
 
 

Delft University of Technology

Vibration-induced friction modulation for a general frequency of excitation

Sulollari, E.; van Dalen, K.N.; Cabboi, A.

DOI
10.1016/j.jsv.2023.118200
Publication date
2023
Document Version
Final published version
Published in
Journal of Sound and Vibration

Citation (APA)
Sulollari, E., van Dalen, K. N., & Cabboi, A. (2023). Vibration-induced friction modulation for a general
frequency of excitation. Journal of Sound and Vibration, 573, Article 118200.
https://doi.org/10.1016/j.jsv.2023.118200

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jsv.2023.118200
https://doi.org/10.1016/j.jsv.2023.118200


Journal of Sound and Vibration 573 (2024) 118200

A
0
(

V
e
E
D
1

A

K
A
M
S
V
M

1

u
c
i
l
u
r
v
p
w

h
R

Contents lists available at ScienceDirect

Journal of Sound and Vibration

journal homepage: www.elsevier.com/locate/jsvi

ibration-induced friction modulation for a general frequency of
xcitation
. Sulollari ∗, K.N. van Dalen, A. Cabboi
epartment of Engineering Structures, Faculty of Civil Engineering and GeoSciences, Delft University of Technology, Stevinweg
, 2628CN Delft, Netherlands

R T I C L E I N F O

eywords:
verage friction
echanical vibration

tick–slip
ibrorheology
ethod of direct separation of motion

A B S T R A C T

Applying an oscillatory load is one of the most efficient ways to alter friction forces. Several
theoretical and experimental studies on the influence of oscillatory loads on friction have
been conducted, investigating the effect of both in-plane and out-of-plane oscillations for
different tribological pairings. However, in the literature, the effect of an oscillatory load on
the friction force has been studied with an emphasis on dynamic loads characterized by a
high-frequency content, while a clear statement as to what is considered ‘‘high-frequency’’
is missing. Moreover, the effect of a combination of load directions on the friction reduction
is not accounted for. Therefore, this study aims to determine the vibration-induced effect on
friction regardless of the frequency range and direction of harmonic force for a single and
multi-degree-of-freedom system. Analytical methods are used to obtain the friction modulation
due to harmonic loads, considering a classical mass–spring–dashpot system on a moving belt
and the Amontons–Coulomb law. It is found that, in the case of continuous slip, a general
relation for the vibration-induced friction modulation is obtained utilizing the velocity response
function of the investigated system. The latter is used to highlight a threshold from which the
high-frequency regime starts and to determine the stick–slip boundaries. Moreover, through the
velocity response function, the influence of different external harmonic forces is investigated and
discussed. This includes considerations of phase, excitation frequency, system characteristics,
and the choice of the normal contact force expression.

. Introduction

Friction control is crucial for the satisfactory operation of systems in many fields of applied science. Lubricants are commonly
sed as a way to control and reduce friction between surfaces in contact, improving their performance and adding value in terms of
ost savings and expenses that arise due to wear and tear, repair, and maintenance of parts in contact. However, timely lubrication
s required to ensure the proper functioning of tools, automotive and machines, and the removal and replacement (if needed) of the
ubricant can be a quite challenging task. Exploiting the effects induced by a deliberately applied oscillatory force is another method
sed to alter friction forces. This is a flexible alternative that can be considered as a form of lubrication that can be controlled and
emoved very quickly by changing the amplitude and the frequency of the oscillatory force. Examples of applications in which a
ibration-assisted technique is used to alter friction can be found for positioning control in robots [1], decommissioning of joints [2],
ile driving [3], needle insertions [4] and drilling operations [5]. Ultrasonic oscillations, for example, are used to alter friction in
ire drawing and cutting, metal working [6], in nanotribological devices by means of atomic force microscopes [7], for rendering
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texture on haptic surfaces [8] and in friction stir welding [9]. However, despite the technique successfully being used for specific
applications, a universally accepted physical interpretation of how static and kinetic friction forces change and react to externally
applied excitation is still missing. This is mainly due to the absence of a universal law friction and the missing link between surface
property variation and external applied forces, but also because most of the current applications are specifically focused on the use
of applied oscillatory forces characterized by a high-frequency content.

The fact that friction forces can be significantly reduced by applying external excitation has been known since at least the 1950s
10,11]. In the ’60s and ’70s, most of the experimental results obtained seem to be strongly dependent on the characteristics of each
est rig. Thus, no general law explaining the observed behavior was identified. Since then, several experimental and theoretical
tudies have been conducted to understand the effect of an external excitation on friction and exploit it in practical applications.
t the beginning of the ’90s, analytical and numerical attempts were made by Hess and Soom [12–14]. Their studies showed that
ormal oscillations applied on top of a Hertzian and adhesion-like contact lead to a reduction of contact deflection and consequently
f the average area of contact and the average friction force. Matunaga and Onoda [15] investigated the effect of vibration on
riction on a mass sliding on an in-plane vibrating table. To illustrate the mechanism of friction reduction by means of vibration,
hey proposed the concept of effective, time-averaged frictional forces. Based on this concept, Storck and coworkers [16] and Kumar
nd Hutchings [17] studied the reduction of the friction force due to ultrasonic vibrations applied parallel and perpendicularly to the
liding direction. For each loading case, qualitative good matches between theoretical predictions and measurements were obtained.
hese studies assume the Amontons–Coulomb’s law and the friction force varies due to the change of direction of the resultant
liding velocity vector. Hence, the ‘‘friction reduction’’ results from the average frictional force over a whole vibration cycle. Later
n, Leus and Gutowski [18] showed that using the Dahl model [19], in which asperities are modeled by means of micro-springs
haracterized by a shear stiffness, the above-mentioned averaged friction force could be reduced independently of whether a change
n the direction of the net friction force vector is observed. Grudzinski and Kostek [20] also considered the surfaces in friction contact
o be rough, creating an elastic interface modeled by non-linear springs. In this model, the external force applied was a constant
ne instead of an harmonic one. The study showed that the main cause of the decrease in the friction force could be due to complex
on-linear dynamic processes occurring at the asperity level. Popov and coworkers [21–23] also studied the effect of ultrasonic
scillations on the averaged friction force, both experimentally and theoretically, considering in-plane and out-of-plane oscillatory
xcitation separately and different tribological pairings [21]. By assuming the Amontons–Coulomb’s friction law, the measurements
f friction coefficients vs sliding velocity for different amplitudes of the oscillation velocity fitted well with theoretical predictions
or sliding velocities larger than the actuation velocity. For small sliding velocities, the measured friction coefficient tends to a finite
alue, contradicting theoretical results that predict the averaged friction force to approach zero as sliding velocity goes to zero [21].
o explain the latter discrepancy, Popov and his coworkers stressed out the relevance of introducing a tangential contact stiffness
nd any interface dynamic process in the model [24,25].

In parallel to the aforementioned works from the friction research community, studies originating from the structural dynamic
ommunity also focused on the interaction between the global dynamics of the system and the vibration-induced friction reduction.
hese studies explored a different computational route to friction reduction. For example, in the research conducted by Thom-
en [26], the Method of Direct Separation of Motion (MDSM) was used (see [27] for more details on the MDSM). The main idea of
DSM lies in separating the motion of a dynamic system arising due to high-frequency excitation into two components of motion,
‘‘slow’’ and a ‘‘fast’’ one. The slow component is usually of primary interest and equations describing it are simpler than the initial

quations. Approximations are involved only for solving the equations of fast motion and do not strongly affect the accuracy of the
esulting equations for the slow motion, because only averaged fast components are employed in their formulation [28]. In 2014,
orokin [29] suggested a modification of the MDSM. This version of the MDSM allows for solving a broader range of problems,
amely problems that do not imply restrictions on the spectrum of excitation frequencies. In problems with friction, MDSM has
een applied in cases of harmonic excitation of small amplitude and very high frequency only. Michaux and coworkers [30], for
xample, investigated the effect of the waveform of different periodic signals on the effectiveness of tangential high-frequency
xcitation to cancel friction-induced oscillation using a single-degree-of-freedoms system. Hoffmann and coworkers [31] also used
he MDSM to quench mode-coupling friction-induced instability using high frequency in a 2-degree of freedom system. In more
ecent works [32,33], the effects of longitudinal high-frequency excitation on contact compliance considering different dynamic
riction models were studied, performing analytical, numerical and experimental investigations.

In both research communities described above, the effect of external load on friction force has been studied with an emphasis on
oads characterized by a high-frequency content (i.e. ultrasonic vibration over 20 kHz). However, in the literature, a clear statement
s to what is considered ‘‘high-frequency’’ with reference to vibration-induced friction modulation is still missing. Blekhman [28]
rovided a rule of thumb for applied problems, indicating that an excitation frequency around 3–5 times the natural frequency
ould be considered as high frequency, without showing any explicit demonstration. Moreover, the applied load directions in all
he aforementioned studies is either normal or tangential to the sliding direction. The effect of a combination of load directions
n the friction behavior is also missing. Lastly, the nature of the normal contact force (stiffness or inertia driven) and how the
angential friction force depends on it is also seldomly discussed. Therefore, the first aim of this study illustrated in Section 2 aims
t extending the existing investigations on the effect of a high-frequency harmonic load to friction to a general excitation frequency
ange and defining a threshold starting from which a high-frequency regime can be identified. For this purpose, the MDSM will be
xtended considering initially a single load case. In the same section, the second aim is to unify and explain the similar results in
erms of friction reduction due to vibrations (only with reference to the Amontons–Coulomb’s friction law) obtained by both the
forementioned research communities, even though different methods were used from both sides (without ever cross-referencing
2

ach other). To bridge this gap, it will be shown that the underlying physical mechanism of friction reduction due to vibration resides
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in the velocity response function of the dynamic system. Moreover, while in some studies it is mentioned that the effect of excitation
on sliding friction is investigated, none of these works (with the exception of Teidelts and Mao’s studies, see [23,25], respectively)
distinguish the presence of the stick–slip and sliding regimes. To compute vibration-induced friction reduction, however, it is
important to know whether the system is stick–slipping or not. Thus, in Section 3, it is pointed out that in order to get analytical
solutions for the vibration-assisted friction modulation, the analysis has to be framed with reference to the identification of stick–slip
boundaries. To such regard, it is shown that the velocity response function is not only crucial to compute the friction modulation
due to vibration, but it also provides a more intuitive insight to the identification of the stick–slip regime, compared to the analysis
shown in other seminal works on such topics [34–36]. Besides the extension to a general frequency of excitation, in Section 4
the vibration-assisted friction reduction is also investigated for a two degree of freedom system, assessing the influence of different
harmonic load combinations: tangential and normal ones with reference to contact surface. Lastly, the effect of introducing a different
expression of the normal contact force, dependent either on the contact stiffness and damping or on the inertial force, is investigated
and its consequences on the vibration-assisted friction reduction are discussed.

