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AN OPTIMAL BIFACTOR APPROXIMATION ALGORITHM FOR
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Abstract. We obtain a 1.5-approximation algorithm for the metric uncapacitated facility lo-
cation (UFL) problem, which improves on the previously best known 1.52-approximation algorithm
by Mahdian, Ye, and Zhang. Note that the approximability lower bound by Guha and Khuller is
1.463 . . . . An algorithm is a (λf ,λc)-approximation algorithm if the solution it produces has total
cost at most λf ·F ∗+λc ·C∗, where F ∗ and C∗ are the facility and the connection cost of an optimal
solution. Our new algorithm, which is a modification of the (1 + 2/e)-approximation algorithm of
Chudak and Shmoys, is a (1.6774, 1.3738)-approximation algorithm for the UFL problem and is the
first one that touches the approximability limit curve (γf , 1 + 2e−γf ) established by Jain, Mahdian,
and Saberi. As a consequence, we obtain the first optimal approximation algorithm for instances
dominated by connection costs. When combined with a (1.11, 1.7764)-approximation algorithm pro-
posed by Jain et al., and later analyzed by Mahdian et al., we obtain the overall approximation
guarantee of 1.5 for the metric UFL problem. We also describe how to use our algorithm to improve
the approximation ratio for the 3-level version of UFL.
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1. Introduction.

1.1. Background on uncapacitated facility location. The uncapacitated
facility location (UFL) problem is defined as follows. We are given a set F of facilities
and a set C of clients. For every facility i ∈ F , there is a nonnegative number fi
denoting the opening cost of the facility. Furthermore, for every client j ∈ C and
facility i ∈ F , there is a connection cost cij between facility i and client j. The goal
is to open a subset of the facilities F ′ ⊆ F and connect each client to an open facility
so that the total cost is minimized. The UFL problem is NP-complete and max SNP-
hard (see [14]). A UFL instance is metric if its connection cost function satisfies the
following variant of the triangle inequality:

(1.1) cij ≤ cij′ + ci′j′ + ci′j for any i, i′ ∈ C and j, j′ ∈ F .

We will say that an algorithm is a λ-approximation algorithm for a minimization
problem if it computes, in polynomial time, a solution that is at most λ times more
expensive than the optimal solution. Specifically, for the UFL problem we consider the
notion of bifactor approximation introduced by Charikar and Guha [7, 8]. We say that
an algorithm is a (λf ,λc)-approximation algorithm if the solution it delivers has total
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cost at most λf ·F ∗+λc ·C∗, where F ∗ and C∗ denote, respectively, the facility and the
connection cost of an optimal solution. Note the potential ambiguity resulting from
the possible existence of multiple optimal solutions. When presenting our algorithm,
we will compare the solution cost only to the cost of the initial fractional solution.
Nevertheless, as we observe at the end of section 4, adding an additional scaling step
to our algorithm is sufficient to get a worst-case guarantee in a comparison with any
feasible fractional solution.

Guha and Khuller [14] proved by a reduction from set cover that there is no
polynomial time λ-approximation algorithm for the metric UFL problem with λ <
1.463, unless NP ⊆ DTIME (nlog logn). Sviridenko showed that the approximation
lower bound of 1.463 holds, unless P = NP (see [25]). Jain, Mahdian, and Saberi [18]
generalized the argument of Guha and Khuller to show that the existence of a (λf ,λc)-
approximation algorithm with λc < 1 + 2e−λf would imply NP ⊆ DTIME (nlog logn).

The UFL problem has a rich history starting in the 1960s. The first results
on approximation algorithms are due to Cornuéjols, Fisher, and Nemhauser [11],
who considered the problem with an objective function of maximizing the “profit” of
connecting clients to facilities, minus the cost of opening facilities. They showed that
a greedy algorithm gives an approximation ratio of (1 − 1/e) = 0.632 . . . , where e is
the base of the natural logarithm. This ratio was later improved to 0.828 by Ageev
and Sviridenko [2].

For the objective function of minimizing the sum of connection cost and opening
cost, Hochbaum [17] presented a greedy algorithm with an O(log n)-approximation
guarantee, where n is the number of clients. By a straightforward reduction from
the set cover problem, it can be shown that this cannot be improved unless NP ⊆
DTIME [nO(log logn)] due to a result by Feige [12]. However, if the connection costs
are restricted to satisfying the triangle inequality (1.1), then constant approximation
guarantees can be obtained. In all results mentioned below, except for the maximiza-
tion objectives, it is assumed that the costs satisfy these restrictions. If the distances
between facilities and clients are Euclidean, then for some location problems approx-
imation schemes have been obtained [4].

The first approximation algorithm with constant approximation ratio for the met-
ric minimization problem was developed by Shmoys, Tardos, and Aardal [23]. Since
then numerous improvements have been made. Guha and Khuller [14, 15] introduced
a greedy augmentation procedure (see also Charikar and Guha [7, 8]). A series of
approximation algorithms based on linear programming (LP) rounding was then de-
veloped (see, e.g., [9, 10, 24]). There are also greedy algorithms that only use the
LP-relaxation implicitly to obtain a lower bound for a primal-dual analysis. An ex-
ample is the JMS 1.61-approximation algorithm developed by Jain, Mahdian, and
Saberi [18]. Some algorithms combine several techniques, like the 1.52-approximation
algorithm of Mahdian, Ye, and Zhang [20, 21], which uses the JMS algorithm and the
greedy augmentation procedure. Up to now, their approximation ratio of 1.52 was
the best known. Many more algorithms have been considered for the UFL problem
and its variants. We refer the interested reader to survey papers by Shmoys [22] and
Vygen [25].

1.2. Some basic techniques. In several LP-based approximation algorithms a
clustering step is part of an algorithm for creating a feasible solution; see section 2.2
for more details. In this step a not-yet-clustered client is chosen as the so-called clus-
ter center, and one of the facilities that fractionally serves the cluster center, in the
LP-solution is opened. Our main technique is to modify the support graph corre-
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sponding to the LP-solution before clustering, and to use various average distances in
the fractional solution to bound the cost of the obtained solution.

