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Abstract

In this thesis, a control design problem, in which communication between different elements
of the control system takes place through a shared (possibly wireless) channel, is considered.
With the implementation of the proposed approach, the use of limited resources such as
network bandwidth and battery life may be reduced.

The proposal consists of a robust Model Predictive Control (MPC) approach, that is only
executed at instants at which a decentralized triggering mechanism triggers. As long as no
triggering occurs, inputs that have been computed at the previous MPC update are used.
The triggering mechanism uses the trajectories from the MPC to calculate bounds on the
error between each actual state and predicted state, for all instants up to the horizon. When
all individual errors are inside their respective bounds at some instant, violation at the next
instant still results in an MPC problem that is (1) guaranteed to have a feasible solution
and (2) for which an upper bound for the objective function value is given that is lower than
the value at the previous instant. These two properties result in stability of the closed loop
system.

Simulation results are given to demonstrate the effectiveness of the proposed approach. Com-
pared to approaches that solve similar problems that can be found in literature, the proposed
approach differs in the need for weaker assumptions and/or in the maximization of the bounds
on the error signal. This is made possible by letting the triggering mechanism depend on the
sequences that are generated by the MPC at the last update instant, as well as the measured
state.
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Chapter 1

Introduction

1-1 Motivation

Developments of technologies in the field of Networked Control Systems (NCSs), such as more
efficient wireless communication protocols and more miniaturized and energy efficient com-
puting units, have made Wireless Actuator and Sensor Networks (WSANs) a feasible medium
for the communication between different elements of many types of control systems. WSANs
can be used in control systems in various applications, for example in traffic control [1], [2],
building automation [3], agricultural irrigation systems [4], [5], autonomous vehicles [6] or
industrial production systems [7].

1-1-1 Wireless network characteristics

Wireless communication has several advantages compared to communication through wired
connections, such as flexible connectivity and ease of deployment and maintenance, but comes
with challenges as well. A survey of complications that come with the employment of (wireless)
networks in control systems can be found in [8]. Some of these challenges are related to the
network infrastructure, such as clock synchronization, network security and competition for
network access. Other challenges may be addressed by a proper design of the control system,
such as the allocation of scarce network resources: the network capacity and the energy
storage of wireless elements. In this thesis the focus lies on reducing unnecessary allocation
of these two resources.

From a network point of view, all other conditions being equal, these two resources need to
be traded for one another. Achieving higher bandwidth communication generally requires
stronger radios (that use more energy), whereas low power radios do not achieve a high data
rate. For standalone sensor elements, in general, the energy spent on communication takes
up the majority of the energy consumption [9]. This makes energy-aware scheduling of the
communication between sensors and controller especially important.

Master of Science Thesis Sander Bregman



2 Introduction

1-1-2 Reduction in usage of scarce resources

When aiming to reduce the energy consumption related to wireless communication, more
considerations than only a reduction in the amount of data sent by some element have to
be made: some other factors have to be taken into account. For example, sending data,
receiving data and listening (without actually receiving anything) generally consume similar
amounts of power [10], [11]. Communicating with elements that are located close by takes
less power than communicating to elements that are far away [10]. Furthermore, sending (a
large amount of) data in bulk is more efficient than sending the same amount of data in small
packages, as a result of channel acquisition overhead [12].

This last property can be exploited by predictive control approaches, combined with some
mechanism that triggers an update only when this is for some reason deemed necessary.
Large packages containing predictions can be sent, where the actuators keep on implementing
control inputs from these predictions until new predictions are received. This thesis focuses
on reducing the communication that a certain predictive control system employs. Doing so,
the employment of the two scarce resources in WSANs, network capacity and battery life, is
reduced simultaneously.

1-2 Related work

This section contains an introduction and pointers to literature concerning Event Based (EB)
scheduling of control tasks. Later, existing approaches for Event Triggered Robust Model
Predictive Control (ET-RMPC) are reviewed, with the focus on finding open problems in this
field.

1-2-1 Event Based scheduling of control tasks

EB scheduling of control tasks has been under development for a long period, at least since
the 1960s. Early examples of Event Triggered (ET) control are [13], [14] and [15], referring
to it as being varying sampling rate or adaptive sampling techniques. More recent strategies
are presented in [16], [17] (referring to it as Lebesgue sampling). In e.g. [18], [19] and [20] the
current form of ET scheduling of control tasks was finally developed.

In general, differing from (periodic) time based scheduling, in EB scheduling approaches there
is a mechanism that is responsible for determining the next sampling instant. This mechanism
is called the Triggering Mechanism (TM). Based on which element of the control system is
responsible for finding the next sampling instant, EB control techniques can be categorized
into two main groups [21]: i) ET control strategies, where the mechanism is embedded in
the sensory system and ii) Self Triggered (ST) control strategies, where the mechanism is
embedded in the controller.

1-2-2 Event Triggered scheduling

Most ET approaches, such as the ones proposed in [18], [19] and [20] employ a sample-and-
hold strategy, where the control input is fixed between two sampling instants. When the
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1-2 Related work 3

(norm of the) difference between the current state and the state at the last sampling instant
becomes larger than some threshold, an update is triggered and this difference becomes zero.
[18] is famous for deriving some threshold, for which closed-loop stability is achieved with
a guaranteed lower bound on the time between two triggering instants. Alternative to [18],
in which the TM has access to the full state in a centralized manner, [19] and [20] take this
approach and adapt the TM such that it can be evaluated in a decentralized way, separately
by each sensor.

When a measurement of all states is not available at one location, a decentralized TM offers
substantial advantages over one that is centralized. The reason for this is that for the cen-
tralized TM additional communication of measurements is necessary in order to determine if
measurements should be communicated.

1-2-3 Self Triggered scheduling

In approaches that apply ST scheduling of the sampling instants, the controller itself calcu-
lates the next sampling instant. This next sampling instant does not depend on the evolution
of the state after an update, but is based on the state at the last update instant, the control
policy and a model of the system. TMs that are purely ST in their nature are very sensitive to
modeling errors and uncertainties. When combined with Model Predictive Control (MPC),
the computational complexity is greatly increased compared to a time-triggered MPC im-
plementation, such as in the approaches proposed in [22], [23] and [24]. This large burden
of computational complexity is the main reason that this thesis focuses on ET scheduling
approaches.

1-2-4 Event Triggered Robust Model Predictive Control (ET-RMPC)

For an overview of MPC in the literature literature, see for instance [25], [26] and [27].
Various formulations of MPC, categorized as Robust Model Predictive Control (RMPC),
that are stable when the system is subjected to bounded unknown additive disturbances
are introduced and developed further in [28] (min-max optimization), [29], [30] (constraint
tightening) and [31], [32] (tube based).

The combination of MPC approaches with some EB scheduling of updates may profit more
from non-periodic updates than EB approaches combined with some static feedback con-
trollers. In the case of ET-RMPC, the control strategy is not based on the last measured
state, but on some time-varying prediction of the state. Whenever a measurement of the state
deviates significantly from the predicted state, an update is triggered, thereby resetting the
error between measurement and prediction to zero.

1-2-5 Existing approaches for ET-RMPC

In ET-RMPC, after a controller update has been triggered and performed, the predicted
trajectories up to the prediction horizon are sent to the appropriate sensors and actuators.
The actuators keep using values from these predictions until some criterion is no longer fulfilled
at the sensors.

Master of Science Thesis Sander Bregman



4 Introduction

Combinations of an EB sampling strategy with an MPC approach have been proposed in the
literature. See for instance for ET scheduling [33], [34], [35] and [36], or for ST scheduling
[22], [23] and [24].

The ET approaches share in common that the norm of the prediction error is compared to
some threshold. The prediction error is defined as the difference between the prediction of
the state made by the MPC at the last update instant and the actual measured state. When
the norm of this prediction error exceeds a certain threshold, an MPC update is triggered.

In the light of this thesis, aiming to reducing the load that the communication of measurements
has on the network and sensor batteries, such a (centralized) TM has limited advantages. Still,
at all instants the measurements of all states need to be gathered at a centralized agent, that
then decides if an update is necessary. The development of a decentralized TM to determine
update instants for an RMPC approach is regarded as an open problem to the best of our
knowledge.

1-3 Problem statement

The goal of this report is to, given some RMPC formulation, present a triggering strategy
that determines the instants at which a finite-horizon Optimal Control Problem (OCP) needs
to be solved. This strategy is intended to reduce the communication load between sensor,
controller and actuator, while at the same time not increasing the computational complexity
of the OCP compared to a standard time-triggered RMPC implementation. The triggering
strategy, combined with the RMPC approach, is aimed to let the state and input of a discrete-
time Linear Time Invariant (LTI) system converge to some target sets, while at all times
satisfying constraints on the input and state.

The TM should be decentralized, such that no communication of measurements to a cen-
tralized element is necessary to check the triggering conditions. The TM should as well be
computationally simple to evaluate. This last condition is to make sure that an intelligent
sensor can compute its local condition with relatively simple (and low-power) hardware.

1-4 Structure

This document is structured as follows: A description of Robust MPC by constraint tighten-
ing, the approach on which the developed strategy is based, is presented in Chapter 3. This
chapter is largely based on the method proposed in [30], but is given for completeness and
convenient notation in the context of developing the TM and its properties. Chapter 4 intro-
duces centralized conditions on the prediction error, such that if these are satisfied, recursive
feasibility and convergence follow. Then, in Chapter 5, decentralized conditions are derived of
which satisfaction implies satisfaction of the earlier centralized conditions. Simulation results
and observations based on these results are given in Chapter 6. Finally, a discussion of the
results and concluding remarks are given in Chapter 7.
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1-5 Notation and Definitions 5

1-5 Notation and Definitions

This section provides some definitions for the mathematical notation as used in the remainder
of this report. For positive integers m and n, Rn and Rn×m denote the n-dimensional Eu-
clidean space and the n×m-dimensional matrix space, respectively. The set of nonnegative
integers is depicted by Z≥0. For a vector x ∈ Rn, ||x||∞ = max(|x1|, . . . , |xn|). For a matrix
M ∈ Rn×n, M � 0 indicates the positive definiteness of M . For a matrix N ∈ Rn×m, N>
and N † represent the transpose and the Moore-Penrose pseudo-inverse of N . In and 0m×n
denote the identity matrix in Rn×n and the m × n matrix with all elements equal to zero.
For a matrix M ∈ Rm×n and a set S ⊆ Rn, we define the set C = MS = {Ms | s ∈ S}. See
Appendix A for the notation used to denote convex polytopes.

