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a b s t r a c t 

There is currently growing interest in modeling the information diffusion on social net- 

works across multi-disciplines, including the prediction of the news popularity, the detec- 

tion of the rumors and the influence of the epidemiological studies. Following the frame- 

work of the epidemic spreading, the information spreading models assume that informa- 

tion can be transmitted from the known individuals (infected) to the un-known individuals 

(susceptible) through the network interactions. During this process, individuals also always 

change their interactions which in turn will greatly influence the information spreading. 

In this work, we propose a mechanism considering the co-evolution between information 

states and network topology simultaneously, in which the information diffusion was exe- 

cuted as an SIS process and network topology evolved based on the adaptive assumption. 

The theoretical analyses based on the Markov approach were very consistent with simula- 

tion. Both simulation results and theoretical analyses indicated that the adaptive process, 

in which informed individuals would rewire the links between the informed neighbors to a 

random non-neighbor node, can enhance information diffusion (leading to much broader 

spreading). In addition, we obtained that two threshold values exist for the information 

diffusion on adaptive networks, i.e., if the information propagation probability is less than 

the first threshold, information cannot diffuse and dies out immediately; if the propagation 

probability is between the first and second threshold, information will spread to a finite 

range and die out gradually; and if the propagation probability is larger than the second 

threshold, information will diffuse to a certain size of population in the network. These 

results may shed some light on understanding the co-evolution between information dif- 

fusion and network topology. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

1. Introduction 

Recently, the popularity of the Internet has greatly facilitated information spreading, and many platforms have emerged

as tools for information spreading, such as Facebook, Twitter, and Sina Weibo [1] . Much of the previous work on infor-

mation spreading has been put forward with the purpose of uncovering how information spreads on social networks, of
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finding ways to either enhance positive information spreading or control rumor diffusion [2] and of preventing the epi-

demic spreading based on the awareness diffusion [3,4] . The main focus can be classified as having two directions. (i)

Modeling information-spreading patterns and predicting the final size of the diffusion; most of this kind of study is based

on the epidemic spreading models [5] , including the susceptible-infected-refractory ( SIR ) model [6,7] , susceptible-infected-

susceptible ( SIS ) model [8,9] , and susceptible-contacted-infected-refractory ( SCIR ) model [10,11] for information spreading on

online social media. (ii) Designing prediction algorithms [12] according to some spreading features on the actual information

spreading systems, including technology transfer [13,14] , knowledge dissemination [15,16] , and rumor propagation [17,18] . 

Despite numerous achievements in the field of information diffusion, the majority of the corresponding studies focused

on information diffusion independently, in which information is transmitted from informed agents to uninformed agents

through the fixed interactions between them. However, the structure of the underlying network on which information

spreads always changes with time, which may influence the diffusion of information spreading significantly. To date, the

adaptive behaviors, which originated in epidemic spreading [19,20] , are the most accepted assumption with which to illus-

trate these dynamic interactions, in which people may change their interactions in the network to protect themselves or

others from being infected, with the general realization that such adaptive behaviors would suppress the diffusion process

[21–23] . The case in information spreading would be more complicated; for example, one may sometimes contact or make

mention to strangers with the purpose of spreading information or selling products on the social network, or one may also

disconnect from the people who are spreading information on the network to prevent oneself from being disturbed [24,25] ;

these kinds of adaptive behaviors would have an adverse impact on the spreading process. Liu and Zhang [26] proposed a

rewiring strategy based on the Fermi function to describe the dynamic interactions, and the simulation results indicate that

this adaptive process can enhance information spreading significantly. In addition, edge-breaking [27,28] or edge temporarily

deactivating [29] were also commonly used strategies for adaptive behaviors. Although information spreading on adaptive

networks has attracted much attention, the theoretical analysis of the complicated dynamic process is still not very clear. 

