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Abstract

A common task in quality control is to determine a control limit for a product
at the time of release that incorporates its risk of degradation over time. Such a
limit for a given quality measurement will be based on empirical stability data,
the intended shelf life of the product and the stability specification. The task is
particularly important when the registered specifications for release and stabil-
ity are equal. We discuss two relevant formulations and their implementations
in both a frequentist and Bayesian framework. The first ensures that the risk

of a batch failing the specification is comparable at release and at the end of
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Prize tive, it usually renders a control limit that is too stringent. In this paper we

shelf life. The second is to screen out batches at release time that are at high
risk of failing the stability specification at the end of their shelf life. Although

the second formulation seems more natural from a quality assurance perspec-

provide theoretical insight in this phenomenon, and introduce a heat-map
visualisation that may help practitioners to assess the feasibility of
implementing a limit under the second formulation. We also suggest a solution
when infeasible. In addition, the current industrial benchmark is reviewed and
contrasted to the two formulations. Computational algorithms for both formu-
lations are laid out in detail, and illustrated on a dataset.

KEYWORDS
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stability specification

1 | INTRODUCTION

Critical quality attributes (CQAs) are physical, chemical, biological or microbiological properties of a drug that are criti-
cal to patient safety and drug efficacy (see ICH Q8-R2"). Determination of what attributes are CQAs depends on the
nature of the drug, knowledge gained through development and commercialisation, and regulatory recommendation.
Before a batch of drug products can be released to the market, these CQAs are measured on samples taken from the
batch, and ascertained to meet certain criteria. These are described in a release specification (RS). Sampling and mea-
surement are performed according to a registered laboratory procedure for every CQA. Since drugs may degrade over
time, separate criteria ensure that a drug meets its quality specification until the end of its shelf life, referred to as the
stability specification (SS). Failing to meet the SS can lead to recall of a batch from the market. If a CQA of a drug prod-
uct is expected to change significantly over time, its release and stability specifications are usually different. Although
in Japan and the US this may be true only for in-house criteria and the regulatory RS and SS are the same, in the
European Union there is a regulatory requirement for distinct specifications for release and shelf-life.> A similar recom-
mendation is given by the WHO.?
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Typically, the specification for a CQA consists of an acceptable range for a measured sample (also called a reportable
value) of a batch, denoted as y, such as Y=y, ¥ <¥ypp OF Vigw <Y <¥ypps Where yy,, and y,,, are registered specifica-
tions. Besides the theoretical “safe zone” for a CQA, the specification need to take account of inevitable random varia-
tion in the manufacturing process and laboratory measurements.

In this paper we are concerned with determining a control limit for a reportable value at release (i.e., time zero) that
incorporates potential degradation of the drug over time, given historical data, shelf life and stability specification (SS).
We make our objectives explicit in the next section. The control limit may serve as a reference to determine the release
specification for a stability-indicating CQA in the pre-commercial phase (e.g., based on data from a formal stability
study), or could be used as an internal release limit* after commercialisation. The latter is useful in a situation that equal
RS and SS were registered, but non-negligible trend is observed in a larger dataset that becomes available after
commercialisation.

The paper is organised as follows. Two problem formulations are presented in Section 2. A widely used benchmark
approach, its probabilistic objective and its drawbacks, are discussed in Section 3. The underlying population model in
this benchmark approach is oversimplified. We hence proceed by first set up a more realistic population model in
Section 4, Then, in Sections 5 and 6, we present the probabilistic establishment of the two problem formulation in such
population model. Inference procedures based on a sample are provided in the same sections. These procedures are
illustrated on two example datasets in Section 7, and a brief conclusion is drawn in Section 8. Proofs of propositions
and theoretical justifications are collected in Appendix A.

2 | PROBLEM FORMULATION

Let Y; be a reportable value (i.e., sample measurement) of a CQA for batch i at time ¢, where i=1,---,n and n is the
number of measured batches. We assume a decreasing trend of the CQA over time, and want to ensure a stability speci-
fication (SS) (i.e., >y) at the end of shelf life T > 0 by setting a lower limit (>#) at release (t =0). Letting Y,,,1; denote
a future reportable value, we make this precise in one of the following two objectives:

1. Conditional on Trend/CoT: A future batch passes the specification >y at time T with at least the probability that it
passes the limit >7 at time 0, that is, P(Y 11,7 27) 2 Pr(Yni1.027).

2. Conditional on Individual/Col: Given that it passes the limit ># at time 0 a future batch passes the limit >y with
high probability at time T, that is, P(Y,11.7 27 | Yui1,027) is large.

It turns out to be an ambitious task to assure stability by controlling just a sample measurement at time 0. The key
premises are (a) the random measurement error is not high, and (b) a future batch has a similar stability trend as the
historical batches. The second premise is usually satisfied, because the drug batches are all manufactured and stored in
the same manner. However, in modelling it is too strong to assume all batches follow exactly the same degradation pat-
tern. More realistically, we expect that there is a typical pattern overall, while each individual batch still has a certain
idiosyncrasy. In Section 4, we shall incorporate this in a mixed model.

The CoT formulation establishes a RS that is consistent with the SS in terms of riskiness. The riskiness of a batch
with respect to the stability specification >y can be quantified by its failing rate P(Y,,.1r <y), which depends on its
true quality level y; =EY 417 (batch mean) at time T and laboratory measurement error. It is usually plausible that
the variance of the measurement error is constant over time, whence the riskiness of a batch changes only through its
true quality level u,. If RS and SS would be the same and a non-negligible degradation exists, then a batch might be
risky with respect to the SS but not to the RS. The choice of 5 in the CoT formulation prevents an increase in riskiness.
Tightening the stability specification by the average stability degradation (e.g., setting =y —bT, based on an assump-
tion of linear trend with slope b) can be viewed as a special case of the CoT formulation, see Section 5.1. Hence,
although this probabilistic formulation does not sound intuitive, in practice one encounters it more often than
expected.

The Col formulation seems to give the most natural objective for quality assurance, which corresponds to filtering
out a correct proportion of batches at time 0 that are at greatest risk of failing at time T. However, when Y, and
Y,.1,r are only weakly correlated, and hence Y, carries not much information about Y, r, the Col formulation
becomes spurious. A weak correlation can be caused by large measurement error and/or large variation between the
individual batches. If the trends of the empirical batches vary vastly, then the quality level in the future will be hard to
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predict at time 0 even without measurement error, and the further the future, the less reliable the prediction. We dis-
cuss this further in Section 6.

