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Optical aberrations have detrimental effects in multiphoton microscopy. These effects can be curtailed by
implementing model-based wavefront sensorless adaptive optics, which only requires the addition of a wavefront
shaping device, such as a deformable mirror (DM) to an existing microscope. The aberration correction is achieved
by maximizing a suitable image quality metric. We implement a model-based aberration correction algorithm in a
second-harmonic microscope. The tip, tilt, and defocus aberrations are removed from the basis functions used for
the control of the DM, as these aberrations induce distortions in the acquired images. We compute the parameters
of a quadratic polynomial that is used to model the image quality metric directly from experimental input-output
measurements. Finally, we apply the aberration correction by maximizing the image quality metric using the
least-squares estimate of the unknown aberration. © 2014 Optical Society of America
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1. INTRODUCTION

Multiphoton microscopy techniques, such as two-photon fluo-
rescence microscopy [1] and second-harmonic microscopy
[2], are commonly employed to image biological specimens.
Exploiting the image sectioning properties of these processes,
one can create high-resolution 3D reconstructions that are
invaluable for biomedical research. One limiting factor is the
presence of specimen-induced aberrations. Because the index
of refraction is not homogeneous within the specimen, aber-
rations affect both the resolution and the maximum depth of
penetration [3]. Using adaptive optics [4], these detrimental
effects can be minimized by reducing the phase aberrations.
A phase aberration can be introduced in the excitation beam
by means of a deformable mirror (DM), for example. Chosen
correctly, such a phase aberration can suppress some amount
of the specimen-induced aberrations.

Direct measurement of the specimen-induced aberrations
is challenging. One solution involves measuring the aberra-
tions of the excitation light that is back-scattered from the
specimen [5-10]. In this case, the difficulty arises in excluding
the light that is reflected from the out-of-focus layers of the
specimen [5,6]. Additionally, these measurements are weakly
sensitive to odd aberrations [5], due to the double-pass effect
[11]. In another solution, instead, the emission from a point
source inside the specimen is used to perform Shack-
Hartmann wavefront sensing [12-16]. Here, the difficulty
stems from the lack of such reference point sources within
the specimen and from the limited number of photons avail-
able in the emission signal.
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An alternative, indirect approach involves deducing the
specimen-induced aberrations solely by examining the emis-
sion signal. This approach only requires the addition of a DM
into the excitation path of an existing microscope. A solution
that is based on the segmentation of the pupil has been pro-
posed [17,18]. Other solutions are based on the optimization of
an image quality metric, which attains its global maximum
when the residual aberration is maximally suppressed. In
practice, different trial aberrations are sequentially applied
with the DM until the image quality metric attains its
maximum.

General optimization algorithms can be used to maximize
the image quality metric [19-24]. However, because these
algorithms have no prior knowledge about the metric, a large
number of trial aberrations must be evaluated before the
metric is maximized [3,25,26]. Reducing the number of trial
aberrations is critical in achieving short image acquisition
times and in limiting side effects, such as photobleaching
and phototoxicity. For small aberrations, the response of
the image quality metric can be approximated using a simple
model, such as a quadratic polynomial [25-35]. Model-based
aberration correction algorithms [25-38] exploit the knowl-
edge about the model of the metric to quicken the aberration
correction, thus curtailing the aforementioned side effects.

In this paper, we investigate applying a model-based
wavefront sensorless aberration correction algorithm to a
second-harmonic microscope.

The paper is organized as follows. In Section 2, we discuss
the definition of the basis functions for the control of the

© 2014 Optical Society of America


http://dx.doi.org/10.1364/JOSAA.31.001337

1338 J. Opt. Soc. Am. A / Vol. 31, No. 6 / June 2014

DM. In Section 3, we outline our proposed algorithm for the
aberration correction. In Section 4, we report the experimen-
tal results. The conclusions are drawn in Section 5.

2. DEFINITION OF THE BASIS FUNCTIONS
FOR THE CONTROL OF THE DEFORMABLE
MIRROR

The basis functions should satisfy two different requirements.
In scanning microscopy, the aberration correction should not
introduce x-tilt, y-tilt, and defocus Zernike aberrations [39].
These aberrations do not affect the image quality. Instead,
they affect the position of the focal point within the specimen
and they induce translations or distortions in the acquired
images [31,32,40]. For this reason, a first requirement is that
the basis functions be orthogonal to the -tilt, y-tilt, and defo-
cus aberrations.

A second requirement is that the basis functions express
the capabilities of the DM in an accurate and concise form,
by taking into account the mechanical limitations of the
mirror and the misalignment in the optical system as much
as possible. This requirement is not satisfied when using
Zernike polynomials as the basis functions since a DM with
N, actuations cannot accurately induce a set of N, Zernike
polynomials.

We now discuss a simple procedure to define a new set of
basis functions that satisfy the two requirements discussed so
far. This procedure is based on the singular value decompo-
sition (SVD) of a matrix H that approximately describes a lin-
ear relationship between the control signals of the DM and a
set of Zernike coefficients. For completeness, we first report
how H can be computed from input—output measurements.

