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With dual two-dimensional Airy-like waveforms, we
demonstrate the creation of highly confined electromag-
netic fields in the transverse plane and circular or elliptical
propagation trajectories in the longitudinal plane by using
specially designed Pancharatnam–Berry (PB) phases.
Applying the Richards and Wolf vectorial diffraction meth-
ods, the explicit expressions are obtained to calculate the
strength vectors and energy flux of the three-dimensional
electromagnetic fields. Calculations reveal that the nano-
interferometric structures of such highly confined fields
highly depend on the indexes γ1 and γ2 determining the
PB phase, thereby enabling the engineering of highly con-
fined fields with tunable size, spacing, and propagation
trajectories. © 2019 Optical Society of America

https://doi.org/10.1364/OL.45.000037

In 1979, the concept of the self-accelerating wave packet was
proposed in the pioneering work of Berry and Balazs, who
theoretically predicted that the Schrödinger equation with a
spatially uniform force term has as a solution for a nonspreading
Airy wave packet [1]. However, this work remained relatively
unnoticed for decades, possibly because the Airy waveform has
infinite norm or because producing particles in an Airy state
is difficult. It was not until 2007 that the first observation of
Airy beams emerged [2,3]. As opposed to other diffraction-free
beams previously studied, the intensity structure of an Airy
beam follows a curved parabolic trajectory. This fascinating
feature has been used in a wide range of applications, including
plasma guidance [4], microscopy [5,6], and optical microma-
nipulation [7]. In addition, research has devoted much effort in
inducing light fields capable of propagating along other flexible
trajectories in free space. To mention a few examples, light
beams that travel along circular, elliptical, arbitrary convex, and
spiral trajectories have been identified [8–10].

Generally, the aforementioned propagation trajectory con-
trol of light beams in free space is based on dynamic phase
modulations realized by spatial light modulators, liquid crystals,
nonlinear processing, or phase masks. In addition, there is cur-
rently substantial interest in highly confined structured fields;

specifically, the creation of customized light fields of nanoscale
size to suit specific needs in applications [11–13]. So far, how-
ever, attempts to target complex trajectory structures of these
highly confined fields have not yet been pursued. Such field
distributions can be generated, for instance, by tight focusing of
polarized light beams. Under these circumstances, nonparaxial
beam configurations are required, and the Pancharatnam–Berry
(PB) phase [14–17] rather than the dynamic phase plays the
dominate role in forming these field structures.

In this Letter, we show that a highly confined field exhibiting
dual two-dimensional (2D) Airy-like patterns in the transverse
plane and circular and elliptical propagation trajectories in the
longitudinal plane is indeed possible when assisted by a tailored
PB phase. To this end, using Richards and Wolf vectorial diffrac-
tion methods, the explicit expressions to calculate the strength
vector and energy flux of the three-dimensional (3D) electric
and magnetic fields are presented. By calculations, the intensity
structure of the highly confined field is found to depend highly
on the indexes γ1 and γ2 in the PB phase. The size of the twin
Airy-like fields and spacing between them are both controllable
and depend highly on the indexes γ1 and γ2 in the PB phase,
respectively. Both γ1 and γ2 have an effect on the propagation
trajectory. To gain a better understanding of the proposed com-
plex nano-interferometric fields, the energy fluxes of such highly
confined fields are also studied in detail.

Highly confined optical fields can be obtained, for exam-
ple, by focusing the light beam with an objective lens of high
numerical aperture (NA), as depicted in Fig. 1(a). Generally,
light from a laser without a specially designed cavity is linearly
polarized and is tightly focused to generate a sharp hot-spot field
distribution with an elliptical pattern. The state of polarization
(SoP) of an arbitrary linearly polarized beam is mathematically
written as

v1 = cos hex + sin hey =
1
√

2
exp(−ih)el +

1
√

2
exp(ih)er ,

(1)

where ex , ey , el , and er denote the unit vectors corresponding
to x -directed and y -directed linear polarizations and to left-
handed (LH) and right-handed (RH) circular polarizations.