In this paper, we concentrate on the co-evolution of information states and network topology at the same time [30–32] ,

in which information diffusion was considered an SIS process and network topology evolved based on the assumption that

informed individuals would rewire the informed neighbors to a random one. ODEs based approaches have been proposed

to model the spreading process previously [33–43] . However, most ODEs based models can hardly consider the network

evolution. In this work, we provide the numerical solution based on the Markov-chain model, which includes the network

evolution by the adjacency matrix, to describe the coupled dynamic processes. The rest of this paper is organized as follows.

In Section 2 , we introduce the mechanism for network evolution and the information diffusion process. In Section 3 , we

propose the Markov-chain model to describe the mechanism mathematically, and validate the accuracy of our mathematical

model with three kinds of networks. In Section 4 , we aim to find the threshold values of this model. Finally, we summarize

our main results and discuss some open questions for future study in Section 5 . 

2. Model description 

To explore the spreading pattern of social contagion processes on complex networks, we propose an SIS model with adap-

tive behavior. In this model, all of the individuals in the system must be in one of two discrete states: the uninformed state

(defined as S -state) and the informed state (defined as I -state) that would transmit information to their S -state neighbors.

The model is illustrated in Fig. 1 , in which we consider two evolutional processes: the contagion dynamics and network

dynamics. In the contagion dynamics, an S -state individual may be infected (informed) by their I -state neighbors with prob-

ability λ and turn to the I -state. Simultaneously, an I -state individual may change to the S -state with the recovering rate

μ. In the network dynamics, an I -state individual may break the edges with their I -state neighbors with probability m and

randomly connect to a node that was not their neighbor previously. The detailed process is described as follows. 

• Initial condition: At the initial step, we randomly select an individual and denote it as the I -state and all of the other

nodes as the S -state. 
• Network dynamics: At each time step, the I -state individuals would break the edges with their I -state neighbors with

probability m , and randomly connect to a non-neighbor node. 
• Contagion dynamics: At each time step, the S -state individuals could be infected by their I -state neighbors with proba-

bility λ, and the I -state individuals could change to the S -state with probability μ simultaneously. 
• The steps are repeated until the number of I -state individuals in the network becomes stable. 

3. Model analysis 

We consider a network with N nodes, and the connections of the network are represented by the entries a ij of an N × N

adjacency matrix A . We denote a i j = 1 if node i is connected with node j ; otherwise a i j = 0 . In this work, we will focus on

undirected, unweighted networks, indicating a i j = a ji . The main parameters used in this work are described in Table 1 . In

this section, we provide the mathematical analysis of the model using the Markov approach. Contagion Dynamics. In the

contagion process, the probability of an S -state individual being infected only depends on the last time step according to

the Markov assumption [44] . We can derive the probability that node i is in S -state at time step t ( S i ( t )) as 

S (t) = S (t − 1) + μ[1 − S (t − 1)] − S (t − 1)[1 − q (t − 1)] , (1)
i i i i i 
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Fig. 1. Diagram of the spreading model on adaptive networks. Top panel ( Network Dynamics ) shows network evolution in which I -state (gray node) individ- 

uals will break the link to I -state neighbors with probability m and reconnect to a randomly selected S -state individual. Bottom panel ( Spreading Dynamics ) 

indicates evolution of individuals information state on spreading process, where the S -state node would be infected with probability λ, and the I -state 

node would be recovered to S-state with probability μ. 

Table 1 

Definitions for key parameters and variables. 