A similar way of modifying the LP-solution, called filtering, was introduced by
Lin and Vitter [19]. Lin and Vitter considered a broad class of 0-1 problems having
both covering and packing constraints. They start by solving the LP-relaxation of
the problem, and in the subsequent filtering step they select a subset of the variables
that have positive value in the LP-solution and that have relatively large objective
coefficients. These variables are set equal to zero, which results in a modified problem.
The LP-relaxation of this modified problem is then solved and rounding is applied.
In the paper by Shmoys, Tardos, and Aardal [23] filtering was also used in order to
bound the connection costs. Here again a subset of the variables that have a positive
value in the LP-solution are set equal to zero. The remaining positive variables were
scaled so as to remain feasible for the original LP-relaxation.

Later, Chudak [9] observed that the LP-relaxation was already filtered in a certain
sense as it is possible to state that if a client is fractionally connected to a facility
in the LP-solution, then one can bound the cost of this connection in terms of the
optimal LP-dual variables. This observation was later used by Aardal, Chudak, and
Shmoys [1] in their algorithm for multilevel problems, and by Sviridenko [24]. The
filtering done in our algorithm is slightly different, as the filtered LP-solution is not
necessarily feasible with respect to the LP-relaxation. Throughout this paper we
will use the term sparsening technique for the combination of filtering with our new
analysis.

1.3. Our contribution. We modify the (1 + 2/e)-approximation algorithm of
Chudak [9] (see also Chudak and Shmoys [10]) to obtain a new (1.6774, 1.3738)-
approximation algorithm for the UFL problem. Our LP-rounding algorithm is the
first one that achieves an optimal bifactor approximation due to the matching lower
bound of (λf , 1 + 2e−λf ) established by Jain, Mahdian, and Saberi [18]. In fact we
obtain an algorithm for each point (λf , 1 + 2e−λf ) such that λf ≥ 1.6774, which
means that we have an optimal approximation algorithm for instances dominated by
connection cost (see Figure 1.1).

One of the main technical contributions of the paper is the proof of Lemma 3.3,
which gives a bound on the expected connection cost in the case of using a path
via a cluster center to connect a client. This lemma may potentially be useful in
constructing new algorithms for UFL and related problems.

One could view our contribution as an improved analysis of a minor modification
of the algorithm by Sviridenko [24], which also introduces filtering to the algorithm
of Chudak and Shmoys. The filtering process that is used both in our algorithm
and in the algorithm by Sviridenko is relatively easy to describe, but the analysis of
the impact of this technique on the quality of the obtained solution is quite involved
in each case. Therefore, we prefer to state our algorithm as an application of the
sparsening technique to the algorithm of Chudak and Shmoys, which in our opinion
is relatively easy to describe and analyze.

We start by observing that for a certain class of instances the analysis of the
algorithm of Chudak and Shmoys may be improved. We call these instances regular,
and for the other instances we propose a measure of their irregularity. The goal of
the sparsening technique is to explore the irregularity of instances that are potentially
tight for the original algorithm of Chudak and Shmoys. We cluster the given instance
in the same way as in the 1.58-approximation algorithm by Sviridenko [24], but we
continue our algorithm in the spirit of Chudak and Shmoys’ algorithm, and we use
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Fig. 1.1. Bifactor approximation picture. The gray area corresponds to the improvement due
to our algorithm.

certain average distances to control the irregularities, which leads to an improved
bifactor approximation guarantee.

Our new algorithm may be combined with the (1.11, 1.7764)-approximation al-
gorithm of Jain et al. to obtain a 1.5-approximation algorithm for the UFL problem.
This is an improvement over the previously best known 1.52-approximation algorithm
of Mahdian et al., and it cuts off 1/3 of the gap with the approximation lower bound
by Guha and Khuller [14]. An earlier version of this paper appeared in [5].

We now give an informal sketch of our algorithm. Using this description, we give
an outline of the paper.

Sketch of the algorithm.

1. Solve the LP-relaxation of the problem.
2. Modify the fractional solution by

• scaling up the facility opening variables;
• modifying the connection variables to completely use the “closest” frac-
tionally open facilities;

• splitting facilities, if necessary, such that there is no slack between the
amount that a client is assigned to a facility and the amount by which
this facility is opened.

3. Divide clients into clusters based on the current fractional solution. In each
cluster, a specific client is assigned to be a “cluster center.”

4. For every cluster, open one of the “close” facilities of the cluster center.
5. For each facility not considered above, open it independently with probability

equal to the fractional opening.
6. Connect each client to an open facility that is closest to it.

In section 2 we give a brief overview of the main ingredients of some known approx-
imation algorithms for the UFL problem. In particular we state the LP-relaxation of



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2216 JAROSLAW BYRKA AND KAREN AARDAL

UFL and describe clustering, scaling, and greedy augmentation. The clustering tech-
nique is common for the existing LP-rounding algorithms for the UFL problem, and it
is applied in steps 3 and 4 of the above algorithm. Sparsening of the support graph of
the LP-solution, which is the essence of step 2, is discussed in section 3, where we also
prove the crucial lemma on certain connection costs. A more detailed description of
the algorithm and its analysis are presented in section 4, and the 1.5-approximation
algorithm is stated in section 5. In section 6 we show that the new (1.6774, 1.3738)-
approximation algorithm may also be used to improve the approximation ratio for the
3-level version of the UFL problem to 2.492. A randomized approach to clustering is
discussed in section 7, and, finally, in section 8 we present some concluding remarks
and open problems.

2. Preliminaries. We will review the concept of LP-rounding algorithms for
the metric UFL problem. These are algorithms that first solve the linear relaxation
of a given integer programming (IP) formulation of the problem, and then round
the fractional solution to produce an integer solution with a value not too much
higher than the starting fractional solution. Since the optimal fractional solution is
at most as expensive as an optimal integral solution, we obtain an estimation of the
approximation factor.

2.1. IP formulation and relaxation. The UFL problem has a natural formu-
lation as the following IP-problem:

min
∑

i∈F , j∈C
cijxij +

∑
i∈F

fiyi

s.t.
∑
i∈F

xij = 1 for all j ∈ C,

xij − yi ≤ 0 for all i ∈ F , j ∈ C,
xij , yi ∈ {0, 1} for all i ∈ F , j ∈ C.(2.1)

A linear relaxation of this IP formulation is obtained by replacing the integrality
constraints (2.1) by the constraint xij ≥ 0 for all i ∈ F , j ∈ C. The value of the
solution to this LP-relaxation will serve as a lower bound for the cost of the optimal
solution. We will also make use of the following dual formulation of this LP:

max
∑
j∈C

vj

s.t.
∑
j∈C

wij ≤ fi for all i ∈ F ,

vj − wij ≤ cij for all i ∈ F , j ∈ C,
wij ≥ 0 for all i ∈ F , j ∈ C.