0146-9592/20/010037-04 Journal © 2020 Optical Society of America

https://orcid.org/0000-0002-5684-5235
https://orcid.org/0000-0003-4651-2194
mailto:zsman@sdut.edu.cn
mailto:fushenggui@sdut.edu.cn
https://doi.org/10.1364/OL.45.000037
https://crossmark.crossref.org/dialog/?doi=10.1364/OL.45.000037&amp;domain=pdf&amp;date_stamp=2019-12-13


38 Vol. 45, No. 1 / 1 January 2020 /Optics Letters Letter

Fig. 1. (a) Schematic diagram for the high NA objective lens focus-
ing system. Here, the geometrical focus is located at the origin of a
Cartesian coordinate system, and the propagation axis is z. Polarization
distributions for three different input optical fields with (γ1, γ2) =

(b) (0.5, 0), (c) (5, 0), and (d) (5, 5) when h = 0.

Angle h specifies the orientation of the linearly polarized beam
with respect to the x axis. However, if the LH and RH polari-
zation components in Eq. (1) acquire PB phases of σ and −σ ,
respectively, the resultant SoP becomes

v2 =
1
√

2
exp [−i (h + σ)] el +

1
√

2
exp [i (h + σ)] er

= cos (h + σ) ex + sin (h + σ) ey . (2)

PB phases are related to variations in the SoP, which is much
different from the well-known dynamic phases. Significant
success has been achieved in producing the above polariza-
tion transformations with subwavelength gratings, specially
designed wave plates, or optical systems [18–20]. From theory,
the PB phase σ in Eq. (2) can have any form of distribution.
The creation of highly confined twin Airy-like beams is
possible when setting σ = γ1(ρ/ρ0)

3(sin3 φ + cos3 φ)+

2πγ2)ρ/ρ0)(sin φ + cos φ), where γ1 and γ2 denote the
phase indexes, ρ and φ are the polar radius and azimuthal
angle in the polar coordinate system, respectively, and ρ0 is the
size of the input field. As examples, Figs. 1(b) and 1(c) show
the polarization distributions of three polarized beams with
(γ1, γ2)= (0.5, 0), (5, 0), and (5, 5) when h = 0, respectively.
These distributions are very similar to those of linearly polarized
beams for low values of γ1 [Fig. 1(b)]. However, they change
considerably as γ1 increases [Fig. 1(c)]. Further, for nonzero
γ2, the polarization becomes more complicated [Fig. 1(d)].
Strongly focused beams have been analyzed by the Richards and
Wolf vectorial diffraction theory [21], where they have been
proved to fit well with experimental data [22]. The electric and
magnetic fields at an observation point P (r , ϕ, z) in the focal
volume of a high NA objective lens can be obtained as [21][
E(r , ϕ, z)
H(r , ϕ, z)

]
=
−ik f

2π

∫ 2π

0

∫ α

0

√
cos θ l(θ) sin θ

[
Ve
Vh

]
· exp

{
ik
[
− r sin θ cos (φ − ϕ)

+ z cos θ
]}

dφdθ, (3)

where k and f denote the wave number and focal length,
respectively; θ is the tangential angle with respect to the z-axis;
α arcsin(NA)/n, with NA as the numerical aperture of the
focusing objective lens and n as the refractive index in the image
space that is set to 1 in our configuration; l(θ) describes the
complex amplitude distribution of the incident beam, which we
take to be [23]

l(θ)= exp

[
−β2

(
sin θ

sin α

)2
]

J1

(
2β

sin θ

sin α

)
, (4)

where β is the ratio of the pupil radius to the beam waist, and J1
denotes the first-order Bessel function of the first kind.

