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Abstract. An improvement of the classical finite element method is proposed. It con-
siders an exact representation of the geometry by means of the usual CAD description of
the boundary with Non-Uniform Rational B-Splines (NURBS). For elements not inter-
secting the boundary, a standard finite element interpolation and numerical integration is
used. Specifically designed piecewise polynomial interpolation and numerical integration
are proposed for those finite elements intersecting the NURBS boundary. Numerical ex-
amples with a Discontinuous Galerkin formulation are shown in order to demonstrate the
applicability and behavior of the proposed methodology. The results are encouraging and
show that NEFEM is more accurate than the corresponding isoparametric finite elements.

1 INTRODUCTION

The relevance of an accurate representation of the domain and its boundary has re-
cently been pointed out by several authors, see1,2,3,4,5 among others. In some applications,
such as compressible flow problems, an important loss of accuracy is observed when a lin-
ear approximation of the boundary is used, see1,2. Reference1 shows that, in the presence
of curved boundaries, a meaningful high-order accurate solution can be obtained only if a
corresponding high-order approximation of the geometry is employed (i.e. isoparametric
finite elements). A detailed analysis of this problem is performed in5. In this work, it
is shown that for a consistent boundary discretization in a discontinuous Galerkin finite
element method it is necessary to take into account the effect of the domain boundary
curvature. However, the need of an accurate representation of the geometry is not an
exclusive matter of fluid mechanics. For instance, similar conclusions are derived in3 for
linear elasticity problems: sizable errors are present in the numerical solution when the
order for the geometric approximation is lower than the order of functional interpolation,
even for geometries as simple as an sphere. Isoparametric finite elements or superpara-
metric finite elements (i.e. greater order for the geometry) are necessary in order to ensure
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an accurate enough representation of the geometry. On the other hand, reference4 ana-
lyzes the error induced by the approximation of curvilinear geometries with isoparametric
elements. The 3D Maxwell equations are solved in a sphere with isoparametric finite
elements and with an exact mapping of the geometry. The exact mapping provides more
accurate results, with errors differing by an order of magnitud. Thus, in some applica-
tions, an isoparametric representation of the geometry is far from providing an optimal
numerical solution for a given finite element discretization.

Recently,6 proposes a new methodology: the isogeometric analysis. Its goal is to con-
sider an exact representation of the geometry, with no dependency on the spatial dis-
cretization. In the isogeometric analysis the solution of the boundary value problem is
approximated with the same NURBS (Non-Uniform Rational B-Splines,7) base used for
the description of the geometry.

The methodology proposed in this paper follows the same rationale but is more simple
because NURBS are restricted to the boundary of the computational domain, which is the
one that usually is directly related to a CAD. Thus, NURBS-Enhanced Finite Element
Method (NEFEM) considers the exact NURBS description for the computational domain
and the solution is approximated with standard finite element (FE) polynomial interpo-
lation. Moreover, in the large majority of the domain (i.e., in the interior) —for elements
not intersecting the boundary— a standard FE interpolation and numerical integration is
used, preserving the computational efficiency of classical finite element techniques. Specif-
ically designed piecewise polynomial interpolation and numerical integration is proposed
for those finite elements along the NURBS boundary.

The use of a piecewise polynomial approximation represents an important advantage
in front of the NURBS functional approximation used in the isogeometric analysis : the
NEFEM ensures the local reproducibility of polynomials and, therefore, it preserves the
classical FE convergence properties.

Section 2 presents the basic concepts and fundamentals of the NEFEM. Special at-
tention is paid to the interpolation and numerical integration in those elements affected
by the NURBS description of the boundary. In order to facilitate the explanation, the
NEFEM is presented for 2D domains. Although more attention is required to geometrical
aspects, the generalization to 3D domains is straightforward. In section 3, a numerical
example demonstrate the competitiveness of the NEFEM in front of isoparametric finite
elements for the solution of transient electromagnetic scattering problems. Finally, in
section 4 the conclusions of this work are presented.

2 NURBS-ENHANCED FINITE ELEMENT METHOD (NEFEM)

A domain Ω ⊂ R2 is considered, whose boundary ∂Ω, or a portion of its boundary, is
defined by NURBS curves7. Every NURBS is assumed to be parameterized by

N : [0, 1] −→ N([0, 1]) ⊆ ∂Ω ⊂ R2. (1)
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A triangularization of the domain Ω =
⋃

e Ωe is also assumed, such that every triangle
Ωe has at most one side on the NURBS boundary. Figure 1 shows a domain with part
of the boundary described by a NURBS circular curve and a valid triangulation for the
NEFEM.