2.2. Clustering. The first constant factor approximation algorithm for the met-
ric UFL problem by Shmoys et al., but also the algorithms by Chudak and Shmoys
and by Sviridenko, are based on the following clustering procedure. Suppose we are
given an optimal solution to the LP-relaxation of our problem. Consider the bipartite
graph G = ((V ′, V ′′), E) with vertices V ′ being the facilities and V ′′ the clients of the
instance, and where there is an edge between a facility i ∈ V ′ and a client j ∈ V ′′ if
the corresponding variable xij in the optimal solution to the LP-relaxation is positive.
We call G a support graph of the LP-solution. If two clients are both adjacent to the
same facility in graph G, we will say that they are neighbors in G.
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open facility

cluster center
j j’

cluster

a path from client j to the facility
serving his cluster center j’

Fig. 2.1. A cluster. If we make sure that at least one facility is open close to a cluster center
j′, then any other client j from the cluster may use this facility. Because the connection costs are
assumed to be metric, the distance to this facility is at most the length of the shortest path from j
to the open facility.

The clustering in this graph is a partitioning of clients into clusters together with
a choice of a leading client for each of the clusters. This leading client is called a
cluster center. Additionally we require that no two cluster centers be neighbors in the
support graph. This property helps us to open one of the adjacent facilities for each
cluster center. For a picture of a cluster see Figure 2.1.

The algorithms by Shmoys et al., Chudak and Shmoys, and Sviridenko all use
the following procedure to obtain the clustering: While not all the clients are clus-
tered, choose greedily a new cluster center j, and build a cluster from j and all the
neighbors of j that are not yet clustered. Obviously the outcome of this procedure
is a proper clustering. Moreover, it has a desired property that clients are “close” to
their cluster centers. Each of the mentioned LP-rounding algorithms uses a different
greedy criterion for choosing new cluster centers. In our algorithm we will use the
clustering with the greedy criterion of Sviridenko [24]. Another way of clustering is
presented in section 7.

2.3. Scaling and greedy augmentation. The techniques described here are
not directly used by our algorithm, but they help to explain why the algorithm of
Chudak and Shmoys is close to optimal. We will discuss how scaling facility opening
costs before running an algorithm, together with another technique called greedy aug-
mentation, may help to balance the analysis of an approximation algorithm for the
UFL problem.

The greedy augmentation technique introduced by Guha and Khuller [14] (see
also [7, 8]) is as follows. Consider an instance of the metric UFL problem and a
feasible solution. For each facility i ∈ F that is not opened in this solution, we may
compute the amount of cost that is saved by opening facility i, also called the gain
of opening i, denoted by gi. While there exists a facility i with positive gain gi, the
greedy augmentation procedure opens a facility that maximizes the ratio of gain to
the facility opening cost gi

fi
, and updates the remaining values of gi.

Suppose we are given an approximation algorithm A for the metric UFL problem
and a real number δ ≥ 1. Consider the following algorithm Sδ(A).
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Algorithm Sδ(A).

1. Scale up all facility opening costs by a factor of δ;
2. run algorithm A on the modified instance;
3. scale back the opening costs;
4. run the greedy augmentation procedure.

Following the analysis of Mahdian, Ye, and Zhang [20], one may prove the follow-
ing lemma.

Lemma 2.1. Suppose A is a (λf ,λc)-approximation algorithm for the metric
UFL problem; then Sδ(A) is a (λf +ln(δ), 1+ λc−1

δ )-approximation algorithm for this
problem.

This method may be applied to balance a (λf ,λc)-approximation algorithm with
λf � λc. However, our 1.5-approximation algorithm is balanced differently. It is a
composition of two algorithms that have opposite imbalances.

3. Sparsening the graph of the fractional solution. In this section we de-
scribe a technique that we use to control the expected connection cost of the obtained
integer solution. Our technique is based on the concept of filtering, introduced by Lin
and Vitter [19]; see section 1.2. We will give an alternative analysis of the effect of
filtering on a fractional solution to the LP-relaxation of the UFL problem.

Suppose that, for a given UFL instance, we have solved its LP-relaxation, and that
the optimal primal solution is (x∗, y∗) and the corresponding optimal dual solution is
(v∗, w∗). Such a fractional solution has facility cost F ∗ =

∑
i∈F fiy

∗
i and connection

cost C∗ =
∑

i∈F , j∈C cijx
∗
ij . Each client j has its share v∗j of the total cost. This cost

may again be divided into a client’s fractional connection cost C∗
j =

∑
i∈F cijx

∗
ij and

its fractional facility cost F ∗
j = v∗j − C∗

j .

3.1. Motivation and intuition. The idea behind the sparsening technique is
to make use of irregularities of an instance if they occur. We call an instance locally
regular around client j if the facilities that serve j in the fractional solution (x∗, y∗)
are all at the same distance from j. An instance that is locally regular around every
client is called regular. We begin by observing that for such an instance the algorithm
of Chudak and Shmoys produces a solution whose cost is bounded by F ∗+(1+ 2

e )C
∗,

which is an easy consequence of the original analysis [10], but also follows from our
analysis in section 4. Although this observation might not be very powerful itself, the
value F ∗ + (1 + 2

e )C
∗ happens to be the intersection point between the bifactor ap-

proximation lower bound curve (λf , 1+2e−λf ) and the y-axis in Figure 1.1. Moreover,
for regular instances we may apply the technique described in section 2.3 to obtain an
approximation algorithm corresponding to any single point on this curve. In partic-
ular, we may simply use this construction to get an optimal 1.463 . . . -approximation
algorithm for regular instances of the metric UFL problem. Note that the proof of the
matching hardness of approximation also uses instances that are essentially1 regular.

The instances that are not regular are called irregular, and these are the instances
for which it is more difficult to create a feasible integer solution with good bounds on
the connection cost. In fractional solutions of irregular instances there exist clients
that are fractionally served by facilities at different distances. Our approach is to
divide facilities serving a client into two groups, namely, close and distant facilities.

1These instances come from a reduction from the set cover problem. Clients represent elements
to be covered, and facilities represent subsets. The distance cij equals 1 if subset i contains element j,
and it equals 3 otherwise. To formally argue about the regularity of such an instance we would need
to construct an optimal fractional solution using only facilities at distance 1.
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We will remove links to distant facilities before the clustering step, so that if there
are irregularities, then distances to cluster centers will decrease.

