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1
Introduction

1.1. Context of research
Many people think that terms like "Artificial Intelligence" (AI) are very new. However, the first time that the
term AI was mentioned already dates back to the fifties, where it was introduced on the Dartmouth Summer
Research Project on Artificial Intelligence [35]. In the early stages, the technology had difficulties evolving
due to limited computing power available and this lead to the first so called "AI winter". With technology
evolving with Moore’s law, interest in AI grew again, but to a lack of funding, the second "AI winter" was
inevitable during the nineties. It was not before the year 2010 that the technology started to evolve again.
As computing hardware matured, the sector of AI technology, together with terms like “Deep Learning”, “Big
data” and “Computer Vision” has been growing exponentially.

The first neural networks were rather small, but as computing hardware kept maturing, more and more
sophisticated networks have been designed. This has evolved to a point where networks are so complex, that
most of the state-of-the-art neural networks cannot be trained on normal consumer hardware, but need to
be trained on High Performance Computing (HPC) solutions or cloud-based solutions. This instantiates the
need for energy-efficient deep learning solutions, which is twofold:

• Energy-efficient models decrease the costs associated with training and inference. These costs apply
to both the carbon footprint that these models have, as the electricity (and with that money) it costs
to train models on cloud-computing solutions. To give context to this statement, Patterson et. al
[36] showed that in order to train a model such as GPT-3 (a language model), 1,287MW h of energy
is needed, which produces 552.1 metric tons of CO2e when trained on Nvidia V100’s.

• Not all deep learning devices can rely on a connection with a computation server. In many cases, train-
ing a model on such a server is not a big issue, but running inference is preferred to happen on-device.
For safety-critical systems for example, there is a need for real-time decision making. Therefore, it is
not an option to rely on an external server which goes paired with undesired latencies and possible
reliability issues. A second example are devices which can physically not connect to the internet due
to their use in remote areas. Most of these so called "edge devices" are embedded devices which are
battery powered with relatively little processing power, indicating the need for energy-efficient deep
learning algorithms.

Although the research in the field of deep learning mainly has been focusing on achieving high accuracies, the
need for energy-efficient deep learning slowly trickles trough as well. Several research fields have emerged to
make models more efficient, which will be introduced in later chapters. One of these fields are Binary Neu-
ral Networks (BNN), which apply extreme 1-bit quantization of weights and activations to a Convolutional
Neural Network (CNN). One can understand that by quantizing the values of a CNN this aggressively, a great
portion of information is lost. Therefore, there is still a gap between the accuracy of Floating Point (FP) net-
works and their binary counterpart. Improving these BNNs to close the accuracy gap is the main point of this
thesis. Therefore in the next section, we come to the problem statement.

1



2 1. Introduction

1.2. Problem statement
In this section, the problem-to-solve is introduced, together with the main questions that need to be an-
swered. The main objective of this research is:

To design and implement an activation binarization function that replaces the traditionally usedsign(.)
function used in Binary Neural Networks, so that more information is preserved in the network.

In order to reach this objective, the following tasks need to be solved:

• Find the relevant state-of-the-art regarding binarization functions for both weights and activations.
• Design and implement the new binarization method, such that the additional latency of the module

with respect to the network is kept within limits.
• Ensure the new binarization method is modular, so it can be plugged into existing networks.
• Design and implement a state-of-the-art architecture around the new binarization method and test its

performance on a large scale dataset, so that it can be compared against other state-of-the-art.

1.3. Internship
The thesis work was conducted as part of an internship at Shell Global Solutions International B.V. Amster-
dam, The Netherlands.

“Shell’s target is to become a net-zero emissions energy business by 2050, in step with society’s
progress in achieving the goal of the UN Paris Agreement on climate change . . . Becoming a net-
zero emissions business means offering customers more low-carbon products, from renewable
electricity, to charging for electric vehicles and hydrogen.” 1

AI can help to achieve this:

“Digital and AI can also reduce emissions in the way we move around. Shell is working with
customers and partners in the shipping industry to help accelerate decarbonisation towards a
net-zero emissions future for shipping.” 2

1.4. Contributions
• The basics of convolutional neural networks and binary neural networks are introduced.
• In our paper, we introduce the uniqueness bottleneck in binary neural networks imposed by the tradi-

tionally used binarization function.
• We present LAB: a universal activation binarization function that can learn a per-channel binarization

kernel. We further show this module can readily be plugged into existing BNN architectures.
• We bring deep learning model compression into practice and bring an object detection model as well

as an instance segmentation model to a resource-constrained edge device.

1.5. Thesis outline
The rest of this thesis report is structured as follows: This thesis starts by presenting the scientific paper
in chapter 2. This paper is a informative summary of the main thoughts of this thesis and describes the
main experiments conducted. After the paper, we start with a wide angle of view by providing background
information about Deep Learning in chapter 3. After these fundamentals are clear, the topic is narrowed
down to Binary Neural Networks in chapter 4. Chapter 5 provides additional materials for the novel LAB as
introduced in the paper. The foremost chapter: chapter 6, describes the need for new technologies from a
practical viewpoint and shows a real implementation of applying AI at the edge on actual hardware. Finally,
this thesis is is closed by a conclusion together with recommendations for future research in chapter 7.

1https://www.shell.com/energy-and-innovation/the-energy-future/our-climate-target.html, accessed 11 march 2022
2https://www.shell.com/energy-and-innovation/digitalisation/news-room/can-digitalisation-and-ai-accelerate-the-energy-

transition.html, accessed 11 march 2022
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Abstract

Binary Neural Networks (BNNs) are receiving an up-
surge of attention for bringing power-hungry deep learning
towards edge devices. The traditional wisdom in this space
is to employ sign(.) for binarizing featuremaps. We ar-
gue and illustrate that sign(.) is a uniqueness bottle-
neck, limiting information propagation throughout the net-
work. To alleviate this, we propose to dispense sign(.),
replacing it with a learnable activation binarizer (LAB), al-
lowing the network to learn a fine-grained binarization ker-
nel per layer - as opposed to global thresholding. LAB is
a novel universal module that can seamlessly be integrated
into existing architectures. To confirm this, we plug it into
four seminal BNNs and show a considerable performance
boost at the cost of tolerable increase in delay and com-
plexity. Finally, we build an end-to-end BNN (coined as
LAB-BNN) around LAB, and demonstrate that it achieves
competitive performance on par with the state-of-the-art on
ImageNet1.

1. Introduction

Convolutional Neural Networks (CNNs) dominate the
current state-of-the-art computer vision tasks. With evolv-
ing research, models gained increasingly higher accuracy,
but in parallel they have grown in size and complexity. This
imposes a significant burden for deploying deep learning
models on resource-constrained edge devices. Recent stud-
ies explore model compression techniques to reduce model
size and latency, such as pruning [25], quantization [34],
knowledge distillation [13], neural architecture search [10]

1Codebase in the supplementary will be made publicly available upon
acceptance.

and low rank approximation [36]. The most extreme form
of quantization is realized by binarization, resulting in bi-
nary weights and activations {−1,+1}. Networks utiliz-
ing this form of quantization are known as Binary Neural
Networks (BNNs) and promise a bright future for energy-
efficient deep learning. By quantizing weights and activa-
tions aggressively, one can theoretically achieve a memory
reduction of 32× and a computational speedup of 58× on
typical CPUs [30].

The current consensus in literature is to use sign(.)
as a mapping from the full-precision to binary values. How-
ever, this imposes three widely-known issues: (i) the repre-
sentational power of sign(.) with respect to the float-
ing point counterpart decreases from 232 to only 2 informa-
tion levels [26]; (ii) the derivative of sign(.) is a Dirac
Delta returning a zero gradient almost everywhere [7]; (iii)
sign(.) imposes a global threshold, treating all values in
its input the same way. In this work, we identify and debate
about a fourth problem which we refer to as uniqueness bot-
tleneck. Approaching the problem from both qualitative and
quantitative angles, we demonstrate that using sign(.)
further limits the representational capacity of the network.
Interestingly, several studies state that sign(.) is a sub-
optimal binarization operation and that it is not straightfor-
ward to find a new binarization function [6, 32]. This is
exactly why we embark on this challenge in this paper.