2. Method of direct separation of motion for a forced single-degree-of-freedom system

In this section, a single-degree-of-freedom system will be considered to investigate the effect of external excitation on the friction
force. At first, the method of direct separation of motion is illustrated to quantify such effect, limited to the case of high-frequency
excitation. The vibration-induced friction reduction results are then compared with the ones obtained using alternative methods
available in the literature. Lastly, the MDSM will be extended to include the effect of a general frequency of excitation.

2.1. Illustrative example of the method of direct separation of motion for high-frequency excitation

To illustrate the procedure of applying the MDSM, the single-degree-of-freedom system (SDOF) characterized by a mass–spring–
damper configuration in contact with a moving belt is considered, as shown in Fig. 1. The non-dimensional equation of motion for
this system is

�̈� + 2𝛽�̇� + 𝑥 + 𝛾2𝜇𝑠sgn(𝑣𝑟) = 𝛼𝛺2 sin(𝛺𝜏) (1)

where �̇� = 𝑑𝑥
𝑑𝜏 is the non-dimensional velocity of the mass at non-dimensional time 𝜏, 𝜇𝑠 is the coefficient of static friction and

𝜏 = 𝜔𝑛𝑡, 𝜔2
𝑛 =

𝐾
𝑀

, 𝑥 = 𝑋
𝐿
, 2𝛽 = 𝐶

√

𝐾𝑀
, 𝛾2 =

𝑔∕𝐿
𝐾∕𝑀

, 𝛺 =
𝛺𝑒
𝜔𝑛

, 𝛼 = 𝑚𝑟
𝑀𝐿

, 𝑣𝑟 = �̇� − 𝑣𝑏, 𝑣𝑏 =
𝑉𝑏
𝜔𝑛𝐿

. (2)

Fig. 1. Mass–spring–damper system on a moving belt, subject to a friction force and applied harmonic loading.

For the chosen model setup, we consider the kinetic friction to be the same as the static friction. The adopted friction law for
this illustrative example is the Amontons–Coulomb’s law. Throughout the paper, the following formulation is used

𝜇(𝑣𝑟) = 𝜇𝑠sgn(𝑣𝑟). (3)

which defines the friction coefficient as a function of the relative velocity’s sign. To clarify the parameters in Eq. (2), the belt’s motion
is represented by the speed 𝑉𝑏, the mass 𝑀 is a rigid body with a characteristic length 𝐿 and position 𝑋(𝑡) at time 𝑡, subjected to
gravity loading 𝑀𝑔, a linear spring force 𝐾𝑋, a damping force 𝐶d𝑋∕d𝑡 and a friction force 𝑀𝑔𝜇(𝑉𝑟). Time is normalized by the
natural frequency 𝜔𝑛 of the undamped system. The damping ratio is described by 𝛽 and 𝛾2 defines the ratio between the gravity force
and the spring force. Parameters 𝑣𝑏, 𝛺 and 𝛼 represent the non-dimensional speed of the belt, the non-dimensional frequency of
harmonic excitation and the non-dimensional amplitude of excitation, respectively. The SDOF system is forced by a time-harmonic
loading, characterized by a frequency 𝛺𝑒 and an amplitude 𝑚𝑟𝛺2

𝑒 (e.g., load arising from a horizontally unbalanced mass 𝑚 at
eccentricity 𝑟 [26]).

In previous works [26,27], it was shown that if the external forcing is characterized by a high-frequency oscillation and by a
small amplitude (𝛺 ≫ 1 and 𝛼 ≪ 1, respectively), the MDSM allows to quantify the reduction of the friction force, averaged over
3
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one vibration cycle, governed by the high-frequency excitation. To do so, the MDSM separates the motion 𝑥(𝜏) into its slow and fast
components as follows

𝑥(𝜏) = 𝑧(𝜏) +𝛺−1𝜙(𝜏,𝛺𝜏) (4)

where 𝑧(𝜏) describes the slow motion at the time scale of free oscillation of the given SDOF system, and 𝜙 describes the fast motion
at the rate of the external excitation. Thus, 𝜏 represents the slow time scale whereas 𝛺𝜏 defines the fast time scale. Note that these
time scales are considered independent. Typically, for engineering applications (e.g. see [3]), the effects induced by the fast motion
𝜙 on the motion 𝑧 would be of primary interest. As discussed in [27], to make the transformation of variables from 𝑥 to 𝑧 and 𝜙
unique, the following constraint is necessary

⟨𝜙(𝜏,𝛺𝜏)⟩ = 1
2𝜋 ∫

2𝜋

0
𝜙(𝜏,𝛺𝜏)d(𝛺𝜏) = 0 (5)

where ⟨⟩ defines the average operator over the period of the rapidly oscillating component. The transformation of variables is carried
out by substituting Eq. (4) into Eq. (1), and imposing the constraint given by Eq. (5). The resulting expression reads as follows

�̈� + 2𝛽�̇� + 𝑧 + 𝛾2
⟨

𝜇(�̇� + 𝜙′ +𝛺−1�̇� − 𝑣𝑏)
⟩

= 0 (6)

where �̇� = d𝑧
d𝜏 , �̇� = 𝜕𝜙

𝜕𝜏 , and 𝜙′ = 𝜕𝜙
𝜕(𝛺𝜏) .

Since the purpose of this example is to quantify the effect of the external forcing on the friction force, the expression
representative of the fast motion 𝜙 should be retained. As shown in [26,27], to isolate the fast motion, the equation of slow motion
𝑧 shown in Eq. (6) is subtracted from the main governing equation defined by Eq. (1), resulting in

𝛺𝜙′′ + 2�̇�′ +𝛺−1�̈� + 2𝛽(𝜙′ +𝛺−1�̇�) +𝛺−1𝜙 + 𝛾2
(

𝜇(�̇� + 𝜙′ +𝛺−1�̇� − 𝑣𝑏) −
⟨

𝜇(�̇� + 𝜙′ +𝛺−1�̇� − 𝑣𝑏)
⟩)

= 𝛼𝛺2 sin(𝛺𝜏). (7)

At this stage, it is important to anticipate that when using Amontons–Coulomb’s law and in the absence of any stick regime, meaning
that �̇� ≠ 𝑣𝑏 (𝑣𝑟 ≠ 0), the average ⟨𝜇(𝑣𝑟)⟩ is equal to 𝜇𝑠. In this case, Eqs. (6)–(7) are simplified to

�̈� + 2𝛽�̇� + 𝑧 + 𝛾2𝜇𝑠 = 0, (8)

and

𝛺𝜙′′ + 2�̇�′ +𝛺−1�̈� + 2𝛽(𝜙′ +𝛺−1�̇�) +𝛺−1𝜙 = 𝛼𝛺2 sin(𝛺𝜏). (9)

The solutions of Eqs. (8) and (9) each have a transient and a steady-state response. At steady-state motion, the displacement
response of the motion 𝑧 is just a constant, meaning its velocity response will be zero. Since sinusoidal forcing is present on the
right-hand side of Eq. (9), the displacement and velocity response in the steady state will be harmonic. Thus, only the solution
of 𝜙 contributes to the steady-state velocity response. In Section 2.3, a more detailed discussion concerning the link between the
transient/steady-state solutions and the fast/slow components of motion will be provided.

To isolate the high-frequency vibration-induced effect on friction, we exploit the underlying assumption that 𝛺 ≫ 1, meaning
that all the terms in Eq. (7) multiplied by 𝛺−1 and 𝛺−2 are small, and the equation of the fast motion can be expressed in the
following compact form

𝜙′′ = 𝛼𝛺 sin(𝛺𝜏) + 𝑂(𝛺−1) + 𝑂(𝛺−2) (10)

where 𝑂(𝛺−1) and 𝑂(𝛺−2) denote terms significantly smaller than 1. The solution of fast motion 𝜙 and its corresponding derivative
𝜙′ are

𝜙 = −𝛼𝛺 sin(𝛺𝜏) and 𝜙′(𝜏,𝛺𝜏) = −𝛼𝛺 cos(𝛺𝜏). (11)

Hence, substituting this solution into the equation of the slow motion given by Eq. (6) results in

�̈� + 2𝛽�̇� + 𝑧 + 𝛾2 ⟨𝜇(�̇� − 𝛼𝛺 cos(𝛺𝜏) − 𝑣𝑏)⟩ = 0. (12)

The following term from Eq. (12)

�̄� = ⟨𝜇(�̇� − 𝑣𝑏 − 𝛼𝛺 cos(𝛺𝜏))⟩ (13)

enables to quantify the vibration-induced effect on friction. Therefore, the term ‘‘effective friction’’ is used for �̄�. In this study, the
expression of the effective friction force is obtained for steady-state vibratory motion only. Thus, no information is provided for the
vibration-induced effect on friction during the transient response. Since steady-state motion is considered, there is no contribution
due to �̇�, so the expression of relative velocity, �̇� − 𝑣𝑏, reduces to −𝑣𝑏. Since the continuous-sliding regime is assumed, it should be
checked that for each 𝑣𝑏 value considered, the system remains in the sliding regime.