A. Computation of Matrix H from Input-Output
Measurements

Let N, be the number of actuators of the DM. Assuming that
the DM is a linear device, the phase aberration ®(€) is given by
the superposition of the influence functions [41,42] y;(€) of
each actuator, where & is the spatial coordinate in the pupil
and wu; is the control signal of the ith actuator:

N,
DE) =) wyi (). ey
=1

For a suitable number N, of Zernike polynomials Z;(), the
phase aberration is approximated by

14N,

DO ~ ) %Z(E) @)
j=2

where z; is the jth Zernike coefficient. We neglect the piston
mode Z; since this does not affect the image and assume that
O(€) and y;(€) have zero mean value over the pupil.

The coefficients u; and 2; are collected, respectively, into
vectors u € RV« and z € R"=. By considering a grid defined in
the pupil, N, samples of ®(€) are collected into a vector
¢ € RV, Similarly, we evaluate y;(€) and Z;(€) over the grid
and define two matrices ¥ € RNV and Z € RVNoV-, Using
Egs. (1) and (2), we find ¢ = Pu and ¢ ~ Zz

We would like to recover a matrix H which maps an
actuation vector u into the corresponding vector of Zernike
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coefficients z, i.e., z~ Hu. H can be computed using input-
output measurements, so that the misalignment in the optical
system is accounted for. Using a Shack-Hartmann wavefront
sensor or interferometric methods [42—45] one can collect a
set of measurements of the phase ¢y, ...,¢pp corresponding
to different settings of the DM uy, ..., up.

We compute H by minimizing the following criterion:

D
min y " [l¢p; ~ ZHu||*. 6)
i=1

Setting the derivative with respect to H to zero leads to the
following normal equation:

D D
ZTZH(Z uiuiT) =27" (Z pu! ) O]
=1

i=1

which can be solved by multiplying from the left and from the
right by the inverse matrices of Z7Z and > P  wu!. For a
properly defined grid, the inverse of Z”Z exists, since Z is full
column rank due to the orthogonality property of the Zernike
polynomials. Additionally, vectors u; can be selected so that

D wu? is full rank.

In our system we have N, = 17 and N, = 75912. We per-
formed D = 4N, measurements of the phase ¢, ....¢4y,. In
each measurement, a single actuator is poked while the other
actuators are at rest. We empirically chose D = 4N,, other
choices are possible provided D > N,. The choice of N, is
more critical. With a poor choice of N, the accuracy require-
ment discussed at the beginning of Section 2 may not be
fulfilled and the approximation z ~ Hu may be too rough.
We chose N, = 35 by evaluating the error in approximating
the phase measurements ¢; using an increasing number of
Zernike polynomials.

B. SVD-Based Removal of the x-Tilt, y-Tilt, and
Defocus Aberrations
From the previous section, we conclude that, in our system,
the N, =17 influence functions approximately span a
subspace of the space spanned by the first N, = 35 Zernike
polynomials. Because rank(H) < N, there exist nonzero
vectors z that do not belong to the range of H and the Zernike
polynomials should not be used as the basis functions for the
control of the DM.

We can split vector z and matrix H so that z~ Hu is

partitioned as
z H,
~ u, 5
[zh ] [H h ] ®

where the 2-tilt, y-tilt, and defocus coefficients are collected
into z; = [29,25,24]7. The SVD of H, is

Vi

H,=U[% 0][VT]’ ©)
2

where %, has dimensions 3 x 3, V;; has dimensions N, x 3, and

Vi, has dimensions N, x N,, with N,, = N, — 3. The required

constraint that z; ~ 0 is enforced if we choose u such that

Hpjuu = 0. This is achieved by parametrizing u using the
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columns of Vy, i.e., letting u = V,p, where p € R"». There-
fore, the phase aberration is

N,
D) =) wyiE),  stu=Vpp @)
=1

or equivalently

Nl"
DE) =) piw;(®). ®
i=1

where w;(€) are the new basis functions. These functions are
defined by w;(€) = Z;V:"I (Vi2);jiw;(E), where (V5);; denotes the
element of V, at position (7, 7). For a given vector p, we can
compute the control signals of the actuators with u = Vjyp.
Similarly, for a given p, the Zernike analysis of the induced
wavefront aberration is given by z ~ HV ,p.

In our experiments, we also applied regularization [46] by
truncating the SVD of HV 5 to U IZIVIT. Using no more than
80% of the sum of the singular values, X; was a 7 x 7 matrix
and the DM was controlled with a vector r € RY, where
N =17. For a given r, the control signals of the actuators of
the DM are computed using u = V;,Vr. The Zernike analysis
of the induced wavefront aberration is computed using z;, ~
H, V5V r and the rms of the phase profile is given by comput-
ing the 2-norm, i.e., ||z,||. This is equivalent to applying an-
other parametrization to Eq. (8). We remark that in this
way, no pseudoinverse is ever computed or used to control
the DM, differently from what is done in [41], for example.

