TU Delft

Exploring the benefits of Graph Transformers in Relational Deep Learning

Rafael Alani'
Supervisor(s): Kubilay Atasu', Cagn Bilgi!

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Rafael Alani
Final project course: CSE3000 Research Project
Thesis committee: Dr. Kubilay Atasu, Dr. Thomas Hollt, Halil Cagr1 Bilgi

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Heterogeneous datasets hold a large percentage of
all digital data that is available. With the rise of
the digital medium, they have played a strong part
in addressing the need for a structured way of stor-
ing data, particularly through the use of relational
databases. To better leverage such data, the consen-
sus of researchers has been in favour of using Graph
Neural Networks to make predictions and infer pos-
sible outcomes. With the rise of the Transformer
model and the clear limitations that GNNs inher-
ently have due to their over-smoothing and over-
squashing properties, a clear transition occurred into
combining and leveraging the properties of both
GNNs and Transformer models, Graph Transform-
ers.

While this method has been better researched in the
context of homogeneous datasets, much remains
unexplored in its heterogeneous counterpart. This
paper tackles this by applying Graph Transformers
to multiple heterogeneous datasets, examining the
differences and advantages between interleaved and
cascade architectures of GTs and how the homoge-
neous positional encodings transfer to the heteroge-
neous context.

1 Introduction

With the introduction of transformers for graph learning re-
lated tasks [1] [2], many different researchers have looked at
implementations of machine learning models that combine
both Transformers and Graph Neural Network features [3, 4,
5]. This family of models has become its own research topic
as improvements in evaluation metrics have been shown con-
sistently with varying degrees of success based on the selected
approach of implementation.

The main factor in their popularity has been the apparent
limitations that Graph Neural Networks, further referred to
in the paper as GNNs, have been unable to circumvent due
to their underlying information sharing mechanism between
the graph nodes, message passing. A mechanism that does
not allow for the creation of deeper GNN models without
the drawbacks of over-squashing, early smoothing, and loss
of information [6]. Graph transformers, referred to as GTs,
use graph neural networks and transformer layers. While the
graph layers are responsible for the distribution of information
between local nodes, the transformer layers allow the nodes to
distribute the information even when the distance, measured in
the number of hops between two nodes, is significant. This is
due to their information passing mechanism: attention, which
works independently of the distance between 2 nodes. The
idea of leveraging the benefits of the transformer in the graph
learning domain came soon after the initial transformer paper
was recognised as a breakthrough [7].

As relational data sets were still mainly converted into
large homogeneous tables, followed by applications of Tab-
ular machine learning [8], the question of better alternatives
has sparked outstanding research. In parallel with the devel-
opments of the GT, researchers have seen improvements by

converting heterogeneous datasets into heterogeneous graphs
as an intermediary representation. Relational Deep Learning
(RDL) is a new proposal that re-casts relational data into an
exact graph representation, with each entity in the database
becoming a node and primary-foreign key links forming edges.
Node features are extracted using deep tabular models. This
approach allows GNNs to be used as predictive models, fully
exploiting the predictive signal encoded in the primary-foreign
key links, and moving away from manual feature engineering.

This work aims to bridge the two sides, exploring which
features of the Graph Transformer could be used together with
heterogeneous graph representation found in RDL to achieve
an even better expression of the underlying data. When look-
ing at the benefits and improvements that GT bring compared
to their GNN counterparts, a large part of the observed differ-
ence in expressivity is attributed to the positional encodings
[9] and the architecture, the way the transformer and GNN
layers are put together [10]. This paper will tackle both ap-
proaches by introducing multiple architectures and positional
encodings.

This research will focus on the question,

" What is the most optimal way of combining the bene-
fits of Graph Transformers and Relational Deep Learning
for predictive tasks on relational databases? ' To do so,
research will be conducted on two different architectures that
have been prominent since the creation of the GT: the cascade
and interleaved architectures. The cascade architecture was
chosen for its simple design while still being able to observe
improvements over GNNs, while the interleaved architecture
was chosen due to its ability of keeping up with more complex
GT architectures [10]. To further explore what truly made
GT shine on homogeneous datasets, their positional encod-
ing, the question of '' What are the measurable effects of
applying positional encodings in the context of Relational
Deep Learning? " will also be answered and complemented
by adaptations of algorithms that can be used for the heteroge-
neous counterparts, recommendations and observations related
to the obtained results.

The paper will start with Related Works deemed essential
in Section 2. This will be followed by a further dive into
explaining field-specific terms in Section 3. The methodology
and design choices will be described in Section 4, outlining the
contributions of the paper. Section 5 will contain the concrete
experimental setup and the obtained results. Further, Section 6
will discuss the observed results, while Section 7 will address
the conclusions and possible future works. Last but not least,
Section 8 will conclude with all of the required justification as
to how the research was done responsibly and the results were
derived in a reproducible fashion.

2 Related Research

It has been formally demonstrated that standard GNNs have
an expressive power at most equal with the 1-WL (Weisfeiler-
Lehman) test by Xu et al. [11]. This has further sparked the
development of models that circumvent those limitations such
as Yang et al.’s Graphormer [12] or Dwivedi and Bresson [2]
GraphTransformer. A wave of general graph transformers
followed, with notable mentions such as Dwivedi et al. [13]

that introduced Laplacian Eigenvectors as a positional encod-
ing, Zhang et al. [14] for the use of graph-specific positional
features, the use of spectral attention by Kreuzer et al. [15]
and many others.

With the development of so many different approaches it’s
worth mentioning the contribution that Rampdavsek et al. [6]
has brought to the field through the characterisation and clas-
sification of the different possible positional and structural
encodings, which were previously poorly structured and their
benefits and drawbacks were not put into context through the
use of other positional encodings. Rather, they were looked
at in a vacuum, mostly against models that did not implement
them.

One highly notable contribution to the field was in the theo-
retical and empirical proof of Wu et al. [17], which has shown
that a single attention layer model equivalent can be found
for any Graph Transformer that utilises multiple layers of at-
tention. As such, our work was mainly focused on shallower
models, which are capable of extracting similar information
without the redundancy of numerous layers that have their
weights optimised for different intermediary objectives at each
layer.

GraphTrans by Wu et al. [18] has been used and compared
to in many other studies, due to the simplicity of the cascade
architecture. As brought up in Yin and Zhong [10], the vast
majority of fusion GT models are limited by the fusion layer
themselves, leading to the use of the more simplistic inter-
leaved architecture to be as practical or even more effective.

It is to be noted that this is not the first study that addresses
Graph Transformers in the context of heterogeneous datasets;
Hu et al. [19] have already created a model that takes in a
heterogeneous graph representation and uses a GT model to
train on the dataset. The only work that has tried to adapt
GTs to heterogeneous graphs [19] did not try to implement
positional or structural encodings, already noting performance
increases through the use of a Layered fusion architecture.
There has been no paper that has tried to implement the GT
model to the Relational Deep Learning framework proposed
by Robinson et al. [20].

3 Background

This section outlines some basic knowledge needed to un-
derstand the research blocks that the paper will build upon.
In section 3.1, the focus will be on the definition of the dif-
ferent concepts, while section 3.2 will give a more in-depth
explanation of the exact concepts that will be used later in
the paper. Appendix A.l contains a visual representation of
the Message Passing and Attention mechanisms applied to a
Relbench dataset.