N number of nodes in network 

λ propagation rate of contagion dynamics 

μ recovery rate of contagion dynamics 

m rewiring rate of network dynamics 

S i (t)(εS 
i 
) probability that node i is in S state at time step t 

1 − S i (t)(ε I 
i 
) probability that node i is in I state at time step t 

A ij ( t ) probability that node i is connected to node j at time step t 

A ij (0) adjacent matrix of network at initial step, where A i j (0) = A 

q i ( t ) probability that node i is not informed at time step t 

�max (H) maximum eigenvalue of matrix H 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where q i ( t ) is the probability that node i has not been infected by any neighbor nodes at time step t , which can be expressed

as: 

q i (t) = 

N ∏ 

j=1 

[1 − λA i j (t)(1 − S j (t))] . (2)

The first term of Eq. (1) is the probability that node i was in state S at time step t − 1 , the second term represents the

probability that node i was in state I and recovered to S state at time step t − 1 , and the last term represents the probability

that node i was infected just at time step t − 1 . Thus, the fraction of the I -state nodes at time step t can be given as: 

I(t) = 1 − 1 

N 

N ∑ 

i =1 

S i (t) . (3)

Network Dynamics. According to the network dynamics described above, the change of network structure is due to the

rewiring mechanism of the I -state nodes in the network; thus, we only need to focus on the edges issued from the I -state

nodes. Suppose A ij ( t ) is the probability that node i is connected with node j at time step t , where i is an I -state node.

Therefore, we can give the expression of A ij based on the master equation as follows: 

A i j (t) = A i j (t − 1) 

−A i j (t − 1)(1 − S i (t − 1))(1 − S j (t − 1)) 
∑ N 

k � = i, j 
1 −A ik (t−1) 

N−2 

+(1 − S i (t − 1)) 
1 −A i j (t−1) 

N−2 

∑ N 
k � = i, j (1 − S k (t − 1)) A ik (t − 1) , 

(4)

where the first term represents the probability that link ( i, j ) is connected at time step t − 1 . The second term shows the

decrease of the connection probability of link ( i, j ), which is the probability that two connected I -state nodes break the

link at time step t . The third term shows the increase of the probability of link ( i, j ), which is the probability that two

disconnected nodes (at least one I -state node) connect at time step t . In the rewiring mechanism, when a node breaks

a link with their neighbor, it will connect the link with another non-neighbor node in the network. Therefore, the total
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Table 2 

Basic statistics of networks, where N, E, C , 〈 k 〉 , and L represent 

the number of nodes, number of edges, clustering coefficient, 

mean degree, and average path length of each network, re- 

spectively. 

Network N E C 〈 k 〉 L 

BA 5000 19986 0.0096 7.994 3.719 

WS 5000 20000 0.0015 8 4.377 

Emailnet 1133 5451 0.2202 9.622 3.606 

Fig. 2. Evolution of fraction of I -state individuals both from simulation and mathematical results. (a1–a3) correspond tocase of static networks ( m = 0 ); 

(b1–b3) correspond to results for adaptive network ( m = 1 ). Other parameters are set as λ = 0 . 2 , μ = 0 . 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

number of links in the network will not change in the rewiring process. Regarding the adjacent matrix, it means that the

decrease in A ij ( t ) will result in the increase of A ik ( t ) in the matrix, whereas the sum of the elements in the network remains

unchanged. 

In this case, the model can be described by the combination of the contagion dynamics [ Eq. (1) ] and the network dy-

namics [ Eq. (4) ]. To evaluate the theoretical analysis, we applied our model to three networks. (1) BA network: m = 4 in the

BA model, where m is the number of edges for the new node [45] , and the network exhibits a power-law degree distribu-

tion p(k ) ∼ k −γ with γ = 3 . (2) WS network: rewiring each edge at random with probability ps = 1 based on the regular

network [46] . (3) EmailNet 1 : a real-world network, which is an email network characterizing the mailing behavior between

individuals. For the sythentic networks, the network sizes are set as N = 50 0 0 with average degree 〈 k 〉 = 8 , and the basic

statistics of the three networks are given in Table 2 . In Fig. 2 , we show the evolution of the fraction of informed individuals

both from simulation (gray dashed curves) and mathematical analysis (black solid curve). The simulation results are ob-

tained from 100 independent realizations. From the results of the three networks, we can conclude that the mathematical

approach shows good agreement with the simulation results, indicating the reasonableness of the mathematical analysis