3. LEAST-SQUARES ESTIMATION OF
THE UNKNOWN ABERRATION

In this section we discuss the aberration correction algorithm.
In [32,34,35], the authors show that, for small aberrations, the
image quality metric can be modeled using a quadratic poly-
nomial. We denote a measurement of the image quality metric
at time instant k& with g, so that

Ui =co— (x+ 1) " QX+ 17) + € ®

where ¢, and @ are the parameters of the quadratic polyno-
mial. Matrix @ is a positive semi-definite matrix, i.e., @>0
[26]. Vector x represents the unknown aberration whereas
1, accounts for the aberration induced by the DM. The term
€, is a placeholder that collects both the uncertainty in mod-
eling the image quality metric and the measurement noise, and
as such it cannot be measured by definition. By including this
term, a measurement ¥, can be set equal to the right-hand side
of Eq. (9). Excluding ¢, the right-hand side of Eq. (9) is re-
ferred to as the approximate image quality metric in [26].
The parameters ¢, and @ can be computed using the input-
output measurements recorded in a calibration experiment
described in Subsection 4.C or using the methods described
in [31,47].

A. Definition of the Least-Squares Problem

The aberration correction is achieved by maximizing the
image quality metric, i.e., by letting r, = —x in Eq. (9). For this
reason, we must first estimate the unknown vector x. This can
be done by applying m > N + 1 trial aberrations ry,...,r,,
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with the DM and by taking the corresponding measurements
Yo Ym-

Collect ¢y, ..., €, into a vector € and ¥y, ..., ¥,, into a vector
y. By stacking m instances of Eq. (9), we can define a vector-
valued function g,

co- (x+1r)"Qx +r1y)
g(x) = : : (10)
Co— (X + rm)TQ(X + rm)

such that

¥=g0) +e (1D

The least-squares estimate of x is obtained by minimizing
llell?, i.e., by solving

mxinf(x), (12)

where

S =y -g®I* (13)

We note that if vector € follows a multivariate normal distri-
bution with zero mean and covariance proportional to the
identity matrix, solving Eq. (12) provides the maximum like-
lihood [48] estimate of x.

B. Analysis of the Least-Squares Problem

Finding the global minimum of f(x) appears to be nontrivial
as f(x) may be nonconvex. This is illustrated with a two-
dimensional example in Fig. 1. Here, the contour plot of
Eq. (13) is shown, when m > N + 1 measurements of y are
taken. The measurement noise is zero, i.e., € = 0. Never-
theless, f(x) is not convex and exhibits two critical points.
In addition to the least-squares solution x' of Eq. (12), which
is the global minimum and for which f(x') = 0, a local mini-
mum x'°° is present. In case one uses r;, = —x!° to perform the
aberration correction, then the residual aberration is not zero
and the image quality metric is not maximized.

-1 X
-1 -0.5 0 05 1
40}
20t
0

Fig. 1. Contour plot of Eq. (13). In this example, f(x) is not convex
and exhibits a local minimum. The parameters are ¢, = 100 and
Q=I[ya %% Four measurements of , taken at r; =[0,0]7,
ry = [1.0]7, r3 = [0, 1]7, and r, = [0, -1]" are marked with x symbols.
The global minimum x* = [-1.2,1.2]" and the local minimum x'°°¢ ~
[1.2582, -0.3421]" are indicated with * symbols. Isolines with an eleva-
tion greater than 70 have been removed for clarity. A cross
section along the dashed line is reported in the plot in the bottom.
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Because the convexity property is not satisfied in general, it
is unclear how x' can be computed. For example, a gradient-
based method applied to solve Eq. (12) may fail to compute
xS, Alternatively, more sophisticated algorithms may be
unsuitable to meet the requirements of a real-time implemen-
tation. Nevertheless, the global solution of Eq. (12) can be
computed efficiently even when f(x) is not convex, as is out-
lined in the following section.

C. Efficient Computation of x'*
In [49], an efficient algorithm to find the global solution of a
possibly nonconvex optimization similar to Eq. (12) was
developed, in the context of localization problems. In this
section we show how the solution proposed in [49] can be
applied to our problem. For the remaining part of the paper
we assume that @ is strictly positive definite. This assumption
is reasonable since if there are aberrations that do not
affect the image quality metric then these cannot be corrected
and they should be neglected during the aberration correc-
tion [26].

Introducing an additional scalar variable «, we can
reformulate Eq. (12) into the following equivalent constrained
optimization:

m
min ) (- - 2rf Qx + ¢o - 1} Qry - §)?
=
s.t. a=x"Qx. (19
Problem (14) is written concisely in matrix form as

min|Aw - b[?  st.  w/Dw+2fTw =0, (15)
w

where

al, R=[r; ... ry,],
riQr 4+ 71 - ¢

A=[-2RTQ -1]. b= : ,

Q 0
o=y o)
0 0
and 1 and 0 denote vectors of appropriate dimensions where
all components are, respectively, ones and zeros. The authors
in [49] note that Eq. (15) is a generalized trust region subpro-
blem [50]. Such problems, although nonconvex in general,
have necessary and sufficient optimality conditions [50]. In
particular, from [49,50], we know that w is a global minimizer
of Eq. (15) if and only if there exist a Lagrange multiplier v
such that

I‘%Qrm + @m —C

7 =10 -1/2] (16)