3.1 Notations

We define G = (V, £) as our heterogeneous graph representa-
tion, where V represents the set of nodes and £ represents the
set of edges. The definitions of how the dataset is converted
into a heterogeneous graph are outside of the research space
and will be taken for granted. The node set V encompasses
n nodes, with the feature matrix H € R"*¢, where n is the
number of nodes and d is the dimension of the node features.

Table 1: The basic notation utilised in this study.

Notation Description
. A graph G contains node set V and edge
G=1¢) set £.
neR The number of nodes in the graph.
p; €N Function that returns the node type of i.
& eN Function that returns the edge type of 1.
H € R"*? The node features in the graph.
~ The updated node representations of the
xd
HeR” graph.
The attention matrix learn in the
nxn
AcR Transformer.
AC ¢ The adi -
) e adjacency matrix in the graph.
my; The message from node ¢ to node j.
o The edge feature between node ¢ and node
1] N
J-
N; The neighboring nodes of node :.
6 W, b The learnable parameters in neural
> networks.
QK,V The query, key and value matrices in
T attention.
D e Rnx1 The degree matrix, indicating the degree of
the nodes.

I Concatenate operation.

The dimensions of the node features are independent of p,.
The edge set £ is projected through the use of an adjacency
matrix AG € R"*" where AZGJ = 0 if there doesn’t exist an
edge (i,7) in £, and A, = 1 otherwise.

Given the adjacency matrix A% and node embeddings H,
a GNN updates node embeddings by spreading information
from neighbouring nodes through the use of the ¢ functions.
As such, we can define the value of node embedding based on
the values of the node embeddings at the previous layer:

m;; = ¢TTLSg(Hi7 Hj)a (1)
I_ii = ¢conv (Hu {mij }jE./\/'i)a (2)
-Hi - ¢conv(Hi7 {mzj}j€N1)7 (3)

While ¢,,,54(-) is the function that computes the message
value for a respective edge, @cony (+) is the selected function
that updates the node embeddings based on the messages from
this layer.

Transformers are defined through an encoder-decoder ar-
chitecture, with the core building block being the attention
mechanism. [7] The self-attention module operates on a se-
quence of n tokens, H € R™*4 which can be represented
by a function ¢g(-) : R"*? — R4, The definition of the
function ¢y (-) is shown in Equation 4-6:

Q=HW,, K=HWg,V=HWy, 4
KT

A = Softmax (Q) , @)
Vd

H= AV, (6)

The input H is first transformed into query, key and values,
Q,K,V € R¥4 through the use of linear wight matrices
Wo, Wi, Wy € R4 respectively. Then, the attention
matrix A € R™*"™ is computed by the inner product of the
query and key, followed by the normalization of a Softmax(-)
function. . The key information that makes attention valu-
able in capturing long-distance relationships between nodes is
A;; = 1 as itindicates the influence of H; on H; The atten-
tion matrix is finally applied to the value matrix to generate
new embeddings of the tokens H € R™*4,

After utilising self-attention, Transformers use normalisa-
tion layers followed by feed-forward networks (FFN) to pre-
vent exploding gradients and faster convergence. In practice,
multi-head attention (MHA) is widely utilised in Transformers
to enhance representation learning. In the context of graphs, it
has been used by implementations such as GAT [21] while be-
ing discredited by others such as Yin and Zhong as something
that was just adopted from the natural language processing and
computer vision tasks without much thought into it’s useful-
ness in the context of GNNG. Precisely, the Q, K, V matrices
obtained from Equation (4) are divided into H independent
heads, denoted as Q™), K and V(") respectively. The
MHA mechanism computes representations as Equation (7):

R) e (h)T
QWK™)V(h),
Vdp

where d;, = d/H represents the dimension assigned to each
head. MHA forms different representations from each head, fi-
nalising the process by concatenating the different embeddings
from each head.

H = ||/, Softmax ((7)

Cascade Interleaved

Task prediction

Task prediction

Figure 1: Comparison of layering architectures in cascade versus
interleaved models

Graph Transformer Layering Architectures: The integra-
tion of MPNN layers with Transformer layers in GTs has been
approached in several ways. While a definitive classification
is still evolving, a common point of discussion in the litera-
ture revolves around how these distinct architectural blocks
are combined [6] [10]. Based on current research, prominent
layering strategies include:

- Cascade (Sequential Stacking): In this approach, a
block of MPNN layers is followed by a block of Trans-
former layers (e.g. GraphTrans [18]).

- Interleaved: MPNN layers and Transformer layers are
alternated throughout the network’s depth (e.g. LGI-GT
[10]).

- Layered Fusion (Parallel): Within each layer or block,
MPNN and Transformer operations are performed in

parallel on the same input, and their outputs are fused
(e.g. GPS [6]).

- Late Fusion: This typically involves separate, deep
processing streams for graph-based and sequence-based
information, with fusion occurring only towards the end
of the model. (e.g. SGFormer [16])

Positional encodings: Through various techniques used to
give mathematical values to the structure of a graph, positional
encodings try to define the node’s role in the structures it
is part of. This can be highly beneficial in cases where the
MPNN cannot convey the structure well enough. Message
passing accounts for the graph structure by using edges as the
decider if two nodes i and j will exchange information, as
seen in Equation 1. No equivalent inherent property guarantees
the same for the attention mechanism; as such, Positional
Encodings are a way to remind the Transformer layers about
the graph structure.

3.2 Detailed knowledge

This section discusses the specifics of the Graph Transformer
(GT) architectures relevant to this work while also briefly
mentioning other important prerequisites.

Two of the main GNN architectures that are foundational for
the Message Passing (MP) layers in many advanced models are
the Graph Isomorphism Network (GIN) and Graph Attention
Network (GAT). Random Walks and Laplacian Eigenvectors
are the chosen Positional Encodings. As their implementation
details are not crucial to our contributions, they were described
in Appendix A.2.

Cascade models, such as GraphTrans [18], process graph
information through several MPNN layers before feeding the
resulting node representations to Transformer layers. A signif-
icant drawback of this architecture is that it inherits limitations
from the initial GNN stack [6]. Problems like over-smoothing
or over-squashing in the GNN layers can lead to a loss of
discriminative information before the data even reaches the
Transformer layers, potentially limiting the global attention
mechanism’s effectiveness [10].

A Cascade model consists of a block of L GNN structures
followed by a block of M Transformer structures:

L.
Hgnn = (GNNo---0oGNN)(H) ®)

L times

H = (Transformer o - - - o Transformer) (Hgnyy) (9)

M times

where Hgnn represents the node embeddings after be-
ing processed by all L GNN layers, which then serves as

the input to the subsequent block of M Transformer layers.
The base GNN function represents Equation 1, 3 and the base
Transformer function encompasses Equations 4, 5, 6.

Interleaved models aim to mitigate these issues by alter-
nating GNN and Transformer layers [10]. This design allows
for local information to be refined by GNN and then immedi-
ately processed for global context by Transformer layers, or
vice versa. This can help maintain richer node representations
throughout the network, enabling deeper architectures without
the significant information degradation that cascade models
might suffer. The interleaved architecture demonstrates robust
performance, especially when simpler fusion methods in par-
allel/layered fusion models might not effectively combine the
distinct information captured by MPNNs and Transformers
[10].