Definition 1.1 (Pontryagin difference). For two sets A and B in Rn×m, A ∼ B denotes the
Pontryagin difference between A and B. This difference is defined as:

A ∼ B = {a|a+ b ∈ A, ∀b ∈ B}. (1-1)

Definition 1.2 (Multiplication of a Set by a Matrix). The multiplication of a set S ⊂ Rn by
a matrix M ∈ Rm×n denotes a mapping of all its elements:

MS = {c ∈ Rm| ∃s ∈ S, c = Ms}. (1-2)

Definition 1.3 (Point to Set Weighted Distance). For M � 0, the squared weighted distance
d(·, ·, ·) of a point r ∈ Rn from a set S ⊂ Rn is given by:

d(r,S,M) = min
s∈S

||r − s||2M = min
s∈S

(r − s)>M(r − s). (1-3)

When a point s is given as the second argument, the distance d(·, ·, ·) is given by:

d(r, s,M) = ||r − s||2M = (r − s)>M(r − s). (1-4)

The following result will be used in our analysis:

Lemma 1.4 ([30]). Let a, b be two vectors in Rn, B, C be two compact sets in Rn and M be a
weighting matrix M � 0 in Rn×n. Then, using the distance function given in Definition 1.3,
it follows for all a ∈ Rn:

d(a+ c,B,M) ≤ d(a,B ∼ C,M), ∀c ∈ C. (1-5)

Proof [30]. Let d1 = d(a,B ∼ C,M). Using (1-3), we know that there exists a b∗ ∈ B ∼ C
such that ||a− b∗||M = d1. From (1-1) we know that b∗ + c ∈ B,∀c ∈ C.
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Chapter 2

Communication structure

This chapter presents an overview concerning the communication structure related to imple-
menting the different algorithms that will be introduced in Chapters 3 - 5. Figures 2-1, 2-2
and 2-3 show schematically the communication structure for the various triggering strategies.

Table 2-1 shows the number of values that have to be sent at every instant (marked by 1 in
the second column) and at every Model Predictive Control (MPC) update that is triggered
(marked by j in the second column).

Table 2-1: Communication structure for the various update triggering strategies. The abbrevia-
tions in the first row mean respectively: S - Sensor, TM - Triggering Mechanism, C - Controller,
A - Actuator.

comm. every .. instants S-TM TM-C C-TM C-A

MPC 1 n - m
j - - -

Centralized 1 n - - -
TM j - n N(n+m) Nm

Decentralized 1 - - - -
TM j - n 2Nn Nm

Master of Science Thesis Sander Bregman



8 Communication structure

Figure 2-1: Communication structure for ordinary MPC scheduling. All communication takes
place at every instant. Thin lines represent the sending of a signal (with n or m values.

Figure 2-2: Communication structure for the centralized triggering strategy. Dashed lines show
the communication that needs to take place only when an event is triggered; solid lines show
communication that needs to take place without considering the triggering instants. Thin lines
represent the sending of a signal (with n or m values); bold lines represent sending trajectories
(with sizes of the order N · n or N ·m).
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9

Figure 2-3: Communication structure for the decentralized triggering strategy. Dashed lines
show the communication that needs to take place only when an event is triggered; solid lines
show communication that needs to take place without considering the triggering instants. Thin
lines represent the sending of a signal (with n orm values; bold lines represent sending trajectories
(with sizes of the order N · n or N ·m).
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Chapter 3

Robust MPC by Constraint Tightening

3-1 Introduction

This chapter introduces the Robust Model Predictive Control (RMPC) framework for which
a triggering strategy will be developed. Existing RMPC approaches can be categorized into
three different groups: approaches that use min-max optimization (see e.g. [28]), ones that
use constraint tightening (see e.g. [29], [30]) and ones that use tubes (see e.g. [31], [32]).

Because RMPC with min-max optimization has a significantly higher computational com-
plexity than ordinary Model Predictive Control (MPC), it is not regarded in this text. The
remaining two approaches, constraint tightening and tube-based RMPC are very similar in
their method and complexity, where RMPC with constraint tightening has the more simple
formulation allowing for easier adaptations. Therefor, in the remainder of this thesis, the
development will be based on RMPC with constraint tightening .

The remainder of this chapter introduces the constraint tightening RMPC approach from
[30]. It guarantees that the state and input of some discrete-time linear time invariant system
converge to some target set that contains the origin, while satisfying constraints on both the
state and input. This is achieved even though a an additive disturbance that is bounded such
that it lies in some convex compact polytope affects the state. The method was proposed in
[29] and further developed in [30]. We reformulate the approach given in [30], abandoning
the usage of tracking outputs, directly using inputs and states in the definitions of constraints
and cost function. This is done in order to use the results in a notation relevant for the
developments made in this thesis.

First, the formulation of the system is given, after which the Optimal Control Problem (OCP)
that is at the heart of the RMPC is introduced. Subsequently, theorems are given concerning
the robust recursive feasibility and robust convergence properties of the state for when this
approach is implemented in a time-triggered manner.
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12 Robust MPC by Constraint Tightening

3-2 System definition

Consider an LTI system with bounded additive perturbations given by:

xk+1 = Axk +Buk + wk, ∀k ∈ Z≥0, (3-1)

where the state, input and disturbance signals satisfy the following conditions:

xk ∈ X ⊆ Rn, uk ∈ U ⊆ Rm, wk ∈ W ⊂ Rn. (3-2)

The nominal system associated with (3-1), that is used to make predictions, is given by:

x̄k+1 = Ax̄k +Buk, ∀k ∈ Z≥0. (3-3)

The goal of the controller is to let the state xk and input uk converge to the target sets Tx ⊆ Rn
and Tu ⊆ Rm, respectively, for k → ∞, while at all instants satisfying the corresponding
constraints.

Assumption 3.1. The constraint sets X, U, the target sets Tx, Tu and the disturbance
admissible set W are all convex compact polytopes containing their underlying spaces’ origin.

Assumption 3.2. The pair (A,B) is stabilizable.

It follows from Assumption 3.2 that one is able to design an LQR controller for the nominal
system (3-3) with properly chosen positive definite matrices Q and R (the pair (A,Q

1
2 ) is

detectable). One could use the unique solution P � 0 of the Discrete-time Algebraic Riccati
Equation (DARE) [37]:

P = A>PA− (A>PB)(R+B>PB)−1(B>PA) +Q,

and find the following stabilizing state-feedback gain:

F = −(R+B>PB)−1B>A. (3-4)

This state-feedback gain F , applied to the terminal state, is used in the proofs of recursive
feasibility and convergence. In addition to this feedback gain F , a set of disturbance feedback
gains K = {K0,K1, . . . ,KN−1} is used, which is applied to the prediction error1 that is caused
by the influence of the disturbances. In [30] it is suggested to use a set of feedback gains that
reduce the prediction error to zero after M steps. Such a set of feedback gains can be found
by employing Definition 3.3. Using such a nilpotent controller however is not necessary for
any of the proofs of feasibility and / or convergence in this text.

Definition 3.3 (M-Step Nilpotent LQR Controller [30]). Given two positive definite matrices
Q and R, and two positive integers M and N such that M < N − 1. The following backward
recursion produces as output a set of linear state feedback gains K = {K0,K1, . . . ,KN−1} that
drive the state of the nominal system (3-3) to the origin in M steps and remains there until
step N :

1At some point in time k + j, a measurement of the state, xk+j , may be different from the most recent
prediction made by the controller at the instant k, xk+j|k. The difference between prediction and measurement
shall be called the prediction error.
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3-3 Control strategy 13

1. Set Kj = 0m×n, ∀j ∈ {M, . . . , N − 1};

2. Set PM = In, SM = In;

3. Compute in backward for j ∈ {M − 1,M − 2, . . . , 0}:

Kj = −
[
Im 0m×n

]
H†j+1

[
B>Pj+1
Sj+1

]
A, Hj+1 =

[
(R+ (B>Pj+1B)) B>Sj+1

Sj+1B 0n×n

]
,

Sj = (A+BKj)>Sj+1(A+BKj),
Pj = Q+K>j RKj + (A+BKj)>Pj+1(A+BKj).

3-3 Control strategy

A description of RMPC for a finite horizonN follows. Let Uk|k =
(
uk|k, uk+1|k, . . . , uk+N−1|k

)
.

Consider the weighted distance function d(·, ·, ·) as introduced in Definition 1.3, consider F
to be a stabilizing feedback gain for the system with matrices (A,B), and consider K =
{K0,K1, . . . ,KN−1} a sequence of stabilizing feedback gains for the same system. Then, the
optimization problem P(xk) for a horizon N at the instant k reads as:

P(xk) : J(xk,U∗k|k) = min
Uk|k

J(xk,Uk) = min
Uk|k

N−1∑
i=0

d(x̄k+i|k, Tx,i, Q) + d(uk+i|k, Tu,i, R) (3-5a)

s.t. x̄k = xk (3-5b)
x̄k+i+1|k = Ax̄k+i|k +Buk+i|k, ∀ i ∈ {0, 1, . . . , N − 1} (3-5c)
uk+i|k ∈ Ui, ∀ i ∈ {0, 1, . . . , N − 1} (3-5d)
x̄k+i|k ∈ Xi, ∀ i ∈ {0, 1, . . . , N − 1} (3-5e)
x̄k+N |k ∈ Xf . (3-5f)

The constraint sets in (3-5d) and (3-5e) are defined as follows:

U0 = U, Ui+1 = Ui ∼ KiLiW, (3-6a)
X0 = X, Xi+1 = Xi ∼ LiW, (3-6b)

and similarly the target sets are tightened:

Tu,0 = Tu, Tu,i+1 = Tu,i ∼ KiLiW, (3-6c)
Tx,0 = Tx, Tx,i+1 = Tx,i ∼ LiW, (3-6d)

where:

L0 = In×n, Li+1 = (A+BKi)Li, ∀i ∈ {0, 1, . . . , N − 2}. (3-6e)

The terminal state constraint set is given by

Xf = R ∼ LN−1W ⊆ Rn, (3-7)
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14 Robust MPC by Constraint Tightening

where R is a control invariant admissible set under the disturbances LN−1W for which the
following conditions must hold2:

x ∈ R ⇒ (A+BF )x+ LN−1w ∈ R, ∀w ∈ W (3-8a)
x ∈ R ⇒ x ∈ XN−1 (3-8b)
x ∈ R ⇒ x ∈ Tx,N−1 (3-8c)
x ∈ R ⇒ Fx ∈ UN−1 (3-8d)
x ∈ R ⇒ Fx ∈ Tu,N−1. (3-8e)

Assumption 3.4. The sets UN−1, XN−1, Tu,N−1, Tx,N−1 and Xf are all non-empty sets.