(ATA + vD)w = ATb — of
wiDw +2fTw =0
ATA +1D>0. an
We assume that matrix A is full column rank, which in turn

implies that m > N + 1. This assumption on A is by no means
restrictive. Because @>0, it can be factored Q = VAVT,
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where A is diagonal and full rank. Choose R = [V, 0], where
0 is a vector of zeros, then A is full column rank. We further
assume that the optimal Lagrange multiplier v* is such that
ATA + %D is strictly positive definite. The authors in [49]
point out that this more restrictive assumption could be re-
moved with a more refined analysis. However, the case where
v* is such that ATA + v*D is not strictly positive definite is
unlikely to occur both in theory and in practice [49].
Under these assumptions, one can compute

w(v) = (ATA + vD)1(ATb - f) (18)

for a fixed value of v. By replacing w in the second equation
in Eq. (17) with the right-hand side of Eq. (18), one finds a
univariate rational polynomial equation in v:

W) Dw() + 2f"w(v) = 0. (19)

The optimal Lagrange multiplier * can be found examining
the solutions of Eq. (19). From the assumption ATA 4+ uvD>0,
it can be derived [49,50] that » must be in the interval (I}, 4+0),
where I; = —1/Anax(8,*VEDV,A"/%), and we used the fac-
torization ATA = VA, VY. In addition, it is known [49,50] that
Eq. (19) is strictly decreasing in v within the considered inter-
val. Therefore, the desired root v* of Eq. (19) can be found
efficiently, for example via a bisection algorithm [49]. Once
v* is found, the estimate of x is extracted from the first N com-
ponents of w(v*).

The aberration correction algorithm is therefore applied in
the following manner. First, the data collection step takes
place, whereby the m > N + 1 trial aberrations are applied
and the corresponding measurements ¥, ..., ¥, are taken.
Then, v* is computed by finding the root of Eq. (19) within
(I}, +c0). The estimate x's of the aberration is found in the first
N components of w(v*). The second step involves applying the
aberration correction with the DM, by letting r = —x'S. These
steps can be repeated in the following time instants by includ-
ing more than m measurements to achieve a refined correc-
tion. We note that in [26], the least-squares estimate of x was
not computed since the quadratic constraint in Eq. (14) was
neglected to obtain a linear least-squares problem.

4. EXPERIMENTAL RESULTS

We implemented the model-based wavefront sensorless
algorithm and report the experimental results in this section.
Following [33], we employ the mean image intensity as a met-
ric to correct aberrations in our second-harmonic microscope.
Our experiments show successful aberration correction using
this metric (see Subsection 4.G).

Our first purpose is to validate a previously proposed
method [26] to compute the parameters ¢, and @ of Eq. (9)
using input-output measurements. This validation has not
been previously done in a realistic setting, since in [26] no
microscope and no specimen were involved. Additionally,
we intend to validate the aberration correction algorithm
described in Subsection 3.C. We report our results in the
following sections.

A. Description of the Experimental Setup
A schematic of the experimental setup is shown in Fig. 2. The
source is a Coherent Chameleon Ultra II Ti:Sa 140 fs pulsed,
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Fig. 2. Tlustration of the optical setup. The components in black are
used throughout the aberration correction experiments. The compo-
nents in gray are used only for the initial characterization of the DM.
A pulsed laser beam is expanded with lenses L1 and L2, clipped by
aperture AP, and reflected by flat mirror M1 onto the DM. The DM
is in an image of the back aperture of the microscope objective
(OBJ), using lenses L3 and L4. The DM is illuminated under an angle
of about 10° using the flat mirrors M1 and M2. The microscope objec-
tive (OBJ) focuses the light onto the specimen, which is supported by
an xyz stage (XYZ). The second-harmonic signal emitted from the
focal point inside the specimen is collected with the objective and sep-
arated from the illumination beam using a dichroic beam splitter
(DBS). The emitted signal is focused by lens L5 onto a photomultiplier
tube (PMT). For characterizing the DM, the surface of the DM is
reimaged onto a CCD camera (CCD) using the flip mirror FM1, flat
mirror M6, and lenses L6 and L7. A reference arm is created using
beam splitter BS1, flat mirrors M3, M4, M5, and beam splitter BS2.
A coherence-gated fringe analysis method described elsewhere [6]
is applied to the fringe pattern generated onto the CCD.

near-infrared laser, with a beam diameter of 1.2 mm. This
beam is expanded to a 14 mm wide beam by lenses L1 and L2.

The beam is stopped down to 9.5 mm (AP) before it is
reflected under an angle of about 10° by the DM (Okotech,
17-channel micromachined DM with tip-tilt stage). The DM
is reimaged one-to-one onto the objective back-aperture by
lenses L3 and 14 (focal lengths, 300 mm). Because the DM
can only introduce negative deflection, we bias the mirror
so that we can apply positive and negative deflections to cor-
rect the wavefront (see [42]). In addition, the relationship be-
tween the control signal u; of each actuator of the DM and the
voltage applied to the corresponding electrode is quadratic, so
that a linear displacement of the membrane is expected [42].
Due to this bias, the collimated beam coming from L2 is con-
verging after being reflected by the DM. We corrected this by
using lenses L4 and L3, so that a collimated beam is fed into the
objective.