In this study we consider a (linearly) decreasing trend and lower-bounded SS intervals. Generalisation to an
increasing trend and upper-bounded SS intervals is obvious. In the unlikely situation that the trend is in the
direction of improving CQA, there is no stability risk, and the problem of setting control limits becomes
spurious.

3 | BENCHMARK APPROACH IN THE INDUSTRY

There is a scarce literature on controlling stability risk by setting a specification limit at time 0. The most prevalent
approach seems to be due to Allen, Dukes and Gerger (henceforth referred to as the ADG approach).® They pro-
posed, in the case that the trend in the CQA is linearly decreasing, to set the lower limit at time O of the interval

(Zn4pc) equal to

2
-~ o
Napc =7 — bT +to.osne TZS%—’—?E’ (1)

where y is the lower-sided SS, T is the shelf life (in months), b is an estimate of the degradation slope across historical
batches in the data, s~ is the standard error of the estimator b, 85 /k is an estimate of laboratory method (assay) vari-
ance, k is the number of replicates to be averaged for a reportable value, and ¢ g5+ is the 95% percentile of the student
t distribution with n* degrees of freedom. Because the estimates b and 0. may not come from the same fitted model and
may not be based on the same dataset, n* is calculated by the Satterthwaite approximation.

An intuitive interpretation of (1) is straightforward: increase the current SS (>y) by the amount of the average deg-
radation during shelf life (note that —bT >0), and further tighten the interval by an error margin reflecting the uncer-
tainty in the estimated slope and the measurement error.

Because the original paper did not present a population model and objective function, a precise interpretation by an
associated probabilistic statement is tenuous, but our best understanding of the procedure is as follows. Assume that
the observation Y, 7 of a future batch at time T satisfies Y1 r =a+ bT +e, where a is the unknown true batch mean
at time 0, b is the batch slope of degeneration over time, and e is a residual error, assumed to possess a normal distribu-
tion N (0 o2 2/ k) Assume that b is an unbiased estimator of b with a normal distribution with variance o,\ and that s~
and o, are estimators of 6~ and o,. Seeking the minimum value of a such that P(Y,,,;r>7)>0.95, is equlvalent to solv-
ing the following inequality for a:

Ypi1r —a—bT N y—a—bT

= = =2
\/TZS/Z\-F% \/T2S’2\+%
b b

where Y, 1r—a— bT=(b—b)T+eis normally distributed with mean 0 and variance o2+ o2 /k. By unbiasedness of
b, the mean of (b—b) T+ e is zero, while its variance is aAT2 + o2. Therefore, the statlstlcb1n51de the probabilityshould
(approximately) follow the Student ¢ distribution with n* degrees of freedom. Equation (2) is, therefore, solved for a, by
setting the quotient on the right of the inequality inside the probability equal to the 0.95-quantile of this Student
t distribution. In other words, the minimal value of a is the right side of (1).

Since a can be interpreted as the expectation at time zero, this reasoning suggests that the ADG approach sets a
lower limit for the population mean of the reportable value at zero. As this population quantity is not observable, this
may not be an attractive target. An alternative perspective on the method, which is in a similar spirit as the CoT formu-
lation, is elaborated in the next section. Differences are that (1) the ADG approach does not explicitly model the batch-
to-batch slope variation, thus underestimating estimation error as the number of empirical batches increases, and (2)
the ADG approach lumps the variation of the lab measuring method and trend variation among batches in a single
residual variance.

P

=0.95, (2)
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4 | OURPOPULATION MODEL

In the remainder of the paper we adopt the following linear random-coefficients model, which is realistic in our indus-
trial setting.* A reportable value (a sample measurement) Y;, from batch i at time ¢ follows

Yiir=a+a;+ (b+p)t+¢€is. (3)

The overall coefficients a and b are fixed effects, showing the average trend across batches. Each batch i has a ran-
dom deviation in its individual intercept and trend introduced by

ain(O,ai), ﬂin(O,afzj).

The residual errors €;; ~N (0, aﬁ) reflect measurement error. For simplicity we assume that all random effects
a;, B, € are mutually independent. The model is then parameterised by the vector 9:= (a, b,64, 04, ae).

We make two remarks to justify this population model, one on linearity and the other on normality. (1) To detect a
nonlinear pattern of degradation, we would need to measure the reported values on a fine time grid. However, in a for-
mal stability study a batch is typically observed at a total of 7 time points, or at 4 or 5 time points in a follow-up stability
study. This may not provide enough resolution to reliably distinguish a moderately nonlinear from a linear trend,
let alone to distinguish between two types of nonlinear trends. Thus a linear trend might be the best we can handle in
practice, unless some specific nonlinear trend is given strong scientific endorsement or is observed empirically during
development. (2) Only few CQAs are known to follow non-Gaussian distributions. One of the most important examples
is the relative potency for biologics (a ratio), which is known to follow a log-normal distribution. In such a case, one
may seek an appropriate transformation of the reportable value, so that it follows the model given by Equation (3).
Other CQAs with non-Gaussian distributions can be handled case by case, with appropriate modifications of the meth-
odology proposed in this paper.

5 | COT FORMULATION
51 | CoT in population model

The objective of CoT is to ensure that the passing rate for y >y at a future time T is at least the passing rate for y># at
the time of release. Under the population model (3), trend and intercept are random effects, and hence we cannot
expect the objective to hold for every future batch. Instead we require it for at least a large proportion, say 1009% of the
future batches, where g € [0, 1] is left to the risk appetite in the specific setting.

In formula, the objective of CoT is then, given y, to find # that fulfils

Po(Yni1021 | ni1: Bryn)

Py
Py(Ynirr27 | ani1s fryn)

<1|=gq. (4)

The probabilities in the quotient are conditional given the random effects, while the outer probability refers to the
random effects. The parameter 0 is treated as given. By some rearrangements (see Section 8), one can show that the
batch intercept does not play a role in this inequality. In fact, the solution can be found explicitly and is given by

Neor =7 — [b+® (1 —q)op] T, (5)

where ®~1(1 — q) denotes the (1 — q)th quantile of the standard normal distribution.