Multiple remedies have been proposed to cope with the
issues of sign(.), including the introduction of scal-
ing factors [30], gradient approximation [28] and pre-
binarization distribution shaping [18]. Amongst these direc-
tions, we believe that the pre-binarization reshaping shows
the most potential to alleviate this information bottleneck
of BNNs. In contrast to the existing studies, we argue that
shaping the pre-binarization distribution is a means an the
end, and not the end in itself. To address the issues enumer-

1



Figure 1: In contrast to sign(.), binarization using LAB does not map some of the discrete output featuremaps into the
same binary featuremap, but learns to distinguish important features during binarization, improving information propagation
capacity. The figure is best viewed in colour.

ated, we design a learnable activation binarization function
(LAB) to automate the mapping from the full-precision fea-
turemaps to the binary counterparts, so that the representa-
tional capacity of the network (compared to full-precision)
is least impacted. This is shown schematically in Fig. 1
(and elaborated in Section 3), where application of a global
sign(.) threshold on the diverse spectrum of colors in
the discrete featuremaps results in identical outputs (acting
like a diversity bottleneck), whereas LAB can potentially
avoid such loss of information.

Our contributions can be summarized as follows:

• To the best of our knowledge, for the first time, we
identify the uniqueness bottleneck imposed by the
sign(.) operation. We demonstrate that sign(.)
limits the representational capacity of binary fea-
turemaps.

• To address this bottleneck, we introduce a novel learn-
able activation binarization: LAB. We show that LAB
is a universal module that can readily be plugged into
any existing BNN architecture, and improve its per-
formance. Our experimentation on four seminal BNN
baselines corroborates this claim.

• We build an end-to-end network around LAB (coined
as LAB-BNN) and demonstrate that it offers compet-
itive performance (64.2% Top-1 validation accuracy)
on par with the state-of-the-art in this space on Ima-
geNet.

2. Related Work

2.1. Binary Neural Networks (BNNs)

Current BNNs binarize the full precision weights and ac-
tivations by applying sign(.) on them:

xb = sign (xr) =

{
+1, if xr > 0
−1, if xr ≤ 0

, (1)

where xb and xr denote the binary and real (full preci-
sion) values, respectively. Naively applying these quan-
tizations to a CNN yields low accuracy and to close the
gap between BNN implementations and their real-valued
counterparts, several research directions have arisen: min-
imization of quantization error [7, 30], loss function im-
provement [9, 16, 24], gradient approximation [21, 24, 28],
different network architecture designs [5, 8, 17, 24, 26, 39],
training strategies [1, 23, 27, 31] and binary inference en-
gines [3, 12, 35, 37] are a few seminal directions that have
been explored in BNN literature. Apart from these main di-
rections, only a few studies investigate new methodologies
for binarizing weights and activations, which will be eluci-
dated next.

Weight binarization. A novel approach for weight bi-
narization is presented in [14] where first a BNN is trained
and both full precision and binary weights are employed
as noisy supervisors for learning a mapping towards the
final binary weights. As this mapping is learnable, it can
exploit the relationships between weights. SiMaN [20] and
RBNN [21] both propose a new binarization method based
on so-called angle alignment between the full-precision
and binary weights.

2



Activation binarization. One way to approach activa-
tion binarization is through classic computer vision tech-
niques, such as dithering. This technique can binarize
an image in a way that shifts quantization error towards
higher frequencies. As the human visual system is more
receptive to lower frequencies, the binarized image is per-
ceived as having a low quantization error, and thus, carry-
ing more information. A realization of this idea is called
DitherNN but it only reports mild improvement [2]. Most
activation binarization approaches focus on shaping the pre-
binarization distribution, from which a higher entropy can
be achieved after binarization [28]. For instance, an extra
regularization term is proposed in [9] to explicitly shape
the pre-binarization distribution so that it counteracts de-
generation, saturation, and gradient mismatch problems. It
is argued in [18] that BNNs benefit from an unbalanced
pre-binarization distribution. ReActNet [24] argues that
BNNs benefit from learning a similar activation distribution
as their full-precision counterparts. On a related note, Si-
BNN [32] approaches the activation binarization problem
from a somewhat different angle and introduces sparsity in
the activation binarization process.

Even though these studies show promising perfor-
mance results for BNNs, we argue that changing the pre-
binarization distribution is still a form of adaptive global
thresholding, and thus a sub-optimal approach. Therefore,
the output featuremap does not fully reflect on, and adapt to
the local information of the input featuremap.

3. Problem Formulation
In this section, we reflect on the fundamental limita-

tion a sign(.) binarization function inflicts on a BNN.
We examine the capability of the network to cope with the
single threshold value of sign(.), which we refer to as
global thresholding - given that it is applied similarly on
every input location. In practice, as the input featuremap to
sign(.) is the output of a previous (convolutional) layer,
the kernel of the convolution is learned such that parts of the
output featuremap get pushed above or pulled beneath the
global threshold value. The batch normalization layer can
further guide this process by effectively shifting the thresh-
old value. Although this combination is essential for the
learning process of BNNs, we argue that there still is a lim-
itation in its efficacy.

Fig. 2 explains what we perceive as the bottleneck
in information propagation of BNNs. Here, A denotes
the discrete input featuremap to the binary convolution.
Assume W’s represent the set of all unique weight kernels
one can imagine. Given a kernel size k, the number of
input channels C, and a single output channel per kernel,
the total number of unique Wi’s, ∀i ∈ [n] will then be
n = 2k

2×C . The output featuremaps D1 to Dn are discrete
finite-alphabet tensors. Note that n in this case is smaller

Table 1: η for 512 unique W’s after applying sign(.)
function in Bi-Real Net. Later layers show a lower ratio, in-
dicating that the uniqueness bottleneck is more prominently
present.

Layer 1 2 3 4 5 6 7 8
η 0.964 0.994 0.996 0.998 0.998 0.986 0.991 0.994

Layer 9 10 11 12 13 14 15 16
η 0.994 0.927 0.943 0.951 0.959 0.747 0.781 0.803

than the theoretical maximum number of unique activations
N = (k2 ×C)H×W , given a specific input A. Impacted by
the activation design of the previous layers, proper design
of A could potentially minimize the gap between n and
N . Applying sign(.) on D1 to Dn maps them to their
binary counterparts B1 to Bn. In theory, it is possible to
have n unique binary featuremaps Bi’s, ∀i ∈ [n], even
though in practice, the bottleneck of sign(.) maps
several of Di’s into the same binary map, thereby further
reducing the total number of unique binary featuremaps
Bi’s beneath even n. We dub the aforementioned issue
as the uniqueness bottleneck. We argue that due to this
bottleneck, the network does not utilize its full potential
and the representational capacity of the network is going to
be impacted.

To demonstrate that this hypothesis is valid, we design
a toy experiment that uses single-layer binary input fea-
turemaps A (in this case with C = 1) extracted from the
binarized featuremaps (using sign(.)) in a trained Bi-
RealNet-18 [26]. Kernel size k is set to 3, which makes
up for a total of 2k

2

= 512 unique kernels. Following the
steps sketched in Fig. 2, we take A as the starting point,
convolve it with every possible kernel Wi and binarize the
output activations Di’s with the sign(.) function. We
then count the number of unique binary featuremaps Bi’s,
and average over all the channels (per different layers) of
20 different input images. We denote the ratio of counted
unique featuremaps (nc), and theoretical total number of
unique featuremaps (nt) as the uniqueness ratio η = nc/nt.
The results are shown in Table 1. We can see that going
deeper with convolutions, leading to smaller featuremaps
for layers 9 to 16, the uniqueness ratio decreases and the
bottleneck becomes more evident. In the next section, we
propose a learnable activation binarizer (LAB) as a remedy
for this bottleneck.