The sample is mounted on an xyz-piezo stage (XY Z; Pl
Nanocube P-611.3S). The second-harmonic signal from the
specimen is collected by the objective and split off by a
705 nm cut-off dichroic beam splitter (DBS; Semrock,
FF705-Di01-25x36). This light is focused onto a 600 pm multi-
mode fiber that is connected to a photomultiplier tube (PMT;
Hamamatsu, GaAsP photocathode H7422P-40). The objective
used (OBJ) is a 40 x /0.9 NA Nikon air objective with spheri-
cal correction collar. We manually adjusted the collar to cor-
rect for the spherical aberration due to the cover glass and the
specimen at the selected depth.

For characterization of the DM, we interfere a tilted refer-
ence beam with a sample beam deflected off the DM to create
fringes that encode the wavefront deformation. To allow this,
a 50/50 beam splitter (BS1; Thorlabs, BS016) splits off part of
the light into a reference arm beam, which is relayed onto the
camera (CCD; AVT, Guppy Pro F-033b) by mirrors M3, M4,
and Mb5. The sample arm beam is deflected by the DM once
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before flip mirror FM1 directs the light into the calibration
arm. Lenses L6 and L7 reimage the DM onto a camera. For
this calibration we use the alignment laser, which is a continu-
ous wave. We used the method described in [6] to decode the
wavefront from the fringe patterns.

The piezo stage is controlled with a data acquisition board
(National Instruments, PCl-e 6259) on a Windows computer
running LabView. The DM is controlled through a PCI DAC
card on a Linux computer running MATLAB and custom
C code.

In the aberration correction experiments we imaged colla-
gen fiber extracted from rat tail washed four times in distilled
water. Following fixation in 4% paraformaldehyde, the fiber
was washed in phosphate buffer saline and then embedded
in 3% agarose (Sigma-Aldrich chemie GmbH) in a 35 mm glass
bottom dish (MatTek Corporation). We used 900 nm excita-
tion light to generate the second-harmonic signal.

B. Preparation of the Experiments

We first imaged a 20 pm x 20 pm region, approximately 33 pm
deep into the collagen fiber. The region is labeled with A in
Fig. 3. The influence of the size of the region used for the
aberration correction has been studied elsewhere [35]. For
a certain setting of the DM r, the region is scanned using
the xyz stage. The corresponding value of the image quality
metric y is measured as the mean image intensity [32-35],
i.e., the mean pixel value recorded over the region. The pixel
dwell time is 0.5 ms and the sampling is 24 pixels x 24 pixels.
With these settings, the xyz stage does not reach the full 20 pm
distance in the x scanning direction, which is the fast axis.
This was not an issue since such a coarse sampling was only
used to perform the aberration correction in a short time [34].
The final images taken after the aberration correction were
recorded with a higher sampling. The image deformation
due to both the nonlinearity and nonuniform speed of the
xyz stage were removed from the final images, using interpo-
lation and the signals recorded with the position sensors of
the xyz stage.

First, the static aberrations in the system due to misalign-
ment and imperfections in the optical components were
corrected. We used the nonzero initial aberration that was
found during the calibration of the DM in Section 2 (about

&4
R = 2L
10pm

10pum

xT

Fig. 3. Cross sections of rat tail collagen fiber used in our experi-
ments. The smaller image on the right-hand side is an xz cross section
(50 pm x 50 pm, 128 pixels x 128 pixels). The dashed line denotes
an 2y cross section (80 pm x 80 pm, 256 pixels x 256 pixels) approx-
imately 33 pm deep, which is shown on the left-hand side. Three differ-
ent 20 pm x 20 pm regions are marked.
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0.79 rms rad at 900 nm, mostly astigmatism). At this point the
Nelder-Mead algorithm [51] was executed four times to find a
value r that maximizes y. Unfortunately, this led to the satu-
ration of two actuators, indicating that the stroke of the DM
may be insufficient to completely suppress the aberration in
this region. We selected a slightly suboptimal vector r from the
vectors generated by the Nelder—-Mead algorithm. For the se-
lected vector, the maximum normalized voltage of the actua-
tors was 0.72, i.e., |ul|,, < 0.72, ¥ improved by 3% and a total
aberration of about 0.18 rms rad was suppressed. This state
was used as the new initial condition for the rest of the experi-
ments, i.e., r = 0 is mapped to this setting of the DM. In the
following sections, all the units in rad are referenced to the
900 nm excitation laser light.

C. Computation of the Parameters of the Quadratic
Polynomial Using Input-Output Measurements

We executed the computation of the parameters of the quad-
ratic polynomial used for modeling the image quality metric
multiple times. Each time, the sequence of input vectors con-
sisted of two subsequences. The first subsequence contained
random vectors ry, ..., a5, and was used for the validation and
the cross-validation. The second subsequence contained 70
fixed vectors (each vector having a single nonzero compo-
nent). The second subsequence was included because the
250 random vectors may be insufficient to uniformly sample
the N-dimensional space of the inputs. In [26], 3750 random
vectors were used, but this was impractical here, due to the
time necessary to move the xyz stage. The maximum rms rad
of the input aberrations did not exceed 0.81. This value was
empirically tuned by examining the goodness of fit as a func-
tion of the maximum rms [26].

