[f ® x](2) := f(H)x for all £ € (0,T). We thus find that A is bounded with operator
norm [[All ¢y < ”AHX(LZ(O,T;H))’ which finishes the proof of (a).
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To prove part (b), first let A be closed and let the sequence (v;) ey in D(A) be
such that v,, — v and Av, — y in L?(0, T; H). We need to prove that v € D(A) and
y = Av. Let (v, )ken be a subsequence such that v,, — v and Av,, — yin H, a.e.
in (0, T), so that by the closedness of A it follows that v(9) € D(A) and y(J) = Av(9)
for a.a. 9 € (0, T). From the latter we obtain that y = Av, which is meaningful since
v,y € L?(0, T; H) yields that v € D(A).

Now let A be closed and let (x,) ;e in D(A) be such that x, — x and Ax; — y in
H. This implies the following convergences in L2(0, T; H):

l(O,T) ® X5 — l(O,T) ® X,
A1) ®Xxp) =101 ® Axpn — L0,1) ® ).

Since A is closed, we deduce that 19,1y ® x € D(A) and 19,1y ® y = A(1(o,1) ® X), from
which we may conclude x € D(A) and y = Ax. Hence A is closed. O

The following lemma is generally useful for determining the domain of a generator
of a given Cp-semigroup, and it will subsequently be used to show that the Bochner
space counterpart of a Cy-semigroup is again a Cy-semigroup, see Proposition 2.A.3.

Lemma 2.A.2. Let (S(1))1=0 be a Cy-semigroup on H with infinitesimal generator
A:D(A) € H— H. If A: D(A) € H — H is a linear operator satisfying A < A and
D(A) is dense in D(A) with respect to the graph norm || - || D) then A = A.

Proof. Let (x, Ax) € G(A) and choose a sequence (X,) zeN in D(A) such that x, — x in
D(A). Using Ac A, we have (x,,, Ax,) = (x,,, Axy) — (x, Ax) with respect to the prod-
uct norm on H x H, which shows that (x, Ax) € G(A). Conversely, for any (x, y) € G(A)
there exists a sequence (x,),eny € D(A) such that (xj, Axy) = (X, Axp) — (X, y) in
H x H. Since A is closed as the generator of a Cy-semigroup, see [73, Theorem I1.1.4],
we find that (x, y) € G(A). This proves G(A) = G(A). O

Proposition 2.A.3. Let T € (0,00) and let Assumption 2.3.1(i) be satisfied. The family
(S(1)¢=0 of operators on I[2(0,T; H) given by (2.3.5) is a Cy-semigroup with infinites-
imal generator — A, as defined by (2.3.4).

Proof. First note that the operators (S(1))s»¢ are well-defined in the sense that they
map elements in L2(0, T; H) to L?>(0, T; H). In fact, Lemma 2.A.1(a) shows that we
have SOl ¢ 20,11 = 1Sl 2 forall £ = 0.

We now check that (S(#)) ¢ is a Cyp-semigroup. Clearly, S(0) = I and the semi-
group property holds. Let M =1 and w € Rbe as in (2.3.2), so that

Vhe(0,1]: IS)l.gu < Me " < MemV0 = M.
To show strong continuity, let x € H, h € (0,1) and note that
IS(h)x — xII5; < 21 St xI15; + 21| x 113, < 2(M* + 1) 1 x115;.

By dominated convergence, limp o |S(h)v - Uiz . =0forve L2(0, T; H).
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Next we investigate the infinitesimal generator of (5(1)) =0, which we denote by
—A for the time being. We wish to show that A = A. Let x € D(A) and consider

| %(S(h)x— 0+ Ax”j{ <2| %(S(h)x— x) HZ +2)| Axl,.

To bound the first term, we use [165, Chapter 1, Theorem 2.4(d)] and note that, for
every h € (0,1), we obtain
1 2 1 rh 2 11k 2 )
“E(S(h)x—x)“H =| Zfo S(s) Ax ds“H < ﬁ)fo IS Axlds| = M) Ax],
The two previous displays show that, for v € L[2(0, T;D(A)) and all h € (0,1),

0.

T 1 2
fo | (St v©) - v@) + Av®)| a8 =2(M + 1) IAVIZz g 1. pp <

This justifies the use of the dominated convergence theorem to conclude that
~ 1
~Av=lim—Shv-v)=-Av  in L*(0,T; H),
hlo h

ie, —Ac —Aas veD(A = L2(0, T;D(A)) was arbitrary. Since D(A) is dense in
L2(0,T; H) (by density of D(A) in H), and S(#) maps D(A) to itself for each ¢ = 0,
Proposition II.1.7 of [73] implies that D(A) is dense in the domain D(A) of the gen-
erator of (S(¢)) >0 with respect to the graph norm || - IID( J- Applying Lemma 2.A.2
and noting that A is closed by Lemma 2.A.1(b) completes the proof. O

2.A.2. TRANSLATION OPERATORS

Lemma 2.A.4. Let U be a real and separable Hilbert space and let ] := (0, T) for some
T € (0,00]. For every u € L2(J; U) we have that

fim (- + ) =l 2,0 = 0.

Here, we define for each h € R the interval J,, .= (-h) v 0, T A (T — h)) < ] and we
denote by u(- + h): J,, — U the function u shifted to the left by an increment h.

Proof. Let v € C°(J;U) and fix an arbitrary € € (0,00). Choose a compact inter-
val [a, b] < [0,00) such that supp(v(- + h) — vl;,) < la, b] for all h € [-1,1]. By the
uniform continuity of v, there exists a 6 € (0, 1) such that, for all # € (-9, 6) and every
t € J, the estimate ||v(t+ h) — v(8) ||y < Vel (b— a) holds. Thus,

lv(t+ 1) = v, <€ Vhe(=6,8).

This shows the desired convergence for functions in the space C°(J;U), which is
dense in L?(J; U); indeed, since the set of U-valued measurable simple functions is
dense in L?(J;U) [113, Lemma 1.2.19(1)], it suffices to note that the scalar-valued
function space C°(J) is dense in LA 2, Corollary 2.30]. Combined with the fact
that the translation operator is contractive from L?(J;U) to L?>(Jy; U) (hence, in par-
ticular, bounded uniformly in #), the result extends to L2(J; U). O
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Proposition 2.A.5. Let T € (0,00). The family (T (1))=0 S -Z(L?(0, T; H)) defined
in (2.3.6) is a Cy-semigroup whose infinitesimal generator is given by —0;, where 0,
is the Bochner-Sobolev vector-valued weak derivative on D(0;) = H& o (0,T; H).

Proof. For each ¢ = 0, it is clear that 7 (¢) is a well-defined contractive linear map on
[2(0, T; H). Furthermore, it follows readily from the definition (2.3.6) that 7(0) = I
and that the semigroup property is satisfied, since for all s, £ = 0, v € L?(0, T; H) and
a.a. 9 € [0, T] we have that

[TOT 1@ = [TOvIO—1) =00 —t—s) = [T (t+35)v]D).

The strong continuity follows from Lemma 2.A.4 for i 1 0.

Next, we turn to the generator of (7 (#));=o. To this end, let v e C°((0, T1; H) be
arbitrary and note that its extension by zero to (—oo, T'], again denoted by 7, is con-
tinuously differentiable with classical (and hence weak) derivative 097 = 5,;1/ by the
compact support of v in (0, T]. Fix an arbitrary 9 € [0, T]. The function ¢ — 7(9 - 1)
is continuously differentiable on [0, c0) with derivative ¢ — —dgv(d — f) by the chain
rule. Thus, the fundamental theorem of calculus gives

P t
THv@O)—-v@@)=00-8-00) = —f 0gv(d—s)ds= —f [T (s)0gv](9)ds
0 0

for every t = 0. It follows that

t
THv—-v= —f T (s)dgvds.
0

Furthermore, we know from [165, Chapter 1, Theorem 2.4(b)] that if R denotes the
generator of (7 (1)) t=o, then we have

t
T(t)v—v:Rf T(s)vds,
0

hence, combining the previous two displays yields
¢ t
Rf Tvds= —f T (s)0gvds. (2.A.1)
0 0

Set v; == %fot T (s)vds for t € (0,00). It follows that v; — 7 (0)v = v in 1200, T; H)
as t ] 0, see e.g. [165, Chapter 1, Theorem 2.4(a)]. Dividing both sides of (2.A.1) by
t € (0,00) and passing to the limit # | 0, one obtains

t t
Rv[:R%f T(s)vds=—%/ T(s)0yvds — =T (0)0gv =—0gv.
0 0

Since R is assumed to be the generator of a Cy-semigroup, it is in particular closed
by [73, Proposition II.1.4]. Combined with the convergence v; — v and Rv; — —0gv
as t | 0, this yields v € D(R) and Rv = -0y, hence —0g|cx (o, 11,1 S R.

As C((0,T]; H) is dense in 1%(0, T; H) and T@HCX((0,T]; H) = CX((0,T1; H) for
all £ = 0, we have that C°((0, T]; H) is dense in D(R) with respect to the graph norm
of R by [73, Proposition I1.1.7]. It is evident from the respective definitions that we
have |- lpw) = Il - | ;11 o, 7.7y - These observations together imply

H'(0,T;H)

D(R) = CR(O, T ) = C((0, TH ) = H} (0, T; H). 0
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2.A.3. THE PROOF OF LEMMA 2.3.6

Proof of Lemma 2.3.6. Analogously to [56, Proposition 5.9] it can be shown that the
operator defined by the right-hand side of (2.3.12) maps functions in L2(0, T; H) to
Co,i13([0, T1; H). Now we prove the identity in (2.3.12). Let f,g € L2(0, T; H) be arbi-
trary. By (2.3.11) and by continuity of the inner product (-, -) 7, we find that

T
B, 8) 1200 = [0 (B F1(1), (1)), dr

T 1 t -1
_fo <Ty)f0 (t—s) S(t—s)f(s)ds,g(t)>Hdt

1 T pT
:F)’)fo fo (1(0,t)(s)(t—s)7’_18(t—s)f(s),g(t))Hdsdt. (2.A.2)

Next, we would like to use Fubini’s theorem to exchange the order of integration. By
(2.3.2) the semigroup (S(?)) />0 is uniformly bounded on the compact interval [0, T],

(—wT)vO0

Mr :=sup,epo, 1 ISl 2 < Me < o0.

We then use the Cauchy-Schwarz inequality on H and on L2(0, T) as well as the fact
that y > § to check that

T pT
fofo\(1(0,r>(8)(t—S)Y_IS(t—S)f(s),g(t))H|dsdt
T pt
SMTfO fo(t—s)Y_lllf(s)IlHds||g(t)||Hdt
— T, rt 1/2
sMTnfuLz(o,T;H)fo (fo (t-52"2ds) lg(®ludt
— T, —
= \/]2\/[—;—_1 llf”LZ(Oj;H)[O tY—E”g(t)“HdtS \/x(T—Z%||f||L2(0,T;H)||g||L2(0,T;H)
is finite. This justifies changing the order of integration in (2.A.2), which gives
B 1 T pT a1
B Yf’g>L2(O,T;H):Twﬁ fo (s (D=9t -9)f(9),8(1)) ;e ds
1 T pT 4 .
:Fy)j(; fo (f), 16O —5) " [S(t—9)1"g(1)), drds
T 1 T
=f <f(s), f (t—s)Y_I[S(t—s)]*g(t)dt> ds,
0 s H

()

where we interchanged integrals and inner products as before in the last step. O

2.A.4. HOLDER CONTINUITY AND WEAK DERIVATIVES

Recall from Section 2.2 that (W (t));>o denotes an H-valued cylindrical Wiener pro-
cess.
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Lemma 2.A.6. Let Assumptions 2.3.1(),(ii) be satisfied, let a € (—1,00), b,o € [0,00)
andt € (0,a+ %] N(0,1). Ifo # 0, then suppose moreover that Assumption 2.3.1(iv)
holds. Let ®4,p: (0,00) — £ (H; HY) be defined by (2.3.22) and let ] := (0, T) for some
T € (0,00]. Then, forallpe[1,00), t€[0,T) andhe Jwithh<T—t,

t
“f [@ap(t+h=5)-Ogpt-9]dW )|
0 LP(Q;HZ)
—a-iip 1
Swan W A™27Q | g0y

Proof. We first use the Burkholder-Davis-Gundy inequality (combined with nested-
ness of the L spaces if p < 2) to bound the quantity of interest I,

t
I = W [@a,b(t+h—s)—®a,b(t—s)]dW(S)” 4
o LP(Q;HY)
t 9 1/2
<p [fo 1@y p(t+h—5)—Dg,p(t— s)llgz(H;Hg) dS]

t 1/2
— 2
_[fo 1P (t+ 1) = @101 o du]  (2A3)

where we also applied the change of variables u := ¢ —s. For every u € (0, ), we

have by Lemma 2.3.20 that ®, ;(u + -) is differentiable as a function from (0, /) to
7 . . . / / .3

Z(H; Hg) with derivative CDa]b(u + -) and, moreover, r — |Id>a]b(u + ””,%H;HZ) is

bounded on [0, h]. We conclude that @, ,(u+ -) € H' (0, h; £ (H; H})), so that by [74,
Section 5.9.2, Theorem 2] the identity

h
Dy p(u+h)—Dgp(u) :fo <I>’a,b(u+ r)dr

holds as operators in .Z (H; HZ). We now estimate (2.A.3) by exploiting this rela-
tion, moving the norm inside the integral, applying formula (2.3.25) for the deriva-
tive of @, j, and using the triangle and Minkowski inequalities, which gives

t, rh , 2 1/2 t 9 1/2
LS, [fo |f0 19, (a4 1)Lt dr| du s[fo llalF @ + G|’ dul
t 1/ 13 1
slal[f Fw? du| 2+[f Gl dul ’ (2.A.4)
0 0
where

h
F(u) :=f0 1P a—1,p (@ + 1) g, (11,519 AT,

h
Glw) = fo 1901 1+ P gy .
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Using Minkowski’s integral inequality (see e.g. [186, §A.1]), we obtain

[fotm(unzdu]uz . [fot|f0h 191+ Pl iy |

h t 5 1/2
< P, p(+1) o dul dr
fo UO a=1,b Zy(H;HG)

h pt 1 o 1.p 1.9 1/2
=f [f (w+ VAT @ AT QR |, ) dul| dr
o YJo
Since the semigroup (S(#));>¢ is assumed to be analytic, by (2.3.3) the estimate

||A“+%_75(u+ I‘)A%_a_%*—h*—TQ%”,gfz(H) A
Y (2.A.5)
S(H,T) (u+ r)—u—%+r||A§—a—%+b+TQ% “D?Z(H)

follows, where we also used the assumption that a + % — 17 =0. We conclude that

! 2, 1" —a-ltbtr Ad et 2r-3 4 1"
[fo |F(w)] du] San A2 Q2”$2(H:HZ)[0 [fo (u+r) du] dr

1 1 h 0o 1/2
s“A’”’Zer”Qé”a%(H;HZ)fO U; u”*’da] dr
1 —a-i+b+1 3 h -1
= S A [
1

—a-i4p 1
R R A2 Q2 | g 1

The integral fot |G(w)|? du in (2.A.4) can be bounded a similar way. By Minkowski’s
integral inequality and analogously to (2.A.5), noting that a+ % -T>a+ % -720,we
find that

Uot IG(u)I? du] "o [fot )foh 1P a1 @+ 1) g (a1, 519) dr|2 du] "

h t ) 1/2
< D per(w+m2, du] dr
\/(; [j(; a,b+1 jz(H»HX)

h, ot Y v
=f0 [fo (u+r)2“||A“+%‘TS(u+r)Af‘“‘%”’”Q%||f%(H)du] “dr

h t 1/2
—a-14p 1 27-3
Stan A2 HQZ“Xz(H;HZ)fo [fo ()" duf dr

1 1 1
P A—a—§+b+rQ§ . e,
T\/m “ ”JZ(H,HA)
which completes the proof. O

Lemma 2.A.7. Let Assumptions 2.3.1(i),(ii) be satisfied, let a € (—%,oo), b,o € [0,00)
andt € (0,1A(a+1)]. Ifo #0, then suppose furthermore that Assumption 2.3.1(iv)
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holds. Let J := (0, T) for some T € (0,00]. Then, forall p € [1,00), t€[0,T) and he ]
with h < T — t, the function ®4p: (0,00) — £ (H; Hg) in (2.3.22) satisfies

t+h 1 1
@ (t+h—s)dW(s)H  Sipan WA IO,
”[r ab LP(@HS) (p.an 1| Q |L%(H,HA)

Proof. We apply the Burkholder-Davis—-Gundy inequality (combined with nested-
ness of the L” spaces if p < 2), the change of variables u:= t + h — s, and obtain

2

t+h
“[ @a,b(mh—s)dW(s)H .
¢ LP (s HY)

t+h h
< -9 . = 2 .
prt 1Pt +h g 1 29 ds fo 1Pab e, 1.y du
h
_ 2a|| qa+i-t Z-a-1+b+r n1 2
_fo w | AT () Az T2 Q2 |y, ) du
h 27
—a-Y+b+t 112 27-1 _ h —a-Y+b+rt 12

Stan |42 Q? "‘Z”Z(H;H")f uhdu= ATz Q? ”zz(H;H")'

A7 Jo 27 A
where we could proceed as in (2.A.5), since a + % —1 = 0is assumed. This completes

the proof of the assertion. O

Proposition 2.A.8 provides a useful relation between the weak derivative and the
difference quotient.

Proposition 2.A.8. Let U be a real and separable Hilbert space and let ] := (0, T) for
some T € (0,00]. Suppose that ¥ € HY(J;U) and let ¥' € 12(J;U) denote the weak
derivative of Y. For h € R\{0}, let J;, < J be as in Proposition 2.A.4 and define the
difference quotient Dy, ¥: J;, — U of ¥ by

Y(t+h) —-Y()

[DypY](1) = W

fora.a.te Jy. (2.A.6)

Then, we havelimy,.q | Dp¥ = ¥'ll 12(j,;0) = 0.

Proof. Suppose that V¥ € E, where the space E is given by E := C®([0, T]; U) if T < oo
and E := C°([0,00); U) if T = 00, and fix h € R\ {0}. Then,

h
[Dh\P](t):%f W(t+s)ds Yie], 2.A.7)
0

holds by the fundamental theorem of calculus, where we use the convention that
foh =-/ ,2 whenever h € (—t,0). Applying the Cauchy-Schwarz inequality gives

1 [h 2 41 h
||[th1(t)||%,s|—f 192+ 5) ]y ds| s|—f W' (£+ )13 ds
hJo h Jo

1 h
:Efo Wt +9)I5ds Ve T
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The absolute value can be removed in the last step by the integral sign convention.
Integrating this expression over t € Jj, and using Fubini’s theorem, we obtain that

DR Y1122, 1, =f] DY de
! 2.A.8)

1 h 1 rh
<— f ||\P’(t+s)||§,dsdr:—f I/ (£ +5)11% d ds.
h JnJo h Jo In

For all s € (0, h) (resp., s € (h,0) if h < 0), the change of variables r := ¢ + s gives

f||w’(t+s)||%,dt=f ||\P’(r)||%,drsf||\P’(r)||%,dr=||\P’||§2(,;U).
In Tn+s ]

Hence, we can bound the inner integral in (2.A.8) independently of s, which implies

2 2 2
This estimate shows that the linear operator Dy, is bounded from (E, Il ];U)) to

2 (Jn; U) for all h € R\{0}. By density of E in H(J; U) (see [59, XVIIL.§1.2, Lemma 1),
the above estimate holds for all ¥ € H!(J; U).
Suppose again that ¥ € E. We recall (2.A.7) and find

h
[D;}P](t)—‘l”(t):%f (P'(t+s)-VY'(0)ds Ve (2.A.10)
0

By the compact support of Dy, ¥ and ¥/, there exists a bounded interval K < [0, 00)
such that supp(D,¥ — ¥'|,) € K for all h € [-1,1]. Furthermore, by uniform conti-
nuity of ¥/ € C*([0, T1; U) (resp., ¥’ € CX([0,00); U)), for every ¢ € (0,00), there exists
some § € (0, 1) such that | W'(&) - V' (n)lly < € if |E —n| < §. Thus,

DRI - (Dlly <e Ve
follows for all h € (—6,0) by (2.A.10) and, consequently,

This proves the assertion for functions W € E. The general case for ¥ € H'(J; U)
follows then from density of E and the h-uniform bound (2.A.9): Given € > 0, we may
pick v € E such that | ¥ — vl ;5.1 < §, and hg > 0 such that || Dj,v - v’Ile(]h;U) <£
for all h € (—hy, hy), Thus, we obtain for all & € (—hyg, hg)

IDRY =¥'ll 2 (s, S IDR(Y = V) 200 + IDRV = V'l 2200 + 1V =¥ 20
Szllqj_V"Hl(];U)+”Dl’lv_V,“Lz(jh;U)<£' O

Lemma2.A.9. Let]:=(0,T) forsomeT € (0,00]. Let E and F be real separable Banach
spaces such that E — F. Ifue H& o (J; F) and u, u' € L2(J; E), where u' denotes the F -

valued weak derivative of u, then u € Hé 0 (J; E) and its E-valued weak derivative
coincides with u' almost everywhere in J.
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Proof. Let ¢: L'(J;E) — E and r: L'(J; F) — F denote, respectively, the E-valued
and F-valued Bochner integrals over the interval /. Given an arbitrary ¢ € C°(J),
the assumption u € HY(J:F) implies Sp(pu’) = —Fr(¢’'u), and we wish to show
Ie(pu') = —Fg(¢'u). To this end, we claim that .# and .#r coincide on the em-
bedded subspace L! (J; E) — L' (J; F) and we apply this fact to ¢’ and ¢’ u. To verify
the claim, fix f € L' (J; E). By definition of %, there exist E-valued measurable sim-
ple functions (fy,) ey satisfying f, — f in L'(J;E) and %% (f,) — Zg(f) in E. For
all n € N, it readily follows from the respective definitions and the inclusion E < F
that f;, is an F-valued measurable simple function and ¢ (f;;) = Sg(fn). Since
E — F,we observe that f,, — f in L' (J; F) and ¢ (f;,) = Z5(fu) — Z&(f) in F, hence
Ir(f) = Ie(f). We conclude that u € H'(J; E) and the E-valued weak derivative
coincides with «' a.e. in J. Now it remains to prove that u € H&, 0y, B). Note that
ue H& o (J; F) is equivalent to the statement that the unique continuous represen-

tative ii € C(J; F) of u, which exists by virtue of [74, Section 5.9.2, Theorem 2], van-
ishes at zero, cf. [74, Section 5.5, Theorem 2]. Similarly, from u € H 1(J; E) we obtain
a function & € C(J; E) — C(J; F) such that u = @i a.e., hence @i = i by uniqueness. In
particular, #(0) = 0 and thus u € Hy 0 (J; E). O

2.B. SECTORIAL LINEAR OPERATORS AND FUNCTIONAL
CALCULUS

In this appendix, we collect some results regarding sectorial linear operators, semi-
groups and functional calculus which are relevant to this chapter, complementing
those recalled in Sections 1.1 and 1.3.

Throughout this section, A: D(A) € H — H denotes a linear operator whose neg-
ative — A generates a Cy-semigroup (S(#));>o on a separable Hilbert space H. The
corresponding scalar field is given by the complex numbers C in Subsection 2.B.1
and the real numbers R in Subsection 2.B.2.

2.B.1. H*°-CALCULUS AND MCINTOSH’S THEOREM

Given ¢ € (0, 7), we say that a holomorphic function f: Z, — C belongs to Hi°(Z,)
if and only if there exist a € (0,00) and M € [0,00) such that

|f(2)l < M(|z|“ Az|™%) forall z€ Z,.

For operators acting on a complex Hilbert space H, the admissibility of a bounded
H®-calculus can be characterized by the following theorem. It is taken from [100,
Theorem 7.3.1]; see [114, Theorem 10.4.21] for a generalization to non-injective A.

Theorem 2.B.1. Let A: D(A) € H — H be injective and sectorial. Then

2 _ [ 2 dt
lxl =~ | I f(tA) x5 - Vxe H

holds for all f € Upewa),m) Hgo(Z(p) \ {0} if and only if A admits a bounded H*(Z)-
calculus for some (or, equivalently, for all) ¢ € (w(A), ).
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Remark 2.B.2. Since wpe~(A) is defined as an infimum over angles contained in the
interval (w(A), ), any operator admitting a bounded H*-calculus always satisfies
wp~(A) = w(A). This inequality is also true for operators on a Banach space. Theo-
rem 2.B.1 implies that the reverse inequality holds for operators on a Hilbert space
with a bounded H*(Z,)-calculus for some angle ¢ € (w(A), 7). Indeed, in this case,
the same holds for all ¢ € (w(A), ), hence we obtain w g (A) < w(A) upon taking the
infimum. We thus have w g~ (A) = w(A).

2.B.2. COMPLEXIFICATIONS, SEMIGROUPS AND FRACTIONAL POWERS

In this section, H denotes a real Hilbert space.

COMPLEXIFICATIONS

The complexified Hilbert space Hc is defined by equipping H x H with component-
wise addition and the respective scalar and inner products

(a+ bi)(x,y) = (ax— by, bx+ay), x,yeH; a,beR,
(), U, V) e =g+, vyp+ilky,wag—(x,vgl, x,yuveH. (2.B.1)

In the sequel, we will write x + iy := (x, y) € Hc.

A linear operator A on H similarly gives rise to a complexified counterpart Ac on
Hc by defining Ac(x+iy) = Ax+iAy on D(A¢) = {x+iy:x,y € D(A)}. It follows
readily from the above definitions that T — T¢ € Z(Z(H); £ (Hg)) is an inverse-
preserving and isometric algebra homomorphism. Analogous results hold for un-
bounded operators, taking natural domains into account. We have the following
relation between semigroups and complexifications.

Lemma 2.B.3. The family (S(1)) =0 € -Z(H) is a Cy-semigroup on H if and only if
(Sc (D) =0 €L (Hg) is a Cy-semigroup on Hc. In this case, their respective generators
—A: D(A) € H— H and - A: D(A) € He — Hg satisfy Ac = A.

Proof. If (S8(1)) =0 is a Cy-semigroup, then clearly Sc(0) = I and
Sc(D)Sc(s) =[S(®)S(8)]c = Sc(t+ s)for s, £=0.

Moreover, we have [[Sc(0)X - %17, = 1S()x - x|I%, +1S()y — yI7, — 0as ¢ | 0 for all
X = x+iy € Hc. The reverse implication is readily established by identifying every
x € Hwith x+i0€ Hc.

Suppose that (S(#)):>0 and (Sc(#)) =0 are Cp-semigroups with respective genera-
tors —Aand —A. Then X = x+i y € D(A¢) is equivalent to the existence of the limits
—Ax=lim; ) 1 (S(1)x - x) and — Ay =lim;|o 2 (S(1)y - y) in H. Thus,

Ac®= Ax+ iAy:lim[l(x—S(t)x) + z(y—S(t)y)] ~lim X (% - Sc(07) = A%,
tlolt t tlo t

O

where the limits in the previous display are taken with respect to || - || ..
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Using Lemma 2.B.3 and interchanging the bounded operator T — T¢ with the
Bochner integral, we find

1 [e9}
[A™%¢ = —f 197 18c(de= AZ% VYae (0,00),
“T @ . ¢
and the same relation can be derived for arbitrary powers a € R.

A SQUARE FUNCTION ESTIMATE

The following square function estimate is central to the proof of Proposition 2.3.14.

Lemma 2.B.4. Let A satisfy Assumptions 2.3.1(i),(iii),(iv). Then, for a € (0,00),
o a-% sa 2 2
f [t 2 A%S(0) x| dt ~q Xl VYxe H.
0

Proof. Given a € (0,00) and ¢ € (w(A),7/2), the function f(z) := z%e~* belongs to
H§°(Z,) and we have the identity f(tAc) = t“A(?:S@(t) = [t*A%S(D)]c; see the proof
of [100, Proposition 3.4.3], which is applicable to our definition of fractional powers
as remarked in the previous subsection. By invoking Theorem 2.B.1, we thus find

o0 dr [ dr
fo ||[taAaS(t)](cx||§{CT=f0 ||f(;,uq<c)x||§'{cTzanxnfq<C Vx e He.

Applying this equivalence to x + i0 for all x € H finishes the proof. O
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MULTIPLE AND WEAK MARKOV
PROPERTIES IN HILBERT SPACES

The contents of this chapter are based on the article [124], which is joint work with
Kristin Kirchner.

3.1. INTRODUCTION TO CHAPTER 3

3.1.1. BACKGROUND AND MOTIVATION

Gaussian Markov random fields play an important role in various applications, such
as the analysis of time series or longitudinal data, image processing, as well as in spa-
tial statistics, see for instance [177, Section 1.3]. The latter focuses on the statistical
modeling of spatial or spatiotemporal dependence in data collected from phenom-
ena encountered in disciplines such as climatology [4], epidemiology [137] and neu-
roimaging [152]. The popularity of Gaussian Markov random fields among the larger
class of Gaussian random fields is a consequence of their additional conditional in-
dependence properties, which entail a sparse precision structure and facilitate ef-
ficient computational methods for statistical inference. In particular, hierarchical
models based on Gaussian Markov random fields allow for efficient Bayesian infer-
ence using Markov chain Monte Carlo methods, see for instance [177, Section 4.1].
Since a Gaussian process is fully characterized by its second-order structure, i.e.,
by its mean and covariance function, a natural way to specify its distribution is to
choose a suitable second-order structure. Alternatively, the dynamics of Gaussian
random fields defined on a Euclidean domain D < R? can be specified by means of
stochastic partial differential equations (SPDEs), such as the white noise WV (x)) xep
driven equation
LX(x)=W(x), xeD. (3.1.1)

Here, L is a linear operator acting on real-valued functions defined on D. A spatial
Gaussian random field (X (x)) xep is said to have the Markov property if the subcol-
lections (X(x))xep, and (X(x))xep, corresponding to pairs of disjoint subdomains
D1, D, < D are independent conditional on (X (x))yepr for some non-trivial ‘split-
ting’ set D' € D separating the two. The precise specification of these sets, which

87



88 3. MULTIPLE AND WEAK MARKOV PROPERTIES IN HILBERT SPACES

respectively carry the intuitive interpretations of past, future and present, leads to
various definitions of the Markov property. By the theory of Rozanov [176], a real-
valued Gaussian random field satisfying (3.1.1) has such a Markov property if and
only if its precision operator L*L is local, where L* denotes the L?(D)-adjoint of L.

An important example in spatial statistics is the choice of a fractional-order dif-
ferential operator L := 7% - A)P in (3.1.1), where A is the Laplacian, W is Gaussian
white noise and 7,«, § € (0,00). Whittle [196] observed that the covariance function
o(x,y) == E[X(x)X(y)] of the stationary solution (X (x))ep to (3.1.1) with D = R4
then belongs to the widely used Matérn covariance class [149]:

0%, ) = Cery,a (Kl x = Yliga) 'Ky (K[ x = ylliga) forall x,y e RY, (3.1.2)

where v:=28-4d/2, Ccry,q = 172(4m) =221V [ (v + d/2)] 1k ~2¥ and K, denotes the
modified Bessel function of the second kind. This observation motivated the SPDE
approach for spatial statistical modeling which was proposed by Lindgren, Rue and
Lindstrém [142]. Here, one considers (3.1.1) with L:= 7(x% — A)#, where A is a Lapla-
cian operator on a bounded Euclidean domain D C R% augmented with boundary
conditions, and approximates the resulting Whittle-Matérn fields by means of effi-
cient numerical methods available for (S)PDEs. Owing to its ease of generalization
and its computational efficiency as compared to covariance-based techniques, this
approach has gained widespread popularity, see e.g. [29-31, 50, 107, 141, 181]. Since
in this case the precision operator is given by L*L = 72 (x*>—A)?, we find that Whittle-
Matérn fields are Gaussian Markov random fields in the sense of Rozanov [176] pre-
ciselywhen 2 € N.

Recently, extensions of the SPDE approach incorporating time dependence have
been discussed. A class of space-time equations which has been proposed in this
context is

@+ LY X(t,x) =Wt x), (t,x)eTxD, v € (1/2,00), (3.1.3)

where T < R represents a time interval and WX is spatiotemporal Gaussian noise,
which is spatially colored by an operator Q, see Chapter 2 and [140]. In particular,
it has been shown in the previous chapter that (3.1.3) extends the Matérn model in
terms of spatial marginal covariance, and that the interplay of its parameters governs
smoothness in space and time as well as the degree of separability.

Spatiotemporal random fields can be viewed as U-valued stochastic processes by
letting a Hilbert space U encode the spatial variable, so that (3.1.3) corresponds to a
stochastic fractional evolution equation of the form

0 +ATX(@) =W, reT. (3.1.4)

The (temporal) Markov property of solutions to (3.1.3) is then equivalent to that of
the U-valued solution process (X (#)) T, where the Markov behavior is considered
with respect to the index set T. Moreover, viewing (3.1.4) as a special case of

LX) =WQ@®), teT, (3.1.5)

where £ is now a linear operator acting on functions from T to U, the theory of
Rozanov [176] suggests that locality of the precision operator £*£, also acting on
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functions f: T — U, can be used to characterize temporal Markov behavior of the
solution X.

3.1.2. CONTRIBUTIONS

In this chapter we define simple, multiple (N-ple for N € N) and weak Markov prop-
erties for stochastic processes which take values in a Hilbert space U. These def-
initions generalize those appearing for instance in [108, 172, 176] for real-valued
processes to infinite dimensions, see Definitions 3.3.1, 3.3.2 and 3.3.4, respectively.
Besides gathering them in once place, we establish their interrelations, see Proposi-
tion 3.3.5 and Remark 3.3.6. The main results are Theorems 3.3.7 and 3.3.9, which
give necessary and sufficient conditions, in terms of the precision operator L*L,
for the weakest notion of Markovianity for a U-valued Gaussian process defined
via (3.1.5). These results are proved by using a non-trivial extension of the theory
by Rozanov [176, Chapters 2 and 3] from the real-valued to the U-valued setting.

In order to consider processes defined via linear evolution SPDEs such as (3.1.4),
we construct a stochastic integral for deterministic operator-valued integrands de-
fined on the whole of R with respect to a two-sided (cylindrical) Q-Wiener process
(WQ(t))teR, see Section 3.2.2. We employ this stochastic integral to define the mild
solution process Z, = (Zy ()R to (3.1.4) on T = R, see Definition 3.4.4. Our rig-
orous definition of the fractional space-time operator (3; + A)Y for y € R, see Defi-
nition 3.4.3, extends the Weyl fractional calculus in the sense that one recovers the
Weyl fractional derivatives and integrals defined in [121, Section 2.3] upon special-
izingto U=R and A=0.

We show that the mild solution Z, to (3.1.4) satisfies the N-ple Markov property if
v =N €N, see Theorem 3.4.9. Conversely, we use Theorem 3.3.7 to show that, in gen-
eral, Zy is not weakly Markov for y ¢ N. This complements [93, Theorem 2.7], which
states that any time-homogeneous U-valued Gaussian simple Markov process is the
solution to a first-order stochastic evolution equation.

Finally, we discuss another interesting aspect of the SPDE (3.1.4): A fractional Q-
Wiener process (Wg (1)) ter with Hurst parameter H € (0, 1), as defined for instance
in [68], can be obtained as a limiting case of (3.1.4) with y = H+1/2 and A = eldy
as € | 0, see Proposition 3.5.3. The proof is based on a Mandelbrot-Van Ness [147]
type integral representation of Wg , again using the two-sided stochastic integral
from Section 3.2.2, see Proposition 3.5.2. The case H = % corresponds to a (non-
fractional) Q-Wiener process and is thus Markov. Conversely, although the results
of Theorems 3.3.7 and 3.3.9 do not apply directly, the above observation provides
evidence that WI? does not satisfy a weak Markov property for H € (0,1) \ {%}.

3.1.3. OUTLINE

In Section 3.2 we begin by establishing the necessary notation, see Subsection 3.2.1,
followed by the construction of the stochastic integral with respect to a two-sided
(cylindrical) Q-Wiener process in Subsection 3.2.2. Section 3.3 is devoted to defin-
ing, relating and (for solutions to (3.1.5)) characterizing various notions of Markov
behavior for U-valued stochastic processes. The goal of Section 3.4 is to define and
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analyze the mild solution to (3.1.4) on T = R. To this end, we first describe the setting
and define (3; + A)~7 with y € (0,00) in Subsections 3.4.1 and 3.4.2, respectively. We
subsequently define the mild solution process in Subsection 3.4.3, and investigate
for which values of y € (1/2,00) it exhibits Markov behavior in Subsection 3.4.4. In
Section 3.5 we recall the definition from [68] of a Q-fractional Wiener process and
prove a Mandelbrot-Van Ness type integral representation, allowing us to exhibit it
as a limiting case of (3.1.4).

This chapter is supplemented by two appendices: Appendix 3.A contains auxiliary
results relating to specific results from the main text whose statements and proofs
were postponed for readability; subjects include conditional independence, filtra-
tions indexed by R and the mean-square differentiability of stochastic convolutions.
Appendix 3.B is a short overview of results regarding fractional powers of linear op-
erators and the interpretation of the fractional parabolic operator (3, + A)Y.

3.2. PRELIMINARIES FOR CHAPTER 3

In this section we mainly highlight notation which deviates from the previous chap-
ters or was not used there. Some of it is listed in Table 3.1, along with some previously
established notation which is used throughout this chapter.

3.2.1. NOTATION

Throughout this chapter, we assume that a complete probability space (Q, F,P) is
given. We write Z ~ N(m, Q) if Z is a U-valued Gaussian random variable with
mean m € U and covariance operator Q € Zf (U); its existence is guaranteed by [27,
Theorem 2.3.1]. Let G1,H, G, < F be sub-o-algebras of F. The expression E[Z | H]
denotes the conditional expectation of a random variable Z given #, and the con-
ditional probability of A € F given H is defined by P(A | H) :=E[14 | H], P-a.s. The
notation G; 1l 4 G, indicates that G; and G, are conditionally independent given ,
i.e, for all G, € Gy, Go € G, we have P(G1 NGy | H) = P(Gy | H)P(Gy | H), P-a.s. When
conditioning on the o-algebra o(Y) := {{Y € B} : B € B(E)} generated by a random
variable Y, we write Y instead of o(Y); e.g.,, E[Z| Y] or G; Lly Go.

3.2.2. STOCHASTIC INTEGRATION WITH RESPECT TO A TWO-SIDED
WIENER PROCESS
Let (WIQ (1) =0, (WZQ(t)) =0 be independent U-valued standard Q-Wiener processes
foragiven Q € .Z}" (U), see for instance [144, Section 2.1], and define wQ(r) = WIQ )
for t € [0,00) and W?(z) = WZQ(— t) for t € (—00,0). Then the two-sided Q-Wiener
process WQ := (WQ(1)) ;R satisfies the following:
(WP1) W() has mean zero and WQ(¢) — W?(s) ~ N(0, (t - $)Q) for t = 5;
(WP2) W has continuous sample paths;
(WP3) WQ(tg) —WOt3) LL WO(tp) - WQ(ty) for 1 < tr < 13 < 1y.

One can define a stochastic integral with respect to such a process using a construc-
tion analogous to the one-sided case, as presented for instance in [144, Section 2.3].
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Elementary sets and operations Function spaces
N positive integers J non-empty (sub)interval of R
Np non-negative integers C(;E) continuous functions from J to
Idp identity map on a set D E
1p, indicator function of a CX(;E) compactly supported infinitely
subset Dy € D differentiable functions from J
SAt minimum of s, t € R toE
sVt maximum of s, £ € R cr abbreviation for C°(J;R)
Cp(E) bounded and continuous
Bounded linear operators functions from E to R
U U real and separable Hilbert (S, o, ) measure space
spaces Bp(S) bounded and measurable
(u inner product of U functions from S to R
E,F real and separable Banach LP(S, o, i, E) Bochner space of p-integrable
spaces functions from S to E
I-1g norm of E LP(S;E) abbreviation for LP (S, <7, ; E)
Z(E;F)  bounded linear operators H(J;U) functions in L2 (J; U) with weak
from E to F derivatives in L2 (J; U)
Z(E) abbreviation for . (E; E) Hé (0,00;U) functions in H! (0, 00; U) which
T* adjoint of T € Z(E; F) vanish at zero

LW self-adjoint and positive

. Unbounded linear operators
definite operators on U

D(A) domain of unbounded linear operator
+
tr T trace of T € £* (U) A:D(A)SE— Eon E

+ + .
4 (U)~ Te 27 (U)withtr T <oo As Bochner space counterpart on L2(S; E) of
£ (U;U)  Hilbert-Schmidt operators A: D(A) S E— E, see (3.4.7)

from U to U

Table 3.1: Notation used throughout this chapter.