4. The Proposed Method: LAB

One possible approach towards addressing the bottle-
neck of sign(.) binarization is to find a mapping from
full-precision activation values to corresponding binary val-
ues, in such a way that the embedded spatial information
from the input featuremap is preserved. To do so, we pro-
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Figure 2: The uniqueness bottleneck. Activation A is convolved with all unique kernels Wi’s. The finite-alphabet fea-
turemaps D are binarized by the sign(.), which creates the bottleneck of multiple D’s mapping to the same binary
featuremap B. The equations (at the bottom) indicate the theoretical maximum number of unique combinations a tensor can
take.

Figure 3: Overview of LAB and how it can be used sim-
ilar to sign(.). Tuples [{1, 2}, H,W,C] indicate the
shape of the tensors. The depthwise convolution together
with ArgMax(.) form the core components of LAB. The
Soft-Argmax(.) is used in the backward pass for dif-
ferentiability.

pose to forge a different path in contrast to the current wis-
dom of activation distribution shaping [9,18,24]. More con-
cretely, we propose a novel learnable activation binarizer
(LAB) to learn a binarization kernel per layer, as shown in
Fig. 3. The figure demonstrates LAB as a building block of
a standard BNN. Zooming into the LAB unit, as we need to
apply channel-wise binarization like sign(.), we first re-
shape the input for per-channel operations. To capture local

spatial information per channel, we apply a 3 × 3 depth-
wise convolution with a channel multiplier of 2. The core
idea behind this channel doubling is to construct a minia-
ture segmentation layer within the LAB unit to classify the
input as −1 or +1. This classification is done through
an ArgMax(.) across both channels, reducing the fea-
turemap back to a single output channel which is finally
reshaped back to its original size. As the ArgMax(.) is
non-differentiable, we apply the Soft-ArgMax(.) for
the backward pass [11]. Given that we are dealing with only
two classes, the Soft-ArgMax(.) in (2) simplifies to a
single entry of the SoftMax(.) with an extra tempera-
ture controlling parameter β which controls the “hardness”
of the ArgMax(.) approximation:

Soft-ArgMax(x) =
1∑

i=0

eβxi

∑
j e

βxj
i =

eβx1

∑
j e

βxj
. (2)

5. Experimental Evaluation

In this section, we first reflect on the experimental setup.
Next, we demonstrate the uniqueness bottleneck and how
employing LAB can help alleviate the problem. We then
show that LAB is beyond a one-off remedy but more of
a universal module that can straightforwardly be plugged
into existing baselines. Finally, we propose an end-to-end
model architecture (LAB-BNN) revolving around LAB of-
fering competitive performance against state-of-the-art.
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5.1. Experimental Setup

To be able to compare against a variety of existing state-
of-the-art baselines - also to allow for a wider adoption by
the community - we implement LAB both in PyTorch and
TensorFlow. For the comparison with the state-of-the-art
baselines, we utilize the TensorFlow-based Larq framework
[3].

Network structure. To show the versatility of LAB,
we plug it into four different architectures. First, XNOR-
Net [30], is chosen to examine the improved information
flow on an AlexNet-based architecture [19] with no skip
connections. Then, Bi-RealNet [26] and ReActNet [24] are
used for their ResNet [15] and MobileNet [17] backbones,
respectively. Finally, QuickNet [3], an improved version of
Bi-RealNet, is used to assess whether LAB can make an im-
pact on a top performing state-of-the-art network.

Proposed end-to-end network: LAB-BNN. Going be-
yond the proposed module LAB, we also design an end-
to-end network based upon the architecture of Bi-RealNet-
182, which we further enhance by combining PRelu in
[7,24,27,31] and STEMmodules proposed by QuickNet [3].

Hyperparameters. All experiments are conducted us-
ing 4 NVIDIA GeForce GTX 1080 Ti GPUs and follow
standard settings in Larq [3], unless otherwise mentioned.
To reproduce nominal reported performance, we used a
batch size of 128 and a learning rate of 1e−4 for the re-
training of XNORNet. For Bi-RealNet a batch size of 256
and learning rate 2.5e−3 was used. For Quicknet we used a
batch size of 512 and a learning rate of 2.5e−3. Lastly, we
re-trained ReActNet-A from scratch with a batch size of 128
and learning rate of 2.5e−3. LAB-BNN uses a batch size of
256 and learning rate of 2.5e−3 and is trained from scratch
for 300 epochs. We chose to train from scratch as recent
studies [4] suggest that multi-stage training is not needed
for high accuracy models, and that it simplifies the training
process significantly. The temperature controlling param-
eter β is made a learnable parameter, initialized with the
value 1.0.

Real-time inference on the edge. The research in
BNNs is focussed on bringing deep learning to resource-
constrained edge devices. Recent studies report the compu-
tational complexity of their models using theoretical metrics
such as floating-point operations (FLOPs) [24,27] multiply-
accumulate (MACs) [4] or arithmetic computation effort
(ACE) [38]. In coherence with [3, 29] we argue that la-
tency is the best metric to compare model performances.
In order to benchmark model latency, we use a resource-
constrained edge computing device, Nvidia Jetson Xavier
NX3 development kit, which is an ARM-based board for

2We started off with ReActNet-A, but we could not reproduce results
in TensorFlow.

3https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-xavier-nx/, accessed 3 March 2022

development of embedded AI systems. Although this de-
vice has a built-in GPU, for the benchmarking exercise we
only use the CPU. Thus, these benchmarks can be repro-
duced on commodity ARM64 devices. To convert models
from TensorFlow to Jetson-compatible models, we use the
Larq Compute Engine Converter [3], which outputs a Ten-
sorFlow Lite (TFLite [22]) model. This model can now be
evaluated using a Larq benchmark tool [3] adapted from the
TFLite benchmark4. For all the benchmarking experiments,
the power mode of the Jetson is set to 15W, we use the sin-
gle thread mode, and report values averaged over 50 runs.

5.2. Uniqueness Bottleneck: Qualitative and Quan-
titative Analysis

In section 3, we have shown that sign(.) can in-
troduce a bottleneck in reaching the theoretical maximum
number of unique binary states, which we argued would
limit the capacity of BNNs. Here, we adopt a small-
scale experiment (followed by large-scale end-to-end ex-
periments in the next subsection) to qualitatively and quan-
titatively demonstrate that LAB alleviates this bottleneck
to some extent. To this aim, we compare the binary fea-
turemaps of a trained Bi-RealNet-18 with a trained Bi-
RealNet-18+LAB (where sign(.) is replaced with LAB).
The results are shown in Fig. 4 and Table 2. The figure de-
picts the selected featuremaps from layer 1 and 6 (out of
18 layers). As can be seen, more structural information is
preserved in layer 1 of LAB compared to sign(.), even
though the features become too abstract for human under-
standing as we go to the deeper layer 6. Besides this quali-
tative demonstration, we further quantify the impact of LAB
on the number of unique features maps learned by both net-
works through two (dis)similarity measures: structural sim-
ilarity loss (SSIM) [33] and a custom-designed metric we
call Euclidean norm dissimilarity (ENDSIM), given by:

ENDSIM(Ai,Aj) =

√√√√√

 1

HW

∑

w,h

|Ai −Aj |




2

+


 1

HW

∑

w,h

|Ai +Aj |




2

,

h ∈ [H], w ∈ [W ], i ̸= j ∈ [C]

(3)

where W and H denote the width and height of the input
images in pixels and Ai and Aj , are different single chan-
nel featuremaps being compared. The metric has two terms
in which the first term measures discrepancy, and the sec-
ond one ensures fully inverted featuremaps are not penal-
ized. The latter is because inverted featuremap layers along
the channels can occur but do not indicate structural differ-
ences. Both measures are computed and averaged over all
possible combinations of featuremap layer pairs across all
the 16 convolutional layers of 10 randomly selected images
of ImageNet passed through both networks. The results are

4https://www.tensorflow.org/lite/performance/measurement, accessed
3 March 2022
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Figure 4: Qualitative comparison between sign(.) and
LAB on two layers of Bi-RealNet-18. LAB illustrates higher
amount of texture (especially in Layer 1), which indicates
allowing more information to pass through.