W

Figure 1: Physical domain with part of the boundary defined by a circular NURBS curve (left) and a
valid triangulation for the NEFEM (right)

At all elements whose boundary does not intersect the NURBS boundary, the usual
FE interpolation and numerical integration is considered. Thus, this section is devoted to
the definition of the interpolation and the numerical integration at an element with one
side on the NURBS boundary. Say, an element Ωe with two straight interior sides and
one side defined by a trimmed NURBS,

Γe = N([ue
1, u

e
2]),

with 0 ≤ ue
1 < ue

2 ≤ 1. There are no restrictions in the location of the nodes in the NURBS
boundary. The NURBS parametrization can change its definition inside one edge. That
is, it is possible to have a breakpoint 7 on (ue

1, u
e
2). This is another advantage with respect

to the isogeometric analysis6.
For each element Ωe, a triangle Te is defined using its vertices, see figure 2. Then, a

T
eeΩ

Figure 2: Physic element Ωe (left) and triangle Te defined using its vertices (right)

linear transformation Ψ : I −→ Te is used. It goes from the reference triangle I to the
triangle Te, see Figure 3.

Remark 1 In order to simplify the presentation, it is assumed that the interior vertex
of Te is mapped to the vertex (−1, 1) in I. The implementation of this condition only
requires a proper local numbering of the vertices of the element.
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Figure 3: Mapping Ψ defined as a linear transformation from the reference triangle I to the triangle Te

(given by the vertices of Ωe)

Note that the inverse of this linear transformation maps the triangle Te into the ref-
erence triangle I, but also maps the physic element Ωe into a curved element in local
coordinates with two straight sides, namely

Ie := Ψ−1(Ωe), (2)

see Figure 4. Ie is called the local curved element for the physic element Ωe.
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Figure 4: Linear transformation mapping the local curved element Ie to the physic element Ωe

Note that the reference triangle I is the same for all elements Ωe. However, the local
curved element Ie depends on the trimmed NURBS defining the curved side Γe of Ωe, and
therefore it is different for every element Ωe intersecting the NURBS boundary.

Remark 2 The use of a linear transformation from the local coordinates ξ in Ie to the
cartesian coordinates x in Ωe, ensures that a polynomial interpolation of degree m in ξ
leads to a polynomial interpolation with the same degree in x. Thus, the consistency and
accuracy of the approximation is ensured even for elements Ωe far from being a straight-
sided element.

Under these assumptions, the FE interpolation base and the numerical integration to
be used are proposed next.
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2.1 FE polynomial base

The usual nodal interpolation defined by the Lagrange polynomials is considered in Ie,
or equivalently, in Ωe. The implementation proposed in8 is adopted, in order to compute
the Lagrange polynomials, {Li(ξ)}nnodes

i=1 , for any order and for any distribution of nodes.
An orthogonal polynomial base {pi}nnodes

i=1 is considered in Ie, with no dependency on the
nodal coordinates {ξi}nnodes

i=1 . The Lagrange polynomial base is then obtained as

Li =

nnodes∑
j=1

[
V −1

]
ji

pj, (3)

with the Vandermonde matrix Vij := pj(ξi), for i, j = 1, . . . , nnodes.

Remark 3 Note that any polynomial base {pi}, with no dependency on the nodal coor-
dinates, can be considered for the computation of the Lagrange polynomials using (3).
However, an orthogonal polynomial base {pi}nnodes

i=1 , such as the one derived from Jacoby
polynomials8,9,10,11, is advisable in order to ensure a moderate condition number for the
Vandermonde matrix V . This base also allows an analytical computation of some inner
products.

From an implementation point of view, it is worth noting that all elemental matrices
can be first computed for the orthogonal polynomial base, and then transformed with
the Vandermonde matrix. That is, let M p

e be an elemental matrix computed in terms of
the orthogonal polynomial base, then M e = V −T M p

eV
−1 is the corresponding elemental

matrix for the Lagrange nodal base.
This paper considers equally-spaced distributions of nodes in Ie, see left distribution

in Figure 5. It corresponds to the usual nodal distribution for the reference triangle I.
Other nodal distributions can also be used. For instance, the right distribution in Figure
5 is adapted in order to locate nodes along the NURBS side. This option makes sense if
one wants to set nodal values along the boundary, but it does not represent any advan-
tage if boundary conditions are imposed in weak form, as usual in Discontinuous Galerkin
formulations. Moreover, in this case nodal coordinates depend on the local curved trian-
gle Ie reducing the computational efficiency of the approach, and leading to a different
Vandermonde matrix for each curved element. The use of a nodal distribution with no
dependency on the loca curved element Ie, such as the left distribution, is more efficient
because of the unique definition of the nodal coordinates and the unique computation of
the Vandermonde matrix, with no dependency of the curved element.