Restricting ourselves to deterministic integrands ®: R — £ (U; U), this procedure
yields a square-integrable stochastic integral [ ®(t) dwQ(1) belonging to L?(Q; U)
which exists if and only if ®( -)Q% € [2(R; % (U; 0)); see Table 3.1 for the definitions
of these (Bochner) spaces. In this case, it satisfies the following It6 isometry:

2
Hf o) dW?(r)
R

_ 1,
120 0) _fR”(D(t)QZ e, w0y 4% (3.2.1)

As in the one-sided case, we can extend the definition of the stochastic integral to
allow for Q € Z*(U)\ .Z}" (U), cf. [144, Section 2.5].

Now we turn to the matter of R-indexed filtrations on (2, F,P) associated to the
process (WQ(t))teR. In the one-sided case, the integral process (fOIGD(r) dW1Q(r)):zo
is a martingale with respect to the filtration F, tW v o(W2(s):0<s<1)valNe)
whenever (D(-)Q% € 120, t; % (U; 0)) for all ¢ € [0,00), which is immediate from the
definition of the stochastic integral.

In the two-sided case, we instead use the (completed) filtration (F f we) cR gener-
ated by the increments of W<, defined by

FW = oWQuw -wes):s<usHvaolNp), teR. (3.2.2)
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Note that we have FOW° ¢ FW forall t € R and FV* = FOW* for ¢ € [0,00), where
FV “ is generated by (WQ(s)) se(—o0o,7] for each t € R. We point out that (]-'fWQ) (eR 1S
normal, cf. [18, Example 3.6]. By (WP3), the two-sided Wiener process (WQ(t))teR
now satisfies that WQ(r) - WQ(s') 1L ]-"fWQ for all s < s’ < t, so that, analogously to
the one-sided case, ([, ®(r) dWQ(r)), is a martingale with respect to (FOW) g
for every @( -)Q% € [2(R; % (U, 1)). Unlike (WIQ (1) =0, however, the two-sided pro-
cess (WQ(1)) e itself will not be a martingale with respect to any filtration, see
Proposition 3.A.5 in Appendix 3.A. We refer the reader to [18, 19] for more details
on the subject of real-valued martingale type processes indexed by R and stochastic
integration with respect to them.

3.3. MARKOV PROPERTIES FOR HILBERT SPACE VALUED

STOCHASTIC PROCESSES

Let X = (X(1))seT be a U-valued stochastic process indexed by T, see Section 3.2.1.
Intuitively, X is said to be a Markov process if, at any instant, its past and future
states are independent conditional on the present. Varying the amount of informa-
tion from the present gives rise to different Markov properties, which we will list in
decreasing order of strength.

3.3.1. SIMPLE MARKOV PROPERTY
The following definition is often just referred to as the Markov property, see also [56,
p. 77] or [66, Equation (6.2), p. 81].

Definition 3.3.1. An (F;);cT-adapted U-valued stochastic process (X ()T is said
to have the simple Markov property if for all s < t and B € B(U), we have

P(X(t) e B| Fs) =P(X(?) e B| X(5)), P-as.

The simple Markov property can also be characterized by means of transition op-
erators: The process (X (t)),eT is simple Markov if and only if there exists a family
(Ts,1) s<tet Of linear operators on By, (U) satisfying

ElpX(0) | Fs] = Ts,1p(X(s)), P-as. (3.3.1)

In this case, the transition operators (T ;) s<teT have the following properties:
(TO1) Ty :p(x)=0forall x e U if ¢ € By (U) is non-negative,
(TO2) T, ly =1y,
(TO3) Tsup(X(8) =T Tr,up(X(s)), P-as., forp € By(U) and s < t < u.

Lastly, we can also characterize the simple Markov property in terms of condi-
tional independence: By Theorem 3.A.1 in Appendix 3.A, the simple Markov prop-
erty is equivalent to the fact that 7 1l x(5) 0(X(#)) holds for all s < ¢. In fact, accord-
ing to [118, Lemma 11.1], this is in turn equivalent to the statement that F 1L x5
oX(t):t=zs)forallseT.
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3.3.2. MULTIPLE MARKOV PROPERTY

The following weaker notion of Markovianity dates back to Doob, who introduced
it in the context of stationary real-valued Gaussian processes [67, pp. 271-272]. We
generalize it to square-integrable U-valued processes with some mean-square dif-
ferentiability, i.e., (X(£));er € L?(Q; U) such that the function ¢ — X(¢) is classically
differentiable from T to L%(Q; U).

Definition 3.3.2. Suppose that X = (X(#))seT S L2(Q; U) is an (Fy) reT-adapted U-
valued stochastic process and let N € N. Then X has the N-ple Markov property if it
has N —1 mean square derivatives and, for s < ¢ in T and B € B(U),

P(X(t) e B| Fy) =P(X(1) € B| X(5), X'(5),..., XN V(s5)), P-as.

Setting X(1) := (XW(1))N7! yields a process taking values in the direct product
Hilbert space (U N (. -)yn), whose inner product

N
XY)yn =), Xj,ypu, X= (xj);\]:p y= (yj)?lzl euV
j=1

induces the product topology on U". In particular, the Borel o-algebra of U" sat-
isfies B(UN) = ®VB(U) by [118, Lemma 1.2]. Theorem 3.A.1 in Appendix 3.A again
yields an equivalent formulation of the N-ple Markov property in terms of condi-
tional independence:

VseT: FillxioX():t=5s). (3.3.2)

Note that 0 (X(s)) v Fg = F; since the mean-square derivatives of X can be replaced
by left derivatives, see the proof of Proposition 3.3.5 below. By arguing as in [118,
Lemma 11.1], one can show that this is in turn equivalent to the simple Markov
property for X. Thus, we can apply the characterization given by (3.3.1) to derive
the following corollary.

Corollary 3.3.3. An (F;)eT-adapted and square-integrable U -valued stochastic pro-
cess X = (X (1)) teT with N — 1 mean-square derivatives is N -ple Markov if and only if
there exists a family (T ;) s<seT Of linear operators on By, (U Ny such that

ElpX(@®) | Fsl = Ts,1pX(s))

holds P-a.s. foralls<t<u inT and ¢ € B,(UN). In this case, (Ts ) s<scT Satisfies
properties (TO1)-(TO3).

3.3.3. WEAK MARKOV PROPERTIES; RELATIONS BETWEEN CONCEPTS

We now define two Markov properties for which the “present” at time s € T is repre-
sented by information from neighborhoods around s. As we will prove in Proposi-
tion 3.3.5 below, these two notions are equivalent. They appear for instance in [176,
p. 62] and [108, Equation (5.87), p. 115].
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Definition 3.3.4. An (F;).cr-adapted U-valued stochastic process (X (#)) e has
(i) the weak Markov property if, for every s € T, there exists § > 0 such that for all
€ € (0,6) it holds that F 1L 7 () 0(X(?) : t = 5), where we define the o-algebras
de(8)=oX(u):ue(s—¢gs+e)n;

(ii) the o-Markov property if for all s € T we have Fs 1l5./(5) 0(X(£): t = 5), where
0.4 (8) = Ne>0 e ().

Proposition 3.3.5. Let X = (X (1)) seT be an (Fy) teT-adapted U -valued stochastic pro-
cess. We have the following relations between Markov properties:

simple Markov = o -Markov <= weak Markov.

If N,M € N are such that N = M and X has N — 1 mean-square derivatives, then we
moreover have

M-ple Markov = N-ple Markov = weak Markov.

Proof. If X has the weak Markov property, then by definition we have the following
identity for fixed s€ T, B_ € Fsand By € a(X(t): t = 5):

P(B_ | @, (NP B+ | 4y, (5)) =P(B- N By | Hy,(5)), P-as., (3.3.3)

whenever 7 € N is large enough. Now we note that (¢;,) yeN := (24/,(5)) neN is @ non-
increasing sequence of sub-o-algebras of F, i.e., a backward filtration on (Q, F,P).
Therefore, (P(B | 4,)) nen is @ backward martingale with respect to (¢,) .y for any
B € F. Combined with the fact that (,,eny %y, = 047 (s), the backward martingale con-
vergence theorem [97, Section 12.7, Theorem 4] implies that we may take the P-a.s.
limit as 7 — oo in (3.3.3) to find that X is o-Markow.

Now let N, M € N with N = M be such that X has the M-ple Markov property and
N —1 mean-square derivatives. When considering o (X'(s)) at s € T, we can restrict
ourselves to mean-square left derivatives, i.e., we consider the sequence

(A (8) nen = (MIX(8) = X (s — ")) peny (3.3.4)

converging to X'(s) in the L[2(Q; U)-norm as n — oo. Consequently, there exists a
subsequence (A, (s))ken such that Ay, (s) — X'(s), P-as., as k — co. Since Ay, (8)
is Fs-measurable for each k € N, we conclude that X'(s) is Fs-measurable and thus
o (X' (s)) € Fs. By induction, this extends to

(X9, X'(5),..., XMV (s) ca(X(s), X'(5),..., XN V(s)) € F,

so that Lemma 3.A.2(b) yields the N-ple Markov property as formulated in (3.3.2).
It remains to show that the N-ple Markov property for N € N and the o-Markov
property imply weak Markovianity of X. Fix s€ T, € > 0, and set

’1::U(X(u):ue(s—E,S]ﬂT)Q}_s»

Hy=0(XW):uels,s+e)nT)co(X(1):t€[s,00nT),
H' =My v Hy = (s).
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Since o (X(s)) €047 (s) < o (s), by Lemma 3.A.2(c) the simple (i.e., 1-ple) Markov or
o-Markov property of X would imply

Fs WLy 0(X(0) : £ € [5,00)NT), (3.3.5)

and thus the weak Markov property since € > 0 was arbitrary. It remains to show
that (3.3.5) also holds if X is N-ple Markov. Picking K € N so large that n; > ¢! for
all k = K, we find that (A, (5))k=x (see (3.3.4)) is a sequence of . (s)-measurable
random variables converging P-a.s. to X'(s). As before, repeating this argument
inductively yields H := o (X(s), X'(s),..., XN=1(s)) € o7 (s). This justifies the use of
Lemma 3.A.2(c) to establish (3.3.5) for the remaining case, and the desired conclu-
sion follows. O

Remark 3.3.6. An analog to Definition 3.3.4 for generalized U-valued stochastic pro-
cesses (X(h))pecee(T) is obtained by replacing o(X(w) : u € J) with the g-algebra
o(X(¢p) : p € CX(T), supp¢ < J) generated by X on an open set / < T. Since point-
wise evaluation is not meaningful for such processes, there is no analog to the sim-
ple Markov property. Furthermore, although the proof of the fact that weak Markov
implies o-Markov carries over, its converse now fails: The distributional derivative
of white noise is a generalized process which is o-Markov but not weak Markov,
see [176, p. 62].

3.3.4. CHARACTERIZATION OF WEAKLY MARKOV GAUSSIAN PROCESSES

A U-valued stochastic process X = (X (f)) et is said to be Gaussian if the U”-valued
random variable (X (%), X(%),..., X(t,)) is Gaussian, for any n € N and {ti}?:l cT.
We will characterize the weak Markov property of Definition 3.3.4 for vector-valued
Gaussian processes by extending the theory of Rozanov [176] from real-valued to
U-valued processes.

We consider the case of a mean-square continuous Gaussian process X which is
the solution of a stochastic evolution equation of the form £X = W for some linear
operator L: D(L) < L%(T; U) — L3(T; U); here, W denotes spatiotemporal Gaussian
white noise, cf. (3.1.1) and (3.1.4). More precisely, we assume that £ has a bounded
inverse £~! which colors X, cf. [50, Definition 3], meaning

X, P rzman LW UL G) Ve CR(T;U), (3.3.6)

where 4 indicates equality in distribution. Here, (% (f)) Fel2(T,U) is an L2(T;U)-
isonormal Gaussian process, see Section 1.4.2. The following theorem then states
that the locality of the precision operator L* L is necessary for X to be weakly Markov.

Theorem 3.3.7. Let L: D(L) € L*(T; U) — L*(T; U) be a boundedly invertible linear
operator, and suppose that X = (X (1)) :eT is a mean-square continuous Gaussian U -
valued process colored by L™. Let F be a dense subset of U for which CX°(T; F) is
contained in D(L). Furthermore, suppose that C3°(T; F) and its image under L are
dense subsets of L>(T; U).
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If X has the weak Markov property from Definition 3.3.4 with respect to its natural
filtration (FX) e, then

Vied: (L, LY)2qyy=0 YPeCOU;F),ype CX(T\J; F), (3.3.7)
where & denotes the set of all open intervals J < T.

Proof. Forall J € .# we define a closed subspace $(J) of I2(Q) by

I2(Q)

A = (X, P2 - € COU; F)) (3.3.8)

Then the family ($()))je.» is a Gaussian random field in the sense of [176, Chap-
ter 2, Section 3.1], and we can connect it to the present setting by showing that
o(X(1):te])=o$()). Indeed, we have o (HH(J)) € o (X(7) : t € J) since (X, P) ;2.
is measurable with respect to the latter o-algebra for all ¢ € C°(J; F) with supp¢ < J.
In order to establish the converse inclusion, it suffices to verify the claim that X ()
is o($)(J))-measurable for each ¢t € J. Let (e}) jen be an orthonormal basis of U and
write
X()=XX (X(1),epye; inL*QU). (3.3.9)

Now we will show that (X(1), e;)y is o($(J))-measurable for every j € N. In fact, by
the density of F c U it suffices to consider (X(¢), x)y for x € F. Let (¢p,) neny € C2°(J)
be a sequence of bump functions concentrating around ¢, i.e., we have

r}imff(s)(pn(s)ds:f(t) in E forany f € C(T; E),
—00 J

where E is an arbitrary Banach space. It follows from the mean-square continuity of
X that f:= (X(-),x)y € C(T; L2(Q)), thus with E := L?(Q) we obtain

X(0),x)u = lim fT (X(8), ) upn(9)ds = lim fT (X(9),pn(9)x)u ds

in L2(Q). Passing to a P-a.s.-convergent subsequence in the rightmost expression,
we find that (X (1), x) iy is a limit of o ($)(J)) -measurable random variables. Thus, each
summand in (3.3.9) is o ($)(J))-measurable, and passing to a [P-a.s.-convergent sub-
sequence of (Zﬂ.\;1 (X(1),ej)u ej) Nen proves the claim.

Now the theory of [176, Chapter 2, Section 3.1] implies that X has the weak Markov
property from Definition 3.3.4 if and only if ($())) j » is Markov in the sense of [176,
p- 97]. For a general B< T, we define

H+(B) :=Ne>0 H(BY), (3.3.10)

where Bf := {t € T : dist(¢, B) < €} denotes an open e-neighborhood of B. Using the
definition (3.3.10) for B € {0J,/,T \ J}, the Markov property for ($(J))jc.» implies
that [176, Equations (3.14), p. 97] are satisfied for every J € .#:

90D =H,DNH(T\)) and H.)F LH(T\ )L, (3.3.11)

where we take L2 (Q)-orthogonal complements in $(T).
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Next we define X*: CX(T; F) — L?(Q) by X*(¢p) := # (L) for ¢ € CX(T; F), to
which we associate the spaces

* L2(Q)
H*J) ={X*(): pe CFU; F)} , Je“z. (3.3.12)

Then X* is dual to (X, ) 2(1,))yece(T;F) in the sense that
EKX, ) 2,00 X* @) = B (LT 1 O (L) = (9 21, (3.3.13)
for ¢,y € C°(T; F). Next we will prove

HM=H"T (3.3.14)

2
by showing that both of these sets equal 2 = {#'(f): f € L*(T; U)}L (Q). First, we
note that $H(T) and $H*(T) are clearly contained in Z. Now let Z € % and € > 0
be arbitrary, and let f € L3(T; U) satisfy |7 (f) — Zllp2iq) < %5. Since the image of
C(T; F) under L is assumed to be dense in L2(T; U), we may furthermore choose
¢ € CX(T; F) such that | £¢p— fll ;2.0 < 3¢ Then

1Z = X" @2y S IZ=H (Dl + 17 (L= Pllz
=\|Z- W(f)“LZ(Q) + "E()b_f“LZ(T;U) <&

which shows Z € $*(T) since € > 0 was arbitrary. On the other hand, since £ is
densely defined and has a bounded inverse, it is in particular closed, hence £* ex-
ists and is also densely defined by [156, Proposition 10.22]. It follows that the range
of (L™1)* = (£*)~!, which equals D(L*), is dense in L?(T;U), so that there exists a
function g € L*(T; U) satisfying || f — (L") *gll 2Ty < %8. Finally, we choose the
function y € C3°(T; F) such that |y — gl ;2. < I(£71)* ”:?}(Lz(’]I‘;U)) 3¢ so that
1 Z =X, ) p2mon 2 < %E +I17(f - [»C_l]*g)”LZ(Q) +wac (&—vll2q
=5e+ 1 f =L gl + LT -y <é

hence also Z € $H(T). We conclude that (3.3.14) holds.
The necessity of (3.3.7) for the weak Markov property of X will follow from

H*DeH(T\NE Vies. (3.3.15)

Indeed, if X is weakly Markov, then (3.3.15) in combination with (3.3.11) would imply
that the random variables defined by

E=X P eH* NHLT\NY and n:=X*@)eH* (T\))<H. (),
are orthogonal, where ¢ € C°(J; F) and y € C3°(T'\ J; F). Therefore, we have
0=A&M 2= EX* ()X ()] = (E(P,EW)Lz(T;U),

which shows (3.3.7). Note that by definition (3.3.12) and density, the orthogonality
extendsto all{ € H*(J) andne H*(T\ )).
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In order to verify (3.3.15), we again take ¢ = X™(¢p) with ¢ as above. By the compact
support of ¢, there exists £ > 0 such that (¢, y) 2.1y = 0 for all w € C((T\ ))%; F).
Hence, forn = (X, )2 (T € HUT\ J)¥) we have ¢ L n by (3.3.13), from which we can
deduce ¢ L . (T\ J), and thus (3.3.15). O

In order to state and prove sufficient conditions for weak Markovianity of X in
terms of the locality of its precision operator, we first need to collect some definitions
which are based on objects encountered in the proof of Theorem 3.3.7. Namely,
we will define spaces (H())) je.» such that H(T) is unitarily isomorphic to $(T) and
there exists a dense injection ¢: C°(T; F) — H(T).

Associating, to each i € (T), a mapping I ’177: CX(T; F) — R given by

@) =ELX, ) 2mpym), ¢ € CO(T;F), (3.3.16)

sets up a linear map I~': $(T) — H(T), where #(T) is defined as the range of 1 11t
is also injective since I‘ln(gb) =0 for all ¢ € C°(T; F) means n L CZ(T; F) in H(T),
and thus n =0 by (3.3.8).

Equipping H(T) with the inner product

(v, VY = vy, Iv2) 2y, V1,12 € H(T),
renders I: H(T) — $H(T) a unitary isomorphism. For J € .# we can then define
H) = Veso{ve H(T) : v(¢p) =0forall p € C°((T\ N F)}, (3.3.17)

where \/ denotes the closed linear span.
A dense injection ¢: C°(T; F) — H(T) is obtained by defining tv: C°(T; F) — R in
the following way, for any v € C°(T; F):

w@) = (0, 2y, € CO(T;F).

Indeed, we find (v € H(T) since the duality relations (3.3.13) and (3.3.14) between X
and X* imply that X*(v) € §*(T) = $H(T) satisfies

w(g) = ELX, ) o X* 0] = I X* 0)]()  Vepe CO(T; F).

Moreover, the injectivity follows in the same way as for I~!. To show density of the
range, fix an arbitrary v € H(T). Then Iv € $H(T) = $H*(T) and thus there exists a se-
quence (W) peny € C(T; F) such that X* () — Iv in L?(Q). Consequently, we have
W =I"1X*(y,) — vin H(T).

Remark 3.3.8. For centered, real-valued Gaussian random fields (Z(x))yex which
are indexed by a compact metric space (X, dy) and moreover mean-square contin-
uous, a unitary isomorphism can be established between the L?(Q;R)-closure of all
linear combinations of point evaluations and the dual of the Cameron-Martin space
for its associated Gaussian measure on the space L2(X;R), see [122, Lemma 4.1(iii)].
We point out its analogy to the unitary isomorphism I between H(T) and $H(T) de-
fined above.
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Theorem 3.3.9. Let the linear operator £: D(L) € L?>(T; U) — L*(T; U), the U-valued
process X = (X(8)) et and the subset F < U be as in Theorem 3.3.7. Recall that H(T)
is the range of the linear mapping I~ defined by (3.3.16) and H(J) is given by (3.3.17)

forallje 7. If

HD =GR " vie.s, (3.3.18)

then (3.3.7) implies that X has the weak Markov property from Definition 3.3.4.

Proof. We will show that, under the additional assumption (3.3.18),
H*D=H+T\D+ Ves. (3.3.19)

Note that inclusion (3.3.15) also holds without this assumption, see the proof of The-
orem 3.3.7. Identities (3.3.14) and (3.3.19) express that the collections ()(J)) je.» and
(9" () jes are dualin the sense of [176, Chapter 2, Section 3.5]. In this situation, the
theorem on [176, p. 100] yields that X is weakly Markov if and only if (5 * (J)) jc_»# is or-
thogonal, meaning that $* (J) L $H* (T \J) forall J € ., which is equivalent to (3.3.7)
by the respective definitions of X* and (H* ())) jc.s.

To verify (3.3.19), note that for each £ > 0,

HUT\DH = eHT) : (0, &) 2 =0forall & e H((T\ )}
=meHTM) : U ') =0forall ¢ € CX((T\ )% F)}
Z{veH(M) :v(p) =0forall pe C((T\ DS F),

and it follows that H(J) = $. (T \ /)1. On the other hand, definition (3.3.12) implies
H() = H*()), so together we indeed find (3.3.19). O

Remark 3.3.10. In order for locality of the precision operator £* £ to imply the weak
Markovianity of X, one needs to verify the additional condition (3.3.18). In the real-
valued case, two examples of sufficient conditions on £ for (3.3.18) to hold are [176,
Lemmas 1 and 2, pp. 108-111], which are expressed in terms of boundedness of mul-
tiplication and translation operators, respectively, w.r.t. the norms || LH* 12(T)
and/or |£ - ;2 (my- In [176, Chapter 3, Section 3.2], these results are applied to differ-
ential operators with sufficiently regular coefficients.

Although it is expected that analogous results can be derived in the U-valued set-
ting, this subject is out of scope for the processes considered in the remainder of
this chapter, since we establish Markovianity using direct methods instead of The-
orem 3.3.9, see Section 3.4.4. However, we do use Theorem 3.3.7 to show when the
process lacks Markov behavior in the last subsection of Section 3.4.4.

3.4. FRACTIONAL STOCHASTIC ABSTRACT CAUCHY

PROBLEM ON R

The aim of this section is to define a Hilbert space valued process (Z (1)) ;cg which
can be interpreted as a mild solution to the equation

@:+ATX() =W, teR,  ye(/2,00). (3.4.1)
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This equation differs from (2.3.1) in that it is posed on the whole of R, and conse-
quently does not require initial conditions. In Section 3.4.1 we specify the setting in
which equation (3.4.1) will be considered. The fractional parabolic integral operator
(8;+ A)7Y is defined in Section 3.4.2, and the noise term W< in (3.4.1) is the formal
time derivative of the two-sided Q-Wiener process defined in Section 3.2.2. In Sec-
tion 3.4.3 we combine these two notions to give a rigorous definition of the process
(Zy (1) 1er, and we indicate its relation to the fractional Q-Wiener process defined
in Section 3.5. Lastly, in Section 3.4.4 we prove that (Zy(£))er is N-ple Markov if
Y = N € N, but in general does not satisfy the weak Markov property when y ¢ N.

3.4.1. SETTING
The standing assumption throughout this section on the Hilbert space U and the
linear operator A is as follows.

Assumption 3.4.1. The linear operator —A: D(A) € U — U on the separable real
Hilbert space U generates an exponentially stable Cy-semigroup (S(1)) =0, i.e.,

dMp € [1,00),w € (0,00): Vi€ [0,00): ISl »w) = Mye™?. (3.4.2)

In addition, we may assume one or both of the following conditions on the frac-
tional power y and the linear operator Q:

Assumption 3.4.2. (i) There exist yg € (1/2,00) and Q € £* (U) such that
* -1 1.2
fo | £70 S(t)QZH‘fz(U) dt <oo.

(ii) The Cp-semigroup (S(#)) ;>0 is analytic.

For an introduction to the theory of Cy-semigroups, the reader is referred to Sec-
tion 1.1 or [73, 165]. Note that the results in the latter works, while stated for complex
Hilbert spaces, can be applied to the real setting by employing complexifications of
(linear operators on) U, see e.g. Section 2.B.2.

We remark that (1/2,00) is the maximal range on which Assumption 3.4.2(i) can
hold. Moreover, if Assumption 3.4.2(i) holds for some y, € (1/2,00) then the same is
true for all y’ € [y, 00); see Section 3.A.2 in Appendix 3.A.

Under Assumption 3.4.2(ii), we have %Aj S() = — AJ*15(¢) as the classical deriva-
tive from (0, 00) to .Z(U) for all j € N; moreover,

AM; € [1,00): V€ (0,00): [AIS(D)l gy =Mt e (3.4.3)
by [165, Chapter 2, Theorem 6.13(c)].
3.4.2. FRACTIONAL PARABOLIC CALCULUS AND THE DETERMINISTIC

PROBLEM
In this section we first consider the following deterministic counterpart to (3.4.1):

@+ A u(t) = f(1), teR, v € (0,00), (3.4.4)
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where f € L2(R; U). In order to define its mild solution, we introduce the operation
of fractional parabolic integration, generalizing the scalar-valued setting with A =0
which is treated in [121, Chapter 2].

Definition 3.4.3. Let Assumption 3.4.1 hold. Given f: R — U, we define its frac-
tional parabolic integral J¥ f: R — U of order y € (0,00) by

t
I f() = %Y)f_oo(t—s)y_IS(t—s)f(s) ds (3.4.5)

if this Bochner integral exists for almost all ¢ € R.

Note that, when restricted to L”-functions f vanishing outside of [0, T] for some
pell,o0] and T € (0,00), we obtain the operator f%j%n from Proposition 2.3.4. View-
. . . ~ . ~ M,
ing it as a linear operator, we have J7 € Z(L” (R; U)) with |37 ¢ (1r ®;uv) < 7,7 and
(3M)y=0 is a semigroup of bounded operators on LP(R;U) if we set 3% = Idy, see
Proposition 4.2.3. The adjoint operator J"* of 37 satisfies the following formula:

1
'y
this can be proven analogously to Lemma 2.3.6.

Given T: D(T) € U — U and a measure space (S, <7, u), we define the Bochner
space counterpart Ts: D(Ts) € L2(S; U) — L2(S; U) of T by

J7 f() = foo(s— O’ US(s— 01" f(s)ds forall teR; (3.4.6)
¢

D(Ts) = L3($;D(T)) and [Tsfl(s):=Tf(s), a.a. s€S, feD(Ts), (3.4.7)
which is a generalization of (2.3.4). Using (3.4.7) with T := Aand S := R, we have
@+ Ar)f=08:f+Arf,  feD@:+Ar) = H' (R;U)NL*(R;D(A),

where 0, denotes the Bochner-Sobolev weak derivative, whose domain is given by
D@©@;) = H'(R; U) c L?(R; U); see Table 3.1. Since J7 can be interpreted as a negative
fractional power of 9, + Ag, see Appendix 3.B, it is natural to call J¥ f a mild solution
to (3.4.4).

3.4.3. MILD SOLUTION PROCESS

Combining the spatiotemporal fractional integration theory from Section 3.4.2 with
the stochastic integral defined in Section 3.2.2, we can give a rigorous definition for
the mild solution to (3.4.1). Recall the definition of predictability from (1.4.9).

Definition 3.4.4. Let Assumption 3.4.1 be satisfied and let y € (1/2,00) be such that
Assumption 3.4.2(i) holds with yg = y. An (.7-";S WQ)teR-predictable modification of
the process Z, = (Zy (1)) cr defined by
1 t
Zy (1) :=—f (t—s)"1S(t—5)dW9(s), reR, (3.4.8)
I'(y) J-

is said to be a mild solution to (3.4.1).
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Note that the stochastic integral on the right-hand side of (3.4.8) is convergent,
i.e., it is a well-defined element in L?(Q; H), for each ¢ € R. This is a direct con-
sequence of Assumption 3.4.2(i) and the Itd isometry (3.2.1). Moreover, by Defini-
tion 3.4.4, the mild solution process is unique up to modification.

Proposition 3.4.5. Let Assumption 3.4.1 be satisfied. Suppose that ty € [—00,00),
Y € (Y/2,00) are given. Define T := [fy,00) if tp € R or T := R if t = —o0 and let As-
sumption 3.4.2(i) hold foryo =y. The process (Zy(t | o)) et defined by

t
Zy(t]t) = 1 (t—$)"1S(r—5)dW(s), reT, (3.4.9)
I'(y) Jy
where Zy (- | —o0) = Z,, is mean-square continuous on T.
If in addition Assumption 3.4.2(ii) is satisfied and there exists N € N such that As-
sumption 3.4.2(i) holds foryo =y — N, then (Z,(t | ) eT has N mean square deriva-
tives and, for all t € [ty,00) and n € {0,..., N — 1}, we have

(& + )&z, (1 1) = $5 21 (2] 1) (3.4.10)

Remark 3.4.6. The first part of Proposition 3.4.5 asserts that Z, is mean-square con-
tinuous, and thus continuous in probability. Combined with the fact that (Z, (£)) ;er
is (F, f we ) (cr-adapted by definition, we can apply [56, Proposition 3.7(ii)] (the proof
of which can be generalized to unbounded index sets) to obtain the existence of an
(F fWQ) rer-predictable modification of (Z (1)) ser. This modification is a mild solu-
tion in the sense of Definition 3.4.4.

Proof of Proposition 3.4.5. The mean-square continuity follows by Lemma 3.A.6 in
Appendix 3.A, hence we turn to the mean-square differentiability. Define

t
Zp (1) = L [- 9P ais -5 dW0s), relny,00),
F(ﬁ) to
for j € Ny and B € (1/2,00) such the right-hand side exists. We claim that, under
Assumptions 3.4.2(i)—(ii) with y¢ = y — N, the function ¢ — tﬁ’lAfS(t)Q% belongs to
H& (0,00; %4 (U)) if B— j—7+ N € [1,00). To this end, we first note that the product
rule for the (classical) derivative yields

4P 1A S(1)Q? = (B-1)1P2ATS(1)Q? — 1P AT S(1)Q?

with values in .2 (U) for all ¢ € (0,00). Combining (3.4.3) with an argument involving
a change of variables and the semigroup property (cf. the proof of Lemma 3.A.4 in
Appendix 3.A), one can show that the L2(0,00;.% (U))-norms of the two functions
on the right-hand side can be estimated by that of the function ¢ — tF=/=2§ (t)Q%,
which is finite since f — j — 1 = yy. Again by (3.4.3), we have

_ i 1 —i_ 1
||tﬁ 1A]~S'(If)Q2|L§,ﬂ(U)SZVIjlﬁ J 1||Q2||_2ﬂ(U)—’0 ast]0

since f— j—1 = yg > 0. Noting that % (U) — £ (U) and using Lemma 2.A.9 then
proves the claim.
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Thus, we may apply Lemma 3.A.6 from Appendix 3.A, write the result as two sep-
arate integrals, and pull the closed operator A out of the stochastic integral defining
Zp,j+1 (cf. [56, Proposition 4.30]) to find

Zé'j(t)=Zﬁ_1,j(t)—zﬁ,j+1(t). (3.4.11)
=Zp1,j(0)— AZp (D). (3.4.12)

Rearranging equation (3.4.12) for § =y and j = 0 implies (3.4.10) for n = 0. Apply-
ing (3.4.11) iteratively, we find that Zg ; has the nth mean-square derivative

n
Z;{l])(t) = Z =™ Z,B—n+m,j+m(t)y (3.4.13)
m=0

n
m
provided that 8 — j—y + N € [n,00). Now we again let § =y and j = 0 and apply

(3.4.12) with 8’ =y — n+ mand j' = m to each term on the right-hand side to derive
(3.4.10) for the remaining values of n. O

The next result concerns the covariance structure of the process Z,. Analogously
to (2.4.1), let us define the covariance operators (Qz, (s, 1))s,ter S ZH(U) of Z, via
the relation

Qz, (s, 0%,y =E[(Zy(5) ~E[Z,(9)], x) ; (Zy () —E[Z,(1)), ) ] (3.4.14)

forall s, € R and x, y € U; note that E[Zy(-)] = 0 in this case. The following proposi-
tion, which is analogous with Corollary 2.4.3, states that if A :=xIdy, then Q 7,(s,1) is
separable, i.e., it can be decomposed into a (scalar) covariance function depending
only on the ‘time’ variables s, € R, and a ‘spatial’ covariance operator acting on U.
Moreover, the temporal factor takes the form of a Matérn covariance function (3.1.2).
In the language of spatiotemporal statistics, Z, has a marginal temporal covariance
structure of Matérn type. This motivates the statistical relevance of Z,.

Proposition 3.4.7. Lety € (1/2,00), A = xIdy with x € (0,00) and suppose that As-

sumption 3.4.2(i) is satisfied for yo = y. Then the covariance of Zy is separable and its

temporal part is of Matérn type, i.e.,

257112y
VaT(y)

Proof. For A =«x1Idy, Assumption 3.4.1 is trivially satisfied and the definition of Z,
takes on the following form for all t € R:

Vs, teR, s# 1 Qz(s,0)= (k£ = s "2K,_y (k=) Q.

_1
2

1 ! -1 —«x(t—r
ZY(”:W)I_@”_”Y temx! Jde(r)=kay,K(t—r)de(r),

with real-valued convolution kernel ky, (£) := %Y) tI_l

if t € [0,00) and tfl := 0 otherwise. Define %(s, r;x) € Z(U;R) for s,r € R and

_ 1
e *! whereweset 7 := (7!
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xeU by k(s,r;x)h:= kyx (s —r){x, h)y for all h € U. Then combining the It6 isome-
try (3.2.1) and the polarization identity yields

E[(Zy(9), 00 (Zy (1), y)u] =E| fR ks, r;x) dW2(r) fR k(,r;) dw(r)
= fR@(s, rXQk(t, 1Y) zwm dr = <fR kyx (s— P kyc(t—r)dr Qx,y>U.
Since x, y € U were arbitrary, we find for all 4 € R\ {0} the covariance operators

Qz, (t+h,1)=Qz (t,t+h) =f Ky i (t = 1)y i (£ + R —1) dr Q.
R

Using the change of variables u(r) := h +2(f — r) in the integral, we obtain

1
ka”(t_ Nkyx(t+h=-rydr=7 fR Ky (52 ey (152) dus

21-2y oo 2512y
= o [ = A = S B,y (el
Imi= Jin VRL(y) [
where the last identity follows by [161, Part I, Equation (3.13)]. O

3.4.4. MARKOV BEHAVIOR

In this section we consider the Markov behavior of the process Z, defined in Sec-
tion 3.4.3. Namely, we will show that Zy is N-ple Markov for N € N (Theorem 3.4.9),
whereas in general Zy is not weakly Markov if y ¢ N (Example 3.4.15).

INTEGER CASE; MAIN RESULTS
We first introduce the necessary notation and intermediate results leading up to the
main theorem asserting the N-ple Markov property of Zy. The proofs are postponed
to the next subsection.

If y € (1/2,00) is such that Assumptions 3.4.1 and 3.4.2(i) hold with y( =y, then we
define for £y € R the truncated integral process (Zy(t | 1)) ter DY

- 1 tAL
Zy(t | tg) = —f (t— 9718t - ) dW<(s), (3.4.15)
') J-co

so that Zy (- | fo) = Z, on (—00, fy] and Zy = Z, (- | o) + Z,(- | tp) on (fp,00), where we
recall the process (Zy (] 10)) telty,00) from (3.4.9). From these two identities, it follows
that ¢ — Z, (¢ | fp) has the same mean-square differentiability at time 7 € R\ {zo} as
Zy (1) (and Zy(¢] to) if £ € (fp,00)). In the case y = N € N, both have N —1 mean-
square derivatives by Proposition 3.4.5 provided that Assumption 3.4.2(i) is satisfied
for yg = y— (N —1) = 1. The same holds at the critical point ¢ = £; since the first N -1
mean-square (right) derivatives of Z (- | ) vanish there, see (3.4.13) in the proof of
Proposition 3.4.5.



3.4. FRACTIONAL STOCHASTIC ABSTRACT CAUCHY PROBLEM ON R 105

Under Assumption 3.4.2(ii), we have A/S(1) € Z(U) for all j € Np and 7 € (0,00),
see (3.4.3). Therefore, we can define the function I'(n, (-) A): [0,00) — Z(U) by

j=0 j (3.4.16)

nltf
_ AIS(D), t € (0,00);
Ton, t4) = paY €] € (0,00)
IdU, t:Or

for n € N. Note the analogy with integer-order scalar-valued normalized upper in-
complete gamma functions [163, Equations (8.4.10) and (8.4.11)]. We will use these
functions to derive an expression for (Zn(t] 10)) te(1,00) in terms of Z and its mean-
square derivatives at fy. Recall that the UN-valued process Zy = (Zy (”))N —o consists
of Zy and its first N — 1 mean-square derivatives.

Proposition 3.4.8. Let Assumptions 3.4.1 and 3.4.2(ii) be satisfied and suppose that
Assumption 3.4.2(i) holds foryy =1. Then forall NeN, typ e R and t € [ty,00),

Zn(t1t0) = (Nt t)Zn (L), P-as, (3.4.17)
where we define, for any & € L*(Q, F;,, P; UN) with Fy, = ]:gWQ,

“l (- to)k

(N(t]t0)E = Z T(N -k, (t-t9) A) &y, (3.4.18)

using the incomplete gamma functions defined in (3.4.16).
In particular, adding Zn(t | ty) on both sides of equation (3.4.17) yields

Vie[tg,00): Zn(t)=Zn(t]|to,Zn(k), P-as, (3.4.19)
where the process (Zn(t | 1o, $)) te[1,,00) IS defined by
Zn(t] 10,8 ={n(t] t0)E+ Zn(E | fp), TE€ [fp,00). (3.4.20)

By (3.4.19), it suffices to show that (Zx (¢ | £o,&)) te[1y,00) has the N-ple Markov prop-
erty in the sense of Definition 3.3.2 for any fp e R and & € [2 Q, Fr, P; UN). In fact,
we will show that it is N-ple Markov using Corollary 3.3.3; this is the subject of the
following result, which is the main theorem of this section.

Theorem 3.4.9. Let NeN, fo € R and § = (£,)3-)} € L*(Q, F4,, ;UN*) be given. Let
Assumptions 3.4.1 and 3.4.2(ii) hold and suppose thatAssumption 3.4.2(i) is satisfied
foryo =1. Then the process (Zn(t | to,8)) te[1y,00) Jrom (3.4.20) has the N-ple Markov
property in the sense of 3.3.2 with respect to the transition operators (T ) qy<s<: On
By, (UN) defined by

T o) :=ElpZn(t]5%)], ¢eB,(UN),xeU",

and the increment filtration (F) te(zy,00) = (]-";s WQ)te[to,oo) from (3.2.2). The process
(Zn (1)) ¢eRr from (3.4.8) has N — 1 mean-square derivatives and is N -ple Markov with
respect to (Fy) eR = (]—'fWQ) teR, See Definition 3.3.2.
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The statements and proofs of Proposition 3.4.8 and Theorem 3.4.9 use the follow-
ing result regarding the mean-square differentiability of ({ n (¢ | £0)&) re[1,00), Which is
similar to Proposition 3.4.5.

Proposition 3.4.10. Let N€{2,3,...}, e Rand& e [2 Q, F1, B UN) be given, where
& € L2(Q;D(A)) for k €{0,...,N —2}. Suppose that Assumption 3.4.1 and 3.4.2(ii)

hold. Then the process ({ n(t | 10)&) te[1y,00) defined by (3.4.18) is infinitely mean-square
differentiable at any t € (ty,00) and, for n€ {0,..., N -2},

(£ +A) LN 10)E = Llno1 (] 1) E iy + AERE, Pras. (3.4.21)

Moreover, we have (% + A)%(l(t | t0)¢ =0, P-as., foré € L2(Q, F,, P U).
Combining Propositions 3.4.5, 3.4.8 and 3.4.10 yields the following corollary.
Corollary 3.4.11. Let N€{2,3,...}, reRand & € LZ(Q,]-}O,]P’; UN) be given, where
& e L2(Q;D(A) for ke {0,...,N—2}. Let Assumptions 3.4.1 and 3.4.2(ii) hold, and
suppose that Assumption 3.4.2(i) is satisfied for yo = 1. Then the stochastic process
(ZN(E ] 10,€)) telty,00) from (3.4.20) is N — 1 times mean-square differentiable at any
t € (ty, 00) and satisfies, forne€{0,..., N -2},
(& +A) & Zn(t 1 10,8 = S5 Znoa (2] to, Ear + ALDRE), Peas.
In particular, it holds forall t e R and n € {0,..., N — 2} that
(E+A) & zyn =52y, Pas.