Table 2: Dissimilarity comparison between pre- and post-
binarization of sign(.) vs. LAB for SSIM and END-
SIM (3) applied to extracted featuremaps from the trained
BiRealNet-18 networks (with and without LAB). The direc-
tion of the arrow indicates higher dissimilarity. The SSIM
values are multiplied by ×103.

Layer 1 2 3 4 5 6 7 8

SSIM↓ (×10−3) Sign 94.8 21.3 14.5 13.1 11.9 21.6 16.6 13.5
LAB 1.5 9.0 4.2 5.4 8.9 5.1 6.6 6.4

ENDSIM↑ Sign 1.1 0.93 0.85 0.83 0.8 0.86 0.84 0.8
LAB 0.92 0.96 1.1 1.3 1.4 1.4 1.5 1.5
Layer 9 10 11 12 13 14 15 16

SSIM↓ (×10−3) Sign 12.2 25.8 19.7 17.6 14.6 29.3 22.4 18.0
LAB 8.5 4.2 2.9 2.4 8.8 5.6 8.2 7.1

ENDSIM↑ Sign 0.76 0.92 0.88 0.85 0.81 0.98 0.93 0.89
LAB 1.6 1.4 1.4 1.4 1.7 1.4 1.4 1.4

summarized in Table 2, and as can be seen, except for the
first layer, LAB shows higher dissimilarity (a lower SSIM
and a higher ENDSIM) indicating more uniqueness along
the channels.

5.3. LAB: A Universal Module

The proposed method LAB can readily be applied to any
BNN, with no architectural adjustments. In this subsec-
tion, we demonstrate this by replacing the sign(.) with
LAB in four seminal BNN architectures and evaluate the
impact on the downstream classification task of ImageNet.
The results are illustrated in Table 3. As can be seen, at
the cost of negligible increase in model size and tolerable
increase in delay (max of 2x in [ms]), the boosted archi-
tectures XNORNet, Bi-RealNet, QuickNet, and ReActNet
offer 3.3%, 7.9%, 3.8% and 1.7% improved Top-1 accu-
racies, respectively. The performance boost is slightly less
pronounced for Top-5 accuracies. Note that the number of

Table 3: Results of applying LAB on the corresponding
baselines on ImageNet.

Network Backbone Epochs Method Top-1 Top-5 Model Size Latency
[%] [%] [MB] [ms]

XNOR-Net [30] AlexNet [19] 60 Sign 44.0 68.1 23.9 50.8
LAB 46.5 70.3 24.4 55.1

BiRealNet [26] ResNet-18 [15] 150 Sign 54.4 77.6 4.18 72.5
LAB 59.1 81.2 4.65 100.6

QuickNet [3] ResNet-18 [15] 120 Sign 58.7 81.2 4.35 58.1
LAB 62.5 84.0 4.85 82.4

ReActNet [24] MobileNetV1 [17] 75 Sign 62.4 83.4 7.74 108.1
LAB 64.1 84.8 8.69 210.9

required training epochs to reach the nominal performance
is dependent upon the architecture itself. The key message
from this experiment is that irrespective of the backbone
and architecture design, LAB makes a considerable impact
on all architectures.

5.4. Comparison Against State-of-the-Art

Now that the impact of LAB on four seminal BNN ar-
chitectures is clarified, let us further investigate the efficacy
of the proposed end-to-end network (LAB-BNN) with LAB
sitting at its core. To do so, we compare the performance
of LAB-BNN against the state-of-the-art baselines focused
on activation binarization. For the sake of a fair comparison,
here we focus on reported Top-1 and 5 validation accuracies
on ImageNet with a ResNet-18 backbone. The outcome is
summarized in Table 4. As can be seen, both Top-1 and
5 results are competitive with the state-of-the-art and come
short of the full precision equivalent network by only about
5%. Notably, ReActNet reports a better performance (that
we could not reproduce) in part owing to adopting a multi-
stage training strategy, whereas LAB-BNN is trained from
scratch.

Aside from accuracy, the time and computational
complexity of a BNN is just as important. Even though
most existing baselines overlook the importance of these
metrics and sometimes do not even report them. Fol-
lowing [24] and to solidify our story, in Table 4 we
report the total binary and floating-point operations (OP
= BOP/64 + FLOP). Here, we achieve a lower total
computational complexity (in FLOPs) compared to other
baselines including the original Bi-RealNet. To further
break this down, in Table 5 we set Bi-RealNet as our
reference and state the added (+) complexity per operation
listed in the second column. Even though the mechanics
of LAB adds slight complexity, we compensate for this
with a more efficient implementation of STEM module [3]
leading to an overall decrease of 73.16×106 in total FLOPs.

Post-binarization distribution. To illustrate that the
post-binarization distribution is not a telling factor about
the performance of the network (in contrast to some of
the conclusions drawn in [9, 18, 24]), Fig. 5 shows the

6



Table 4: Comparison against reported state-of-the-art on
ImageNet. A dash indicates no value was reported by the
original authors.

Network Method W/A Top-1 Top-5 BOPs FLOPs OPs
[%] [%] (×109) (×108) (×108)

ResNet-18

Full-precision 32/32 69.6 89.2 0 18.1 18.1
Bi-RealNet [26] 1/1 56.4 79.5 1.68 1.39 1.63
BNN-UAD [18] 1/1 57.2 80.2 - - -
IR-Net [28] 1/1 58.1 80.0 - - 1.63
SI-BNN [32] 1/1 59.7 81.8 - - -
SiMaN [20] 1/1 60.1 82.3 - - -
QuickNet [3] 1/1 63.3 84.6 - - -
LAB-BNN 1/1 64.2 85.0 1.68 0.66 0.92
ReActNet [24] 1/1 65.9 - - - -

Table 5: FLOPs comparison: LAB-BNN vs. Bi-RealNet.

Component Operation FLOPs(
×106

)

Depthwise Conv2D +30.3
BiasAdd +1.68

LAB (ours) Multiply +1.68
ArgMax +0.84

Equal +0.84
PRelu [31] Mul +0.57

Neg +0.76
STEM [3] Conv2D -109.83

Total -73.16

post-binarization distribution of +1’s and −1’s for original
Bi-RealNet-18 and Bi-RealNet-18+LAB averaged over
all channels of 1000 input images. As can be seen, while
the distribution of binary values remains almost the same
across both networks, the performance of the two (reported
in Subsection 5.3) is apart by 7.9%.

Going deep or going LAB? As we discussed, plug-
ging LAB into the standard Bi-RealNet (our base to build
LAB-BNN) adds additional complexity to the network,
and one could argue that adding this tiny learnable kernel
of LAB per layer could virtually help make the network
deeper. However, as a counter-argument, we also compare
LAB-BNN against a Bi-RealNet with a deeper backbone.
More specifically, in the current construct, our method
adds a depthwise convolution for each binary layer in Bi-
RealNet-18. This is (roughly) equivalent to addition of 16
extra convolution layers, yielding a total of 18 + 16 = 34
layers. According to [26] Bi-RealNet-34 and Bi-RealNet-
50 respectively achieve 62.2% and 62.6% validation accu-
racies on ImagNet which are both still below the accuracy
offered by the proposed LAB-BNN.

6. Ablation Studies

In this section, we further inspect the effect of differ-
ent components of LAB-BNN. In what follows, we use the
same settings listed in Section 5.1, except for the number
of epochs shortened to 30. We start off with the original

Table 6: Ablation study for LAB-BNN, trained for 30
epochs on ImageNet.