We measure the local irregularity of an instance by comparing the fractional
connection cost of a client to the average distance to its distant facilities. In the case
of a regular instance, the sparsening technique gives the same results as the technique
described in section 2.3, but for irregular instances sparsening makes it possible to
construct an integer solution with a better bound on the connection costs.

3.2. Details. We will start by modifying the optimal fractional LP-solution
(x∗, y∗) by scaling the y-variables by a constant γ > 1 to obtain a fractional solu-
tion (x∗, ỹ), where ỹ = γ · y∗. Note that by scaling we might set some ỹi > 1. In the
filtering of Shmoys et al. such a variable would instantly be rounded to 1. However,
for the compactness of a later part of our analysis it is important not to round these
variables, but rather to split facilities. Before we discuss splitting, let us first mod-
ify the connection variables. A version of this argument, which describes all these
modifications of the fractional solution at once, is given in [24, Lemma 1].

Suppose that the values of the y-variables are scaled and fixed, but that we now
have the freedom to change the values of the x-variables in order to minimize the
connection cost. For each client j we compute the values of the corresponding x̃-
variables in the following way. We choose an ordering of facilities with nondecreasing
distances to client j. We connect client j to the first facilities in the ordering so that
among the facilities fractionally serving j, only the last one in the chosen ordering
may be opened by more than that it serves j. Formally, for any facilities i and i′ such
that i′ is later in the ordering, if x̃ij < ỹi, then x̃i′j = 0.

In the next step, we eliminate the occurrences of situations where 0 < x̃ij < ỹi.
We do so by creating an equivalent instance of the UFL problem, where facility i is
split into two identical facilities i′ and i′′. In the new setting, the opening of facility
i′ is equal to x̃ij and the opening of facility i′′ is equal to ỹi − x̃ij . The values of the
x̃-variables are updated accordingly. By repeatedly applying this procedure we obtain
a so-called complete solution (x, y), i.e., a solution in which no pair i ∈ F , j ∈ C exists
such that 0 < xij < yi (see [24, Lemma 1] for a more detailed argument).

In the new complete solution (x, y) we distinguish groups of facilities that are espe-
cially important for a particular client. For a client j we say that a facility i is one of its
close facilities if it fractionally serves client j in (x, y); Cj = {i ∈ F | xij > 0} is the set
of close facilities of j. If xij = 0, but facility i was serving client j in solution (x∗, y∗),
then we say that i is a distant facility of client j; Dj = {i ∈ F | xij = 0, x∗

ij > 0} is
the set of distant facilities of j.

We will extensively use the average distances between single clients and groups
of facilities defined as follows.

Definition 3.1. For any client j ∈ C, and for any subset of facilities F ′ ⊂ F
such that

∑
i∈F ′ y∗i > 0, let

d(j,F ′) =
∑

i∈F ′ cij · y∗i∑
i∈F ′ y∗i

.

To interpret differences between certain average distances we will use the following
parameter.

Definition 3.2. Let

rγ(j) =

{
d(j,Dj)−d(j,Dj∪Cj)

F∗
j

for F ∗
j > 0,

0 for F ∗
j = 0.
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10 distant
facilities

close facilities

distance

average distance to distant facilities

average distance to close facilities

1
γ

v∗j = C∗
j + F ∗

j

C∗
j + rγ(j) · F ∗

j

C∗
j

C∗
j − r′γ(j) · F ∗

j

Fig. 3.1. Distances to facilities serving client j; the width of a rectangle corresponding to
facility i is equal to x∗

ij. The figure explains the meaning of rγ(j) and r′γ(j).

The value rγ(j) is a measure of the irregularity of the instance around client j.
It is the average distance to a distant facility minus the fractional connection cost C∗

j

(note that C∗
j = d(j,Dj ∪Cj) is the general average distance to both close and distant

facilities) divided by the fractional facility cost of a client j; or it is equal to 0 if
F ∗
j = 0. Since d(j,Dj) ≤ v∗j , C

∗
j = d(j,Dj ∪Cj), and C∗

j +F ∗
j = v∗j , rγ(j) takes values

between 0 and 1. rγ(j) = 0 means that client j is served in the solution (x∗, y∗) by
facilities that are all at the same distance. If rγ(j) = 1, then the facilities are at
different distances and the distant facilities are all so far from j that j is not willing
to contribute to their opening. In fact, for clients j with F ∗

j = 0 the value of rγ(j) is
not relevant for our analysis.

Consider yet another quantity, namely, r′γ(j) = rγ(j) · (γ − 1). Observe that for
a client j with F ∗

j > 0 we have

r′γ(j) =
d(j,Dj ∪ Cj)− d(j, Cj)

F ∗
j

.

We may use the definitions of rγ(j) and r′γ(j) together with C∗
j = d(j,Dj ∪ Cc)

to rewrite some distances from client j in the following form (see also Figure 3.1):
• the average distance to a close facility is

DC
av(j) = d(j, Cj) = C∗

j − r′γ(j) · F ∗
j ;

• the average distance to a distant facility is

DD
av(j) = d(j,Dj) = C∗

j + rγ(j) · F ∗
j ;
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• the maximal distance to a close facility is

DC
max(j) ≤ DD

av(j) = C∗
j + rγ(j) · F ∗

j .

In the following lemma we will prove an upper bound on the average distance
from client j to another group of facilities.

Lemma 3.3. Suppose γ < 2 and that clients j, j′ ∈ C are neighbors in (x, y), i.e.,
∃i ∈ F s.t. xij > 0 and xij′ > 0. Then either Cj′ \ (Cj ∪ Dj) = ∅ or

d(j, Cj′ \ (Cj ∪ Dj)) ≤ DD
av(j) +DC

max(j
′) +DC

av(j
′).

Proof. Assume that Cj′ \ (Cj ∪Dj) is not empty, since otherwise we are done.
Case 1. Assume that the distance between j and j′ is at most DD

av(j) +DC
av(j

′).
By a simple observation that a maximum is larger than the average, we get

(3.1) d(j′, Cj′ \ (Cj ∪Dj)) ≤ DC
max(j

′).

Combining the assumption with (3.1), we obtain

d(j, Cj′ \ (Cj ∪ Dj)) ≤ DD
av(j) +DC

max(j
′) +DC

av(j
′).