Remark3.4.12. Corollary 3.4.11 can be interpreted as saying that (Zy (¢ | fo, &) re(1,00)
for N € {2,3,...} solves the L%(Q, F,P; U)-valued initial value problem

(& +A)X (1) = Zn1(t ] 1o, Epar + AL D) YEE (£9,00),
X (1) = &o,

whenever ;. € L? (Q, F1,, P, D(A)) for k € {0,..., N —2}. This observation is the key to
the proofs of Propositions 3.4.8 and 3.4.13 below. It is also of interest for computa-
tional methods, as it implies that the computation of Zy (¢ | fy, &) amounts to solving
afirst-order problem N —1 times. In fact, inductively applying this result and the fact
that (d% +A){1(t ] to)n = 0 for n € L2(Q, Fy, IP; U), we see that for N € N we may inter-
pret (Zn (¢ | t,¢)) re[1,00) @s the mild solution to the Nth order initial value problem

(L+ VX0 =W1) Ve (t,o00),

k
ﬁX(to)zék vke{0,...,N—1}.

Another key step in the proof of in Theorem 3.4.9 is given by the following result,
which essentially amounts to the fact that (T ;) s< satisfies (TO3).

Proposition 3.4.13. Let Ne N, fpe R and & € LZ(Q,]-}O,]P’; UN) be given. Let As-
sumptions 3.4.1 and 3.4.2(ii) hold and suppose that Assumption 3.4.2(i) is satisfied
for yo = 1. The stochastic process (Zn(t | to,&)) te(ty,00) from (3.4.20) has the N-ple
Chapman-Kolmogorov property, i.e., for all ty < s < t we have

Zn(t) t0, &) =Zn(t] S, ZNn(s] 1y, &), P-a.s. (3.4.22)
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INTEGER CASE; PROOFS

As indicated in the previous subsection, the statements and proofs of Proposition
3.4.8 and Theorem 3.4.9 rely on Proposition 3.4.10, which we prove first.

Proof of Proposition 3.4.10. We first make some general remarks regarding the op-
erators I'(n, tA) from (3.4.16). Under Assumption 3.4.2(ii), estimate (3.4.3) implies
that the set {t/ A/S(1) : t € (0,00)} € .Z(U) is uniformly bounded. It follows that
t — T(n, tA) is a strongly continuous function from [0,00) to .Z(U) for any n € N,
which at ¢ € (0,00) admits a classical derivative satisfying

0, n=1,

i Af , A = —
(dt+ JT(n, A) AT (n-1,tA), ne{23,...}.

To prove the proposition, we may assume o= 0, so fix t € (0,00). For M €N, je Ny
and n € L*(Q; UM), we define { (1)1 := A7{ (¢ | 0)n. Combining the product rule
in the form (% +A)(uv)=u'v+ u[(d% + A)v] with the above recurrence relation yields

(& + A (0m

Mol gkl Mz gk
= AT(M -k, tA)ng + — AT T(M—-1-k,tA)
& k-1 et X T
= -1, (DM D) g + v, 40 (DM e (3.4.23)

This shows in particular that (3.4.21) holds for integers N = 2 and n = 0, by apply-
ing (3.4.23) with M = N, 9 = & and j = 0. Moreover,

(& +4)0,j(0n= (L +4)A'S(n=0.

Iteratively applying (3.4.23) and the latter identity then yields that {py,;n is M — 1
times (mean-square) differentiable with an nth derivative of the form

n ¢
Gy On=3 Y ComC—o,(j+n-m (OBem, (3.4.24)
¢=0m=0
where Cp,, €R, By, € LWUM;uM-t) and Com—0),(j+n-my = 0if M — ¢ < 1. In par-
ticular, {n(- | )& is N —1 times (mean-square) differentiable as claimed. In order
to deduce that (3.4.21) also holds for n € {1,..., N — 2}, we need to justify taking the
nth derivative on both sides and commuting it with A. Since A is closed, it suffices

to verify that {y (| 0)€, A7{n (- | 10)§, {n-1(- 1 f0)(§ 1) o0 and A1 (-1 20) (€ !
admit nth derivatives for j € {0, 1}. Indeed, these assertions follow from (3.4.24). O

We can now prove Propositions 3.4.8 and 3.4.13. For the proof of the latter we may
use Corollary 3.4.11, since it only combines Propositions 3.4.5, 3.4.8 and 3.4.10.

Proof of Proposition 3.4.8. We use induction on N € N. For N =1 and ¢ € (#,00),

~ fo
Zi(t| tg) = S(t— fo)f S(to—5)dWQ(s) = (1 (¢ | 1) Z1(ty), P-as.
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Now suppose that the statement is true for a given N € N. By Proposition 3.4.5 and
the discussion below (3.4.15), Zn+1 and Zn+1 (- | tp) have N mean-square derivatives
which sansfy (&£ +A)Zn (e ] 1) = Zu(t | to) and (£ + A)Z{), (1) = 23 (1) for all
ke{0,. -1} and t € (ty,00). Combined with Prop051t10n 3.4.10 and the induction
hypothesis, we find

(£ + A) N (8| 10)Zna (o) = In(t ] ) [(& + A) 20 (10)]3
= On (] 0)Zn (1) = Zn(t] 1) = (& + A) Zna (£ o).

Since ZN+1(t0 | to) = Zn+1(ty) = Cn+1(to | t9)Zn+1 (L), we find that relation (3.4.17)
with N + 1 holds on [fy,00) by the uniqueness of solutions to L2(Q, F,P; U)-valued
abstract Cauchy problems, see [165, Chapter 4, Theorem 1.3]. O

Proof of Proposition 3.4.13. Let ty < s < t. We use induction on N € N. For the base
case N =1 we have

t
Z1(t]s, Zi(s1 10,6)) = S(t = ) Z1(s | 10, 6) +[ S(t—r)dw?(r)

N

N t
=S(t—$)S(s—10)é+St—3s) | Sts—r)dW?(r) +f S(r—r)dwr)
S

To

S t
=S(t—t0)§+f S(t—r)dWQ(r)+f S(t—r)dwr) = Z(t ] 1o, )
to N

P-a.s. for £ € I2 (Q, F1,,IP; D(A)). Now suppose that the result holds for N € N and let
&€ L2(Q, Fy, P;D(AN). Then, for any 7 € (s,00),

(& + A) Znar (] 5. Znar (51 10,8)) = Zn (15, [+ A) 2400 (51 10, O] )
= ZN(tI SIN(s|to, [$rs1 + Ak] ]ly:_ol))
=ZN(t| to, [$ k1 +A5k -0 )= (éit +A)Zyn (] 10,8), P-as,

where we applied Corollary 3.4.11 in every identity except the third, which uses the
induction hypothesis. Moreover, relation Zn.1(s| $,Zn+1(s| f0,€)) = Zn11(s | 19, &) is
evident from the definitions. Together, these facts imply that the difference process
Vi=Zna1 (1 $Zne1(s]10,8) — Zn+1 (- | 1, &) solves

(& +A40)Y (=0 Ve (s 00);
Y(s)=0,

where Aq: L2(Q;D(A)) € L?(Q; U) — L?>(Q; U) is as in (3.4.7). Since —Aq is the gen-
erator of a Cy-semigroup on L?(Q; U), see Lemma 3.B.1 in Appendix 3.B, the unique-
ness result [165, Chapter 4, Theorem 1.3] shows that ¥ = 0 on [s,00), meaning that
Zn+1(t 1 20,8) = Zn1(t] S, Zn+1(S | 2o, &) holds P-a.s. for all £ € [s,00). Taking the nth
mean-square derivative for n € {0,..., N} on both sides, which is justified by Corol-
lary 3.4.11, we find (3.4.22). In order to establish this identity for general initial data
Eel? Q, Fr, 5 UN), we use the density of D(A) in U [165, Chapter 1, Corollary 2.5],
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which implies the density of L2(Q; D(A)") in L?(Q; UN), hence it suffices to argue
that ) — Zy1 (| tp,n) is continuous on L?(Q; UN) for any fixed € [fy,00). Continu-
ity of n — {n+1(2 | to)n follows from the fact that n — T(N+1-k, (t— fp))n is bounded
on L2(Q; U) for any k € {0,..., N}. The same holds for the derivatives of {y+1(: | fo)n
since they are of the same form by Proposition 3.4.10. The conclusion follows. O

With these intermediate results in place, we are ready to prove the main theorem
asserting the N-ple Markovianity of Zy. Its proof is a generalization of [56, Theo-
rem 9.14] and [167, Theorem 9.30], which concern the case N = 1.

Proof of Theorem 3.4.9. Step 1: Well-definedness of (T ;) <s<;. We have to show
that Ts:p = El@(Zn(t]s, )] is measurable for ¢ € Bb(UN). Let JZ be the linear
space of bounded ¢: UV — R such that Elp(Zn(t | s, )] is measurable. Arguing
as in the proof of Proposition 3.4.13, we find that [Zx(f | s, -)](w) is continuous on
UV for P-a.e. w € Q. Then, for ¢ € ¢ := C,(U"), the dominated convergence theo-
rem implies that E[@(Zx(¢ | s, -))] is also continuous, hence Borel measurable, and
thus € < 7. Moreover,  contains all constant functions and given (@) yeny S 7
such that 0 < ¢, 1 ¢ pointwise for some bounded limit function ¢, we find ¢ € 57
by monotone convergence. Since % is closed under pointwise multiplication, we
find B, (U, 0 (%)) = B, (UN) < 2 by the monotone class theorem [172, Chapter 0,
Theorem 2.2].
Step 2: N-ple Markovianity. For fy < s < t and ¢ € B, (U"), we show

Elp@Zn(t]10,8) | Fsl = Ts,p(Zn(s1 10,8)), P-as,

for all & € L?(Q, Fs,P; UYN). By Proposition 3.4.13, it suffices to verify that the identity
Elp@Zn(t]s,&E) | Fsl = Ts (&) holds P-a.s. By a monotone class argument simi-
lar to that of Step 1, it suffices to consider ¢ € Cb(UN). As in [167, Theorem 9.30],
one can first verify it directly for simple & = Z;?ZI xjla;, withneN, xi,...,x,} < UV
and disjoint events {Ay,..., A} € F; covering Q, and subsequently extend it to gen-
eral & € [2(Q, F,P;U Ny by an approximation argument, using the continuity of the
functions Zn (£ s, -) and ¢. Finally, the statement regarding (Zx(#)) ;er follows from
Proposition 3.4.8. O

NON-MARKOVIANITY IN THE FRACTIONAL CASE

We conclude this section by showing how Theorem 3.3.7 can be used to deduce that
Zy is not weakly Markov (see Definition 3.3.4) if y ¢ N. To this end, we determine the
coloring operator of Z,.

Proposition 3.4.14. Let Assumption 3.4.1 hold and suppose thaty € (1/2,00) is such

that Assumption 3.4.2(i) holds foryo = y. Then the coloring operator of Zy, see (3.3.6),
1

is given by E;l =J7Qf € L(L*R; U)), whereJY is as in (3.4.5).

Proof. Using the stochastic Fubini theorem as in the proof of Proposition 2.3.11, we
find that (Zy, f) 2 r.p) = fR D (s) dwQ(s) holds P-a.s. for every f € C°(R; U), where



110 3. MULTIPLE AND WEAK MARKOV PROPERTIES IN HILBERT SPACES

&)f: R — Z(U;R) is given by
~ 1 o0 -1 *
Or(s)u= —f (=) St =s)u, f(t)ydt = (w, I f(s)hu
I'(y) Js
forall s€ R and u € U, and we recall equation (3.4.6) for the adjoint of J37. Thus,

~ 1 1
KZy, P 2o W2y = fR 197 (0Q21%, gy A = 1Q3T" FI32 .1y

1
by (3.2.1), hence (3.3.6) holds with (£ hyx = Qg I by the polarization identity. O

Example 3.4.15. Let Assumptions 3.4.1 and 3.4.2(ii) be satisfied and suppose that
Y € (1/2,00) is such that Assumption 3.4.2(i) holds for y¢ = y. The latter implies that
0+ Ar = B, and we always have B~" =77, see Section 3.4.2. Thus,

B O, .o . o~
LyLy=(Qp*BY) Qp?BY =B Q' BY = 0, + Ar)" Q' @: + Ar)”.

Moreover, this assumption implies that D(A") is dense in U for all n € N by [165,
Chapter 2, Theorem 6.8(c)]; choosing n large enough, we also find that C2°(T; D(A™))
is dense in D(B3Y), so we can take F = D(A") in Theorem 3.3.7.

Although Q! may be a nonlocal spatial operator, QI?RI is always local in time. Thus
for y € N, the precision operator is local as a composition of three local operators, in
accordance with the Markovianity shown in Section 3.4.4.

For y ¢ N, we will show that the precision operator is not local in general. Sup-
pose that A has an eigenvector v € U with corresponding eigenvalue A € R. Such
eigenpairs exists for example if A = 2 — AP with x, B € (0,00) and A the Dirichlet
Laplacian on a bounded Euclidean domain D C R¢. If we moreover assume that

v e D(Q"?), then we find Qﬂ_éBY(gb &) = [0;+ )¢l ® Q2 v for ¢ € C(R) since
the spectral mapping theorem implies S(#)v = e **v for all ¢ € [0,00). It thus suffices
to consider the case A= 1 € R, i.e., we wish to find disjointly supported ¢, ¢ € C°(R)
such that

Ey (¢, y) =K@ + M) ¢, @ + M) 2| # 0. (3.4.25)

We will discuss this by means of a numerical experiment for the case A = 1, using the
following smooth function ¢ € C°(R) supported on [-1,1]:

exp(— 1_1 2)) X € (_L]-)»
t) = X 3.4.26
¢ {0, xeR\(-1,1), ( )

and taking v := ¢p(- —2—0) for some 6 € (0,00). In Figure 3.1, we see that the parabolic
derivatives of ¢ consists of (positive or negative) peaks. For y ¢ N, the support of the
last of these peaks appears to include the whole of [1,00), with its absolute value tak-
ing rapidly decaying yet nonzero values there. Therefore, the idea is to take 6 small
enough, making the right-hand side tail of ¢ overlap with the first peak of 1 to obtain
anon-zero L?(R)-inner product. Table 3.2 shows the approximate outcomes of this
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process for various values of y and 6, using symbolic differentiation and numerical
integration.

Note the contrast with the merely spatial Matérn case, where the self-adjointness
of the shifted Laplacian x> — A causes LyLp = 72(k% — A)?P, thus we find a weak
Markov property also for half-integer values of € (0, 00).
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Figure 3.1: Graphs of the fractional parabolic derivative (@; + 1)Y¢p with ¢
from (3.4.26) for certain values of y € [0,2]. Note the different scales on
the y-axes.

3.5. FRACTIONAL Q-WIENER PROCESS

In this final section, we further motivate our interest in solutions to (3.4.1) by re-
lating them to fractional Q-Wiener processes, which are U-valued generalizations of
the widely studied (real-valued) fractional Brownian motion (see Definition 1.4.7).
In Section 3.5.1 we show that, analogously to the real-valued case (see [147, Defi-
nition 2.1]), a fractional Q-Wiener process can also be expressed as a Mandelbrot—
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N 0.25 0.50 0.75 1 1.25 1.50 1.75 2 2.25 2.50 2.75 3

107! | 0.004 0.007 0007 0 0016 0042 0059 0 0298 1078 2111 0
1072 | 0.005 0.009 0009 0 0.024 0065 0098 0 0622 2568 5829 0
1073 | 0.005 0.009 0009 0 0025 0068 0.104 0 0.678 2.850 6.601 0

Table 3.2: Numerically approximated values of F, (¢, ), see (3.4.25), with ¢
from (3.4.26) and v := ¢(- — 2 — ) for certain values of y and é.

Van Ness type stochastic integral over R. Using this representation, we show that
fractional Q-Wiener processes are limiting cases of mild solutions to (3.4.1) as in-
troduced in Definition 3.4.4. Finally, in Section 3.5.2 we comment on the Markov
behavior of fractional Q-Wiener processes, and we propose possible directions in
which to extend or complement the present results of Section 3.3 to establish neces-
sary and sufficient conditions for (weak or N-ple) Markovianity.

The following definition was introduced in [68, Definition 2.1].

Definition 3.5.1. Let Q € Z}" (U). A U-valued Gaussian process (Wg (8) ter is called
a fractional Q-Wiener process with Hurst parameter H € (0,1) if

(E-WPD) E(W(n]=0forall teR;
(-WP2) Qp(s, ) = 3(1t1?H +s?H - |t - s*M)Q forall 5, r € R;
(f-WP3) Wg has continuous sample paths.

Here, (Qu(s, 1) ster S $1+(U) are the covariance operators of WQ, cf. (3.4.14).

Note that for H = %, the above definition reduces to a characterization of a stan-
dard (non-fractional) Q-Wiener process when restricted to [0, 00).

3.5.1. INTEGRAL REPRESENTATION AND RELATION TO Zy

Let Q € £} (U) and suppose that (WQ(£)) ser is a two-sided Q-Wiener process, see
Section 3.2.2. For H € (0, 1), define (Wg(t)),eR by

Wi :=f Ku(t,r)dwQ(r), teR, (3.5.1)
R
where the Mandelbrot-Van Ness [147] type kernel K7: R? — R is given by

_1 _1
Kult,r) = — [(r—r)f 2 _(-n¥ )| wner?. (35.2)
Cy

The constant Cyy = fy| (1~ 1""% = (-n™ [ dr = 32220, H+ 1) (where B
is the beta function) [168, Theorem B.1], ensures Qy(1,1) = Q, where (Q(t, )i, seR
denote the covariance operators of Wg . Then Wg has a modification which is a
fractional Q-Wiener process:
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Proposition 3.5.2. ForallteR, (3.5.1) yields a well-defined random variable Wg (1)

in I[? (Q,FfWQ,]P’; U), and there exists a modification of (Wg(t))teR which is a frac-
tional Q-Wiener process in the sense of Definition 3.5.1.

Proof. To see that Wg(t) € I2(Q; U), note that the Ito isometry (3.2.1) implies

E[|Wg ]3] =fR||KH(t, NQZIZ, , dr :troleKH(t, NI dr < 0.

Since Ky is a deterministic kernel integrated with respect to a mean-zero Gaus-
sian process wQ, it readily follows that Wg is also mean-zero Gaussian. For the
covariance operators (Qg/(t, 5)) r,seR Of Wg , we can argue as in the proof of Proposi-
tion 3.4.7 to find @H(t, $) = fR Ky (s, 1)Ky (t,r)dr Q =E[By(t)By(s)]Q forall t,s € R,
where By = (By(t)) er denotes (real-valued) fractional Brownian motion. It follows
that (f-WP2) holds by the properties of By. Lastly, the existence of a (Holder) con-
tinuous modification of (3.5.1) can be established analogously to the real-valued
case, by using that Wg is self-similar with stationary increments and applying the
Kolmogorov-Chentsov theorem [49, Corollary 3.10]. O

Now we consider the relation between the fractional Q-Wiener process and the
process Zy considered in Section 3.4. For € € (0,00), let Zf denote the mild solution

to (3.4.1) with A = £Idy and define the process (Zf () ,er bY
Z (1) := Y l/zr()f)(Zg(t) Z;(O)), reR. (3.5.3)

Note that Wg (#) can formally be written as the “convergent difference of divergent

integrals” C—lH[f_too(t - s)H‘% dwQ(s) - fi)oo(—S)H_% dw?Q(s)], cf. [147, Footnote 3].
This expression would correspond to € = 0 in (3.5.3), which is ill-defined as Assump-
tion 3.4.2(i) cannot be satisfied. However, the next result shows that a fractional
Q-Wiener process can be seen as a limiting case of Ef, ase 0.

Proposition 3.5.3. LetQ € .Z," (U) andy € (1/2,3/2). The family of stochastic processes
(E;)ge(om) defined by (3.5.3) converges uniformly on compact subsets of R in mean-

square sense to the fractional Q-Wiener process Wg in (3.5.1) with Hurst parameter
H=y- ass 1 0:

YTeO00: lim sup W2, 0-Z0] 00 =0
te[—

Proof. For t € [0,00), we can write

_ t
WyQ,l,z(t)—Zi(t) = f (t=9)"H(1-ec ) dw(s)

y-1/2 J0O

0
c f [(t=9)7  (1-e9) = (=) (1 - )] dW(s).
y—1/2 J—o0

+




114 3. MULTIPLE AND WEAK MARKOV PROPERTIES IN HILBERT SPACES

Applying the It6 isometry to each of these integrals and using the respective changes
of variables s’ := —s and s’ := r — s yields
L)+ (1)

”W (0 Z (t)”LZ(QU) —( rQ)?, (3.5.4)
7’

1 )
L) :=f s (1-e7%)" ds,
0

00
L(1) :=f |(|t|+S)Y_l(1—e_€(|t|+s)) N 1( —ss | ds.
0

I\)h—'

For t € (—o0,0) we find (3.5.4) by instead splitting into integrals over (—oo, t) and
(t,0) and changing variables s’ := t — s and s := —s, respectively. For t € [- T, T], the
elementary inequality 1 — e™* < x for x € [0, 00) yields the estimate

52| t|2y+l - 52 T2y+l

2l
Il(t)sezf 2V ds= < .
0 2y+1 2y+1

Applying the fundamental theorem of calculus to u — (u + )7} (1 — e €(“*+9)), fol-
lowed by Minkowski’s integral inequality [186, Section A.1], we find for I,:

oo, pltl 2
L(1) =f |f [y = 1)(u+ )7 2(1— e €U 9) 1 g(u+ s)Y‘le‘f(““)]du) ds
0 0

T, . poo 2 % 2
< |f [[ |y =D+ 21— e ) pg(u+5)Y e et ds] du|
o Lo

e[

(o0}
< s Tzf - 20-e )+ eV
0

where we performed the change of variables v(s) := e(u + s) on the third line.

The improper integral on the last line converges: As v | 0, the squares of both
terms are of order O(v?Y~2), where we again use 1 —e~? < v for the first term, and we
have 2y — 2 € (-1, 1); the square of the first term is of order OW? %) as v — oo, with
2y —4 € (—3,-1), whereas the second term decays exponentially. The convergence
thus follows by letting € | 0. O

2 o2
-’ 20-e )+ le? dv] : du|

2
dv,

3.5.2. REMARKS ON MARKOV BEHAVIOR
Now we consider the Markov behavior of fractional Q-Wiener processes with Hurst
parameter H € (0,1). Since the case H = l corresponds to a standard Q-Wiener
process, we find that WQ is simple Markov, whereas we can expect that WI? is not
weakly Markov for H # 1 5

In the real-valued case, the first published proof of non-Markovianity appears to
be [112], which shows that By is not simple Markov for H # % using a characteriza-
tion in terms of its covariance function. This result can be improved by applying the
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theory of [108, Chapter V] for Gaussian N-ple Markov processes to the Mandelbrot—
Van Ness representation of By. Namely, by [108, Theorem 5.1], any real-valued pro-
cess of the form (f_too K(t,s) dB(s))cRr is N-ple Markov for N € N only if there exist
functions (fj)j.V:l, (g]~)§.\’:1 such that K(s,t) = Zj.vzl fi(s)g;(r) for s, € R. The real-
valued kernel Ky in (3.5.2) satisfies this condition only if H = %

The question arises if one can generalize this characterization of real-valued N-
ple Markovianity to the case of Hilbert space valued Gaussian processes, such as
Wg and Zy (see Definitions 3.5.1 and 3.4.4, respectively). However, it is not evident
from the proof in the real-valued case what the analogous condition would be in the
Hilbertian setting. For instance, the kernel K(t,s) = S(t — s) of the simple Markov
process Z; factorizes as K(t,s) = S(£)S(—s) provided that (S(#)) ;>0 extends to a Cyp-
group (S(1));cr. Otherwise it is not guaranteed that such a factorization exists, and it
is not clear either whether this condition remains necessary for simple Markovianity
in the Hilbert space case.

In order to establish that Wg (or By) does not have the weak Markov property for
H# %, one could also attempt to associate a nonlocal precision operator to the pro-
cess and apply the necessary condition from Theorem 3.3.7. Formally, its coloring
operator £} actson f: R — U as L} f(t) = éfR Ky (t,s)f(s)ds for all £ € R. For
certain ranges of H, see for instance [168, Equation (31)], an explicit formula of its
inverse £y can also be determined. The operator £;I1 is bounded on some weighted
Holder space by [168, Theorem 6], but there is no reason to expect that it is bounded
on a Hilbert space such as L?(R; U). Therefore, Theorem 3.3.7 is not directly appli-
cable, as it would need to be extended to the Banach space setting, which is beyond
the scope of this chapter.

APPENDIX TO CHAPTER 3
3.A. AUXILIARY RESULTS

This appendix collects auxiliary results which are needed in the main text of the
chapter but have been postponed for the sake of readability.

3.A.1. CONDITIONAL INDEPENDENCE

Let G1,H,G2 < F be o-algebras on (Q, F,P). We first recall a characterization of
conditional independence, see [118, Theorem 8.9], from which we derive a lemma
which is useful for establishing relations between various (equivalent formulations
of) Markov properties defined in Section 3.3.

Theorem 3.A.1 (Doob’s conditional independence property). We have G, L4 G, if
and only if P(G, | G1 VH) =P(G2 | H) holdsP-a.s., for all Gz € G,.
Lemma 3.A.2. IfG, 1l 4, G,, then

@ GivH 1y Gy

(b) Gy Ly G, forany o-algebra ' 2 H such thatH' < G;;
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() Gi Ly G for any o-algebra H' 2 H of the form H' = H\ v H,,, where H},H},
are o -algebras satisfying Hy < Gi vH and H, = Go v H.

Proof. Part (a) is [118, Corollary 8.11(i)]; combining it with the identities G, = G; VH’
and H'=H v H' yields (b). To prove (c), first note that G; v H apvae G2 vV H by
parts (a) and (b). Applying (a) again, we find G, vH v 1] v, Go VH vH]. Since

HVH\SHVH =H =Hy,VH G VHVH],

part (b) yields Gy vH v H!| 1Ly Go vH vH, which proves (c) since G1 € Gi vH VH]
andgggggvHv”H’l. O

3.A.2. RESULTS RELATED TO ASSUMPTION 3.4.2(1)

Lemma 3.A.3. Let Assumption 3.4.1 be satisfied, i.e., suppose that the linear operator
—A: D(A) € U — U on the separable real Hilbert space U generates an exponentially
stable Cy-semigroup (S(t)) =0 of bounded linear operators on U. If Q € £*(U) and
Yo € (—00,1/2], then [ [ 1071S(1)Qz |
not hold foryy € (—oo,1/2].

2 _ . . .
‘2w dt = oo, that is, Assumption 3.4.2(i) can-

Proof. Fix any x € U with | x|y = 1. Then we have [S()QZ .1, = IS()Q2xlly
for all ¢ € [0,00). Since t — S(t)Q%x is continuous at zero and S(O)Q%x = Q%x, we
can choose § € (0,00) so small that ||S(t)Q%x||U > %IIQ%xIIU for all ¢ € [0,6]. For
Yo € (—o0,1/2], we then obtain

-1 1.2 Lot o 0 age-n)
fo | 70 S(t)Qz”,fz(U)thQ”sz”Ufo =7V dt = oo, O

Lemma3.A.4. Let Assumption 3.4.1 be satisfied. If Assumption 3.4.2(i) holds for some
Yo € (1/2,00), then it also holds for all y' € [y, 00).

Proof. The change of variables 7 := £/2, the semigroup property and (3.4.2) yield
TSR gy de =22 MG [ e s I, d
o Qg0 dt = of, ¢ I SMQ g,y dr.

For the latter integral, we split up the domain of integration and estimate each of the
resulting integrands to find

o , 1 oo rk _ ;L 1
e smQt i, gy dr= 3 [ eI s mQk i dr
0 k=17k-1

oo oo
—2w(k-1) 1.2(y'~y0) Yo-1 12
=Le k | I ISmQR I, dr <o,

. . _ TN B
where the series converges since |e 2K 20 10|t — ¢72% < ] as k — oo. O
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3.A.3. FILTRATIONS INDEXED BY THE REAL LINE

Proposition 3.A.5. A process (WQ(1))er satisfying (WP1) cannot be a martingale
with respect to any filtration (Fy) teR.

Proof. Suppose that (W?(£))cr is a martingale with respect to a filtration (F) cR.
Then the same holds for the real-valued process W}? (1) = (W), hyy, choosing
h e U such that (Q#h, h)%] > (0 to ensure that (Wi? (1)) ter has nontrivial increments. In
particular, (W,E2 (=n)) nen is a backward martingale with respect to (F_,) zen, imply-
ing that it converges P-a.s. and in L' (Q) as n — oo by the backward martingale con-
vergence theorem [97, Section 12.7, Theorem 4]. But this contradicts (WP1), since

(WhQ (—n)) en cannot be a Cauchy sequence in L' () as it has (non-trivial) stationary
increments. O

3.A.4. MEAN-SQUARE DIFFERENTIABILITY OF STOCHASTIC
CONVOLUTIONS

The following lemma concerning mean-square continuity and differentiation under

the integral sign is a straightforward generalization of Propositions 2.3.18 and 2.3.21

to stochastic convolutions with respect to a two-sided Wiener process. Its proof is

therefore omitted.

Lemma 3.A.6. Let 1y € [—00,00) be such that ‘P(-)Q% € L2(0,00; % (U)). Define the
interval T = [tp,00) if tp € R or T := R if tg = —oo. Then the stochastic convolution
(f[g W (t—s5)dWQ(s)) e is mean-square continuous.

If\I’(-)Q% € H(} (0,00;.%,(U)), then (ft'; W(t—s)dWQ(s)) er is mean-square differ-
entiable on'T and for all t € T we have

d t t
— | Yr-9dws) = | 8,¥(-s)dW?s), P-as.
dr to fp

3.B. FRACTIONAL POWERS OF THE PARABOLIC OPERATOR

Let A: D(A) € U — U be alinear operator on a real Hilbert space U. The proof of the
following lemma is analogous to that of Proposition 2.A.3 and is therefore omitted.

Lemma 3.B.1. Let (S, <7, 1) be a measure space such that L[2(S;R) is nontrivial and
consider the linear operator As on L?(S; U) defined by (3.4.7). If— A is the generator of
a Cy-semigroup (T (1)) ¢=o on U, then —Ag generates the Cy-semigroup (Ts(t)) =0 on
L2(S;U).

The next results are respectively analogous to Propositions 2.A.5 and 2.3.2.

Proposition 3.B.2. For every t € R, define the shift operator T (t) € £ (L*(R; U)) by
TWOf=f(-1forfe L2(R; U). The family (T (1)) ter is a Co-group whose infinites-
imal generator is given by —0;, where 0; is the Bochner—Sobolev weak derivative on
D(®,) = H'([R; U).
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Proposition 3.B.3. Suppose that Assumption 3.4.1 holds. The closure B of the sum
operator 0 + Ag exists and —B is the generator of the product Cy-semigroup given
by (Sr()T (1)) =0 on L*>(R;U), where (Sg (1)) =0 and (T (t)) =0 are as in (3.4.7) and
Proposition 3.B.2, respectively. The product semigroup satisfies

”SR(I)T(I)”LZ(R;U) = ||T(t)SR(t) ”LZ(R;U) = ”S(t) ||$(U) for allte R.

It follows that (Sg ()T (#)) =0 inherits the exponential stability of (S(#));>0, so that
fractional powers of B can be defined using the Phillips representation, cf. equa-
tions (1.3.3) and (1.3.4). Therefore, under Assumption 3.4.1,

1 (o) 1 o0
-y - y-1 - y-1 _
BYf(1 F()/)fo r’" = Sr(MT (N f(r)dr F(Y)fo rY7S(r) f(e—r)dr

for y € (0,00), f € L?(R; U) and almost all ¢ € R. We conclude that B~ = J7 for all
Y € [0,00), where the latter is defined by (3.4.5).



ABSTRACT NONLOCAL
SPATIOTEMPORAL
DIRICHLET PROBLEMS

The contents of this chapter are based on the article [197].

4.1. INTRODUCTION TO CHAPTER 4
4.1.1. BACKGROUND AND MOTIVATION

Space-time nonlocal problems involving fractional powers of a parabolic operator
arise in physics, biology, probability theory and statistics. The flat parabolic Sig-
norini problem and certain models for semipermeable membranes can be formu-
lated as obstacle problems for the fractional heat operator (3; — A)*, where s € (0,1)
and A denotes the Laplacian, acting on functions u: JxD — R for a given time inter-
val J <R and a connected non-empty open spatial domain D < R¢, see e.g. [13, 189].
In the context of continuous time random walks, equations of the form (3;—A)*u = f
for f: J x D — R are considered examples of master equations governing the (non-
separable) joint probability distribution of jump lengths and waiting times [39]. The
case where f is replaced by spatiotemporal Gaussian noise Y/’ has applications to the
statistical modeling of spatial and temporal dependence in data: The resulting class
of fractional parabolic stochastic partial differential equations (SPDEs) has been pro-
posed and analyzed in Chapter 2 and [140] as a spatiotemporal generalization of the
SPDE approach to spatial statistical modeling, which was initiated by Lindgren, Rue
and Lindstrom [142] and has subsequently gained widespread popularity [141].
After [189] and [160] independently generalized the Caffarelli-Silvestre extension
approach from the fractional elliptic to the parabolic setting, there has been a surge
of literature on space-time nonlocal problems involving fractional powers of the op-
erator 0, + L for more general elliptic operators L acting on functions u: D — R, see
for instance [15, 16, 25, 26, 77, 133, 143]. In particular, in [189, Remark 1.2], the nat-

119
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ural Dirichlet problem for the nonlocal space-time operator (0, + L)*, given by

{(at+L)su(t)x):f(trx)) (t,x)EJXDv
(4.1.1)

u(t,x) = gt,x), (t,x)e R\ (xD),

is introduced, where g: R+ (J x D) — R is a given function prescribing the values
of u outside of the spatiotemporal region J x D. The definition of (3; + L), given in
Section 4.2.4 below, generalizes that of the Riemann-Liouville fractional time deriva-
tive 0; (i.e., the case where L = 0) using the theory of semigroups. Equations involv-
ing only a fractional time derivative have been studied widely; see for instance the
monographs [81, 121, 169, 179] for an introduction to the subject.

In the integer-order case, the space-time differential operator is local, so that the
analog to (4.1.1) is an initial-boundary value problem. Identifying any function
u: JxD—Rwith u: ] — X, where J := (y,00) and X is a Banach space to be thought
of as containing functions from D to R, the corresponding infinite-dimensional ini-
tial value problem for s = 1 is the abstract Cauchy problem

{(at+A)u(t)—f(t), tel, 412
u(ty) =xeX.

Here, A: D(A) € X — X is a linear operator, whose domain D(A) can be used to
encode (Dirichlet) boundary conditions, and f: J — X is a given forcing function.
Although there exist various definitions of solutions to (4.1.2) (e.g., mild, strong and
LP-solutions, see Section 4.2.3), the main focus of this chapter is on mild solutions.
The mild solution to (4.1.2) can only be defined under the assumption that — A is the
infinitesimal generator of a suitably regular semigroup (S(#)) >0 of bounded linear
operators on X, see Section 4.2.2. If, moreover, the right-hand side f is sufficiently
(Bochner) integrable, then the mild solution of (4.1.2) is defined by

t
ul®)=St-t)x+ | St-1)f(r)dr, te], (4.1.3)

to

which is commonly known as the variation-of-constants formula, by analogy with
equation (1.1.4) in the finite-dimensional case.

In this chapter we consider a counterpart of (4.1.1) in the abstract setting of (4.1.2),
namely the following Dirichlet problem for (0, + A)® with s € (0,00) \N:

{(at + A u(r) =0, 1€ (fp,00),
(4.1.4)

u(t):g(t)r tE(—OO, tO])

where g: (—oo, fo] — X. We restrict ourselves to J = (fy,00) since (3; + A)*u(¢) de-
pends only on the values of u to the left of ¢ € R, see Section 4.2.4 below. Moreover,
we only consider f = 0 since the problem is linear in z and the mild solution formula
for f #0and g =0 (or J =R) is known to be given by a Riemann-Liouville type frac-
tional parabolic integral, cf. [189, Theorem 1.17]. We will define the concept of an
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LP -solution to (4.1.4), and show that it can be expressed in terms of g and (S(#)) 0
in the following way:

sin(r{s})) [ s
u(t) = f S((t—t)T+1)glto—(t—1to)T)dT
b4 o T+1

Ls] (t— to){5}+k—1 (415)

Y S(t- 1)@+ A (1), e (fy,00),
& s+ h) ( 0)[(0r+ A) gl(t) (fp,00)
where I" denotes the gamma function and s = [s| + {s} for |s] € Ny and {s} € (0, 1).
This formula generalizes (4.1.3) to fractional orders, and is therefore taken as the
definition of the mild solutionto (4.1.4).

4.1.2. CONTRIBUTIONS

The main contribution of this chapter is the introduction and motivation of (4.1.5)
as the definition of the mild solution to (4.1.4) for s € (0,00) \ N and bounded con-
tinuous g, rigorously formulated in Definition 4.4.2. This definition is motivated by
Theorem 4.4.5, which shows that L” -solutions to (4.1.4) satisfy (4.1.5) under certain
natural conditions. Although its proof relies on the uniform exponential stability
of (S(1)) =0, the resulting formula is well-defined under the more general assump-
tion that (S(#)) = is uniformly bounded. In particular, this includes the case A =0,
meaning that (4.1.5) with S(-) = Idx can be viewed as a solution to the Dirichlet
problem associated to the fractional time derivative 03. Likewise, if (S(#)) >0 is uni-
formly exponentially stable, then the integral in (4.1.5) also converges for {s} =0, so
that (4.1.5) remains meaningful for integers s = n € N and reduces to the integer-
order solution formula:

n-1 (t— tO)k k
ut)=y g S= W@+ A)TgNto), L€ (to,00).
k=0 :

If (S(#)) >0 is merely uniformly bounded, then we can still show that the first term
of (4.1.5) converges to S(t— fy)g(ty) as {s} 1 1 for all t € (¢y,00), see Proposition 4.4.7.
For constant initial data g = x € X, we find that (4.1.5) can be conveniently expressed
in terms of an operator-valued incomplete gamma function, see Corollary 4.4.8.

In addition to (4.1.5), we define solution concepts for the Cauchy problems associ-
ated to fractional parabolic Riemann-Liouville and Caputo type derivative operators
(see Proposition 4.5.1 and Definitions 4.5.2 and 4.5.3) for comparison. The higher-
order terms comprising the summation in (4.1.5) turn out to be analogous to the
corresponding terms in the Riemann-Liouville solution. The integral term in (4.1.5),
however, is continuous at #y under mild conditions on (S(#));>¢ or g, in contrast
to the lowest-order term in the Riemann-Liouville formula, which has a singularity
there. As opposed to the Caputo type initial value problem, the solutions to (4.1.4)
are in general different for distinct s;, s, € (1, n+ 1) for n € N.

To the best of the author’s knowledge, the solution formula given by (4.1.5) is new
even in the scalar-valued case X :=C, A:=a¢€ @Jr and (S(1)) ;=0 = (%) =0, as are
the Riemann-Liouville and Caputo type solutions for a € C, \ {0}.
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4.1.3. OUTLINE

This chapter is structured as follows. In Section 4.2, we establish some notation and
collect preliminary results regarding semigroups, fractional calculus, first-order ab-
stract Cauchy problems and the Phillips functional calculus associated to semigroup
generators. These notions are first used in Section 4.3 to investigate problem (4.1.4)
for fy = —o0, i.e., in the absence of prescribed initial data. Section 4.4 is concerned
with the rigorous definition of mild and L -solutions to (4.1.4); after establishing the
relation between these two concepts, we focus on the mild solution and establish
some of its most important properties. The comparison with the solution concepts
associated to Riemann-Liouville and Caputo type initial value problems is presented
in Section 4.5.