An interleaved model would consist of (L + M) /2 blocks,
where a single block would have the following structure, using
the definitions above:

1.
Hann = GNN(H) 10)

H = Transformer(Hgn) (11)

4 Methodology

This section outlines the architectural design and implemen-
tation choices for the Graph Transformer models used in this
research. The section begins by detailing the specific imple-
mentations of the GNN and Transformer components, explain-
ing how the general mathematical formulations are adapted
to operate effectively on heterogeneous graphs. Some general
details are presented about the Relbench benchmark, as they
have a clear impact on our methodology and how we decided
to approach the contributions. We follow by justifying the se-
lection of the cascade and interleaved architectures as the core
focus of the study. Finally, we describe the approach taken
to integrate and evaluate positional encodings to enhance the
structural awareness of the models.

4.1 GNN Layers

The GNN models were chosen based on specific features that
their implementations offer. The GIN has been proven to be
equally as powerful as 1WL test, while GAT learns to assign
different importance weights to different neighbours when
aggregating their features, which is even more important in a
heterogeneous graph than in a homogeneous one. Some edge
types and particular neighbours should have a higher influence
on the task at hand. For GAT the addition of edge features has
also been explored through the use of the concatenation of the
node features of both nodes.

4.2 Transformer Layers

As for the attention mechanism, classical multi-head self-
attention was chosen as described inside Equation 7. To fur-
ther accommodate the heterogeneity of our graph, two routes
showed potential as we advanced: using a monolithic atten-
tion mechanism across all node types or using attention on a
node-type basis. Applying a monolithic attention mechanism

across all node types might dilute type-specific information or
produce less meaningful attention scores if nodes of vastly dif-
ferent characteristics are forced into the same attention space.
By limiting attention on a node type-by-type basis:

Qi
V dh

We introduce a structured approach that offers semantic coher-
ence and reduces complexity

(Now)® 10 Y (N0 (13)

, which can be significantly less when the graph is partitioned
into reasonable node types like the Relbench datasets.

H, = ||/_, Softmax () vi" weT (12)

4.3 Intermediary representation details

RelBench was chosen as the benchmark the study will focus
on, a benchmark designed for evaluating machine learning
models on relational database tasks, due to its standardised
setup and diverse datasets. Relbench also provides us with
the heterogeneous graph intermediary representation that we
use as a starting point for our application of GTs. The follow-
ing are the key features that were taken for granted from the
Relbench representation to minimise the surface area of the
possible factors that influence the findings.

- Each training batch was constructed from different in-
dependent connected components sampled from the
graph.

- The heterogeneous graph structure was derived from
primary and foreign key relationships between different
entity types, ensuring no edges connect nodes of the
same kind.

Vi,j € Gif p(i) = p(j) then AZ; =0 (14)

- Both the primary-foreign key links and their inverse
links were used to create the edges.

Vi,j € Gif AZ, = 1 then Af, =1 (15)

- The temporal restriction based on VAL7 v EsTAMP
and TESTr v eEsTAMp 18 applied at batch level.

- There are no edge embeddings in the Relbench bench-
mark.

4.4 Architectural decisions

Based on the findings from the field and past paper research,
a ground-up approach will be used in the construction of
the models. This work focuses on the Cascade and Inter-
leaved architectures. The Cascade model provides a simple
implementation, while the Interleaved model offers greater
expressive power without sacrificing interpretability [10]. This
focused comparison allows us to directly attribute performance
changes to specific architectural decisions, grounding our find-
ings. This would guarantee the ability of pinpointing and
attributing the observed changes to specific parts of the model,
be it hyperparameter changes, implementation additions or
simplifications.

4

article_id (PK)
product_code
prod_name

(¢}

product_type_name
product_group_name
graphical_appearance_name
colour_group_name
perceived_colour_value_name

customer_id (PK) N
FN N
Active [
club_member_status C
fashion_news_frequency (o
age N
postal_code [
Legend
Feature Types:

N = Numerical
C = Categorical

perceived_colour_master_name
department_name

index_name

= Text
S =Timestamp customer_id (FK)
Key Definitions: article_id (FK)
PK = Primary Key (unique identifier) t_dat
FK = Foreign Key (reference to another table) price

Relationship Arrows: sales_channel_id

index_group_name
section_name
garment_group_name

0O000000000OO0

detail_desc

oznz2z

Figure 2: Database schema of the H&M Dataset, highlighting its three main entities and selected features exemplifying the input information

for node embeddings.

Our implementation of the Cascade model, defined gener-
ally in Equations 8 and 9, is specialised to handle heteroge-
neous graph data. The initial GNN block, corresponding to
Equation 8, consists of a shallow stack of message-passing
mechanisms. Each GNN layer is followed by a Layer Norm
and a ReLU activation function to stabilise training and intro-
duce non-linearity. Thus the definition of the H¢g v function
becoming:

Henyny = (ReLUo- - -oReLUoLayerNormoGNN) (H) (16)

The most significant adaptation occurs in the Transformer
block from Equation 9. Rather than applying a single, mono-
lithic attention mechanism across all nodes, our model instan-
tiates a separate Transformer layer for each node type, as seen
in 12 This design choice confines the self-attention compu-
tation to only nodes of the same type, effectively creating a
structured, type-aware attention mechanism. This approach
reduces computational complexity (13) and ensures that at-
tention scores are calculated between semantically coherent
entities. The same adaptations are also applied to the inter-
leaved model.

4.5 Positional Encodings

One of the principal ways through which GTs have been able
to improve over their Message Passing counterparts.

To further highlight and build upon these models we have
created and adapted existing Positional encodings as to ob-
serve their influence in the way the models are trained and per-
form. The two chosen positional encodings were Laplacian
Eigenvectors and Random Walks. Laplacian Eigenvectors
were chosen for their global positional awareness, while their
Random Walk counterpart was chosen due to their local struc-
ture context. With both in mind, the performance changes can

be attributed more clearly to the specific type of information
provided to the model.

The use of both allows us to isolate the effects of different
information types. While random walks’ features offer local
structural context, LapPEs offer their global counterpart.
Both encodings have been shown to enhance the expressive-
ness of GNNs beyond the standard 1-WL test capabilities.
They are used in tandem to allow us to understand further the
importance of the features of the datasets and the differences
between their application on heterogeneous and homogeneous
graphs. The positional encodings were tested with a sinusoidal
and MLP embedding method, while the graph was either en-
riched by edges between nodes of the same type 2 hops away,
or by none. Appendix A.3 explains the whole process.

5 Experimental Setup and Results

This section first describes the experimental setup, such as the
datasets and their characteristics, the chosen benchmark, data
splits and how to reproduce the experiments in subsection 5.1.
Further in Subsection 5.2, we highlight the results obtained by
applying the experiments.

5.1 Experimental setup

Relbench was chosen as the benchmark for the study. The
main scope of Relbench was to show the ability of RDL to
model heterogeneous datasets and obtain SOTA results com-
pared to current Graph Learning methods, and to establish a
comprehensive graph-learning benchmark for heterogeneous
datasets which previously did not exist. The diverse and vast
nature of the datasets present in Relbench makes it an ideal
observational medium for research. The chosen datasets for
this study are rel-avito, rel-hm, rel-fl, rel-trial, and rel-stack,
which encompass diverse domains such as e-commerce, sports,
medical, and social Q&A platforms. Only the Formula 1

Table 2: Entity classification results (AUROC, higher is better). Relative gains to RDL. Best values are highlighted.