Although equally-spaced nodal distributions are assumed in the rest of the paper, it is
worth noting that for high-order interpolation (≥ 5-th order) it can be more convenient to
use special distributions of nodes in order to reduce the condition number of the resulting
elemental matrices, see12 for details. Moreover, numerical experiments reveals that, using
a distribution of nodes adapted to the NURBS side, the condition number of the elemental
matrices is reduced two or three times, in comparison with the same distribution of nodes
located in the reference triangle I.
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Figure 5: 5th-order nodal distributions in Ie: for equally-spaced nodes (left) and adapted to the NURBS
side (right)

2.2 Numerical integration

NEFEM requires computing integrals of functions f along an edge given by a trimmed
NURBS Γe = N([ue

1, u
e
2]), that is

∫

Γe

f d` =

∫ ue
2

ue
1

f(N(u))|JN (u)| du, (4)

where |JN | denotes the Jacobian of the NURBS parametrization N . As usual, a 1D
numerical quadrature is used for the numerical computation of the integral.

It is important to note that the parametrization of a trimmed NURBS, N , is a piecewise
rational function whose definition changes at the so called breakpoints 7. Thus, an inde-
pendent numerical quadrature must be considered for each one of the intervals between
breakpoints in order to take into account the discontinuous nature of the parametrization.
Numerical experiments reveal that Gauss-Legendre quadratures are a competitive choice
in front of other quadrature rules.

NEFEM also requires computing integrals over an element Ωe with one side Γe on the
NURBS boundary (see Figure 4), that is

∫

Ωe

f dx dy = |JΨ|
∫

Ie

f dξ dη (5)

where |JΨ| is the Jacobian of the linear transformation Ψ. The computation of (5) requires
a numerical quadrature for every curved element Ie. The proposed strategy corresponds to
the definition of a transformation from the rectangle [ue

1, u
e
2]× [0, 1] to the curved element

Ie, see Figure 6. That is, ϕ = (ϕ1, ϕ2) : [ue
1, u

e
2]× [0, 1] → Ie given by

ϕ1(u, v) := 2(1− v)φ1(u)− 1, ϕ2(u, v) := 2(1− v)φ2(u) + 2v − 1

where φ = (φ1, φ2) := Ψ−1 ◦ N is the parametrization of the trimmed NURBS corre-
sponding to the curved side in Ie. Note that this transformation is only valid under the
assumption in Remark 1.
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Figure 6: Transformation from [ue
1, u

e
2]× [0, 1] to Ie and Ωe

The use of a transformation from the reference triangle I into the local curved triangle
Ie, in order to use quadratures specifically designed for triangles13,14 is also studied. For
standard finite elements these triangle quadratures require less integration points than
other quadratures to achieve the same order and accuracy, but this is not the case for
NEFEM elements with a curved side. The use of a transformation depending on the
NURBS parametrization φ leads to too expensive triangle quadratures. The integration
strategy proposed in this section is much more competitive. For example, Figure 7 shows
the integration points, for the computation of the integral

∫
Ωe

x10 dΩ with an error of about
0.5%, using the transformation depicted in Figure 6 (left, with 30 integration points) and
using a classical triangle quadrature (right, with 54 integration points).

Figure 7: Two numerical quadratures in a curved element

3 NUMERICAL EXAMPLE

The transient Maxwell’s equations are considered for the simulation of 2D scattering
of a single plane incident electromagnetic wave by an obstacle, assumed to be surrounded
by free space.

The Transverse Electric (TE) 2D Maxwell equations, in free space, for a linear isotropic
material of relative permittivity ε and relative permeability µ, can be written in dimen-
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sionless conservative form as

∂U

∂t
+

∂F k(U )

∂xk

= 0 in Ω, (6)

where U is the vector of conserved quantities

U = (εE1, εE2, µH3)
T , (7)

F 1 and F 2 are the fluxes

F 1 = (0, H3, E2)
T F 2 = (−H3, 0,−E1)

T , (8)

and E = (E1, E2, 0)T and H = (0, 0, H3)
T denote the scattered electric and magnetic field

intensity vectors. It is assumed that there are no electric sources in the material.
Figure 8 shows the computational mesh used for the simulations. The obstacle consists

on a perfectly conducting circular cylinder defined by a NURBS curve, and the incoming
plane wave travels in the x+ direction with a unitary velocity. The exact geometry is
represented using one quadratic NURBS and only four elements are considered in the
NURBS boundary.