With the control strategy defined as in this section, the following algorithm can be used to con-
trol the system, based on a regular (time triggered) receding horizon implementation of MPC:

3-4 Closed-loop system

This section presents two theorems involving properties of the closed-loop system, that to-
gether result in stability of the closed-loop. The first theorem concerns the feasibility of the
optimization problems following an initial feasible solution, the second theorem provides a
proof showing that when Algorithm 3.5 is used, the states and inputs converge to their target
sets.
Notice that for the theorems that are given in this chapter it is possible to make use of
a sequence of stabilizing disturbance feedback gains Ki that do not render the closed-loop
matrix, (A+BKN−1) · . . . · (A+BK0), nilpotent. This property will however simplify the
triggering strategies that are presented in the coming chapters.

Algorithm 3.5 Constraint tightening RMPC [30]
1: Calculate F according to (3-4), and Ki according to Definition 3.3, with M < N − 1.
2: Initialize by taking k = 0. Then iterate:
3: while k <∞ do
4: Measure xk
5: Solve P(xk) (3-5)
6: Apply uk = u∗k|k from the sequence U∗k|k to the system
7: k ← k + 1,
8: end while

3-4-1 Recursive feasibility

Theorem 3.6 (Robust Recursive Feasibility). Suppose P(x0) has a feasible solution, for
the dynamics in (3-1), using Algorithm 3.5 to find uk. Then, (i) the following optimization
problems P(xk) have a feasible solution for all k ∈ Z≥0. Additionally, (ii) the trajectories of
the system (3-1) satisfy the constraints in (3-2).

2Notice that when the disturbance feedback gains render the system nilpotent in less than N − 1 steps, it
follows that LN−1 = 0, and the conditions on the set Xf become more simple.
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3-4 Closed-loop system 15

Proof. Proof by induction. It is assumed that there is a feasible solution for P(x0). The proof
below states that when given a feasible solution for P(xk), along with the implementation of
the first input from the sequence U∗k|k, there exits a feasible candidate solution for the subse-
quent problem P(xk+1), for all wk ∈ W. The proof for claim (ii) results from this feasibility,
as feasible solutions for P(xk) imply, through (3-5d) and (3-5e) for i = 0, satisfaction of the
constraints on xk and uk in (3-2) .

Consider the case such that at the instant k Problem P(xk) has been solved, with its cor-
responding optimal input and state trajectories U∗k|k =

(
u∗k|k, u

∗
k+1|k, . . . , u

∗
k+N−1|k

)
and

X∗k|k =
(
x∗k|k, x

∗
k+1|k, . . . , x

∗
k+N |k

)
, respectively, satisfying constraints (3-5c)-(3-5f). Define

Acl := (A + BF ). At instant k + 1, it is trivial to show that the disturbance can be derived
from the most recent measurement, taking wk = xk+1 − x∗k+1|k. Then, a candidate control
sequence Ûk+1|k+1 is:


ûk+1|k+1
ûk+2|k+1

...
ûk+N−1|k+1
ûk+N |k+1

 =



u∗k+1|k
u∗k+2|k

...
u∗k+N−1|k
Fx∗k+N |k


+


K0L0
K1L1

...
KN−2LN−2
FLN−1

wk, (3-9a)

which results into the following state trajectory X̂k+1|k+1:
x̂k+1|k+1
x̂k+2|k+1

...
x̂k+N |k+1
x̂k+N+1|k+1

 =



x∗k+1|k
x∗k+2|k

...
x∗k+N |k

Aclx̂k+N |k+1


+


L0
L1
...

LN−1
0

wk. (3-9b)

In the following text it is established that the candidate trajectories in (3-9) satisfy the
constraints (3-5b)-(3-5f). This will then result in the establishment of Ũk+1|k+1 being a
feasible solution for P(xk+1), if xk+1 is given by the system dynamics (3-1).

It holds that x̂k+1|k+1 = x∗k+1|k + L0wk = x∗k+1|k + wk = xk+1|k+1 (thereby satisfying the
initial state constraint 3-5b).

For states further in the sequence, the following holds, making use of the linearity of the
dynamics and (3-6e):

x̂k+2|k+1 = A (x∗k+1|k + L0wk)︸ ︷︷ ︸
=x̂k+1|k+1

+B (u∗k+1|k +K0L0wk)︸ ︷︷ ︸
=ûk+1|k+1

= x∗k+2|k + L1︸︷︷︸
=(A+BK0)L0

wk,

x̂k+3|k+1 = A (x∗k+2|k + L1wk)︸ ︷︷ ︸
=x̂k+2|k+1

+B (u∗k+2|k +K1L1wk)︸ ︷︷ ︸
=ûk+2|k+1

= x∗k+3|k + L2︸︷︷︸
=(A+BK1)L1

wk,

. . . .

Lastly, to show that also the terminal state of the trajectory X̂k+1|k+1 satisfies the nominal
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16 Robust MPC by Constraint Tightening

system dynamics, one can write:

x̂k+N+1|k+1 = A (x∗k+N |k + LN−1wk)︸ ︷︷ ︸
=x̂k+N|k+1

+BF (x∗k+N |k + LN−1wk)︸ ︷︷ ︸
=x̂k+N|k+1

= Aclx̂k+N |k+1.

Concluding, the dynamics constraint (3-5c) is satisfied by the sequences Ûk+1|k+1 and X̂k+1|k+1.

For the constraints on the inputs, one can observe that by the assumption that U∗k|k is a
feasible solution for P(xk), u∗k+i+1|k ∈ Ui+1,∀i ∈ {0, . . . , N − 2}. Additionally, by (3-6a),
Ui+1 = Ui ∼ KiLiW. It therefor follows3 that ûk+i+1|k+1 = u∗k+i+1|k + KiLiwk ∈ Ui, ∀i ∈
{0, . . . , N − 2}.

For the last element of the input sequence, it follows from (3-7) and (3-8d) that ûk+N |k+1 ∈
UN−1:

x∗k+N |k ∈ Xf ⇒(3−7)
x̂k+N |k+1 = x∗k+N |k + LN−1wk ∈ R ⇒

(3−8d)
ûk+N |k+1 = Fx̂k+N |k+1 ∈ UN−1.

As a result, ûk+i+1|k+1 ∈ Ui, for all i ∈ {0, . . . , N − 1} and thereby the candidate solution
satisfies the constraint (3-5d).

With a similar argument, one can show that the state predictions resulting from the candidate
solution are inside their respective sets: from x∗k+i+1|k ∈ Xi+1,∀i ∈ {0, . . . , N − 2}, and the
definition of the Pontryagin difference, certainly x̂k+i+1|k+1 = x∗k+i+1|k + Liwk ∈ Xi,∀i ∈
{0, . . . , N − 2}.

Combining x∗k+N |k ∈ Xf with (3-7) gives x̂k+N |k+1 ∈ R. Then (3-8b) implies that x̂k+N |k+1 ∈
XN−1. It is thus shown that x̂k+i+1|k+1 ∈ Xi,∀i ∈ {0, . . . , N − 1}, so constraint (3-5e) is
satisfied by the candidate solution.

Lastly, it needs to be shown that the terminal state x̂k+N+1|k+1 ∈ Xf (3-5f). This simply
follows from previous observations and (3-8a):

x̂k+N |k+1 ∈ R ⇒
(3−8a)

Aclx̂k+N |k+1 + LN−1wk ∈ R, ∀wk ∈ W ⇒
(3−7)

x̂k+N+1|k+1 ∈ Xf .

Having shown that the candidate input and state sequences satisfy all constraints of Problem
3-5, this last observation concludes the proof for claim (i).

3-4-2 Convergence to target sets

Theorem 3.7 (Robust convergence). Suppose P(x0) has a feasible solution, then the state
and input trajectories of the system (3-1), controlled by Algorithm 1, are such that xk → Tx
and uk → Tu, as k →∞.

Proof. Consider the sequences Ûk+1|k+1 (3-9a) and X̂k+1|k+1 (3-9b) as candidate solutions for
P(xk+1). In a nutshell, this proof consists of deriving a positive upper bound for J(xk,U∗k|k)−
J(xk+1, Ûk+1|k+1) that decreases as k →∞. Notice that J(xk+1,U∗k+1|k+1) ≤ J(xk+1, Ûk+1|k+1),

3Making use of Definition 1.1 (Pontryagin difference), and the assumption wk ∈ W.
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3-4 Closed-loop system 17

i.e. the optimal solution for P(xk+1) has a cost that is lower than or equal to the cost of the
candidate solution.

One can observe that, for all i ∈ {0, 1, . . . , N − 2} and for all wk ∈ W:4

d(ûk+i+1|k+1, Tu,i, R) ≤ d(u∗k+i+1|k, Tu,i ∼ KiLiW, R)
= d(u∗k+i+1|k, Tu,i+1, R), (3-10a)

d(x̂k+i+1|k+1, Tx,i, Q) ≤ d(x∗k+i+1|k, Tx,i ∼ LiW, Q)
= d(x∗k+i+1|k, Tx,i+1, Q). (3-10b)

Notice that x∗k+N |k ∈ Xf from (3-5f). Resulting from (3-8c), it follows that x̂k+N |k+1 ∈ Tx,N−1
and from (3-8e) it follows that ûk+N |k+1 ∈ Tu,N−1. Thus, the costs associated to x̂k+N |k+1
and ûk+N |k+1 become zero for the candidate sequences. This last observation enables us to
determine an upper bound for the cost related to a candidate solution:

J(xk+1, Ûk+1|k+1) =
N−1∑
i=0

d(x̂k+i+1|k+1, Tx,i, Q) + d(ûk+i+1|k+1, Tu,i, R)

≤
N−2∑
i=0

d(x∗k+i+1|k, Tx,i+1, Q) + d(uk+i+1|k, Tu,i+1, R)

= J(xk,U∗k|k)− d(x∗k|k, Tx,0, Q)− d(u∗k|k, Tu,0, R),

(3-11)

as well as an upper bound on the optimal cost for the optimization performed at k + 1:

J(xk+1,U∗k+1|k+1) ≤ J(xk+1, Ûk+1|k+1)
≤ J(xk,U∗k|k)− d(x∗k|k, Tx,0, Q)− d(u∗k|k, Tu,0, R).