Dataset Task Split RDL Cascade-GIN Rel. Gain Interleaved-GIN Rel. Gain
. user-visits Test 66.20 69.41 4.85 % 66.2 —0.12%
rel-avito
user-clicks Test 65.90 66.47 0.86 % 65.92 0.03 %
rel-f1 driver-dnf Test 72.62 71.67 —1.31% 65.16 —10.27 %
driver-top3 Test 75.54 78.87 2.58 % 76.17 —.094 %
rel-hm user-churn Test 69.88 68.69 —1.7% 67.92 —2.8%
user-engagement Test 90.59 90.8 0.23 % 89.63 —1.06 %
rel-stack
user-badge Test 88.86 88.15 —0.8% 82.76 —6.82 %

Table 3: Entity regression results (MAE, lower is better). Relative gains to RDL. Best values are highlighted.

Dataset Task Split RDL Cascade-GIN Rel. Gain Interleaved-GIN Rel. Gain
rel-avito ad-ctr Test 0.041 0.038 6 % 0.039 3.41 %
rel-hm item-sales Test 0.056 0.053 4.17 % 0.052 6.2 %
rel-f1 driver-position Test 4.022 3.955 1.7 % 4.195 —4.1%

Table 4: Hyperparameters configured for various Relbench tasks.

Hyperparameter Task type

RDL parameters Our Parameters
Learning rate 0.005 0.005
Maximum epochs 10 10
Batch size 512 128
Hidden feature size 128 128
Aggregation summation summation
Number of layers 2 3
Number of neighbors 128 128
Temporal sampling strategy uniform uniform

dataset was used for positional encoding comparisons, ac-
knowledging the scalability limitations of using current posi-
tional encoding methods.

These databases vary significantly in scale and structure,
with table counts ranging from 3(rel-hm) to 15(rel-trial) and
column counts from 37(rel-hm) to 140(rel-trial). For instance,
the rel-hm dataset comprises three interconnected entities:
customer, article, and transactions, which are linked through
primary-foreign key relationships to capture detailed historical
sales data. Each entity within these databases is comprised of
various features of different types (e.g., numerical, categorical,
timestamp, text) as seen in Figure 2, which contribute to the
rich predictive signal.

Data splitting in RELBENCH is handled tempo-
rally based on specified validation and test timestamps
VALrivmestamp and TESTrravpsTam p- This is to pre-
vent data leakage from future events, ensuring that models are
evaluated on information that would be available at the time
of prediction. Each of the datasets has different time stamps
that can be seen at in the Relbench paper [20].

The training methodology used mirrors that in the Relbench
study [20], as it can be seen in Table 4, except for the additional
layer, which is used to accommodate for the need of both GNN
and Transformer layers in GT. Lowering the batch size was
observed to produce similar results with a faster training time.
Further in this study, we will refer to the Relbench model as

RDL both when addressing the differences in design, but also
experimental differences.

It is to be noted that while most of the datasets do have
class imbalances, these are cases where this phenomenon is
quite extreme, such as the Stack dataset where out of all the
data available for the user-engagement classification tasks only
about 5% of the training samples (68,020 out of 1,360,850) are
positive (user makes a contribution), indicating a significant
class imbalance where the majority class (no contribution) is
overwhelmingly dominant. Similarly, user-badge also shows
a strong imbalance, with around 4.8% positives.

5.2 Results

This section presents the empirical outcomes of our experi-
ments, focusing on the comparative performance of the cas-
cade and interleaved layering techniques, the impact of various
positional encodings (PEs), and a brief comparison of GNN
architectures within our framework. Performance is evaluated
using the Area Under the Receiver Operating Characteristic
Curve (AUROC) for classification tasks and the Mean Abso-
lute Error (MAE) for regression tasks.

Architectural Comparison: Cascade vs. Interleaved

The initial architectural comparison, as detailed in Table 2 for
classification tasks and Table 3 for regression tasks, reveals
distinct trends. For classification tasks the simplistic Cascade-
GIN model generally achieves results comparable to or slightly
varying from the RDL baseline. For instance, rel-avito’s user-
visits task shows a 4.85% relative gain in AUROC for Cascade-
GIN, while rel-fI’s driver-top3 yields a 2.58% gain. Conversely,
some tasks, like rel-hm’s user-churn, show minor decreases in
AUROC, -1.7% for Cascade-GIN.

In contrast, for regression tasks, the cascade model consis-
tently demonstrates notable improvements. Table 3 indicates
that the simplistic cascade model achieves a 2-6% reduction in
MAE across various regression tasks. For instance, rel-avito’s
ad-ctr shows a 6.0% MAE reduction for Cascade-GIN, and rel-
hm’s item-sales shows a 4.17% reduction. Such improvements

can be characterised as statistically significant, supported by
the low variance observed between runs.

Another trend that can be observed from the graphs is the
interleaved architecture’s performance, as seen in both Table
2 and Table 3, generally aligns with or slightly underperforms
the cascade architecture.

Impact of Positional Encodings

Our analysis of positional encodings (PEs) involved two types:
Laplacian and Random Walks, each tested with the addition
of edges connecting nodes of the same type two hops away
or none, two adaptation methods (sinusoidal, MLP) were also
tested as to see the optimal way to integrate the PE into the
current node embeddings, across different exploration lengths
(3,5, 7). The results are presented as follows in Figures 3—4 for
the driver-dnf task, with the remaining graphs for driver-top3
and driver-position being in Appendix A.4, as they present the
same overall trends.

074

7
\

ROC-AUC
%,
%

on N

5
Exploration Length

Figure 3: AUROC performance for driver-dnf with Cascade-GIN
+ Laplacian Eigenvector PE across varying exploration lengths.
This graph shows the impact of pseudo-edge types (none vs. multi-
hop) and embedding adaptation methods (sinusoidal vs. MLP), where
"exploration length" refers to the number of lowest non-zero eigen-
values used for computing the PE.

For the driver-dnf classification task (Figures 3—4), the in-
clusion of positional encodings generally shows varying, often
marginal, impacts on AUROC. With Laplacian PE 3, multi-
hop + sinusoidal performs competitively at walk length 3 while
none + mlp is competitive at walk length 7. Multi-hop + mlp
also shows a strong initial performance at walk length 3 be-
fore decreasing. Similarly, for Random Walk PE (Figure 4),
the trends are inconsistent, with none + sinusoidal showing a
decline and multi-hop + mlp being relatively stable.

A consistent observation across these PE experiments is the
lack of a clear, universal performance gain from the introduced
positional encodings. While some configurations show minor
improvements or competitive performance at specific walk
lengths or with particular PE types, there is no overwhelming
evidence that these homogeneous PEs, even with synthetic
multi-hop edges significantly and consistently enhance the
model’s predictive power on these heterogeneous datasets.
Furthermore, adding multi-hop edges does not consistently

073 —

00

ROC-AUC
%

9

070

5
Exploration Length

Figure 4: AUROC performance for driver-dnf with Cascade-
GIN + Random Walk PE across varying exploration lengths.
This graph shows the impact of pseudo-edge types (none vs. multi-
hop) and embedding adaptation methods (sinusoidal vs. MLP), where
"exploration length" refers to the maximum walk length considered.

improve performance. In some cases, it appears to slightly
lower the overall performance of both Laplacian Eigenvector
and Random Walk PEs, as suggested by the varying trends in
the figures.