In case of interest, the slow motion 𝑧 can be found by solving Eq. (12). However, to study the effect induced by the high-frequency
excitation on the averaged friction force, it is sufficient to evaluate �̄�(𝑣𝑏). It is worth highlighting that the effective friction expression
defined in Eq. (13) holds for any constitutive law of friction characterized by a dependence on the relative velocity. Dynamic
4

friction laws of the rate-and-state types [37,38] were not tested so far. On such regards, the reader might be interested in [32],



Journal of Sound and Vibration 573 (2024) 118200E. Sulollari et al.

n
s
m
c
t
b
f

c

where numerical solutions were provided for Eq. (13), while accounting for an elasto-plastic friction law. With reference to the
Amontons–Coulomb’s law defined in Eq. (3), the effective friction expression reads as follows

�̄�(𝑣𝑏) = ⟨𝜇(−𝑣𝑏 − 𝛼𝛺 cos(𝛺𝜏))⟩ = 𝜇𝑠 ⟨sgn(−𝑣𝑏 − 𝛼𝛺 cos(𝛺𝜏))⟩ , (14)

�̄�(𝑣𝑏) =

{

𝜇𝑠(1 −
2
𝜋 arccos (− 𝑣𝑏

𝛼𝛺 )) for |𝑣𝑏| ≤ 𝛼𝛺
𝜇𝑠sgn(−𝑣𝑏) for |𝑣𝑏| ≥ 𝛼𝛺.

(15)

Fig. 2 shows the effective friction defined by Eq. (15) as a function of the belt velocity 𝑣𝑏. It should be noted that, while
egative signs are present in Eq. (14), suggesting negative friction values for positive belt velocities, the plot follows an opposite
ign convention, to be comparable and in line with other studies on such topic (see [16,17,26]). The black dashed lines in Fig. 2
ark the following equality 𝑣𝑏,𝑐 = 𝛼𝛺. The index 𝑐 refers to the value of 𝑣𝑏 from which the effective friction coefficient becomes the

onstant 𝜇𝑠 again. Two conclusions can be drawn by inspecting the �̄�(𝑣𝑏) vs. 𝑣𝑏 graph. First, for |𝑣𝑏| ≤ 𝛼𝛺, the typical discontinuity of
he coefficient of friction observed at 𝑣𝑏 = 0 is smoothed, since the effective friction expression is characterized by a shape governed
y the arc-cosine function. Secondly, for |𝑣𝑏| > 𝛼𝛺, the effective friction characteristic �̄�(𝑣𝑏) equals 𝜇𝑠 which is the friction value
or the case of 𝛼𝛺 = 0. In other words, no effect on the averaged friction force due to the high-frequency excitation is observed.

Fig. 2. Effective friction �̄�(𝑣𝑏) behavior as given by Eq. (15) for different values of 𝛼𝛺.

In the next subsection, the method is compared to an alternative one used to obtain the effective friction under high-frequency
excitation. Comparing the MDSM with the alternative method will allow to unify and explain the similar results in terms of friction
reduction obtained by different research communities, even though different approaches were used from each side.

2.2. Alternative methods for high-frequency excitation

In the literature, alternative models exist that predict the effect of excitation on friction. Studies by [15–17] were devoted to
giving an explanation to the friction force reduction when ultrasonic vibrations were superimposed to macroscopic motion. The
ultrasonic excitation was applied either parallel or perpendicular to the sliding direction. The reduction on friction was analyzed
both experimentally as well as theoretically, and for the latter Amontons–Coulomb’s law was considered.

Fig. 3(a) shows the model considered by [16,17], with the excitation applied parallel to the sliding direction. Body 𝐴 is assumed
to slide with a constant velocity 𝑉𝑏 over body 𝐵 which has an oscillatory motion of amplitude 𝛼 and angular frequency 𝛺𝑒 along
the same line of action as that of 𝑉𝑏. When the instantaneous velocity of 𝐵, 𝑉 (𝑡), is greater than 𝑉𝑏, the friction force on body 𝐴,
𝐹𝑓 , will reverse its direction and act in the same direction as 𝑉𝑏. In Fig. 3(b) the corresponding variation of the frictional force with
time over one cycle is shown. The friction force, 𝐹𝑓 , first changes from positive to negative and then to positive again (interval 𝑂𝐶,
𝐶𝐷 and 𝐷𝐺, respectively). The time 𝑡𝑏 taken for the vibration velocity to reach the sliding velocity 𝑉𝑏 is given by

𝑡𝑏 =
1
𝛺𝑒

sin−1
(

𝑉𝑏
𝛼𝛺𝑒

)

. (16)

The time 𝐶𝐷 for which the friction force is negative is equal to the time 𝐸𝐹 over which it is positive. While averaging over one
ycle, these two will cancel each other out. The resultant average frictional force over the whole cycle 𝐹𝑎 is thus given by

𝐹𝑎 =
𝐹𝑓 4𝑡𝑏 = 𝐹𝑓

2 sin−1
(

𝑉𝑏
)

. (17)
5
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Fig. 3. (a) The model considered for sliding motion and subjected to an excitation along the sliding direction; (b) Variation of vibration velocity with time and
the corresponding change in direction of frictional force.

where 𝑇 = 2𝜋
𝛺𝑒

is the period of vibration.
Eq. (17) is valid only for 𝛼𝛺𝑒 > 𝑉𝑏, so the amplitude of the velocity of body 𝐵 should be bigger than the constant velocity 𝑉𝑏. If

the sliding velocity 𝑉𝑏 is higher, Eq. (17) ceases to apply because, in that case, the friction force opposes the direction of macroscopic
sliding during the whole duration of a cycle of vibration. Since the friction force does not change direction, no reduction in friction
is predicted. Considering the friction force, 𝐹𝑓 = 𝜇𝑠𝑁 , and the constant sliding velocity 𝑉𝑏 to be either positive or negative, the
effective friction under the effect of ultrasonic oscillation can be written as

𝜇𝑎 =

⎧

⎪

⎨

⎪

⎩

𝜇𝑠
2
𝜋 sin−1

(

𝑉𝑏
𝛼𝛺𝑒

)

for |𝑉𝑏| ≤ 𝛼𝛺𝑒

𝜇𝑠sgn(𝑉𝑏) for |𝑉𝑏| ≥ 𝛼𝛺𝑒.
(18)

where 𝜇𝑎 = 𝐹𝑎∕𝑁 .
Eq. (18) portrays the effect of ultrasonic oscillations on the friction force, thus, it should be possible to compare it with the

effective friction expression obtained in Eq. (15). Firstly, it is important to realize that the constant belt velocity 𝑣𝑏 and the excitation
frequency 𝛺 used in Section 2.1 are non-dimensional terms. Thus, for 𝜔𝑛 = 1 and 𝐿 = 1, 𝑣𝑏 and 𝛺 correspond to 𝑉𝑏 and 𝛺𝑒 (see
Eq. (2)), respectively. From both expressions (Eqs. (15) and (18)), it is inferred that for belt velocities higher than the amplitude of
the oscillation velocity, no change in friction force is observed. To compare the equations for belt velocities lower than 𝛼𝛺𝑒, both
expressions are plotted in Fig. 4 for 𝛼𝛺𝑒 = 0.3. From the figure, it is observed that the plots coincide, proving that both methods
give the same results.

Fig. 4. Comparison of �̄�(𝑣𝑏) obtained using MDSM and the model of [17].

It is worth highlighting again that these results (using MDSM and by [17]) are reached considering steady-state vibratory motion
within a continuous-sliding regime. For certain combinations of belt velocity, excitation amplitude and frequency, stick–slip might
6
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occur, making the analytical expressions of the effective friction force invalid. However, none of the studies explicitly mention such
limitation. Moreover, while it is possible to straightforwardly get the effective friction force using the rationale depicted in Fig. 3, see
also [16,17], this model gives the same results as the MDSM for the case of Amontons–Coulomb’s law and high-frequency vibration.
If another friction law or a general frequency of excitation is considered, it becomes hard or even impossible to obtain the effective
friction characteristic with this approach. Moreover, the MDSM is more versatile, since it can be applied to systems with more than
just one degree of freedom.

The rationale depicted in [16,17] was also used to evaluate a friction change considering the Dahl model, see [18], which
ccounts for the asperity’s compliance along the sliding direction. To solve for this model however, a numerical procedure was
mplemented and the friction force reduction was calculated over one period of oscillation. While in the case of the Amontons–
oulomb’s law, the change in friction force direction occur instantaneously, Fig. 3(b), when using the Dahl model, the change of

riction force direction is not abrupt and depends on the value of the tangential contact stiffness. In the latter model, like [16,17], a
riction reduction was observed only for 𝑉𝑏 < 𝛼𝛺𝑒. As the value of the tangential contact stiffness increases, the Dahl model reduces

to Eq. (18).

2.3. Extension of the MDSM for a general frequency of excitation

In Sections 2.1–2.2, the effect of high-frequency excitation on friction was presented. To seek a more general expression able to
quantify the vibration-induced effect on friction, the following subsection aims at extending the MDSM procedure illustrated above
to a general frequency of excitation of the system. A modification of the MDSM aiming at relaxing the restriction on the spectrum
of excitation frequencies was already proposed in previous studies [28,29]. However, its application to a friction-driven system
has never been investigated. To illustrate the procedure, the system shown in Fig. 1 is considered again. As already discussed in
Section 2.1, to compute the effective friction expression, the equation for the fast motion 𝜙, Eq. (7), is needed.

In Section 2.1, since 𝛺 ≫ 1, all the terms multiplied by 𝛺−1 and 𝛺−2 were small terms and could be ignored. To find the effect
caused on the averaged friction force by a general frequency of excitation, the condition 𝛺 ≫ 1 does not hold anymore, meaning
that all the terms in Eq. (7) should be retained. It is worth highlighting that the assumption 𝛺 ≫ 1 is relevant if the interest resides
in computing the effect of excitation on the slow motion term 𝑧(𝜏). However, if the interest lies only in computing an averaged
friction force reduction during a steady-state oscillatory motion, an analytical expression of the friction reduction can be obtained
for a general harmonic forcing.