An intuitive interpretation of the formula is that it tightens the specification >y by the expected degradation up to
time T assuming that the trend follows the g steepest slope from the batch slope distribution. In the trivial case when
o3 =0, that is, all batches have almost the same trend, we find that # ~ y — bT, which is the intuitive solution to balance
the stringency of specifications at time 0 and T given linear degradation.
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5.2 | Sample Inference for CoT

In formula (5), the quantities b and o are unknown population parameters. The simplest solution would be to replace
them by sample estimates b and o5 given the historical data, but this would not take into account the uncertainty due
to parameter estimation. Alternatively, in a Bayesian framework, a posterior distribution of 7., can be derived from
the joint posterior distribution of (b, 64) in combination with formula (5). A suitable measure of location of that poste-
rior, say the posterior mean or median, may be used as the final estimate. For a conservative solution, we may use the
&M posterior quantile for some &> 0.5, the choice &= 0.5 leading back to the posterior median. In practice, these quanti-

ties may be computed from a large set of sample values #¢,r (b, 0/;) obtained by applying the map (5) to a sample from
the posterior distribution of (b, o).

6 | COIFORMULATION

6.1 | Colin population model

The objective of Col is to set a control limit ># at time 0, so that the event Y, ;10 ># indicates a high probability that

the event Y, 1,72y will occur at the later time point T. This can be expressed in a formula as the requirement on the
conditional probability, for given y:

Po(Yni11727 | Yot1020cor) 29 Near 27 (6)

where 6 = (a, b,o,, a/;,ae), and q is a prescribed, desired level of assurance, which is typically set close to 1. The con-
straint 5,; >y ensures that the solution 7, is practically meaningful.

The function n+— Pe(Yir>y|Yio=n) is increasing from Py(Y;r>y) to (typically) 1 (see Lemma 6.2 below and
Figure 1). Hence a solution 7,; to the equation will exist for g Py(Y;r>7), and it will satisty the restriction 7, >y if
q=Py(Yir=y|Yio=7). For given gy, @ proportion Py(Y;o <#co;) Of produced batches will be rejected. As illustrated in
Figure 1, this proportion may be large. We examine the practicality of the Col formulation from this perspective in the
next subsection.

We now derive the solution #,; to (6), assuming that all the parameters in (3) are known. Under model (3), the pair
(Yis,,Yiy,), for two given time values #; < t,, follows a bivariate Gaussian distribution, given by

Modestly Big Noise

Modestly Small Noise

L)1 S —— L1111} E—— ]
0.95 Ncol+q) 0.95 % )
2 0907 ! 5 00— 1
3 ! 3
g 0.85 \ 8 0.85 O Pr(Yiozncor )
<] i <] i
& 0.0 i 2 0.80 |
0.75 ‘1‘ 0.75 H
0.70 ‘\ Pr( Yio=ncol ) 0.70 \\
92 94 9% 9 100 102 92 % 9% 98 100 102

Ncol Ncol

FIGURE 1 The curves 5gy— Po(Yir27|Yio = nc,r) (solid) and ¢y — Po(Yio =nc,) (dot dash), with 7¢,; on the horizontal axis, for two

different parameter settings and y = 95. To obtain stability assurance at g =0.95 the value of 5, must be set to the value at the vertical
dotted line. The height of the dot dash curve on this line gives the proportion of accepted batches at time 0. Parameter settings: (Case I,
Modestly Big Noise): a = 98.69,b = —0.0635, 6, = 1, 05 = 0.05, 6. = 0.655, which gives intra-correlation p;,, =62/ (c% +0%) =0.7,
P(Yir>y)=0.9 and P(Y;o>y) =0.999. (Case II, Modestly Small Noise): a = 98.45,b= —0.0729, 6, = 1,65 = 0.03, 6. = 0.5, which gives
intra-correlation p;,, = 0.8, P(Y;r>7) =0.9 and P(Y;o >y) = 0.999; shelf life was T = 24 months in both cases.
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(Yi,tl) N (a+bt1) oL tojti+ol oL tojtit -
Yis, a+bt,)’ o+ oﬁtltz o2+ aﬁtg +o2 ] )

Equation (6) is identical to, for t; =0 and t, =T,

© oo
Q. (Sl,Sz)dSstl
Pa(Yi,tz 2}/’ Yi,t1 >’7COI) _ /'7601/}’ ’ _
Py(Yit, 2cor) " -t ©
it Col / ¢tl (S) ds
Hcor

where ¢, is the density function of the bivariate Gaussian (7). In a different format,

/ Po(Yis,27|Yis, =5) @, (s)ds

Ncor
—q 9
Py(Yis, 2 ncor) 1 ©)

where ¢, is the marginal density function of Y;;, ~N (a +bty, 0, +05t; + 07 ). Equation (8) has no apparent analytical
solution, but the terms in the quotient can be approximated numerically via an efficient algorithm. We use pmvnorm
from the R package mvtnorm 1.0-11 for this task. As for Equation (9), it is known that the variate Y;,, given Y;, =s fol-
lows the N (i, 0?)-distribution with

O'(Zl + alzjtl ty

,=a+bh+——-55—
H 2 o +o4tt +o?

(s—a—bt), (10)

2
(6(21 + Glzjtl tz)

2 2 2.2 2
o, =0, ‘ost;+06. ——————.
* a P2 € 2 242 2

o, +opt + o

(11)

Hence the left side of Equation (9) can be rewritten as fn°° 1-0 %) @y, (s)ds, which involves an incomplete
Gaussian integral which also has no analytical solution. Nevertheless, (9) is a useful expression, because
Py(Yiy, 27|Yiy, =s) is the answer to another common inquiry in quality assessment: given the release data of batch i,
what is the chance for this batch to pass the SS at time T7?

Wei’ approached the problem in a similar way as (8) and called this the “unconditional rule.” However, he formu-
lated a different objective than (6) and focused on a 95% confidence limit of the predicted Y; r (i.e., a future individual
reportable value), instead of on controlling Y; 7.

6.2 | Practicality of Col

Unlike the CoT solution (5), the Col solution has no clear analytical form that can be easily interpreted. Therefore we
make some extra effort to analyse its characteristics. This also facilitates to understand when the solution might not be
helpful in practice, even if its formulation is an honest translation of our interests.

We present a lemma and next three insights. A proof of the lemma can be found in the Appendix A.