Case 2. Assume that the distance between j and j′ is longer thanDD
av(j)+DC

av(j
′).

Since d(j, Cj ∩ Cj′ ) ≤ DD
av(j), the assumption implies

(3.2) d(j′, Cj ∩ Cj′) > DC
av(j

′).

Consider the following two subcases.
Case 2a. Assume that d(j′, Cj′ ∩ Dj) ≥ DC

av(j
′). This assumption together with

(3.2) gives

(3.3) d(j′, Cj′ ∩ (Cj ∪ Dj)) ≥ DC
av(j

′).

Recall that DC
av(j

′) = d(j′, Cj′). Hence (3.3) is equivalent to

(3.4) d(j′, Cj′ \ (Cj ∪ Dj)) ≤ DC
av(j

′).

Since j and j′ are neighbors, the distance between them is at mostDC
max(j)+DC

max(j
′).

By the triangle inequality (1.1) we may add this distance to (3.4) and get

d(j, Cj′ \ (Cj ∪ Dj)) ≤ DD
av(j) +DC

max(j
′) +DC

av(j
′).

Case 2b. In the remaining case we assume that d(j′, Cj′ ∩ Dj) < DC
av(j

′). This
assumption may also be written as

(3.5) d(j′, Cj′ ∩ Dj) = DC
av(j

′)− z for some z > 0.

Now we combine (3.5) with the assumption of Case 2 to get

(3.6) d(j, Cj′ ∩Dj) ≥ DD
av(j) + z.

Let ŷ =
∑

i∈(Cj′∩Dj)
yi be the total fractional opening of facilities in Cj′ ∩ Dj in the

modified fractional solution (x, y).
Observe that (3.6) together with the definition d(j,Dj) = DD

av(j) implies that the
set (Dj \ Cj′) is not empty. Moreover it contains facilities whose opening variables y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2222 JAROSLAW BYRKA AND KAREN AARDAL

sum up to γ − 1 − ŷ > 0. More precisely, inequality (3.6) implies d(j,Dj \ Cj′) ≤
DD

av(j)− z · ŷ
γ−1−ŷ . Hence

(3.7) DC
max(j) ≤ DD

av(j)− z · ŷ

γ − 1− ŷ
.

We combine (3.7) with the assumption of Case 2 to conclude that the minimal distance
from j′ to a facility in Cj′ ∩ Cj is at least DD

av(j) +DC
av(j

′) − DC
max(j) ≥ DC

av(j
′) +

z · ŷ
γ−1−ŷ . Hence

(3.8) d(j′, Cj′ ∩ Cj) ≥ DC
av(j

′) + z · ŷ

γ − 1− ŷ
.

Recall that, by definition, d(j′, Cj′) = DC
av(j

′). Hence equality (3.5) may be written
as

(3.9) d(j′, Cj′ \ Dj) = DC
av(j

′) + z · ŷ

1− ŷ
.

Since, by the assumption that γ < 2, we have ŷ
1−ŷ < ŷ

γ−1−ŷ , we may also write

(3.10) d(j′, Cj′ \ Dj) < DC
av(j

′) + z · ŷ

γ − 1− ŷ
.

We may now combine (3.10) with (3.8) to get

(3.11) d(j′, Cj′ \ (Dj ∪ Cj)) < DC
av(j

′) + z · ŷ

γ − 1− ŷ
.

Finally, we bound the distance from j to j′ by DC
max(j) +DC

max(j
′) to get

d(j, Cj′ \ (Cj ∪ Dj)) ≤ DC
max(j) +DC

max(j
′) + d(j′, Cj′ \ (Dj ∪ Cj))

≤ DD
av(j)− z · ŷ

γ − 1− ŷ
+DC

max(j
′) +DC

av(j
′) + z · ŷ

γ − 1− ŷ

= DD
av(j) +DC

max(j
′) +DD

av(j
′),

where the second inequality is an application of (3.11) and (3.7).

4. Our new algorithm. Here we again state our algorithm (cf. section 1.3),
but now we use the notation developed in the previous sections.

Algorithm A1(γ).
1. Solve the LP-relaxation of the problem to obtain a solution (x∗, y∗).
2. Modify the fractional solution as described in section 3.2 to obtain a complete

solution (x, y).
3. Compute a greedy clustering for the solution (x, y), choosing as cluster centers

unclustered clients minimizing DC
av(j) +DC

max(j).
4. For every cluster center j, open one of its close facilities randomly with prob-

abilities xij .
5. For each facility i that is not a close facility of any cluster center, open it

independently with probability yi.
6. Connect each client to an open facility that is closest to it.
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In order to upper bound the expected connection cost of the produced solution,
we use the following special case of the FKG inequality (see Fortuin, Kasteleyn, and
Ginibre [13]), which is a generalization of Chebyshev’s sum inequality (see also [16]).

Lemma 4.1. Let a, c, w ∈ ({1, . . . , k} → R+) be k-element sequences, c nonde-
creasing and a nonincreasing. Then∑k

i=1 a(i)w(i)c(i)∑k
i=1 a(i)w(i)

≤
∑k

i=1 w(i)c(i)∑k
i=1 w(i)

.

The next lemma provides an upper bound on the expected distance from a client
to the closest of the facilities opened by the algorithm within a certain subset of
facilities. A version of this lemma was used in the analysis of most of the previous
LP-rounding approximation algorithms for UFL.

Lemma 4.2. Let y ∈ {0, 1}|F| be a random binary vector encoding the facilities
opened in steps 4 and 5 of Algorithm A1(γ); then the following inequality holds for
any subset A ⊆ F of facilities, such that

∑
i∈A ȳi > 0, and any client j ∈ C:

E

[
min

i∈A, yi=1
cij

∣∣∣∣∣
∑
i∈A

yi ≥ 1

]
≤ d(j, A).

Proof. Observe that either the opening of facilities from A is pairwise independent
or there exist disjoint subsets A1, A2, . . . ⊆ A, which correspond to clusters created
in step 3 of the algorithm, such that the opening of facilities in each Ak is negatively
correlated, but facilities from different sets are uncorrelated. The correlation in these
subsets is a result of step 4 of the algorithm. In each such Ak, there is at most 1 facility
opened, and the probability that one is opened equals

∑
i∈Ak

yi.
For the purpose of this proof we analyze the following, possibly suboptimal, ran-

domized process of assigning clients to open facilities. Consider an assignment algo-
rithm that first creates a modified instance by replacing each Ak by a new facility
ik with distance to j equal to d(j, Ak) and fractional opening yik =

∑
i∈Ak

yi. The
algorithm selects the closest open facility in the modified instance, which corresponds
to choosing a facility or a set Ak in the original instance. In case a set Ak with an
open facility is chosen, the algorithm selects the only open facility from the chosen
set.