To solve Eq. (7), the rationale used in [28,29] is adopted. It is worth highlighting that the extension of the MDSM to a general
harmonic forcing presented in this section differs from the one shown in [28,29], as it considers the original MDSM. The solution
is sought in form of a harmonic series by means of the method of varying amplitude (MVA) proposed in [39] and also applied
in [28,29]. A possible harmonic series solution is

𝜙 = 𝐵11(𝜏) sin(𝛺𝜏) + 𝐵12(𝜏) cos(𝛺𝜏) + 𝐵21(𝜏) sin(2𝛺𝜏) + 𝐵22(𝜏) cos(2𝛺𝜏) +⋯ (19)

In the leading-order approximation, only the first two terms are needed, resulting in

𝜙 = 𝐵11(𝜏) sin(𝛺𝜏) + 𝐵12(𝜏) cos(𝛺𝜏). (20)

Note that as continuous sliding is considered and no nonlinearities are present in the system, Eq. (20) provides the closed-form
solution. Moreover, the time-scale 𝜏 of the varying amplitude of the 𝐵11 and 𝐵12 parameters do not need to vary slowly with
reference to the time-scale of the sinusoidal function 𝛺𝜏, as discussed in [39].

Inserting Eq. (20) into Eq. (7), and gathering the coefficients of the involved harmonics sin(𝛺𝜏), cos(𝛺𝜏), results in one expression
or �̈�11 and one for �̈�12. Using some cumbersome mathematical manipulations, the solution for 𝜙 in Eq. (7) can be obtained
nalytically. Both 𝐵11(𝜏) and 𝐵12(𝜏) approach to a constant value as 𝜏 increases, thus reaching a steady-state condition. At steady
tate, 𝐵11(𝜏) and 𝐵12(𝜏) are described by

𝐵11 = −
𝛼𝛺3(𝛺2 − 1)

(4𝛽2 − 2)𝛺2 + 1 +𝛺4
, 𝐵12 = −

2𝛽𝛼𝛺4

(4𝛽2 − 2)𝛺2 + 1 +𝛺4
. (21)

Using these expressions for 𝐵11 and 𝐵12, the solution in terms of 𝜙 in the steady state (same symbol used for notational brevity)
becomes

𝜙 = 𝛼𝛺3
√

4𝛽2𝛺2 + (1 −𝛺2)2
sin(𝛺𝜏 + 𝜃) = 𝑉 sin(𝛺𝜏 + 𝜃) (22)

and its derivative with respect to 𝛺𝜏 leads to

𝜙′ = 𝛼𝛺3
√

4𝛽2𝛺2 + (1 −𝛺2)2
cos(𝛺𝜏 + 𝜃) = 𝑉 cos(𝛺𝜏 + 𝜃) (23)

where

𝑉 = 𝛼𝛺3
√

4𝛽2𝛺2 + (1 −𝛺2)2
and 𝜃 = arctan(2𝛽𝛺,𝛺2 − 1). (24)

At steady state, 𝜙 is only a function of 𝛺𝜏, hence the expression of the effective friction function, Eq. (6), simplifies to

�̄�(𝑣 ) = 𝜇
⟨

sgn(−𝑣 + 𝜙′ +𝛺−1�̇�)
⟩

= 𝜇
⟨

sgn(−𝑣 + 𝜙′)
⟩

, (25)
7
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where �̇� is omitted as it has no contribution in steady-state motion. By inserting Eq. (23) into Eq. (25), the equation of the effective
riction function for harmonic excitation with arbitrary frequency becomes

�̄�(𝑣𝑏) = 𝜇𝑠
⟨

sgn(−𝑣𝑏 + 𝑉 cos(𝛺𝜏 + 𝜃))
⟩

=

⎧

⎪

⎨

⎪

⎩

𝜇𝑠
(

1 − 2
𝜋 arccos

(

𝑣𝑏
𝑉

))

for |𝑣𝑏| ≤ 𝑉

𝜇𝑠sgn(𝑣𝑏) for |𝑣𝑏| ≥ 𝑉 .
(26)

Eq. (26), combined with Eq. (24), highlights that for large values of 𝛺, the parameter 𝑉 approaches asymptotically the value
f 𝛼𝛺, which is the amplitude of the harmonically varying term in Eq. (13). Concurrently, the phase angle 𝜃 in Eq. (24) tends to
anish. To clarify this observation, Fig. 5(a) compares the relation between the parameter 𝑉 as a function of 𝛺, with the linear and
onotonic trend defined by the amplitude 𝛼𝛺 of the harmonic varying term in Eq. (13). Fig. 5(b) displays the behavior of 𝜃 for

ncreasing values of 𝛺. The values to generate the plot are reported in the caption of Fig. 5. From Fig. 5, it can be concluded that
f 𝛺 lies in the high-frequency regime, the solution of 𝜙′ provided in Eq. (23), matches the solution shown for 𝜙′ given in Eq. (11).
he comparison highlighted in Fig. 5a also allows to identify a non-dimensional threshold frequency of excitation that discriminates
etween a high-frequency and near-resonant or low-frequency region. The value of 𝛺𝑒 = 5𝜔𝑛 could be considered as a possible
inimum value of excitation frequency for the high-frequency band. The relative error between 𝑉 and 𝛼𝛺 at such threshold is 3.9%.

t is worth mentioning that the MDSM technique is commonly used for systems subject to high-frequency excitation. However, in
he literature, an explicit and proven statement on what the minimum frequency starting from which a high-frequency regime can
e defined has never been provided.

Fig. 5. (a) Coefficient 𝑉 versus 𝛺; (b) 𝜃 versus 𝛺. Plots obtained for 𝛽 = 0.1 and 𝛼 = 10.

While the trend of 𝑉 over the high-frequency regime resembles a linear one, a nonlinear trend is observed near resonance. A rapid
increase and decrease can be noticed as soon 𝑉 approaches and exceeds, respectively, the resonance frequency 𝛺𝑒 = 𝜔𝑛 = 1. Fig. 6(a)
examines closely the latter regime, and specifically four colored markers were placed to inspect the behavior of the corresponding
effective friction expression. Fig. 6(b) shows the trend of �̄�(𝑣𝑏) with reference to the colored markers in Fig. 6(a). Similarly to what
was discussed with reference to Fig. 2, the value of 𝑣𝑏,𝑐 corresponds to the value of 𝑉 which marks the point after which the effective
friction coefficient becomes 𝜇𝑠 and remains constant. As the magnitude of 𝛺 increases from 0, the value of 𝑣𝑏,𝑐 (=𝑉 ) that separates
the constant region from the varying one of �̄�(𝑣𝑏), increases as well, until the resonance condition is reached (see the red marker
and the red line in Figs. 6(a),(b) respectively). For 𝛺 ≈ 1 (small damping present), the threshold value of 𝑣𝑏,𝑐 is |𝑣𝑏,𝑐 | ≈ 50, and
it decreases for the further selected points at 𝛺 = 1.2 and 𝛺 = 4 (orange and purple markers and lines, correspondingly). For the
high-frequency range, the value of 𝑣𝑏,𝑐 (or 𝑉 ) only increases with an increase in 𝛺.

In Section 2.1, it was mentioned that in the case of the Amontons–Coulomb’s law and during a full-slip regime (absence of
stick–slip), the solution of the equation of motion for 𝑧 has no contribution in the steady-state velocity response. Thus, the velocity
response can be found by solving the equation of motion for 𝜙. This kind of correspondence has never been explicitly pointed out
in any previous study with reference to the MDSM technique. It is shown here that such correspondence holds also for the case of
the extended version of the MDSM, valid for a general excitation with arbitrary frequency. For the considered system, Eq. (1), the
steady-state solution 𝑥𝑠𝑠 (for �̇� > 𝑣𝑏) is

𝑥𝑠𝑠 =
𝛼𝛺2

√

4𝛽2𝛺2 + (1 −𝛺2)2
sin(𝛺𝜏 + 𝜃) + 𝜇𝑠 (27)

and its derivative then becomes

�̇�𝑠𝑠 =
𝛼𝛺3

√
cos(𝛺𝜏 + 𝜃) = 𝑉 cos(𝛺𝜏 + 𝜃) = 𝜙′ (28)
8
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Fig. 6. (a) 𝑉 versus 𝛺; (b) �̄�(𝑣𝑏) behavior for different excitation magnitudes. Plots obtained for 𝛽 = 0.1 and 𝛼 = 10. The colored markers in (a) are linked to
the corresponding colored lines in (b).

The expression of �̇�𝑠𝑠 would be the same for �̇� < 𝑣𝑏 as well, as the contribution of the friction force within the particular solution
given in Eq. (27) is provided by a constant (±𝜇𝑠). Therefore, Eq. (28) exactly corresponds to the derivative of motion 𝜙′ given in
Eq. (23). The expression 𝑉 corresponds to the amplitude of the velocity response function of the system (Eq. (1)), subject to the
Amontons–Coulomb’s friction force and considering a sliding regime (absence of stick–slip motion). The correspondence between 𝑉
and the system’s velocity response function facilitates the interpretation of the vibration-induced effects on the friction force, hence,
avoiding cumbersome calculations to find the expression of 𝜙′ for an arbitrary frequency using the extended MDSM. The effective
friction force function �̄�(𝑣𝑏) and the expression for 𝜙′ can be straightforwardly found by means of the velocity response function of
the given system. Comparing the cases presented in Sections 2.1–2.2 (MDSM and the model used in [16,17]), the effective friction
force expression seemed to come out mainly from mathematical considerations, while, as revealed here, it is actually part of a
physical process related to the velocity response of the system. While for high frequency the effective friction expression is driven
by the velocity solely induced by inertial effects, as the frequency of excitation decreases, the influence of damping and stiffness
forces come into play.