In Eq. (3), Ve represents the electric field polarization vector
in the image space contributed by the input SoP; its three mutu-
ally perpendicular components Vex, Vey, and Vez are found to be

Vex=− sin φ sin T + cos θ cos φ cos T, (5)

Vey = cos φ sin T + cos θ sin φ cos T, (6)

Vez = sin θ cos T, (7)

where

T = γ1

(
sin θ

sin α

)3 (
cos3φ + sin3φ

)
+ 2πγ2

(
sin θ

sin α

)
(cos φ + sin φ)+ h − φ. (8)

We now explore the nano-interferometric behaviors of the
electric field based on Eqs. (2)–(8). As examples, Fig. 2 shows
the normalized electric field distributions in the focal plane
of four different optical fields with (γ1, γ2)= (0.5, 0), (5, 0),
(10, 0), and (15, 0) when h = 0. Overall, for all four inputs,
the transverse components [Figs. 2(a), 2(d), 2(g), and 2(j)] are
always much stronger than the longitudinal ones [Figs. 2(b),
2(e), 2(h), and 2(k)] and dominate the total fields. However, in
detail, they are very different. Specifically, when the value of γ1 is
low, the hot-spot field distribution exhibits an elliptical pattern
for the total field arising from the fact that the polarization
distribution is very similar to that of a linearly polarized beam
in this situation [Fig. 1(a)]. The full width at half-maximum
values of the transverse [Fig. 2(a)] and total [Fig. 2(c)] focal
spots are calculated to be about 0.588λ and 0.734λ in the x
axis direction and 0.516λ and 0.516λ in the y axis direction,
respectively. However, dual Airy-like patterns emerge for the
transverse and total field with increasing γ1 [Figs. 2(d), 2(f ),
2(g), 2(i), 2(j), and 2(l)]. Most importantly, controlled by γ1,
their size is tunable and increases with increasing γ1. As a result,
targeting a desirable size in highly confined fields to meet dif-
ferent applications can be realized just by carefully tailoring the
phase index γ1 in the PB phase. The spacing between the dual
Airy-like fields may be another important indicator for evaluat-
ing their quality, which is also controllable in our approach; see
Fig. 3. Obviously, with increasing positive γ2, the dual highly
confined Airy-like fields move radially outward at angles of π/4
and 5π/4 with respect to the x axis [Figs. 3(a)–3(f )], resulting
in a tunable spacing between the fields. Intriguingly, the size
of each Airy-like field nearly shows no change, which is very
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Fig. 2. Calculated electric field intensity distributions in the focal
plane of four input optical fields with (γ1, γ2)= (0.5, 0), (5, 0),
(10, 0), and (15, 0) in the four rows from top down for h = 0 and
(NA, β)= (0.95, 1). From left to right, the columns show the
transverse and longitudinal field components and the total fields. All
intensity distributions are normalized to the maximum intensity in
the focal plane for each input light mode. The size for each image is
10λ× 10λ.

important in practical applications. Furthermore, achieving
opposite movements in the dual Airy-like fields is also possible
if γ2 is negative [Figs. 3(g)–3(i)]. Here, a quasi-optical lattice is
obtained, resulting from the overlap of the dual Airy-like fields.

The propagation dynamics of the highly confined fields in the
through-focus plane at angle π/4 to the x − z plane is depicted
in Fig. 4, with (γ1, γ2)= (10,−2), (10, 2), and (15, 2) when
h = 0. Note that they all exhibit curved propagation trajecto-
ries, which are completely different from previously reported
results. Specifically, the highly confined fields follow dual cir-
cular trajectories [Figs. 4(a) and 4(c)]. Furthermore, they swap
positions under a change in the sign of γ2, resulting in an incom-
plete ring pattern along the propagation direction [Figs. 4(d)
and 4(f )]. Moreover, the circular trajectories evolve into ellipses
when γ2 increases [Figs. 4(g) and 4(i)]. Hence, highly confined
fields capable of propagating along tunable trajectories can be
achieved.

By calculations, it is found that the values of NA and β
affect the size and propagation distance of the highly confined
Airy-like fields greatly, as can be seen in Fig. 5, which shows
the normalized total electric field distributions in the focal and
through-focus planes with (NA, β)= (0.7, 1), (0.8, 1), and
(0.8, 1.5) when (γ1, γ2)= (10, 2) and h = 0. Obviously, the
size in the focal plane and propagation distance in the through-
focus plane of the highly confined Airy-like field both decrease
when NA changes from 0.7 to 0.8, which can further decrease
with the increase ofβ.