Obviously, the above-described algorithm may connect j to a facility that is not
the closest of the open ones. Moreover, for certain instances, the expected connection
cost to the facility chosen by this greedy algorithm is substantially higher than the
expected connection cost to the closest open facility. Nevertheless, we will show
that the greedy assignment of j to the closest open facility in the modified instance
results in the expected connection cost at most equal to d(j, A), which translates to
the suboptimal assignment in the original instance, and therefore implies that in the
optimal assignment in the original instance, the expected connection cost is also at
most d(j, A).

In the instance modified as described above, we have a set of facilities that are
opened independently. It remains to prove the claim assuming independent opening of
facilities, which we do with the help of Lemma 4.1. Consider the facilities fromA in the
order i1, i2, . . . of nondecreasing distance from j. Since their opening is independent,
the probability that il counts as the closest among the open facilities is

pl = Pr[yi1 = 0] · Pr[yi2 = 0] · . . . · Pr[yi(l−1)
= 0] · Pr[yil = 1]

= (1− yi1)(1 − yi2) · . . . · (1 − yi(l−1)
) · yil .
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The expected distance may be bounded as follows:

E

[
min

i∈A, yi=1
cij

∣∣∣∣∣
∑
i∈A

yi ≥ 1

]
=

∑|A|
l=1 plcilj∑|A|

l=1 pl

=

∑|A|
l=1

(
Πl−1

o=1(1 − yio)
)
yilcil,j∑|A|

l=1

(
Πl−1

o=1(1 − yio)
)
yil

≤
∑|A|

l=1 yilcil,j∑|A|
l=1 yil

=

∑
i∈A yilcil,j∑

i∈A yil
= d(j, A).

The inequality in the above calculation is an application of Lemma 4.1 with k = |A|,
c(l) = cil,j , w(l) = yil , and a(l) = Πl−1

o=1(1 − yio).
In the analysis of our algorithm we will also use the following result.
Lemma 4.3. Given are n independent events that occur with probabilities p1, p2,

. . . , pn, respectively. The probability that at least one of these events occurs is at least
equal to 1− 1

e
∑n

i=1
pi
, where e denotes the base of the natural logarithm.

Let γ0 be defined as the only positive solution to the equation

(4.1)
1

e
+

1

eγ0
− (γ0 − 1) ·

(
1− 1

e
+

1

eγ0

)
= 0.

An approximate value of this constant is γ0 ≈ 1.67736. As we will observe in the
proof of Theorem 4.4, equation (4.1) appears naturally in the analysis of Algorithm
A1(γ).

Theorem 4.4. Algorithm A1(γ0) produces a solution with expected cost

E[cost(SOL)] ≤ γ0 · F ∗ + 1 +
2

eγ0
· C∗.

Proof. The expected facility opening cost of the solution is

E[FSOL] =
∑
i∈F

fiyiγ ·
∑
i∈F

fiy
∗
i = γ · F ∗.

To bound the expected connection cost we show that for each client j there is,
with a certain probability, an open facility within a certain distance. If j is a cluster
center, one of its close facilities is open, and the expected distance to this open facility
is DC

av(j) = C∗
j − r′γ(j) · F ∗

j ≤ C∗
j .

If j is not a cluster center, it first considers its close facilities (see Figure 4.1). If
any of them is open, by Lemma 4.2 the expected distance to the closest open facility is
at most DC

av(j). From Lemma 4.3, at least one close facility is open with probability
pc ≥ (1 − 1

e ).
Suppose none of the close facilities of j is open, but at least one of its distant

facilities is open. Let pd denote the probability of this event. Again by Lemma 4.2,
the expected distance to the closest facility is then at most DD

av(j).
If neither any close nor any distant facility of client j is open, then j may connect

itself to the facility serving its cluster center j′. Again from Lemma 4.3, such an event
happens with probability ps ≤ 1

eγ . We will now use the fact that if γ < 2, then, by
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j
cluster center j’

close facilities of j

distant facilities of j

close facilities of j’

Fig. 4.1. Facilities that client j may consider: its close facilities, distant facilities, and close
facilities of cluster center j′.

Lemmas 3.3 and 4.2, the expected distance from j to the facility opened around j′ is
at most DD

av(j) +DC
max(j

′) +DC
av(j

′).
Finally, we combine the probabilities of particular cases with the bounds on the

expected connection for each of the cases to obtain the following upper bound on the
expected total connection cost:

E[CSOL] ≤
∑
j∈C

(
pc ·DC

av(j) + pd ·DD
av(j) + ps · (DD

av(j) +DC
max(j

′) +DC
av(j

′))
)

≤
∑
j∈C

(
(pc + ps) ·DC

av(j) + (pd + 2ps) ·DD
av(j)

)
=

∑
j∈C

(
(pc + ps) · (C∗

j − r′γ(j) · F ∗
j ) + (pd + 2ps) · (C∗

j + rγ(j) · F ∗
j )
)

= ((pc + pd + ps) + 2ps) · C∗

+
∑
j∈C

(
(pc + ps) · (−rγ(j) · (γ − 1) · F ∗

j ) + (pd + 2ps) · (rγ(j) · F ∗
j )
)

= (1 + 2ps) · C∗ +
∑
j∈C

(
F ∗
j · rγ(j) · (pd + 2ps − (γ − 1) · (pc + ps))

)

≤
(
1 +

2

eγ

)
· C∗ +

∑
j∈C

(
F ∗
j · rγ(j) ·

(
1

e
+

1

eγ
− (γ − 1) ·

(
1− 1

e
+

1

eγ

)))
.

In the above calculation we used the following properties. In the first inequality we
explored the fact that cluster centers were chosen greedily, which implies DC

max(j
′) +

DC
av(j

′) ≤ DC
max(j)+DC

av(j). For the last inequality, we used pd+2ps = 1−pc+ps ≤
1− (1− 1

e ) +
1
eγ = 1

e + 1
eγ .