GNN Component Comparison

@ Cascade-GIN @ Coascade-GAT

63.59

avito, user-visits

@ Cascade-GATE

Test AUROC

0
69.57
59.23
53.87

hm, user-churn

Dataset, Task trained on

Figure 5: AUROC performance of Cascade models employing GIN,
GAT, and GATE GNN modules on classification tasks.

Figures 5 and 6 compare the basic implementation of the
Cascade-GIN model presented in 5.2 where we swapped the
previously used GNN module of our model for GAT and
GATE models. For the classification tasks, Figure 5 indicates a
better performance of the Cascade-GIN model. In this context,
the GIN model consistently shows the highest AUROC (69.57
for hm, user-churn and 70.76 for avito, user-visits) compared
to GAT and GATE. Similarly, for the regression tasks hm, item-
sales and avito, ad-ctr in Figure 6, the GIN model also exhibits
the lowest MAE (0.06100 and 0.03400, respectively). This
consistent outperformance of the GIN model strongly suggests

that the GIN-based message passing, as employed within our
Cascade architecture, is more effective for these heterogeneous
relational datasets compared to GAT and GATE’s aggregation
mechanisms.

@ Cascade-GIN @ Coascade-GAT

@ Coascade-GATE
0.09
0.08
0.07
0.06
0.05

Test MAE

0.04
0.03
0.02

0.01

0.00
avito, ad-ctr

hm, item-sales

Dataset, Task trained on

Figure 6: AUROC performance of Cascade models employing GIN,
GAT, and GATE GNN modules on regression tasks.

6 Discussion

The findings illuminate several critical aspects regarding the
application of GTs to heterogeneous datasets, particularly
within the RDL context. Two primary research questions
guided the research: the optimal combination of GNN and
Transformer benefits and the measurable effects of positional
encodings in RDL.

6.1 Architectural Synergy in Relational Deep
Learning

The initial comparison between Cascade and Interleaved ar-
chitectures (Tables 2 and 3) did not reveal a significant perfor-
mance disparity, both of them showing similar performance
in the classification tasks, while the regression tasks showed
improvement. This outcome might appear counterintuitive,
especially considering literature highlighting cascade mod-
els’ inherent limitations, such as over-smoothing in deeper
GNN stacks. However, the observed similarity is attributable
to the shallowness of the models employed in these initial
experiments. With a limited number of three layers, the cas-
cade architecture will not suffer significantly from informa-
tion degradation, allowing its GNN component to effectively
capture local structures and its Transformer component to
subsequently model global relationships without substantial
loss. This would not mean that the Interleaved-GIN model
would perform better with more layers; it would only show no
degradation in the current results, as observed in [10].

Moreover, the observed superior performance of the GIN-
based Cascade model over GAT and GATE, as shown in Fig-
ures 5 and 6 suggests that for these heterogeneous relational
datasets, the GIN’s strong discriminative power, rooted in
its ability to distinguish between different graph structures
equivalent to the 1-WL test, is highly beneficial.

6.2 Measurable Effects of Positional Encodings in
RDL

However, a more critical observation is the general lack of
significant performance gain from the implemented PEs, even
with the introduction of synthetic two-hop edges. One of the
primary reasons for this could again be linked to the node-
type-based attention mechanism. The attention mechanism
might already effectively learn structural and positional roles
within those type-specific subgraphs. In such a scenario, the
explicit structural information provided by LE or RW PEs
might become redundant or offer marginal new insights, as
the Transformer layers are already well-equipped to discern
these patterns for the node types they focus on.

Adding such synthetic edges did not have a positive impact
edges seem to lower the o-Ve?all_per_forFance 0f both LE and
RW by a small margin. Such a result is not unexpected, as
creating new edges that have nothing to do with the graph
structure can deter the model from learning based on the actual
graph structure.

7 Conclusions and Future Work

This work explored the application of Graph Transformers to
Relational Deep Learning, focusing on architectural layering
techniques and the influence of positional encodings. The ex-
periments demonstrate that the architectural design influences
predictive performance in Relational Deep Learning.

Our findings suggest that for shallower models and
Relbench-type heterogeneous datasets, the cascade layering
technique, with its GIN-based message passing and node-type-
specific attention, provides a simple yet effective solution,
particularly for regression tasks. It achieves comparable or su-
perior performance to baselines and other GNN architectures
(GAT, GATE) on the evaluated tasks, without the added com-
plexity that might not yield benefits in shallow settings. The
simplicity and speed of the cascade model make it a strong can-
didate for practical applications where efficiency is paramount.
The performance of the interleaved model, on the other hand,
did not consistently outperform the cascade architecture, in-
dicating that merely alternating GNN and Transformer layers
might not be sufficient without more sophisticated mecha-
nisms for global context integration.

When looking at positional encodings, the experiments indi-
cate that homogeneous positional encodings, including Lapla-
cian Eigenvectors and Random Walks, even with the addition
of multi-hop edges, do not consistently provide significant
measurable performance gains in the heterogeneous graph set-
ting. The impact observed was often marginal or inconsistent
across tasks and configurations. Further research would be
needed to attribute this to the node type-based attention mech-
anism or to the chosen PE having no advantage in RDL and in
the broader heterogeneous graph context.

Moving forward, a pressing need exists for positional encod-
ings specifically designed with heterogeneity and large-scale
graphs in mind. Future work should explore effective posi-
tional encodings for RDL and heterogeneous graphs that can
scale efficiently, and investigate other GNN models known to
outperform GIN, such as PNA.

8 Responsible Research

8.1 Ethical implications

This research has considered all ethical standards that might be
encountered in such a project. The data used is based on open
datasets that were provided to the research and hobbyist com-
munity through different methods, collected and compiled by
[22], creating a benchmark for heterogeneous graphs. While
most of the datasets themselves do not contain any informa-
tion related to the gender, sex or other features that might be
discriminatory, there are others, such as the "Events" dataset,
that do. It is to be noted that during the experimental setup,
no greater measures were taken to observe direct or indirect
biases that might arise from the multitude of features. The
biases were not explored further as they were not the main
priority of the research.

8.2 Reproducibility and used experimental data

All the runs were seeded with concrete seeds from the pool 42,
123, 456, 789, 1024. All graphs are comprised of five different
training runs, all seeds were used once. All packages and
libraries have enforced versions to allow for reproducibility.
The analysis includes all of the data compiled during the re-
search. Any other results were either faulty due to the current
implementation of the code or incomplete training runs. To
ease the replication process, the code will be available through
an online Git repository: https://github.com/hcagri/relbench-
rafael.

8.3 Environmental impact

The inference and training of deep neural networks on large
datasets tend to be both computationally and energetically
intensive. As the focus has been mainly on shallower models,
excessive runs not used in the final analysis were kept to a
minimum, with their sole purpose being to explore different
hyperparameter values. Thus, such a study’s environmental
impact was as low as expected.