(3-12)

Since the distance function d(·, ·, ·) is nonnegative, it holds that J(xk,Uk|k) ≥ 0. It follows
from (3-12) that J(xk,U∗k) decreases with increasing k and converges to a steady value. This
implies d(x∗k|k, Tx,0, Q) + d(u∗k|k, Tu,0, R) → 0, as k → ∞, from which we can conclude that
xk → Tx and uk → Tu as k →∞. The claim follows.

4Making use of Lemma 1.4.
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Chapter 4

Centralized Triggering Mechanism

4-1 Introduction

This chapter introduces a triggering strategy that, combined with the Robust Model Predic-
tive Control (RMPC) formulation from Chapter 3, robustly stabilizes a discrete-time linear
time-invariant system with a potential for reducing the communication (and possibly com-
putation) load, compared to a time-triggered implementation. The conditions that form the
basis of this triggering strategy are inspired by the proofs of stability and convergence, in the
sense that a candidate control sequence is constructed and some of its properties are used.
If this candidate control sequence and resulting state sequence satisfy some conditions, guar-
antees can be given concerning the Optimal Control Problem (OCP) that follows from the
implementation of an input calculated by the Model Predictive Control (MPC) at the previ-
ous update instant. If the criteria are not satisfied, a MPC update is triggered directly. From
satisfaction of the conditions at the the previous instant we have some guarantees related to
the current OCP (i.e. that it has a feasible solution, and has a lower optimal cost than the
optimal cost related to the previously solved OCP). Recursive feasibility and convergence
follow these guarantees.
The structure of this chapter is as follows: First, the construction of the candidate control
policy is presented, after which sufficient conditions for recursive feasibility and convergence
are given. Two theorems concerning the stability of the resulting closed-loop system are de-
rived, after which a discussion concerning the tuning parameters and practical implementation
considerations follow.

4-2 Candidate input and resulting state sequence

In this section an alternative algorithm is presented that applies at time step k + j an in-
put, u∗k+j|k, that has been calculated when solving the OCP P(xk), as long as the candidate
sequences satisfy the conditions in the Triggering Mechanism (TM). When one of the condi-
tions in the TM is violated, an MPC update is triggered. Here, j is the number of time steps
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20 Centralized Triggering Mechanism

in the past at which an MPC update was performed for the last time. The main idea is that
the TM takes advantage of the measured states xk+j to construct candidate input and state
trajectories. These candidates are based on the prediction error and the sequences X∗k|k and
U∗k|k.

1 In short, the TM evaluates if applying the element u∗k+j|k from the input sequence
U∗k|k guarantees: i) feasibility of the OCP, P(xk+j+1), for any wk+j ∈ W, and ii) convergence
of the state xk and input uk to their respective target sets Tx and Tu.

Evaluating the TM thus requires a measurement of the state and the trajectories that have
been calculated at the last triggering instant. Communication between the different elements
of the control system takes place as follows: (i) At every instant k, the sensors report a
measurement to the TM, (ii) at every instant at which an event is triggered, the TM sends the
measurements to the controller; the controller sends (after solving P(xk)) the input trajectory
to the actuators and both state and input trajectories to the TM. See for the communication
structure Figure 2-2.

4-2-1 Construction

Consider that the instant k is the last instant at which the OCP (3-5), i.e., P(xk), has been
solved. Based on the optimal input sequence of P(xk), a candidate input sequence Ũk+j|k+j
(4-3a) is created. This candidate sequence has as its first entry u∗k+j|k, the entries further
towards the horizon are adapted by the feedback gains Ki and the prediction error of the
state. The prediction error is given by:

ek+j = xk+j − x∗k+j|k. (4-1)

The goal of the added disturbance feedback-term is to drive the predicted states in the
sequence X̃k+j|k+j , which results from applying the adapted input sequence, back to the
predictions previously made by the MPC. But since the first element of the input sequence
is the unadapted input u∗k+j|k, the prediction error is allowed to evolve in an open-loop sense
for one step before it is rejected using the disturbance feedback gains. The adapted feedback
gains K̃i and state-transition matrices L̃i are found by:2

K̃0 = 0m×n, K̃i+1 = Ki, ∀i ∈ {0, . . . , N − 2}, (4-2a)
L̃0 = In×n, L̃i+1 = (A+BK̃i)L̃i, ∀i ∈ {0, . . . , N − 1}, (4-2b)

The candidate input and state sequences Ũk+j|k+j and X̃k+j|k+j are given by, respectively:

1These trajectories are extended by applying state-feedback to the terminal state, in order to find complete
sequences.

2Notice that L̃1 = A: the error evolves in open-loop for one time step.
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4-3 Closed-loop system 21

Ũk+j|k+j =



ũk+j|k+j
ũk+j+1|k+j
ũk+j+2|k+j

. . .
ũk+N−1|k+j
ũk+N |k+j

. . .
ũk+j+N−2|k+j
ũk+j+N−1|k+j


=



u∗k+j|k
u∗k+j+1|k
u∗k+j+2|k

...
u∗k+N−1|k
Fx∗k+N |k

...
FAj−2

cl x∗k+N |k
FAj−1

cl x∗k+N |k



+



K̃0L̃0
K̃1L̃1
K̃2L̃2

...
K̃N−j−1L̃N−j−1
K̃N−jL̃N−j

...
K̃N−2L̃N−2
K̃N−1L̃N−1


ek+j , (4-3a)

X̃k+j|k+j =



x̃k+j|k+j
x̃k+j+1|k+j
x̃k+j+2|k+j

. . .
x̃k+N |k+j
x̃k+N+1|k+j

. . .
x̃k+j+N−1|k+j
x̃k+j+N |k+j


=



x∗k+j|k
x∗k+j+1|k
x∗k+j+2|k

...
x∗k+N |k

Aclx
∗
k+N |k
...

Aj−1
cl x∗k+N |k
Ajclx

∗
k+N |k



+



L̃0
L̃1
L̃2
...

L̃N−j
L̃N−j+1

...
L̃N−1
L̃N


ek+j . (4-3b)

4-2-2 Triggering strategy

The candidate sequences from (4-3) are employed by Algorithm 4.1. For given state and input
sequences, a function that calculates the corresponding cost-function value is:

J(Xk|k,Uk|k) =
N−1∑
i=0

d(xk+i|k, Tx,i, Q) + d(uk+i|k, Tu,i, R). (4-4)

The function α(j) that is employed by Algorithm 4.1 provides a tuning parameter that can be
used to specify some desired rate of convergence, for which 0 ≤ α(j) < 1,∀j ∈ {1, . . . , N − 1}
needs to hold. It specifies how much the cost function value should decrease as j increases,
such that no update is triggered.

4-3 Closed-loop system

In this section two properties are derived for the closed-loop system that is formed when
Algorithm 4.1 is used to find inputs for system (3-1): robust recursive feasibility of all OCPs
at the triggering instants following a feasible state for the first OCP and robust convergence
of the state and input to their target sets. The properties are derived for the case when LN−1,
i.e. (A + BKN−1) · . . . · (A + BK0) = 0n×n. When the disturbance feedback gains Ki

do not have this property, in addition to the conditions already present in the algorithm, the
inclusion x̃k+j+N |k+j ∈ Xf has to be checked as well, as this is not guaranteed to be true.
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22 Centralized Triggering Mechanism

Algorithm 4.1 Event-triggered constraint tightening RMPC
1: Calculate F according to (3-4), and Ki according to Definition 3.3, with M < N − 1.
2: Initialize by setting k = 0.
3: Measure x0
4: loop
5: Solve P(xk). Send U∗k|k to the actuators, implement u∗k|k.
6: j ← j + 1,
7: Measure xk+j and calculate ek+j using 4-1.
8:
9: if j > N − 1 then

10: k ← k + j, j ← 0 . Update triggered
11: go to 5
12: end if
13:
14: Construct sequences Ũk+j|k+j and X̃k+j|k+j using (4-3).
15: if ∃i,∈ {1, ..., N − 1} | ũk+i+j|k /∈ Ui, or ∃i,∈ {0, ..., N − 1} | x̃k+i+j|k /∈ Xi then
16: k ← k + j, j ← 0 . Update triggered
17: go to 5
18: else if J(X̃k+j|k+j , Ũk+j|k+j) > α(j)J(X∗k|k,U

∗
k|k) then

19: k ← k + j, j ← 0 . Update triggered
20: go to 5
21: else
22: Apply uk = u∗k+j|k from the solution of P(xk) . . No update triggered
23: go to 6
24: end if
25: end loop
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4-3-1 Recursive feasibility for triggered updates

Theorem 4.2 (Aperiodic Robust Recursive Feasibility). Suppose that for some x0, P(x0)
has a feasible solution. Then the trajectories of the system (3-1), controlled by Algorithm 4.1
and subjected to constraints and disturbances as given in (3-2), satisfy the constraints (3-2)
and the optimization problems P(xk) are feasible for all k ∈ Z≥0.

Proof. It suffices to prove that for each instant at which no new MPC update is triggered, the
MPC problem has a feasible candidate solution at the next instant. For each instant directly
following an MPC update, we can directly use the proof from Theorem 3.6.