Fig. 3. Calculated electric field intensity distributions in the focal
plane of three input optical fields with (γ1, γ2)= (10, 0.5), (10,
1), and (10, −2) in the three rows from top down for h = 0 and
(NA, β)= (0.95, 1). The transverse and longitudinal field compo-
nents and total fields are given in the columns from left to right. All
intensity distributions are normalized to the maximum intensity in
the focal plane for each input light mode. The size for each image is
10λ× 10λ.

Fig. 4. Calculated electric field intensity distributions in
the through-focus plane at angle π/4 to the x − z plane of the
tightly focused input optical fields with (γ1, γ2)= (10,−2),
(10, 2), and (15, 2) in the three rows from top down for h = 0 and
(NA, β)= (0.95, 1). The transverse and longitudinal field compo-
nents and total fields are given in the columns from left to right. All
intensity distributions are normalized to the maximum intensity in the
through-focus plane for each input light mode. The size for each image
is 16λ× 16λ.

To gain a deeper understanding of these highly confined
fields, we calculate their energy fluxes. The three mutually per-
pendicular components Vhx, Vhy, and Vhz of the magnetic field
polarization vector Vh in Eq. (3) can be similarly derived for the
electric field as

Vhx =−
√
ε/µ(sin φ sin T + cos θ cos φ cos T), (9)
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Fig. 5. Calculated electric field intensity distributions in the
focal plane (top) and through-focus plane at angle π/4 to the
x − z plane (bottom) of the tightly focused input optical field
with (γ1, γ2)= (10, 2) when h = 0 under focusing conditions of
(NA, β)= (0.7, 1), (0.8, 1), and (0.8, 1.5) in the columns from left to
right. The size for each image is 16λ× 16λ.

Vhy =
√
ε/µ (cos φ sin T − cos θ sin φ cos T) , (10)

Vhz =−
√
ε/µ sin θ sin T, (11)

where ε and µ are the electric permittivity and magnetic per-
meability. In terms of the 3D electric and magnetic fields
expressed by Eqs. (5)–(7) and (9)–(11), the energy current is
obtained from a determination of the time-averaged Poynting
vector [24–26],

P ∝ Re
(
E×H∗

)
, (12)

where the asterisk denotes complex conjugation. We then calcu-
late the energy flux using Eqs. (2)–(12).

As an example, Fig. 6 shows the generalized energy fluxes of
the transverse and longitudinal components in the focal and
through-focus (with angle of π/4 to the x − z plane) planes for
the input field with (γ1, γ2)= (10, 2)when h = 0. Apparently,
the dual 2D Airy-shaped patterns play a dominate role for both
the transverse and longitudinal components in the focal plane
[Figs. 6(a) and 6(b)]. At the same time, the straight trajectories
of both transverse and longitudinal energy flows are broken;
they are both curved trajectories and exhibit incomplete ring
patterns in the through-focus plane [Figs. 6(a) and 6(b)].

Fig. 6. Normalized energy flow distributions in the focal (top) and
through-focus (bottom) planes of the tightly focused input optical
fields with (γ1, γ2)= (10, 2) when h = 0 and (NA, β)= (0.95, 1).
The left and right columns show, respectively, the transverse and
longitudinal components.

To summarize, we proposed and demonstrated new families
of highly confined structured fields assisted by specially designed
PB phases. From the Richards and Wolf vectorial diffraction
theory, we obtained explicit expressions for all components
of the electric and magnetic field strength vectors in the focal
volume of an aplanatic high NA focusing system. The calcula-
tions revealed that highly confined fields with dual 2D Airy-like
patterns in the transverse plane and circular or elliptical propa-
gation trajectories in the longitudinal plane can be achieved.
Furthermore, the nano-interferometric structure of these highly
confined fields is controllable and only depends on indexes γ1
and γ2 specifying the PB phase. Moreover, the correspond-
ing energy flux distributions were also investigated in detail.
These results not only broaden the structured highly confined
fields, but also point to potential applications in areas such as
nanofabrication, imaging, and optical manipulation.

Funding. National Natural Science Foundation of China
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