For each input vector in the sequence, we measured the
corresponding output of . The resulting input—output data,
i.e., collections ¥, ..., ¥3z9 and ry, ..., r3py Were used to formu-
late the following optimization problem [26]:

min||AX —b|| s.t.
X
1 o aTerr

A

T T T
L 13y T30 ® Ty

b= (9 Y320 ]Ts
x=[cy ¢ vec(@T],
Q>0, (20)

where vec(-) denotes the vectorization operation and ® the
Kronecker product. This program was solved using CVXOPT
[52] (see [53] for further details).

D. Validation and Cross-Validation of the Computed
Parameters

The results of applying Eq. (20) in region A marked in Fig. 3
are shown in Fig. 4. The computation of the parameters was
repeated six times. Each time, a new input—-output dataset was
acquired, Dy, ...,Dg. For each input-output dataset, optimiza-
tion (20) was solved generating six sets of parameters, each
set comprising ¢y, ¢;, and Q. The sets are denoted as
My, ..., Mg. We quantified the goodness of fit for all combi-
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D;s
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Dy 0.957
D,
D,
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M, M, M3 My M Mg

Fig. 4. Validations and cross-validations of the computation of ¢y, ¢;,
and Q using Eq. (20). The computation has been performed six times
inregion A in Fig. 3. D; denotes the input-output data taken during the
ith time. M; denotes the set of parameters [c,, ¢;, and @ in Eq. (20)]
computed from D;. For each combination M; and D, the ith random
input subsequence and M; are used to compute the predicted output
6 € R0 Each rectangle reports the goodness of fit [R?, see Eq. (21)]
computed comparing 6 with the corresponding measured output o €
R* of D;. A value of one for the goodness of fit indicates that the
model fits the data without error. High values of the goodness of
fit are reported in all combinations, showing that Eq. (20) is a robust
method to compute the parameters.

nations of D and M by means of the R? indicator. Using the
random input subsequence of D; and M;, we computed
the predicted output 6 € R¥? of the image quality metric.
The input—output data points obtained from the deterministic
input subsequence of 70 vectors were discarded and were not
included in the computation of the R? indicator, which is
obtained using the following equations:

R2=1-5,/S,
S, = |lo - 01|,

S, = llo- o1

o = (1/250)170, @21

where o is the measured output of D;. An R? = 1 implies a
perfect fit of the experimental data.

Figure 4 reports R? indicators that are close to one, imply-
ing a good fit of the experimental data. A good fit is also found
for the combinations that are off the main diagonal. Here the
parameters ¢, ¢;, and @ allow to accurately predict cross-
validation output data. Similar results were found for the other
two regions marked in Fig. 3.

E. Correction of the Residual Aberration

In this section we apply the aberration correction algorithm
described in Subsection 3.C. First, we attempt to further re-
duce the residual aberration in region A, which is marked
in Fig. 3. Some aberration may not have been completely sup-
pressed by the Nelder-Mead algorithm, which was applied to
region A in Subsection 4.B. We therefore expect no improve-
ment or a small improvement in region A. Second, we apply
the aberration correction to regions B and C, where the
Nelder-Mead algorithm was not applied. Here, we expect
some improvement, provided that the aberrations found in
regions B and C are different from the aberration found in
region A.

We take the parameters c, ¢;, and @ that were computed
using Dy in Subsection 4.D. In order to apply the algorithm,
the following modified parameters need to be used, i.e.,
¢y = o + (1/9)cfQLey, ¢) = 0, and Q' = Q. This modification
is necessary since, for simplicity, in Section 3 we
neglected the linear term ¢;. This term corresponds to the
aberration that is present when computing the parameters
of the quadratic polynomial, see [26] for further details.
The aberration correction experiment is applied in the three
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Fig. 5. Summary of three aberration correction experiments. (a) Evolution of the normalized image quality metric. The experiments were per-
formed in region A (curve with O markers), B (curve with [] markers), and C (curve with * markers), which are marked in Fig. 3. For each region,
the corresponding parameters computed by solving Eq. (20) were used. ¥, is the maximum measurement of 7 in each region. The estimated rms
rad of each aberration is 0.38 for region A, 0.37 for region B, and 1.27 for region C. (b) 256 pixels x 256 pixels image of region C at sample time
k = 0. (c) 256 pixels x 256 pixels image of region C at sample time k£ = 24. (d) cross sections taken along the arrows marked in (b) and (c), black for

(b) and gray for (c).

regions using the corresponding parameters for each region.
A summary of the results is given in Fig. 5.

In Fig. 5(a), the normalized measurements of the image
quality metric are reported for region A (curve with o mark-
ers), region B (curve with [] markers), and region C (curve
with * markers). The measurements are normalized using
the corresponding maximum recorded measurement ¥,,,; in
each region. The initial value of ¥ is reported at sample time
k = 0. This measurement is not supplied to the aberration cor-
rection algorithm. The data collection step is performed be-
tween time k=1 and k =8 inclusive, where N +1 =38
trial aberrations are applied. From time k = 9 onward, the
aberration correction step is applied.