The adapted candidate solution satisfies constraints (3-5b, 3-5c) by construction, for i ∈
{0, 1, . . . , N − 1} and initial state xk+j . For the initial state (3-5b):

x̃k+j|k+j = x∗k+j|k + ek+j = xk+j = x∗k+j|k + L̃0ek+j ,

and for the dynamics constraints (3-5c):

x̃k+j+1|k+j = A (x∗k+j|k + L̃0ek+j)︸ ︷︷ ︸
=x̃k+j|k+j

+B (u∗k+j|k + K̃0L̃0ek+j)︸ ︷︷ ︸
=ũk+j|k+j

=

= Ax∗k+j|k +Bu∗k+j|k + (A+BK̃0)L̃0ek+j = x∗k+j+1|k + L̃1ek+j

x̃k+j+2|k+j = A (x∗k+j+1|k + L̃1ek+j)︸ ︷︷ ︸
=x̃k+j+1|k+j

+B (u∗k+j+1|k + K̃1L̃1ek+j)︸ ︷︷ ︸
=ũk+j+1|k+j

=

= Ax∗k+j+1|k +Bu∗k+j+1|k + (A+BK̃1)L̃1ek+j = x∗k+j+2|k + L̃2ek+j

. . . . . .

x̃k+N |k+j =A (x∗k+N−1|k + L̃N−j−1ek+j)︸ ︷︷ ︸
=x̃k+N−1|k+j

+B (u∗k+N−1|k + K̃N−j−1L̃N−j−1ek+j)︸ ︷︷ ︸
=ũk+N−1|k+j

=

= Ax∗k+N−1|k +Bu∗k+N−1|k + (A+BK̃N−j−1)L̃N−j−1 = x∗k+N |k + L̃N−jek+j

x̃k+N+1|k+j = A (x∗k+N |k + L̃N−jek+j)︸ ︷︷ ︸
=x̃k+N|k+j

+B (Fx∗k+N |k + K̃N−jL̃N−jek+j)︸ ︷︷ ︸
=ũk+N|k+j

= (A+BF )x∗k+N |k + (A+BK̃N−j)L̃N−jek+j = Aclx
∗
k+N |k + L̃N−j+1ek+j

. . . . . .

x̃k+j+N−1|k+j = A (Aj−2
cl x∗k+N |k + L̃N−2ek+j)︸ ︷︷ ︸

=x̃k+j+N−2|k+j

+B (FAj−2
cl x∗k+N |k + K̃N−2L̃N−2ek+j)︸ ︷︷ ︸

=ũk+j+N−2|k+j

= (A+BF )Aj−2xk+N |k + (A+BK̃N−2)L̃N−2ek+j = Aj−1
cl x∗k+N |k + L̃N−1ek+j

x̃k+j+N |k+j = A (Aj−1
cl x∗k+N |k + L̃N−1ek+j)︸ ︷︷ ︸

=x̃k+j+N−1|k+j

+B (FAj−1
cl x∗k+N |k + K̃N−1L̃N−1ek+j)︸ ︷︷ ︸

=ũk+j+N−1|k+j

= (A+BF )Aj−1x∗k+N |k + (A+BK̃N−1)L̃N−1ek+j = Ajclx
∗
k+N |k + L̃Nek+j
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If the disturbance feedback gainsKi are designed to render the system nilpotent inM < N−1
steps, i.e. LN−1 = 0n×n, it follows that L̃N = LN−1 · A = 0n×n. Now, using (3-8a) it can be
shown that in such case

x̃k+j+N |k+j = (A+BF )jx∗k+N |k + L̃Nek+j ∈ Xf ,

because (A + BF )jx∗k+N |k ∈ Xf . This means that using a nilpotent disturbance feedback
controller guarantees that constraint (3-5f) is satisfied for the candidate sequences for Prob-
lem P(xk+j).

The only constraints that are not automatically satisfied by the adapted candidate sequences
are (3-5d) and (3-5e), depending on the size and direction of ek+j and on how much margin
there is left between the optimal trajectories x∗k+j+i|k and u∗k+j+i|k and the constraint set
boundaries. Therefore, in order to guarantee feasibility when no update is triggered, the TM
needs to check if:

ũk+i+j|k+j ∈ Ui,∀i,∈ {1, ..., N − 1}, (4-5a)
x̃k+i+j|k+j ∈ Xi,∀i,∈ {0, ..., N − 1}. (4-5b)

(Notice that ũk+j|k+j = u∗k+j|k ∈ Uj ⊆ U0 is automatically satisfied).

An MPC update, i.e. taking k ← k + j, j ← 0 and solving P(xk), is triggered directly if one
of these conditions is not satisfied. From satisfaction of the TM at the previous instant, or in
case of consecutive triggering instants from the recursive feasibility property itself, we know
that a feasible solution for this problem exists.

On the other hand, satisfaction of (4-5) means that the candidate sequences satisfy all con-
straints in the MPC (3-5c)-(3-5f), we conclude that ũk+j|k+j = u∗k+j|k can be implemented by
the actuators, while feasibility of P(xk+j+1) is guaranteed for xk+j+1 = Ax̃k+j|k+j+Bu∗k+j|k+
wk+j , as long as wk+j ∈ W.

4-3-2 Convergence to target sets for triggered updates

Theorem 4.3 (Aperiodic Robust Convergence). Suppose P(x0) has a feasible solution, then
the state and input trajectories of system (3-1), controlled by Algorithm 2, are such that
xk → Tx and uk → Tu, as k →∞.

Proof. For each instant directly following an MPC update instant k, we have already shown
that J(xk+1,Uk+1|k+1) ≤ J(xk,Uk|k), with equality only occurring when xk ∈ Tx and uk ∈
Tu.

For j > 1 we notice, using the framework introduced in Theorem 3.7, that J(X̃k+j|k+j , Ũk+j|k+j)
is an upper bound the optimal cost related to Problem P(xk+j).

Satisfaction of J(X̃k+j|k+j , Ũk+j|k+j) > α(j)J(X∗k|k,U
∗
k|k) thus guarantees that the inequality

J(xk+j ,U∗k+j|k+j) ≤ J(xk,U∗k|k) holds and leads to the convergence of the states and inputs
to their corresponding target sets, as long as α(j) < 1 for all j ≥ 1.
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4-4 Discussion

4-4-1 Convergence rate

The rate of convergence when using Algorithm 4.1 may be slower than when Algorithm 3.5 is
employed, as feedback to reduce the effect of disturbances is not applied at every step. The
function α(j) is used to trade the number of update instants with the rate of convergence. To
have a good balance between the a low number of MPC updates and fast convergence, one
can take α(j) ≈ 1 for j = 1, and decrease its value as j → N .

4-4-2 Calculation of TM

Determining if an update is necessary, i.e. evaluating the TM, requires the full state mea-
surement and predicted trajectories to be available at one location. Therefor, the triggering
strategy is categorized as a centralized approach. Additionally, the computation of the objec-
tive function value requires the calculation of some distances from points to the target sets.
This means that either a number of small Quadratic Programming (QP) problem has to be
solved, or using geometry, a number of projections need to be calculated. These might be an
operations that are too complex for a sensory system with limited computational capacity to
perform. For these reasons, a decentralized approach that uses results derived in this chapter
is presented in the following chapter.

4-4-3 Communication structure

An overview of the communication structure for the algorithm that is presented in this chapter
is given in Chapter 2.

4-4-4 Delay

A well known complication of the use of Networked Control Systems (NCSs) is the delay
that is introduced in the communication between different elements of the control system.
Such a delay might be integrated in the design of the TM by introducing additional instants
of open-loop dynamics in the state state transition matrices Li. In such a case, one has to
be careful to as well limit M , such that the sequence of disturbance feedback gains K̃i still
function as a nilpotent feedback controller.
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Chapter 5

Decentralized Triggering Mechanism

5-1 Motivation

In the following chapter, we develop an alternative algorithm that does not suffer from the
complications that arise when using the triggering strategy introduced in Chapter 4:

• First, in order to evaluate the Triggering Mechanism (TM), the candidate sequences
X̃k+j|k+j and Ũk+j|k+j need to be constructed. For this purpose both the trajectories
as calculated by the Model Predictive Control (MPC) and a measurement of the whole
state needs to be available by the agent that makes the decision of triggering an update
or not. In other words: the TM is centralized. Since the aim of the development of the
triggering strategy is to reduce the communicational load on the sensory system, such a
centralized mechanism reduces drastically the impact of possible benefits resulting from
the use of Event Triggered (ET) scheduling of updates.

• A second complication is that the TM requires the evaluation of the MPC objective
function for the sequences X̃k+j|k+j and Ũk+j|k+j . This objective function contains dis-
tances from points to sets, making the evaluation of the TM computationally expensive.
Performing complex computations might not be feasible for an agent co-located with
the sensory system, and when it is, takes the allocation of costly energy resources.

For these reasons, in this chapter an alternative triggering strategy is introduced that is
1) decentralized, such that each individual sensor can evaluate a part of the TM that only
depends on locally available information, and 2) has low computational complexity, making
it inexpensive for the sensory system perform the necessary calculations. This simplification
of the TM comes at the cost of more conservative triggering along with the controller node
needing to solve more optimization problems.
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28 Decentralized Triggering Mechanism

5-2 Decentralized TM

In this section a strategy to find (decentralized) bounds on the prediction error is presented.
This is done such that when the prediction error is within these bounds, the conditions that
need to hold for the candidate sequences from the previous chapter are satisfied.

5-2-1 Bounds on the prediction error

This section introduces a decentralized, low complexity triggering mechanism. Let each sen-
sor, j instants after the last MPC update at instant k, measure the p-th element of the state
vector, denoted by xpk+j . Then a local TM evaluates if this local measurement is between
some lower and upper bound:

x∗,pk+j|k − ¯
epj ≤ x

p
k+j ≤ x

∗,p
k+j|k + ēpj , ∀p ∈ {1, . . . , n}. (5-1)

When Inequality (5-1) is satisfied for all p ∈ {1, . . . , n}, no update is triggered at instant
k + j. If one or more violations are detected an update is triggered. The bounds x∗,pk+j|k − ¯

epj
and xpk+j ≤ x

∗,p
k+j|k + ēpj are calculated just after an MPC update1 for j ∈ {1, . . . , N − 1} and

can be sent in bulk to the sensors.

The satisfaction of Inequality (5-1) for all p ∈ {1, . . . , n} results (by subtraction of x∗,pk+j|k) in
the satisfaction of

−
¯
epj ≤ e

p
k+j ≤ ē

p
j ,∀p ∈ {1, . . . , n}, (5-2)

or, using set notation, in
ek+j ∈ Ej , (5-3)

where the sets Ej are hyperrectangles or n-orthotopes, given by:

Ej := {ε ∈ Rn | −
¯
epj ≤ ε

p ≤ ēpj ,∀p ∈ {1, . . . , n}}. (5-4)

This set notation for the bounds is used in the subsequent sections.

5-2-2 Finding the bounds

The edges of the sets Ej are found by solving an optimization problem. The objective is to
make Ej as large as possible to reduce as much as possible the conservatism introduced by
the decentralization of the TM. A logarithm on the individual bounds is used to achieve
a diminishing marginal increase in the cost function that is maximized. Doing so, a small
increase in a bound that is still small gives a larger gain in the objective function value than
an equally small increase in a bound that is already large.

The constraints of this optimization problem are chosen such that the inclusion ek+j ∈ Ej
guarantees satisfaction of the TM from Chapter 4. This result is formalized and proved in
Theorem 5.2.