Lemma 1. If (Y;,Y;) is a bivariate normal random vector with strictly positive correlation p, then:
i. the map n— P(Y,>y|Y,>#) is continuous and increasing from P(Y,>y) at =—o0 to 1 at y=oo0, for

any y € R.
ii. the map n— P(Y,>y|Y; =p) is continuous and increasing from 0 at = —oo to 1 at at y = o0, for any y € R.
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iii. P(Yy2y|Y12n)2P(Y,2y|Y1=0),foranyy,ne€R.

iv. both P(Y,2y|Y12n) and P(Y,2y|Y;=#) tend to P(Y,>y) as the correlation between Y; and Y, tends to
0, for any y,n € R.

v. the solution 7, to P(Y,2y|Y12n)=q, for given y and gq with ¢g>P(Y,>y), satisfies
(n,—m1)/or=p (@ 1(q)+ (y — pp) /02) + O(1), as p | 0, where y; =EY; and o7 =varY;. The same is true
for the solution to P(Y,>y|Y1=7n)=q.

[Insight 1]: Under model (3), and hence (7) with t; =0 and t, =T, the correlation between Y;, and Y; 7 is equal to

p(0,T) =062/ \/ (62 +02) (aﬁ +o;T% + aﬁ). It will approach 0 if any of, or a combination of, the following occurs: (1) pre-

dict a far future, that is, large T, (2) unpredictable individual batch trend, that is, large o4, (3) big random noise from
measurement error, that is, large o, relative to the process variation o,. In every of these cases setting a limit at time
0 to control stability at time T is nearly impossible, due to the weak relation between the variables Y;y and Y; 7, in view
of (iv). By (v) the control limit tends to oo as p(0, T) | 0 at the rate 1/p(0, T) on the standard scale. This situation also
holds in the trivial case that all batches have almost the same mean value, that is, when o, is (nearly) zero.

[Insight 2]: If the passing rate P(Y;r>y) at time T is higher than the desired assurance g, there is no stability risk.
This is because P(Y;r>7|Yio>#) is lower bounded by P(Y;r>7), for every 5, by (ii) of the lemma. Furthermore, the
minimal value permitted under the constraint #>y is P(Y;r>7|Yio>7) and hence we may check if the latter condi-
tional probability exceeds q. If so, there is no stability risk, and we can set 7o, =7.

[Insight 3]: An alternative criterion, but in the spirit of Col, is to find the minimum reportable value of a batch at
time O that assures a passing rate of at least 100q% at time T, that is,

Na=min{n>y:Po(Yir2y|Yio=n)2q}. (12)

By (ii) of the lemma, this limit solves the equation Py(Y;r>y|Yio=14;) =¢q unless it is on the boundary (4, =7).
Part (iii) of the lemma shows that the limit will be tighter than the solution of (6) (i.e., 174 =#¢,;), for every given q.

Since the conditional distribution of Y;r given Y;o =7 is normal with mean u,, = (a+bT)+p;,, (1 —a) and variance

o2y =04+ 05T* + 062 — pyyy0, for py, = 0%/ (o7, + o2), the solution to (12) is

*l

y—bT —(1—pi)a+® ' (q)o.0 y)

Mgy = Max <
Pint

This inflates quickly to oo as p;,, | 0, in the same way as 7, by (v) of the lemma.

Insights 1 and 2 are particularly relevant for implementation in practice. The former reveals that the Col formulation
may be spurious, while the latter exhibits situations where setting the control 7., is not necessary. One can make a pre-
liminary check (e.g., one for p(0, T) and one for P(Y;r >y)) to decide the suitability and necessity of calculating #¢,;.

We now present an example analysis to illustrate how it can be assessed when the Col formulation may be helpful.
A key consideration for implementation is the trade-off between the desired quality assurance, governed by g, and the
business sustainability, reflected by P(Yio =#¢o). Low P(Y0>1¢,;) means that, at the determined control limit #.,;, an
unacceptably high number of the manufactured batches will be rejected. From a business point of view this control is
disastrous, as the true quality of these rejected batches may be sufficiently high (at least during the beginning of the
period). As discussed, the tight limit in the Col formulation could be due to the low correlation between Y; and Y;r,
which makes controlling Y;r via Y; practically impossible.

Consider a hypothetical drug with CQA known to degrade over time, and with a registered SS of 95 <Y;r <105.
Consider two different process averages (a =100 or a=98.5), two different degrees of degradation (bT=-2 or
bT = —3), a process variation (i.e., variation of between-batch mean) fixed at o, = 0.5, a batch slope variation 4T vary-
ing over a grid [0.3,1], and measurement error o, varying over [0.1,1.5]. In practice these settings can come from prior
knowledge of the product and the laboratory method during development. For each scenario, we derived #,; for g=
0.95 and g =0.99, and calculated and visualised the stringency P(Y;o >#¢,;)- Figure 2 gives a heat map of the stringency
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for the best process average (a =100, in the middle of the SS), with the four panels referring to the four possible combi-
nations of bT and g. The same results for the less advantageous process average (a = 98.5) are given in Figure 3.

In practice, prior knowledge of the product and the laboratory method during development will yield appropriate
values for the preceding parameters. We can then assess the suitability of the Col approach by mapping the parameter
values to the appropriate square in the heat maps. If this square is in a column of deep-pink colour, the measurement
error is too high, and we cannot effectively control the risk of Y;r via the reportable value Y;o. As a remedy, we may
improve the precision of the laboratory measurement, so that the status shifts to a column that has at least some green

cells. If the square is deep-pink, but in a column with a mix of green and deep-pink cells, we may consider shortening
the shelf life of the drug.
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FIGURE 2 Stringency P(Y;o >1#c,;) indicated by colour scale under different scenarios. In all cases a = 100. The four panels concern the
four combinations of the degradation (bT = —2, — 3) and required quality assurance (q = 0.95,0.99). Each panel gives combinations of Toy

(indicated by T*s_b) and ¢, (indicated by s_e). Cells marked by a cross are situations in which P(Y;r >7) > q and hence no 7.,; needs to be
calculated.