Method Top-1 Top-5 Model Size Latency
[%] [%] [MB] [ms]

A: BiRealNet [Base] 45.0 69.7 4.18 70.3
B: Base+PRelu 52.4 76.1 4.19 70.8
C: Base+PRelu+LAB 58.1 80.9 4.65 99.3
D: Base+PRelu+LAB+STEM [LAB-BNN] 58.2 80.8 4.62 80.0

Bi-RealNet-18 (model A) and update the components pro-
gressively towards LAB-BNN (model D). We first upgrade
model A by incorporating PRelu activation [31] resulting
in B. Model B is then extended by replacing sign(.) by
the proposed LAB module leading to model C. Lastly, we
replace the initial convolution in Bi-RealNet with the STEM
layer of QuickNet [3], which forms LAB-BNN (model D).
The results are illustrated in Table 6. As can be seen, plug-
ging LAB into model B results in an improvement of about
6% on the Top-1 validation accuracy (and roughly 5% for
Top-5), at an increase of 0.46MB in model size and 28.5ms
in latency. To make up for the added latency, we apply
the STEM layers as proposed by QuickNet [3] which results
in decreasing the latency with respect to model A down to
9.7ms.

To provide further insights into the distribution of per-
operation latencies, in Fig. 6 we profile the network delays
for models A to D5. In other words, this is a fine-grained
visual breakdown of the total latencies reported in Table 6.
The depthwise convolution together with the ArgMax(.)
operation in LAB are the main culprits behind the added
latency. Additionally, it is clear that the STEM layer indeed
helps to alleviate the overall latency as discussed in Table 6.

6.1. Where to apply LAB.

So far, when applying LAB, all instances of sign(.)
in every binary layer of the network were replaced with
LAB. For Bi-RealNet-18, this means all of the four resid-
ual blocks, in all four convolutions per block. As we saw in
Table 1, the uniqueness bottleneck is mainly visible in later
layers. Therefore, in Table 7 we assess which combination
of blocks (out of 16 possible combinations) is most impact-
ful to apply LAB. In doing so, we apply LAB on all layers
per selected block. The networks are trained for 30 epochs
and we report Top-1 and Top-5 validation accuracies, model
size and and latencies. We conclude from the table that
omitting LAB (using sign(.) everywhere) leads to the
worst results, and see that as we apply LAB in more blocks
progressively, accuracy increases. Interestingly, the model
with LAB applied to the last 3 blocks (second row) has an
exceptional accuracy-latency tradeoff.

5These interactive charts will also be available on our GitHub page
upon acceptance.
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Figure 5: Post-binarization distribution of original Bi-RealNet-18 vs LAB-BNN averaged over all channels of 1000 input
images. Rows indicate the blocks in the ResNet structure, columns indicate layer number within each block.

Figure 6: Breakdown of per-operator latencies for ablation study of LAB-BNN. Operators contributing to the latency mini-
mally have been marked as “other”.

Table 7: Study on applying LAB to different blocks of
LAB-BNN. A checkmark indicates that LAB was used for
all layers in that block.

Block Top-1 Top-5 Model Size Latency
1 2 3 4 [%] [%] [MB] [ms]

□✓ □✓ □✓ □✓ 59.1 81.3 4.68 83.7
□ □✓ □✓ □✓ 58.7 81.0 4.66 68.0
□✓ □ □✓ □✓ 58.4 80.6 4.64 75.3
□✓ □✓ □✓ □ 58.4 80.5 4.33 79.1
□✓ □✓ □ □✓ 58.1 80.4 4.61 77.1
□ □✓ □✓ □ 58.0 80.2 4.31 63.9
□ □✓ □ □✓ 57.9 80.1 4.58 64.9
□ □ □✓ □✓ 57.8 80.0 4.62 60.6
□✓ □ □✓ □ 57.8 79.9 4.29 72.9
□ □ □✓ □ 56.7 78.9 4.27 58.8
□✓ □ □ □✓ 56.7 79.3 4.57 71.1
□✓ □✓ □ □ 56.4 79.1 4.26 75.0
□ □ □ □✓ 55.9 78.6 4.54 41.4
□ □✓ □ □ 55.7 78.1 4.23 47.6
□✓ □ □ □ 54.9 77.3 4.22 59.9
□ □ □ □ 53.2 76.1 4.20 54.6

7. Concluding Remarks

We have shown that the commonly adopted binarization
operation sign(.) imposes a uniqueness bottleneck on
BNNs, making it a sub-optimal choice for binarization.
As a remedy, we introduce learnable activation binarizer
(LAB), a novel binarization function that allows BNNs
to learn a flexible binarization kernel per layer. We have
demonstrated that LAB can readily be plugged into existing
baseline BNNs boosting their performance regardless of
their architecture design. Beyond that, we have also built a
new end-to-end network (LAB-BNN) based upon LAB that
offers competitive performance on par with the state-of-the-
art. For future work, we will investigate applying learnable
binarization to weights in addition to activations. We
also plan to further extend our experimentation especially
around LAB-BNN to push the performance boundaries and
advance the state-of-the-art.
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3
Background information

In order to understand the relevant research in BNNs, it is essential to first understand the basics of deep
learning and to introduce terms that will be used later, and then to gradually narrow our scope down to
BNNs. Therefore, this chapter starts by introducing deep learning (section 3.1) and by explaining the es-
sentials of Multi Layer Perceptrons and Convolutional Neural Networks. Then, existing techniques to make
neural networks more energy-efficient will be discussed in section 3.2.

3.1. Deep Learning

Artificial Intelligence

Machine Learning

Deep
Learn-

ing

Figure 3.1: Artificial Intelligence subsets.

As illustrated in Fig. 3.1, Deep Learning is a subset of Machine Learn-
ing (ML) which is in its turn a subset of AI again. To start off wide, an
AI program is a piece of software which can reason, react and adapt
to its inputs. ML is more specific and specifies itself by the fact that
it is about algorithms which take in data and learn to make informed
decisions. Deep learning is even more specific by accomplishing this
task by using multilayered neural networks. The task of deep learn-
ing is to learn to extract features from data which can be used in var-
ious tasks such as, but not limited to: computer vision [24], natu-
ral language processing [20], cybersecurity [33] and medical image
analysis [28]. This work limits itself to computer vision related tasks
and in special image classification. This task presents an image to
the network, and this network should learn to classify the main ob-
ject in the image into a one of the possible output classes. In the next
section (section 3.1.1), the Multi Layer Perceptron (MLP) will be introduced which helps basic understanding
of neural networks, whereafter in section 3.1.2, the basics of a Convolutional Neural Network is introduced.

3.1.1. Multi Layer Perceptron
The simplest neural network is a Multi Layer Perceptron (MLP), which as the name suggests, consists of mul-
tiple layers, as can be seen in Fig. 3.3. A layer of a MLP consist of multiple neurons (the nodes in the figure).
The operations happening inside a neuron can be found in Fig. 3.2. The term "neuron" comes from the fact
that its working is inspired by the neurons in the human brain, which can "fire" when presented with relevant
information. All of the edges in a MLP have a weight and the output of a neuron is given byσ(

∑
i xi ·wi ), which

is a Multiply-Accumulate (MAC) operation between the inputs xi and weights wi , followed by an activation
function σ(x). The activation function is a function that brings non-linearity into the network. More about
activation functions and a summary of common activation functions will be discussed in section 3.1.2. A MLP
is part of a family of networks called feed-forward networks, due to the fact that every neuron feeds it calcu-
lated output value forward to the next layer, until the final output value is computed. By just doing a forward
calculation, the network calculates an output, but it does not learn anything yet. A MLP learns by updating
the values of it parameters, which are for example its weights and/or biases, by using backpropagation. Back-
propagation starts by calculating the loss between the calculated output value and the ground truth value.
This loss function is often specific to the tasks that needs to be solved. Then, this loss will be propagated back
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Figure 3.2: A neuron with two inputs.
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Figure 3.3: A Multi-Layer Perceptron (MLP) with two hidden layers.

trough the network by calculating the gradient of the parameters with respect to the loss. Finally, the weights
are updated by the optimizer, and the network will continue with the next forward step until the training of a
network has converged, or reached its number of iterations. The training of a neural network often consists
of 3 phases, which all have their own dataset associated with it. It starts with the training phase: here, the
network is fed with annotated training samples, which contain the actual data, accompanied by the ground
truth value. Then, in the validation phase, the network can be tested for data generalization. As the network
should learn to generalize well to unseen data samples, the network is again fed with data samples and their
ground truth values, but none of the validation samples should be in the training samples. Last is the test
phase, in which the network is evaluated after the model has finished training (and validation). This is often
to test against competing models.