1Calculating
¯
ep

j and ēp
j only requires information that results from the sequences that are calculated by the

MPC.
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The optimization problem to find the set Ej is defined as follows:

max
ēp

j ,¯
ep

j∈R+,∀p∈{1,...,n}

 n∑
p=1

ln ēpj + ln
¯
epj

 (5-5a)

subject to

¯
epj > 0, ēpj > 0,∀p ∈ {1, . . . , n} (5-5b)
x∗k+i+j|k ∈ Xi ∼ L̃iEj , ∀i ∈ {0, . . . , N − 1} (5-5c)
u∗k+i+j|k ∈ Ui ∼ K̃iL̃iEj ,∀i ∈ {0, . . . , N − 1} (5-5d)
s∗x,k+i+j|k ∈ Tx,i ∼ L̃iEj ,∀i ∈ {0, 1, . . . , N − 1} (5-5e)
s∗u,k+i+j|k ∈ Tu,i ∼ K̃iL̃iEj , ∀i ∈ {0, 1, . . . , N − 1}. (5-5f)

In Problem (5-5), x∗k+i+j|k and u∗k+i+j|k are taken from the solution of the MPC problem for
i + j ≤ N − 1. To find x∗k+i+j|k and u∗k+i+j|k for i + j > N − 1, state-feedback is applied to
the terminal state:

u∗k+i+j|k = F (A+BF )i+j−Nx∗k+N |k (5-6a)

x∗k+i+j|k = (A+BF )i+j−Nx∗k+N |k. (5-6b)

Consider, ∀i ∈ {0, . . . , N − 1}:

s∗x,k+i+j|k = arg min
sx,k+i+j|k∈Tx,i+j

||x∗k+i+j|k − sx,k+i+j|k||2Q (5-7a)

s∗u,k+i+j|k = arg min
su,k+i+j|k∈Tu,i+j

||u∗k+i+j|k − su,k+i+j|k||2R. (5-7b)

These points s∗x,k+i+j|k and s∗u,k+i+j|k are the points within the target sets that have the
smallest distance to x∗k+i+j|k and u∗k+i+j|k, respectively. They have been calculated by the
MPC at the previous update instant for i+ j ∈ {j, . . . , N − 1}.

For i + j > N − 1, x∗k+i+j|k and u∗k+i+j|k are inside their respective target sets (as these are
state-feedback extensions of the terminal state), so we can take:

s∗x,k+i+j|k = x∗k+i+j|k (5-8a)
s∗u,k+i+j|k = u∗k+i+j|k. (5-8b)

Notice that for solving Problem (5-5) only information that is known at instant k is necessary,
so it can be solved for j ∈ {1, . . . , N − 1} directly after the MPC update. Algorithm 5.1 gives
an implementation approach for the triggering strategy that is presented in this chapter.
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30 Decentralized Triggering Mechanism

Algorithm 5.1 Event-triggered constraint tightening RMPC
1: Calculate F according to (3-4), and Ki according to Definition 3.3, with M < N − 1.
2: Initialize by setting k = 0, j = 0.
3: Measure x0.
4: loop
5: Collect measurement xk+j from sensors
6: k ← k + j, j ← 0 . Update
7: Solve P(xk). Send the input sequence U∗k|k to the actuators
8: Solve Problem (5-5) for j ∈ {1, . . . , N − 1}
9: Send bounds x∗,pk+j|k−¯

epj and x
∗,p
k+j|k + ēpj to sensors p ∈ {1, . . . , n}, ∀j ∈ {1, . . . , N −1}

10: Apply uk = u∗k|k from the solution of P(xk)
11:
12: j ← j + 1,
13: if j > N − 1 then
14: go to 6 . Update triggered
15: end if
16:
17: for p ∈ {1, . . . , n} do
18: Measure xpk+j
19: if xpk+j < x∗,pk+j|k − ¯

epj or xpk+j > x∗,pk+j|k + ēpj then
20: go to 6 . Update triggered
21: end if
22: end for
23:
24: Apply uk = u∗k+j|k from the solution of P(xk)
25: go to 12 . No update triggered
26:
27: end loop

5-3 Properties

Theorem 5.2. Suppose that Problem (3-5) has been solved at instant k for some state xk. The
resulting sequences U∗k|k = {u∗k|k, u

∗
k+1|k, . . . , u

∗
k+N−1|k}, X∗k|k = {x∗k|k, x

∗
k+1|k, . . . , x

∗
k+N |k},

{s∗u,k|k, s
∗
u,k+1|k, . . . , s

∗
u,k+N−1|k} and {s∗x,k|k, s

∗
x,k+1|k, . . . , s

∗
x,k+N−1|k} and their corresponding

state-feedback extensions, (5-6) and (5-8) are used to solve Problem (5-5) for j ∈ {1, . . . , N −
1}, resulting in the sets Ej for j ∈ {1, . . . , N − 1}. Then, for j ∈ {1, . . . , N − 1}, if at instant
k+j the error ek+j ∈ Ej, it follows that, with x̃k+i+j|k+j and ũk+i+j|k+j calculated as in (4-3):

ũk+i+j|k+j = u∗k+i+j|k + K̃iL̃iek+j ∈ Ui, ∀i ∈ {0, . . . , N − 1}, (5-9a)
x̃k+i+j|k+j = x∗k+i+j|k + L̃iek+j ∈ Xi, ∀i ∈ {0, . . . , N − 1}, (5-9b)

J(X̃k+j|k+j , Ũk+j|k+j) ≤ J(X∗k|k,U
∗
k|k). (5-9c)

Furthermore, the equality in (5-9c) only occurs if J(X∗k|k,U
∗
k|k) = 0.
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Proof. The first two results, (5-9a) and (5-9b), follow from the definition of the Pontryagin
difference (see Definition 1.1), set multiplication by a matrix (see Definition 1.2) and the
constraints in Problem (5-5). We have, from (5-5c):

x∗k+i+j|k ∈ Xi ∼ L̃iEj ,∀i ∈ {0, . . . , N − 1},

and from (5-5d):
u∗k+i+j|k ∈ Ui ∼ K̃iL̃iEj , ∀i ∈ {0, . . . , N − 1}.

Remember the definition of the Pontryagin difference, A ∼ B = {a|a + b ∈ A, ∀b ∈ B}.
Clearly, taking A = Xi, a = x∗k+i+j|k, B = L̃iEj and b = L̃iek+j ∈ L̃iEj , it follows that
x̃k+i+j|k+j = x∗k+i+j|k + L̃iek+j ∈ Xi, ∀i ∈ {0, . . . , N − 1}.

Similarly, taking A = Ui, a = u∗k+i+j|k, B = K̃iL̃iEj and b = K̃iL̃iek+j ∈ K̃iL̃iEj , it follows
that ũk+i+j|k+j = u∗k+i+j|k + K̃iL̃iek+j ∈ Ui, ∀i ∈ {0, . . . , N − 1}.

For result (5-9c), take Tx,i = Tx,N−1 and Tu,i = Tu,N−1 for all i > N − 1. We observe that for
i+ j ∈ {0, . . . , N − 1}:

d(x∗k+i+j|k, Tx,i+j , Q) = d(x∗k+i+j|k, s
∗
x,k+i+j|k, Q),

d(u∗k+i+j|k, Tu,i+j , R) = d(u∗k+i+j|k, s
∗
u,k+i+j|k, R),

Now, using (5-5e) and (5-5f), we observe that for i+ j ∈ {0, . . . , N − 1}:

d(x∗k+i+j|k, Tx,i ∼ L̃iEj , Q) ≤ d(x∗k+i+j|k, s
∗
x,k+i+j|k, Q) = d(x∗k+i+j|k, Tx,i+j , Q),

d(u∗k+i+j|k, Tu,i ∼ K̃iL̃iEj , R) ≤ d(u∗k+i+j|k, s
∗
u,k+i+j|k, R) = d(u∗k+i+j|k, Tu,i+j , R).

Combining this result with Lemma 1.4 and the fact that ek+j ∈ Ej , we can conclude that for
i+ j ∈ {0, . . . , N − 1}:

d(x∗k+i+j|k + L̃iek+j , Tx,i, Q) ≤ d(x∗k+i+j|k, Tx,i+j , Q), (5-10a)
d(u∗k+i+j|k + K̃iL̃iek+j , Tu,i, R) ≤ d(u∗k+i+j|k, Tu,i+j , R). (5-10b)

We thus have established that if ek+j ∈ Ej ,

J(X̃k+j|k+j , Ũk+j|k+j) =
N−1∑
i=0

d(x∗k+j+i|k + L̃iek+j , Tx,i, Q) + d(u∗k+j+i|k + K̃iL̃iek+j , Tu,i, R)

≤
N−1∑
i=0

d(x∗k+i+j|k, Tx,i+j , Q) + d(u∗k+i+j|k, Tu,i+j , R),

because all elements in the sum on the left part of the inequality are smaller or equal to their
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respective elements in the sum on the right. For the right part it holds that

N−1∑
i=0

d(x∗k+i+j|k, Tx,i+j , Q) + d(u∗k+i+j|k, Tu,i+j , R) =

=
N−1∑
i=j

d(x∗k+i|k, Tx,i, Q) + d(u∗k+i|k, Tu,i, R)

+
N−1+j∑
i=N

d(x∗k+i|k, Tx,i, Q) + d(u∗k+i|k, Tu,i, R)︸ ︷︷ ︸
=0

≤

≤
j−1∑
i=0

d(x∗k+i|k, Tx,i, Q) + d(u∗k+i|k, Tu,i, R)︸ ︷︷ ︸
6=0 if J(X∗

k|k,U
∗
k|k) 6=0

+
N−1∑
i=j

d(x∗k+i|k, Tx,i, Q) + d(u∗k+i|k, Tu,i, R) = J(X∗k|k,U
∗
k|k).

Thus, it follows that J(X̃k+j|k+j , Ũk+j|k+j) ≤ J(X∗k|k,U
∗
k|k), with equality only occurring

when J(X∗k|k,U
∗
k|k) = 0. This concludes the proof.

5-4 Discussion

5-4-1 Conservativeness of decentralized TM

The triggering strategy that is presented in this chapter is a more conservative strategy than
the centralized approach as presented in the previous chapter2. This means that whenever
the decentralized conditions are satisfied, certainly the centralized conditions are satisfied
as well, and the condition ek + j ∈ Ej can be checked instead of the centralized conditions
from the previous chapter, while having the same properties holding for the closed-loop (i.e.
recursive feasibility and convergence of the trajectories to the target sets). Two sources for
this conservativeness are treated one by one in the following subsections.