CHEN anp van der VAART

WILEY_L_°

Modest Degradation till T (bT=2), Assurance request q=0.95 Modest Degradation till T (bT=2), Assurance request q=0.99
herd “ e ~ @ = “ w
$ % % % % I i %
- - - - - - B
1 1
o mEEEf. -
09
T'S_b=0.4 =- - T.S_b=0.4 0.8
- [ SR - :
e U SRR "
05
oo o oo
0.4
oo [ oo B o :
s o SR RO Y - - i o e
I 0.1
e oer s 1 NN 6N 6N v~ s i 0
0 0
Large Degradation till T (bT=3), Assurance request q=0.95 Large Degradation till T (bT=3), Assurance request q=0.99
- s w ~ > - “ w - ™ v ~ @ - ™ )
(=] (=] < O O - - - < (=] [=] (=] <o - - o
%5 Loy % 0% 5 L % b 4 b
w » M W W Ul Ul m w Ul ﬂ 0’ lﬂ W

T*'s_b=0.4

T*s_b=0.5
- R
T's be07 . --.. T's b07
- EEEEEEEE
o SRR

FIGURE 3  Stringency P(Y;o >#¢,) indicated by colour scale under different scenarios. In all cases a = 98.5. The four panels concern
the four combinations of the degradation (bT = —2, — 3) and required quality assurance (q = 0.95,0.99). Each panel gives combinations of

Toy (indicated by T*s_b) and o, (indicated by s_e). Cells marked by a cross are situations in which P(Y;r >y) >q and hence no ,; needs to
be calculated

In general, we find that the Col approach quickly becomes impractical when the noise is large relative to the process
variation o,, or the process average a is small, as indicated by the abundance of deep-pink squares.

6.3 | Sample inference for Col

In practice, the population parameters ¢ in the model (3) are unknown, and must be estimated from sample data. To
simplify the notation onwards, we fix ;=0 and ¢, =T, where T is the shelf life in months (typically
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T €{18,19,---,60}). We denote the empirical data by y={Yy:i=1,2,---,n; t=0,---, T}, indexed by batch ID i and
observed time t.
From a frequentist perspective, we may utilise an estimator 6(y) of 0, and seek a (minimal) #,; that fulfils

Eq Pg(y) (Yni1,r 27| Yni102nc0) | 2q,  forall 0.

The expectation pertains to the sample distribution of y, which appears in g(y) Because it seems complicated to

solve such a set of equations exactly, we may determine an approximate solution by plugging in an estimator 5(y) of 6

into the solution 7.,,(0) of Equation (6), for given 6. Thus the control limit becomes 7, (a(y)).

From a Bayesian perspective, there are two reasonable solutions, both based on the posterior distribution of € given
y. The first, denoted B1, is to seek a (minimal) #,; that fulfils

EPy(Yni1.r27 | Yni102ncor) 1Y) 24

Here the expectation refers to the posterior distribution of € given y. An alternative Bayesian solution, denoted B2,
is a measure of location of the posterior distribution of #,;(#) given y, which is induced by the posterior distribution of
0 given y and the solution map 0 — ¢, (6) of (6).

For computational purposes in both cases the posterior distribution of 8 given y can be approximated by the empiri-
cal distribution of a sample {Gk}le of values obtained via an MCMC algorithm. The approximate solution B1 is then
given by

. 1&
mm{WIBZPF)k(YnH,TZVYn+1,0>77)>q}. (13)
k=1

The posterior distribution of ;¢,;(6) can be approximated by the empirical distribution of the values {17¢,;(6x)}r_;,
and hence the B2 solution by the location (e.g., median or quantile) of these values.

The frequentist and two Bayesian solutions are all different, but for large sample sizes will be similar, under mild
conditions. The large sample properties of the three procedures are discussed in Section 8, where it is shown that the
estimated control limits differ by no more than a centred normal variable with dispersion equal to the inverse sample
size. For a conservative approach, the estimated control limit can be heightened by a quantile of the approximating nor-
mal distribution, thus yielding the limit 7¢,; (a(y)) +7o® 1(£)/y/n, in the notation of Lemma 8. The Bayesian
approach B2 that uses the £th quantile of the posterior distribution of 5, with £> 0.5 automatically incorporates a
tightening of the control limit. Lemma 8 shows that this is asymptotically equivalent to the tightening of the frequentist
procedure.

7 | CALCULATION WITH EXAMPLE DATASETS

We generated two datasets under the observational model (3), using two scenarios of parameter settings,
and calculated # via the different approaches. For each scenario we set the shelf life T to 36 months, and SS equal to
>95, that is, r =95. We generated 10 batches of data (i=1,...,10), each with one observation at t=0,6,12,18,24
months.

The parameters governing (3) are a, b, 6,, op and o.. We set p = ai / (ai +a§), and write p(0, T) for the correlation
between Y;o and Y; r. The two parameter settings were:

+ (Modest intra-correlation) P(Y;o>95)=0.9999, P(Y;r>95)=0.9, 6,=0.5, 63=0.01, p=0.8. This results in
a=97.1, b=—0.034, 6. = 0.25 and a modest correlation p(0, T) =0.67.

+ (Weak intra-correlation) P(Y;>95) =0.9999, P(Y; 1 >95) =0.9, 0, =0.5, 63 =0.04, p = 0.4. This results in a =100.9,
b=—-0.068, 6. = 0.6 and a weak correlation p(0, T) =0.19.
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FIGURE 4 Graphical representation of data simulated using a scenario of modest (p(0, T) =0.67) and a scenario of weak

(p(0, T) =0.19) correlation between reportable values at release and end of shelf life. Shown are also the control limits 7 at time 0 for four
methods, for stability specification set at >y =95. Data at 36 months are plotted for illustration, but were not included in the calculation of
the control limits

For each dataset,  was calculated by four methods:

1. The ADG approach (1) with ¢=0.95. The estimator b was taken equal to the ordinary least square estimator
based on the 10 x 5=50 observations Y; with corresponding standard error s, ignoring the mixed model struc-
ture of the simulation scheme, using the function Im from R basic. The error variance o, was estimated as the
sample variance of the regression residuals after correcting for a linear trend per batch. The value of k was set
to 1.

2. The CoT solution as in (5) with plug-in estimators. We estimated the parameters b and o4 by fitting a linear
mixed model, using the function Imer from the R package {Ime4}.® (Alternatively, Bayesian point estimators may
be derived using the package {blme}.”) The parameter g was set to g=0.8, where it is noted that this parameter
has a different meaning than in the other two approaches. In the CoT formulation g indicates the proportion of
future batches for which the passing rate at time T is at least the passing rate at release, whereas in the other
approaches q refers directly to the passing rate of an individual product. Setting it to 0.95 would lead to a very
conservative CoT solution when the batch slope variation is not small. In practice, the values of g will be set
case by case.