Lastly, to validate the analytical results numerically, a comparison of the analytical solution of �̄�(𝑣𝑏) (solid line) versus the
numerical solution of �̄�(𝑣𝑏) (dashed line), for the case of a low-frequency and high-frequency excitation (high and low relative to
the natural frequency of the system) is shown in Fig. 7(a) and (b), respectively. Note that the numerical solution (steady state)

Fig. 7. (a) Comparison of numerical (dashed line) and analytical (solid line) solutions of effective friction for the case of low-frequency excitation; (b) Same
comparison for the case of high-frequency excitation (𝛽 = 0.1 and 𝛼 = 10).

f 𝜙′, Eq. (19), is obtained for a set of parameter values in which no stick–slip occurs. In both figures, it can be observed that
he analytical solution matches the numerical one, proving that the analytical solutions of 𝜙′ and �̄�(𝑣𝑏) are correct. The following
ection will demonstrate that the velocity response function can not only be exploited to calculate the effective friction expression
9

ut also to define the boundaries of the transition between the stick and slip regimes.
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3. Implications to stick–slip analysis for an oscillator and belt system

As highlighted in this study, the expression of the effective friction force for a generic harmonic excitation is obtained for the
teady-state oscillatory motion in continuous sliding. However, for certain belt velocities, excitation amplitudes and frequencies,
tick–slip might occur, making the analytical expressions, such as Eq. (26), invalid. Thus, it is crucial to define the boundaries of
he transition from the stick–slip to the slip regime. To achieve this, the analysis performed by den Hartog [40] in his seminal
ork is first considered. The investigated model is a single mass–spring–damper system with Amontons–Coulomb’s law, similar

o the one presented in Fig. 1, but without the moving belt. For this system, the stick–slip boundaries are defined by the graph
hown in Fig. 8(a), as a function of the ratio between forcing and natural frequency 𝛺 = 𝛺𝑒∕𝜔𝑛 and the ratio between friction force

and excitation amplitude 𝜇𝑠𝑁∕𝑚𝑟𝛺2
𝑒 for different values of damping ratio 𝛽. The region below the lines defines the continuous-slip

regime and the one above indicates the stick–slip regime.

Fig. 8. (a) Stick–slip boundary for a damped SDOF system subjected to harmonic excitation (see [40]); (b)Velocity response for different belt velocities, 𝛽 = 0.1,
= 10, and 𝛺 = 0.4.

Using the graph for specific values of 𝜇𝑠, 𝛽 and excitation amplitude, the range of frequencies for which the mass is in continuous-
lip motion can be determined. For these frequencies, regardless of the presence of the moving belt and the corresponding belt
elocity, the mass will always be characterized by a continuous-slip motion, provided no dependency between friction force and slip
elocity magnitude is assumed. The presence of a moving belt only shifts the equilibrium position around which the mass oscillates.
or the range of frequencies for which stick–slip is present in den Hartog’s model, the presence of the belt and its corresponding
elocity plays an important role in eliminating stick–slip. For the latter case, the condition presented below is necessary

𝑉𝑏 > |𝑉 |. (29)

f the belt velocity is larger than |𝑉 |, the relative velocity between the mass and the belt will not cross zero, hence stick–slip
ill not occur. This finding was already discussed in [35], and it is important to highlight here that |𝑉 | simply corresponds to

he amplitude of the velocity response function. Therefore, if for a certain excitation frequency stick–slip is present for 𝑉𝑏 = 0, to
liminate stick–slip, 𝑉𝑏 should simply be bigger than the magnitude of the velocity response function (obtained assuming continuous
lip) for that excitation frequency.

As an example, Fig. 8(b) shows the velocity responses of a SDOF system for different 𝑉𝑏 values. The tangential excitation
requency is the same for all cases and, when assuming continuous slip, the corresponding amplitude of 𝑉 = 0.76 is identified.
ig. 8(b) shows that for 𝑉𝑏 < 𝑉 stick–slip is present while for 𝑉𝑏 > 𝑉 , the motion is continuous. Thus, to prevent stick–slip,

a belt velocity 𝑉𝑏 > 𝑉 is necessary. With reference to the effective friction expression, see Eq. (26) and Fig. 6(b), and for the
specific case of assuming the Amontons–Coulomb’s law, the condition of 𝑉𝑏 > 𝑉 results in no variation of the friction force. Thus,
efore performing an analysis to calculate the effective friction for a specific excitation frequency, the first step is to check whether
tick–slip or continuous-slip motion is present for the case with a non-moving belt (den Hartog’s model). If the latter system is in
ontinuous-slip motion, the effective friction of the actual system can be calculated for any belt velocity. If den Hartog’s model is
n stick–slip regime for a specific excitation frequency, a belt velocity higher than the amplitude of the velocity response function
obtained assuming continuous slip) will eliminate stick–slip. In the case of Amontons–Coulomb’s law (no dependence between
riction force and magnitude of slip velocity) this also leads to no variation of the friction force due to the high belt velocity. While
he illustrative example presented here only refers to a single-degree-of-freedom system, as it will be shown in the next section, the
10

ame conclusion holds for a multi-degree-of-freedom system as well.
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4. Vibration-induced friction modulation for a harmonically forced 2-DOF system in sliding regime

The following section makes use of the extended MDSM to quantify the vibration-induced effect on friction for a multi-degree-
of-freedom system in the absence of any stick regime. Different load directions and combinations are considered. The results are
then compared to each other and to the ones obtained by exploiting the velocity response function of the system, which allows
bypassing the cumbersome mathematical steps needed for the extended MDSM.

4.1. Description of the harmonically forced 2-DOF system

To illustrate the procedure, a two-degree-of-freedom (2-DOF) model is investigated as shown in Fig. 9. The system consists of a
mass 𝑀 positioned on a belt moving at a constant speed 𝑉𝑏. The mass is being held in position by two linear springs with stiffnesses
𝐾1 and 𝐾2, and by two linear dashpots with damping coefficients 𝐶1 and 𝐶2, for which subscript 1 and 2 refer to the parallel and
normal direction with respect to the belt surface, respectively. The spring 𝐾2 and the dashpot 𝐶2 are respectively considered as the
normal contact stiffness and damping between the objects in relative sliding motion. Regarding the external load, three cases will be
studied: tangential loading only, normal loading only, and the combination of these two, as shown in Fig. 9. For all the considered
loading scenarios, the external harmonic loading is characterized by a frequency 𝛺𝑒 and amplitude 𝑀𝛼𝛺2

𝑒 .

Fig. 9. Layout of the 2-DOF system subject to external harmonic loads in the normal and tangential directions.

If no external loading is present, the equations of motion for the 2-DOF system read as follows

𝑀�̈�1 + 𝐶1�̇�1 +𝐾1𝑋1 + 𝐹𝑓 = 0 (30)

𝑀�̈�2 + 𝐶2�̇�2 +𝐾2𝑋2 −𝑀𝑔 = 0 (31)

where 𝐹𝑓 is the frictional force. As mentioned earlier, the frictional force 𝐹𝑓 is assumed to obey Amontons–Coulomb’s law, given by
𝐹𝑓 = 𝜇(𝑉𝑟)𝐹𝑛 with 𝜇(𝑉𝑟) referring to the dimensional form of Eq. (3). In this study, we assume the normal force, 𝐹𝑛, to be dependent
on the contact stiffness and the damping in the 𝑋2 direction. Therefore, the expression of the friction force becomes

𝐹𝑓 = 𝜇(𝑉𝑟)𝐹𝑛 = 𝜇(𝑉𝑟)(𝐶2�̇�2 +𝐾2𝑋2). (32)

This expression for 𝐹𝑓 is chosen to demonstrate the effect of the contact resonance on the effective friction expression. The equations
of motion of the system in the absence of an external load can be rewritten in a more generic form as

[

1 0
0 1

](

�̈�1
�̈�2

)

+
[

2𝛽1𝜔1 0
0 2𝛽2𝜔2

](

�̇�1
�̇�2

)

+
[

𝜔2
1 0
0 𝜔2

2

](

𝑋1
𝑋2

)

+
(

𝜇(𝑉𝑟)(2𝛽2𝜔2�̇�2 + 𝜔2
2𝑋2)

−𝑔

)

=
(

0
0

)

(33)

where 𝛽𝑖 =
𝐶𝑖

2𝑀𝜔𝑖
and 𝜔2

𝑖 = 𝐾𝑖
𝑀 and 𝑖 = 1, 2. In the following subsection, the first loading case, that of tangential load only will be

investigated.

4.2. Tangential harmonic loading

If only a tangential harmonic load is considered, the right hand side of Eq. (33) containing the external loading 𝐅𝑒𝑥𝑡 becomes

𝐅𝑒𝑥𝑡 =
(

𝛼𝛺2
𝑒 sin(𝛺𝑒𝑡)

0

)

. (34)

As mentioned in Section 3, the first step is to define the stick–slip boundary. According to [40], the boundary is defined by the graph
shown in Fig. 8(a), as a function of the ratio between forcing and natural frequency 𝛺 = 𝛺𝑒∕𝜔1 and the ratio between friction force
and excitation amplitude (the latter being 𝜇 𝑁∕𝑚𝑟𝛺2 for the SDOF) for different values of damping ratio 𝛽. In this case, since no
11
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external load is present in the 𝑋2 direction, no motion will occur in this direction. The system then reduces to a SDOF one and the
ratio between friction force and excitation amplitude becomes 𝜇𝑠𝑔∕𝛼𝛺2

𝑒 . Fig. 10 shows the graph defining the stick–slip boundary
nd the graph of 𝜇𝑠𝑔∕𝑃𝑡, where 𝑃𝑡 = 𝛼𝛺2

𝑒 is the amplitude of the tangential external force in Eq. (34). As shown in Fig. 10, for
requencies 𝛺 = 𝛺𝑒∕𝜔1 higher than approximately 0.78, the mass will be in the sliding regime. For these frequencies, analytical
xpressions for the effective friction are valid.