Square sets Ej

The most evident source of the conservativeness of the decentralized TM is the fact that
the set of allowable prediction errors is approximated by an orthotope. This property is
necessary in order to make it possible for the conditions to be evaluated independently (in
a decentralized fashion). In fact, the set of all errors that give satisfaction of the centralized
conditions might be of a very different shape.

When the sensors for multiple states are located together, making it possible for coupling
between the bounds on those specific states to exist. This approach introduces however more

2At least, when for the centralized approach no extra emphasis on convergence is given; i.e. take α(j) = 1−ε,
with ε a very small number.
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complexity in the optimization problem that is solved to find the error bounds, and is therefor
not explored in this thesis.

Objective function

A second source of conservativeness is the way in which convergence of the objective function
value is achieved. In the centralized triggering strategy, the actual value of the objective
function is calculated for the candidate sequences Ũk+j|k+j and X̃k+j|k+j , and this value is
compared to (scaled by α(j)) the value of the objective function at the latest MPC update.
In the decentralized strategy, for each distance that is part of the objective function, it is
made sure that its value is smaller or equal to its equivalent distance in the MPC objective
function. The conservativeness lies in the fact that the distances in the objective function for
the entries from i = 0 to i = j − 1 do not play a role in the decentralized TM, whereas in the
centralized case they can be used to compensate for larger distances for the entries further in
the horizon.

5-4-2 Analysis of optimization problem

The optimization problems that need to be solved in order to find the bounds on the prediction
error have a convex objective function, as it is simply the sum of logarithms of the decision
variables, and linear constraints. N − 1 problems with 2n free variables need to be solved
after every MPC update, where it is important to note that these do not all need to be solved
before the first input as calculated by the MPC is implemented3. Appendix A-3 shows how
to transform constraints of the form x ∈ X ∼ME into a system of linear inequalities with as
variable the bounds in E .

5-4-3 Communication structure

An overview of the communication structure for the algorithm that is presented in this chapter
is given in Chapter 2.

5-4-4 Weights in optimization

When it is known that the disturbance affects some states more than other ones, or that
deviations in some state affect the disturbance feedback more than other states, one might
prefer that the error bounds for these specific states are larger than other ones. The objective
function that finds the error bounds (5-5) may be adapted such that these preferences are
reflected by the cost related to these specific bounds, for instance by introducing weights on
the bounds for the various states. As long as the solution satisfies the constraints in (5-5),
the results as derived in Theorem 5.2 hold. To keep the presented approach simple however,
this possibility is not explored further here.

3It is though preferable from a communication point of view that before the first measurement is taken, all
bounds are already sent to the sensors, making use of sending information in bulk.
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5-4-5 Non-nilpotent Ki

Similarly as for the centralized triggering strategy, disturbance feedback gains that do not
drive the prediction error to zero in less than N − 1 steps can be used. For the decentralized
conditions that are derived in this chapter, this means that an extra constraint needs to be
introduced in Problem (5-5).
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Chapter 6

Simulation Experiments

6-1 Introduction

6-1-1 Motivation

This chapter presents simulation results for different scenarios, with the centralized and decen-
tralized triggering mechanisms as proposed in the previous chapters responsible for scheduling
the Model Predictive Control (MPC) updates. The goal of these simulations is to validate
the theorems that have been derived in the previous chapters and to indicate qualitatively
the benefit that can be achieved by using such an Event Triggered (ET) scheduling approach
over a periodic time triggered approach.

6-1-2 Simulation scenarios

The system that is used to perform simulations on is a second order system with both eigen-
values outside the unit circle. Simulation experiments are performed using two scenarios. The
first scenario considers the transient-behavior of the dynamics under the proposed triggering
strategies. In the second scenario the strategies are evaluated for their performance when
disturbances have to be rejected.

In the first scenario, the initial state is picked to be non-zero, and close to the system con-
straints. At each instant, the disturbance that acts on the system is chosen such that it
has the worst-case effect on the state, i.e. it maximizes the norm of the state at the next
instant1. The goal of this experiment is to validate that the theorems concerning recursive
feasibility and convergence (Theorems 4.2, 4.3) and concerning the decentralized Triggering
Mechanism (TM) (Theorem 5.2) hold.

The second scenario is aimed at getting an estimate on how much benefit the proposed
triggering strategy can achieve when the system is subjected to additive disturbances. Two

1This worst-case disturbance is defined as follows: wk = arg maxwk∈W ||Axk + Buk + wk||2 =
arg maxwk∈W ||xk+1||2
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types of disturbances are considered: one in which the disturbance is again selected as the
worst-case within the allowable set, in the second experiment the disturbance is sampled from
a uniform probability function, that has the size of the set W. In all cases, a comparison is
made between the centralized and decentralized TMs using the same disturbance sequence
for both simulations.

6-2 Second order system

6-2-1 System description

The dynamics of the second order system are given by:

xk+1 =
[

0.8 −0.8
0.8 0.8

]
xk +

[
1
0

]
uk + wk. (6-1)

The constraints on the state, xk ∈ X, the input uk ∈ U, the bounds on the disturbance
wk ∈ W, and the target sets are given by:

X = {x ∈ R2 | ||x||∞ ≤ 7.5}, U = {u ∈ R | − 1 ≤ u ≤ 3}, (6-2a)
Tx = {x ∈ R2 | ||x||∞ ≤ 0.75}, Tu = {u ∈ R | |u| ≤ 0.8}, (6-2b)
W = {w ∈ R2 | ||w||∞ ≤ 0.1}, Xf = {x ∈ R2 | ||x||∞ ≤ 0.2}. (6-2c)

The following parameters are used in the simulation:

Q = I2, R = 1, N = 15, M = 10, α(j) = e−
j
5 . (6-3)

Using this information, the disturbance feedback gainsKi, are found using Definition (3.3) and
K̃i using Equation (4-2a). The state transition matrices Li, L̃i are found by using Equations
(3-6e) and (4-2b), respectively. The tightened constraint sets and target sets are calculated
according to the respective formulas in (3-6).

6-2-2 Transient response

The initial state for the transient response is selected to be x0 =
[
−2.5 7.5

]>
, at an edge of

the state constraint set X , and within the region for which, with the horizons and constraints
defined as in (6-3), a feasible solution for the MPC problem can be found. The simulation
results for the worst-case disturbance are shown in Figure 6-1, Figure 6-2 shows the results
for the case when the disturbance is drawn randomly from a uniform distribution.

Despite of the worst-case disturbance, both TMs achieve convergence of the state and input
to the target set, while at all times satisfying the constraints. Initially, when the state and
input are relatively close to their respective constraint boundaries, both TMs trigger updates
at every instant. When the state and input converge, and move away from the constraint
boundaries, the advantage of using the TMs becomes clear: updates are triggered more
sparsely.
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Figure 6-1: Simulation results for the transient scenario and the worst-case disturbance. Top
left: Phase-plot for the state, with full view of the set X. Top right: Close-up of the target set
Tx. Triggering instants are marked with a ’+’. Bottom: input signal, with changing background
color indicating a triggering instant.
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Figure 6-2: Simulation results for the transient scenario and the uniformly distributed disturbance.
Top left: Phase-plot for the state, with full view of the set X. Top right: Close-up of the target set
Tx. Triggering instants are marked with a ’+’. Bottom: input signal, with changing background
color indicating a triggering instant.
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Figure 6-3: Ej and centralized triggering for various k + j, for the simulation in Figure 6-1(a).
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As expected, the centralized TM is less conservative than the decentralized TM. This con-
servatism appears in the form of a larger number of instants between two events, and in the
state being allowed to come closer to the target set boundary before an event is triggered for
the centralized TM.

For the random disturbance the same observations can be made, with as the most noticeable
difference that triggering occurs much less often. For the centralized case, though the predic-
tion error becomes quite large at some points, triggering only occurs because the actuators
run out of calculated inputs. The decentralized TM triggers earlier, as it allows for smaller
prediction errors.

Figure 6-3 shows, for some specific instants from the simulation of Figure 6-1(a), the set Ej ,
which is known explicitly, and for a grid of points around the predicted state if the centralized
TM would have triggered. This figure confirms the before-mentioned conservativeness of the
decentralized TM: for all instants the set Ej is smaller than the set of points that would have
made the centralized TM trigger an update event. This conservativeness is large when the
simulation is started, but as the state converges to the target set, it diminishes gradually.

6-2-3 Disturbance rejection

Another simulation experiment is performed with the same system in order to assess the
number of samples between two updates triggered by the TMs. Figures 6-4 and 6-5 show the
number of updates that are triggered for disturbances that are contained in the set W, for
various sizes of this set. In case of a random disturbance, for each size of the disturbance set
a simulation of 2000 samples is executed, in case the disturbance is picked as the worst-case
simulations of only 100 samples are performed. The initial state is set as x0 = [−0.75 0.75]>,
which is one of the vertices of the target set Tx. The horizon N is increased to 25 in order to
have most updates being triggered by the TM itself, instead of by the actuators running out
of inputs.
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Figure 6-4: Number of time steps between MPC updates for worst-case disturbances, with
wk ∈ W = γ · Tx. The solid lines show the mean values, the shaded areas mark the region in
which 75% of the triggering takes place.
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Figure 6-5: Number of time steps between MPC updates for random disturbances, with wk ∈
W = γ · Tx. The solid lines show the mean values, the shaded areas mark the region in which
75% of the triggering takes place.

Even for a relatively large set W the average number of consecutive instants without an
update being triggered is considerably larger than 1. As has been observed previously, the
decentralized TM triggers more conservatively. Figure 6-6 shows the states at which an update
is triggered for two different sizes of W, and for a simulation duration of 5000 steps. The
conservativeness of the decentralized TM is exposed by the fact that the decentralized TM
triggers whenever the state is further away from the edge of the target set compared to the
centralized TM. Obviously, both TMs trigger updates with a larger margin from the edge of
the target set whenever the set W is larger.
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Figure 6-6: State xk at the instants when updates are triggered, for two sizes of W.
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Chapter 7

Discussion and Conclusions

In this section several aspects of the Triggering Mechanisms (TMs) that have been presented
in this thesis are discussed. First, some technical considerations are given concerning the clas-
sification of the presented TMs with regard to existing approaches. Subsequently, a discussion
on some practical aspects of the given approach is given, with emphasis on the way the bounds
are determined, the computational complexity and other limitations that the approach suffers
from. This section is concluded with some recommendations for future directions that could
follow the development that has been made in this thesis, with emphasis on the application
on practical systems.