As expected, a marginal improvement is found in region A
(curve with - markers), where an aberration of about 0.38 rms
rad is corrected. The rms of each aberration is estimated using
|H, V3V x|, adjusted for the 900 nm excitation light. Also in
region B (curve with [] markers), a small aberration of about
0.37 rms rad is corrected. In region C (curve with % markers),
an estimated 1.27 rms rad aberration is corrected, leading to
an improvement of 20% of the image quality metric. Never-
theless, two actuators of the DM are saturated.

Two 256 pixels x 256 pixels images of region C are
reported in Figs. 5(b) and 5(c). These images are recorded
before [k = 0, Fig. 5(b)] and after [k = 24, Fig. 5(c)] the aber-
ration correction. The cross sections marked in the images are
reported in a single graph in Fig. 5(d). The image taken at time
k = 24 is 18% brighter and shows finer detail in the bottom and
right parts. Here some structure of the fiber was not visible at
time k = 0. The improvement is less clear when examining the
left and top parts of the region. One possible reason for the
variability of the improvement is that the aberration is not spa-
tially invariant over the considered region. We also note that
the applied correction was not optimal, due to the saturation
of two actuators of the DM. We conclude by observing that
this improvement after the aberration correction is compat-
ible with what was achieved by running four iterations of
the Nelder-Mead algorithm in Subsection 4.B.

F. Validation of the Aberration Correction Algorithm

To assess whether the aberration correction algorithm is
effectively removing aberration we performed a different kind
of experiment. First, we introduce a known amount of

aberration using the DM. We then apply the aberration correc-
tion algorithm to suppress this aberration. The algorithm is
not supplied with any information about the known aberra-
tion. Finally, we evaluate the residual aberration by compar-
ing the estimate of the aberration provided by the algorithm
with the known aberration. This experiment is commonly
employed in the literature to assess the effectiveness of the
aberration correction [26,29,34,35].

Figure 6 reports a summary of the correction of 20 random
aberrations introduced with the DM in region A. The
upper plot in Fig. 6 shows some statistical indicators of the
normalized measurements of the image quality metric.

image quality improvement

1} ===-------=;=---'
';%OSHBHHHHHED
=
06 F
0 5 o0 5 20
sample time k
residual aberration
15F
3
: 1
IS [
“ost HHHHUEOEHHEHHHOBBHEH]

0 5 10 15 20
sample time k

Fig. 6. Summary of the correction of 20 random aberrations induced
by the DM in region A, which is marked in Fig. 3. The upper plot re-
ports the normalized measurements of the image quality metric. The
measurements are normalized using the maximum measurement ¥,
that is recorded throughout the 20 experiments. At time £ = 0 the ini-
tial value of ¥ is reported; this data point is not supplied to the aber-
ration correction algorithm. Between time k¥ = 1 and k = 8, the data
collection step is executed. From time k¥ = 9 onward, the aberration
correction step is applied. A statistical analysis is made at each time
instant using the function boxplot from MATLAB. The tops and
bottoms of the rectangles denote the 25th and 75th percentiles, the
horizontal lines in the middle of the rectangles denote the medians,
and the whiskers extend to the furthest measurements not considered
as outliers. The + symbols denote single outliers. The same statistical
analysis is performed for the residual aberration, and the results are
shown in the lower plot.
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Fig. 7. Summary of the correction of 20 random aberrations induced

by the DM in region B. See the caption of Fig. 6 for a legend of the
plots.

The measurements have been normalized using the maximum
measurement of the metric ¥,,,, that is recorded throughout
the 20 experiments. The median, 25th, and 75th percentiles
are computed in each time instant, see the caption of Fig. 6
for a detailed legend. The same analysis has been made for
the residual aberration and is reported in the lower plot in
Fig. 6. The rms of the residual aberration is computed as
the rms of the difference between the known aberration intro-
duced by the DM and the respective estimate provided by the
algorithm. From this figure, we conclude that the image qual-
ity metric is consistently maximized, as the median is close to
1 after the aberration correction is applied from sample time
k =9 onward. This is consistent with the reduction in the
residual aberration reported in the lower plot.

The same experiments were performed in regions B and C.
In both cases we used the corresponding modified parame-
ters, computed using Dg in Subsection 4.D. The results are
reported in Figs. 7 and 8. Whereas, the results for region C
are similar to the results obtained in region A, the results

image quality improvement
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Fig. 8. Summary of the correction of 20 random aberrations induced

by the DM in region C. See the caption of Fig. 6 for a legend of the
plots.
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in region B do not show a good performance, since the medi-
ans of the residual aberration are comparable with the initial
aberration before the correction.

Out of the 20 trials in region B, we report, respectively, the
ones that resulted in the maximum and in the minimum
improvement of ¥ in Fig. 9. In Fig. 9(a), some fine structure
of the fiber is more visible after the correction, which is com-
patible with a successful aberration correction. On the other
hand, in Fig. 9(b), the aberration correction failed, as both the
image after the correction is visually worse and the intensity is
slightly decreased.