Fig. 10. Stick–slip boundary for the 2-DOF system with external loading applied in tangential direction only (𝛼 = 10 and 𝜇𝑠 = 0.4).

Having defined the stick–slip boundary, the effective friction expression �̄�(𝑉𝑏) can be derived using the extended MDSM. However,
ince the loading is applied in the tangential direction only and the system reduces to a single-degree-of-freedom one, the effective
riction characteristic is the same as in Section 2.2 (valid for 𝛺 higher than approximately 0.78). This correspondence holds since
he value of 𝜔1 = 1 and the used values of 𝛽1 and 𝛼 are the same for both cases. In the next subsection, the 2-DOF system subject
o a normal harmonic loading only (index 𝑛 referring to the latter) is considered.

.3. Normal harmonic loading

When the system represented in Fig. 9 is only subject to the normal loading, the right-hand side of Eq. (33) containing the
xternal loading 𝐅𝑒𝑥𝑡 becomes

𝐅𝑒𝑥𝑡 =
(

0
−𝛼𝛺2

𝑒 sin(𝛺𝑒𝑡)

)

. (35)

ince motion is present in the 𝑋2 direction and since the tangential friction force 𝐹𝑓 , Eq. (32), depends on 𝑋2 and �̇�2, mode coupling
s present due to the friction force and motion is expected to be exhibited in both directions. To ensure an analytical solution for full
ibration cycles, it should be noted that the amplitude of oscillation in the 𝑋2 direction should be smaller than the static contact
ompression given by

𝑋2,0 =
𝑀𝑔
𝐾2

=
𝑔
𝜔2
2

, (36)

in which case the mass is always in contact with the belt. For amplitudes of vertical oscillation higher than 𝑋2,0, the belt is in a
state of intermittent contact (jumping case). Fig. 11 shows a comparison of the limit 𝑋2,0 with the amplitude of displacement in the
𝑋2 direction for a range of 𝛼 and 𝛺𝑒. As the displacement values are below the limit, for the parameters considered in the study,
the mass is always in contact with the belt. It should be noted that different parameters such as a higher amplitudes of excitation or
lower damping will result in higher amplitudes of displacement in the 𝑋2 direction, and eventually in jumping scenarios for which
the analytical results on friction modulation are not valid.

To ensure that stick–slip is not occurring, the same analysis as described in Section 3 for the SDOF should be performed now
considering the 2-DOF system. As mentioned in Section 3, the first step is to check whether slick-slip or continuous sliding is present
for the case with a non-moving belt (den Hartog’s model). For the 2-DOF system with normal load only, and with friction force
described as in Eq. (32), if a non-moving belt is present, no motion is occurring in the tangential direction. For oscillations to be
present in this direction, a moving belt is necessary. Then, a belt velocity higher than the amplitude of the velocity response function
(obtained assuming continuous slip) will ensure continuous sliding. Since Amontons–Coulomb’s law is assumed (no dependence
between friction force and the magnitude of slip velocity), this also leads to no variation of the friction force due to the high belt
velocity. Thus, for the 2-DOF system with normal loading only, the mass will be in continuous sliding only for belt velocities higher
than the amplitude of the velocity response function (obtained assuming continuous slip), for which no friction change will be
observed. Since this loading case leads to no friction change, there is no need to neither solve for the equations of motion for Φ (see
12
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Fig. 11. Comparison of the amplitude of displacement |𝑋2| (orange), and the static contact compression 𝑋2,0 (green) for a range of 𝛼 and 𝛺𝑒 (𝜔1 = 1, 𝜔2 = 0.5,
𝛽1 = 0.1, 𝛽2 = 0.15, 𝛼 = 10 and 𝜇𝑠 = 0.4). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Appendix A.1) nor to compute the velocity response function. In the next subsection, these analyses are performed for a general
setup subjected to harmonic loads in different directions.

4.4. General harmonic load setup

When both tangential and normal loading is present, the right-hand side of Eq. (33) containing the external loading 𝐅𝑒𝑥𝑡 becomes

𝐅𝑒𝑥𝑡 =
(

𝛼𝛺2
𝑒 sin(𝛺𝑒𝑡)

−𝛼𝛺2
𝑒 sin(𝛺𝑒𝑡)

)

. (37)

which is a superposition of the tangential force, Eq. (34), and the normal force, Eq. (35). Since the normal loading is the same as in
Section 4.3, the mass is in continuous contact (provided the parameter values chosen are the same). The next step is to define the
stick–slip boundary, for which the ratio between the friction force and the excitation amplitude for the motion in the 𝑋1 direction
should be calculated. Considering a non-moving belt and �̇�1 < 0 (as in [40]), the equation of motion is

�̈�1 + 2𝛽1𝜔1�̇�1 + 𝜔2
1𝑋1 − 𝜇𝑠(2𝛽2𝜔2�̇�2 + 𝜔2

2𝑋2) = 𝛼𝛺2
𝑒 sin(𝛺𝑒𝑡). (38)

The expressions for 𝑋2 and �̇�2 can be found by solving the equation of motion in the vertical direction. Eq. (38) then becomes

�̈�1 + 2𝛽1𝜔1�̇�1 + 𝜔2
1𝑋1 − 𝜇𝑠𝑔 = −

𝜇𝑠𝛼𝛺2
𝑒 (𝜔

2
2 sin(𝛺𝑒𝑡 + 𝜃) + 2𝛽2𝜔2𝛺𝑒 cos(𝛺𝑒𝑡 + 𝜃))
√

4𝛽22𝜔
2
2𝛺

2
𝑒 + (𝜔2

2 −𝛺2
𝑒 )2

+ 𝛼𝛺2
𝑒 sin(𝛺𝑒𝑡) (39)

and the excitation amplitude is found using the terms on the right-hand side. Note that the static contribution of the contact force,
i.e. the 𝜇𝑠𝑔 term is written on the left-hand side of the equation. Fig. 12(a) shows the graph defining the stick–slip boundary and the
graph of 𝜇𝑠𝑔∕𝑃𝑡𝑛, where 𝑃𝑡𝑛 is the amplitude of the harmonic force in the right-hand side in Eq. (39). As it is shown in the figure, for
frequencies 𝛺 = 𝛺𝑒∕𝜔1 higher than ≈0.84 the mass will be in the sliding regime. For these frequencies, the analytical expressions
for the effective friction will be valid.

To obtain the effective friction expression, first the extended MDSM is used and the equations of motion for Φ are solved
analytically as shown in Appendix A.1. All expressions of the coefficients of the harmonics (i.e., 𝐵11(𝜏), 𝐵12(𝜏), 𝐵21(𝜏) and 𝐵22(𝜏))
approach to a constant value as 𝜏 increases reaching a steady-state condition (see Appendix A.1) and the expression for 𝛷′

1 in steady
state is

𝛷′
1 = 𝑉𝑡𝑛 cos(𝛺𝑒𝜏 + 𝜃𝑡𝑛), (40)

where

𝑉𝑡𝑛 =
𝛼𝛺3

𝑒

√

4𝛽22𝜔
2
2𝛺

2
𝑒 (𝜇𝑠 + 1)2 + (𝜔2

2 −𝛺2
𝑒 )2 + 𝜇𝑠𝜔2

2(𝜇𝑠𝜔
2
2 − 2𝛺2

𝑒 + 2𝜔2
2)

√

(4𝛽21𝜔
2
1𝛺

2
𝑒 + (𝜔2

1 −𝛺2
𝑒 )2)(4𝛽

2
2𝜔

2
2𝛺

2
𝑒 + (𝜔2

2 −𝛺2
𝑒 )2)

. (41)

for which index 𝑡𝑛 refers to tangential-normal loading. Since coupling between the two degrees of freedom is present due to the
assumed friction law, differently from the tangential loading case, there is a dependence between 𝑉 and 𝜇 . Moreover, since
13
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oscillations are occurring in both directions, 𝑉𝑡𝑛 depends also on the system characteristics (mass, stiffness and damping values)
in both directions and on the amplitude and frequency of excitation.

Next, the velocity response function 𝑌1(𝛺𝑒) is found using Eqs. (A.6)–(A.10), Appendix A.2, with 𝐅𝑒𝑥𝑡 represented as in Eq. (37).
In Fig. 12(b), a comparison of |𝑌1(𝛺𝑒)| with 𝑉𝑡𝑛 for a range of 𝜇𝑠 values is shown. The plot of |𝑌1(𝛺𝑒)| coincides with that of 𝑉𝑡𝑛, and
both of them approach the trend of the velocity amplitude given by the high-frequency excitation only as the frequency increases.
The stick–slip regime is also indicated in the figure in magenta. An increase in 𝜇𝑠 value results in an increase in the stick–slip regime.
While oscillations occur in both directions, the first peak is very small due to the used damping and excitation amplitude values.
For lower damping values, or higher oscillation amplitudes, the first peak would be more visible, however the mass might be in
intermittent contact.

Fig. 12. (a) Stick–slip boundary for the 2DOF system with external loading applied in tangential and normal directions (𝜇𝑠 = 0.4); (b) Comparison of |𝑌1(𝛺𝑒)|
(black lines), 𝑉𝑡𝑛 (red surface) and amplitude of the 𝛷′

1 for high-frequency excitation (blue plane) for a range of 𝜇𝑠 values. Parameters as in Fig. 11. The magenta
color defines the parameter space for which stick–slip occurs. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

If the phase of the harmonic tangential load changes by 180◦ (a switch from an initial positive +𝑋1 to an initial negative direction
−𝑋1 with respect to the considered reference system), the stick–slip boundary, the velocity response function, and eventually the
effective friction, change as well. Fig. 13(a) shows the graph defining the stick–slip boundary for this case. As it is shown in the
figure, for frequencies 𝛺 = 𝛺𝑒∕𝜔1 higher than ≈0.72, the mass will be in the sliding regime and the analytical solutions for the
effective friction force expression will be valid. Compared to Fig. 12(a), the sliding regime occurs in a slightly larger parameter
space, meaning that the initial loading phase has an influence on the stick–slip regime as well. In Fig. 13(b), the plots of |𝑌1(𝛺𝑒)|
and 𝑉𝑡𝑛 for an initial negative tangential loading are illustrated. The stick–slip boundary is displayed as well. Again, the graph of
|𝑌1(𝛺𝑒)| coincides with that of 𝑉𝑡𝑛, and both of them approach the trend of the velocity amplitude given by the high-frequency
excitation only as the frequency increases.