8.4 Programming

While the code has been checked and debugged using the
output of the different tensors and layers, it would be prudent
for any further research that uses this study as a basis to fa-
miliarise themselves with the code. Most parameters can be
passed through the Python activation script, while some will
have to be manually edited inside the model or main file. The
directories where the datasets are stored will also have to be
changed inside the main file. A shell script to run multiple
experiments in batches is also provided with examples of how
it was used during the research.

Pytorch, together with Pytorch Geometric and Frame, were
used due to their tight integration in the development of the
Relbench package. Current implementations of RW and LE
positional encodings are incompatible with graphs with mul-
tiple node or edge types in Pytorch Geometric. As such, the
paper has devised its implementations and modifications to
adapt, as described in 4.3.

References

(1]

(2]

(4]

(5]

(6]

(7]

(8]

[9]

[10]

Chengxuan Ying et al. Do Transformers Really Perform
Bad for Graph Representation? arXiv:2106.05234 [cs].
Nov. 2021. pOI: 10.48550/arXiv.2106_05234. URL:
http://arxiv.org/abs/2106.05234 (visited on Apr. 26,
2025).

Vijay Prakash Dwivedi and Xavier Bresson. A Gen-
eralization of Transformer Networks to Graphs.
arXiv:2012.09699 [cs]. Jan. 2021. DOI: 10.48550/arXiyv.
2012.09699. URL: http://arxiv.org/abs/2012.09699
(visited on Apr. 26, 2025).

Junhong Lin et al. “FraudGT: A Simple, Effective, and
Efficient Graph Transformer for Financial Fraud De-
tection”. en. In: Proceedings of the 5th ACM Inter-
national Conference on Al in Finance. Brooklyn NY
USA: ACM, Nov. 2024, pp. 292-300. ISBN: 979-8-
4007-1081-0. por: 10.1145/3677052.3698648. URL:
https://dl.acm.org/doi/10.1145/3677052.3698648
(visited on Apr. 26, 2025).

Luis Miiller et al. Attending to Graph Transformers.
arXiv:2302.04181 [cs]. Mar. 2024. poI1: 10.48550/
arXiv.2302.04181. URL: http://arxiv.org/abs/2302.
04181 (visited on Apr. 27, 2025).

Jianan Zhao et al. Gophormer: Ego-Graph Transformer
for Node Classification. arXiv:2110.13094 [cs]. Oct.
2021. por: 10.48550/arXiv.2110.13094. URL: http:
/larxiv.org/abs/2110.13094 (visited on Apr. 27, 2025).

Ladislav Rampdavsek et al. “Recipe for a General,
Powerful, Scalable Graph Transformer”. en. In: Ad-
vances in Neural Information Processing Systems
35 (Dec. 2022), pp. 14501-14515. URL: https : //
proceedings . neurips . cc / paper _ files / paper /2022 /
hash/5d4834a159f1547b267a05ade2b7cfSe- Abstract-
Conference.html (visited on Apr. 27, 2025).

Ashish Vaswani et al. Attention Is All You Need.
arXiv:1706.03762 [cs]. Aug. 2023. pOI1: 10.48550/
arXiv.1706.03762. URL: http://arxiv.org/abs/1706.
03762 (visited on Apr. 26, 2025).

Yizhou Sun and Jiawei Han. “Mining heterogeneous
information networks: a structural analysis approach”.
In: SIGKDD Explor. Newsl. 14.2 (Apr. 2013), pp. 20—
28. ISSN: 1931-0145. por: 10.1145/2481244 2481248
URL: https://doi.org/10.1145/2481244.2481248 (visited
on May 31, 2025).

Ladislav Rampévsek et al. Recipe for a General, Pow-
erful, Scalable Graph Transformer. arXiv:2205.12454
[cs]. Jan. 2023. DOI: 10.48550/arXiv.2205.12454. URL:
http://arxiv.org/abs/2205.12454 (visited on Apr. 26,
2025).

Shuo Yin and Guoqgiang Zhong. “LGI-GT: Graph Trans-
formers with Local and Global Operators Interleaving”.
en. In: Proceedings of the Thirty-Second International
Joint Conference on Artificial Intelligence. Macau, SAR
China: International Joint Conferences on Artificial In-
telligence Organization, Aug. 2023, pp. 4504-4512.
ISBN: 978-1-956792-03-4. DOI: 10.24963/ijcai.2023/

https://doi.org/10.48550/arXiv.2106.05234
http://arxiv.org/abs/2106.05234
https://doi.org/10.48550/arXiv.2012.09699
https://doi.org/10.48550/arXiv.2012.09699
http://arxiv.org/abs/2012.09699
https://doi.org/10.1145/3677052.3698648
https://dl.acm.org/doi/10.1145/3677052.3698648
https://doi.org/10.48550/arXiv.2302.04181
https://doi.org/10.48550/arXiv.2302.04181
http://arxiv.org/abs/2302.04181
http://arxiv.org/abs/2302.04181
https://doi.org/10.48550/arXiv.2110.13094
http://arxiv.org/abs/2110.13094
http://arxiv.org/abs/2110.13094
https://proceedings.neurips.cc/paper_files/paper/2022/hash/5d4834a159f1547b267a05a4e2b7cf5e-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/5d4834a159f1547b267a05a4e2b7cf5e-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/5d4834a159f1547b267a05a4e2b7cf5e-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/5d4834a159f1547b267a05a4e2b7cf5e-Abstract-Conference.html
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1145/2481244.2481248
https://doi.org/10.1145/2481244.2481248
https://doi.org/10.48550/arXiv.2205.12454
http://arxiv.org/abs/2205.12454
https://doi.org/10.24963/ijcai.2023/501
https://doi.org/10.24963/ijcai.2023/501

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

501. URL: https://www.ijcai.org/proceedings/2023/501
(visited on May 2, 2025).

Keyulu Xu et al. How Powerful are Graph Neural Net-
works? arXiv:1810.00826 [cs]. Feb. 2019. por: 10.
48550/arXiv.1810.00826. URL: http://arxiv.org/abs/
1810.00826 (visited on May 31, 2025).

Junhan Yang et al. “GraphFormers: GNN-nested Trans-
formers for Representation Learning on Textual Graph”.
In: Advances in Neural Information Processing Sys-
tems. Vol. 34. Curran Associates, Inc., 2021, pp. 28798—
28810. URL: https://proceedings.neurips.cc/paper/2021/
hash/f18a6d1cde4b205199de8729a6637b42- Abstract.
html (visited on May 2, 2025).

Vijay Prakash Dwivedi et al. Benchmarking Graph Neu-
ral Networks. arXiv:2003.00982 [cs]. Dec. 2022. DOTI:
10.48550/arXiv.2003.00982. URL: http://arxiv.org/abs/
2003.00982 (visited on June 4, 2025).

Jiawei Zhang et al. Graph-Bert: Only Attention
is Needed for Learning Graph Representations.
arXiv:2001.05140 [cs]. Jan. 2020. DoI: 10.48550/arXiv.
2001.05140. URL: http://arxiv.org/abs/2001.05140
(visited on June 18, 2025).

Devin Kreuzer et al. “Rethinking Graph Transform-
ers with Spectral Attention”. In: Advances in Neural
Information Processing Systems. Vol. 34. Curran As-
sociates, Inc., 2021, pp. 21618-21629. URL: https://
proceedings.neurips.cc/paper_files/paper/2021/hash/
b4fd1d2cb085390fbbadac65¢07876a7- Abstract.html
(visited on Apr. 27, 2025).