3.1.2. Convolutional Neural Networks (CNNs)
A Convolutional Neural Network (CNN) is very similar to the MLP that we have seen in the previous section.
Both are neural networks with learnable parameters. However, a CNN has the difference that it focuses on
spatial data and does the computations more efficient than a MLP. The basic form of a CNN with commonly
used components can be seen in Fig. 3.4. A first thing that can be seen from this figure is the fact that a
CNN is structured in two main components: A part that extract features from the input image and a part that
does the classification. First, the feature extractor typically consists of convolutional layers with activation
functions, pooling layers and other layers in between. These components will be discussed in the following
sections together with commonly used architectures, so that at the end of this section there will be a good
understanding of used terms. Second, the classification part is responsible for mapping the output from
the feature extractor to the classes that should be learned. The alert reader will have noticed that the fully
connected layer in the classification part looks similar to the hidden layers of the MLP discussed earlier.

Figure 3.4: A visualization of a CNN architecture with commonly used layers.
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Figure 3.5: Calculation of a 2D convolution.

Convolution layers
The convolutional layers are, as the name suggests, the most important building blocks of a CNN and are, also
not surprisingly, based on the convolution operator. The 2D convolution operation for a single image works
by sliding a kernel (or else-called a filter or weights) over the layers’ input. This kernel has size k ×k, where
k is called the kernel size which is often chosen to be 3. In each step of the sliding window operation, a dot
product between the kernel and the input (often called featuremaps) is calculated, which will be the output
pixel at that specific location. The equation for a single input channel, single output channel convolution is
given in 3.1,

ym,n = (x ∗w)i , j =
k∑

i=0

k∑
j=0

wi , j · xm−i ,n− j , (3.1)

and an example of the steps of a 2D convolution can be seen in Fig. 3.5 1. The values used for both
weights and activations in the figure are just 0 and 1 for easy visualization, but can have any value. One
can notice from Fig. 3.5 that the size of the output image shrinks after the convolution operation. This can
be counteracted, by padding the input image before convolution. For featuremaps with more channels, the
kernel will have the same amount of channels and the convolution outputs from each channel get summed
to yield the output value (as can be seen in the convolution+ReLU step in Fig. 3.4). The number of output
channels is determined by the number of filters used where the output of the convolution will have as many
channels as there are filters.

Activation Functions
Simply combining multiple convolutional layers will yield sub-optimal results, as the network will only be
able to learn a linear model. To insert non-linearity into the network, the output of the convolution is passed
through an activation function. Some examples of commonly used activation function are illustrated in
Fig. 3.6. The first is the ReLu function, which is a piece-wise linear function. Alternatives to the ReLu are
the Leaky-ReLu, which does not zero out all negative inputs, but gives the negative part a slight slope. When
this slope is made learnable, the function is called PReLu. Other activations such as the sigmoid and the hy-
perbolic tangent are also shown in the figure, where the sigmoid can be used for mapping a continuous range
into a probabilistic range from 0 to 1. The hyperbolic tangent is of interest as it is used as an approximation
function for the sign(.) (more about this in chapter 4).

Pooling layers
The pooling layer (as can be seen in Fig. 3.4) is a layer that can be used to reduce the spatial dimension of the
featuremap. This ensures that computations will get lighter, but more importantly, it ensures that the network
will become more translation invariant, due to features being summarized along their spatial dimension. Two
popular implementations of pooling are called max-pooling (taking the maximum pixel location of a region)
or average-pooling (taking the average of the region), where pooling is applied to a 2×2 region.

1Figure adapted from https://tex.stackexchange.com/questions/522118/visualizing-matrix-convolution, accessed March 22, 2022
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Figure 3.6: Common activation functions.

Common CNN architectures
Many BNNs architectures are based on popular network CNN architectures. Therefore for completeness, we
briefly introduce those CNN architectures here. AlexNet [24] This eight layer network was one of the front
runners of CNN architectures on the ImageNet dataset. It was the first network to utilize the ReLu activation
function and to use multi-GPU training. ResNet [18] ResNet has become famous for its use of skip connec-
tions (else-called residual connections), which were introduced to counteract the vanishing/exploding gra-
dient problem that was occuring in deeper networks. ResNet is available in different depth configurations,
where for this work, we mostly use the ResNet-18 structure. MobileNet [23] MobileNet has been introduced
with model efficiency in mind. It makes use of depthwise separable convolutions, which splits the normal
convolution into a depthwise convolution followed by a pointwise convolution. This significantly reduces
the number of parameters required in the network.

3.2. Network compression
As one can imagine, the convolution operation in equation 3.1 will be a very heavy computation when this
convolution will have multiple input and output channels. When the network architecture is rather deep
(with many layers), the network will have a large latency. This is both a bottleneck for network training time,
as well as inference delay. To alleviate this, multiple network compression techniques have been introduced
in recent years, which will be discussed below:

3.2.1. Quantization
The first network compression technique is quantization. Quantization works by reducing the bit depth of
the parameters in the network. In standard CNNs, all parameters are represented by 32-bit floating point
numbers. With millions of parameters, this takes up the main part of the memory usage of the network.
Therefore, if there would be a way to express the network with a lower bit depth, significant compression
could be achieved. Evidently, by reducing the bit depth of the parameters, the representational capacity of the
network drops, and with this, the accuracy of the network reduces. The active research field therefore focuses
on reducing bit width, while also retaining the model accuracy. So far, research has been able to reduce the bit
width to 4 bits, while keeping or surpassing the original accuracy [9, 45]. Quantization is applied in two ways:
the first applies quantization after training (post-training quantization), where the second applies it during
training which is called Quantization Aware Training (QAT). Most deep learning frameworks, such as Pytorch,
only support 16-bit floating point (FP16) quantization and INT8 quantization. FP16 (16-bit) quantization can
often be applied lossless, so without any drop in accuracy. INT8 (8-bit) quantization however, often needs
quantization aware training, or retraining on a calibration set, to keep the initial accuracy of the model.

An extreme form of quantization is quantizing the parameters to only 1 bit. These networks, called Binary
Neural Networks (BNN) are the main topic of interest of this work and will be explained in more detail in the
next chapter. In short, by binarizing weights and activations in a network, one can leverage bitwise opera-
tions, with which a memory reduction of 32x and a computation speedup of 58x on CPU can be achieved
[38].
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3.2.2. Pruning
The main assumption for pruning is the fact that CNNs are heavily overparameterized and contain many
redundant parameters [39]. Pruning works by finding the unnecessary parameters and removing them from
the network. Interesting here is how to define which parts of the network are unnecessary. An overview of
commonly used pruning algorithms can be found in the survey by Liu et al. [29]. Which percentage of the
network can be pruned away is highly dependent on the network architecture, but often around a third of the
network parameters can be pruned without a drop in accuracy [25].

3.2.3. Knowledge distillation
Knowledge distillation is based around the same assumption as pruning: a trained model consists of many
redundant parameters. For knowledge distillation, a large model or an ensemble of methods, called “the
teacher” helps a smaller model, called “the student” to learn by transferring the knowledge of the high capac-
ity network to a network with lower capacity [21]. The student model is trained to mimic the outputs of the
teacher model. An overview of common algorithms can be found in the survey by Gou et al. [17].

3.2.4. Neural architecture search
Neural architecture search is a compression technique that aims to automatically find a good network ar-
chitecture by applying a specific search strategy in a predefined search space. The search space is defined
by the operations that are allowed to form a valid network. Defining the search space is a consideration be-
tween adding prior knowledge to shrink the search space and giving the algorithm the freedom to explore
novel architectures. Then to select an architecture, a search algorithm needs to be constructed. To deter-
mine whether an architecture could be a proper candidate, it’s performance needs to be estimated. The most
straight forward way would be to train and validate the model like any other model, however, this is very re-
source intense. That is why there are works that focus on finding other performance evaluation criteria. More
information about neural architecture search can be found in the survey by Elsken et al. [15].