Fig. 13. (a) Stick–slip boundary for the 2-DOF system with external loading applied in tangential and normal directions. Tangential loading initially applied in
the −𝑋1 direction (𝜇𝑠 = 0.4); (b) Comparison of |𝑌1(𝛺𝑒)| (black lines), 𝑉𝑡𝑛 (red surface) and amplitude of the 𝛷′

1 for high-frequency excitation (blue plane) for a
range of 𝜇𝑠 values. Tangential loading initially applied in the −𝑋1 direction. Parameters as in Fig. 11. The magenta color defines the parameter space for which
stick–slip occurs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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A comparison of the amplitudes of the velocity response functions for the three loading cases (tangential, general with initial
angential loading in +𝑋1, and general with initial tangential loading in −𝑋1) for 𝜇𝑠 = 0.4 is presented in Fig. 14(a). From the
igure, it can be observed that as the excitation frequency increases, the amplitudes of the velocity response function coincide.
hus, for high frequencies, the results of the effective friction expression are the same independent of the loading configuration.
hile the plot in Fig. 14(a) is obtained for one value of 𝜇𝑠, from the 3D plots shown in Fig. 12(b) and in Fig. 13(b), it can be

bserved that this conclusion holds for any 𝜇𝑠 value. Looking at low frequencies, however, the plots obtained for each loading case
o not coincide, meaning that nearby resonance, the effective friction expression depends on the type of loading applied. Fig. 14(b)
hows the comparison of the effective friction expression for these three loading cases and 𝛺𝑒 = 1. For this value of the excitation

frequency, from Fig. 14(a), it can be observed that the normal-tangential loading case (−𝑋1) will result in a higher amplitude of the
velocity response function, followed by the tangential loading case and lastly by the normal-tangential loading (+𝑋1). This trend is
confirmed by the effective friction plots portrayed in Fig. 14(b). The loading case with higher amplitude in the velocity response is
characterized by a slightly larger parameter space of 𝑉𝑏 for which a friction force decrease can be observed.

Fig. 14. (a) Comparison of 𝑉 for all 3 loading cases, tangential (blue), normal-tangential (+𝑋1) (orange), normal-tangential (−𝑋1) (green), for 𝜇𝑠 = 0.4; (b)
Comparison of �̄�(𝑉𝑏) for the same loading cases and 𝛺𝑒 = 1. Parameters as in Fig. 11. The magenta line defines the parameter space for which stick–slip occurs.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

For the parameter values used so far, from Figs. 12(a) and 13(a), it can be seen that for excitation frequencies near the contact
resonance, the mass is stick–slipping. If other parameter values are considered, however, it would be possible to obtain an effective
friction graph near contact resonance as well. For example, for 𝜇𝑠 = 0.1, 𝜔2 = 2, 𝛼 = 1, and a vertical preload of 𝑃 = 𝑀𝑔 acting
n the mass in 𝑋2 direction, at contact resonance, the 2 DOF system will be in continuous sliding contact. As the 𝜔2 value has
ncreased, the amplitude of the displacement response in 𝑋2 direction increases as well. That is why a preload and lower 𝛼 values
re necessary to prevent an intermittent contact. However, lower values of 𝛼 lead to stick–slip in the horizontal direction. To prevent
he latter, a lower 𝜇𝑠 value is used. For this parameter space, the stick–slip boundary shows that excitation frequencies 𝛺𝑒 > 1.15
esults in sliding. Fig. 15 shows the velocity response function of the 2-DOF system subjected to both normal and tangential load
in +𝑋1 direction) for 𝜔2 = 2, 𝛼 = 1 and for 𝜇𝑠 = 0.1 (left) and a range of 𝜇𝑠 (right). The rest of the parameters remain the same
s in Fig. 11. The stick–slip regime is also shown in magenta indicating that higher 𝜇𝑠 values result in stick–slip. Moreover, since

different 𝜔2 and 𝛼 values are used, both peaks are clearly visible in the figure.
A comparison between the amplitudes of the velocity response functions for the three loading cases (tangential, general with

nitial tangential loading in +𝑋1, and general with initial tangential loading in −𝑋1) for 𝜇𝑠 = 0.1 is presented in Fig. 16(a). The
stick–slip parameter space is always defined by the magenta line. It can be seen that, as the excitation frequency increases, the
amplitudes of each case approach each other, showing the same trend as in Fig. 14(a). However, moving towards the resonance
peaks, the behavior changes. Fig. 16(b) shows the effective friction plots for each loading case and 𝛺𝑒 = 𝜔2 = 2, so that a continuous
sliding regime is ensured for each load case. For this value of the excitation frequency, from Fig. 16(a), it can be observed that the
normal-tangential loading case (+𝑋1) will result in a higher amplitude of the velocity response function, followed by the tangential
loading only and lastly by the normal-tangential loading (−𝑋1) case. This trend is confirmed by the effective friction plots portrayed
in Fig. 16(b). Note that the effective friction changes if a different excitation frequency is considered. The effective friction trend
is also different from that in Fig. 14(b). While in Fig. 14(b), the normal-tangential loading (−𝑋1) results in the highest friction
decrease (comparing for 𝛺𝑒 = 2), in Fig. 16(b) the normal-tangential loading (+𝑋1) gives the largest friction change. Thus, a different
dynamic characteristic of the system and different forcing parameter result not only in different stick–slip/sliding regimes but also
in different effective friction values. Furthermore, upon examining Fig. 16(a), it is evident that the 𝑉 values for the three loading
cenarios exhibit the greatest discrepancy at 𝛺𝑒 ≈ 1.8, which is in proximity to the contact resonance frequency. This suggests that
he dissimilarity in effective friction values between each load case would be most notable at this specific frequency. Hence, it
15
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Fig. 15. (a) Comparison of |𝑌1(𝛺𝑒)| (black dashed line), 𝑉𝑡𝑛 (red continuous line) and amplitude of the 𝛷′
1 for high-frequency excitation (blue continuous line)

for 𝜇𝑠 = 0.1; (b) Comparison for a range of 𝜇𝑠 values. 𝜔2 = 2, 𝛼 = 1 and the rest of parameters as in Fig. 11. The magenta color defines the parameter space for
which stick–slip occurs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

can be concluded that incorporating a friction force that somehow depends on the normal contact stiffness into the model, has a
considerable impact on the effective friction values, particularly when the excitation frequencies are near the contact resonance.
Besides the modeling implications, the pattern shown in Fig. 16 nearby the contact resonance for different loading cases, can also
be used as a characteristic feature during experiments to eventually confirm (or disprove) for a given friction pair, the dependence
of the friction force on the normal contact stiffness and damping.

Fig. 16. (a) Comparison of |𝑌1(𝛺𝑒)| for all 3 loading cases, tangential (blue), normal-tangential (+𝑋1) (orange), normal-tangential (−𝑋1) (green), for 𝜇𝑠 = 0.1;
(b) Comparison of �̄�(𝑉𝑏) for the same loading cases and 𝛺𝑒 = 2. 𝜔2 = 2, 𝛼 = 1 and the rest of parameters as in Fig. 11. The magenta line defines the parameter
space for which stick–slip occurs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

It is worth highlighting that the conclusions drawn so far for the effective friction expression of the 2-DOF system subjected to
different load configurations are dependent on the choice of the friction force 𝐹𝑓 . The friction force 𝐹𝑓 as a function of 𝐹𝑛, Eq. (32),
was chosen to demonstrate the effect of the contact resonance. If 𝐹𝑛 is assumed to be proportional to the inertial force in the vertical
direction, the 𝐹𝑓 expression becomes

𝐹𝑓 = 𝜇(𝑉𝑟)𝑀�̈�2 = 𝜇(𝑉𝑟)(−𝛼𝛺2 sin(𝛺𝜏) + 𝑔), (42)

where 𝑀�̈�2 is found using the equation of motion in 𝑋2 direction after neglecting the stiffness and damping terms. Considering
this friction force expression, the velocity response functions are calculated again. A comparison of their amplitudes for two loading
cases and for 𝜇𝑠 = 0.4 is presented in Fig. 17(a) where the continuous-line plots are obtained using 𝐹𝑓 as in Eq. (32) and the
dashed-line plots using 𝐹𝑓 as in Eq. (42). Note that the tangential loading case is not portrayed in the figure because when only
tangential loading is present both expression of 𝐹𝑓 (Eqs. (32) and (42)) are the same, i.e. 𝐹𝑓 = 𝑀𝑔𝜇(𝑉𝑟), as there is no displacement
in the 𝑋 direction.
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Fig. 17. (a) Comparison of |𝑌1(𝛺𝑒)| for 2 loading cases where continuous lines obtained using 𝐹𝑓 as in Eq. (32) and dashed line using 𝐹𝑓 as in Eq. (42), for
𝜇𝑠 = 0.4; (b) Comparison of �̄�(𝑉𝑏) for the same loading cases and 𝛺𝑒 = 5. Parameters as in Fig. 11. The magenta line defines the parameter space for which
tick–slip occurs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

From the figure, it can be observed that when the friction force depends only on the inertial force in the normal direction (dashed
ines), as the excitation frequency increases, the amplitudes of the velocity response function do not coincide anymore. This is to be
xpected because the inertial force prevails at high frequencies. Fig. 17(b) shows the comparison of the effective friction expression
or these loading cases and for 𝛺𝑒 = 5. While the continuous lines coincide, the dashed lines display different effective friction plots,
omplying to the velocity response function trends portrayed in Fig. 17(a). This enforces the fact that the nature of the contact normal
orce affects the results of the effective friction expression, especially as we go towards the high-frequency regime. To reconnect to
he conclusion drawn for Fig. 16, to assess whether a contact normal force is mainly driven by a compliant force (characterized by
contact resonance and contact damping) or by the inertial contribution in the vertical direction, the measurement of the velocity

esponse functions for different loading cases would enable such discrimination, as shown in Figs. 16(a) and 17(a).
Note that, if the 2-DOF system considered so far included a diagonal spring (oriented at an oblique angle of 45◦ relative to the

normal direction), mode coupling will always be present. Different values of the diagonal spring’s stiffness would result in different
shapes and trends of the velocity response functions. The latter can then be used to calculate eventual vibration-induced friction
modulation. However, in such case, the system could be prone to mode coupling instabilities [31], that should be taken into account
before assessing the effective friction characteristic at steady state.