Qitian Wu et al. “SGFormer: Simplifying and Empow-
ering Transformers for Large-Graph Representations”.
en. In: Advances in Neural Information Processing Sys-
tems 36 (Dec. 2023), pp. 64753—-64773. URL: https:
//proceedings . neurips . cc/paper _ files/paper/2023/
hash/cc57fac10eacadb3b72a907ac489a98- Abstract-
Conference.html (visited on Apr. 27, 2025).

Qitian Wu et al. SGFormer: Simplifying and Empow-
ering Transformers for Large-Graph Representations.
arXiv:2306.10759 [cs]. Aug. 2024. poI1: 10.48550/
arXiv.2306.10759. URL: http://arxiv.org/abs/2306.
10759 (visited on Apr. 26, 2025).

Zhanghao Wu et al. “Representing Long-Range Con-
text for Graph Neural Networks with Global Attention”.
In: Advances in Neural Information Processing Sys-
tems. Vol. 34. Curran Associates, Inc., 2021, pp. 13266~
13279. URL: https://proceedings . neurips.cc/paper/
2021 /hash /6e67691b60ed3e4a55935261314dd534 -
Abstract.html (visited on Apr. 29, 2025).

Ziniu Hu et al. “Heterogeneous Graph Transformer”.
In: Proceedings of The Web Conference 2020. WWW
’20. New York, NY, USA: Association for Computing
Machinery, Apr. 2020, pp. 2704-2710. ISBN: 978-1-
4503-7023-3. por: 10.1145/3366423 3380027. URL:
https://dl.acm.org/doi/10.1145/3366423.3380027
(visited on Apr. 27, 2025).

(20]

(21]

(22]

Joshua Robinson et al. RelBench: A Benchmark
for Deep Learning on Relational Databases.
arXiv:2407.20060 [cs]. July 2024. po1: 10.48550/arXiv.
2407.20060. URL: http://arxiv.org/abs/2407.20060
(visited on Apr. 27, 2025).

Petar Velivckovi¢ et al. Graph Attention Networks.
arXiv:1710.10903 [stat]. Feb. 2018. poI: 10.48550/
arXiv.1710.10903. URL: http://arxiv.org/abs/1710.
10903 (visited on June 2, 2025).

Matthias Fey et al. “Relational Deep Learning: Graph
Representation Learning on Relational Databases”. en.

In: ().

10

https://doi.org/10.24963/ijcai.2023/501
https://www.ijcai.org/proceedings/2023/501
https://doi.org/10.48550/arXiv.1810.00826
https://doi.org/10.48550/arXiv.1810.00826
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
https://proceedings.neurips.cc/paper/2021/hash/f18a6d1cde4b205199de8729a6637b42-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f18a6d1cde4b205199de8729a6637b42-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f18a6d1cde4b205199de8729a6637b42-Abstract.html
https://doi.org/10.48550/arXiv.2003.00982
http://arxiv.org/abs/2003.00982
http://arxiv.org/abs/2003.00982
https://doi.org/10.48550/arXiv.2001.05140
https://doi.org/10.48550/arXiv.2001.05140
http://arxiv.org/abs/2001.05140
https://proceedings.neurips.cc/paper_files/paper/2021/hash/b4fd1d2cb085390fbbadae65e07876a7-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/b4fd1d2cb085390fbbadae65e07876a7-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/b4fd1d2cb085390fbbadae65e07876a7-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/cc57fac10eacadb3b72a907ac48f9a98-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/cc57fac10eacadb3b72a907ac48f9a98-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/cc57fac10eacadb3b72a907ac48f9a98-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/cc57fac10eacadb3b72a907ac48f9a98-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2306.10759
https://doi.org/10.48550/arXiv.2306.10759
http://arxiv.org/abs/2306.10759
http://arxiv.org/abs/2306.10759
https://proceedings.neurips.cc/paper/2021/hash/6e67691b60ed3e4a55935261314dd534-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/6e67691b60ed3e4a55935261314dd534-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/6e67691b60ed3e4a55935261314dd534-Abstract.html
https://doi.org/10.1145/3366423.3380027
https://dl.acm.org/doi/10.1145/3366423.3380027
https://doi.org/10.48550/arXiv.2407.20060
https://doi.org/10.48550/arXiv.2407.20060
http://arxiv.org/abs/2407.20060
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.48550/arXiv.1710.10903
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1710.10903

A Appendix

A.1 Visual representation for Message Passing and Attention

This section is meant to help readers with a more visual representation of the 2 information passing mechanisms found in a GTs,
message passing and attention. A customer node is selected from the H&M dataset after which all of its transactions and items
are received. The attention mechanism operates on the exact node embeddings received from the second GIN layer. The initial
node embeddings are simulated while the latter ones actually use Torch Message Passing and Self-Attention.

Initial Features After 1st GIN Layer After 2nd GIN Layer
(Before Message Passing) (1 round of message passing) (2 rounds of message passing)

¢
¢
¢

-0.4,-13] 12,-0.3] 14,04,
-0.5, -1.5] 0.3, -1.2) -0.1,-0.9

tra:

4
4

0.7, 15 05,09
B33
tra; 42 tra. 42 tra. 42
e o o
00,0
12 01]
-0.4, 1.4] 0.1,1.2

Figure 7: Visual representation of message passing in a Graph Isomorphism Network on actual transaction nodes from the H&M dataset. This
diagram shows the evolution of node features from their initial state (before message passing) through one and then two rounds of message
passing in a GIN layer, illustrating how information is propagated and aggregated across the graph.

Self-Attention Matrix
(transactions nodes)

Output Features After Attention

Input Features from 2nd GNN Layer
(transactions nodes)

(transactions nodes)

tral333543 -0.59 — tral333543 tra1333543

05

Node Index
Node Index

0.0

£
g
=
1
5
g
g
2
]
]
8
z
>
g
2
&

tral333542 0.00 -0.25 tral333542 tral333542

-0.50

0.0

Lo

I & g ’

Feature Dimension 5 o Feature Dimension
-l -

& &
Key Nodes (attending to)

Figure 8: Visual representation of the self-attention mechanism on actual transaction nodes from the H&M dataset, illustrating the transformation
from input features to output features. The figure shows initial transaction node features from the second GNN layer, the computed self-attention
matrix between these nodes, and the resulting updated node features after the attention mechanism has been applied.

A.2 Further detailed knowledge

GIN and GAT

Graph Isomorphism Network (GIN) aims to achieve maximal discriminative power, equivalent to the Weisfeiler-Leman
(1-WL) test[11]. It employs a Multi-Layer Perceptron (MLP) to learn the update function. The core idea is that an MLP, under the
universal approximation theorem, can learn any function. Combined with a sum aggregator, it can represent injective functions
over multisets of neighbour features. This allows GIN to distinguish between graph structures that simpler GNNs cannot. Xu et

11

al. (2019) noted: "Generally, there may exist many other powerful GNNs. GIN is one such example among many maximally
powerful GNNs, while being simple.". The update rule for a node ¢ at layer % in GIN is:

H; = MLP ((1 +e®) H +) Hj) (17)
UENL

where MLP is the MLP for the k-th layer, H; is the feature vector of node 4 from the previous layer, ; is the set of neighbors of
node ¢, and € is either a learnable parameter or a fixed scalar. This formulation combines the central node’s updated feature with
the sum of its neighbours’ features before passing it through an MLP.