The experiments resulting in the maximum and in the mini-
mum improvement of i in region C are also reported in Fig. 10.
In Fig. 10(a), a successful aberration correction is shown, with
a clear maximization of 7 and a noticeable improvement in the
contrast of the image after the correction. In Fig. 10(b), the
improvement is more marginal.

G. Analysis of the Experimental Results

We computed the correlation among different quantities to
concisely assess the results of the 60 aberration correction
experiments reported in Figs. 6, 7, and 8. Considering the last
time instant k¥ = 24, we set up a saturation indicator variable
S1, ..., Sgo that is 1 if saturation of some actuators of the DM
occurred and -1 otherwise.

We computed a correlation of —0.2477 between the normal-
ized measurement of the image quality metric and the satura-
tion indicator variable. These two quantities are slightly
inversely correlated, meaning that saturation of some actua-
tors negatively affected the final value of the image quality
metric. The correlation between the final rms of the residual
aberration and the saturation indicator variable was 0.3457.
This positive correlation shows that a larger amount of
residual aberration was found when the stroke of the DM
was exhausted. Finally, we computed a correlation of
-0.7388 between the normalized measurement of the image
quality metric and the rms of the residual aberration, which
confirms that some aberration is removed by maximizing
the image quality metric. We conclude that saturation of
the DM was an issue that hampered the results in our exper-
imental validation.

H. Variations of the Parameters over the Field of View
We report spatial variations in the parameters ¢, ¢;, and Q.
The parameters differed when computed, respectively, in re-
gions A, B, and C in Fig. 3. Due to the variations, we were not
able to apply the aberration correction algorithm using a
single set of parameters, e.g., by correcting aberrations in
regions B and C using the parameters computed from
region A. Variations in the parameters represent a challenge
for model-based aberration correction algorithms, since the
parameters are computed once only using a calibration
experiment [25-37].

Parameter ¢; depends on the nonzero aberration that is
present when collecting the input—output measurements used
in Eq. (20). This parameter can be removed by applying the
aberration correction algorithm as done in Subsection 4.E. In-
stead, ¢, is dependent on the maximum value of the image
quality metric, which differed in the three regions. We found
variations in . For example, the largest eigenvalue of @ var-
ied by about 30% in region B and by about 22% in region C with
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Fig. 9. Two aberration correction experiments from the set of experiments reported in Fig. 7. These two experiments resulted, respectively, in (a)
the maximum and (b) the minimum improvement of . In both (a) and (b), a 256 pixels x 256 pixels image is taken before (on the left, k = 0) and
after (on the right, kK = 24) the aberration correction. The graphs in the bottom of (a) and (b) show, respectively, the evolution of the normalized
metric (on the left) and the cross sections indicated by the arrows in the images (on the right). In the cross section graphs, the dark and the light

lines correspond, respectively, to k = 0 and k = 24.
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Fig. 10. Two aberration correction experiments from the set of experiments reported in Fig. 8. These two experiments resulted, respectively, in (a)
the maximum and (b) the minimum improvement of . Refer to the caption of Fig. 9 for a detailed legend.

respect to its value in region A. The eigenvectors of @ were
also affected. For instance, the eigenvector corresponding to
the second largest eigenvalue of @ was rotated by about 7° in
region B and by about 21° in region C with respect to its ori-
entation in region A.

From Subsections 4.E and 4.F we conclude that the mini-
mum number of measurements necessary to apply the aber-
ration correction when ¢, and @ are known is N + 1, as also
found in [25,26,30]. If the parameters ¢, and @ vary during the
acquisition of different regions of the specimen, then addi-
tional measurements are necessary to update the parameters
before the aberration correction can be applied. This is con-
sistent with [29,31-35], where algorithms that use a minimum
of 2N + 1 measurements were employed. By approximating
the solution of Eq. (12), these algorithms use the additional
N measurements to estimate all the eigenvalues of @ each
time the aberration correction is applied (see Section 4
in [26]). Nevertheless, variations in the orientations of the
eigenvectors, such as the ones detected during our experi-

ments, are not accounted for and affect the accuracy of the
aberration correction (see Section 3 in [34]). For these rea-
sons, detecting variations and updating the parameters of
the model as different regions of the specimen are acquired
is an open research challenge.

5. CONCLUSIONS

In this paper we present a procedure to define a new set of
basis functions for the control of the deformable mirror
(DM). The new basis functions can be made approximately
orthogonal to a set of Zernike polynomials. This is necessary
for applying aberration correction in scanning microscopy
applications, where the DM must not induce the a-tilt, y-tilt,
and defocus aberrations.

The second contribution concerns the algorithm used
for the aberration correction. We consider computing the
least-squares estimate of the unknown aberration. Although
this problem is nonconvex in general, the least-squares
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estimate can be computed efficiently by exploiting results al-
ready applied in the solution of localization problems [49].
Once the estimate is computed, the aberration correction is
applied by maximizing the image quality metric.

We implement the aberration correction algorithm in a
second-harmonic microscope. First, we are able to compute
the parameters of the quadratic polynomial used to model the
image quality metric directly from input-output measure-
ments, using a previously proposed method [26]. Second,
we validate the aberration correction algorithm discussed
in this paper. We also report the measurement of variations
in the parameters of the quadratic polynomial over the field
of view.
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