4.2, PRELIMINARIES FOR CHAPTER 4
4.2.1. NOTATION

In this section we mainly highlight notation which deviates from the previous chap-
ters or was not used there. We write | -] and [-] for the floor and ceiling functions;
the fractional part of a € [0,00) is defined by {a} := a—|a]. The open and closed right
half-planes of the complex plane are denoted by

C,:={zeC:Rez>0} and C,:={ze€C:Rez=0},

respectively. The identity map on a set B is denoted by Idg: B — B and we write
1p,: B — {0,1} for the indicator function of a subset By < B. The Banach space of
bounded continuous functions u: J — X, endowed with the supremum norm, is
denoted by (Cp (J; X), || + lloo)-

4.2.2. STRONGLY MEASURABLE SEMIGROUPS

In what follows, we exclusively consider operators A for which — A generates a locally
bounded strongly measurable semigroups (S(#)) ;=0, which satisfy

IMy€e (1,00, weR: SOl ¢x) <Moe ™", Vie(0,00). (4.2.1)
More precisely, we impose the following assumptions throughout this chapter.

Assumption 4.2.1. Let —A: D(A) € X — X be the infinitesimal generator of a locally
bounded strongly measurable semigroup (S(1)) ;>0 € -Z(X), which satisfies (4.2.1).
More precisely, we suppose that (5(¢));>¢ is either

(i) uniformly bounded, meaning that w € [0,00), or
(i) uniformly exponentially stable, meaning that w € (0, 00).
We may sometimes additionally assume that (S(#)) ;>¢ is

(iii) bounded analytic, i.e., (0,00) 3 t — S(t) € £(X) admits a bounded holomor-
phic extension to £, := {z € C: |arg z| < ¢} for some ¢ € (0, %n).
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4.2.3. FIRST-ORDER ABSTRACT CAUCHY PROBLEMS

Recall the Definitions 1.1.12, 1.1.14 and 1.1.13 of strong, mild and L”-solutions, re-
spectively, to the first-order abstract Cauchy problem (4.1.2). These are readily gen-
eralized to intervals J = (#y, co) for nonzero #; € R. The following is a slight extension
of [115, Proposition 17.1.3] for the class of time intervals considered in this chapter.

Proposition 4.2.2. Suppose that Assumption 4.2.1(ii) holds. Let J := (tp,00) for a
given fy € [—00,00), f € LP(J;X) for some p € [1,00] and x € D(A) if to € R. Then,
for every u e Cy,(J; X), the following assertions are equivalent:

(@) u isastrong solution of (4.1.2) in the sense of Definition 1.1.12;

(b) u is the mild solution of (4.1.2) in the sense of Definition 1.1.14 and u is (classi-

cally) differentiable almost everywhere with u' € Llloc(j; X);

(c) u is the mild solution of (4.1.2) in the sense of Definition 1.1.14, u(t) € D(A) for
almostallte J and t— Au(t) € Llloc(];X).

Proof. If tp € R, then it is easy to see which modifications of the proof of [115, Propo-
sition 17.1.3] are necessary. Thus, we only elaborate on the case fy = —co. Let L€ C
be such that AIdx +A admits a bounded inverse; since the semigroup (S(#)) ¢ is
uniformly bounded we can take A = 1; see (1.1.8).

(a) = (b): For u as in Definition 1.1.12 and ¢ € R, we define v: (—oo, t] — X by

v(1) = Aldx +A)7'S(r =1 u(r), TE (—00,1l.

Fixing ¢’ < t, and arguing as in the original proof—except for integrating over (¢, r)
instead of (0, £)—we find

t
u(t) = St — u(t) +f S(t—1) f(@) dr.
[’

As t' — —oo, the first term vanishes by u € Cy, (R; X) and Assumption 4.2.1(ii), and the
second term converges to f_too S(t—1) f(7) dr by dominated convergence.
(b) = (a) and (c) = (a): Use the following analog to [115, Equation (17.4)]:

t t
fA(udX+A)*1u(r)dT=—(udX+A)*1 u(t)—u(O)—f f(r)dr]. 0
0 0

4.2.4. FRACTIONAL PARABOLIC CALCULUS

Under the assumption that — A generates a semigroup (S(#)) >0 satisfying Assump-
tion 4.2.1(ii), we define the fractional parabolic integration and differentiation oper-
ators J° and ©°, which are the rigorous definitions of the expressions (3; + A)~* and
(0; + A)® from Section 4.1, respectively.

The operators (J°)ej0,00) Were defined for Hilbert spaces in Section 3.4.2. The
defining formula is the same for Banach spaces, and the resulting operators have
the following properties, which will be used throughout this chapter:

Proposition 4.2.3. Suppose that Assumption 4.2.1(ii) is satisfied. Let p € [1,00] and
s€[0,00). The following assertions hold:
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(@ 3% € L (LPR; X)) with | 3° Il o 1r.x)) < 2.

(b) 3% e L (LPR; X);Cp(R; X)) if
{p =1 and se€[l,00), or, 4.2.2)

pe(l,o0) and se (1/p,00).

(c) I1T%2u =752y q.e. forall sy, s € [0,00) and u € LP (R; X).

@d) Givenxe X, ifpe(l,==) and s, € (0,1) or p € [1,00] and s € [1,00), then

’ 1—51

ks, ® x€ LP(R; X) and 3% (ks, ® X) = kg, +5, ® X for all s, € [0,00).

N

Proof. Estimate (4.2.1) implies || ksll ;1. ¢ (x)) < Mow™
inequality [186, Section A.1] yields (a).

If p" € [1,00] is such that - + % =1and u € LP(R; X), then k€ L” (R; £ (X)) for
s as in the statement of (b), and the result follows from Hélder’s inequality and the
continuity of translations in LY(R; X) or L9 (R; .Z (X)) for g € [1,00).

Assertions (c) and (d) follow by combining the semigroup property of (S(t)) =0,
Fubini’s theorem and [163, Equation (5.12.1)]. O

, so that Minkowski’s integral

For p € [1,00], let WLP(R; X) denote the Bochner-Sobolev space consisting of
functions u € LP(R; X) whose weak derivative d;u also belongs to L (R; X). Iden-
tifying A: D(A) € X — X with the operator

A: LIP(R;D(A) € LP(R; X) — L (R; X)

defined by [Au](-) := Au(-), we can view 3, + A as an operator on LP (R; X) with do-
main LP (R; D(A)) nWLP(R; X) as in Section 1.1.4. In conjunction with the operators
(3%)s=0, this leads to the definition of the Riemann-Liouville type fractional parabolic
derivative of order s € [0,00):

DSu= @, + A5y,

Sy . P . vy . ~s1—s [s] (4.2.3)
ueD@®%) ={uel’R;X):3"*ueD(@,+A) "}

Note that we do not explicitly indicate the dependence of ©° and J° on p € [1,00] in
the notation, instead leaving it to be inferred from context.

Remark 4.2.4. While the terminology “fractional parabolic” is inspired by the case
A = —A acting on a function space such as X = L?>(D), our setting is considerably
more general.

4.3. FRACTIONAL-ORDER INHOMOGENEOUS ABSTRACT

CAUCHY PROBLEM ON R

In this section, we consider the inhomogeneous abstract Cauchy problem associ-
ated to the fractional operator ®° on J:=R:

Diu(t) = f(r), teR, (4.3.1)
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where f € LP(R; X) for s € (0,00) and p € [1,00]. Recall that the Hilbert space case
(X = U and p = 2) was already considered in the previous chapter, see (3.4.4). The
solution concepts for (4.3.1) which we will define are the following fractional-order
analogs to the notion of LP-solutions and mild solutions (given by Definitions 1.1.13
and 1.1.14, respectively).

Definition 4.3.1 (LP-solution). Suppose that Assumption 4.2.1(ii) is satisfied. Let
s€(0,00), p€[l,o0] and f € LP(R; X). Then u € LP(R; X) is called an LP-solution
to (4.3.1) if u € D(®?) and equation (4.3.1) holds almost everywhere on R.

It is a consequence of Proposition 4.3.3(b) below that the LP-solution to (4.3.1) is
unique if it exists. The question of existence of the LP-solution for all f € L”(R; X) is
highly nontrivial: Recall from Section 1.1.4 that in the case s = 1 it characterizes the
maximal LP-regularity of R. Since the present chapter is primarily concerned with
the concept of mild solutions (which are defined in the same way as in Section 3.4.2)
we do not investigate this matter further.

Definition 4.3.2 (Mild solution). Suppose that Assumption 4.2.1(ii) is satisfied. Let
s€(0,00) and p € [1,00] satisfy (4.2.2). The mild solution to (4.3.1) with f € LP(R; X)
is the function u € Cy (R; X) defined for all £ € R by

t
u(t):=J3f(1) = L[ (t—-7)1S(t-1) f(r) dr.
I'(s) J-co

The mild solution exists and is unique by definition, since it is given by an explicit
formula. Moreover, in view of Proposition 4.2.3(b), it is indeed continuous under the
given assumptions on s and p.

The next proposition shows that the fractional parabolic derivative and integral
are inverse to each other whenever the respective left-hand sides are well-defined. In
particular, it implies that LP-solutions are mild solutions whenever the parameters
sand p are such that (4.2.2) holds, see Corollary 4.3.5 below.

Proposition 4.3.3. Suppose that Assumption 4.2.1(ii) holds. Let s € [0,00), p € [1,00]
and u € LP (R; X). Then the following assertions hold:

(@ If7FueD®%), then®’J u=ua.e.
(b) Ifue D(®%), thenT*D°u=ua.e.

Proof. (a) For s = 1, v := J'u is the mild solution to (4.1.2) with f:=ue L”(J; X).
Moreover, since v € WP (J; X) n LP (J; X), the conditions of Proposition 4.2.2(b)-(c)
are satisfied, so that v is a strong solution, which proves the base case.

Now let k € N and suppose that (a) holds for s = k. If gktly e D@, then
by definition we have 3*!'u € D(®F) and ©¥3%*1y € D(®'). In view of Proposi-
tion 4.2.3(c), this means that 3¥3'y € D(®F) and D¥3%3'u e D(®'). Combining the
former expression with the induction hypothesis yields

@kjk+l u= @kjkjl u= jl u, ae., (432)

and thus J'u € D(®1) by the latter. It follows that D!J'u = u a.e. by the base case
of (a). Using (4.3.2) once more, this becomes DIDkgk+ly = 4y a.e., whose left-hand
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side equals ©**13%*1y a.e. by the definition of integers powers of ®. This proves (a)
for s = k+1, and thus for all s € N by induction.

For s € (0,00) \ N, the assertion follows upon combining the definition (4.2.3) of ©°
with Proposition 4.2.3(c) and the integer case:

D u=@,+ ATy =@,+ AFIIET9 =y ae.

(b) The case s = 1 follows from Proposition 4.2.2 (a) = (b) with f := v’ + Au, and
the integer case follows by induction. For fractional s, fix u € D(®*) and note

jfﬂ—sjscosu — 3[51—sjs(at +A) Mj[ﬂ—su — 3[81 ©; + A) Mjfﬂ—su — j[s]—su,
holds a.e. Since (a) implies that 31~ is injective, we conclude J*DSu = u a.e. O
Combining Propositions 4.2.3(b) and 4.3.3(b) yields the following corollaries:

Corollary 4.3.4. Suppose that Assumption 4.2.1(ii) holds. If s € [0,00) and p € [1,00]
satisfy (4.2.2), then we have D(D%) < Cp (R; X).

Corollary 4.3.5. Suppose that Assumption 4.2.1(ii) is satisfied and let u be an LP -
solution to (4.3.1) in the sense of Definition 4.3.1 for some s € (0,00), p € [1,00]. If s
and p satisfy (4.2.2), then u is the mild solution in the sense of Definition 4.3.2.

Proof. If uis an LP-solution, then u € D(D%) and ©°u = f holds almost everywhere.
Thus, by Proposition 4.3.3(b), we can apply J° on both sides to obtain u = J°f a.e.,
and we have u € Cy (R; X) by Corollary 4.3.4 (or by Proposition 4.2.3(b) directly). O

4.4. DIRICHLET PROBLEM ASSOCIATED TO THE

FRACTIONAL PARABOLIC DERIVATIVE OPERATOR
In this section we turn to the main subject of the present chapter, namely the natural
abstract Dirichlet problem associated to ©°, which consists in finding a function
u: R — X satisfying

{@su(t) =0, t € (tp,00),
(4.4.1)

u(t)zg(t)) tE(—OO, tO]r

for s € (0,00), tp € Rand g: (—oo, p] — X. Recall from Section 4.2.4 that ©° denotes
the Riemann-Liouville type fractional parabolic differentiation operator acting on
functions from R to X, which is our interpretation of the operator (3, + A)* appearing
in (4.1.4).

As in the previous sections, we begin by defining the notion of an LP-solution
to (4.4.1) (cf. Definitions 1.1.13 and 4.3.1), and subsequently define the mild solution
(cf. Definitions 1.1.14 and 4.3.2), which is the rigorous formulation of the solution
formula formally given by (4.1.5). As before, we note that the existence and unique-
ness of the mild solution are immediate from the definition; for the LP-solution, we
have uniqueness but the matter of existence is outside of the scope of this chapter,
analogously to the discussion below Definition 4.3.1.
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Definition 4.4.1 (LP-solution). Let Assumption 4.2.1(ii) be satisfied and suppose
that s € (0,00), p € [1,00], tp € R and g € L” (—oo, tp; X). Then u € LP (R; X) is called an
LP -solution to (4.4.1) if u € D(®®) and both equations in (4.4.1) hold almost every-
where on their respective sub-intervals of R. In particular, g € D(D*) on (—oo, fy].

Definition 4.4.2 (Mild solution). Let Assumption 4.2.1(i) be satisfied, suppose that
s€(0,00), pe[l,00], tp € R are given and let g € Cy, ((—o0, fp]; X) ND@6-YV0) be such
that D~DV0g e Gy ((~oo0, to]; X). The mild solution to (4.4.1) with initial datum g is
the function u € C, (R \ {#p}; X) defined by

u(t) =gy, te(-ootl,

and, for s € (0,00) \ N,

sin(r{sh) [ =i
u(t) = f S((t—t)T+1)glto— (t—to)T)dT
b4 o T+1

s (t_to){s}+k—1 ek 442)
- S(t-ty)DT 0, te (i, ,
-1 LUst+k) (t=to) 8(to) € (5,00)
whereas for s = n € N, we set
n-1 k
(t—to)

u)=y k,O S(t—t0)D*gto), t€ (ty,00). (4.4.3)

k=0 :

The following proposition shows that the mild solution is indeed well-defined in
the sense that it possesses the continuity properties asserted in Definition 4.4.2. Its
proofis postponed to Section 4.4.1, in which we also state and prove some additional
properties of the mild solution.

Proposition 4.4.3. Suppose Assumption 4.2.1(i) holds. Let s € (0,00), p € [1,00],
to € R be given and let g € LP (—oo0, ty; X) be as in Definition 4.4.2. Then the mild solu-
tion u to (4.4.1) satisfies u € C, (R \ {£p}; X) and, for all t € (£, 00),

lu(dllx < MoT(s, w(t - tg)) max{lglloo, 1D g(t)llx, .., 1D g(t0) I x},

where My € [1,00) and w € [0,00) are as in (4.2.1).
If moreover g(t),@““kg(to) e D(A) forall t € (oo, ty] and k €1{0,...,|s]}, then we
in fact have u € Cy(R; X).

Remark 4.4.4. Let us emphasize that the solution formula can fail to be continuous
at tp even in the first-order case u(t) = S(t — tp)x if x ¢ D(A). As an example, we can
take X = Cp(R), A= —A and x(¢) = sin(é?). Then —A generates the analytic heat
semigroup and D(A) = Cyp(R) is the space of bounded and uniformly continuous
functions on R, cf. [146, Corollary 3.1.9]. In this case, [|u(f)[loo < 1 for all £ € [£y,0),
but S(f — fy) x does not converge uniformly to x as ¢ | £,.

The motivation for the solution formulae in Definition 4.4.2 is provided by the
following theorem, which shows that any L”-solution to (4.4.1) is a mild solution
whenever s € (0,00) and p € [1,00] are such that (4.4.2)—(4.4.3) are meaningful.
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Theorem 4.4.5. Suppose that Assumption 4.2.1(ii) is satisfied and let u be an LP -
solution to (4.4.1) in the sense of Definition 4.4.1 for some p € [1,00], s € (0,00) and
to € R. If s and p satisfy (4.2.2), then u is the mild solution to (4.4.1) in the sense of
Definition 4.4.2.

The proof of Theorem 4.4.5 is presented in Section 4.4.2, where the integer-order
and fractional-order cases are treated separately. Before proceeding to the next sub-
section, we consider the following important example of a situation in which we can
write down an explicit mild solution formula for (4.1.2):

Example 4.4.6 (The fractional heat operator (3; — A)* on 1?2 (Rd)). Let us consider
the function space X = IL2(R9) and differential operator A =—-Aford €N, i.e, the
negative Laplacian on the full Euclidean space R%. From Example 1.1.16, we know
that —A = A generates the heat semigroup (S(#)) =0, which is given by the (spatial)
convolution with the Gauss-Weierstrass kernel. Substituting it into equation (4.4.2)
for some sufficiently regular initial datum function g: (—oo, fp] x R? — R, we obtain
an explicit formula for the mild solution u: R4+l _ Rto (4.4.1). For example, if {p =0
and s € (0, 1), then we have for all (t, x) € (0,00) x R4:

” )_sin(ns)foof T_SK ( Je(—r7. v dyd
ult,x) = o pd T+ 1 e+ X —Y)g=17,y)dy dr

_ sin(ws) s llx— yIIRd
_n(@)df f (T+1)” g- exp( Y )g( t7,y)dydr.

If s € (1,2) (still with £y = 0), then we instead find for all ¢ € (0,00) and x € R4:

_ sin({s}) s lx— ylle ~
u(t,x)—”( _47”)df fRd (T+1)” §- exp( 4t(r+1)) (—tr,y)dydr

I{S} (s}

The fractional parabolic derivative ©¢ f of any sufficiently regular f: R — X (e.g.,
f € D(®")) admits the following Marchaud type representation for all a € (0,1) and
t € R (cf. equation (1.3.7), [148, Proposition 3.2.1] or [189, Equation (1.2)]):

1 (o)
DIf(1) = mfo 0" S0 f(t-0) - f(N] do

Therefore, supposing that g is sufficiently regular, we have for all ¢ € (0, c0),

t{S}
I'({s}+1)
£ sin(m{s}) f"oa_{s}_l

0

S(HD g(0)

[S(t+0)g(—0) - S(1)g(0)] do

TSt + 1) g(-T1) - S(Hg(0)] dr,

sin(m{s}) f"o
0
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where we used the reflection formula for the gamma function [163, Equation (5.5.3)]
to obtain the prefactor on the second line, and the change of variables o = ¢7 for the
third line. Substituting the heat semigroup once more, we obtain, for all x € R4 R

t{S}
T(si+1)
:wf f 79K (x - 1)8(0,) — Kiaan) (x - 1) g (=Tt y) dy dT
/2 0 JR4

2
_sinrtsh (o gap o 107 VlR
_ﬂ(\/4m)dfo fRdT [exp A Jg©.7)

[S()D™ g (0)](x)

2
X =yl

m)g(—n,y)] dydr.

da
-(T+1) 2 exp(—
Substituting this into (4.4.4), we conclude that the mild solution to the Dirichlet
problem associated to the fractional heat operator (3; — A)¥, with s € (1,2) and suffi-
ciently regular initial datum g, admits the explicit expression

2
_sin({s}) [ et o (X VIR
u(t’X)_ﬂ(\/4nt)dfo fRd[T exp( 4t )g(O,y)
lx—yl2

_,_(T—{s}(.[_,_l)—%—l_T—{s}—l(.[_'_l)—%)exp(_ R4

m)g(— t‘r,y)] dydr

for all (£, x) € (0,00) x R,

4.4.1. PROPERTIES OF THE MILD SOLUTION

In this section, we further investigate the mild solution concept introduced in Def-
inition 4.4.2 by establishing some of its key properties. To this end, we start with
the central observation that formula (4.4.2) has close connections to the normalized
upper incomplete gamma function, whose principal branch T(a,): C\(-o00,0) — C
for a € C; is defined by

f(a,z)::Lf (et d;, zeC\(-00,0),
I'a) Jz

integrating over any contour from z to co avoiding (-o0,0), see [163, Chapter 8].
The relation to (4.4.2) follows from the following identities. For every a € (0,1) and
z € C,; u{0}, [163, Equations (5.5.3), (13.4.4) and (13.6.6)] yield

— sin(ma) [ 17¢
T(a,z) = (@) f rﬂ“*” dr. (4.4.5)
T 0 T

In particular, for # € (0,00), the change of variables o := (1 + 7) produces

_ ta 3 o0
T(a,tz) = o009 f (0 -0"% e % do. (4.4.6)
4 t
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Moreover, for a € (0,00) and n € N, we have the following recurrence relations [163,
Equations (8.8.12) and (8.4.10)]:

la]  Sk+{a}-1 2 T n-1 ,k z
T(a,2) =T(a}, z)+zm , T(nz)= kzok'e . 4.4.7)

As a first application of these identities, we present the following proof:

Proof of Proposition 4.4.3. The estimate on || u(#)| x follows by applying the triangle
inequality, (4.2.1) and identities (4.4.5)-(4.4.7) to (4.4.2). The continuity assertions
rely on the strong continuity of (S(#)) >0, see the remarks below Assumption 4.2.1.
They are immediate for the terms involving ©'"**g(f,). For the integral term, we
note that the norm of the integrand is dominated by 7 — Mj|| gIIOOT;—:Sl}, which is in-
tegrable in view of (4.4.5). Combined with the continuity of the function

t—S((t—10)(T+1)) gt — (£ —tp))

on (fy,00) and possibly at £y, the dominated convergence theorem yields the result.
O

Next we comment on the precise way in which the fractional-order mild solution
formula (4.4.2) of Definition 4.4.2 reduces to formula (4.4.3) for integer orders s =
n € N. Substituting s = n (i.e., | s] = n and {s} = 0) in the higher-order terms of (4.4.2)
and shifting the index of summation yields

n—1 (r— tO)k

>

S = 10)[@; + A gllt), Ve (15,00), (4.4.8)
k=0 :

as desired. Moreover, the first term in (4.4.2) vanishes as required, provided that
the integral remains convergent for {s} = 0. This occurs under Assumption 4.2.1(ii),
but may fail in general if only Assumption 4.2.1(i) is satisfied, hence in this case we
cannot argue via direct substitution. Instead, we have to consider limits as s — n.
Let u; denote the mild solution from Definition 4.4.2 of order s € (0,00) \ N. Then

sin(me) [ 17¢

e (1) = SS((t = 1) T+ D)gllo— (1~ 1) dT  (4.49)
i IO)M S(t— 1) D € g (1) (4.4.10)

o T(k+e+1) ’ o
e (D) = Sm(m i SS((t= 1) T+ D)glto— (= 1) dT  @.411)
Z r((tk fO)i ; S(t— to)D* € g(ty), (4.4.12)

for € € (0,1) and ¢ € (fy,00). Substituting € = 0 into the summations on lines (4.4.10)
and (4.4.12), and comparing the resulting expressions with (4.4.8), we see that the
integral terms on lines (4.4.9) and (4.4.11) should converge to zero and S(t— o) g(%),
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respectively, as € — 0, in order to recover the integer-order case (formally, since we
cannot expect the continuity of ¢ — ©**¢ g (#,) in general). The following proposition
states when these convergences hold:

Proposition 4.4.7. Ler tg € R and g € Cy((—oo, fp]; X) be given. If Assumption 4.2.1(i)
is satisfied, then for all t € (ty,00) it holds that

sin(e) f°° 71
T o T+1

S((t—to)(T+1)g(to—(t—1tp)T)dr — S(t —19)g(ty) ase—0.

If, in addition, Assumption 4.2.1(ii) is satisfied, then
sin(re) f"o T7¢
0

T T+1

S((t—t)T+1)glto—(t—1tp)T)dT =0 ase—0. (4.4.13)
Proof. Fix tp € R and ¢ € (fp,00). First we define the function f; 5 : R — X by

S(t—ty—r)gltg+71), T1E(—00,0];

fow(r):= {S(t— t0) g (to), r € (0,00),

which is bounded and continuous at r = 0 by the assumptions on (S(#)) ;>0 and g.
Next, for any € € (0,1) we define ¥, ¢, : R — [0,00) by

(t — tp)' "¢ sin(we) 1 el
Yite(r) = 0f(w (t—to);'re™, reR.

Shifting the integration variable by ¢ — #, and applying (4.4.6) with s=1-eand z=0,
we find

(t—to)!“Esin(me) [

fRWt,to,e(r) dr = I’_l(r—(t—t()))g_l dr=1.

T t—to

Moreover, we have for any 6 > 0:

_ 1-¢€ o3 [e9)
f (W 10,e(r)dr = (t~fo) " sin(re) f (r+t-
{|r|=6} )

3 (t—tp) "€ sin(me) foorg_zdr: (t—19)' "6 'sin(me)  (t—1)-0 0
b4 5 n(l-¢) o

) el dr

as € — 0. Together, these observations show that the family (¥ 4,¢)¢e(0,1) forms an
approximate identity as € — 0 in the sense of [94, Definition 1.2.15]. Since the change
of variables o = (t — p) 7 yields

sin(ze) f"o 7e-l
T o T+1

S((t=1)(T+1)gto— (1= 1)T) AT = [Wr,15,¢ * f1,,1(0),

the first assertion now follows by applying the obvious vector-valued generalization
of [94, Theorem 1.2.19(2)], which gives

[We,t9,e * [1,60]1(0) = f1,60(0) = S(£ — 1) g (o) ase— 0.

For the second assertion, suppose that Assumption 4.2.1(ii) holds. By Proposi-
tion 4.4.3, the left-hand side of (4.4.13) is bounded above by MyI'(e, w(t — 1))l glloo
for all £ € (#,00). Since w(t — fy) > 0, this expression tends to zero as € — 0. O
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The final corollary concerns the choice g = x € D(A®~PV9) in Definition 4.4.2, in
which case the solution can be expressed in terms of an operator-valued counterpart
of the upper incomplete gamma function. Namely, for a € (0,1) and ¢ € (0,00), we
use the Phillips calculus from Definition 1.3.2 to define

t% Yo —-1)7%
" * do

I(a, tA) = [z—T(a, 2)](A) = L F@)I(1-a)

(A) e Z(X),
see (4.4.6). For a € [1,00), such a Laplage transform representation is no longer avail-
able, so in this case we instead define I'(a, tA) by analogy with (4.4.7):

la] tk+{a}—1

T — T k+{a}—1 a-1
I'(a,tA)x =T({a}, tA)x + k;l —F(k+ @ A S(Hx, xeDA" ). (4.4.14)

For ¢ = 0 we set I'(a, 0A) := Idx. Although T'(a, tA) is unbounded in general, we recall
that under the additional Assumption 4.2.1(iii) we have, cf. [165, Chapter 2, Theo-
rem 6.13(c)]:

VB E[0,00), IMp € [1,00): |APS(0)ll .oy < Mgt Pe ™!, Vi€ (0,00). (4.4.15)

Putting these observations together, we obtain the following formula for the solution
with initial datum g = x:

Corollary 4.4.8. Suppose Assumption 4.2.1(i) holds. Let s € (0,00) \N, p € [1,00] and
tpeR. If g = x for some given x € D(ASDY0Y and s € (0,1) or Assumption 4.2.1(ii)
holds, then the solution u to (4.4.1) from Definition 4.4.2 becomes

u(®) =T (s, (t—tg) A)x, Yte (t5,00). (4.4.16)

If, in addition, s € (0,1) or Assumption 4.2.1(iii) is satisfied, then

_ sl M .
lu)lix < [ MoT (s}, w(t— 1)) + e w10 - kL

e rywt] [0S (4.4.17)
k=1

where w € [0,00) and My, My}, ..., Ms € [1,00) areas in (4.2.1) and (4.4.15).

Proof. The substitution g = x and the change of variables o := (f — f)(1 + 7) in the
first term of (4.4.2) produces

sinGrish) ;e f o7 o - (t-1p)"¥S(0) do x,
/1 ]

which is equal to T({s}, (£ — f5) A) x by (4.4.6).
Now suppose that s € (1,00) and let Assumption 4.2.1(ii) be satisfied. Then for any
a € [0,00) we have

1 o0
J%g(1) = m[ 1971S()xdr = A %
0
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by the Phillips representation of negative fractional powers (cf. (1.3.4)), so that
@ﬁg(t) - (at_,_A)fﬁijﬁ]*ﬁg(t) = AP AB=1B1 . — APy

for all S € [0, s —1], hence the remaining terms of (4.4.2) become

s] (t— to){s}+k—l

St - ) Ay,
< T(s}+ k) (£~ 1) o

k

proving (4.4.16) in view of (4.4.14). Finally, estimate (4.4.17) follows from the in-
equalities (4.2.1) (and (4.4.15)). O

4.4.2. PROOF OF THE RELATION BETWEEN MILD SOLUTIONS AND
LP-SOLUTIONS

The aim of this section is to prove Theorem 4.4.5. We will prove the integer-order
and fractional-order cases separately in the following two subsections. Before pro-
ceeding to do so, we make a preliminary observation which applies to both cases:

If Assumption 4.2.1(ii) holds, and u € D(®?%) is an L”-solution to (4.4.1) for some
theR, pe(l,o0] and s € (0,00) satistying (4.2.2), then u € C, (R; X) by Corollary 4.3.4.
Moreover, if s = 1, then we have ©5'u € D(®') by the definition (4.2.3), and thus
D lye Cp(R; X) by applying Corollary 4.3.4 once more. Since g = u on (—oo, fy],
this shows that the continuity properties of g are as in Definition 4.4.2.

INTEGER-ORDER CASE

Let us consider the case s = n € N, in which the operator ©" = (0; + A)" is local in
time. Note that the first-order case s = 1 was already treated in Section 4.2.3. The
following proposition is the key ingredient in the proof of Theorem 4.4.5 for s = n.

Proposition 4.4.9. Suppose that Assumption 4.2.1(ii) holds. Let n € N, p € [1,00],
toeER andueD((@;+A)™). Forall t € (ty,00), we have

n-1 t—t k
I @+ A" u =u -y ( k‘)) S(t - 1) [ + A)*ul (19). (4.4.18)
k=0 :

Here, 3;0 € L (LP(ty,00; X)) denotes the (Riemann-Liouville type) fractional parabolic
integral, defined by

t
jiou(t) ::% -1 'St—-1u@) dr, uel’(;X), ae te (fyo0). (4.4.19)
To

Proof. We use induction on n € N. For the base case n = 1, let us fix an arbitrary
ue WhP(J; X)n LP(J; D(A)) — Cp(J; X). Since u() € D(A) a.e., we find in particular
that u(ty) € D(A). Now the result follows by applying Proposition 4.2.2(a) = (b) with
f=u+Auel’(J;X).
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Now suppose that the statement is true for some n € N. We present the argument
for fy = 0, the other cases being analogous. Fix u € D((d; + A)"*!) and apply the
induction hypothesis to the function (3; + A)u € D((d; + A)™), yielding

n-1 ¢k
@+ Au(n) =T7 @+ A" u) + Y %S(t){(a, + A1) 0)
k=0 ™*

for all ¢ € J. Applying J' to both sides of the above equation, we can use the case
n =1 along with Propositions 4.2.3(c)—(d) to find

u(®) =321 @+ A" u(n) + nf -
0 = e+ 1)!
+1 +1 n ik k
=357 0+ A" u(t)+ZFS(t)[(6t+A) u] (0). O
k=0 ™

SO1@; + A ul (0) + S(H) u(0)

We can now prove the integer-order case of Theorem 4.4.5:

Proof of Theorem 4.4.5 (for s=neN). Let u be an LP-solution to (4.4.1). By Defi-
nition 4.4.2 and the observations in the beginning of Section 4.4.2, it holds that
ue Cp(R; X), u=gon (—oo,ty] and (0; + A)"u = 0 a.e. on (fy,00). Applying js to
both sides of the latter and using Proposition 4.4.9 on the left-hand side, we ﬁnd

n-1 (t— tO)k

u(t)=>y

S(r—10)[(0; + AFul(ry) forall € (ty,00).
i Kk

Note that the operators (3; + A)¥ are local in time and that, in fact, we can choose to
interpret 9, as a left derivative. Thus, since u = g on (—oo, fy], we obtain (4.4.3). O

If ue D((0;+ Ak is sufficiently regular, say u € CJ/(J;D(A*~ 7y (j times continu-
ously differentiable) for j € {0, ..., k}, then we have the pointwise binomial expansion

k
(@ + AFul) =) ’fA’“*fu‘f')(t), Vte],

j=0

where u” denotes the jth (classical) derivative of u. Substituting this into (4.4.18),
using the definition of binomial coefficients, interchanging the order of summation
and shifting the inner summation index yields

n-l ¢k n-1 k o
Z S(t)[(8t+A) w©)=Y Y ———smA T u (0
k=0 j= 0J '(k_ !

~1n- k
Z Z '(kt )S(t)Ak Tu0) = Z Z S(t)A’ W(0).
j=0k=j =0 J!

Moreover, note that for n € N, x € D(A" 1) and 1 € (0,00) we have

_ n-1 tk
T(n,tA)x=) —S(t)Akx,
k= 0
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cf. (4.4.7). Together, these observations imply that, in this situation, equation (4.4.18)
takes on the following form:

n-1 (t— to)k_
In@+ A" ult) =um -y L=k (= t0) A)xi. (4.4.20)
k=0 :

FRACTIONAL-ORDER CASE
Now we turn to the proof of Theorem 4.4.5 in the case that s € (0,00) \ N. It relies on
the following result, which is the fractional-order analog to Proposition 4.4.9.

Theorem 4.4.10. Suppose that Assumption 4.2.1(ii) holds. Let f € LP(—oo0, ty; X) for
some p € [1,00] and ty € R, and let f € LP(R; X) denote its extension by zero to the
whole of R. Let s € (0,00)\N be such that (4.2.2) is satisfied. Then the following identity
holds for all t € (ty,00):

s _sin(n{s})["o‘r’“} B s o
)= p- A r+ls((t )T+D)T flth—(t—ty)T)dr

Ls] (t _ Z.O){S}+k—1

Tasrl 0T 10) 3 £ (). (4.4.21)
k=1

Before proving this result, we show how it can indeed be used to finish the proof
of Theorem 4.4.5:

Proof of Theorem 4.4.5 (for s € (0,00) \N). Let u € D(®°) be an LP-solution to (4.4.1).
Applying ©° to the second line of (4.4.1) yields ©°u = ©°g a.e. on (oo, fp). Com-
bined with the first line, i.e., ©u = 0 a.e. on (%, 00), we find

D%u= f a.e.onR,

where f:=9%g € LP(—o0, fp; X). Now we apply J° to both sides of this equation, and
use Proposition 4.3.3(b) and Theorem 4.4.10 to the left-hand and right-hand sides,
respectively. Together, this yields, for all ¢ € (¢, c0),

: oo +—1{s}

u() = Sm(”m)f L S(t- 1)+ 1)) F D8l (to - (1 to)7) dr
T o T+1

Ls] (t— to){3}+k_1

Y S(t— ) gk s
+k:1 r'({s}+k) S(t—1)3J [D°g](t).

In order to conclude that u satisfies equation (4.4.2), it remains to observe that we
have 7¥D%g = g and J8/*+1Dsg = Ds-(sl-k+D g — is+k-1g for all k € {1,..., s]}.
Indeed, the former follows from the natural analog of Proposition 4.3.3(b) for func-
tions defined on (—oo, ty]; for the latter, let m € Ny be such that m < |s], for which

J"DSg = ijLsJJLsJ—sg _ jmngLsJ—mjLsJ—sg =9 LSJ—rnjLSJ—m—(S—m)g
— @Lsfmlesfme(sfm)g — stmg.
Here, we used the definition of ¢, the additivity of integer powers of ©, and the

aforementioned analog to Proposition 4.3.3(b). This completes the proof that u is a
mild solution in the sense of Definition 4.4.2. O
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The proof of Theorem 4.4.10 involves expressing an integral in terms of fractional
binomial coefficients, given by [163, Equations (1.2.6), (5.2.4) and (5.2.5)]:

al 1kl Ta@+1)
(’C) k'[l_[()(a [) m, CZE(0,00),’C€N(). (4.4.22)

Since the author is not aware of a direct reference for the following integral identity,
a proof is presented below for the sake of self-containedness.

Lemma 4.4.11. Fora € (0,1), a,b € (0,00) and n € Ng we have

sin(ra) f“”’ 7% a—br)*t"1
dr

T+1
(4.4.23)

— (a+b)a+n—l zn: (a+n 1) n—kbk+a—1‘

Proof. By the change of variables o := gr and [163, Equation (5.5.3)], the validity of
the identity (4.4.23) is equivalent to that of

1 U—a(l _ 0.)(1+n—1

F(l—a)l“(a)fo o+l

—al_nb_a(a+b)a+n—1 i (06+7’l 1) (%) —1.

do

(4.4.24)

We will verify this identity using induction on n € Ny. The base case n =0 is a conse-
quence of [163, Equations (5.12.4) and (5.12.1)]:

fl 0——(1(1 _ 0—)(1—1
[(1-a)l(a) Jo o+b

do = (1 + %)a_l (%)_a =ab %a+b)* L.

Now suppose that (4.4.24) holds for a given n € Ny. In order to establish the identity
forn+1,wewritel-o =1+ % —(o+ %) and apply the induction hypothesis and [163,
Equation (5.12.1)], respectively, to the resulting two integrals:

1 Ufa(l _ U)a+n

f do
Ir'ad-a)l'(a) Jo a+§

3 1+§ 1 o.—a(l_o.)oc+n—1
I(1-a)l(a) Jo o+

do

_—flafa(l_a)oﬁn—l do
I'd-a)'(a) Jo
nfa+n-1\(b)/"! T(a+n)
=a " % (a+b)*"—(1+L ( )( ) -
(1+8) X

-j Na nl(a)
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For the latter two terms, we have

n(a+n-1)(b\*! I'(a+ n)
(HZ)Z( )(_) " n'T'(a)

N e
o)l - L

Indeed, to obtain the second line we note that L& = (“*'~1) by (4.4.22), which
is the term k = 0 of the second summation on the second line; shifting its index of
summation and splitting off the last term yields the first expression on the third line.
The final step uses [163, Equation (1.2.7)] and the fact that (%)” corresponds to the
term k = n+ 1 in the desired formula. Putting the previous two displays together

proves the induction step and thereby the lemma. O

n

)}

k=1

Remark 4.4.12. An alternative way to derive (4.4.23) is by noting that the integral can
be expressed in terms of a hypergeometric function [163, Equation (15.6.1)] to which
one can apply the transformation formula [163, Equation (15.8.2)]. This results in a
difference of two hypergeometric functions, whose definitions can be written out to
respectively yield an infinite and a finite sum: The former is the fractional binomial
expansion of (a + b)*+*"=1 and the latter consists of its first n terms, and together
this gives (4.4.23). In particular, we note that (4.4.23) is formally equal to the tail of a
fractional binomial series. The proof of Lemma 4.4.11 is more direct and avoids the
need to address the convergence of an infinite series.

Proof of Theorem 4.4.10. Fixing t € (ty,00), the semigroup law implies
S(t—r)=S((t— 1) (T +1)S(to — (t - t0)T— ) (4.4.25)

forall 7 € (0,00) and r € (—o0, fy — (t — tp) 7). This identity, followed by (4.2.1), Holder’s
inequality and equation (4.4.5) yields

1 oo pty—(t—ty)T
I'(s) fo f—oo

oo {8} to—(t—ty)T
< Mof —e‘w("m””“f lks(to = (£ = to)T = 1) f () x dr d7
T+1 —0o
Mym
~ sin(m{s})

T (g - (t-tg)T—1)7!
T+1

(t=7)f(r) ”Xdr dr

T({sh, w(t = 1) Ksll (g oo 20 1 1 2P s ) < 00
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This justifies the use of Fubini’s theorem in the following:

oo =18}
f S((t—l‘o)(‘[+1)):‘ flto—(t—ty)T)dt

ty—(t—ty)T _{S}(to_(t_t())T_r)S 1
T(s)f f St-rf(r)drdr

T+1
o T (g — 7 — (£ 1) 7))
F(s)[ [[ — dr|S(t—r)f(r)dr,

where we used (4.4.25) once more. Lemma 4.4.11 and equation (4.4.22) produce

dr

sin(m{s}) fﬁ"?é T8ty — 1 — (1 — ) T) 811
T+1
Ls] I'(s)

=@-n""-)

—_ LSJ—]C _ k+{S}—1
O T R

The previous two displays and the identity S(¢ —r) = S(f — £,) S(fp — r) yield

. oo —{s}
Smm“”f S = )T+ D) flto~ (¢~ 1)) dr

LS (£~ 1) K181 — 1)

1 f
= - Z Tsi+ ) ) k)'f (to— r)lSJka(to -r) f(r)ydr
k=1 “101 )

1 fo s—1
+mf_oo(t—r) S(t—r)f(r)dr

Is] (t— to){s}+k—ls(t_ o) _
=- IR () + T (2
kgl e f (1) f

which is precisely (4.4.21). The final assertion follows from Proposition 4.3.3(b). O

4.5. COMPARISON TO RIEMANN-LIOUVILLE AND CAPUTO

CAUCHY PROBLEMS

In this section, we compare the Dirichlet problem (4.4.1) to fractional-order abstract
Cauchy problems of the form

@+ A u(t) =0, te(ty,00),

augmented with initial conditions which depend on the interpretation of the ab-
stract space-time operator (3; + A)®, acting on functions u: J — X with J = (#y,00)
for fp € R (instead of J =R as in the previous sections). More precisely, we will inter-
pret (3; + A)® as a Riemann-Liouville or Caputo type fractional parabolic derivative,
respectively, on LP (J; X) for p € [1,00], and determine the corresponding initial con-
ditions and mild solution formulae, see Definitions 4.5.2 and 4.5.3.