3. The two Bayesian solutions B1 and B2 for the Col formulation, described in Section 6.3, with ¢ =0.95. The pos-
terior distribution of the parameters was approximated via an MCMC algorithm implemented in R package
{brms},lo’11 with 2 chains, 2000 burn-in samples followed by B=3000 samples for each chain, using a
N(100,30%) prior for a, a N(0,5?) prior for b, and an half-Cauchy prior'? with scale 0.1 for o, op and oc. The
convergence and quality of the chain was checked graphically based on a trace plot, an ACF plot, and a Geweke
diagnostic plot via R package {coda}'* and the launch_shinystan function in {brms}.'* The chosen priors are
weakly informative. Experiments with other prior settings (e.g., variance 100 in the normal priors, and scale
0.01 in the half-Cauchy, which renders the priors even less informative), did not show significant changes in the
posterior means, and are not reported. In practice, one may form weakly informative priors based on other
empirical data or scientific expectation of model parameters. For Col-B1, we used the average across the MCMC
sample in (13). For Col-B2, Equation (6) had no solution for some MCMC iterates 6 (see Insight 2 in sec-
tion 6.2), those 7, (6x) were treated as some synthetic value <95, and the final estimate was taken to be the pos-
terior median of {1y (6k)}-

The example datasets and the calculated results are displayed in Figure 4. Data at 36 months are plotted for illustra-
tion, but were not included in the calculation of the control limits. One can see that with the dataset showing modest
p(0,T), the three approaches result in implementable control limits at time 0. However, when p(0, T) is small, the Col
limits become impractically high.
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8 | CONCLUSION

Adopting a realistic population model for a reportable value of a drug, we have discussed two formulations for setting a
control limit at time O that incorporates stability risk. The two formulations correspond to different probabilistic objec-
tives, which we worked out in a realistic random-effects model setting. Both formulation intend to determine a limit at
release for an individual reportable value (of a CQA of a drug product). This is in line with how the limit will be applied
in practice, and hence can be viewed as an improvement over the ADG approach, which determines a limit for an
unobservable batch mean under a simplified population model, see Section 3.

The objective CoT seems to be generally appropriate. It determines a release specification that tightens the desired
stability specification by a conservative estimate of average degradation over the course of shelf life. The level of conser-
vativeness is controlled by choosing an appropriate quantile from the estimated distribution of the batch slope in a lin-
ear random-coefficients model. The CoT formula does not explicitly include the variability of individual measurements.
Its use as a limit for an individual reportable value is justified under the assumption that the stability specification has
already accounted for that source of variability. This assumption generally holds, since in practice the stability specifica-
tion is also applied to an individual reportable value. (One should of course check that the reportable value at the stabil-
ity test is consistent with the reportable value at the release test.)

The objective Col is a natural translation of the aim of quality assurance, and focuses on filtering the batches at
release on their reportable value. However, this aim becomes unattainable when the correlation p(0, T) between the
reportable values at time 0 and time T is near zero. The control limit at release may then be so tight that the majority of
the batches will be rejected, as illustrated in Section 7.

We presented a visualisation by heat maps in Section 6.2 to help assess when the Col approach will be helpful. The
essence is to assess if the signal-to-noise ratio in the data is sufficiently high. The heat maps can be navigated to infer
how to enhance the signal-to-noise ratio, by taking actions that lift the current status from a deep-pink cell to a green
cell (e.g., improve the precision of the laboratory measurement to a certain level, or shorten the shelf life of the product
by a certain number of months).
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APPENDIX A

A1l | Proofs

Proof of formula (5). Under model (3), with a* =a + a (drop the batch index i for brevity), Equation (4) can

be rewritten as
—a* —(b+p)t
Pa,/,»[l—d><’7 a)<1—d>(y @ +ﬂ> —q
O¢

bl )

Pa,ﬂ|:}/ a—(b+ﬂ) —at —q

Oe

By some more algebra this can be rewritten further in the form

p|r=1= bt E:q
s opt op ’

Because f is normally distributed by assumption, it follows that y —n—bt=® (1 —q)ost, which is
equivalent to Equation (5).

Proof of Lemma 1. Because P(Y,2y|Y12n)=P(Z,2(y —u,)/021Z1 = (n—uy)/01), for Z; = (Y; — ;) /01, and
the same when conditioning on Y; =7, the situation can be reduced to the case that Y; and Y, possess
mean zero and variance 1. Hence assume

() =1G) G 7))

Then (Y1,Y) has density f(y,,y,) exp{ %} and the density of Y, given Y, > is given by


info:doi/10.18637/jss.v067.i01
info:doi/10.18637/jss.v067.i01
https://cran.r-project.org/package=blme2015
info:doi/10.18637/jss.v080.i01
info:doi/10.1002/pst.2259
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/fsy

Pz E)(F){_Z(lyizﬂz)}/noo P (1[)%;2) du(s)

for du(s) = exp {— m} ds. Hence

[*)

exp (zsy) du(s)

J :
N

oo s T=

)
)

F exp (zsy)du(s)

/

We first show that for #>#/, this function is increasing in y, or equivalently that its logarithm is increasing. The
derivative of the latter function is

i 1) / 00rsexp (zsy)du(s) / Cmrse><p (zsy)du(s) = / " exp (zsy)du(s)
T log ”( 7= ! s — S [EL,5,S — El ,ES]
ly “fy & / exp (zsy) du(s) / exp (zsy) du(s) / exp (zsy)du(s)

for S a random variable with density relative to du(s) given by

(s) = exp (zsy)1gs .
/ exp (zsy) du(s)

The term in square bracket is cov (1s>,7, S) and is non-negative, as s+ 1, and s+ s are both increasing functions
(see Lemma 8 below).
Now, for Y ~f,1,.

(&)

P(Yy2y|Y12n) :/fﬂ(Y)dy:En/ley
14

e

v )
f;]’ (Y> g Eﬂ/ly? yEq/fr/’ (y)

=Py(Y27)-1,

again by the covariance inequality. This finishes the proof of assertion (i).
Assertion (ii) is immediate from the form of the conditional distribution Y, | Y; =#n~ N(pn,1—p?).
Assertion (iii) follows from

/ TPy |¥) =5)(s)ds / CP(Ya21|Yy =) (s)ds
n n

P(Y,2y|Y12n)= z P(Y121)
=

=P(Y,=2y|Y1=n),
P(len) ( 2 7| 1 77)

where the inequality follows from (i).

Assertion (iv) is a consequence of the fact that the correlation coefficient completely determines the dependence
between multivariate Gaussian variables.