Graph Attention Network (GAT) [21] utilises masked self-attention mechanisms for local message passing, allowing nodes
to assign different importance to different neighbours. The attention coefficients «;; between node ¢ and its neighbour j are
computed based on their features, and these coefficients then weight the contributions of neighbours during aggregation. The
updated node representation H; is then:

I‘ii =0 Z OéijWHj (18)
JEN;U{i}

Here, W is a shared linear transformation matrix, a is a weight vector for the attention mechanism, and o is a non-linearity [21].
The key difference from the general MP formulation is that ¢, (H;, H;) in GAT involves a learnable attention mechanism that
computes «;; based on H; and H;, and the message m; becomes ;W H ;. The ¢.on, is then the weighted sum followed by o.

Laplacian Eigenvectors and Random Walk Positional Encodings

Laplacian Eigenvectors are derived from the spectral decomposition of the graph Laplacian matrix, which is defined as
L = D — AG. laplacian eigenvectors are obtained by solving the eigenvalue problem: Lu = \u More precisely, the eigenvectors
corresponding to the k-lowest non-zero eigenvalues are often used for the i th node, where k is a chosen variable. LapPEs have
been shown to be crucial for distinguishing non-isomorphic graphs where standard GNN might fail. They were one of the initial
methods used to make transformers graph-aware [6]. By incorporating LapPE we allow the node embeddings to reflect their
overall position and role in the graph’s structure, giving the node a global positional awareness.

Random Walks Positional Encodings capture the structural role of a node by analysing the probabilities of a random walker
returning to that node. They are used to encode the information about the local neighbourhood structure and the node’s role
within it. The key component is the random walk transition matrix P, which is typically the row-normalised adjacency matrix:

P=D1AC® (19)

The matrix P* contains the probabilities of transitioning from one node to another in exactly k steps. The RWPE for a node i
is often defined using the diagonal elements of the powers of this transition matrix, (P*)ii, which represents the probability of a
random walk starting at node i returning to node i after k steps.

For a walk length of L., the RWPE for node i is given by:

PE(i) = [(P)is, (P?)iiy ..os (PTme7)] (20)

While the positional encoding can be extracted from the sum over rows of diagonal elements of the m-step random walk matrix,
giving it a clear purpose within a local cluster, the non-diagonal elements of the matrix can be used to understand its role in the
substructure, its position relative to its immediate surroundings.

A.3 Positional adaptations

As no PE have been adapted to work with heterogeneous graphs, the study first aimed to observe how the existing homogeneous
implementations interact with such datasets. Due to the aforementioned qualities of our graphs in Equation 14. Our current graph
representation (7, being passed to such transformation functions, would have no edges to work with as current implementations are
looking for edges that connect nodes of the same type. To address this we decide to convert our current graph to a homogeneous
version G’ that stores the node type as a feature and transform all nodes and edges to 1 general node and edge type, all other
properties remain unchanged. This is only a temporary change that is used in the creation of the Positional Encodings and is
reverted back immediately after. As previously mentioned in 4.3, the temporal restrictions are applied separately for each batch;
as such, the positional encodings will have to be used at a batch level as well. An implementation that would compute them for
the whole graph in advance would suffer from data leakage and would not constitute meaningful results.

Our first positional encoding implementation consists of using G’ with the current available homogeneous implementations
for both Laplacian and Random Walks. Our model would further use the received embeddings and pass them through as a
sinusoidal layer to bring them to the dimensionalities of the node embeddings, from where they will be added to the current node
embeddings.

12

Moving further into our next approach, we still keep G’ but we create more complex synthetic edges that can add
meaningful information to the current node embeddings. Let TwoHopNeighbours be the function that adds the edges

= .
' 0 otherwise

- {1 if (3js.t. (A9);; =1A(AG) ;6 =1) A (p(i) = p(k))

We wish to see if adding such synthetic edges would impact the amount of information the encodings are able to gather.
While using the sinusoidal function to match the embeddings in size we also believed that an approach that uses an MLP to
convert the positional encodings to embeddings of the same size as the node embeddings was worth exploring.

A.4 Positional encodings extras

0825 <
&

0.800
N
>
@
&
0775 &
&
&
x
e
<
S
Y 050 <€
S
D N
g N
3 R
0725 =
o
N
<&
0.700 N

0675

0.650

3 7

3
Exploration Length

(a) AUROC performance for driver-top3 with Cascade-GIN +
Laplacian Eigenvector PE across varying exploration lengths.
This graph shows the impact of pseudo-edge types (none vs.
multi-hop) and embedding adaptation methods (sinusoidal vs.
MLP), where "exploration length" refers to the number of lowest
non-zero eigenvalues used for computing the PE.

3 7

5
Exploration Length

(a) AUROC performance for driver-position with Cascade-GIN

+ Laplacian Eigenvector PE across varying exploration lengths.
This graph shows the impact of pseudo-edge types (none vs.
multi-hop) and embedding adaptation methods (sinusoidal vs.

MLP), where "exploration length" refers to the number of lowest
non-zero eigenvalues used for computing the PE.

&
0825 S
&
o
o
0.800 i
o
S
N
&
0775 &
&
x
@
<@
v S
200 <
. N4
9 <&
o o
3
0725 <°
<&
N
0.700 W&
e
<
&
0675
0650

3 7

3
Exploration Length

(b) AUROC performance for driver-top3 with Cascade-GIN
+ Random Walk PE across varying exploration lengths.
This graph shows the impact of pseudo-edge types (none vs.
multi-hop) and embedding adaptation methods (sinusoidal vs.
MLP), where "exploration length" refers to the maximum walk
length considered.

&
&
B
45 x
R
.\‘(\o
&
S
&
&
&
O
” 5
x
e
<8
S
E Q
R
= &
43 R
&
o
>
N
N
N <
sz
OQz
K
41

3 7

5
Exploration Length

(b) AUROC performance for driver-position with Cascade-
GIN + Random Walk PE across varying exploration lengths.
This graph shows the impact of pseudo-edge types (none vs.
multi-hop) and embedding adaptation methods (sinusoidal vs.
MLP), where "exploration length" refers to the maximum walk
length considered.

13

	Introduction
	Related Research
	Background
	Notations
	Detailed knowledge

	Methodology
	GNN Layers
	Transformer Layers
	Intermediary representation details
	Architectural decisions
	Positional Encodings

	Experimental Setup and Results
	Experimental setup
	Results
	Architectural Comparison: Cascade vs. Interleaved
	Impact of Positional Encodings
	GNN Component Comparison

	Discussion
	Architectural Synergy in Relational Deep Learning
	Measurable Effects of Positional Encodings in RDL

	Conclusions and Future Work
	Responsible Research
	Ethical implications
	Reproducibility and used experimental data
	Environmental impact
	Programming

	Appendix
	Visual representation for Message Passing and Attention
	Further detailed knowledge
	GIN and GAT
	Laplacian Eigenvectors and Random Walk Positional Encodings

	Positional adaptations
	Positional encodings extras