For fractional time derivatives 03, i.e., the case A = 0 (which we briefly introduced
in Section 1.3.3), the resulting solution concepts are well-known and commonly
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studied, see for instance [121, Chapter 3]. In this case, the fractional integral has
less favorable mapping properties, see [121, Section 2.3], and the well-posedness
of (4.1.5) is less clear. We will show that, as in the case A = 0, the lowest-order term
of the solution to the Riemann-Liouville type initial value problem has a singularity
at fp in general, whereas the Caputo initial value problem yields the same solution
for any two s3, 52 € (1, n+1) for n € Ny. In contrast, the solution from Definition 4.4.2
is continuous at fy under mild assumptions on g or (S(#));>¢ and changes for all
choices of s € (0,00).

Firstly, let us recall the Riemann-Liouville type fractional parabolic integral J;
on LP(J; X) defined by (4.4.19). Then, the Riemann-Liouville and Caputo type frac-
tional parabolic derivatives are respectively defined by

D5 =0+ AMIT and D =370+ A)

on their maximal domains. In order to derive mild solution type formulae for LP-
solutions to the equations D3, u = 0 and D} u = 0, we proceed analogously to [121,
Chapter 3] and express J; Dp, uand J; D¢ u in terms of initial data from u (compare
with Proposition 4.4.9 and Theorem 4.4.10), so that applying J io on both sides of the
equations motivates the definitions. The integer-order case s = n € N, where

D" =D =Dl=(0,+A)",

was treated in Section 4.4.2. From these results, we derive the following proposition
regarding @f{L and @é for fractional s € (0,00) \ N:

Proposition 4.5.1. Let Assumption 4.2.1(i) be satisfied. If s € (0,00)\ N, fy € R and

pell,oo] andue D(@%L), then for almost all t € ] := (ty,00):

(t— 1)1

I'({sh)
Ls] (t— to)k+{s}—1

35, D% un) = u(t) - S(t— t0) gy ulty)

B ———— - k+{s}—-1
k=1 I'(k+{s} St tO)gRL u(tp).

Ifue D(DY) is such that u € CI(J;D(A™ 1)) forall j € 10,...,n—1}, then we have for
almostall t € J := (ty,00):

S (- )k
:i;)@gu(t)zu(t)—z( 0

T([s1 -k, (t—to) Au (1p) a.e.
i K

Proof. For the sake of notational convenience we only present the case fy = 0. The
definition of @%L, along with Propositions 4.2.3(c)—(d) and 4.4.9, yields

3 0 u =0y D u =310, + AN I u
_glsl=s, 'Hﬂs(.)[(a AR50
—*0 = k! t 0

n-1 (')k—(s]-%—ss(‘)

_ s, 5 OIS0
=91 | kgbl"(k+s—[s]+1)

(@, + A 3 u10)
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for any u € D(®y;). The first assertion then follows from Proposition 4.3.3 and the
injectivity of J(*' .
If u € D(D{), combining the definition with Proposition 4.2.3(c) produces

33DLu=333"0,+ A u =350, + Ay,

so that the result follows from Proposition 4.4.9 and the discussion below it, in par-
ticular equation (4.4.20). O

Note that 3(1)_{5} u need not vanish at #p = 0. Indeed, even if it is continuous, it may
not satisfy (4.4.19) pointwise, as evidenced by the example u := kg ® x if we take
pell, {s}+1) and x € D(A) \ {0}, see Proposition 4.2.3(d).

Proposition 4.5.1 motivates the following definition of the Riemann-Liouville frac-
tional abstract Cauchy type problem and its corresponding solution.

Definition 4.5.2. Let Assumption 4.2.1(i) be satisfied. For s € (0,00) \N and fy € R,
the mild solution to the Riemann-Liouville abstract Cauchy type problem

D u(t) =0, te = (ty,0),
3 Y ulto) = xo € X, (4.5.1)
O ult) = x €D(A), kedl,...,Lsl},
is the function ugy, € C(J; X) defined by

Ls] (r— to)k+{s}—1
ugy (%) -—kzzows(t—to)xk, te]. (4.5.2)
Compared with Definition 4.4.2, we first note that the terms k € {1,..., [ s|} in (4.5.2)
are almost identical to those of (4.4.2), up to the difference between taking Riemann—
Liouville type fractional parabolic derivatives of the function u defined on J and
Weyl type derivatives of g defined on R\ J. The remaining term, on the other hand,
differs significantly. In (4.5.1), we see that xp is the prescribed value of 3}0_{3} uat fy
and ug is continuous at #; if and only if xy = 0, in view of the singularity occur-
ring there for xy # 0. In contrast, the solution to (4.4.1) given by Definition 4.4.2 is
bounded by Proposition 4.4.3, does in fact prescribe the value u(ty) = g(f) and is
continuous on R under some further regularity assumptions.
The following definition of a Caputo type initial value problem and corresponding
solution can also be derived from Proposition 4.5.1:

Definition 4.5.3. Let Assumption 4.2.1(i) be satisfied. For s € (0,00) \N and # € R,
the mild solution to the Caputo abstract Cauchy problem

Diu(t) =0, teJ:=(t,00),
u® (1) = x, € DAY8), keqo,..., s}
is the function uc € C(J; X) defined by

LS (= to)* =
uc(t) =y, %F(M —k,(t- ) A)xg, L€
k=0 :
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Note that this definition has the same form as the integer-order abstract Cauchy
problem from Definition 4.4.2, i.e., formula (4.4.3). Analogously, for sufficiently reg-
ular xj or (S(%))s=0, this solution allows for the specification of the value of uc(f).
However, in contrast to the solution in the sense of Definition 4.4.2, we observe
that the form of uc only changes “discretely in s,” i.e., the solutions for any two
s1,82 € (n,n+1), n e Ny are given by the same formula.
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DISCRETE-TO-CONTINUUM
LIMITS OF SPDES

The contents of this chapter are based on the preprint [89], which is joint work with
Yves van Gennip and Jonas Latz.

5.1. INTRODUCTION TO CHAPTER 5

5.1.1. BACKGROUND AND MOTIVATION

We establish discrete-to-continuum limits of stochastic evolution equations of the
form (5.1.1), i.e., semilinear parabolic stochastic partial diffential equations (SPDEs)
driven by Gaussian white noise. Such SPDEs of evolution play an important role in
the modeling of physical and other systems, such as fluid dynamics [21, 70, 78, 151],
quantum optics [43], phase separation [55], diffusion in random media [105, 127],
and population dynamics [199]. Given their significance, there has been a consider-
able interest in the analysis and numerical analysis of SPDEs; see the introductory
textbooks [144] and [145], respectively.

We consider the convergence of a sequence of abstract continuous-time equa-
tions, each posed on a different Banach space in order to model the approxima-
tion of an evolution SPDE by equations that are continuous in time and discrete
in space. This framework covers a typical setting where the spatial domains are fi-
nite graphs and the limiting differential operator in space is approximated by the
corresponding graphical variants. If the finite graphs approximate an underlying
manifold, then the graphical differential operators are related to a finite-difference
approximation of the differential operator. As an example, we study a class of semi-
linear SPDEs whose linear part is given by a Whittle-Matérn differential operator on
a manifold, discretized by a sequence of graphs constructed from a (possibly ran-
domly sampled) cloud of points. Linear equations of this type have previously been
studied in the context of statistics and machine learning [158, 181, 182]. By verifying
in detail that the hypotheses of our abstract framework are satisfied in this situa-
tion, we establish the discrete-to-continuum convergence of this scheme. Although
the main advantage of our general results is their applicability to highly unstruc-

143
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tured discretizations, we additionally show that they recover the L>°-convergence of
finite-difference discretizations of the fractional stochastic Allen—-Cahn equation on
the one-dimensional flat torus. To further illustrate the significance of results of this
form, we now discuss a few examples of semidiscrete SPDEs as well as their contin-
uum limits.

Semidiscrete models appear frequently in the numerical analysis of (S)PDEs of
evolution; since the challenges of spatial, temporal and spatiotemporal discretiza-
tion are different, these settings are often analyzed separately. This leads to thor-
ough studies of (S)PDEs that are discretized in space but not in time. In the context
of SPDEs of evolution, we refer to [36, 99, 129] for examples.

Stochastic PDEs on graphs also appear naturally as models in the physical sci-
ences, e.g., for interacting particle systems [47] or the representation of disordered
media [105]. In the former case, the continuum limit represents the large particle
limit in the interacting particle system.

In the data science literature, (S)PDEs on graphs have recently gained popular-
ity as semi-supervised learning techniques. In a semi-supervised learning problem
we are given a set of labeled features as well as a set of unlabeled features, and the
goal is to use the former features to recover the labels of the latter. Features are,
for example, images, text, or voice recordings; corresponding labels may be descrip-
tors of the content of the images, the author of the text, or a transcript of the voice
recording, respectively. Given an appropriate similarity measure on the space of fea-
tures, an edge-weighted graph can be constructed in which nodes representing sim-
ilar features are connected by highly weighted edges. The unknown labels can then
be estimated by space-discretized PDEs on this graph, as in [23, 38, 87, 203]. The
PDEs often describe gradient flows that minimize a variational functional. Stochas-
tic PDEs appear in this setting if, in addition to finding an estimate for the labels, the
uncertainty in the labels is to be quantified as well [24, 181]. The SPDEs of evolution
here either form the basis of Markov chain Monte Carlo sampling algorithms [48,
101, 102, 174] or of a randomized global optimization scheme [45, 46] for the solu-
tion of the variational problem in the deterministic setting. In this semi-supervised
learning setting, discrete-to-continuum limits are of interest because they establish
the consistency of the models in the large-data limit. For deterministic PDEs, the lit-
erature has grown to encompass pointwise limits of operators, as in [106], I'-limits of
the functionals that underlie the dynamics [83, 86, 136, 191, 195], and more recently,
discrete-to-continuum limits for the dynamics themselves [71, 75,91, 111, 135, 153,
194]. For a more in-depth overview of the literature of discrete-to-continuum limits,
we refer to [88].

5.1.2. MAIN RESULTS

We will now summarize the abstract setting and main discrete-to-continuum con-
vergence results from Sections 5.4-5.6, which will already be applied in Section 5.3
to the Whittle-Matérn and stochastic fractional Allen—-Cahn equations described in
Section 5.1.1.

Given a probability space (Q, F,P) and some T € (0,00) (called the time horizon),
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we consider a sequence of semilinear parabolic stochastic evolution equations

5.1.1
Xy (0) 25n~ ( :

{an(t) =-Ap X0 dt+ Fu(t, X () dt + dW, (1), t€(0,T1,
indexed by n € N:= {1,2,...} U {oo}. This problem will be rigorously formulated as a
stochastic differential equation taking values in a real Banach space E,, (or a smaller
embedded space B, — Ej) called the state space. In general, we assume that the
terms appearing in (5.1.1) are as follows:

° —A, is the generator of a bounded analytic semigroup of bounded linear oper-
ators on E,, or By;

° u,— Fy(w,t,uy) is a possibly random and nonlinear drift operator on E;, or B,
forall (w,t) € Qx[0,T1;

° (W,(1)s=0 is the projection, onto some appropriate subspace, of a cylindrical
Wiener process (W (#)) ;>0 taking values in a real and separable Hilbert space H
(more details are specified in Theorem 5.1.1 below);

e ¢, is a possibly random initial datum with values in E,, or B,.

The precise assumptions (in particular, whether the operators and initial data are
E,,-valued or Bj,-valued) vary throughout Sections 5.3-5.6; an overview is provided
in Table 5.1. Depending on the setting, the mild solutions to (5.1.1) are either well
defined on the whole of [0, T] almost surely, or cease to exist at a time ¢ < T with
nonzero probability; such solutions are said to be global or local, respectively.

The aim of this chapter is to establish conditions on the data of (5.1.1) under which
the corresponding solutions (X},) ,en converge to X, as n — co. In order to compare
processes which take their values in different Banach spaces, we need to assume that
each of the families (Ep) , .7, (Hn) .5 and (Bn) . embefis uniformly into acommon
space—namely into E,, He and a closed subspace B < By, respectively—which
they approximate in some appropriate sense as n — oco. In particular, we shall as-
sume that they share a common sequence of (linear) lifting operators (A,) 7 such
that each A, maps E, (resp. H,, B;;) boundedly into E,, (resp. Heo, B), as well as
a sequence of projection operators (I1,) , i which are left-inverses to the respective
lifting operators. That is, each sequence satisfies Assumption 5.2.1 below with the
same lifting and projection operators. For example (see Section 5.3), one can take
Eoo = L9(D) for g € [2,00), Hy = L2(D), B := [*°(D) and B, := C(D) for some spa-
tial domain D, along with E, := LY(D;,), Hy, = I?(D,) and B,, := L®(D,,) for some
approximations (D;,) ,en of D.

The projection and lifting operators allow us to compare the (E,- or B,-valued)
solution processes X;, by instead considering convergence of the lifted processes
X, = A, X, to Xo as n — oo, which we call discrete-to-continuum convergence.
Moreover, they allow us to formulate assumptions under which this occurs in terms
of conditions imposed on the lifted resolvents R,, := A, (A, +Id,,) "'11,, of the linear
operators Ay, the lifted drift operators Fo(w,t,u) = A Fy,(t,w,T1,u), and the lifted
initial data &, := Ap& . Roughly speaking, we assume that

o F,— Fy ‘pointwise’ (see (F2) in Section 5.5.1 or (F2-B) in Section 5.6.1);
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* R, — Ry ‘pointwise’ and there exists a small enough f € [0, %) such that the

fractional powers P’S converge to Rfo in an appropriate operator norm (see (A3)
in Section 5.4 or (A3-B) in Section 5.6.1)

o &, — oo in LP(Q; Es) or LP(Q; B) for some p € [1,00) (see (IC) in Section 5.5.1
or (IC-B) in Section 5.6.1).

Again we refer to Table 5.1 for an overview of the different settings and types of solu-
tions, with references to the precise formulations of the corresponding assumptions;
the setting in the first row (i.e., Section 5.3.2) covers the (fractional) stochastic Allen—
Cahn equations announced in Section 5.1.1, see Example 5.3.8 below. The following
theorem is a summary of the discrete-to-continuum approximation results for solu-
tions to the abstract equations (5.1.1) in these respective settings.

Theorem 5.1.1 (Discrete-to-continuum convergence—summarized). Let (Q, F,P)
be a probability space and T € (0,00) be a terminal time. Consider equations (5.1.1),
where the state spaces, linear operators, drift operators and initial data are as in one
of the rows of Table 5.1. Let p € [1,00) be the stochastic integrability of the initial data
(i.e., the exponent in (IC) or (IC-B)), and let Wy, := Tl,W, where (W (1)) =o is an H-
valued cylindrical Wiener process. For all n € N, there exists a unique (local or global,
see Table 5.1) mild solution X, to (5.1.1), and the lifted solution processes X’n =A, X5
satisfy the following:
(i) Ifthe solutions are global and p > 1, then for all p~ € [1, p) we have

X, — Xoo asn—oo

in LP" (Q; C((0, T]; Ex)) (resp. in LP" (Q;C(10, T}; B))).

In the (semi)linear settings with globally Lipschitz drifts of linear growth, the
same in fact holds with p~ := p for any p € [1,00).

(i) If the solutions are local, with associated explosion times o,: Q — (0, T] (pre-
cisely defined in (5.5.9) below), then we have

Xnl0,600n0,) = Xool0,05) ASH— 00

in L%Q x [0, T1; Exo) (resp. in LO(Q % [0, T];E) ), where I° indicates convergence
in measure.

The full convergence statement for each setting is given in the corresponding part
of Sections 5.4-5.6. To be precise, the results comprising Theorem 5.1.1 are: The-
orem 5.3.10, Proposition 5.4.5, Theorems 5.5.4 and 5.5.9, Proposition 5.6.1, Theo-
rems 5.6.6 and 5.6.7 and Corollary 5.6.10.

5.1.3. CONTRIBUTIONS

The abstract discrete-to-continuum approximation theorems for stochastic semi-
linear parabolic evolution equations driven by additive cylindrical Wiener noise—
summarized in Theorem 5.1.1 and proved in Sections 5.4-5.6—complement the re-
sults from [131, 132], which establish the continuous dependence on the coefficients
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Section  Description Assumptions Sol. type

§5.3.2 graph-based o Ap:=I[L5 1 (Whittle-Matérn operators) global
approximation of
Whittle-Matérn operators
on a manifold e Assumption 5.3.7 (on the functions ( f")n

o [Fp(t, w)](x) = fn(t, u(x)) (Nemytskii drift)
5
§5.4 Ej-valued linear e (A1)-(A3) (linear operators) global

e Fp:=0and &, =0

§5.5.1 Ej,-valued semilinear; e (A1)—(A3) (linear operators) global
igjlg:;llg;;ja;chitz drifts of e (F1)-(F2) (drift operators)
e (IC) (initial data)
§5.5.2 Ej-valued semilinear; * (A1)-(A3) (linear operators) local
L(;Tg} lgoirilp;ggiéfif;nd lo- * (F1') and (F2) (drift operators)
e (IC) (initial data)
§5.6.1 Bj,-valued semilinear; * (A1-B)-(A4-B) with 0 +26 <1 (lin. ops.) global
ﬁfgﬁggﬂ?hitl drifts of " 1_B)_(F2-B) (drift operators)
e (IC-B) (initial data)
§5.6.2 Bj,-valued semilinear; e (Al-B)—(A4-B) with 8 + 26 < 1 (lin. ops.) local
lc(;Tf; lgoigggggif;nd lo-—, (F1’-B) and (F2-B) (drift operators)
e (IC-B) (initial data)
§5.6.3 Bj,-valued semilinear; ° (Al-B)-(A4-B) with 8 +26 < 1 (lin. ops.) global

dissipative drifts e (F1”-B) and (F2-B) (drift operators)

e (IC-B) (initial data)

Table 5.1: Overview of the types of evolution equations considered in
the different (sub)sections comprising this chapter. The row in
which an assumption appears for the first time also indicates the
(sub)section where its definition can be found.

of semilinear equations driven by multiplicative noise in a state space with uncon-
ditional martingale differences (UMD), i.e., convergence in the case where E;, = E
(and B, = B) for all n € N. Given the motivating applications and our aim to provide
a self-contained exposition of the proofs, we make the simplifying assumptions that
the UMD spaces (Ej), 5 have Rademacher type 2 (which was also assumed for E
in [132] but not in [131]) and the noise is additive.

Under these conditions, we provide a direct proof of convergence of the E,,-valued
stochastic convolutions solving the linear parts of (5.1.1) using a factorization argu-
ment in the sense of Da Prato, Kwapieni and Zabczyk [53], along with a discrete-to-
continuum analog of the Trotter-Kato approximation theorem [116, Theorem 2.1],
see Proposition 5.4.5. We extend it to the semilinear E;-valued settings described in
Table 5.1 by adapting the arguments from [131, Sections 3 and 4] and [132, Subsec-
tion 3.1] to incorporate the discrete-to-continuum projection and lifting operators,
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yielding Theorems 5.5.4 and 5.5.9, respectively. In order to state and prove the anal-
ogous Theorems 5.6.6 and 5.6.7 for the B,-valued settings, we impose a uniform ul-
tracontractivity condition on the semigroups which replaces the restriction in [132,
Section 3] that the fractional domain spaces Eg = D((Id,, +A,,)?'?) also coincide for
allneN.

Theorem 5.3.10, regarding the graph discretization of equations whose linear op-
erators are of generalized Whittle-Matérn type on a manifold M, extends analogous
convergence results for linear equations on a spatial domain (cf. [181, Theorem 4.2]
and [181, Theorem 7] in L?(M) and L®(M), respectively) to spatiotemporal and
semilinear equations. Like the cited theorems, its proof relies on recent spectral
convergence results for graph Laplacians (see [40] and [41] for convergence of eigen-
functions in L2 and L, respectively), which we use to verify that these SPDEs fit into
the abstract framework from Sections 5.4-5.6.

5.1.4. OUTLINE

The remainder of this chapter is structured as follows. In Section 5.2, we establish
some notational conventions and collect preliminaries regarding the (deterministic)
discrete-to-continuum Trotter—Kato approximation theorem and stochastic integra-
tion in UMD-type-2 Banach spaces. We demonstrate in Section 5.3 how the results
summarized by Theorem 5.1.1 can be applied to graph discretizations of stochas-
tic parabolic evolution equations whose linear part is a generalized Whittle-Matérn
operator on a manifold. In Section 5.4, we consider the linear E,-valued version
of (5.1.1), whose solutions are known as infinite-dimensional Ornstein—Uhlenbeck
processes. These results are extended in Section 5.5 to allow for semilinear Ej-
valued drift operators under (local or global) Lipschitz continuity and boundedness
assumptions. In Section 5.6 we first treat the analogous results in the semilinear B, -
valued setting, and then establish global well-posedness and convergence for dissi-
pative drifts. Finally, in Section 5.7 we discuss some potential directions for further
research. This chapter is complemented by three appendices: Appendix 5.A consists
of postponed proofs of some intermediate results from Section 5.3. Appendices 5.B
and 5.C are concerned with fractional parabolic integration and (uniformly) secto-
rial linear operators, respectively. See Figure 5.1 for a schematic overview of the re-
lations between Sections 5.3-5.6 and the appendices.

5.2. PRELIMINARIES FOR CHAPTER 5

5.2.1. NOTATION

In this section we only highlight notation which deviates from the previous chapters
or was not used there.

The Cartesian product []jcz B; of an indexed family of sets (B;) jez is comprised
of all functions f: 7 — U<z Bj satisfying f(j) € Bj forall j€ 7. Wecall T € £ (E; F) a
contraction if | T|| ¢ (g.r) < 1; in particular, the inequality need not be strict. The Ba-
nach space of (bounded) continuous functions u: J — E, endowed with the supre-
mum norm, is denoted by C(J; E).
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Appendix 5.C

— |

Section 5.4

A

Subsection 5.5.1 Subsection 5.6.1

Appendix 5.B

Y

Subsection 5.6.2

Y

Appendix 5.A

Subsection 5.5.2

Y

Subsection 5.6.3

v L

Section 5.3

Figure 5.1: Relations between the sections comprising the main part of this chapter
and the appendices. Arrows indicate when the results of one section are
applied in another.

The meaning of the tensor symbol ® will depend on the context: Given a function
®: (a,b) —» Z(E;F) and x € E, we define ®® x: (a,b) — F by [® ® x](f) := O(H)x. If
instead an h € H is given, we define h ® x € .Z(H; E) to be the rank-one operator
[h® x](u) := (h, u) gx. The space of all (finite) linear combinations of such operators
is denoted by H ® E. We define the convolution ¥ * f: [0, T] — F of the functions
¥:[0,T]— Z(E;F)and f: [0,T] — E by [V * f1(#) = fot\P(t—s)f(s) ds.

Table 5.2 (see the next page) lists some notation which is frequently used through-
out this chapter. Some of these notional conventions were established in the present
section; others will be defined in later sections.

5.2.2. DISCRETE-TO-CONTINUUM TROTTER-KATO APPROXIMATION
We encode the discrete-to-continuum setting in the following way:

Assumption 5.2.1. Let (E,| - ”En)neN and (E, | - ) be real or complex Banach

spaces and suppose that E, is a closed linear subspace of E. We assume that there
exist operators I, € Z(E; E,) and A, € £ (Ey; E) for all n € N which satisfy

(@) M :=sup,ey Il »5p,) <ooand My :=sup ey [Anll ¢ g, .5 <00
(i) A,I,x— xin E as n — oo for all x € E;
(iii) A, =1dg, forallneN.
In addition, we denote 1, = A := Idj for convenience.
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Elementary sets and operations

N positive integers

No nonnegative integers

N Nu {oo}

Idp identity map on a set D
1p, indicator map on Dy € D
SAt minimum of s, t € R

Bounded linear operators

H, K separable Hilbert spaces
E, F arbitrary Banach spaces
(,OH inner product of H
II-lg norm of E

E* dual space of E

Z(E;F) bounded linear operators
Y(H;E) y-radonifying operators
% (H;K) Hilbert-Schmidt operators

Function spaces

C(K;E) continuous functions from a
compact space K to E

C(K) abbreviation for C(K;R)

LP(S;E) Bochner space of p-integrable
functions from a measure space

(S, o, v) to E
LP(S) Lebesgue space LP (S;R)
Graph discretization
M manifold from Assumption 5.3.1
™ m-dimensional flat torus
dam geodesic metric on M
u volume measure on M
My point cloud (xﬁ[));!:l cM

«Q, F ,IP) probability space of random
point cloud from Example 5.3.3

Un empirical measure on M,

Tn transport map from M to M,

En Sup ye A Apaq (X, Ty (X))

hn graph connectivity length scale,
see (5.3.6)

Lh (discretized) Whittle-Matérn

operator with coefficient
functions 7,x: M — [0,00)
i,
(u/(n]) ’.’:1 L2(M)-normalized
! eigenfunctions of £7;*
My 0o uniform L*°-bound of the
eigenfunctions, see
Assumption 5.3.9

eigenvalues of L3¢

Mg, 4 uniform-ultracontractivity —con-
stant, see (5.3.18)

‘Discrete-to-continuum’ spaces

En) ey E Banach spaces from
Assumption 5.2.1 or (A1)
(H”)neN’ H Hilbert spaces from (A1)

(B”)neN’ B Banach spaces from (A1-B)

Projection and lifting

I, projecti~0n operator ffom E,, (resp. H,, or
By) to E (resp. H or B)

Apn  lifting operator from E (resp. H or B) to
E;, (resp. Hy or By)

Tn lifted version Ay, TpIl, on E (resp. H or
B) of operator Ty, on Ej, (resp. Hy, or By)

Y, lifted version A, Yy, on E (resp. Hor B) of
process Yy on Ej, (resp. Hy, or By)

Mp  suppeN ”H"”w?(f?;En)

Mn  supuen Inll g5,

My suppen ||A"”$(E,,;§)

My SUPpeN ”An”z(B”;g)

Linear operators in evolution equations

Apn linear operator on Ej;, with domain
D(An)

Sn semigroup generated by — Ay

Mg uniform-boundedness constant of

. (S”)n€N in (E”)neﬁ' see (5.2.1)

Mg uniform-boundedness constant of
(S”)neN in (B")neN' see (5.6.3)

p(Apn) resolvent set of Ay,

Rb (Ap +1dp) =P

J i‘n fractional parabolic integration op-

erator, see Appendix 5.B

Stochastic evolution equations
Qn covariance I1,11, € £ (Hy,)

dwy, Hjy,-valued Qp-cylindrical Wiener
noise on (Q, F,P)

Wy, stochastic convolution, see (5.4.2)

én initial datum

Fp drift operator

Lg, Cp Lipschitz and growth constants of
Ej-valued drifts, see (F1)

Lr, Cr Lipschitz and growth constants of
Bj,-valued drifts, see (F1-B)

Lg) s local Lipschitz and growth

Cro constants of E,-valued drifts,
see (F1/)

fn real-valued drift coefficient
function

L f c r Lipschitz and growth constants of
(fn)neN see Assumption 5.3.7(i)

Table 5.2: A selection of notation which is used throughout this chapter.
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Note that parts (i) and (iii) together imply that the lifting operators are continu-
ous embeddings A, : E,, — E. In applications, they will typically be nested (in the
sense that E,, — E,,;; for all n € N) and finite-dimensional, but neither of these as-
sumptions is strictly necessary in the abstract theory. Moreover, we will often have
E= E~, but not always; see Section 5.6.

Now we consider the following sequence of linear operators on (E,) ,

Assumption 5.2.2. For all n € N, let —Ayn: D(Ap) € E;, — Ej be a linear operator
generating a strongly continuous semigroup (S, () =0 € -Z(E;). Let Mg € [1,00)
and w € R be such that

wt

I1Sn (D2, <Mse™ ™" forall neNand t € [0,00). (5.2.1)

Given a sequence (A,),  of operators generating Co-semigroups with uniform
growth bounds on a single common Banach space Ej;, := E, the Trotter—Kato approx-
imation theorem (see, e.g., [73, Chapter III, Theorem 4.8]) establishes a link between
the strong convergence of resolvents and uniform convergence of the semigroups
on compact subintervals of [0,00). The following discrete-to-continuum analog of

this result was proved by Ito and Kappel [116, Theorem 2.1]:

Theorem 5.2.3 (Discrete-to-continuum Trotter—Kato approximation). Let Assump-
tions 5.2.1 and 5.2.2 be satisfied, with w € R. The following are equivalent:

(a) Thereexistsale N, P (An) such that, for every x € E,

AR, ApIlx — R, As)x  inE  asn— oo.

(b) Forall x€ Ey, and T € (0,00) it holds that

ApSpll,® x — Seo®x  inC([0,TIE) asn— oo.

If (@) holds for some A € N, 5 p(An) (o1, equivalently, if (b) holds), then (a) holds in
fact for every A € C such thatRe Al < w.

5.2.3. STOCHASTIC INTEGRATION IN UMD-TYPE-2 BANACH SPACES

Given a real and separable Hilbert space (H, (-, -) ), let (W(¥)) ;>0 be an H-valued
cylindrical Wiener process on a filtered probability space (Q, (F7) s=0, F,P) which we
fix throughout the chapter; see the last subsection of Section 1.4.3. Let (E, || - |[g) be a
real Banach space, and let (y;) jen be a sequence of independent (real-valued) stan-
dard normal random variables on a probability space (Q', F','), independent of the
spaces (Q, F,P) and (Q, F, P) used in the rest of this chapter. We define the space
Y(H; E) of y-radonifying operators from H to E as the completion of the finite-rank
operators H ® E with respect to the norm IIZ;’z1 hj®xjllycrE = ||Z;-l=1 YiXil e,
where we assume that the (h j);'l:l are H-orthonormal. This norm is well-defined,
i.e., it can be checked that the right-hand side is independent of the choice of rep-
resentation. An important feature of y(H; E) is its ideal property (in the algebraic
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sense) [114, Theorem 9.1.10], which states that for T € y(H;E), U € Z(E;F) and
Se.Z(K; H), we have

UTSey(K;F) with [UTSlyur < 1Ul2@&m I TlyweSI.2@:m- (5.2.2)
For any rank-one operator ik ® x € £ (H; E), we have h ® x € y(H; E) with
Ih® xlyamEe = 1Algllx]E. (5.2.3)

The stochastic integral of an elementary integrand ®: (0,00) — H ® E is defined
by (1.4.13). In order to extend the definition of the stochastic integral beyond ele-
mentary integrands, one needs to impose further geometric assumptions on the Ba-
nach space E. In this chapter we work in one of the standard settings, namely that of
spaces with unconditional martingale differences and Rademacher type 2 (abbrevi-
ated to UMD-type-2). Definitions of these notions can be found in [113, Section 4.2]
and [114, Section 7.1], respectively, but we will only use them to ensure existence of
stochastic integrals. In this case, one can establish the It6 inequality

(e9)
() dW (1) <p @ - 5.2.4
”j[; (1) (1) 12QE) ~E || ”LZ(O,oo,y(H,E)) ( )

for elementary integrands [157, Proposition 4.2], and use it to extend the defini-
tion of the stochastic integral to all ® € 12 (0,00;y(H; E)). In fact, recall from (1.4.14)
that the type 2 assumption suffices since we exclusively deal with deterministic in-
tegrands. Despite this, we additionally impose the UMD assumption for the sake
of compatibility with some of the literature, and because the concrete examples
of Banach spaces in which we are interested (such as the Lebesgue L9-spaces for
q € [2,00)) satisfy both properties.

The exponent 2 in L? appearing on both sides of (5.2.4) can be replaced by any
other p € [1,00) at the cost of a p-dependent constant, see for instance [157, Theo-
rem 4.7]. If E is also a Hilbert space, then y(H; E) is isometrically isomorphic to the
space . (H; E), see [114, Proposition 9.1.9], and instead of the inequality (5.2.4) we
have the It isometry between 12(0,00; % (H;E)) and L2(Q; E), see (1.4.15).

5.3. GRAPH-DISCRETIZED SEMILINEAR EVOLUTION
EQUATIONS WITH WHITTLE-MATERN LINEAR PART
Before developing the general discrete-to-continuum convergence results summa-
rized by Theorem 5.1.1 in the upcoming sections, in this section we demonstrate
how they can be applied to the particular case of equations whose linear parts are
graph discretizations of a generalized Whittle-Matérn operator on a manifold. In the
spatial and linear case, such convergence results have been proven in [181, 182]. We

also mention the work [158], in which the statistical properties of the spatiotemporal
linear equation were investigated for fixed n € N.
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5.3.1. GEOMETRIC GRAPHS AND WHITTLE-MATERN OPERATORS

Assumption 5.3.1 (Manifold assumption). Given m,d € N, suppose that M is an m-
dimensional smooth, connected, compact Riemannian manifold without boundary,
embedded smoothly and isometrically into R?. Let u and d4 denote the normal-
ized volume measure and geodesic metric on M, respectively.

For each n € N, let a point cloud M, := (x(] ) ;’ | € M be given. We suppose that

M can be partitioned into n regions of mass 1/n, which can be transported to the
corresponding n points comprising M, in such a way that the maximal geodetic
displacement tends to zero as n — co. More precisely, we assume that there exists a
sequence (Ty) yen of transport maps Ty, : M — M, such that

tn = Tuyp forallneN, and (5.3.1)
&n = sup da(x, Tp(x)) — 0 as n — oo. (5.3.2)
xeM

Here, u, := %Z;‘:l 6 () is the empirical measure on M associated to M, and Ty 1t
denotes the pushforvr\llard measure Tpyu(B) := u({T, € B}) on M,,. Two examples in
which this assumption is satisfied are presented in Settings 5.3.2 and 5.3.3 below.

Given u,: M, — R for n € N, these transport maps enable us to define the func-
tions Ay uy: M —RandIT,u: M, — R by setting

Antin(x) = tun(Ty(x) and Mpux):=n / ) 100 du(x), (5.3.3)
v

respectively, for all xe M and j €{1,..., n}, where V,Ej) ={T, = (])} c M.
It turns out that the operations defined in (5.3.3) satisfy Assumption 5.2.1 with
respect to the following function spaces: Given g € [1,c0], we set

Ep:=L9(M,):=LI(M,pu,), neN,
aswell as E := L9(M) and

i, ifgen,oo)
7 lewm,  ifg=oco.

Later on, we will need g € [2,00), so that E,, isa UMD-type-2 space for use in stochas-
tic integration, but the statements here hold for all g € [1,00].

For these spaces, Assumption 5.2.1(i) is satisfied with M, =1 and My < 1. Indeed,
the fact that A, is an isometry follows from (5.3.1) if g € [1,00), whereas for g = co we
see directly from the definition that

IAnunllgo ) = Sup [un(Tn(x))| = maXIun(x )I =llunllrooM,y)-
Jj=

To show that II,, is a contraction, we first apply Holder’s inequality in (5.3.3) with

1 ) , & _ 1 .
q+ L = 1to find |TT, u(x, )Isnllulqu(Vy))p(Vn )a _n4||u||m(v'5,)),sothat

n

NI q
LI(M, ) Zlnnu(x )I ; ”L(/7 V,(l]), " “LW(M)

I el
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Assumption 5.2.1(ii) is a consequence of (5.3.2), which implies that A,Il,u — u in
L9(M) for any u € C(M). For g = oo, this is what we wanted to show; if instead
q € [1,00), then C(M) is dense in L9(M), and the fact that (A,I1},) e is uniformly
bounded in £ (L9(M)) by Assumption 5.2.1(i) which we have just proven to hold,
yields A,IT,,u — u for all u € L9(M) as desired. Assumption 5.2.1(iii) can be verified
via direct computation using the definitions. Finally, we have
n .
f At (0 v(x) du(x) = f un(Ty() v dp) = Y. | une) o) dp(o)
M M j=1YV;

(J
n

1 n . .
==Y un Y, (V) = fM U (T, v(x) dpty (). (5.3.4)
j= "

which shows that the adjoint of IT,, € £ (L7 (M); L7(M},)), where g € [1,00), is given
by I = A, € Z(L9 (M,); LT (M)).

The concrete choices of M and their discretizations which we will consider in this
section are the following two:

Setting 5.3.2 (Square grid on T™). Let M = T be the m-dimensional flat torus,
which we view as the cube [0, 1] endowed with periodic boundary conditions. For
notational convenience, we will index our sequence of discretizations of T only by
the natural numbers # such that n'/™ € N, for which we define the following square
equidistant grid with mesh size h,, := n=!/":

gl _-1/m 3 _-1/m 1 -1/mym
Mn.—{zn y 51 v l—=5m }

Then the grid points of M, can be written as xg) =pn VM- %l) for some m-tuple
jel,...,n/™™ where 1 = (1,...,1) € R™. To each of these points x(,];) e M,, we
associate the half-open cube U,(,i) =11, [n7V™(j—1),n71™ j,). Since these cubes
form a partition of M (recalling that opposite sides are identified), we can define
the transport map 7,,: M — M, by T,,(x) = x(,];) whenever x € U,(li). It readily follows
that (5.3.1) holds, as does (5.3.2), since €, = %\/ﬁn‘”m forallne N.

Setting 5.3.3 (Randomly sampled point cloud). Let M be any manifold satisfying
Assumption 5.3.1, and let (x!"),ey € M be a sequence of points independently
sampled from p. This sequence can be viewed as a sample from the probability
space (Q, F,P) := [Then M, B(M), 1), where B(M) is the Borel o-algebra on M. If
we set M, = (x(f));‘=1 for all 7 € N, then [181, Proposition 4.1] states that, P-a.s.,
there exists a sequence (T}) ey of transport maps Tj,: M — M, for which (5.3.1)
holds and we have

en < ogm)mn ™ 0 asn— oo,

where ¢, = ?—1 ifm=2andc,, = % otherwise.

We will now introduce the linear operators which we consider on the domains M
and (M) ,en as in Settings 5.3.2 and 5.3.3. Given the coefficient functions

T: M —[0,00) and «: M —[0,00),
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respectively assumed to be Lipschitz and continuously differentiable, we consider
the nonnegative and symmetric second-order linear differential operator L5 for-
mally defined by

LIXu=Tu-V-(xVu), (5.3.5)

for u belonging to some appropriate domain D(£3)) € L? (M), see also Section 1.2.4.
For each n € N, we endow M, with a (weighted, undirected) graph structure by
viewing its points as vertices and defining the weight matrix W,, e R”*"* by

2(m+2) 1 ) )
TWI[OJM](IIJC” - % llga), (5.3.6)

Whij =
where v, denotes the volume of the unit sphere in R and h,, € (0,00) is a given
graph connectivity length scale. With these weights, the resulting graph is an ex-
ample of a geometric graph (or in fact a random geometric graph if the nodes are
sampled randomly as in Setting 5.3.3). The results in this section are likely to remain
valid if the indicator function 1y 1, in (5.3.6) is replaced by a more general (e.g.,
Gaussian) cut-off kernel (such as in [41]), but we only consider n = 1|g 5] in order to
also cite sources which are not formulated in this generality.

The graph-discretized counterpart £};* of (5.3.5) is then the operator which acts
on a given function u: M, — R as

LR ue?) = D)) + 3 Wi\ k0o ) () - ). 63.7)

j=1

This can be seen as a generalized version of the (unnormalized) graph Laplacian
A, and in fact reduces to itif 7 =0 and x = 1.

Assumption 5.3.4 (Coefficients of £};*). Let 7: M — [0,00) and x: M — [0,00) be
the coefficient functions used in the definitions of the base operators (EZ‘K)n o see
equations (5.3.5) and (5.3.7). We shall suppose that

(i) 7 is Lipschitz, whereas x is continuously differentiable and bounded below
away from zero.