based on the Markov assumption. This conclusion is suitable for the static networks [ Fig. 2 (a1–a3), m = 0 ] and adaptive

networks [ Fig. 2 (b1–b3), m = 1 ] simultaneously. In addition, we test the results from different values of λ for the three

networks in the Appendix to further illustrate the accuracy of our approach. According to the rewiring mechanism in our

spreading model, we can derive the exact connection probability between every node pair in each step by Eq. (4) . The total

probability of connectivity between node i and node j derived from our model meets the results from simulation over all

the realizations. It makes sense that the numerical solution of the fraction of infected nodes located around the average of

the curves from the simulation in Fig. 2 . Therefore, it is reasonable that we adopt the numerical solution to further do the

threshold analysis for the co-evolution model. 

To illustrate the influence of the rewiring probability on information diffusion, we observed the fraction of the informed

individuals with different rewiring probabilities. In this case, we set λ = 0 . 2 and μ = 0 . 1 , and obtain simulation and model

results of the infected fraction in a steady state in Fig. 3 ; the simulation results are obtained by averaging over 100 in-
1 U. rovira i virgili network dataset C KONECT (Jun. 2016). 
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Fig. 3. Fraction of I -state individuals at the final state as a function of m . (a) BA network; (b) WS network; (c) Emailnet network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dependent realizations. On each network, we find that the size of information diffusion increases with increasing rewiring

probability. Therefore, the rewiring mechanism can promote information spreading on different networks, and it would be

a reasonable strategy to enhance the information spreading. It should be noted that a larger deviation between simulation

and mathematical analysis is observed when m becomes larger. The possible reason would be that we use the connection

probability to illustrate the network structure in the mathematical analysis, while the edges between two nodes only exist

or do not in the simulation. Thus, the difference would emerge when the rewiring probability is large enough. 

4. Threshold analysis 

When the information is spreading among a population, one of the most important things to know is whether the

information will break out or not, which indicates the threshold value of the corresponding dynamics. Since the network

we are concerned with is an adaptive network, the threshold value of the information spreading on this network becomes

more complicated than that on the static networks. Therefore, we first analyze the threshold value of information spreading

on a static network (i.e., the case m = 0 ). Assuming λc is the critical value of the information transmission rate for fixed

values of μ, when λ < λc , the final fraction of informed individuals is I final = 0. If λ > λc , there would be a part of the

population that would be informed in the system, indicating I final > 0. Letting the probability that node i is in the I -state at

time step t , εI 
i 
= 1 − S i (t − 1) , when λ −→ λc , we have εI 

i 
≈ 0 , and thus we can obtain the probability that node i has not

been informed at time step t [denoted q i ( t )] as follows: 

q i (t) = 

∏ N 
j=1 [1 − λA i j (t)(1 − S j (t))] 

= 

∏ N 
j=1 [1 − λA i j (t) ε I 

j 
] 

≈ 1 − λ
∑ 

j A i j (t) ε I 
j 
. 

(5)

Substituting Eq. (5) into Eq. (1) , we obtain 

με I 
i = εS 

i [ λ
∑ 

j 

A i j (t − 1) ε I 
j ] . (6)

Furthermore, we can obtain 

(εS 
i A i j −

μ

λ
E) ε I 

j = 0 , (7)

where E is the identity matrix. Accordingly, the threshold value is λc = 

μ

�max (H) 
, and the element in matrix H is εS 

i 
A i j . At

the critical point, we have εS 
i 

≈ 1 , and thus H ≈ A ij , where �max (H) is the maximum eigenvalue of H [47–51] . 