The assumption P(Y, >7) < q in the first part of (v) is equivalent to ®'(q) +y>0.If0<r<®'(q) +7, then

o

r/p
/®<\;%)¢(S)dss /¢<%)¢(s>ds+1—®<r/p>.

r/(2p) r/(2p)
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We conclude that, as p | 0,

—®(r—y)<gq,

P(Y2>7|Y1>V/(2p))<cb< r-r >+ 1-®(r/p)

Vi) T-o(r/(20)

where the convergence of the second term to zero follows, because by Mills ratio, as p | 0,

1-0(r/p) | ¢(r/p) 1/Cp) sy
1-@(r/(20)) ¢(r/(20)) 1/p ~ '

In view of the monotonicity (i), we conclude that 5, >r/(2p), for sufficiently small p.
By similar reasoning, for any <7,

- 7ip— 1— @
(D< np y><P(Y2>y|Y1>’7KCD<np y>+1 (17).

V1= p? V1—p? —®(n)

For n=n, and 7=1n, + /p, another application of Mills ratio shows that the ratio on the right is bounded above by
eV e (2VP) « p. We conclude that

P — + 3/2 _
—p —p

Solving this for 7, gives the first assertion of (v).
The solution to P(Y,>y|Y; =#5)=q can be derived analytically, as = (dfl(q)\/ 1—p? +y> /p. This readily gives
the second part of assertion of (v).

Lemma 2. If f,g:R—R are non-decreasing functions, then cov(f(U),g(U)) >0, for any random vari-
able U.

Proof. By monotonicity (f(u) —f(v))(g(u) —g(v)) >0, for any u,v. Applying this to independent copies U, V/
of U, we find E(f(U)—f(V))(g(U)—g(V))>0. The Ileft side can be worked out as
2Ef(U)g(U) —2Ef(U)Eg(U) = 2cov(f(U), g(U)).

A.2 | Asymptotics of the Bayesian estimators for Col formulation
Let ©® C R? be open, and let H:© x R — R be a continuously differentiable map such that 5 — H(6, 7) is strictly increas-
ing from a negative value to a positive value, for every 8 € ©. Let 17: ® — R be defined by

H(0,7(6)) =0.

We are interested in the plug-in estimator n(@), given an estimator 0 of @; in the induced posterior distribution of
n(0), given a posterior distribution for ¢; and in the solution to [H(@,7)I1(dd]Y,)=0, for II(0 € -|Y) a posterior
distribution.

The intended application is the map H(6,n) =Pro(Yr>y|Yo=n)—q, for a bivariate normal vector (Yo, Yr) with
positive correlation, and numbers y and g such that Pr(Yr>y) <g<1.

Write Hy(6,n) for the (d x 1) vector of partial derivatives of H with respect to 6 and H,(0, ) for the partial deriva-
tive with respect to 5. We set n, =#(6y) and assume throughout that H,(6o,1,) > 0.

Let 0, be estimators based on data Y, for n=1,2.... The following lemma shows that asymptotic normality of these
estimators carries over onto the solutions 7 5,1 . Write ~w for convergence in distribution of random vectors. In par-
ticular, Z, «w N(0,X) means that P(Z, <x) — P(Z <x), for every x € RY, and a vector Z ~ N (0, X).
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Lemma 3. If /n 0, — 009 ~w Ng(0,%), for some 6,€® and positive-definite matrix X,, then
\/ﬁ(n (5;1) - no) s N (0, 73, for ny =n(0) and 3 = Hy (6, n0)~*Ha (00, 16)" ZoHo (6o, 10)-
Proof. Abbreviate 7=n 0,). By the monotonicity of H in its second argument
Pr(7> o +€) <Pr(H(6,,ny+€) <0), for any e>0. Since H(8,,n,+€) — H(0,1,+€) in probability by
continuity of H, and H(6y,n,+€) > 0, it follows that Pr(77 > 5, + €) — 0. Combined with a similar bound on
the left side, this shows that 77 — 7,, in probability.

Define a function R by

H(0,n) — H(6o,n9) — Ho(00,15)" (6 — 60) — H, (60, 10) (1 — 1)
10 —060 |+ |17—np|

R(0,n) =

Then R a,ﬁ — 0 in probability, by the continuous mapping theorem and because H is assumed differ-
entiable. By the definitions of 77 and , we have

0=H(0.7) ~ H(60. )

= Ho(00,10)" (000 ) +H, (60,10) (7 — 10) + R (8,7) (1100 | +17 = o] ).

It follows that, with 0/0=0,
Vi 10)(Hy 6o) +09(0) 2101 ) 1y 00,0) Vi (3 0) + on (VR
0
The result follows by Slutzky's lemma and the fact that H, (6, 7,) > 0, by assumption.
Next assume that for a given prior distribution on ®, we obtain a posterior distribution I1(8|Y},). Let || - || denote the

total variation norm. Under the Bernstein-von Mises theorem (cf. e.g., van der Vaart®, Chapter 10), the posterior distri-
bution permits a normal approximation as assumed in the following lemma.

Lemma 4. If | II(0]Y,) —Ng (@n, n1%)||[—=0 in probability, for estimators 0, such that
Vvn(6,— 90> ~w N(0,%), for some 6y €® and positive-definite matrix %o, then |[II(#(0)|Y,)—
N (r] <¢9n) , n‘lré) ||— 0 in probability, for 7, as in the preceding lemma.

Proof. Fix arbitrary a,, ..., aq € R such that Hy(6y,7,),as, ..., aq are orthogonal in R¢ and a,,...,a; have
norm 1. Define a map H: 0 x R? — R? by

H(0,m)
_ azT‘9 -1
H(0,n) =
agd—ny
Then H is continuously differentiable with

Ho(0,m,)" Hy(0,m) 0 -+ 0
JHo.n) | @ JH@O,) | 0 10
20,---904 : C o Onydny : : :

al 0 0 -1
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The second matrix at (6, 7), where 7, = (17(6o), al 6y, ...,al6] ) is the solution to H(6,n) =0, is invert-
ible. By the implicit function theorem there exists an open neighbourhood G of 8, and a diffeomorphism 7:
G —7(G) C R such that H(6,7(6)) =0, for 6 € G. Clearly 77, (6) = (6). Abbreviate 7 =7(6 ) and 7, =7(6,).