Figure 8: Computational mesh

The time marching is performed using a fourth-order explicit Runge-Kutta scheme.
Figure 9 shows the numerical solution obtained after four cycles.

The Radar Cross Section (RCS) is represented in figure 10. The RCS distribution
is in excellent agreement with the analytical one. The RCS is a quantity of interest in
electromagnetic scattering problems and it is defined as

RCS = 10 log10(σ), (9)
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Figure 9: Solution, E1 (left), E2 (center) and H3 (right), after four cycles using the NEFEM with a 9th
degree of interpolation

where σ is the scattering width, see15. Considering the TE mode for a two dimensional
target, it is defined as

σ(φ) = lim
r→∞

2πr
|H̃3|2
|H̃I

3 |2
(10)

where (r, φ) are the cylindrical polar coordinates and the tilde indicates that the time-

harmonic component of this field is removed, that is H̃3 := H3e
−jkt where j =

√−1
and k is the dimensionless wavenumber. Using a near to far-field transformation16, the
scattering width is computed as

σ =
k

4

∫

C

[
n2H̃3 sin(φ) + n1H̃3 cos(φ) +

√
µ

ε
α̃
]
ejk[x′1 cos(φ)+x′2 sin(φ)]dx′1dx′2 (11)

where C is a closed curve surrounding the obstacle and α̃ := αe−jkt.
The absolute value of the error in the RCS is represented in figure 11 for isoparametric

finite elements and for the NEFEM using a degree of interpolation p = 6 . . . 9. The results
using a degree of interpolation p = 1 . . . 5 are not of interest. For example, with p = 5
only 6 degrees of freedom on each wave length are considered.

As expected, the maximum error is always concentrated in the zones with sharp vari-
ations in the RCS. Moreover, it can be observed in figure 11 that the RCS distribution
is asymmetric. It is caused by the asymmetry of the computational mesh, not by the
boundary description. Increasing the order of the polynomials the RCS error is always
reduced, except for the computation with p = 8 and p = 9. This loss of precission is
observed using isoparametric finite elements and the NEFEM.

In all the cases, the error using classical isoparametric elements is higher than using
the NEFEM, see 1. More precisely, the results summarized in this table show that, for
a given degree of interpolation, the NEFEM is between 11 and 15 times more accurate
than isoparametric finite elements.

9



R. Sevilla, S. Fernández-Méndez and A. Huerta

−pi −3pi/4 −pi/2 −pi/4 0 pi/4 pi/2 3pi/4 pi
−25

−20

−15

−10

−5

0

5

10

15

φ

R
C

S
Analitical
NEFEM

Figure 10: RCS for the example of figure 9

p DG DG-NEFEM Ratio
6 0.3751 0.0338 11.1
7 0.3044 0.0200 15.2
8 0.1163 0.0091 12.8
9 0.2059 0.0174 11.8

Table 1: RCS error in the maximum norm with isoparametric finite elements and the DG-NEFEM, and
ratio between the DG error and the DG-NEFEM error

4 CONCLUDING REMARKS

In this paper an improvement of the classical finite element method has been proposed
for a standard continuous formulation and also for a Discontinuous Galerkin formulation.
It considers the exact geometric model by means of the CAD description of the boundary
of the domain using Non-Uniform Rational B-Splines. Then, for elements intersecting
the boundary a specifically designed polynomial interpolation and numerical integration
is proposed.

Numerical examples involving electromagnetic scattering show the advantages of the
NEFEM, in front of standard isoparametric finite elements, when it is important to work
with an accurate geometric model and to ensure a high precision of the functional ap-
proximation on the boundary. The performed analysis is encouraging and the numerical
examples reveal that the NEFEM is al least 11 times more accurate than the standard
isoparametric finite elements for a given degree of interpolation.
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(b) 7th order
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(c) 8th order
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Figure 11: Absolute value of the RCS error with a degree of interpolation p = 6 . . . 9
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[12] Q. Chen, I. Babuška, Approximate optimal points for polynomial interpolation of
real functions in an interval and in a triangle, Comput. Methods Appl. Mech. Eng.
128 (3–4) (1995) 405–417.

[13] R. Cools, An encyclopaedia of cubature formulas, J. Complexity 19 (3) (2003) 445–
453.

[14] S. Wandzura, H. Xiao, Symmetric quadrature rules on a triangle, Comput. Math.
Appl. 45 (12) (2003) 1829–1840.

[15] C. A. Balanis, Advanced engineering electromagnetics, J. W. and Sons, New York,
1989.

12



R. Sevilla, S. Fernández-Méndez and A. Huerta

[16] A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain
Method, Artech House, Inc., 1995.

13