For some results, we specialize to the case that

(i) 7=0andx =1,ie., L, =Apr, and L and reduces to the Laplace-Beltrami
operator on M.

Assumption 5.3.5 (Connectivity length scale of random graph). Let the manifold
M and the random point clouds (M) ,en on the probability space (Q, F,P) be as
in Setting 5.3.3. Let (hy) en € (0,00) determine the connectivity length scales of the
graphs associated to (M) ,en via the weights (5.3.6), and suppose that s € (0,00).
We will assume one of the following:

1 I
(i) There existsa > 7% such that (logn)"n™m < hy <n *p.
(ii) There exists a § > 0, so small that ;s < m+4+4, and a § > %‘?5 such that

1 _1
n-mras Shy<<n 2P,
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Given two sequences (an),eny and (by)en of positive real numbers, the notation
a, < b, means ay/b,, — 0 as n — oo.

Since Id, +L1 is self-adjoint, positive definite and has a compact inverse for all

n € N (cf. [190, Chapter XII] in the case n = o0), there exists an orthonormal basis
W\ i, of L?(M,,) and a non-decreasing sequence (/.151])) =1 €10,00), accumulating
only at infinity for 1 = 0o, such that L%y = 1y

marize this state of affairs by saying that (w(n]) , /151])) ;.1:1 is an orthonormal eigenbasis

forall je{l,...,n}. We sum-

of L2(M ) associated to L. Recall from Section 1.2.4 that the asymptotic behavior
of the eigenvalues (/L(){))) jeN is described by Weyl's law, cf. [190, Theorem XII.2.1]:

AL e j2™ forall jeN. (5.3.8)

Given any of the above settings and 7 € N, we define the generalized Whittle—
Matérn operator A, on L?>(M,,) as a fractional power of the symmetric elliptic oper-
ator L};* given by (5.3.5) and (5.3.7). That is, we set A,, := (L}")* for some s € [0,00),
where we use the spectral definition of fractional powers (see Definition 1.3.3):

Anu= LT u= Y A1y pou, vy, ueD@) S I2My).  (5.3.9)
j=1
These will be used as the linear operators (A,) 5 in the stochastic partial differen-
tial equations in the next subsection.
Since A, is a nonnegative definite and self-adjoint operator on L2(My,) for any
n € N, the Lumer-Phillips theorem [156, Theorem 13.35] implies that —A,, generates
a contractive analytic Cy-semigroup (S;(z)) z€3, S Z(L%(M,)) on the sector

Z,:={A1eC\{0}:argA € (-n,n)} (5.3.10)

for every n € (0, %n). Thus, the operators (A,), 5 on (L2 (Mp)) nefy are uniformly
sectorial of angle 0, see Appendix 5.C.

The following assumption(s) on the L>° (M ,)-boundedness of the semigroups will
be needed for some of the results in Section 5.3.2:

Assumption 5.3.6 (Uniform L*°-boundedness of semigroups). Suppose that

(i) there exists a constant M, € [1,00) such that

I1Sn (B2 zoopm,) < Mseo forallmeNand = 0.

We may sometimes additionally assume that
(ii) (Sn(1)s=0is L*°(M,,)-contractive for all n € N, ie., Mg o =11in (i).

Under this assumption, it follows from [164, Proposition 3.12] that (S,(z)) €2y,

is bounded analytic on LY(M ) with n, = %n for all n € N and g € (2,00), and its
uniform norm bound on the sector %, only depends on g and Ms. Therefore,

the sequence of operators (Ay) , 5 on (L7(My)), 5 is uniformly sectorial of angle at
most (% — %)7‘[.



5.3. GRAPH-DISCRETIZED WHITTLE-MATERN EVOLUTION EQUATIONS 157

5.3.2. CONVERGENCE OF GRAPH-DISCRETIZED SEMILINEAR SPDES

Let (W(£)) ;=0 be an L?(M)-valued cylindrical Wiener process with respect to a fil-
tered probability space (Q,F, (F¢) 0,11, P). The spaces M and (M) en are as in
Setting 5.3.2 or 5.3.3 above; in the latter case, note that the space (Q2, F, (]—'t) t€[0, 11, P)
associated to the Wiener noise is independent of the probability space (Q,F,P) de-
scribing the randomness of the point cloud. For every n € N, we set W, :=I1,, W and
consider the following semilinear stochastic partial differential equation (SPDE):

un(O,x)zfn(x), (t,x)E(O, T] xM}’l’

where s € (0,00), T € (0,00) is a finite time horizon, f;: Q x [0,T] x R — R is the
nonlinearity, and ¢, : Q x M, — R is the initial datum. Note that (W},(#)) >0 is a Qp-
cylindrical Wiener process with Q,, = IT},IT,, = A ,I1,, = Id,,, where we recall (5.3.4) for
the second identity. Therefore, (W, (1)) >0 is a cylindrical Wiener process on L>(M,)
for all n € N, and its formal time derivative dW,, represents spatiotemporal Gaussian
white noise on [0, T] x M,,.

Solutions to (5.3.11)—and all the other (semi)linear SPDEs that we consider in
this chapter—are always interpreted in the mild sense. This notion of solutions is
defined using the semigroup (S, ()>o generated by —[L5*]°. We say that u,, is a
global mild solution to (5.3.11) if it satisfies the following relation for all ¢ € [0, T]:

t t
Uy (1) =Sn(t)cfn+[ Snu(t—98)F,(s, un(s))ds+f Su(t—s5)dW,(s), P-a.s.
0 0

Here, we interpret u, = (#,(f))se[o,1] as a process taking its values in an infinite-
dimensional Banach space of functions on M, (such as LY(M}) or C(My)), and
we define for every (v, t) € Q x [0, T the Nemytskii operator u,, — F,(w, t, u) on this
function space by setting [Fj, (w, £, u;)1(&) = fr(w, t,u, () forall { € M,,.

This notion of solution is called “global” because it exists on the whole of [0, T],
in contrast with “local” solutions, which may blow up before time 7. However, we
note that global solutions generally grow unbounded as T — co. We will not consider
local solutions in this section, but we do work with them in Section 5.5.2.

In this section, the real-valued functions f;, are supposed to satisfy the following:

Assumption 5.3.7 (Nonlinearities). We will assume one of the following conditions:
() The nonlinearities (f,),r are globally Lipschitz continuous and grow linearly,

both uniformly in 7. Le., there exist Zf, éf € [0,00) such that, for all n € N and
x,y€eR,

lfnl@,6,%) = fulw, t, DI <Lylx—yl and |fu(w, ,x)] < Cp(l+]x).

(i) The nonlinearities ( f,, i are of the polynomial form
2k ]
2 (@, 1,%) = =~ aoks1, 0@, DX+ a; (0,057, (5.3.12)
, J,

j=0
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where k € Ng and a; ,,: Q% [0, T] — R for each j € {0,...,2k + 1}, and there exist
constants ¢, C € (0,00) such that

C= Wps1,n(0,)=C and l|aj,(w, 0 =C (5.3.13)

forall j €{0,...,2k}, neNand (w, ) €Qx[0,T].

In either case, we suppose moreover that f,, — f uniformly on compact intervals;
i.e., forall r € [0,00) and (w, 1) € Q x [0, T,

sup |fu(w,t,x) - foolw, t,x)|— 0 asn— oco. (5.3.14)

x€[-rr]

Example 5.3.8. The cubic polynomial f, (v, ¢, x) := —x3+ x, which turns (5.3.11) into
the (fractional) stochastic Allen-Cahn equation in case T =0, k =1 and s < 1, is of
the form asserted in Assumption 5.3.7(ii). Note that this is also an example of the
important situation where (5.3.14) is trivially satisfied by taking the same function
foni=fforallneN.

The final technical assumption that we record before moving on to the main the-
orem of this section is the following:

Assumption 5.3.9 (Uniform L*°-boundedness of eigenfunctions). There exists some
My € (0,00) such that

||1//£1j) lzo(m,) < My, forall n e Nand jedl,...,n}.

The interplay of the various choices of spatial domains M, linear operators A,
and nonlinearity functions f;, determines the class of SPDEs to which (5.3.11) be-
longs. Rigorous definitions of the corresponding mild solution concepts, as well
as well-posedness and discrete-to-continuum convergence results can be found in
Sections 5.4-5.6, respectively. Applying these results in their respective regimes of
applicability yields the following discrete-to-continuum convergence theorem for
the solutions to (5.3.11); note that the setting of part (c) covers the stochastic (frac-
tional) Allen-Cahn equation on the one-dimensional torus, see Example 5.3.8.

Theorem 5.3.10. Let M and (M) el be as in Setting 5.3.2 or 5.3.3.

(a) Consider Setting 5.3.3. Let s > %m and suppose that Assumption 5.3.5(i) holds
with B € (75, %). If Assumptions 5.3.4(i) and 5.3.7(i) are satisfied, and p € [1,00)
is such that A&, — oo in LP(Q, Fo, P; L2 (M), then there exists a unique global
mild solution u, in LP(Q; C([0, T]; L2(M,,))) fo (5.3.11) for every n € N, and as
n — oo we have

Apty — Usy P-as. in LP(Q; C([0, T); L2 (M))).

(b) In Setting 5.3.3, let § > 0 be such that % <m+4+86, suppose s > m+4+6

and Assumption 5.3.5(ii) holds with f € (%5, 3). Let Assumptions 5.3.4(ii),
5.3.6(1), 5.3.7(1) and 5.3.9 be satisfied.
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If p € [1,00) is such that A&, — Eoo in LP(Q, Fo,P; L (M), then there exists a
unique global mild solution u,, in LP (Q; C([0, T1; L*° (M) to (5.3.11) for every
neN, aswell as us in LP (Q; C([0, T]; C(M))) for n =00, and as n — oo we have

Aptin — Ueo  in L2(Q, LP(Q; C([0, T1; L®(M)))).

(c) Consider Setting 5.3.2 with M ="T. Lets e (%, 1] and suppose that Assump-
tions 5.3.4(ii) and 5.3.7(ii) are satisfied.

If p € (1,00) is such that A&, — ¢ in LP(Q, Fo,P; L*°(T)), then there exists a
unique global mild solution u,, in LP (Q; C([0, T1; L*° (M) to (5.3.11) for every
neN, as well as uy, in LP(Q; C([0, T1; C(T))) for n = oo and for all p~ € [1, p) we
have, as n — oo,

Anlin — Uy in LP (Q;C([0, T]; L=(T))).

The proofis presented in Section 5.3.4. In the next section, we list the intermediate
results on which it relies. The motivations behind the various assumptions listed
above, as well as their role in Theorem 5.3.10, are discussed in Section 5.3.5.

5.3.3. INTERMEDIATE RESULTS

In this subsection, we collect a number of intermediate results which imply that the
conditions imposed in Theorem 5.3.10 are sufficient to fit into the setting of the var-
ious convergence theorems in Sections 5.4-5.6. More precisely, depending on the
setting, we wish to verify a subset of the following: Conditions (A1)—(A3) from Sec-
tion 5.4 on the linear operators, conditions (F1)-(F2) and (IC) from Section 5.5 on the
nonlinearities and initial conditions, respectively, as well as their extended counter-
parts (A1-B)-(A4-B), (IC-B), (F1-B)=(F2-B) and (F1”-B) from Section 5.6. The proofs
of the results in this section are deferred to Appendix 5.A for ease of exposition.

The necessary convergence of the linear operators, given by (A3) and (A3-B), will
ultimately be derived from the spectral convergence of (£}"),en to L3, i.e., the
convergence of the respective eigenvalues and (lifted) eigenfunctions. In the square
grid Setting 5.3.2, we can argue directly using closed-form expressions of all the
eigenvalues and eigenfunctions involved, see Lemma 5.3.11 below. A subtlety aris-
ing in the random graph Setting 5.3.3 is that, for any n € N, we cannot in general
control the errors I/l(,{) - AE,];,)I and IIWEJ) oTy, - wé{) llzaay for all j € {1,...,n}, but
only for indices j up to a sufficiently small integer k,,. We present the precise state-
ments below: Theorems 5.3.12 and 5.3.13(a), which cover eigenvalue convergence
and L?(M)-convergence of eigenfunctions, are respectively taken from [181, Theo-
rems 4.6 and 4.7]. Theorem 5.3.13(b), concerning the L>°(M)-convergence of Lapla-
cian eigenvalues, is a consequence of the main results from [41], as shown in [182,
Lemma 15] and the discussion preceding it.

Lemma 5.3.11 (Spectral convergence—square grid). Let M = T be discretized by
the sequence of square grids described in Setting 5.3.2. If 1 = 0 and x = 1, then for
all n € N such that n''™ € N, the eigenfunction—eigenvalue pairs (w(,{),/l(,{));?zl and
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(1//(] Y )) jeN Of the graph Laplacian LE* = A, and the Laplace-Beltrami operator

LI = —Apy, respectively, satisfy
0<AY AV < Litndn =% foralljedl,..., n); (5.3.15)
2] Jj oo, Nl 3.
1
lwd) 9P o Tylliwry < IV2jan~m  forall je{l,...n-1).  (5.3.16)

Theorem 5.3.12 (Eigenvalue convergence—random graphs). Let the manifold M
and the random point clouds (M) ,eny € M on the probability space (Q, F,P) be as
in Setting 5.3.3. Suppose that t: M — [0,00) is Lipschitz, and that x: M — [0,00) is
continuously differentiable and bounded below away from zero.

If the graph connectivity length scales (h,) ,en (see (5.3.6)) are chosen in such a way
that there exist positive integers (ky,) ,eN Satisfying

(kn)y=3
en < hp < [Agg"172, (5.3.17)
then there exists a constant Ca ¢ > 0 such that
(129 20, "
P(% < CoMorn) Enhyt + hplAS 12 forallneN, jefl,...,kn}| =1.
AL +1

Theorem 5.3.13 (Eigenfunction convergence—random graphs). Let the manifold
M and the random point clouds (M) neny S M on the probability space (Q, F,P) be
as in Setting 5.3.3. Let (hy,) neN < (0,00) be the connectivity length scales of the graphs
associated to (M) yen Via the weights (5.3.6), and consider the (graph-discretized)
differential operators L3)* with coefficients T: M — [0,00) andx: M — [0,00).

(a) If Assumption 5.3.4(i) holds, and there exist integers (kp) nen Such that (5.3.17)
is satisfied, then there exists a constant C a7 x) > 0 such that, foralln e N,
. 3 _ 1.1
Pliws! o T = w2 < Cortr 2 (e + A1)
forall je {1,...,kn}) =1.
(b) Let Assumption 5.3.4(ii) be satisfied. If there exist (k,),en € N and 6 > 0 such

that . s
n”mraes < aqhy S [Aéﬁ”)]_l and )ng”) mnm,

then there exists a constant Cq > 0 such that, as n — oo,
3 1.1
Byl o T -y iy = CMALI™ 12 (el + RalAL)2)?
forall j e {1,...,kn}) -1
From the above results, we can derive the following convergence of the sequence
(An) 5 Its proof is analogous to that of [181, Theorem 4.2], see Appendix 5.A.

Theorem 5.3.14. Given t: M — [0,00), k: M — [0,00) and s € [0,00), consider the
generalized Whittle-Matérn operators Ay, = Lyns defined by (5.3.9), and define the
operator R% := A, (Id,, + A,) %1, for all a € [0,00) and n € N.
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(@) Suppose that M and its discretizations (M) neN are as in Setting 5.3.3, Assump-
tion 5.3.5(i) holds with B € (J;,00) and Assumption 5.3.4(i) is satisfied. Then we
have for all ' € [,00):

R“ﬁ' - Rfo’ P-as. in % (L2 (M)) asn— oo.

(b) Suppose that M and its discretizations (M) neN are as in Setting 5.3.3, Assump-
tion 5.3.5(ii) holds with € (%‘im,oo), and Assumptions 5.3.4(ii) and 5.3.9 are
satisfied. Then we have for all ' € [f,00):

ﬁf’—'Rﬂ in L°(Q; L (L*(M); L®°(M))) asn — oo.

Here, L°(Q) denotes convergence in probability with respect to (ﬁ,]? , I?’).

(c) Suppose that M :=T™ is discretized using the square grids (M) ,en from Set-
ting 5.3.2, and that Assumption 5.3.4(ii) holds. For all B € (;,00),

RE—RE in LUZIM);L® (M) asn — oo.

The following property, which we call the uniform ultracontractivity of the semi-
groups (Sy),, 7> Will be needed in order to obtain the L (M)-convergence in The-
orem 5.3.10(b) and (c). Its proof relies on the Riesz-Thorin interpolation theorem,
Assumption 5.3.6, and some arguments from Theorem 5.3.14.

Lemma 5.3.15 (Uniform ultracontractivity). Let s € (0,00) and consider the general-
ized Whittle-Matérn operators Ay, := (Ly")’ defined by (5.3.9) for all n € N. Assume
either of the following:

(@) In Setting 5.3.3, Assumption 5.3.5(i) or (ii) holds with corresponding B, as well
as Assumptions 5.3.4(i), 5.3.6(i) and 5.3.9.

(b) In Setting 5.3.2, B € (§,00) is arbitrary, and Assumptions 5.3.4(ii) and 5.3.6(i)
hold.

Then, for every q € [2,00], there exists Ms 4 € [1,00) such that

_2 —
”Sn(t)||$(Lq(Mn);L00(Mn)) SMS'qt qﬁ foralln(—:Ncmdt>O. (5.3.18)

In case of (a), (5.3.18) holds P-a.s.

5.3.4. PROOF OF CONVERGENCE
Using the intermediate results from Section 5.3.3, we can now prove Theorem 5.3.10:

Proof of Theorem 5.3.10. In order to prove parts (a)—(c), we will apply Theorems 5.5.4
and 5.6.6 as well as Corollary 5.6.10, which are the rigorous counterparts of Theo-
rem 5.1.1 in the respective settings.

The argument preceding Setting 5.3.2 shows that (A1) and (A1-B) hold in any of
the given situations, with H,, := L2(M,) and E,, := LY(M,,) for n € N and q € [2,00),
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as well as By, := L®(M,,) for all n € N, By, := C(M) and B := L (M). Moreover, note
that (IC) (or (IC-B)) is explicitly assumed in each case.

(a) Here, we take g =2, i.e., E, = H, = 12 (Mp)forallne N. As discussed at the
end of Subsection 5.3.1, the operators (An)n N = ([EZ’K]S)H oy are uniformly sectorial
of angle 0 on (L (Mp)), - Letting B € (73, %) be as in Assumption 5.3.5(i), it follows
from Theorem 5.3.14(a) that EZI — Rf;, f”—a.s., in % (L?(M)) as n — oo, for all p'=p.
Applying this with ' := € (0,3) and ' := 1 yields (A2) and (A3). Setting, for all
(w,)eQx[0,T], ue L>(M,) and x € M,,,

[Fn(w, t, )] (x) = fn(w, t, u(x)), (5.3.19)
itis immediate from Assumption 5.3.7(i) that (F1) is satisfied. Moreover, combining
the definition of F,, from (5.5.3) with (5.3.19) yields

[Fr(@, 1, )](x) = [An Fp (@, £, 1,101 (x) = fo (£, 0, ATl u(x)),
so that
1En (@, £, ) = Foo(w, t, W)l 2 pgy = Il (@, £, ApTT () = foo(@, &, uC-) I 2 pg)
< Lol ApTpu—ullzovg + L fn(@, £ u(+) = foolo, £, ul) 2 -

As n — oo, the first term vanishes by Assumption (A1), and the second term by dom-
inated convergence using (5.3.14) and the uniform linear growth condition in As-
sumption 5.3.7(i). Therefore, condition (F2) is also satisfied.

(b) Now we need Assumption 5.3.6(i) in order for ([ﬁ,’{“]s)n oy to be uniformly sec-

torial of angle less than %n on (L9(My)), g for all g € [2,00). Letting 6 > 0 and
Be (%‘?5, %) be as in Assumption 5.3.5(ii), it follows from Theorem 5.3.14(b) that

ﬁf — Rfé in L°(Q; L (L?(M); L®(M))) as n — oo, for all B/ = f, under Assump-
tions 5.3.4(ii) and 5.3.9. In particular, we have R’ﬁ — Rfo in Lo(ﬁ;}/(Lz(M);Lq (M)
for all g € [1,00) by [114, Corollary 9.3.3], and ﬁn — Ry in Lo L (L°°(M))). This
shows (A2-B) and (A3-B). By Lemma 5.3.15(a), we have (A4-B) with 8 = %ﬁ. Thus,

choosing q > % yields 8 + 2 < 1. Conditions (F1-B) and (F2-B) follow similarly to
part (a).

(c) As in part (b), we need to verify conditions (A1-B)-(A4-B), now with contrac-
tive semigroups (S, (1)) =0, i-e., Assumption 5.3.6(ii). For s = 1, (Seo (1)) r=0 is L=(T)-
contractive since the L' (T)-norm of its heat kernel coincides with the L!(R)-norm
of the Gauss—Weierstrass kernel, which is equal to 1. For finite n, the L>°(M,;)-
contractivity of S, () = e~*4" is equivalent to A, being diagonally dominant with
positive diagonal by [154, Lemma 6.1], which holds for Laplacian matrices. Since
these assertions can be extended to all s € (0, 1] by subordination, see e.g. [115, The-
orem 15.2.17], we indeed find that Assumption 5.3.6(ii) holds. Thus, we can proceed
to argue as in (b), using Theorem 5.3.14(c) and Lemma 5.3.15(b) for an arbitrary
e (&, 1), to obtain (A1-B)-(A4-B) with Mg =1 and 6 +2f < 1 for q € [2,00) large
enough.

It remains to establish that the nonlinearities from Assumption 5.3.7(ii) are such
that (F1”-B) holds. This is done in Example 5.6.8, noting that the space L (M)
coincides with C(M,,) if we equip M, with the discrete topology. O
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5.3.5. DISCUSSION OF THE ASSUMPTIONS

Here, we comment on the various assumptions made in Theorem 5.3.10, the extent
to which they are necessary, and how one might check them in practice.

The distinction between parts (i) and (ii) of Assumption 5.3.4, i.e., whether to allow
for spatially varying coefficient functions 7 and « in the second-order symmetric
base operators (E;'K)n o instead of merely considering Laplacians, is mainly due to
the availability of spectral convergence theorems in the respective situations. Most
of the literature on eigenfunction convergence of graph-discretized second-order
operators is focused on the Laplacian, see for instance [40, 82] for L?-convergence
and [41, 69, 198] for L*-convergence. However, the authors of [181] show how the
L?-convergence results can be extended to coefficient functions satisfying Assump-
tion 5.3.4(i). We expect that most spectral convergence results for graph Laplacians
can be extended to allow for varying coefficients, but doing so requires significant
effort, hence we sometimes make Assumption 5.3.4(ii) for the sake of convenience.

Similarly, the difference between the bounds on the graph connectivity length
scales in the two parts of Assumption 5.3.5 is a result of the current availability of
spectral convergence literature. Eigenfunction convergence of (EZ’K)H oy in I? has
for instance been proved in [181] under Assumption 5.3.5(i), but for graphs and
manifolds as in our setting, the optimal available L>°-convergence results (for graph
Laplacians) seem to be those of [41], which require Assumption 5.3.5(ii). However,
according to [41, Remark 2.7], it is plausible that the L*°(M)-convergence of Lapla-
cian eigenfunctions can be established under the same assumptions as the LE2(M)-
convergence, with the same rate. Some recent results in this direction can be found
in [12], where the authors show L>-convergence of Laplacian eigenvectors with op-
timal rates and loose lower bounds on the connectivity lengths, using homogeniza-
tion theory, for point clouds on less general spatial domains.

Assumption 5.3.6 is natural in the sense that the results regarding L>°-convergence
in space (for instance Theorem 5.3.10(b) and (c)) rely on uniform L*-convergence
of semigroup orbits on compact time intervals. The latter necessitates that Assump-
tion 5.3.6(i) is satisfied, at least for ¢ € [0, T'] with arbitrarily large T € (0, c0).

Moreover, for typical choices of differential operators, one can often check that
Assumption 5.3.6(ii) holds, meaning that the semigroups are in fact L*°-contractive.
One such example is outlined in the proof of Theorem 5.3.10(c): Matrix exponentials
(e~'In),50 are L®-contractive if and only if L,, € R”*" is diagonally dominant with
nonnegative diagonal entries [154, Lemma 6.1]. Sufficient conditions for the L*°-
contractivity of the semigroup (S.o(?)):>0 generated by the negative of a uniformly
elliptic second-order differential operator on a Euclidean domain D C R4, subject
to appropriate boundary conditions, can be found in [164, Section 4.3]. Likewise,
the heat semigroup associated to the Laplace-Beltrami operator on a compact Rie-
mannian manifold M is L*°-contractive, cf. [60, p. 148].

As mentioned in the proof of Theorem 5.3.10(c), all of the above L*°-contractivity
results for second-order differential operators can be extended to fractional powers
s € (0,1) by using a subordination formula such as [115, Theorem 15.2.17], noting
that the definition of fractional power operators in this reference coincides with ours
(more details are given in the first half of the proof of Lemma 5.C.1 below). The
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semigroups generated by higher-order differential operators, however, are in general
not contractive on L™ (or any L7 for g # 2, see for instance [134]); this is closely
related to their lack of positivity preservation. As an example, the fractional heat
kernel associated to (=A)® on R with s € (0,00) at time t € (0,00) is given by the
inverse Fourier transform of { — exp(—#||¢ II% ), which is positive for s < 1 but fails to
be sign-definite if s > 1, see [72, p. 626 and pp. 632-633], respectively.

Thus, for operators ([£Z’K]S)n oy With s > 1, we have to content ourselves with
uniform L*°-boundedness of the semigroups (S,(f))s=¢ in 7 and ¢, i.e., Assump-
tion 5.3.6(i). In the absence of positivity preservation, one route to verifying such
uniformity is through Gaussian upper bounds on the integral kernels corresponding
to the semigroups, cf. [164, Proposition 7.1]. Such bounds have been established for
higher-order differential operators on Euclidean domains, as well as Laplacian op-
erators on more general domains such as manifolds, graphs and fractals (see [164,
pp- 194-196] and the references therein). While it may be possible to unify these re-
sults in the setting of graph-discretized higher-order differential operators on mani-
folds, and thus obtain the uniform L*°-bounds required by Assumption 5.3.6(i), this
appears to be highly nontrivial and outside the scope of this chapter.

We also remark that certain higher-order operators have been shown to exhibit
(local) eventual positivity, meaning that for every nonnegative initial datum uy = 0
and subset D* of the spatial domain D, there exists t* > 0 such that S(¢) uy = 0 on D*
forall £ > t*. For instance, in [84], this was shown for the bi-Laplacian A% on D = R¥.
In [95], the authors apply the theory of [57, 58] to treat the squared graph Laplacian
A%l, deduce that (e‘A%tt)tzo is eventually L*°-contractive [95, Proposition 6.7], and
note that this implies L*°-boundedness uniformly in ¢ = 0 [95, Remark 6.8]. How-
ever, as n — oo, their upper bound IIe‘A%ltlloo < exp(llA, ||2 t*) blows up in our set-
ting. Hence, these results do not appear to be directly useful for our purpose of veri-
fying Assumption 5.3.6(i).

If we restrict ourselves to nonlinearities of the form [Fy, (w, t, w)](x) == fu(w, t, u(x))
(see (5.5.1) and (5.6.1)), then the conditions in Assumption 5.3.7 are the natural ones
to ensure the global (in time) convergence results formulated in Theorem 5.3.10.
Convergence results for more general nonlinearities, possibly formulated only in
terms of local-in-time convergence and with respect to weaker norms, can be found
in Sections 5.5 and 5.

Assumption 5.3.9 was used to establish the L*°-convergence asserted in Theo-
rem 5.3.14 and the uniform L?>-L*-ultracontractivity in Lemma 5.3.15. The L*-
norms of the L2-normalized eigenfunctions of the Laplace-Beltrami operator on a
general compact Riemannian manifold M of dimension m satisfy the upper bound
||1//(]) oy S [)L(f) 17T due to Hérmander [110]. This bound is sharp in the sense
that it is attained by the symmetric spherical harmonics on the sphere. On the other
hand, the L*°-norms are uniformly bounded (i.e., satisfy Assumption 5.3.9) if m =1
or if M =T is a flat torus. Some results relating the L*°-growth rate of these eigen-
functions to the geometry of the manifold can be found in [65, 185, 192].

These observations indicate that Assumption 5.3.9 poses strong restrictions on the
curvature of the manifold, which raises the question whether this assumption could
be removed. Its central role in the proofs of Theorem 5.3.14(b), (c) and Lemma 5.3.15
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is due to the L>~L®°-norm bounds (5.A.2) of operators which are defined in terms
of eigenvalue expansions, such as the fractional powers defined by (5.3.9). This
suggests that disposing of Assumption 5.3.9 would involve techniques which are
not based on spectral representations and spectral convergence of the operators in-
volved. For Lemma 5.3.15 in particular, one indication that this should be possi-
ble is the fact that, like L°°-boundedness, the LZ—L"O-ultracontractivity of (Soo (1) 20
follows from certain upper bounds on its heat kernel [96, Theorem 3.2]. For the
Laplace-Beltrami operator on a compact Riemannian manifold, we indeed have
such bounds by [60, Proposition 5.5.1 and Theorem 5.5.2], which imply (5.3.18) with
p="1 (forn=occand s=1).

5.4. INFINITE-DIMENSIONAL ORNSTEIN-UHLENBECK
PROCESS

In this section and the subsequent Sections 5.5 and 5.6, we state and prove the ab-
stract discrete-to-continuum approximation results which were shown to be appli-
cable to the Whittle-Matérn graph discretization setting in Section 5.3. Thus, from
this point onwards we no longer necessarily work with graphs or Whittle-Matérn
operators. Instead, we have the following abstract setting.

Let the filtered probability space (Q, F, (F1) (0,11, P) be given. For any n € N, we
consider the following linear stochastic evolution equation, whose state space is a
real and separable UMD-type-2 Banach space (Ej, || - I|g,,):

5.4.1
X, (0)=0. ( )

{dX,,(t) =—-A, X, (0)dt+dW, (1), te€(0,T],
Here, A,: D(A;) € E, — E, is a linear operator and T € (0,00) is a time horizon.
Moreover, we take W, := IT,, W5, where (W, (1)) /=0 denotes a cylindrical Wiener pro-
cess on (Q, F, (F¢)repo,11, P) taking values in a separable Hilbert space (Hoo, (", ) H,,)
and the operator I1,, € £ (Hy; Hy) is as in assumption (A1) below. Thus, the formal
time derivative W, of Wy, represents space—time Gaussian white noise and (Wp,) ;>
is an Hj-valued Q,-cylindrical Wiener process colored in space by the covariance
operator Q, :=1I1,IT}, € Z(H,).
We impose the following uniformity assumptions on the spaces (Ej)
and the operators (A,)

neiy (Hn) ey

neN’

(A1) Assumption 5.2.1 holds for the UMD-type-2 Banach spaces (Ep),, g and the
Hilbert spaces (Hp) g, with E := Eo, and H := Hy, both with the same se-

quence (Ap,I1,), g of lifting and projection operators.
(A2) The operators (A,), 5 on (En), 5 are uniformly sectorial of angle less than
%7‘[ (see Appendix 5.C for the definition of this concept). In particular, their
negatives generate bounded analytic Cy-semigroups (S (1)) s=0 € -Z (E;,) which
satisfy Assumption 5.2.2 with w = 0. Moreover, there exists a 8 € [0, %) such that

RP = (1d,, + Ap) P € y(Hp; Ep) for every ne N.
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In general, the fractional powers of the sectorial operators A, appearing in (A2) can
be defined using any of the equivalent definitions in [100, Chapter 3]. If, as in Sec-
tion 5.3, the operator A, given as the restriction of an operator whose eigenvalues
form an orthonormal basis on some Hilbert space containing E,;, then one can use
the spectral definition (5.3.9) of fractional powers of A;.

The solution concept which we consider for all of the equations in this chapter is
that of a mild solution, which was also the main object of study in the previous chap-
ters. Recall that for the linear equation (5.4.1), it is given by a stochastic convolution.
Namely, we have the following result.

Proposition 5.4.1. Letn e NandTe (0,00). Under (A1)-(A2), the stochastic convo-
lution

t
Why, (1) ::f Su(t—s)dWy(s), te[0,T], (5.4.2)
0
is a well-defined process in C([0, T1; LP (Q; Ey,)) for every p € [1,00).

Proof. Forevery p € [1,00) and ¢ € [0, T], we have by the It6 inequality (5.2.4):

t
2 2 2
” WAn(t)”LP(Q,En) S,(p,En) ‘/0‘ "Sn(t_ S)||Y(Hn,En) dS = ”Sn”LZ(O,T;Y(Hn;En))

To thow that the right-hand side is bounded, we use the ideal property (5.2.2) of
Y(Hp; Ey) and the estimate (5.C.2) for analytic semigroups (in conjuction with As-
sumptions (A1) and (A2)) to see that

T
A fo 10dy, + AP S (O RGIZ 5,

T
< IRNIZ 1.5 fo 10dy +AnPSu(D12,, ) dt

T Tl—2/3
< IRP12, . f 2P de=REV2,,, » —— <
SpIRullyase, |, IRy ,im0 7255 <

Note that IIRQ II§,( H:Ey) 1S finite by (A2). Next, applying the It6 inequality (5.2.4) to the

difference Wy, (t + h) — Wy, (¢) for small enough % € R yields
[Wa, (t+h) = Wa, (Ol r B SpEp 1Sn(- +h) =Sy 220, 75y () — 05

as h — 0, by the strong continuity of translation operators on the Bochner space
L%(0, T;y(Hy; Ep)). This shows Wy, € LP (Q; C([0, T1; Ep)). O

Definition 5.4.2. An E,-valued stochastic process X, = (X, (f))se[o,7] belonging to
C([0, T1; LP(Q; Ep)) for some p € [1,00) is said to be a mild solution to (5.4.1) if it is a
modification of the process Wy, defined in (5.4.2).

The existence and uniqueness (up to modification) of the mild solution to (5.4.1)
in C([0, T1; LP(Q; E};)) is then immediate from Definition 5.4.2.

Asremarked in Section 5.2.2, we mainly have applications in mind where the prob-
lem corresponding to n = oo is interpreted as a spatiotemporal stochastic partial
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differential equation. In the present linear setting, its solution is also known as an
infinite-dimensional Ornstein—-Uhlenbeck process, and solutions to (5.4.1) for n € N
are spatially discretized approximations. Therefore, it is natural to ask whether we
can identify the right mode of convergence of the operators (A;) en t0 Axo @s 1 — 00
to ensure the convergence of the processes (Wy,,) nen to Wy .

The answer is provided by Proposition 5.4.4 below, which is a stochastic counter-
part of the discrete-to-continuum Trotter—Kato approximation theorem for strongly
continuous semigroups recalled in Theorem 5.2.3. In fact, with an eye towards the
proof of Proposition 5.4.5 below, we consider a more general class of auxiliary pro-
cesses, see equation (5.4.3).

Before stating any discrete-to-continuum results, let us introduce some conve-
nient notation for this goal. Using the operators (A,),en and (IT,) ,en, We can take
a mapping which has E,, as its domain or state space, and turn it into an analogous
mapping from or to E,. E.g., we define the E.,-valued processes WAn =N Way,
as well as the operators ﬁ% = Ay RS, and Su(8) == NSy (D1, in ZL(Es) for all
a,t € [0,00). Now we can formulate our notion of the convergence A, — Ay as
n — oo as follows:

(A3) For every x € E,, we have ﬁ}lx — Récx in Ey, as n — co. Moreover, for § € [0, %)
asin (A2), we have Eﬁ — Rfo in ¥(Hoo; Eco)-

We will see in Proposition 5.4.4 below that the convergence assumption (A3) of the
linear operators is sufficient to ensure convergence of the solutions to the linear
stochastic evolution equation (5.4.1). Its proof uses Lemma 5.C.1 in Appendix 5.C,
as well as the following general approximation lemma for square-integrable func-
tions with values in the space of y-radonifying operators. It is a simplified analog
to [131, Lemma 2.6], which was only necessary to allow for stochastic equations in
UMD Banach spaces without type 2.

Lemma5.4.3. Let (E,| - |lg) and (F | - |r) be Banach spaces, and let (H, (-, ')}Q be a
Hilbert space. Given a,b € R with a < b, let My,: (a,b) — £ (E;F) forall n € N and
suppose that

(i) M, ® x — M ® x uniformly on compact subsets of (a, b) for all x € E, and
(it) sup,, 5 SUPe(a,p) | Mn (Dl 2 5;r) <oo.
ForallRe [%(a, b;y(H;E)) and n EN, we have M, ® R € [%(a, b;y(H; F)) and

M,R— MR inl?(a,b;y(H;F)) asn— oo.

Proof. Arguing as in the proof of Proposition 5.B.3 and using assumption (ii), it fol-
lows that we only need to prove the claim for all R belonging to some dense subset
D of [%(a, b;y(H; E)). Note that every R € [%(a, b;y(H; E)) can be approximated by a
step function Z?’zl l(aj,b}) ® Tj with a < a;. < b;. < band T; € y(H; E), and by defini-
tion of y(H; E) the latter can be approximated by finite-rank operators. By linearity,
it thus suffices to prove the statement for R of the form

RO =1yt hex, wherea<a <b'<band (h,x)€HxE.
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Substituting this representation, using (5.2.3) and (i), we find as n — oco:
b’ )
”MVLR MR”LZ(ab}/(HF)) j;;’ ||h®[Mn(t)x_M(t)x]”Y(H'F) dt

b/
- ||h||2Hf I Mo (0)x — M(0)xI2 1
a’

<l - a) sup [IMy(H)x—M@®x|%—0. O
te(a',b")

Proposition 5.4.4. Suppose that Assumptions (Al) and (A2) hold. Let us define the
auxiliary processes

w3 ()= r(o*)f (1= 50718, (t—5) AWy (s), € (l/2,00), t€[0,00),  (5.4.3)

where T denotes the Gamma function [163, Section 5.2]. Then, for every ' € (8,00),

/4 1

T € (0,00) and p € [1,00), we have W, "2 e C(l0, T LP(Q Ep) foralln € N. If we
suppose in addition that Assumption (A3) is satisfied, then

WPt qur%

A, inC(0,Tl;LP(Q; Es)) asn— oo.

/o1 —
Proof. The fact that anJrz € C([0, T1; LP(Q; Ey)) for all n € N can be established by
arguing as in Proposition 5.4.1, thus using Assumptions (A1) and (A2). For t € [0, T,

the Itd inequality (5.2.4) yields

HW’“Z(t) wh 2 )||

LP(Q;Exo)

1
< _— t— 2P 1S, (t—s Soo(t—$ ds)”
S T )f( Y2180t = 9) = Seolt = 94y 1) 45

1 Zﬁ!_l ~ 2 %
<— s S1(8) — S (S) 5 yds| .
rUm%)( fo 150(5) = oo 115, 5]

Since semigroups commute with fractional powers of their infinitesimal generators,
we can write the difference between the semigroups as follows:

5(8) = Soo(8) = Ap(Idy, + A)P S (T, RE — (Idoo + Ace)P Seo ($)RE,
= Ap(Id, +Ap)P S, ()11, (RE - RE)
+ (A (Udy +An)P S, ()T, — (oo + Aco)? Soc) RE..

Thus, by the triangle inequality, it suffices to show that
T oop ~5
M= fo PN A R (Udy + AP S (T (R - REIZ 4., ds and

T /
5= [ AL+ 400 8, (9T = (o +Roo) Sec R 7, d
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tend to zero as n — oco. Applying the ideal property (5.2.2) of y(Heo; Exo), followed
by the analytic semigroup estimate (5.C.2) in conjunction with Assumptions (A1)
and (A2), we find

T !
0 1R RE R ey [ 5 10+ A0 SOl d

T /
S(6,Ma, M) A 1’?<><,||),(Hoo W)fo s2F=P1gs (5.4.4)
TZ(ﬁ’*ﬁ)
T2p-p)

where the convergence on the last line follows from the second part of (A3). The
convergence (II) — 0 follows by applying Lemma 5.4.3 with

IR - RE I 1y py — O,

M, () == tPA,(d, +A)PS, (011, and R(t):=tPP2RE,
Indeed, this is justified since R € I2(0, T;Y(Hoo; Exo)) With

IRI? T2(8'-B)

2
L20,T;y(HoiEoa) ~ 2(B/ — ﬁ)IIRoolly(Hw;Ew)<oo,

condition (ii) is verified by applying (5.C.2) to [|Mp(0)| ¢, combined with As-
sumptions (Al) and (A2) as in (5.4.4), and hypothesis (i) holds by Lemma 5.C.1. O

We will show that there exist modifications of W,_ and (WA")%N which, for all
p €[1,00) and T € (0,00), belong to LP(Q; C([0, T]; Es)) and converge in this norm.
In particular, as n — oo, their trajectories converge uniformly on bounded time in-
tervals, P-a.s.