It remains to observe that by setting γ = γ0 ≈ 1.67736 (see (4.1)) we eliminate
the last term in the connection cost bound, and we obtain E[CSOL] ≤ (1+ 2

eγ0 ) ·C∗ ≤
1.37374 · C∗ (see Figure 4.2).

Algorithm A1(γ0) was described as a procedure of rounding a particular fractional
solution to the LP-relaxation of the problem. In the presented analysis we compared
the cost of the obtained solution with the cost of the starting fractional solution.
If we appropriately scale the cost function in the LP-relaxation before solving the
relaxation, we easily obtain an algorithm with a bifactor approximation guarantee in
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Fig. 4.2. The performance of our algorithm for different values of parameter γ. The solid line
corresponds to regular instances with rγ(j) = 0 for all j, and it coincides with the approximability
lower bound curve. The dashed line corresponds to instances with rγ(j) = 1 for all j. For a
particular choice of γ we get a horizontal segment connecting those two curves; for γ ≈ 1.67736 the
segment becomes a single point. Observe that for instances dominated by connection cost, only a
regular instance may be tight for the lower bound.

a stronger sense. Namely, we get a comparison of the produced solution with any
feasible solution to the LP-relaxation of the problem. Such a stronger guarantee is,
however, not necessary to construct the 1.5-approximation algorithm for the metric
UFL problem, which is presented in the next section.

Algorithm A1(γ) with γ = 1 + ε (for a sufficiently small positive ε) is essentially
the algorithm of Chudak and Shmoys. Observe that for regular instances, namely,
those with rγ(j) = 0 for every client j, we do not need to set γ = γ0 to eliminate the
dependence of connection cost of the produced solution on the facility opening cost of
the fractional solution. Hence, for regular instances, we get a (γ, 2

eγ )-approximation
algorithm for each choice of γ > 1.

5. The 1.5-approximation algorithm. In this section we will combine our
algorithm with an earlier algorithm of Jain et al. to obtain a 1.5-approximation algo-
rithm for the metric UFL problem.

In 2002 Jain, Mahdian, and Saberi [18] proposed a primal-dual approximation
algorithm (the JMS algorithm). Using a dual fitting approach they showed that it
is a 1.61-approximation algorithm. Later Mahdian, Ye, and Zhang [20] derived the
following result.

Lemma 5.1 (see [20]). The cost of a solution produced by the JMS algorithm is
at most 1.11× F ∗ + 1.7764×C∗, where F ∗ and C∗ are facility and connection costs
in an optimal solution to the linear relaxation of the problem.

Theorem 5.2. Consider the solutions obtained with the A1(γ0) and JMS algo-
rithms. The cheapest solution of the two is expected to have a cost at most 1.5 times
the cost of the optimal fractional solution.

Proof. Consider an algorithm A2 that does the following. With probability p =
0.313 runs the JMS algorithm, and otherwise, with probability 1− p, runs the A1(γ0)
algorithm. Suppose that we are given an instance, and that F ∗ and C∗ are facility
and connection costs in an optimal solution to the linear relaxation of this instance.
Consider the expected cost of the solution produced by Algorithm A2 for this instance:
E[cost ] ≤ p · (1.11 · F ∗ + 1.7764 · C∗) + (1 − p) · (1.67736 · F ∗ + 1.37374 · C∗) =
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1.4998 · F ∗ + 1.4998 · C∗ < 1.5 ∗ (F ∗ + C∗) ≤ 1.5 ∗OPT.
Instead of the JMS algorithm we could take the algorithm of Mahdian et al. [20],

the MYZ(δ) algorithm, that scales the facility costs by δ, runs the JMS algorithms,
scales back the facility costs, and finally runs the greedy augmentation procedure.
With the notation introduced in section 2.3, the MYZ(δ) algorithm is the Sδ(JMS)
algorithm. The MYZ(1.504) algorithm was proven [20] to be a 1.52-approximation
algorithm for the metric UFL problem. We may change the value of δ in the origi-
nal analysis to observe that MYZ(1.1) is a (1.2053, 1.7058)-approximation algorithm.
This algorithm combined with our A1(γ0) (1.67736, 1.37374)-approximation algorithm
gives a 1.4991-approximation algorithm for UFL. This shows how much improvement
we obtain by using the scaling technique on the greedy algorithm’s side.

6. Multilevel facility location. In the k-level facility location problem the
clients need to be connected to open facilities on the first level, and each open facility
except on the last, kth level needs to be connected to an open facility on the next level.
Aardal, Chudak, and Shmoys [1] gave a 3-approximation algorithm for the k-level
problem with arbitrary k. Ageev, Ye, and Zhang [3] proposed a reduction of a k-level
problem to a (k−1)-level and a 1-level problem, which results in a recursive algorithm.
This algorithm uses an approximation algorithm for the single-level problem and
has a better approximation ratio, but only for instances with small k. Using our
new Algorithm A1(γ0) instead of the JMS algorithm within this framework improves
approximation for each level. In particular, in the limit as k tends to ∞, we get a
3.236-approximation, which is the best possible for this construction.

By a slightly different method, Zhang [26] obtained a 1.77-approximation algo-
rithm for the 2-level problem. For the 3-level and the 4-level versions of the problem
he obtained 2.523-2 and 2.81-approximation algorithms by reducing to a problem with
a smaller number of levels. In the following section we will modify the algorithm by
Zhang for the 3-level problem and use the new (1.67736, 1.37374)-approximation al-
gorithm for the single-level part, to obtain a 2.492-approximation, which improves on
the previously best known approximation by Zhang. Note that for k > 4 the best
known approximation factor is still due to Aardal et al. [1].

6.1. 3-level facility location. We will now present the ingredients of the 2.492-
approximation algorithm. We start from an algorithm to solve the 2-level version.

Lemma 6.1 (Theorem 2 in [26]). The 2-level UFL problem may be approximated
by a factor of 1.77 + ε in polynomial time for any given constant ε > 0.

Zhang [26] also considered a scaling technique analogous to the one described in
section 2.3, but applicable to the 2-level version of the problem. An effect of using
this technique is analyzed in the following lemma.

Lemma 6.2 (Theorem 3 in [26]). For any given ε > 0, if there is an (a, b)-
approximation algorithm for the 2-level UFL problem, then we can obtain an approx-
imation algorithm for the 2-level UFL problem with performance guarantee(

a+
e

e− 1
ln(Δ) + ε, 1 +

b− 1

Δ

)

for any Δ ≥ 1.