Therefore, the threshold value is λc1 = 

μ

�max (A ) 
when m = 0 (static network), which is defined as the first threshold

value of the model ( τ1 in Fig. 4 ). However, the network is changing with the rewiring mechanism designed in our model,

leading to the constantly changing threshold value. To guarantee that the information can spread out on the adaptive net-

work, we must find the maximum value of λc1 = 

μ

�max (A ) 
[i.e., the minimum value of �max (A ) ]. As long as λ > max { λc1 } ,

the information can break out. We define λc2 
. = max { λc1 } as the second threshold value of the model ( τ2 in Fig. 4 ). To

calculate λc 2 , we first introduce a theorem as follows: 

Theorem 1 (Gershgorin circle theorem [52] ) . Let A be a complex N × N matrix, with entries a ij . Every eigenvalue � of A must

lie within at least one of the following discs: 
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Fig. 4. Schematic of information evolution under influence of λ. 

Table 3 

Diffusion threshold values for the 

three studied networks. 

Network λc 1 λc 2 

BA 0.00480 0.01251 

WS 0.01171 0.01250 

Emailnet 0.00482 0.01039 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

| � − a ii |≤ r i = 

N ∑ 

j =1 , j � = i 
| a i j | , i = 1 , 2 , . . . , N. (8)

With the evolution of the network structure, the value of the elements in matrix A ( t ) (except the diagonal elements value)

will lie between 0 and 1 (not equal to 0 or 1). To guarantee that information can spread out, the originating propagation

rate should be greater than the maximum value of the threshold value. In addition, the upper limit of the second threshold

value can be estimated by the minimum value of the maximum eigenvalue for matrix A ( t ). According to the Gershgorin

circle theorem , the minimum value of the maximum eigenvalue would be obtained when the adjacent matrix satisfies the

following conditions: (a) the main diagonal elements of matrix A are zero, and (b) all of the row sums of matrix A are

equal to the same value. It is obvious that max (r i ) ≥
r 1 + r 2 + . . . + r n 

n 
, and only if r 1 = r 2 = . . . = r n does max ( r i ) take the

minimum value 
r 1 + r 2 + . . . + r n 

n 
(the equality holds) according to mean inequality [53] . We use Z to express the adjacent

matrix A when it satisfies conditions (a) and (b). Therefore, the second threshold value of the model is λc2 = 

μ

�max (Z) 
.

When the transmission probability λ > λc 2 , the information can always spread out to a certain number of individuals. 

Fig. 4 is a schematic of the relationship between the thresholds and the fraction of I -state individuals. According to the

analysis above, we can conclude that when λ < λc 1 the information cannot spread out (the bottom part of Fig. 4 , i.e., the

white area). When λc 1 < λ < λc 2 (the middle part of Fig. 4 , i.e., the blue area), the information will first spread to a number

of individuals, and then the fraction of I -state individuals will tend to be zero in the final state, which is a case called ”slow

information die-out.” The top part of Fig. 4 (red area) is a case of information persistence, which means that there will

be a number of individuals known about the information in the steady state when λ > λc 2 . In this case, we can give the

threshold values of the model from a theoretical point, i.e., the first threshold value λc 1 and the second threshold value

λc 2 . According to the theoretical computation method given above, we calculate the threshold values for the information

spreading on the three networks in Table 3 . 

Fig. 5 is a schematic of information evolution under different values of transmission rate λ, which displays three differ-

ent dynamical behaviors, i.e., information die-out, slow information die-out, and information persistence. We verify these

results on the Emailnet network in Fig. 5 by choosing different values of λ. When λ = 0 . 004 , which is smaller than the

first threshold value of this network (i.e., 0.00482), there is no information spreading in the population [ Fig. 5 (a)]. However,

the fraction of I -state individuals will first reach a small peak and then decrease to zero when λ = 0 . 01 ( λc 1 < λ < λc 2 ),

corresponding to Fig. 5 (b) (slow information die-out). When λ = 0 . 02 ( λ > λc 2 ), the evolution of the fraction of infected

individuals is an S-shaped curve, corresponding to Fig. 5 (c) (information persistence). Fig. 6 shows the final size of the pop-

ulation of informed individuals as a function of λ both for the static networks [ m = 0 , Fig. 6 (a1–a3)] and adaptive networks
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Fig. 5. Evolution of fraction of I -state individuals under different values of λ: (a) λ = 0 . 004 ; (b) λ = 0 . 01 ; (b) λ = 0 . 02 . 