3.2.5. Low-rank factorization
Other than being overparameterized, CNNs suffer from redundancy between parameters of different layers.
Low-rank factorization tries to decompose the tensors used in the network into a product of tensors of lower
rank [12], so that it reduces the memory footprint and therefore yields a computational speedup in the net-
work. Low-rank factorization can improve improve the speed-up to 30–50% compared to the full-rank matrix
representation [10].
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Binary Neural Networks

4.1. Introduction in BNNs
Binary Neural Networks are networks that are quantized to their most extreme form, where the weights and
activations are quantized to only one bit. If the binarization is only applied to the weights, it is referred to
as "binary-weight networks". Quantization to only one bit means that there are only two possible values to
take, and in most works these values are taken as {−1,+1}. The first work that published about binary-weight
networks is by Courbariaux et al. in 2015 [11] where it was shown that by binarizing the weights, the MAC
operations could be replaced with simple accumulate operations, yielding a speedup of around 3 times. One
year later, Rastegari et al. showed that by also binarizing the activations it was possible to replace the MAC
operations by XNOR and popcount operations and achieve memory savings of 32× and a theoretical speedup
of ∼ 58× on CPU [38]. The calculation of such a binary convolution is illustrated in Fig. 4.1 and a practical
example of the XNOR and popcount operations of this convolution are shown in Fig. 4.2. Fig. 4.1 is similar to
the earlier explained notion of 2D convolution in Fig. 3.5, with the only difference being that the weights and
activations are binary and so the representative range of the output y are all odd integers y ∈ [−9,+9] instead
of y ∈ [−∞,+∞] for the FP convolution. Note that for this specific example only odd integers can be yielded
because of an odd channel number of the featuremap. If this channel number is even, the outputs also will
be even. The fact that the output only has limited representative power is one of the reasons why early BNNs
had a great accuracy gap with respect to their FP counterpart.
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Figure 4.1: Calculation of a binary convolution.
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Figure 4.2: XNOR and popcount operations.
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4.2. Training a BNN
So far, it has been mentioned that a BNN uses a binarization function to get binary values for weights and
activations. In the forward pass of a BNN, the binarization function that is commonly used is the sign(.),
given by equation 4.1. Here, xb refers to the binary value and xr to the real or FP value.

xb = sign (xr ) =
{ +1, if xr > 0

−1, if xr ≤ 0
(4.1)

However, this sign(.) has a gradient which is equal to the Dirac delta function, which is zero except at the
origin. Using this gradient would trivially break the backpropagation of a BNN. Therefore, in early works, the
Straight Through Estimator(STE) [3] was used as an estimation of the gradient of the sign(.) [11]. The STE
forms the identity function in the backward pass, e.g. the gradient from later layers is just passed trough to
earlier layers. Later in section 4.3.2 different kinds of gradient estimation functions will be discussed. The
backpropagation step of sign(.) updates the FP values of the weights and activations instead of the binary
parameters. In this way, it is possible to aggregate parameter updates from multiple iterations. There could
be a possibility that parameter upgrades keep aggregating without causing a flip in sign, causing parameters
to explode in value. To counteract this, Binaryconnect clips the value of the FP parameter to an absolute value
of 1 [11].

Layer order. Constructing a BNN is a little different with respect to the full-precision model architec-
tures. Rastegari et al. stated that where typical CNNs use a layer structure of Binary convolution −→
Batch normalization −→ Activation −→ Pooling, this does not make sense to follow for BNNs [38]. To
clarify, here the Batch normalization layer normalizes the input batch by its mean and variance and the ac-
tivation layer includes the binarization operation. As (max)pooling applied to binary values will yield an al-
most uniform feature map, the pooling is shifted to directly after the convolution layer. Therefore, the typical
layer structure of BNNs is in the form Batch normalization −→ Activation −→ Binary convolution −→
Pooling. Apart from the order of the layers, the first and last layer of a BNN are commonly kept as a full-
precision convolution [1, 6, 26, 31, 38]. XNOR-Net found that binarizing the first layer was not giving consid-
erable speedup, although it did hurt the performance of the model [38]. Tang et al. argue that binarization
of the last layer fails due to the extremely large variational range after the binary convolution [41]. This is
because the amount of channels in the last layer is high and the channels influence the output range of the
binary convolution. When this large variational range is fed into the softmax, the authors argue that the soft-
max is getting in its saturation region.

4.3. Fields of research
As mentioned earlier, the first naive BNN implementations in 2015 suffered from a great accuracy drop with
respect to their full-precision counterparts. Since then, several subfields of research have evolved to counter-
act this drop. These subfields can be categorized in 6 groups which will be discussed below.

4.3.1. Quantization error minimization
This category of research was probably one of the first to gain improvement in BNNs. The idea is based
around the fact that by simply binarizing the FP values, there is a great quantization error with respect to those
values. Therefore, XNOR-Net introduced a scaling factor, so that binary weights and activations are rescaled
and quantization error is minimized [38]. The scaling factors can either be calculated from the absolute mean
of the FP values [38], they can be learned from the data like XNOR-Net++ did [5], or computed in a data-driven
manner like Real2Bin [34]. Another method to minimize quantization error is to use multiple binary bases
that are used together to approximate the FP values. ABC-Net [27] and PA-net [47] use a linear combination
of 3 ∼ 5 binary bases and Tang et al. use a linear combination, combined with a scaling factor learned from
residue approximation error from earlier layers [41].
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4.3.2. Gradient Error Reduction
As already mentioned in section 4.2, the gradient of the sign(.) needs an approximation to be able to train.
Next to the earlier mentioned STE, different kind of approximations were designed. Bi-Real Net introduces
ApproxSign, which is a second order polynomial in the forward pass and so a piecewise linear function in the
backward pass [31]. IR-Net uses the gradient of a parametrized tanh (as described in section 3.1.2) function
for the backward approximation which they call the Error Decay Estimator [37]. During training the shape of
the function gets sharper, so the function gets progressively closer to the sign(.) function. Lin et al. propose
a viewpoint similar to IR-Net in their work of RBNN, by utilizing a training-aware approximation function for
replacing the sign(.)[26]. The function used is different, but the idea is similar in the fact that the function
progressively approximates the sign(.). Last, FDA-BNN presents a frequency domain approximation of the
sign(.), where the low-frequency components are the main contributors to the direction of the gradient
[42].

4.3.3. Network Architecture
The network architectures that have been used for BNNs have greatly been inspired by full-precision archi-
tectures modified for use with binary parameters. XNOR-Net [38] is based on the Alex-Net structure [24].
Bi-Real Net has taken inspiration from ResNet [18] by introducing identity shortcuts to the binary network
[31]. This is possible at low cost, due to the fact that after the binary convolution, the bitcount operation gen-
erates discrete-alphabet values anyway, so a simple add operation in that step will have low extra latency. The
identity shortcuts do contribute a lot in propagating full-precision information to later layers of the network.
ReActNet has taken the architecture of MobileNet V1 [23] as the basis for their binary network, as they believe
that it make sense to start from a compact network structure [32]. Following Bi-Real Net [31], they adopted
the identity shortcuts in their model as well. Other than converting well-known architectures to their bi-
nary counterpart, Group-Net describes how to learn the decomposition of full-precision layers into multiple
binary groups [49] and BENN leverage ensembles for BNNs [48].

Apart from finding suitable architectures for BNNs in a classical way, several works have applied Neural
Architecture Search (NAS) for binary networks, such as BATS [7] and NASB [46]. Lastly, Diffenderfer et al.
came up with the Multi-Prize Lottery Ticket hypothesis, in which the task is to find sparse BNN subnetworks
in an overparametrized network by applying pruning an quantizing cooperatively [13].

A little different from above mentioned works, which mainly focuses on the complete network design,
several works have investigated to add or remove parts of the network: BNN-BN investigates the influence of
removing the batch normalization layer for BNNs [8]. Initially, no activation function was used in BNNs, as
the belief was that the binarization function also acts as a activation function. However, the use of the extra
PReLu activation function on the discrete-alphabet outputs was found to be beneficial [41].