To conclude the analysis done so far, it can be stated that the velocity response function can be used to obtain the effective
friction expression for a multi-degree of freedom system and for a general frequency range of excitation. The influence of the
external loadings on friction depends on the combination of loading phase, excitation frequency, system characteristics (mass,
stiffness and damping values) and the value of the static friction coefficient. Depending on these parameters, applying two loads
does not necessarily result in a higher friction change compared to the application of only one type of load. Lastly, the values of
effective friction greatly depend on the choice of the friction force expression, inclusive of the normal contact force.

5. Conclusions

In this work, the Method of Direct Separation of Motion (MDSM) was extended to quantify the vibration-induced effect on
the average friction force for a single and a multi-degree-of-freedom system, subject to different combinations of dynamic load
directions and valid for any frequency of excitation (low- and high-frequency regime). The systems considered are influenced by a
friction force represented by the Amontons–Coulomb’s law, using different expressions of the normal contact force, representing a
compliant and a rigid contact case. The extension enabled to identify a threshold, 𝛺 = 5𝜔𝑛, limiting the so-called ‘‘high-frequency’’
egime for vibration-induced friction modulation. The MDSM results were then compared to the ones obtained by exploiting the
elocity response function of the system. It is found that, instead of the MDSM, the velocity response function can be used to
btain the effective friction expression, facilitating so the interpretation of the vibration-induced effects on the averaged friction
orce and avoiding the cumbersome mathematical steps needed for the extended MDSM. An equivalence was also shown between
he aforementioned results and the alternative rationale used by Matunaga, Storck and coworkers and Kumar and Hutchings to
ompute the friction force reduction, based on the variation of friction force direction within one cycle of vibration.

The expression of the effective friction for a generic harmonic excitation is obtained for steady-state and continuous-slip motion. A
rocedure was proposed to define the boundaries of the transition from stick–slip to a continuous-slip regime, merging the rationale
sed by den Hartog and the velocity response function of a forced mass–spring system in contact with a moving belt. It is important
o note that if the system is already in a slip regime (regardless of the presence of a moving belt), a friction reduction can be observed
ue to vibration. On the contrary, if the system is in a stick–slip regime at a specific excitation frequency as per den Hartog’s stick–slip
17
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plane, a belt velocity higher than the amplitude of the velocity response function (assuming sliding) will eliminate stick–slip, but
no friction reduction will be observable according to the investigated system. It was also shown that the influence of the external
loadings on friction depends on the combination of the loading phase, excitation frequency, system characteristics (mass, stiffness
and damping values), and the value of the static friction coefficient. The choice of the normal contact force expression (including
either inertia or damping-stiffness effects) also influences the results concerning the effective friction, and the velocity response
function allows to shed light on the main mechanism (e.g. inertia or damping-stiffness) driving the contact normal force.
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Appendix

A.1. Extended MDSM for 2 DOF system; general harmonic loading

Separating the motions [𝐗] = [𝑋1 𝑋2]T into the components [𝐙] = [𝑍1 𝑍2]T and [Φ] = [𝛷1 𝛷2]T, making use of the averaging
operation and subtracting the equation of motion for 𝐙 from the total one, the equations of motion for the components in Φ,
considering the arbitrary situation, are obtained

𝛺𝑒𝛷
′′
1 + 2�̇�′

1 +𝛺−1
𝑒 �̈�1 + 2𝛽1𝜔1(𝛷′

1 +𝛺−1
𝑒 �̇�1) + 𝜔2

1𝛺
−1
𝑒 𝛷1 + 𝜇(−𝑉𝑏 +𝛷′

1 +𝛺−1
𝑒 �̇�1)(𝜔2

2𝛺
−1
𝑒 𝛷2 + 2𝛽2𝜔2(𝛷′

2 +𝛺−1
𝑒 �̇�2)) (A.1)

+(𝜔2
2𝑍2 + 2𝛽2𝜔2�̇�2)

(

𝜇(−𝑉𝑏 +𝛷′
1 +𝛺−1

𝑒 �̇�1) −
⟨

𝜇(−𝑉𝑏 +𝛷′
1 +𝛺−1

𝑒 �̇�1)
⟩)

= 𝛼𝛺2
𝑒 sin(𝛺𝑒𝜏)

and

𝛺𝑒𝛷
′′
2 + 2�̇�′

2 +𝛺−1
𝑒 �̈�2 + 2𝛽2𝜔2(𝛷′

2 +𝛺−1
𝑒 �̇�2) + 𝜔2

2𝛺
−1
𝑒 𝛷2 = −𝛼𝛺2

𝑒 sin(𝛺𝑒𝜏). (A.2)

Note that Eqs. (A.1) and (A.2) are coupled, and the solution for 𝛷1 is needed to find �̄�(𝑉𝑏). The solutions are sought in the form of
the harmonic series presented below

𝛷1 = 𝐵11(𝜏) sin(𝛺𝑒𝜏) + 𝐵12(𝜏) cos(𝛺𝑒𝜏) (A.3)

𝛷2 = 𝐵21(𝜏) sin(𝛺𝑒𝜏) + 𝐵22(𝜏) cos(𝛺𝑒𝜏). (A.4)

Inserting Eqs. (A.3) and (A.4) into Eqs. (A.1) and (A.2) and gathering the coefficients of the involved harmonics sin(𝛺𝑒𝜏) and
cos(𝛺𝑒𝜏), results in expressions for �̈�11, �̈�12, �̈�21 and �̈�22. After some mathematical manipulations, the equations of motion for Φ

can be solved analytically. All expressions of 𝐵11(𝜏), 𝐵12(𝜏), 𝐵21(𝜏) and 𝐵22(𝜏) approach to a constant value as 𝜏 increases reaching
a steady-state condition. This behavior is shown in Fig. A.18 where all the plots are presented for the case of combined normal and
tangential loading (2-DOF system).

A.2. Velocity response function for 2 DOF system; general harmonic loading

Here, the derivation of the velocity response function for the 2-DOF system is illustrated. For the 2DOF system, the assumed
solution is

𝐗 = ℑ[�̂�(𝛺𝑒)𝑒i𝛺𝑒𝑡], (A.5)

since the external force is 𝐹𝑒𝑥𝑡(𝑡) = ℑ[𝐹𝑒𝑥𝑡(𝛺𝑒)𝑒i𝛺𝑒𝑡]. The frequency-dependant displacement response is then given by

̂ ̂
18

𝐗(𝛺𝑒) = 𝐇(𝛺𝑒)𝐅𝐞𝐱𝐭 (𝛺𝑒), (A.6)
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w

Fig. A.18. Transient and steady-state behavior of (a) 𝐵11(𝜏) (red), (b) 𝐵12(𝜏) (blue), (c) 𝐵21(𝜏) (green) and (d) 𝐵22(𝜏) (purple). 𝛺𝑒 = 2 and other parameters as
in Fig. 11. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where 𝐇(𝛺𝑒) is the transfer function, and its inverse reads as follows

𝐇(𝛺𝑒)−1 =
[

−𝛺2
𝑒 + i𝛺𝑒2𝛽1𝜔1 + 𝜔2

1 𝜇𝑠(𝜔2
2 + i𝛺𝑒2𝛽2𝜔2)

0 −𝛺2
𝑒 + i𝛺𝑒2𝛽2𝜔2 + 𝜔2

2

]

. (A.7)

The displacement response function �̂�1(𝛺𝑒) becomes

�̂�1(𝛺𝑒) =
𝐻22(𝛺𝑒)𝐹1,𝑒𝑥𝑡(𝛺𝑒) −𝐻12(𝛺𝑒)𝐹2,𝑒𝑥𝑡(𝛺𝑒)
𝐻11(𝛺𝑒)𝐻22(𝛺𝑒) −𝐻12(𝛺𝑒)𝐻21(𝛺𝑒)

=
(−𝛺2

𝑒 + i𝛺𝑒2𝛽2𝜔2 + 𝜔2
2)𝐹1,𝑒𝑥𝑡(𝛺𝑒) − 𝜇𝑠(𝜔2

2 + i𝛺𝑒2𝛽2𝜔2)𝐹2,𝑒𝑥𝑡(𝛺𝑒)
|𝐇(𝛺𝑒)|

, (A.8)

here 𝐹1,𝑒𝑥𝑡(𝛺𝑒) = 𝛼𝛺2
𝑒 , 𝐹2,𝑒𝑥𝑡(𝛺𝑒) = −𝛼𝛺2

𝑒 and |𝐇(𝛺𝑒)| is the determinant of 𝐇(𝛺𝑒). The velocity response function can be easily
found as

𝑌1(𝛺𝑒) = 𝑖𝛺𝑒�̂�1(𝛺𝑒), (A.9)

with the amplitude being

|𝑌1(𝛺𝑒)| =
√

(ℑ[𝑌1(𝛺𝑒)])2 + (ℜ[𝑌1(𝛺𝑒)])2. (A.10)
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