Fig. 6. Fraction of I -state individuals at final state as a function of λ. (a1–a3) Static networks( m = 0 ); (b1–b3) adaptive networks ( m = 1 ), with the inset 

showing three different situations: λ < λc 1 , λc 1 < λ < λc 2 , and λ < λc 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[ m = 1 , Figs. 6 (b1–b3), the inset of which shows three different situations: (1) λ < λc 1 , (2) λc 1 < λ < λc 2 , and (3) λ < λc 2 ).

The simulation results are consistent with the mathematical approach in both cases, indicating the reasonableness of the

mathematical analysis. 

5. Conclusions and discussion 

Aiming to give a better understanding of information diffusion on adaptive networks, in this work, we built an SIS model

considering the co-evolution of information states and network topology at the same time. We presented mathematical

analyses to illustrate the co-evolution dynamics according to the Markov approach, and the results of both simulation and

mathematical analyses show good agreement on three different networks (the BA network, WS network, and a real-world

email network). According to the mathematical analyses, we found that there are two threshold values ( λc 1 and λc 2 ) for this

model, which is different from previous studies. We validated our results by simulations using the three different networks

and found that, when the spreading probability λ < λc 1 , information cannot diffuse in the system; when λc 1 < λ < λc 2 ,

information will first propagate to a certain number of the population and gradually become extinct; and when λ > λc 2 ,

there will always be a certain number of the population that knows about the information. 

As a starting point, we use the discrete Markov chain model in our work to model the information spreading on adaptive

networks. Future work can consider continuous Markov chain model [54] , which may help to reduce the error caused by

discrete calculation as well as provide a deeper understanding of the information spreading. Furthermore, we observed

that information spreading with an adaptive process can increase the informed popularity. This induces us to pay more

attention to information spreading on the dynamical social network, which may infect a large number of the population

with adverse impact, e.g., the salt-buying panic in China caused by an earthquake in Japan and the Fukushima reactor

meltdown in 2011 [55] . In a planned future study, more detailed data about information spreading on adaptive networks



8 C. Liu, N. Zhou and X.-X. Zhan et al. / Applied Mathematics and Computation 380 (2020) 125286 

 

 

 

 

 

 

 

will be needed to achieve in-depth understanding of the dynamics of information spreading. In conclusion, this research

enhances understanding of information spreading on adaptive networks. 

Acknowledgments 

This work was partially supported by the Zhejiang Provincial Natural Science Foundation of China (Grant nos.

LR18A050 0 01 and LY18A050 0 04 ), the National Natural Science Foundation of China (Grant nos. 61673151 , 61873080 and

11671241 ), the Major Project of The National Social Science Fund of China (Grant no. 19ZDA324 ), and Outstanding Young

Talents Support Plan of Shanxi province, Selective Financial Support for Scientific and Technological Activities of Overseas

Students in Shanxi Province. 

Appendix A 

Figs. S.1 –S.3 show the evolution of the fraction of I -state individuals on the BA, WS, and Emailnet networks, respectively.

For each case, we denote the label ∗1, ∗2, and 

∗3 as λ = 0 . 1 , 0 . 2 , and 0.3 respectively, and a ∗ and b ∗ represent static network

( m = 0 ) and adaptive network ( m = 1 ), respectively. 
Fig. S.1. Evolution of fraction of I -state individuals on BA network. 

Fig. S.2. Evolution of fraction of I -state individuals on WS network. 

https://doi.org/10.13039/501100004731
https://doi.org/10.13039/501100001809
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Fig. S.3. Evolution of fraction of I -state individuals on Emailnet network. 
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