The proof is based on the Da Prato—Kwapiei-Zabczyk factorization method, first
formulated in [53] for Hilbert spaces (see also [56, Section 5.3]), and later extended
to UMD-type-2 Banach spaces in [37, Theorem 3.2]. This method was also used in
Chapter 2. Recall that the general idea is to express the process W, as the ‘prod-

3=F'

1_pr 1 !
uct’ 3/24,, P Wj:ﬁ of a fractional parabolic integral operator TJ (whose definition

1,4
and necessary properties are recalled in Appendix 5.B) and aux111ary process W j’:ﬁ
from (5.4.3), and using the smoothing properties of the former.

Proposition 5.4.5. Let p € [1,00) and T € (0,00). If Assumptions (A1)-(A2) hold, then
foreveryne N there exists a modification of W, which belongs to L” (Q0; C([0, T1; Ey),
which we will identify with Wy, itself.

If, in addition, Assumption (A3) holds, then the sequence (WAn)n o Satisfies

Wy, — Wa, inLP(Q;C(0,T];Es)) asn— oo.
Proof. Let §' € (B, %), where § € [0, %) is as in (A2). Since L”(Q)-spaces with higher

exponents are embedded in those with lower ones contractively (which follows from
P(Q) = 1), we assume without loss of generality that p € ((% - B)71,00). By the first
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part of Proposition 5.4.4 (thus using Assumptions (A1) and (A2)) and the Fubini the-
orem, we have for all n € N:

1 !
Wﬁ,:rﬁ € C([0, TI; LP(Q; Ep)) — LP (0, T; LP (Q; Ep)) = LP(Q; LP (0, T; Ey)),

where the constants for the first embedding depend only on p and T. In particular,
1 /
there exists Q; € Q with P(Q;) = 1 such that W2+ﬁ (w, +) belongs to LP(0, T; E,,) for

all w € Q;. It then follows from Proposition 5.B.1(b) that 52 ﬁ,WZ 4 (w, -) belongs
to C([0, T1; E;,), where (TJ )se[() oo) are the fractional parabohc 1ntegral operators de-
fined by (5.8.2) in Appendix 5.B. In this case, the process J7 ip j +P (set to zero
outside of Q1) belongs to LP(Q; C([0, T1; E,)), and by the factorlzatlon theorem [37,
Theorem 3.2] it is a modification of Wy,,.

For the lifted processes, the properties of the embeddings and projections from

2 ﬁ +ﬁ € LP(Q; C([0, T1; Eso)) is a continuous mod-

ification of WAn, where ’Ji‘ = An”fq H n- Identifying WA,, with its factorized contin-
n n

assumption (A1) imply that TJ

uous modification for every n € N, we can estimate as follows:

ﬁz ﬁ'

/ !
TA7 2 ﬁ 2 ﬁ
Wa,, = Wa llLp@;c0,T1;Ew)) = ||J Wy, ||LP(Q :C([0,T);Eno))

1 1.4 1+
< IITJ'f,nﬁ (W2 P -Wy ﬁ )"LP(Q-C([O T]:Ea))

:%_ﬁ/ f~2 ﬁ’
HI@Ty, - w ”U’(Q 5C(10, T1;Eo)) -

Since %— g > %, we can apply Corollary 5.B.2(b) to find that TJ 2 h isabounded linear

operator from LP (0, T; Ex,) to C([0, T]; E5,) whose norm can be bounded indepen-
dently of n. Thus, by the above discussion and the second part of Proposition 5.4.4
(which uses Assumption (A3)), we find

1 ! 1 ! 1 !
Sp dep L bep
135, Wi = =Wi ")lr@icqo,TiEw)

lep Lip

1 1 !/
L Lep
S IIW2 ~ Wy "l @x0,1iEx) < v IIW2 - Wy " lleqo,miLr @iEo) — 0

Now we note that, for all w € Q, Proposition 5.B.3(a) implies that
1 / 1 / 1 1 !
m3=PB 5t ~2 K2 tP
IIJin Wjoo (w, ) — ‘Jfloo Wjoo (w, llco,T1;Ew) — 0.

Again by Corollary 5.B.2(b), we moreover have

/

1 / 1 / 1 / 1 / 1
<3, 34h L-p e Lep
135, Wi &~ (@)=T5 " W; " (@ lco e S20Wy " lro,1iE)

1,4
with constant independent of n € N, and since Wj;ﬁ € LP((0, T) x Q; Eo), the dom-
inated convergence theorem yields

1 ! 1 / 1 !
A A,
135, =34 IWL " llr@icao, 1B — 0. =
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5.5. APPROXIMATION OF SEMILINEAR EQUATIONS WITH
ADDITIVE CYLINDRICAL WIENER NOISE

In this section, we shall extend the results from Section 5.4 regarding the linear E,,-
valued equation (5.4.1) to the semilinear case. As before, let the spaces (En) v
(Hp) .57 and the operators (A,),  satisfy assumptions (A1) and (A2), respectively,
and suppose that W,, :=I1,, W, is an Hy-valued Q,,-cylindrical Wiener process (with
Qp =11,11},), supported on (Q, F, (F1) refo,1), P). Let T € (0,00) be a finite time hori-
zon. In this section, we suppose moreover that we are given a drift coefficient func-
tion F,,: Q x [0,T] x E,, — E, and initial datum ¢&,,: Q — E,,. We will consider the
following semilinear stochastic evolution equation:

{an(t) =-Ap X, () dt+ Fu(t, Xp () dt + dW, (1), te(0,T], 5.5.1)

X,(0) = 511

Note that F,(w, t, -) is a (nonlinear) operator on E, for all (w, ) € Q x [0, T]; in Sec-
tion 5.3, we considered the specific case [Fj(w, t, u,)]1(x) = fu(w, t, u,(x)) for some
real-valued nonlinearity f;,.

In what follows, we shall impose more precise conditions on the F,, and ¢, to en-
sure the well-posedness of (5.5.1) for every fixed n € N and to obtain discrete-to-
continuum convergence of the respective solutions as n — co.

In Section 5.5.1 we will assume in particular that the drifts (F”)n o are uniformly
globally Lipschitz and of linear growth to obtain the existence of unique global solu-
tions (X, (1)) rejo, 77, Whose lifted counterparts X, converge to X, with respect to the
LP(Q;C([0, T1; Eso))-norm as n — oo, where p € [1,00) is the stochastic integrability
of the initial data. These assumptions are relaxed in Section 5.5.2, where we suppose
that the drifts are uniformly locally Lipschitz and uniformly bounded near zero. In
general, this comes at the cost of obtaining merely local solutions, converging in a
weaker norm. However, if one can show independently that the solutions are global
and the LP(Q; C([0, T1; E,))-norms of X,, are uniformly bounded in n € N, then we
recover the stronger sense of convergence.

5.5.1. GLOBALLY LIPSCHITZ DRIFTS OF LINEAR GROWTH

In this se_ction we suppose that the drift coefficients Fp: Qx [0, T]1x E;, — E in (5.5.1)

for n € N are uniformly globally Lipschitz continuous and of linear growth. More

precisely:

(F1) There exist constants Lg, Cr € (0,00) such that, forevery € [0, T, 0 € Q, n€ N
and x,, y, € Ep,

1 En(w, £, Xp) = Fp(@, t, yu) g, < LENXn = yullE,s
1Fn (@, t, xp) g, < Cr(1+ 1 X2l E,)-
Moreover, the process (w, t) — Fy(w, t, x) is strongly measurable and adapted
to the filtration (F¢) re[o,1)-

Now let us comment on the existence and uniqueness of solutions to (5.5.1) for
fixed n € N. We will use the following concept of global mild solutions, see [155,
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pp. 969-970]. In Subsection 5.5.2, we also introduce the concept of local solutions,
which may blow up in finite time. In particular, a local solution which exists P-a.s.
on the whole of [0, T] is in fact global.

Recall that (S, (1)) >0 denotes the Cy-semigroup on E,, generated by —A,,.

Definition 5.5.1. An E,-valued stochastic process X;, = (X,,(£)) ejo,7) is a global mild
solution to (5.5.1) with coefficients (A, Fy, ;) if

(i) Xn:Qx]0,T] — E, is strongly measurable and (F¢) ;c[o,17-adapted;
(ii) s— S, (t—$)Fpn(s, Xn(s)) € L°(Q; L1 (0, t; Ey)) for every t € [0, T1;
(i) s~ S,(t—s) € L?(0, t;y(Hy; Ey)) for every t € [0, T1;

(iv) forall £ € [0, T], we have
t
X, (1) =S, (8)é, +f Sn(t=8)Fu(s,Xn(s)) ds+ Wy, (), P-as.
0

In the present framework, existence and uniqueness can be proven by showing
that the operator @, T given by

t
(@, 7 (Uun)](8) = Sn(t)Sn +f0 Sn(t—=8)Fn(s, un(s)) ds+ Wy, (1) (5.5.2)

is a well-defined and Lipschitz-continuous mapping on L”(Q; C([0, T1; E,)), whose
Lipschitz constant tends to zero as T | 0 (see [155, Proposition 6.1] or [131, Theo-
rem 3.7] for more general results):

Proposition 5.5.2. Suppose that Assumptions (A1), (A2) and (F1) hold. Let n € N,
pell,o), ¢y e LP(Q,Fo, P Ey) and T € (0,00). The operator @, given by (5.5.2) is
well defined and Lipschitz continuous on LP (Q; C([0, T1; Ey,)). Its Lipschitz constant is
independent of ¢, depends on A,, and F,, only through Mg and L, and tends to zero
asT|O0.

Proof. The fact that S, ® En e LP(Q;C([0, T1; Ey)) is immediate from (A1)-(A2) and
&n € LP(Q, Fo, P E,). We also have Wy, € LP(Q; C([0, T]; E,)) by the first part of
Proposition 5.4.5. Given u, € LP(Q; C([0, T]; Ey)), it follows from (F1) that

s — Fu(s, un($)llzoo0,7;E,) < CF(L + lunlcqo,11;E,))

so that S;, * F,, (-, uy) belongs to L” (Q; C([0, T1; Ej)) with

1S * Fn(-, un)llLr:cqo,m:E,) < Ce(L + lunllLr;co, T1;E,)))

by Proposition 5.B.1(b) with E= F = E,;, « =0 and s = 1 (noting that S, * f = j}qnf,
see Appendix 5.B). This shows that ®,, 7 is well-defined.
Now let u,, v, € L (Q; C([0, T]; E,)) and observe that

t
Dy r(Un) =Py, r(Vy) = fo Sn(t—=8)[Fy(s, un(s)) = Fu(s, vp(s)] ds.

A straightforward estimate involving Assumptions (A1), (A2) and (F1) then yields

1D, 7(Un) = P, 7 (Vi)llLr:c0,T1;E,)) < MsLET | tn — vnllLr@;co, T1;E,)) - O
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Under the conditions of Proposition 5.5.2, it follows from the Banach fixed-point
theorem that (5.5.1) has a unique solution on a small enough time interval [0, Tp],
which can be extended to a unique global mild solution on any [0, T] by “patching
together” solutions on small time intervals:

Proposition 5.5.3. Suppose that Assumptions (Al), (A2) and (F1) are satisfied, and
letneN, pell,o), &, € LP(Q,Fo, P Ep) and T € (0,00). Then (5.5.1) has a unique
global mild solution X; € LP (Q; C([0, T1; Ep)).

Proof. By Proposition 5.5.2, there exists Ty € (0,00) such that &, 7, is a strict con-
traction on LP(Q; C([0, Tyl; E,)), and thus has a unique fixed point X,,. Since the
bound on the Lipschitz constant of @, r only depended on Mg, Lr and T, we can
repeat the previous argument to obtain a unique solution Y € LP(Q; C([0, Tyl; Ep))
for (5.5.1) with initial datum 7, := X,,(3 To), drift G, (-, u,) := F(- + 3 To, u,) and
noise W, := W, (- + %TO). It can then be argued directly using Definition 5.5.1 that
the concatenation of the processes X, and Y, (- + %T o) is the unique mild solution
to (5.5.1) with the original data on [0, % Tol. Proceeding inductively, we find the same
conclusion for all intervals [0, (k + %) To] with k € N and thus for [0, T]. O

For n € N, we analogously define the lifted initial datum E n: Q— Ex by E ni=Apéy
and the lifted drift coefficient F;,: Q x [0, T] x Eoo — Eo by

Fo(w, t,x) = ApFp(w, £,11,%), (,5%) € Qx[0,T] % Ex. (5.5.3)

We will assume that the initial data and drift coefficients are approximated in the
following way:

(IC) There exists p € [1,00) such that (E”)nEN € HneNL’”(Q,fo,IP’; E,) and
&n—éoo N LP(QEy) as n— oo.

(F2) Fora.e. (w,t) € Qx [0, T] and every x € E,,, we have

ﬁn(w, t,x) = Fso(w, t,x) in Ey as n— oo.

Under these assumptions, we obtain the main result of this section, namely the
following discrete-to-continuum convergence theorem in the context of uniformly
globally Lipschitz nonlinearities of linear growth. It is analogous to [131, Theo-
rem 4.3].

Theorem 5.5.4. Suppose that Assumptions (A1)-(A3), (F1)-(F2) and (IC) are satisfied,
with pe[1,00). Forallne N and~T € (0,00), let X;, = (X, (2) tej0, 1) denote the unique
global solution to (5.5.1), and let X,, .= A, X,,. Then we have

Xp— Xoo inLP(Q;C([0, T; Ex)) asn— oo.
Its proof involves the lifted counterparts of @, 7, defined by

@, 1= Ap®@p, 7012 LP(Q;C(10, T); Eo)) — LP(Q; C(I0, T1; Eoo)),




174 5. DISCRETE-TO-CONTINUUM LIMITS OF SPDES

i.e, forall ue LP(Q; C([0, T]; Ex)) and ¢ € [0, T], we have
. 13
(@, 7 (W)](£) = ApSp(0)En +/0 AnSu(t—8)Fn(s,pu(s)) ds+ Ay Wy, (1)
~ t ~ o~ —_—
=Su(0én +f Sp(t—$)Fy(s, u(s)) ds+ Wy, (1), P-as.,
0

where the second identity is due to Assumption 5.2.1(iii). Using the tensor and con-
volution notations from Section 5.2.1, it can be expressed even more concisely as

(1) =Sy ®Ep+ Sy * Fy(-,u) + Wy, (5.5.4)

In particular, we will show that all three terms of (5.5.4) converge to their “con-
tinuum” counterparts; they are addressed by Lemmas 5.5.5-5.5.6 below (which are
analogous to [131, Lemma 4.4, 4.5(1) and 4.5(3)]), as well as Proposition 5.4.5.

Lemma 5.5.5. If (A1)-(A3) and (IC) hold with p € [1,00), then we have
Sn®En— Seo®éo  iNLP(QC(0, T); Exy))  asn — oo.

Proof. Asin the beginning of the proof of Proposition 5.5.2, it follows from (A1)-(A2)
and (IC) that S,, ® ¢, € LP(Q; C([0, T]; E)) forall n € N. Applying the projection and
lifting operators from (A1), we thus find S,® En € LP(Q;C([0,T); Ex)).-

The triangle inequality implies

180 ®&n = Soo ® Ecoll LP (@10, T1iEwc))
<18 ® En — Eoo) L @;C(10,T1En) + 11(Sn = Soo) ® Eooll L ;110,71 Enc)) -
By (A1)-(A2) and (IC), for the first term we have, as n — oo:
180 ® (€n =€)l LP@s;C(10, 1)) S MAMsMilEp — EoollLr (i) — O

For the second term, first note that S,, ® o) = Soo ® Exo(w) in C([0, T1; Exo), P-a.s.,
by Theorem 5.2.3, where we now also use (A3). Since we moreover have

11 ® o0 (@) = Soo ® oo (@) llc(0,71:Ew) < Ms(MaMn + D l§oo(@) £,
and the right-hand side belongs to L”(Q) by assumption, we deduce that also
1Sy = Soo) ® Ecoll @i (10, 71:E) — 0 @S n— oo. O

Lemma 5.5.6. Suppose that Assumptions (Al), (A2), (F1) and (F2) are satisfied. Let
pell,o0) andue LP(Q; C([0, T]; Ex)) be given. Then we have

Sp# Fp(-yt) = Soo * Foo (-, 1) in LP(Q; C([0, T1; Eo)) as n — oo.

Proof. Similarly to the proof of Proposition 5.5.2, it follows from (A1)-(A2) and (F1)
that S, * Fy, (-, u) € LP(Q; C([0, T1; Eo)) for all n € N. By the triangle inequality, we can
split up the statement into the following two assertions:
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(i) Sp* Fyu(-, 1) =Sy * Foo (-, u) — 0in LP(Q; C([0, T1; Ewo)) as 1 — oo;
(i) Sy * Foo(,u) = Soo * Foo(+, ) in LP(Q; C([0, T1; Exo)) @S 1 — 00.
For almost every (w, t) € Q x [0, T], we have by (F1) and (Al):
I Fp(@, £, u(w, ) = Foo (@, t, u(w, 1)l g,

(5.5.5)
< Cr(Mp + 1+ (MM + Dllu(w, Hllg,).

It follows that

1 Fp (-, 1) = Foo (-, ) | 1P (@x 0, T);Ec0) S(CpyMa, M) 11l 2P (@x(0,7);Eno) (5.5.6)

Sip,) Il r@;co, T1;E) < 00

Since S, * f = ﬁhnf forall f € LP(0, T; Ex), we can apply Proposition 5.B.1(b) with
E=F=E,,a=0and s =1 to find that
18 * (F (-, 1) = Foo (-, )l c(t0, T15Eee)
Sts,nT,Ms) 1 Fp (1) = Foo (-, 1) lLr@x 0, T);E)-
The latter tends to zero as n — oco by the dominated convergence theorem, which

applies in view of (F2) and (5.5.5)—(5.5.6). This shows (i).
For (ii), we derive in the same way that, for almost every w € Q,

t— Foo(w, t, u(w, 1)) € LP (0, T; Ewy),
which implies, cf. Proposition 5.B.3(a) with E := E, that
Sn# Fool®, -, U(®, *)) = Soo * Foow, -, u(w, -)) in C([0,T];Ex) asn— oo.

The conclusion follows by using the uniform boundedness of the operators (fhn)n N
in Z(LP(0, T; Exo); C([0, T1; E)), asserted in Corollary 5.B.2(b) (with E := E,, once
more), and finishing the dominated convergence argument as in part (i). O

Proof of Theorem 5.5.4. By Proposition 5.5.2 and (A1), for small enough T € (0,00)
there exists a constant c € [0,1), depending only on Lr, Mg, M and My, such that,
forall u, v e LP(Q; C([0, Tp]; Exo)),

SUP e 1P, 1y (1) = P, 1, (W L2 30000, ToliEoo)) = €U — VIl L2 (€10, Tol; Eoo)) -

Moreover, by Proposition 5.5.3, for every n € N, there exists a unique global solution
X, € LP(Q;C([0, T1; Ep)) to (5.5.1), which in particular satisfies X,, = @, 1, (X,,) when
restricted to [0, Tp]. By (A1), this implies X}, = @, 7, (X,). Hence,
1 Xoo = Xnll L2 @;C(10, Ty o)) = Poo, Ty (Xoo) = P, 7y (Xn) Il L2 (€10, Tyl Eno))
< [P0, Ty (Xoo) = P, Ty (Xoo) | L2 (03C(10, To s E))
+ ||(5n,To (Xoo) — ‘T)n,TO (Xn) I P (©;C(10, To);Eco))
= [P, 11y (Xo0) — cT>n,T0 (Xo) 1P (©:C(10, To1; Eno))

+ ¢ll Xoo — Xnll P @;C (10, To ) Eo))»
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so that Lemmas 5.5.5-5.5.6 and Proposition 5.4.5 yield (using all of the Assump-
tions (A1)—(A3), (F1)-(F2) and (10)):

1 Xoo = Xnll 27 @:C(10, To)i Eoo)
(5.5.7)

1 -
< 1—e 1P, 7y (Xoo) = P, 7y (Xoo) |17 (0:C(10, Tyl En)) — O

as n — oo. In order to extend the convergence to arbitrary time horizons, we write

1 Xoo = Xin ”U’(Q;C([O,%To];Eoo)) = 1 Xoo = X ”Lp(ﬂ;cuo,% To);Eco))
11 Xoo = X ”LP(Q;C([% To,3 Tol; Eeo))®

The first term tends to zero as n — oo by (5.5.7). As for the second term, we note
that an[ 17,37, are the respective solutions to (5.5.1) with shifted drift functions
2 ’2

(Fu(- + 3 To, ), . and initial values (X,,(3 To)) - Since the Lipschitz constants of
the fixed point operators defined above did not depend on the initial datum and
only depended on F through its (time-independent) Lipschitz constant Lr, we can
repeat the same argument to find that the second term tends to zero. Proceeding
by induction, we obtain the convergence X,, — Xoo in LP(Q; C([0, (1 + ’f) Tol; Exo)) for
any k € N, and thus in LP (Q; C([0, T1; Exo)) for any T € (0, 00). O

5.5.2. LOCALLY LIPSCHITZ NONLINEARITIES

In this section, we work under the weaker assumption that the drift coefficients
(Fn) o5 are locally Lipschitz continuous, with local-Lipschitz constants uniformly

bounded in t € [0,T], w € Q and n € N. Moreover, we replace the uniform linear
growth condition from (F1) by the assumption that F, (¢, w,0) is bounded, again uni-
formly in ¢, @ and n; we will also call this notion of boundedness local since it only
involves u = 0. Thus, we assume that the (F,), g are locally uniformly Lipschitz and
locally uniformly bounded:

(F1') For all r € (0,00) there exists a constant Lg) € (0,00) such that for almost every

(@,1) € Q% [0,T], all n € N and every x,, y, € E, such that Ixu g, lynllg, <1,
we have
I1Ep(@, t, Xn) = Fu(@, t, y) g, < LY 10— yull, -

Moreover, for every x, € E,,, n € N the process (w, t) — Fp(w, t, x,) is strongly
measurable and adapted, and there exists a constant Cr such that

I Fp(@,t,0)llg, < Cro forallneN.

Under these conditions, we can in general not expect to obtain global solutions
of (5.5.1) in the sense of Definition 5.5.1. Instead, we need to work with locally de-
fined Ej,-valued stochastic processes, i.e., with mappings of the form

Y:i{lw,)eQx[0,T]:t€[0,7(w))} — Ej, (5.5.8)

for some stopping time 7: 2 — [0, T]. We denote such a process by Y = (Y (#)) rcj0,1)-
If the half-open interval [0, 7(w)) in (5.5.8) is replaced by [0, 7(w)], then instead we
write Y = (Y () teqo,7]- We say that (Y (1)) se(o,r) is admissible if
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e forall € [0, T], the mapping {w e Q: t < 7(w)} 3w — Y(w, ) € E, is measurable
with respect to F;

e the mapping [0,7(w)) 3 t — Y (0, t) € E, is continuous, P-a.s.
Let V!°¢([0,7) x Q; E,,) be the space of admissible E;-valued processes (Y (t))e[o,7) for
which there exists a sequence (7 ;) ;e Of stopping times such that, for P-a.e. w € Q,

we have 7,,(w) 1 7(w) as m — co and | Y llc(0,7,,w));E,) < oo forall m € N. As in [155,
Section 8], we define local solutions to (5.5.1) as follows:

Definition 5.5.7. An admissible Ej,-valued stochastic process X, = (X, () te(o,1) iS
said to be a local solution to (5.5.1) with coefficients (A, Fy, ;) if there exists a se-
quence (7,;) men Of stopping times such that 7,, { T as m — oo, P-a.s., and for all
m e N we have
(i) for every t € [0, T], the process (w,s) — S, (t — $)Fy(w, s, X, (@, $)) 10,7, (5) be-
longs to L°(Q; L1 (0, £; Ep));

(i) foreveryt€[0,T], s— S,(t— )1 z,,(s) € L2(0, ;Y (Hyp; Ep)) ;
(iii) it holds IP-a.s. that for all £ € [0, T,,], we have

t
Xn(2) =S,(0)én +j; Sn(t—8)Fy(s, Xn(S))l[O,Tm](S) ds

t
+f0 Sn(t=39)110,7,,1(s) dW,(s).

We say that a local solution (X, (t))sejo,r) to (5.5.1) is maximal if for any other local
solution (X, (1)) ej07) it holds P-a.s. that 7 < 7 and Xpljo7) = Xp. It is called global
if T = T holds P-a.s. and there exists a solution ()A(n(t))te[oj] to (5.5.1) in the sense
of Definition 5.5.1 such that )A(nl[(m = X,;, P-a.s. The stopping time 7 is called an
explosion time if

lim SUP 17 (o) 1 Xn(@, Dl E, =00 fora.e.we Qsuchthatt(w) < T. (5.5.9)

The following local well-posedness result then follows from [155, Theorem 8.1]:

Theorem 5.5.8 ([155, Theorem 8.1]). Suppose that Assumptions (Al), (A2) and (F1')
are satisfied, and let n € N, pell,00), & € LP(Q, Fo, P Ey) and T € (0,00) be given.
Then (5.5.1) has a unique maximal local mild solution (X, (t))tej0,0,) in the space
viee((o,g,) x Q; Ey,), whereo,: Q — [0, T] is an explosion time.

Combined with the convergence assumptions (IC) and (F2), we can argue analo-
gously to [132, Theorem 3.3 and Corollary 3.4] to derive the following extension of
Theorem 5.5.4 to the present setting.

Theorem 5.5.9. Suppose that Assumptions (A1), (A2), (IC), (FI') and (F2) are satisfied.
Forn e N, let (X, (1) te0,0,) be the maximal local solution to (5.5.1) with explosion
timeo,: Q— [0, T, and set X;, := A, X;,. Then the following is true:

(i) We have X,1{0,6.,r0,) — Xooli0,0s) i1 L2(Q % [0, TT; Ewo) as n — oo.
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If, moreover, 0, = T holdsP-a.s. for alln e N and p € [1,00) is such that

sup | Xnllzr@;cao,11;E,)) <00, (5.5.10)
neN

then the following assertions also hold:
(ii) We haveo =T, P-a.s.
(iii) If p € (1,00), then forall p~ € [1, p) we have

X, — Xoo inLP (Q;C([0, T]; Eso)) as n — oo.

Similarly to [132, Theorem 3.3 and Corollary 3.4], the proof of Theorem 5.5.9 relies
on the following general approximation results for locally defined processes:

Theorem 5.5.10 ([132, Theorem 2.1 and Corollary 2.5]). Let (E,|| - l|g) be a real and
separable Banach space and T € (0,00). For every n € N, suppose that Yn (D) te0,0,)
is a continuous and adapted E-valued locally defined process with explosion time
on: Q— (0,T], and define the stopping times pg) :Q—[0,T] by

= inf{t € (0,0,) : | Yo (Dl g > 7}, 7€ (0,00), (5.5.11)

n

with the convention that inf@ := T. Moreover, suppose that for each r € (0,00) there
exists a (globally defined) continuous and adapted E-valued process (Y,(,r)(t))te[o,ﬂ
which satisfies the following two conditions:

(@) ForallneNandr e (0,00), it holds P-a.s. that

Y1

n L pn) = Ynl

o0 onloTh

(b) Forallr € (0,00) we have

v\ — v inI%(Q;C([0, T1; E)) as n — co.

Then the following assertions hold:
(i) Forallr € (0,00) and € > 0 it holds P-a.s. that

lirllgggfpgf) < p <limsup p!*.
n—oo

(ii) Forallr € (0,00) and € > 0, we have

Yl 0 o) = Yool ig oy in L2(Q; By ([0, T1; B)) as n— oo,

where By, ([0, T1; E) denotes the space of bounded and strongly measurable func-
tions from [0, T] to E.

(iii) We have

Yuliooonoy — Yeoli0osy inL°(Qx[0,TI;E) asn— oo.
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If, in addition, we haveP(o, = T) =1 foralln e N, and p € [1,00) is such that

sup || Yz |l Lr;c(j0,11;E) < 00,
neN

then the following assertions also hold:
(iv) We havelP(0o = T) =1 and X, € LY(Q; C([0, T]; E)).
(v) Ifp € (1,00), then for all p~ € [1, p) we have

Y,— Yy in L (Q;C([0,T]; E)) as n — oo.

Proof of Theorem 5.5.9. For every n € N and r € (0,00), let us define the mapping
F": Qx[0,T] x E, — E, by

Fn(w» t;xn)» if ”Anxn”lz"oosrr

I'Xn .
F, (w, 2R e Kool ), otherwise.

F(w,t,x,) = { (5.5.12)

For any fixed r > 0, the sequence (F,([))n N satisfies conditions (F1) and (F2). Indeed,
to establish the former, we first note that F{” can be written as

F (@, t,xn) = Fy(, £, T, Ry (Apxp)), (5.5.13)

where R;: E,, — Es denotes the canonical retraction of E,, onto the closed ball
around 0 € E,, with radius r:

X, iflxllg, =73
Ry (x) = {

0 xTI: , otherwise.
{oe]

An elementary estimate shows that R, is Lipschitz with constant 2. It follows that
(F,(f ))neN is uniformly globally Lipschitz with constant Lp» < LgM“)MnMA, and
thus of linear growth with uniform constant Cp» < max{Lpw, Cro}, so that it sat-
isfies (F1).

In order to show that (Fﬁ[ ) ) iy satisfies (I'2), first note that for every sequence
(¥n)neN € Es converging to some y in E, we have ﬁn (w,t,yn) — Folw, t,y). In-
deed, by the triangle inequality it suffices to note that

IFp(,t,yn) = En(@, 6, PIlg, —0 and [|Fy(w,t,¥) - Folw, £, PlEg, — 0

as n — oo, respectively because (F),) qeiv 18 uniformly locally Lipschitz (with con-
stants Lg) < MpM, AL;”) and since (F2) was assumed for (F,) ,en. Writing

F(w,t,x) = Fy(w, t, Ry (ApIT, X)),

see (5.5.13), we can apply the above observation to the sequence y, := R, (A,I1,x),
which converges to y := R;(x) in Ey, as n — oo in view of Assumption 5.2.1(ii) and
the (Lipschitz) continuity of R,. Therefore, we find Fvﬁf) (w, t,x) — F},Q (w, t, x), thus
proving the claim that (F2) holds for (F,(,r))n oy as well.
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For each r > 0, condition (F1) for (F ))n oy vields the existence of a unique global

solution (X" (1) refo, 1) to (5.5.1) with coefficients (An, F{,&,). In order to establish
statement (i) of the present theorem, we will apply the corresponding parts (i)—(iii)
of Theorem 5.5.10 to the processes Y, := X,,; hence we need to verify its condi-
tions (a) and (b) for (Xn)n - First note that we have pﬁ{) < oy, where pE{) is de-
fined by (5.5.11), and that the restrictions of Xﬁf ) and X, to [0, pg)) are local solutions
to (5.5.1) with coefficients (An,Fﬁlr),gr n) and (Ay, Fp,&y), respectively. Since it holds
P-a.s. that |[A, X, (0)g, <rforte [O,p(,,r)), we find

Fuo(-, X)) =FD(,X,) on[0,p}), P-as.,

hence (Xn(t))te[oyp(nr))

(A, Fﬁf),fn). Therefore, the local uniqueness of (5.5.1) (cf. [155, Lemma 8.2]) implies
that X,(f) = X, on [O,pg)] holds P-a.s., and applying A, on both sides verifies (a).
Condition (b) follows by applying Theorem 5.5.4 to (F,(f ))n oy proving (i).

Finally, since (Aj) sen is uniformly bounded in view of Assumption 5.2.1(i), we see
that (5.5.10) implies that the conditions of Theorem 5.5.10(iv) and (v) are satisfied,
which directly yields the remaining assertions (ii) and (iii). O

is in fact also a local solution of the equation with coefficients

5.6. REACTION—DIFFUSION TYPE EQUATIONS

In this section, we introduce another family of Banach spaces (B,,) aN such that each
B, embeds into E,, and B 2 B, (along with other assumptions, given in Subsec-
tion 5.6.1), and consider the B,-valued counterparts of (5.5.1). The main purpose
of this setting is to eventually specialize to the class of stochastic reaction-diffusion
type equations which are formally given, for any n € N, by

{an(t, X) =—Ap X, (8, x)dt + fir (£, X, (8, x)) dt + AW, (¢, x), 5.6.1)

Xn(0,x) =&n(x),

where t€ (0,T], T € (0,00), x€ D, S R4 and frn: Qx[0,T] xR — Ris alocally Lips-
chitz (real-valued) function. This problem amounts to letting the drift F,, in (5.5.1)
be a Nemytskii operator (also called a superposition operator), i.e., defining it by

[Fn(w» t; u)](-x) = fn(w» tr u(x))v (w’ t)x) €Q X [0’ T] any (562)

for a given function u: D,, — R. However, in order for a Nemytskii operator F, to in-
herit the local Lipschitz continuity from f;,, we cannot view it as acting on the UMD-
type-2 Banach space E;,, = L9(D;,) with g € [1,00). In fact, by [8, Theorem 3.9], the
operator u — Fy(w, t, u) defined by (5.6.2) is weakly continuous on L9(D,,) (mean-
ing that it maps weakly convergent sequences to weakly convergent sequences) if
and only if it is affine in u, i.e., there exist coefficients a,(w, 1), b, (w, ) € R such
that [Fy(w, £, u)](x) = ap(w, ) + by (w, ) u(x) for all x € D;,. In particular, if (Fn) e
is a family of Nemytskii operators which is uniformly locally Lipschitz in the sense
of (F1') on the spaces E;,, = L9(D,,), then it is in fact globally Lipschitz and of linear
growth in the sense of (F1).
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Thus, we will instead view F,, as an operator on By, := C(D_n) (which coincides with
By, = L*°(Dy) if D, is discrete). This, in turn, poses a difficulty for stochastic evolu-
tion equations, since there is no theory for the stochastic integration of integrands
taking their values in a space of continuous functions. This is due to the poor geo-
metric properties of (C (D_n), Il - loo) as a Banach space: The most general notion of
stochastic integration in Banach spaces (see [157]) requires at least the UMD prop-
erty; such spaces are, in particular, reflexive [113, Theorem 4.3.3], which C(D,,) fails
to be.

One way to circumvent this issue is to proceed as in [132, Section 3.2]; namely,
defining the fractional domain spaces

B =D(AY),  lxallge = 10dy +A0)* x5,

and supposing that Ef, — C(ZT,,) — L9(D,,) continuously and densely for 6 € [0, 1),
one can carry out the stochastic integration in the space E,ﬂ;, while working with
C(D,,)-valued processes for the fixed-point arguments.

In applications, we typically assume that A, is an (unbounded) linear differential
operator on L9(Dy,), where ¢ € [2,00), augmented with some boundary conditions
(“b.c.”) such that Ez is the fractional Sobolev space Wlf Cq (D,,) of order @. We then
suppose that 6 is chosen large enough in relation to the dimension d that we have
the continuous and dense Sobolev embedding Wg Cq (D)) = Co.c.(Dy).

In Section 5.6.1 we will specify the abstract formulation of the setting outlined
above, as well as some additional uniformity conditions with respect to n € N. These
will be used to, as a first step, derive B, -valued analogs to the Ej,-valued discrete-to-
continuum approximation results for globally Lipschitz drifts of linear growth from
Subsection 5.5.1; in Subsection 5.6.2 we do the same for the B;,-valued setting with
locally Lipschitz and locally bounded drifts. In the latter case, the solution are lo-
cal in general, but in Section 5.6.3 we state an extra dissipativity assumption on Fj,
under which the existence of global solutions to (5.6.1) has been proven in [132, Sec-
tion 4]. These processes then also converge in an improved sense, and we can apply
this to Section 5.3.

5.6.1. SETTING AND CONVERGENCE FOR GLOBALLY LIPSCHITZ DRIFTS

We start by specifying the abstract setting for the treatment of reaction—diffusion
type equations which was outlined at the beginning of this section. That is, we com-
plement the Hilbert spaces (H,) ;7 and UMD-type-2 Banach spaces (Ej) .5 from
Section 5.5 with a sequence of real separable Banach spaces (B, || - I1s,) ..y, embed-

ded continuously and densely into Ej, for each n € N. Moreover, we introduce the
real Banach space B, -1 7), containing B, as a closed subspace, and we suppose
that all the B,, are embedded by into B by the lifting operators (A ) ,eny from (Al).
The spaces By, € B should respectively be thought of as C(D) < L™(D). More pre-

cisely, we will work with the following extensions of assumptions (A1)—(A3):
(A1-B) Assumption (A1) holds, and Assumption 5.2.1 is satisfied for (By, || - I 3,)
and (B, - | B.,)» with the same projection and lifting operators (Il;)

neN

neN’
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An) e from (A1), for which we set

M ==sup ||Hn||$(§;3n) and M, :=sup ||An||g(3n;§)-
neN neN

(A2-B) Assumption (A2) ilolds, the semigroup (S, (1)) =0 S Z(Ey) leaves By, in-
variant for all n € N, and its restriction (S, (#)|g,) r=0 to By, is a strongly con-
tinuous semigroup in .Z(B;,). Moreover, there exists Mg € [1,00) such that

1Sx(Oll 25,y <Ms forallneNand t € [0,00). (5.6.3)

(A3-B) Assumption (A3) holds, and ﬁnx — Ryox in Basn—ooforall xe Bso.

By [73, Chapter II, Proposition 2.3], assumptions (A1-B) and (A2-B) imply that the
generator of (S,(?)|,) =0 is the operator —A,|p,: D(A|p,) € B, — B, defined by

—Anlp,Xn=—Anx, onD(A,lp,) ={x,€B,nD(Ay): Apxy € By,

which is known as the part of —A,, in B,. Therefore, by Theorem 5.2.3, assump-
tion (A3-B) implies §n|3" ®x — S|, ®xin C([0, T];B), as n — oo, for all x € By, and
T € (0,00).

The following uniform ultracontractivity assumption is necessary in order to cir-
cumvent the aforementioned problem regarding stochastic integration in arbitrary
separable Banach spaces Bj,. It replaces assumption (A3) in [132], which forces all
the spaces (E%)n o to essentially be the same, which is not s.atisﬁed in applications
such as discrete-to-continuum approximation, where each EJ consists of functions
defined on a different domain.

(A4-B) There exist constants 6 € [0,1) and My € [0,00) such that, for all n € N, we
have E‘Z — B, — Ej, continuously and densely, with

1S (D)Xnlls, < Mpt %2 x, ), forall x, € E, and € [0,00).

The uniformity in n of the constant My enables us to prove the following discrete-
to-continuum approximation result for the stochastic convolutions (Wy,,), . as Bn-
valued processes (i.e., a B,-valued counterpart to Proposition 5.4.5):

Proposition 5.6.1. Let p € [1,00) and T € (0,00) be given, and suppose that Assump-
tions (A1-B), (A2-B) and (A4-B) hold, with 0 + 2 < 1. For every n € N, there exists a
modification of Wy, which belongs to LP (Q; C([0, T1; By,)), and we identify these mod-
ifications with the processes (Wy,), .7 themselves.

Under the additional Assumption (A3-B), we have

Wa, — Wa,, inLP(Q;C([0, T1; B)) as n — oo.

Proof. Fixa ' € (B, %) such that 6 + 28’ < 1, where § € [0, %) is as in (A2). Without
loss of generality, suppose that p € (2,00) is so large that, in fact, 8 +28' <1 - %.

1.4 1.4
As in the proof of Proposition 5.4.5, we see that Wj:ﬁ (w, -), where Wj:ﬁ is the
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auxiliary process defined by (5.4.3), belongs to LP (0, T; E,) for P-a.e. w € Q, hence

1_pr !
le P 2 +h (w,-) € C([0, T1; By) by applying Proposition 5.B.1(b) with the spaces
E = En, F B,, and the constant a = 0 from assumption (A4-B). Moreover, one

finds that the process 32 P W2 *P' is a continuous modification of Wa,, belonging
to LP(Q;C([0, T1; By)). It now sufﬁces to establish the following, as n — oo:

1 1 1
X3K gk 3+K ~
194, Wi, — Wi e,z —0

152 w2 _ g et J—\
Ap Ao Aso  Aso "LP(Q;C([0,T];B)) .

These convergences follow by arguing as in the proof of Proposition 5.4.5, where we
now need Corollary 5.B.2(c) and Proposition 5.B.3(b) instead of Corollary 5.B.2(b)
and Proposition 5.B.3(a), respectively. O

For the initial data, we consider the following analog to (IC):

(IC-B) There exists p € [1,00) such that (£,) el € HneN LP(Q;B,,) and

&n— & in LP(Q;B) as n — oo.