7-1 Technical considerations

7-1-1 Classification

The triggering strategies that have been presented in this thesis can be classified as Event
Triggered (ET) approaches, as updates are triggered whenever the sensory system records
some state measurement that violates some conditions. The approaches differ however in the
way in which these conditions are determined. Where for the existing Event Triggered Robust
Model Predictive Control (ET-RMPC) approaches (see for instance [33], [34], [35] and [36])
the bounds are determined / designed beforehand, in the presented approaches the bounds
are variable and determined on the fly based on the state1 measurement. The TMs that are
proposed in this thesis can therefore be regarded as closed-loop in their nature, where the
existing approaches have a TM that is open-loop in its nature.

7-1-2 Bounds

This closed-loop character of the triggering conditions may have a beneficial effect on the
amount of triggering that takes place, making the error bounds small when necessary and

1Or more precisely, the bounds depend on the solution sequences for the state and input that are determined
by the Model Predictive Control (MPC) at the previous update.
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large whenever the solution sequences of the MPC allow this. Quantifying this benefit is
however not a straightforward task. With the size of the bounds depending on the whole
sequences X∗ and U∗ (the optimal state and input trajectories), many different parameters
influence them. These parameters include the tuning of the disturbance feedback gains Ki

and the state-feedback gain F , the horizon length N and the tuning matrices Q and R.

7-1-3 MPC related limitations

The presented control/triggering approach suffers from some limitations. It shares some
limitations with a time triggered implementation of MPC, such as a high sensitivity for
modeling errors, the need to solve an optimization problem for finding the control signal and
limitations that originate from guaranteeing convergence (such as limitations on the reachable
set, a minimum size for the target sets, minimum control/prediction horizon, etc). In addition
to these MPC-related limitations, the working principles behind the developed triggering
strategies depend heavily on the linearity of the system dynamics, specifically because the
evolution of the state is taken as the superposition of the predicted dynamics and prediction
error dynamics. This last limitation is one that other ET-RMPC approaches (such as [33],
[34], [35] and [36]) suffer from as well.

7-1-4 Computational complexity

The presented approach does not alter the optimization problem that is solved to find the
control inputs, so the computational complexity of the MPC is equal to that of the ordi-
nary constraint tightening form of MPC (O((m×N)3)). The complexity of the evaluation of
the centralized TM might seem quite high, as distances from fixed points to variable points
within some polytope exist in the cost-function value that follows from the candidate se-
quences. However, using geometrical relations this problem can be solved by only evaluating
linear inequalities and calculating dot products and scalar divisions. It depends on the hard-
ware located at the intelligent sensory system if performing these tasks is feasible. For the
decentralized approach, evaluating the triggering conditions itself is a task of very low com-
plexity, though calculating the actual bounds involves solving an optimization problem for
every step in the future for which bounds need to be calculated. These optimization prob-
lems have 2 · n free variables, considerably less than the MPC problem with (m × N) free
variables. The solution of these problems only depends on the solution of the MPC problem
itself, and therefore they can be solved in parallel. Compared to for instance the Self Trig-
gered (ST)-MPC approaches from ([22], [23] and [24]), where a considerable effort is spend
in maximizing the number of instants between updates, the computational complexity of the
presented algorithms is much lower.

7-2 Recommendations

7-2-1 Delay

When there is a (small) delay between the time at which an update is triggered and the time
at which the control input can be updated, this could be incorporated in the TMs by taking
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into account more instants at which the prediction error evolves in open-loop, without adding
the disturbance feedback term. Finding proofs for the stability of the resulting closed-loop
system is left as an open problem.

7-2-2 Simplification

The optimization problem that need to be solved for finding the error bounds may be simplified
by predetermining some regions in the state-space, and to check which is the largest of these
regions that satisfies the constraints of this optimization problem. Communication between
the controller and the TMs can then be simplified as well; i.e. only an identifier of the region
in which the state should remain at which instant has to be communicated instead of the
numerical values of the bounds of some variable regions. Another way of reducing the load
of computing the regions would be to stop computing the bounds whenever they become
so small that it is likely that they are violated regardless, and instead always triggering an
update when the system reaches that instant.

7-2-3 Asynchronous communication

The presented algorithms share the property that once an update is triggered, all the sensors
are to send their measurements to the controller. Altering the algorithms such that only
a sensor that violates its current triggering condition needs to send its measurement could
dramatically decrease the communication load related to the algorithms.

7-2-4 Distributed Robust MPC

Following the decentralized and distributed formulations of Robust MPC by constraint tight-
ening as described in [38] and [39], the triggering of communication and controller updates
could be made suitable for systems with states that have decoupled dynamics, but for which
coupling trough common inequality constraints exists.

7-2-5 Practical validation

The results presented in the theorems that are derived in this text need to be validated to
work in practice. Challenges that arise when attempting this could be for instance capturing
the various uncertainties in the set W, or in the robustness of the algorithm with respect to
unknown and / or variable delays.
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Appendix A

Convex Polytopes - Pontryagin
difference

This appendix summarizes some results found in literature regarding operations on convex
polytopes. In the literature, [40] covers some basic properties of polytopes, including an
introduction to the H (half-space) and V (vertices) representations. An algorithm to find
a minimal H-representation of a polytope is described in [41]. Finally, [42] gives a more
detailed analysis on the Pontryagin difference, partly for its application in (constrained)
control systems.

A-1 Descriptions of polytopes

A-1-1 V-polytopes

A V-polytope of dimension d is the convex hull of some finite set of points in Rd. The set of
points X = {x1, . . . , xN}, xi ∈ Rd,∀i ∈ {1, . . . , N} defines the polytope P as:

P = conv(X ) := {
N∑
i=1

λixi | λi, . . . , λN ≥ 0,
N∑
i=1

λi = 1}. (A-1)

A-1-2 H-polytopes

Alternatively, one can describe a polytope of dimension d as the solution set of some system
of a finite number of linear inequalities:

P = P(A, b) := {x ∈ Rd | Ax ≤ b}, (A-2)

where A ∈ Rn×d, b ∈ Rn, and where the inequalities in Ax ≤ b are taken row-wise.
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A-1-3 Equivalence of descriptions

The V- and H-representations of polyhedrons are equivalent, see for instance [40] and [43]
(this result is also called the Main Theorem of Polytope Theory). This means that every V-
polytope has a H-representation (such that it is the intersection of a finite number of closed
half-spaces), and that every H-polytope can be described as the convex hull of some finite
number of points. In this text polytopes are used to describe constraints and bounds on
disturbances / error signals, which naturally take the form of inequalities. Therefor in most
cases only the H-representation of polytopes is used.

A-2 Pontryagin Difference for Polytopes in H-description

The Pontryagin difference between two polytopes is especially relevant for this text. For
general sets A and B, it is defined as:

A ∼ B = {a|a+ b ∈ A, ∀b ∈ B}.

We assume that A is a polytope, i.e.

A = {x ∈ Rd | aix ≤ bi,∀i ∈ {1, . . . , N}},

where ai ∈ R1×d are the rows of a matrix A ∈ RN×d and bi is the i-th element of the vector
b ∈ RN . The the Pontryagin difference can then be calculated by [42]:

A ∼ B = {x ∈ Rd | aix ≤ bi − hB(a>i ),∀i ∈ {1, . . . , N}}. (A-3)

If B is a polytope with B(AB, bB), the support hB(a>i ) can be found by solving the following
Linear Programming (LP) problem:

hB(a>i ) = max
η

aiη

s.t. ABη ≤ bB.

A-3 Pontryagin difference in constraint

In the optimization problem that is introduced in Chapter 5, we encounter an optimization
problem that has the following form:

min
ēi,¯
ei

n∑
i=1
− log(ēi)− log(

¯
ei) (A-4a)

s.t. x ∈ X ∼ME (A-4b)

Here x ∈ Rp is some given point, X a given polytope such that x ∈ X , M ∈ Rp×n is a matrix

and the set E is an n-orthotope that satisfies E = {ε ∈ Rn | AEε ≤ bE}, with AE =
[

In
−In

]
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and bE =



ē1
. . .
ēn

¯
e1
. . .

¯
en


, where ēi > 0 and

¯
ei > 0.

This section aims to find a matrix Asimple and vector bsimple such that the following relation
holds:

AsimplebE ≤ bsimple ⇔ x ∈ME .

When such a form is found, the constraint in Problem (A-4a) can be represented by a system
of linear inequalities with as variable the bounds ēi,¯

ei, and the problem can be solved by
using an existing convex optimization solvers.

A-3-1 Method

Given is the constraint
x ∈ X ∼ME . (A-5)

With X a given polytope in H-representation by AX and bX . We assume that x ∈ X . E is a
polytope in H-representation determined by AE and bE . We can write (A-5) as

aX ,ix ≤ bX ,i − hME(aX ,i), ∀i ∈ {1, . . . , p}.

Now transporting all constant elements to the right and the variable elements to the left, we
find:

hME(aX ,i) ≤ bX ,i − aX ,ix,∀i ∈ {1, . . . , p}.

Clearly, on the right side we can take bsimple = bX −AXx. Note that bsimple does not contain
any variables that depend on E .

For the left side, we make the substitution

hME(aX ,i) = max
η∈ME

aX ,iη = [ max
µ̄1∈M 1̄1

aX ,iµ̄1, . . . , max
µ̄n∈M 1̄n

aX ,iµ̄n, max
¯
µ1∈M¯

11
aX ,i

¯
µ1, . . . , max

¯
µn∈M¯

1n

aX ,i
¯
µn] bE .

In this formula, the sets 1̄i and ¯
1i are defined as follows:

1̄i := {µ̄ | µ̄j = 0 ∀ j 6= i, 0 ≤ µ̄i ≤ 1}

¯
1i := {

¯
µ |

¯
µj = 0 ∀ j 6= i, 0 ≤ −

¯
µi ≤ 1}.
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List of Acronyms

DARE Discrete-time Algebraic Riccati Equation

DCSC Delft Center for Systems and Control

EB Event Based

ET Event Triggered

ET-RMPC Event Triggered Robust Model Predictive Control

LP Linear Programming

LTI Linear Time Invariant

MPC Model Predictive Control

NCS Networked Control System

OCP Optimal Control Problem

QP Quadratic Programming

RMPC Robust Model Predictive Control

ST Self Triggered

TM Triggering Mechanism

WSAN Wireless Actuator and Sensor Network
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