By the same method as in the preceding lemma we find that /n ﬁ—ﬁo tends in distribution to a nor-
mal distribution. For a given bounded set BC R%, the probability of the event 7+ B/\/n C7(G) therefore
tends to one. On this event we have that v/n(7(0) —7 ) € B if and only if €7~ (7+B/+/n), where 7" is
the (ordinary) inverse function of 7. By assumption 6 |Y, is asymptotically distributed as 5—1—2(1)/ ’z /\/n, for
a standard normal vector Z. We thus have that, with ¢ the density of Z,

Pr(\/ﬁ(ﬁ(e)—ﬁ)eB|Yn):Pr(eeﬁ‘l(ﬁ+3/\/ﬁ)|yn) :Pr(§+25/22/\/ﬁeﬁ‘1(ﬁ+B/\/r_z))+op(1) (A1)

- / $(2)dz+0p(1)
z:\/ﬁ(ﬁ (6+512/v) 7%) B (A2)

= [0 (v, (1 (-+y/vin) ~0)) | Fldy-+on()

where we have made the substitution \/ﬁ(ﬁ (5+ E(l)/ *z/ \/ﬁ) —ﬁ) =y, and | dz/dy| is (the determinant of) the Jacobian
of the transformation. Here

VgV (17 (i4 v/ Vi) =0) = 202 oy =257 (60) 'y,

dz - __ = -1/2 -
g =20 ) (/) =2 00

The convergence is uniform in y ranging over bounded sets. It follows that the integral tends to
[o(z3 e ) 1% o) | .
B

We recognise this as the probability of the set B under the normal distribution N (O, 7 (00)Zo7 (GO)T).
The first marginal of this distribution is the normal distribution in the lemma.

To complete the proof we argue that the convergence is valid in the sense of the total variation distance.
The approximation of I1(6 € -|Y,) with a Gaussian distribution is valid uniformly in B by assumption. Thus
the approximation (Al) is valid uniformly, and it suffices to show that (A1) tends to the final equation, uni-
formly in B. Because the integrand in (A2) converges uniformly for y in bounded sets, the Gaussian proba-
bility in (A1) converges uniformly in bounded sets B. Since we can find a sufficiently large compact set that
contains most of the mass, this suffices.

As a consequence of the preceding lemma, the posterior median or posterior trimmed mean 7 of I1(5(6)|Y,)
satisfies

V(i = n(00)) =~ N (0,75).

Convergence of the posterior mean would require some extra conditions, as the range of #(6) may be unbounded,
depending on H.

Finally given a posterior distribution I1(0|Y,), consider the solution #(Y,) to E(H(6,7)|Y,) =0. Thus we first take
the average of the curves n+— H(6, ) relative to the posterior distribution, and then determine a zero. Although in gen-
eral 7, will be different from any of the preceding, the following lemma shows that it is asymptotically very close to the
plug-in estimator using the posterior mean E(6|Y},) as the estimator of 6.
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Strengthen the assumptions on H to: H is bounded and twice continuously differentiable. Write Hyy for the second
derivative matrix of H relative to 6.

Lemma 5. Suppose that nCov(0|Y,)— in probability, and n2E(||9—5n|\4|Yn) =0p(1), for
0,= E(9|Y,,S. Assume that g

Ot en) — (B0, 110) in probability. Then

n(7, —17(9,1 ) — —1H,(60,n0) " tr(Hoo (60, 19)%0), in probability.
Proof. Write 7=n 52} By the monotonicity of n—E(H(6,7)|Y,) and the definition of 7 we have
Pr(7>n,+¢€)<Pr(E(H(0,ny+¢€)|Y,)<0), for every €>0, which tends to zero since
E(H(0,1y+€)|Y,) — H(6o,ny+€) >0, in probability. Combined with a similar argument for the left side,
this shows that 77 — 5,, in probability.

By definition E(H(6,7)|Y,) =0 and E(G —§|Yn) =0. Then for 6> 0, by the assumed boundedness of H
and Markov's inequality,

~ ~ 1 ~ 4
B(HOM 5y ) 1= B(HOD, 5 00) | <GB(10-BI 1Y),

B((0-8)1,,5 o) 1= 1B (0-0)1,, 5. o) | < 5E(10-BullYs)

For =5, |0 slowly enough that 5}n — oo, both expressions are op(n!), by the assumption on the
fourth moment.
Define R(6,7) as

2o H(0,m)~ H(8,7) — P2(6,1)
1) = = —~
16611 +|n 7’

where P, (0, 1) is the second order Taylor polynomial of H around (5 ﬁ) i.e.

Pa(6,m) =Hy (8.5) (0-9) +8,(2.7)(r-7)

+2(0-0) Bao(0.2) (0-0) + (0-0) Hoy (.2) 1) +3Hon (0.7) 7).
Since H (5, ﬁ) =0 by definition of 7,

n ~ e n o~ n —A 2 ~—A2 o~
E<H(6,n)19_0<5|Y,,) E(Pz(ﬁ,n)llg_m@wn)+E<R(9,n)(||0 012+ [ — 7 )19_9”@|Yn>.

By the preceding the left side is op(n™!), if 5| 0 sufficiently slowly. Since the supremum of R over a
shrinking neighbourhood of (6y,7,) tends to zero, we can bound R out of the conditional expectation and
that the remainder term gives a contribution of the order op(n™!). The term involving P, contributes five
terms. The term that is linear in 0 — @ was already seen to be op(n~1), while the mixed term in € —Oandij—
7] is even smaller due to the presence of 77 —7. Th quadratic term in 77 —7 is negligible relative to the linear
term in this variable. Thus rearranging the terms yields

(7 —7) (Hy (60, 15) +0p(1)) = —%E((G—@) Ho(8.7) (0-0)1, 5 @m) op(n ).
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The indicator within the conditional expectation can be removed, and H ggg

0, ﬁ) replaced by Hgy (6o, 7o),
at the cost of another op(n~!)-term, The expectation can next be computed as the trace of the matrix
Hogg(6o,1)Cov(0]Y ). This matrix times n tends to Hgg(6y, 175)Zo, by assumption.

The intended application is to find a “control limit” # such that Pry(Yr >7y|Yo>7) = q. If 6 is unknown, it is replaced

by a data-based approximation. The following corollary shows that estimation leads to a random error of order
Op(n~Y/?) in the control level g.

Corollary 1. Assume that the conditions of the preceding lemmas hold and let 7 be either the plug-in estimator

n(0), or the median or trimmed mean of the posterior distribution of 1n(0), or the solution to E(H(6,7n)|Y,) =0.
Then v/n(H (6o,7) — H(0o, 1)) = N (0, Ho(00,m9) " ZoHo(6o, 1) )-

Proof. This is an immediate consequence of the three lemmas and the Delta-method.
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