He also uses the following reduction.

2This value deviates slightly from the value 2.51 given in the paper. The original argument
contained a minor calculation error.
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Lemma 6.3 (Lemma 7 in [26]). Assume that the 1-level and 2-level UFL problems
have approximation algorithms with factors (a, b) and (α, β), respectively; then the
3-level UFL problem may be approximated by factors (max{a, a+α

2 }, 3b+β
2 ).

Zhang [26] observed that the above three statements may be combined with
the MYZ algorithm to improve the approximation ratio for the 3-level UFL prob-
lem. In the following theorem we show that we may use our new (1.6774, 1.3738)-
approximation algorithm for the 1-level UFL problem to get an even better approxi-
mation for the 3-level variant.

Theorem 6.4. There is a 2.492-approximation algorithm for the 3-level UFL
problem.

Proof. We first use the algorithm from Lemma 6.1, and the scaling technique from
Lemma 6.2, with Δ = 1.57971, to obtain a (2.492, 1.48743)-approximation algorithm
for the 2-level UFL problem.

Then we use our (1.6774, 1.3738)-approximation algorithm for the 1-level UFL
problem with the scaling technique from Lemma 2.1, with γ = 2.25827, to obtain a
(2.492, 1.1655)-approximation algorithm for the 1-level UFL problem.

Finally, we use Lemma 6.3 to combine these two algorithms into a (2.492, 2.492)-
approximation algorithm for the 3-level UFL problem.

7. Universal randomized clustering procedure. In this section we discuss a
different approach to clustering. We propose to modify the greedy clustering algorithm
by choosing consecutive cluster centers randomly with uniform distribution. The
output of such a process is obviously random, but we may still prove some statements
about probabilities. A resulting clustering will be denoted by a function g : C → C,
that assigns to each client j the center of its cluster j′ = g(j). The following lemma
states that the clustering g obtained with the randomized clustering procedure is
expected to be “fair.”

Lemma 7.1. Given a graph G = (F ∪ C, E) and assuming that a clustering g
was obtained by the above described random process, for every two distinct clients j
and j′, the probability that g(j) = j′ is equal to the probability that g(j′) = j.

Proof. Let C(G) denote the maximal (over the possible random choices of the
algorithm) number of clusters that can be obtained from G with the random clustering
procedure. The proof will be by induction on C(G). Fix any j, j′ ∈ C such that j is
a neighbor of j′ in G (if they are not neighbors, neither g(j) = j′ nor g(j′) = j can
occur). Suppose C(G) = 1, then Pr[g(j) = j′] = Pr[g(j′) = j] = 1/|C|.

Let us now assume that C(G) > 1. There are two possibilities: either one of j, j′

will belong to the first cluster or none of them will. Consider the first case (the first
chosen cluster center is either j or j′ or one of their neighbors). If j (j′) is chosen
as a cluster center, then g(j′) = j (g(j) = j′). Since they are chosen with the same
probability, the contribution of the first case to the probability of g(j′) = j is equal
to the contribution to the probability of g(j) = j′. If neither of them gets chosen as a
cluster center but at least one belongs to the new cluster, then neither g(j′) = j nor
g(j) = j′ is possible.

Now consider the second case (neither j nor j′ belongs to the first cluster). Con-
sider the graph G′ obtained from G by removing the first cluster. The random clus-
tering proceeds like it has just started with the graph G′, but the maximal number
of possible clusters is smaller: C(G′) ≤ C(G) − 1. Therefore, by the inductive hy-
pothesis, in a random clustering of G′ the probability that g(j′) = j is equal to the
probability that g(j) = j′.

If g(j) = j′ in a clustering g of graph G, we will say that client j′ offers support
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to client j. The main idea behind the clustering algorithms for the UFL problem
is that we may afford to serve each cluster center directly (because they are never
neighbors in G) and all the other clients are offered support from their cluster centers.
A noncentral client may either accept the support and connect itself via its cluster
center (that is what all noncentral clients do in the algorithm of Shmoys et al.), or it
may try to get served locally, and if it fails, accept the support (this is the way the
Chudak and Shmoys algorithm works). In both algorithms the probability that an
offer of support is accepted is estimated to be constant. Therefore, we may modify
those algorithms to use the random clustering procedure and do the following analysis.

For any two clients j and j′, the probability that j accepts the support of j′

is equal to the probability that j′ accepts the support of j. Let i be a facility on a
shortest path from j to j′. When we compute the expected connection cost of client j,
we observe that with certain probability p it accepts the support of j′. In such a case
it must pay for the route via i and j′ to the facility directly serving j′. We will now
change the bookkeeping and say that in this situation j is paying only for the part
until facility i, and the rest is paid by j′, but if j would be supporting j′ it would
have to pay a part of j′’s connection cost, which is the length of the path from i via j
to the facility serving j. We may think of this as each client having a bank account,
and when it accepts support it makes a deposit, and when it offers support and the
support is accepted, then it withdraws money to pay a part of the connection cost
of the supported client. From Lemma 7.1 we know that for a client j the probability
that it will earn on j′ is equal to the probability that it will lose on j′. Therefore, if
the deposited amount is equal to the withdrawal, the expected net cash flow is zero.

The above analysis shows that randomizing the clustering phase of the known LP-
rounding algorithms would not worsen their approximation ratios. Although it does
not make much sense to use a randomized algorithm if it has no better performance
guarantee, the random clustering has an advantage of allowing the analysis to be more
local and uniform.

8. Concluding remarks. With the 1.52-approximation algorithm of Mahdian
et al. it was not clear to the authors if a better analysis of the algorithm could close
the gap with the approximation lower bound of 1.463 by Guha and Khuller. In [6] we
have recently given a negative answer to this question by constructing instances that
are hard for the MYZ algorithm. Similarly, we now do not know if our new Algorithm
A1(γ) could be analyzed better to close the gap. Construction of hard instances for
our algorithm remains an open problem.

The technique described in section 2.3 enables us to move the bifactor approx-
imation guarantee of an algorithm along the approximability lower bound of Jain
et al. (see Figure 1.1) towards higher facility opening costs. If we developed a tech-
nique to move the analysis in the opposite direction, together with our new algorithm,
it would imply closing the approximability gap for the metric UFL problem. It seems
that with such an approach we would have to face the difficulty of analyzing an
algorithm that closes some of the previously opened facilities.
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