Finally, regarding the drift coefficients (F,) 5, we now suppose that

(F1-B) Assumption (F1) holds with (Bn) 1n place of (Ej,) nely’ and B;,-valued Lip-
schitz and growth constants respectlvely denoted by Ly and Cp.

(F2-B) For almost every (w, t) € Q x [0, T] and every x € B, we have

ﬁn((u, t,x) = Fo(w, t,x) in Basn— oo.

Note that in the approximation assumptions (A3-B) and (F2-B), we only impose con-
vergence for x € By, < E, and similarly we only consider o, € LP(Q; By) in (IC-B).
Recall that this is sufficient since Theorem 5.2.3, on which the approximation results
ultimately rely, is formulated in this setting.

Under (A1-B), (A2-B), (A4-B) (with 8 +28 < 1), (IC-B) and (F1-B), we can derive
well-posedness of B, -valued global solutions to (5.5.1); these are defined by simply
replacing the space E, by B;, in Definition 5.5.1. To this end, we again investigate
the fixed-point operators @, r defined by (5.5.2), viewing them now as acting on
LP(Q; C([0, T1; Bn)). We have the following analog to Proposition 5.5.2:

Proposition 5.6.2. Suppose that (A1-B), (A2-B), (A4-B) are satisfied with 0+ 2 < 1,
and (F1-B) is satisfied. Let n € N, p € l(l,00), &y € LP(Q, Fo,P;By) and T € (0,00) be
given. The operator ®, 1 given by (5.5.2) is a well-defined and Lipschitz continuous
mapping on LP (Q; C([0, T1; B,)). Its Lipschitz constant is independent of ¢ ,, depends
on A, and Fy, only through MS and Lg, and tends to zeroas T | 0.

Proof. The fact that S, ® £, € LP(Q; C([0, T]; By)) is an immediate consequence of
Assumptions (A1-B), (A2-B) and &, € LP(Q, Fo,P; E;). By the first part of Proposi-
tion 5.6.1 (which also uses (A4-B)), we find Wy, € LP(Q; C([0, T]; B,)). By (F1-B) and




184 5. DISCRETE-TO-CONTINUUM LIMITS OF SPDES

Proposition 5.B.1(b) (with E = F = B, « = 0 and s = 1), we find that S, * F,,(-, uy)
belongs to LP(Q; C([0, T1; By)) for all u, € LP(Q; C([0, T1; B,)). This shows that @, 1
is well-defined. A straightforward estimate involving Assumptions (A1-B), (A2-B)
and (F1-B) yields, for all uy, v, € LP(Q; C([0, T1; By)),

1D, 7(Un) = Pp, 7 (W)l Lr@;c0,11;B,)) = MsLET Uy — vnllLr@;c((0,71;B,)) - O

Consequently, the proof of the following global well-posedness result is entirely
analogous to that of Proposition 5.5.3:

Proposition 5.6.3. Suppose (A1-B), (A2-B), (A4-B) hold with 6 + 2 < 1, and let as-
sumption (F1-B) be satisfied. Suppose thatne N, p € [1,00), &, € LP(Q, Fo,P; Ey,) and
T € (0,00). Then (5.5.1) has a unique global mild solution X,, in LP (Q; C([0, T1; By)).

Under the additional convergence assumptions (A3-B), (IC-B) and (F2-B), we can
again set out to prove discrete-to-continuum convergence of B, -valued global mild
solutions to (5.5.1) by showing that all the expressions appearing in the fixed point
maps &)n,T from (5.5.2) are continuous as mappings on LP(Q; C([0, T];E)). For the
first term, the following can be proven exactly in the same way as Lemma 5.5.5:

Lemma 5.6.4. If Assumptions (A1-B)—(A3-B) and (IC-B) are satisfied, then we have
S$,®¢&, — S ® & in LP(Q;C([0, T1; B)) as n — oo.
The following is an analog to Lemma 5.5.6:

Lemma 5.6.5. Suppose that Assumptions (Al-B)-(A3-B), (F1-B) and (F2-B) are satis-
fied. Let p € [1,00) and u € LP(Q; C([0, T1; Bxo)) be given. Then we have

Sn* Fu(,u) = Soo * Foo (-, ) in LP(Q; C(10, T}; B)) as n — oo.
Proof. As in Lemma 5.5.6, we split up the statement into the following two asser-
tions:
(i) Sp* Fu(-,u) = Sp * Fool-,u) — 0in LP(Q; C((0, T1; B)) as n — oo;
(i) Sp* Foo(+, U) = Seo * Foo(+, 1) in LP(Q; C([0, T1; B)) as n — oo.
Part (i) is shown exactly as Lemma 5.5.6(i), up to replacing Es, by Boo, (or B).
For (ii), we instead note that (F1-B) implies, for almost every w € Q,

t— Fo(w, t,u(w, ) € LP(0, T; Bso).

Hence, in order to argue as in Lemma 5.5.6(ii), we apply Proposition 5.B.3(a) and
Corollary 5.B.2(b) with E,, :== B, for all n e N and E := B. O

With these auxiliary results in place, we can now prove the first main discrete-to-
continuum approximation result for solutions to (5.6.1) with globally Lipschitz drift
coefficients of linear growth, analogously to Theorem 5.5.4:

Theorem 5.6.6. Let Assumptions (Al-B)—-(A4-B), (F1-B), (F2-B) and (IC-B) be satis-
fied, with0+2p <1 and p € [1,00). Denoting by X, the unique B,,-valued global mild
solution to (5.5.1), we have

X, — Xoo inLP(Q;C([0,TI;B)) asn— oo.
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Proof. By Proposition 5.6.2 and (A1-B), for small enough Ty € (0,00) there exists a
constant ¢ € [0,1), depending only on Ly, Ms, M and My, such that, for all u, v in
LP(Q) C([Oy TO]’ OO))!

SUP e 1P, 1 (1) = P, 1 (D 1o 10, 71:8) = N = VLo @uct0,701:8))-

By Proposition 5.6.3, there exists a unique global solution X,, € L”(Q; C([0, T]; By,))
to (5.5.1) for every n € N. In particular, note that X, takes its values in By, < B.
Thus, in order to finish the argument analogously to the proof of Theorem 5.5.4, it
suffices to establish that @, 7(¢) — ®eo, 7(¢p) in LP(Q; C([0, T1; B)) as n — oo for all
¢ € LP(Q; C([0, T1; Boo)). This is precisely the combined content of (the second part
of) Proposition 5.6.1, along with Lemmas 5.6.4 and 5.6.5 O

5.6.2. LOCALLY LIPSCHITZ DRIFTS

As in Section 5.5.2, we can extend Theorem 5.6.6 to the locally Lipschitz setting.
Namely, we assume that

(F1'-B) Assumption (F1) holds with (Bn) 1n place of (En) . For every r >0,
the B, -valued local Lipschitz and local boundedness constants are respec-
tively denoted by L' and CV).

Then, arguing in the same way as Theorem 5.5.9, we obtain the following result.

Theorem 5.6.7. Suppose that Assumptions (Al-B)—(A4-B), (FI'-B), (F2-B) and (IC-B)
aresatisfied, with0+2 < 1. Forn € N, let (X;,(1)) t¢[0,5,,) be the maximal local solution
to (5.6.1) with explosion time o ,: Q — [0, T1. Then we have

(D) Xnl{0,0mn0n — Xoolio,on) in L°(Q % [0, T1; B) as n — co.
If, moreover, 0, = T holdsP-a.s. for alln e N and p € [1,00) is such that

sup | Xyl zr ;¢ (0, T1;B,)) < 90, (5.6.4)
neN

then the following assertions also hold:
(ii) We haveo, =T, P-a.s.
(iii) If p € (1,00), then forall p~ € [1, p) we have

X, — Xoo inLP (Q;C(0,T];B)) as n— oo.

5.6.3. GLOBAL WELL-POSEDNESS AND CONVERGENCE FOR
DISSIPATIVE DRIFTS
In this section, we consider a class of equations whose drift coefficients satisfy not
only (F1'-B) (which would only guarantee local well-posedness), but additionally a
type of dissipativity condition, also used in [132], which allows us to deduce global
existence.
Let the subdifferential 0| x| g, of the norm | - | 5, at x, € B, be given by

0llxnllB, ={xy, € By : | x, gz < 1and p,{(xu, X,) g = I XnllB,}.
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The assumptions on (Fy), 7 under which we can derive global well-posedness, see
Lemma 5.6.9 below (which is a simplified version of [132, Theorem 4.3] for equations
driven by additive noise), are as follows:

(F1”-B) Let the conditions of (F1’-B) hold. Suppose that there exist a’, b’ € [0,00)
and N € N such that

B, (=Apxp+ Fp(w, t,Xpn + yn), x;)B,*l = Cl,(l + ||yn||Bn)N+ b’”xn“Bn

forallneN, (w, 1) € Qx[0,T], xn € D(AnlB,), x;, €0llx,llB, and y, € By,.

If the semigroups (S, ()Ip,) =0 are contractive on By, i.e., if Ms =1 in (A2-B), then
we know that A,|p, is accretive, i.e.,

By {AnXn, X,)p: 20 forall x, € D(Anlp,), X, €0l x| 5,.
Thus, in this case, it suffices to check that
By (Fu(@, £, Xn + yn), X305z < @ L+ 1| yullg,) ", (5.6.5)

in order to establish that (F1”-B) holds for b’ = 0. The next example shows how the
relation (5.6.5) can be verified in our situation of main interest. It is an elaborated
version of [132, Example 4.2].

Example 5.6.8. Given n €N, let B, := C(M,) be the space of continuous real-valued
functions on a compact Hausdorff space M, equipped with the supremum norm
lunllB, = supgeaq, |un (). Inthis case, for all u, € By, the subdifferential Olluylig, is
the weak*-closed convex hull of

{réé 1T Esgn un(f) for f € M, such that ||u,l 5, = |un($)|}, (5.6.6)

where 8¢ € C(M )" denotes the evaluation functional at ¢ € M, and, for y e R,

{-1}, ify<0;
sgny:=41{-1,1}, ify=0;
{1}, if y>0.

Indeed, since subdifferential sets are convex by definition and 9|l ,, being con-
tained in the closed unit ball in B;;, is weak* compact by the Banach-Alaoglu the-
orem, the Krein—-Milman theorem implies that it suffices to argue that the extreme
points of 8| u, | g, are precisely given by (5.6.6). This, in turn, follows from a charac-
terization of the extreme points of the closed unit ball in C(M)* due to Arens and
Kelley [11].

Moreover, suppose that (F,) s is a family of Nemytskii operators on (By)

neN neN
(see equation (5.6.2)), generated by a family (f»),, . of functions satisfying the poly-

nomial form introduced in (5.3.12)-(5.3.13). Fixing n € N, (w,t) € Qx[0,T] and
Un, Uy € By, inequality (5.6.5) becomes

Bu(Fn(@, 1,1+ vp), Xp)pr < @' (1+]] UnIIB,,)N forall x}, € Olluyll g, (5.6.7)
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Since the inequality is preserved under convex combinations and weak* limits of x,,
the above characterization of 8| u,llp, shows that it only needs to be checked for
Xy = ré‘é, where r € sgn un(é) for f € M, such that |u,llp, = Iun(é)l. Le., it suffices
to verify that

r (@, 1, un @+ v(©) < d' L+ vallp,)".
Indeed, for (f,) . satistying (5.3.12)-(5.3.13), we can establish the estimate

rfalo,t,y+2) Seop A +12) 2

forall (w, £) € Qx[0, T], y,z€ Rand r € sgn y. This implies the existence of a constant
a' € [0,00), depending only on ¢, C € (0,00) from (5.3.13) and k € Ny from (5.3.12),
such that (5.6.7) holds with N =2k + 1.

Lemma5.6.9. Let (Al-B)—(A4-B) and (F1"-B) hold with Ms = 1, let n € N and suppose
that0+2p < 1. Ifé,, € LP(Q, Fo,P; By,) for some p € [1,00), then the maximal solution
(Xn () tef0,0,) to (5.6.1) is global (i.e., it holdsP-a.s. that o, = T), and we have

N
IXnllr@scao,18,) St b, mom 1+ 1Enllr@isn + 1Wa, I np o.c00.71:8,)

Proof. Fix neN. For each m € N, let F,, ,, denote the globally Lipschitz retraction of
F,, onto the closed ball of radius m around 0 € By, cf. (5.5.12) (replacing E,, by B;,).
Then F,, ;, satisfies the global Lipschitz and (global) linear growth estimates in (F1-
B), hence by Proposition 5.6.3 there exists a unique global B, -valued mild solution
Xn,m € LP(Q; C([0, T1; By)) to (5.5.1) with drift coefficient operator F, ,,. By the tri-
angle inequality,

| X, mll Lr @s;c (10, T1:B,))
S8, ®Eun+Sn* Fum (-, Xnm)lLr@;cqo,11;8,) + 1Wa, Il Lr ;¢ 0, 71;B,) -

As shown in the proof of [132, Theorem 4.3], F, ,, inherits the dissipativity esti-
mate (F1”-B), with the same constants a’, b’ and N, from F,,. Thus, from [132,
Lemma 4.4] it follows that

1S ®&n + Sn* Frym (-, Xm)llc(o,11;B,)
, T
< (1hn, +a [0+ 1Wa, 915,V ds)
<e’Tlelp, +a' T2V e T A+ 1Wa, I 0. 13:5,)  P-as.

Hence,
1S, ®&n+ Su* Fum(-, Xm)lLr @;co,71;B,)

S, N 14 18nllr @i, + 1 Wa, ||1LVN;,(Q;C([0YT];B")).
Note that Wy, € LNP(Q; C([0, T1; Bp) by Proposition 5.6.1 (with Np taking the role
of p). Combining these estimates, we find

N
sug{ 1Xn,ml Lr@;ca0,13:800) St 1w 1+ 1Enllr @By + 1Wan I g .c0,71:8,0)°
me

so the result follows by Theorem 5.5.10(iv)-(v) applied to Yy, := Xy, . O
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Combined with Theorem 5.6.7(ii)—(iii), whose boundedness hypothesis (5.6.4) is
verified by the combination of Lemma 5.6.9 and Proposition 5.6.1 under the as-
sumption in the following corollary, we derive:

Corollary 5.6.10. Suppose that (A1-B)-(A4-B), (F1"-B), (F2-B) and (IC-B) are satis-
fied with Mg =1, p € (1,00) and 0 + 28 < 1. Then for any p~ € [1,p), the sequence
((Xn)tei0,11) 55 Of Bn-valued global solutions to (5.6.1) satisfies

X, — Xo0 inLP (Q;C([0,T); B) as n — oo.

5.7. OUTLOOK

In this section we suggest some possible extensions of the results in this chapter,
both the convergence of graph-discretized Whittle-Matérn SPDEs shown in Sec-
tion 5.3 as well as the underlying abstract results from Sections 5.4-5.6.

As discussed in Subsection 5.3.5, the approximation results from Theorem 5.3.10
for (5.3.11) might be extended to broader classes of domains M, connectivity length
regimes (hy) ,eN, coefficient functions 7,x: M — [0,00) and powers s € (0,00). Pos-
sible advancements to this end include establishing more general L*°-convergence
results for graph Laplacian eigenfunctions (or convergence of Whittle-Matérn oper-
ators without using spectral convergence), as well as uniform L*-boundedness of
the semigroups (for instance via heat kernel estimates). Under more restrictive as-
sumptions on the connectivity parameter regime, rates of convergence for the case
of purely spatial (i.e., stationary) graph-discretized linear SPDEs were established
in [181]. The same might be possible in the linear spatiotemporal setting since the
discrete-to-continuum Trotter—Kato theorem can be extended to yield error esti-
mates, see [116, Section 2.2]. The semilinear cases, however, appear to be out of
reach for the methods used in this chapter.

The proofs of the abstract discrete-to-continuum approximation results from Sec-
tions 5.4-5.6 largely rely on incorporating projection and lifting operators into argu-
ments from [131, 132] in an appropriate way. By adapting other proofs from these
sources along similar lines, it is likely that our results can be extended further, in
particular enabling us to relax the simplifying assumptions that the UMD Banach
spaces (Ep) 5 have type 2 and that the driving noise is additive. In fact, we expect
more generally that many results asserting continuous dependence of stochastic
evolution problems on their coefficients can be extended to discrete-to-continuum
approximation theorems via this procedure.

One particular type of problem for which this would be interesting is the class
of stochastic evolution inclusions, whose drift operators are allowed to be multi-
valued; this occurs, for instance, in the Langevin setting if F;, = d¢, is the subdif-
ferential of a convex and lower-semicontinuous but non-differentiable functional
¢ on the state space, taking values in (—oo,00]. Continuous dependence results for
stochastic inclusion problems have been established in two different settings in [90,
183]; however, neither of these covers the class of semilinear inclusions driven by
cylindrical (i.e., white) noise. Not much theory appears to be available for such prob-
lems, with even the question of well-posedness (for fixed 7 € N) being highly non-
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trivial. In fact, to the best of our knowledge, the only results in this direction concern
the (important) subclass of stochastic reflection problems (also known as Skorokhod
problems in the scalar-valued case), given by

{dX(t) € —AX(0)dt-0dIr(X()dt+dW(r), te(0,T], 57.1)

X(0)=¢,

where T' is a convex subset of a (Hilbertian) state space H and the indicator func-
tional Ir: H — (—o00,00] is defined to vanish on I and equal co outside of it. In the
first work on this problem, Nualart and Pardoux [159] used a direct approach to show
existence and uniqueness in a setting which corresponds to H := I%2(0,1), A:= —dd—;
with homogeneous Dirichlet or Neumann boundary conditions, and I := Ky, where

Ky :={uelL?0,1): u(x) = —aforae. xe(0,1)}, acl0,00).

In [175], the authors first use the theory of Dirichlet forms to establish that (5.7.1) is
well posed in the case that I is a “regular” convex subset of a general Hilbert space H,
a condition which includes I' := K, for @ > 0 but not Ky, which is treated separately
using different techniques. Lastly, the work [17] describes a variational approach to
study (5.7.1) in a similar setting under the assumption that 0 belongs to the interior
of I', which excludes the choice I' := K. We point out that the argument used on [17,
p. 362] to extract a weak” -convergent sequence from the set (1)~ in the dual space
of L>°(0, T; H) appears to be flawed, as it seems to imply that the closed unit ball of
the dual of this (non-separable) space is sequentially compact, which is not the case.
Hence, the argument would need to be finished using a generalized subsequence
(also known as a subnet) converging in the weak™* sense to some u*. For this reason,
and since the theory for convergence of Dirichlet forms and their associated pro-
cesses is well established—see for instance [126] for general results and [202] for an
application to Markov chain Monte Carlo scaling—the setting of [175] is perhaps the
most promising for an attempt at establishing discrete-to-continuum convergence
results for (5.7.1).

APPENDIX TO CHAPTER 5

5.A. PROOFS OF INTERMEDIATE RESULTS IN
SECTION 5.3.3

We start with the proof of Lemma 5.3.11 which establishes spectral convergence
rates for the Laplace-Beltrami operator on the torus, discretized by a uniform grid.

Proof of Lemma 5.3.11. First suppose m = 1. In this case, the continuum Laplace-
2

Beltrami operator reduces to the second derivative —% with periodic boundary

conditions. Its eigenvalues and L?(M)-normalized eigenfunctions are respectively
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given, for all j € Nand x €0,1], by

() _ s PO
o = (-1%r2 if jis odd; Yo (x) =X V2sin(jmx) if j is even,

1 if =1,
o _ {j2ﬂ2 if j is even, 1y
V2cos((j—Drx) if jis odd.

L.e., 0is an eigenvalue corresponding to the constant 1 eigenfunction, and (2k)%n? is
an eigenvalue with eigenfunctions x — sin(2kmrx), cos(2knx) for all k € N.

The eigenvalues (/l(nj) "!_, of the corresponding graph Laplacian, which in this case

reduces to the finite difference approximation of the second derivative on the grid
with n € N points, are given by

2(mj

2 . e s s
100 = 4n”sin®| 7 if j is even,
" 4n?sin? ”g;l)) if j is odd.

The corresponding L?(M ,;)-normalized eigenfunctions are

1 ifj=1,
N (-1)! if j = nis even,
w(,{)(xil’)) = () . ] .
V2sin(jnx;,’) if j # nand j is even,

v2cos((j-Dmx{) if jis odd.

Let j € {1,...,n}. Supposing that j is even (the odd case being analogous), we write
. . 4 2 : 2 > 2
A=A = j2n? (1 ~ 2 sin? (ﬂ)) = j*n? (1 - [_n sin(ﬂ) ),
2n jm

Jem? 2n
so that the estimate in (5.3.15) for m = 1 follows from the elementary inequality

0<1-(sin(x)/x)% < %xz for all x € R.

Estimate (5.3.16) is a consequence of the fact that the sine and cosine functions are
1-Lipschitz; note that we only consider j € {1,...,n—1} to avoid the case where j =n
for even n.

The result for higher dimensions m € N can be derived from the m =1 case. In-
deed, by separation of variables in the continuum case, or by writing the discretized
operator as a Kronecker sum of m one-dimensional discretizations, one finds that
the eigenvalues and eigenvectors of the m-dimensional operators are given by sums
and products, respectively, of their 1-dimensional counterparts. From this, one can
deduce the desired result. O

Next we prove Theorem 5.3.14 regarding the convergence of the fractional resol-

~R!
vent operators R;, in various settings and norms.

Proof of Theorem 5.3.14. Assertions (a)-(c) can all be shown using analogous argu-
ments. Thus, we only provide a detailed proof for part (b), being the most involved
case, and subsequently summarize the changes needed for (a) and (c).
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(b) Step 1 (Setup and notation). The operator Eﬁ’ acts on functions f € L?(M) in
the following way:

B =y (11 P D) oy Ay

(1+[/1(]) ) <f AnUIn >L2(M)An1//n .

.
M= 1

1

J

Here, we used the fact that IT}, = A, (see (5.3.4)) on the second line. Using the tensor

notation from Section 5.2.1 and denoting 1’/75{) = Ant//g), we can write these opera-

tors more concisely as follows:

’ n .
w=RP = Y 1+ el eqd.
=1

By Assumption 5.3.5(ii), there exists a sequence of natural numbers (k) ,eny Which
satisfies the conditions of Theorem 5.3.13(b), as well as the relation

ky>> ntp > pish (5.A.1)

We use the sequence (k) ,en to define the following approximations for n € N:

Y (1+0L1) Pyl ey,

ﬁ
M e

~.
I
—

> (1+ 18 PP e,

A
i
M»

~.
I
—

)Tl e gl

Sw
'M”

[
I
—

For notational convenience, we abbreviate the £ (L2(M); L% (M))-norm by |l - ll2—co
throughout this proof. We will make repeated use of the following estimate: Given
an operator of the form U = Zj aje;® f; for some scalars (a;); R, an orthonormal
system (e;); S I%(M) and some functions ( fi)j € L* (M), we have by the Cauchy—
Schwarz inequality:

1

10200 < sp; o0 (Xl ) (5.A2)
Moreover, it is immediate from the definition of the || - ||2—-norm that
Ih® fllz—co = Il 2 | fllzsorsy  forall he L2 (M) and f e L®°(M).  (5.A.3)

Step 2 (U, — U} and U3 — Uy). For the difference between U, and U}, we find
using (5.A.2) and Assumption 5.3.9:

oo , ,
BsMiy Y (1+02819)72. (5.A.4)
] kn+1

1Uso = Uy
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Recalling Weyl's law (5.3.8), which implies that (1 + [Af,{))]s)_zﬁ’ ~M j*‘“ﬁ’/m, we ob-
serve that the series on the right-hand side is convergent precisely when g’ > £
Since kj, — 0o as n — oo, this implies Uy, — U, in £ (L?(M); L®(M)).

Similarly, for the difference between U3 and U, we have

n . , B
IS~ Unldeg s M2y ¥ (1+1AP19) 72 < M2 (n— k) (1+1A57)%) 7%
Jj=kn+1

where the second inequality is due to the non-decreasing order of (/15,]));.‘:1. More-

over, as a consequence of Theorem 5.3.12, there exists a constant C’ > 0 such that, P-
as., forallneNand je{l,..., k,}, we have /151]) > C’/L(,{,). In particular, /151’6”) > Agf,”).
Together with Weyl’s law, we find 1 + [)Lﬁ,’“")]s > k25/™ 5o that the convergence of
this difference is due to (5.A.1):

|IU2 - Unllg_,oo <m M. nk_4sﬁ m_, 0 asn—oo. (5.A.5)
Step 3 (U}, — U2). In order to show that
Uy —U2—0 inL%Q;ZL(L*(M);L®(M))) asn— oo,

we first fix an arbitrary € > 0. Then, for all ¢, n € N such that k, > ¢, we split off the
first ¢ terms and use the triangle inequality to obtain

[ !
1UL = U230 Zl+Aé{31 Pyl eyl -3 @5\ 500

kn , kn .
o] 3 e Pl ev], o] ¥ el T el eg

j=0+1 ”Zﬂoo j=0+1 2—00

Using the triangle inequality once more, followed by (5.A.3) and Assumption 5.3.9,
the norms in the summation over j € {1,...,#} can be bounded by

) G ~() o~
lveh @ Weh — W5 @3 200
(§)] €] [€)] (€)) ( ) ()
<lwd ® wd) — ] Moo + I (wd — 7] )w’ ll2—00
_ 0~ ~() ~
=Yoo =Wy llreo (M)+"1//oo Vi ”LZ(M)"I//n | oo (M)

() ()
< (1 + My,o) lWeh =3 1o (M)

whereas the remaining two summations can be treated by arguing as for (5.A.4). To-
gether, this yields

¢ ) ,
UL = U200 < 14+ My o) Y (14 A1) Py = 1 oo gy
j=

00 . A
+2( Y (1+[/1<(>Q]$)’2ﬂ)2.

Jj=0+1
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Since we have already seen in Step 2 that the latter series converges, we can fix £ € N

so large that the second sum on the right-hand side is less than %E. Moreover, it

follows from Theorem 5.3.13(b) that ||1//f£ 1//(,,]) ll zooAg) — 0in L0 (Q,P) as n — oo for

every j € {1,...,¢}. In particular, there exists N € N such that, for all n = N, the first
sum on the right-hand side is less than %E, and thus the whole right-hand side is less
than ¢, with probability P =1 -¢. This shows I U,% — U,% lo—.oo — 0in I?’, as desired.

Step 4 (U2—U3). Finally, the difference U2 — U can be treated in the same manner
as Step 3, namely by writing, for all , n € N such that k,, > ¢,

kn . ! i -
107~ U3l oo St 2|04 1) = (14 0220

l . /
Z‘ 1+M(]) -p' _(1+[A(()jc})]s)*ﬁ |2

kn . ’ kn . /
+2 Y 1+ 2 Y a+na)
j=0+1 Jj=0+1

Using the fact that, I?’—a.s., we have Ai{') e /15,{3 forall je{l,...,k,} (see Step 2), the
latter two summations can be bounded, up to a multiplicative constant, by the con-
vergent series Z"O 20 +1(1 + [/L(){))]s)_zﬁ . Combined with the eigenvalue convergence
asserted by Theorem 5.3.12, which can be applied to the remaining summation, we
obtain |U2 - U3|lz—.co — 0 as n — oo, P-as., by arguing as in Step 3. Thus, we have
shown part (b).

(a) Replace (5.A.2) by the identity || Ulliﬂ M) Z] Iajl I fi ||L2 M)’ which follows
directly from the definition of the Hilbert-Schmidt norm. Assumption 5.3.9 is not
required since all the eigenfunctions are L2-normalized. The sufficiency of Assump-
tion 5.3.5(i) and the P-a.s. convergence in the conclusion are due to the use of The-
orem 5.3.13(a) instead of Theorem 5.3.13(b).

(c) Recall from Setting 5.3.2 that h,, := n~ m by definition. In view of Lemma 5.3.11,
we can take kj, := n— 1, hence neither of the bounds on h,, from Assumption 5.3.5
is needed. Indeed, in the proof of (b), the lower bound (5.A.1) on k, was only used

in (5.A.5), which becomes || U3 U, ”2—»00 SM M2 cokn ~4spim in the current situation,
and this tends to zero since, trivially, k,, — oo as n — 00. O

Lastly we prove Lemma 5.3.15 regarding uniform ultracontractivity of the semi-
groups (Sy (1)) s=0 associated to the (discretized) generalized Whittle-Matérn opera-
tors —(L7)°.

Proof of Lemma 5.3.15. (a) For p = oo, the statement holds by Assumption 5.3.6(i).
For p = 2, we note that, forall n e N, t>0,and f € L2(M,),

1S58 fll Loty = |1 REAdy + An)P S (0) fll ooty < £ PIRD 200l Fll 201,

where we used (5.C.2), as (S, (£)) =0 is a Contractlve analytic semigroup on L2 (M,).
In the proof of Theorem 5.3.14(b), we found IIRn 200 < My oo Z;’:l(l + [}LE{)]S) 2p
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under Assumption 5.3.9. Since Assumptlon .5(ii) implies 5.3.5(i) with the same
B, and since the estimate of IIR l2—co Only 1nvolves the eigenvalues (and not the
eigenfunctions), we can in both cases argue as in Theorem 5.3.14(a), under Assump-
tion 5.3.4(i), to deduce that, P-a.s., the right-hand side can be bounded indepen-
dently of n. This proves the statement for p = 2, hence by the Riesz-Thorin in-
terpolation theorem [94, Theorem 1.3.4], the lemma holds for all p € [2,00], with

2 2
p p
Mg, < MJ,Mg .

(b) The differences with the proof of part (a) are the use of Theorem 5.3.14(c) in-
stead of 5.3.14(b), and the fact that Assumption 5.3.9 is automatically satisfied. O

5.B. FRACTIONAL PARABOLIC INTEGRATION

Let (E, ||- |l g) be aBanach space. Suppose that —A: D(A) € E — E generates a strongly
continuous semigroup (S(f)) s>0, and let the constants M € [1,00), w € R be such that

ISl gz < Me™!  forall £ € [0,00). (5.B.1)

We define the fractional parabolic integral of f € LP (0, T; E) of order s € (0,00) by

I [ = f(t 05 IS(t-1)f(r)dr, ae. te(0,7); (5.B.2)

I'(s)

for s = 0 we set 3?4 := Idg. The following properties of J°, (for a single operator A)
are well known—see also [56, Proposition 5.9] and Proposition 4.2.3(a),(b)-and used
throughout the main text of the chapter. We will state them here for the sake of self-
containedness.

Proposition 5.B.1. Suppose that —A: D(A) € E — E generates a strongly continuous
semigroup (S(t)) =0 S L (E) satisfying (5.B.1). Then, for every s € [0,00), p € [1,00]
and T € (0,00), we have:

(@) T3, is bounded from LP (0, T; E) to itself, with an operator norm depending only
ons,p, T, wandM.

If(F || - |g) is a Banach space for which there exist M' € [1,00) and « € [0,00) such that
S e L(EF) with |1SOlgEr < Mt /2 forall t €0,00),

and in addition we have eitherp=1,s=21+5 orp>1,5s> - » + %, then

(b) T3, is bounded from LF (0, T; E) to C([0, T; F), with an opemtor norm depending
onlyons,p, T and M'.

For a sequence of operators (A,), i on Banach spaces which satisfy the appro-
priate discrete-to-continuum assumptions from the main text of the chapter, the
proposition above implies the following corollary regarding uniform boundedness
of the sequence (j )neN’ where Js =A;J H for all n € N. From this, in turn,
one can derive Proposmon .B.3 below assertlng the strong convergence of these
operators.
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Corollary 5.B.2. Let the Banach spaces (Ep, |l - |g,) .5 AR 7) and the linear op-
erators (Ap) . satisfy the assumptions of Theorem 5.2.3, and suppose that p € [1,00]
and s € [0,00). The following assertions hold:

(@) The sequence (ﬁzn) ey IS uniformly bounded in < (LP (0, T; E).

(b) The sequence (ﬁfqn)neN is uniformly bounded in £ (LP (0, T; E); C([0, T); E)) if,
eithenp=1lands=1,orp>1ands> %.

Ifthe spaces (E”)neN’ (B”)neN and B are as in Assumptions (A1-B), (A2-B) and (A4-B),

1.6
z-i—i, then

(c) the sequence (‘:jiln)nEN is uniformly bounded in £ (LP (0, T; Ex,); C([0, TI; B)).

and we have s >

Proposition 5.B.3. Let the Banach spaces (Ep, |l - |g,) .y E N - 7) and the linear
operators (Ay) , 5 satisfy the assumptions of Theorem 5.2.3. Suppose that p € [1,00]
and s € [0,00). The following assertions hold:

(a) Ifeitherp=1ands=1,orp>1ands> %, then we have ﬁfqnf - jiaoof in
C([0,TI;E), asn — oo, forevery f € LP(0, T; Exo).
Moreover, let Assumptions (Al-B), (A2-B), (A3-B) and (A4-B) hold.

(M) Ifs> 5+, thenTy f—34 finC(0,T];B) asn— oo forall f € LP(0, T; Exo).
Proof. We only present the details of the argument for part (b), the proof of (a) being
similar.

Letpe[l,00), s€ (% + g,oo), f€LP(0,T; Ex) and fix an arbitrary € > 0. By the den-

sity of By, in Eo (see (A4-B)), and that of By,-valued simple functions in L” (0, T'; Boo),
there exists a function g: [0, T] — B, of the form

K
g= Z l(a].,hj)®xj, KeN;0=aj<bj=T, xj€ By forall je{l,...,K}
j=1

such that

£ s -1
If = &lrorEs < Z(SuPnEN 133, ) 2o Ecao ) -

Note that the expression between the parentheses is finite by Corollary 5.B.2(c) and
can be assumed to be nonzero without loss of generality, as otherwise ji‘n =0forall

neN and the asserted convergence would be trivial. Thus, for every n e N,

o o s
195, f =Taflcqo, i)
<194, = &lcqo, iz +1724,8 = Taglcqo nim + 1748 = Nllcgo,ris
1 ~S s
<3€+175%,8=Ta8lcqo,11;8)-

Forany j € {1,...,K}, by (A3-B) and the discrete-to-continuum Trotter-Kato approx-
imation theorem, we can choose N; € N so large that
sI'(s)

|I§n®xj -S®x; ”C([O,T];'B) < me forall n = N;.
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Thus, setting N := maxfz1 Nj,we find forall n= N and ¢ € [0, T:

~ 1 bj
155,80 -358Wlz< — o 2 Z (=) NSn(t—r)xj - S(t—rx;jlzdr

< KfT“nST() S(nx;jlizd
S —— r rNx;—Sr)x;illgdr
T(s) =1Jo i ils
s X e
=T ZIISn®x] S8l cqo,md) < 5-

Since~t € [0, T was arbitrary, we conclude that IIqung—jf‘lgll co.11:) < %8, and there-
fore ”ijnf_jixf”cuo,ﬂ;ﬁ) <eforalln=N. O

5.C. UNIFORMLY SECTORIAL SEQUENCES OF OPERATORS

We first recall the concept of sectorial operators from Definition 1.1.7. A linear oper-
ator A: D(A) € E — E on a (real or complex) Banach space E, with spectrum o (A), is
said to be w-sectorial (with w € (0, 7)) if

oA <z, and M(w,A) =sup{lARN, Al .gE:AeC\E,} <oo, (5.C.1)

where X, is as in (5.3.10) and M(w, A) is called the w-sectoriality constant. Its angle
of sectoriality w(A) € [0, ) is defined as the infimum of all w for which (5.C.1) holds.

IfA is closed and densely defined, then by Theorem 1.1.8, Ais w-sectorial for some
w € (0, n) if and only if there exists 1 € (0, n) such that — A generates a bounded
analytlc semigroup (S(£)) =0 on Zy. Inspectlng the proof of the cited theorem reveals
that, whenever these equivalent conditions hold, we have

SUPzex, 1S k) ~wm M(w, A).

Moreover, recall that the supremum of the set of 1 € (0, %n) for which (S(1)) =0 ex-
tends to a bounded analytic semigroup on X, equals %n -w(A).
By [100, Propositions 3.4.1 and 3.4.3] we have

IAYS( 2(5) Sw,a M@, A7, (5.C.2)

forall w € (w(A), %n) and ¢ € (0,00), where the implicit constant is non-decreasing in
a for any fixed w.

We say that a sequence (Aj) ,en of linear operators A,: D(A,) € E,, — E, is uni-
formly sectorial of angle w € [0, ) if A, is sectorial of angle w for all n € N and

Munit(@', A) = sup,,cy M(@', Ay) <oco forall ' € (w,7). (5.C.3)

Lemma 5.C.1 complements Theorem 5.2.3 in the 51tuat10n where the semigroup
generators are uniformly sectorial of angle less than 271, in which case we obtain
the uniform convergence A, AYS(- )T, x — Ag‘oSoo( -)x on compact subsets of (0,00).
It is an analog to [131, Lemma 4.1(2)] in the discrete-to-continuum setting and for
general a € (0,00) (instead of a = 1).
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Lemma 5.C.1. Let the linear operators A, : D(A,) € E,, — E, on the Banach spaces
(Ep, Il - ”En)neN be uniformly sectorial of angle w € [0, %n), and denote by (S, (1)) t=0 the
bounded analytic Cy-semigroups generated by —A,,. Let Assumptions 5.2.1 and 5.2.2
be satisfied with w = 0, and suppose that the equivalent statements (a) and (b) in
Theorem 5.2.3 hold. Then we have, for all @ € (0,00), X € Eso and0 < a < b < oo,

sup |ARALSy (O ,x — AL S (D)X — 0 asn— oo.
tela,b)

Proof. Fix o' € (w, %n), neNand t € (0,00). We begin by sketching the functional
calculus argument (see Section 1.3) which shows that we have the following Cauchy
integral representation:

1
ASS, (1) = — z%¢""*R(z, Ap) dz (5.C.4)
2mi Joz,,

To see this, define the functions fy, g;: =, — C by f,(z) := z% and g;(z) := e~ % for
z€Z, and ¢ € (0,00). Denote by fy(A,) and g;(A;) the operators obtained via the
extended Dunford calculus. Then f, (A}) is the fractional power A%, which satisfies
fa(Ap)x = fo(M)x = A%x if A, x = Ax, hence this (more general) definition agrees
with the spectrally defined fractional powers in the setting of (5.3.9). Moreover,
we have g;(A;) = S, (#) by [115, Theorem 15.1.7], and (fa8:)(An) = fa(An)g:(AR)
by [115, Proposition 15.1.12] since S(t) is bounded. The function (f, g;)(2) = z%e~?
is holomorphic and has (super)polynomial decay at 0 and oo, and thus belongs to
the domain of the primary Dunford calculus [115, Definition 15.1.1], which implies
that (fo81)(An) = 5= fazw, z%"'*R(z, A,)) dz. Putting all these observations together
yields (5.C.4). Applying the projection and lifting operators and parametrizing the
complex integral yields, for all x € E,

ei(a+1)w’ 00 o,
A AGSn(Ox = — —f rexp(—te'” r)R(e'" r, Ap)xdr
27 0
e—i(a+1)a)' o0 L _ -
+ —f r%exp(—te " r)R(e”"’r, Ay xdr,
2mi 0

where we recall that I1, = As = Idj for n = co. It follows that the above estimate
implies the following uniform bound on the interval [a, b]:

sup A AL Sy(OI,x — AL S (D) x| 5
tela,b]
1 oo 1 ~ . NG
< o & g acos@)r ||R(relw,An)X—R(Telwono)x”E (5.C.5)
T Jo

+IR(re” ™, A x— R(re™', Ao)xl 5| dr.

Setting 7 := %7‘[ — 9 for some 9 € (w, '), the uniform sectoriality of (A")neN implies
that the operators (—A, eii”)HEN generate Cp-semigroups (Sn(teii”))tzo which are
uniformly bounded in # and n. Therefore, we can apply Theorem 5.2.3 to these two
sequences of semigroups to find that R, Ap)x — R(A, Axo) x for all |arg A| > 9 if this
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convergence holds for one such A. We have in fact R, Ap)x — R(A, Ago)x for all
A such that |argA| > %n > 9 by our hypothesis that the operators (A,), 5 satisfy
statements (a) and (b) in Theorem 5.2.3, so we conclude

R(re*', Ap)x — R(re*'"’, Ao)x
for all r € (0,00). On the other hand, by (5.C.3) and Assumption 5.2.1 we have
IR(re*™, Ap)xllz < Mt Ma Munis(9, A) |l xll 577!

for all n € N. Hence, we can bound the integrand in (5.C.5), up to n-independent
constants, by the integrable function r — ra-l exp(—acos(w’)r), so that the integrals
tend to zero by the dominated convergence theorem. O
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