4.3.4. Loss Function Design
In order to accelerate the training convergence and to improve the accuracy of the network, several works
focus on adding an extra loss term to the already existing loss function. Hou et al. use loss-aware binariza-
tion, by incorporating the effect of binarization in the loss [22]. The optimization is solved using the proximal
Newton method. IR-Net use the so called Libra Parameter Binarization to not only minimize the quantiza-
tion error but simultaneously minimize the information loss by reshaping the activation distribution before
binarization [37]. Ding et al. also target activation reshaping and introduce a distribution loss consisting of 3
separate terms [14]. ReActNet adds a distribution loss term, so that the binary network is stimulated to learn
a similar distribution as it’s full-precision counterpart by transfer learning [32].

4.3.5. Training strategies
The last anchor having influence on the accuracy of BNNs is the training strategy and optimizer choice. Real-
to-Bin [34] introduced a two-step training approach in which the network gets binarized progressively: in
the first step, a student network with binary activations and FP weights is trained, having a full-precision
network as a teacher with a similar architecture. Then in the second step, the student network is fully binary
and the network trained in the first step will be used as the teacher network. However, multi-stage training is
questioned by Bethge et al., which argue that BNNs can achieve state of the art results by training the network
from scratch [4].
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4.3.6. Binary inference engines
Of course, the research in BNNs is promising, with high theoretical speedup, but it would not make sense if
results were only on paper. Common deep learning platforms like Pytorch 1 and Tensorflow 2 do not contain
any of the low level operations to make use of the speedup that can be provided by BNNs. That is why sev-
eral inference engines emerged: programs that take a trained model in one of the aforementioned platform
formats and convert it to an optimized model that makes use of XNOR and bitcount operations.

BMXNet is the first BNN library which is based on MXNet and contains the implementation of networks
with XNOR operations [43]. daBNN [44] is an inference framework focusing on implementations on ARM
devices. It reports that its inference of Bi-Real Net is about 6× faster than its implementation in BMXNet.
daBNN supports Open Neural Network Exchange (ONNX), making it compatible with Pytorch and Tensor-
flow. Riptide [16] is a BNN framework that is based on Tensorflow and TVM which is a deep learning compiler
framework for generating machine code for various hardware backends. Riptide extends this by supporting
binary operations. Larq Compute Engine is an inference engine based on Tensorflow Lite and supports vari-
ous binarization operations and state-of-the-art BNN architectures [2].

1www.pytorch.org, accessed March 22, 2022
2www.tensorflow.org, accessed March 22, 2022



5
LAB: additional materials

As the paper presented in chapter 2 is extensive in terms of experiments and explanation, this chapter will
focus on providing more visual comparison between the traditional used sign(.) and our newly proposed
LAB. The training curves with Top-1 and Top-5 training and validation accuracy of LAB-BNN on ImageNet are
shown in Fig. 5.1. An insight into multiple channels of the first layer of sign(.) vs. LAB is shown in Fig. 5.2(a)-
5.2(e) and an extension of Fig. 4 from the paper for more layers and more images is shown in Fig. 5.3. A
scatterplot of the accuracy vs. latency trade off for Table 7 in the paper is found in Fig. 5.4. Furthermore, the
code for the LAB function has been added in appendix A.

Figure 5.1: Top-1 and Top-5 validation accuracy for training and validation of LAB-BNN on ImageNet.
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(a) Input image from ImageNet.

(b) Input to sign(.).

(c) Output of sign(.).

(d) Input to LAB.

(e) Output of LAB.

Figure 5.2: Comparison of in- and output activations on 9\64 channels of the first layer of sign(.) vs. LAB on a sample of ImageNet.

Figure 5.3: Comparison of input and output of sign(.) vs. LABon 4 different layers on samples of ImageNet.
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Figure 5.4: Visualization of Table. 7 in the paper: accuracy vs. latency trade off.



6
Applying AI at the edge

6.1. Motivation
Nowadays within a technical company a numerous amount of tasks incorporate the techniques of deep learn-
ing, computer vision, natural language processing and more. Similar as what has been argued before, deploy-
ing these models to resource-constrained edge devices is a challenging task. For this reason, there is a desire
to develop models that can be applied onto battery operated devices like drones or devices with poor network
connectivity operating at remote areas as is often the case. To make this goal concrete, it was desired to run
both a object detection and instance segmentation model in real-time on resource constrained hardware.
The following chapter is a report of this challenge. Although it is not the main topic of this thesis, it is a re-
latable project for practically bringing deep learning to edge devices. This chapter will start off by explaining
the choice of hardware, whereafter the two paths explored for the software pipeline are discussed. After the
experimental setup, quantitative and qualitative results of the project will be shown.

6.2. Hardware components
A logical first step is to determine which hardware to use for the project. The group of consumer edge de-
vices can be split in two main categories: dedicated inference hardware, specially designed for deep learning
inference, and mobile devices, such as phones and tablets. Good to address is that both of these categories
are only useful for applying inference; model training still needs to be done on a HPC. In this section, the
different types of available hardware will be discussed, whereafter the choice of hardware for the project will
be justified. Note that the focus for hardware is only on consumer-ready hardware. We are aware of the
possibilities for Field-Programmable Gate Array (FPGA) and Application-Specific Integrated Circuit (ASIC)
implementations, but those do not fit the scope of the project.

6.2.1. Dedicated inference hardware
For dedicated inference hardware available for consumers, 3 manufacturers dominate the market: Nvidia
has a range of devices called the Jetson family 1, which are System-On-Modules with a dedicated GPU. Some
of the devices of the series offer hardware INT8 support and make use of Nvidia’s Tensorcores with Deep
Learning Accelerator (DLA) 2. The hardware comes with the option to make use of Nvidia’s deep learning
software stack.

Intel has presented the Intel Neural Compute Stick 3. This is a usb device that can be plugged into host
and edge devices and deliver neural network acceleration. Although this is no standalone solution, it is a good
way to transform small form factor devices (like Raspberry Pi) into a deep learning inference platform.

Last, Google has produced a family of devices for deep learning inference which is branded as Coral 4.
The family has a range of devices such as an USB accelerator, System-On-Module, M.2 accelerators and de-
velopment kits. The devices are centered around the Coral Tensor Processing Unit (TPU). Similar to Jetson,
Coral provides a software library with numerous deep learning models.
1https://developer.nvidia.com/buy-jetson, accessed March 22, 2022
2https://nvidia.github.io/Torch-TensorRT/tutorials/using_dla.html, accessed March 22, 2022
3https://www.intel.com/content/www/us/en/developer/tools/neural-compute-stick/overview.html, accessed March 22, 2022
4https://coral.ai/, accessed March 22, 2022
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6.2.2. Mobile devices
Also on our mobile devices like phones and tablets, the research has not been standing still. Recent devices
are often equipped with GPU’s and special devices for acceleration of DNNs. Often, these devices are called
Neural Processing Units (NPU) 5. For developing models that run on mobile devices, most of the major exist-
ing platforms have solutions available. (Pytorch Mobile, TensorFlow Lite, Keras, ONNX)

6.2.3. Chosen Setup
As the chosen setup, it was decided to use two devices for the project: The Nvidia Jetson Xavier NX (shown
in Fig. 6.1) and the Nvidia Jetson Xavier AGX. Both are quite similar in architecture, but the AGX is a bit more
powerful. There are a couple of reasons why the Jetson family has been chosen: First, there was a demand for
a stand-alone device, with options for hardware interfacing to other systems, so that in the future, the device
can be used for robotics projects. For testing, a developer kit was desired. This limited the choice between
the Jetson family developer kits and the Coral Devboard. Both are quite similar in terms of ports, as both
are equipped with HDMI, USB, MIPI-CSI and a series of GPIOS’s. The second and main reason to go for the
Jetson family is that the Jetson family is more powerful, being a great first step into deploying AI at the edge.

Figure 6.1: Nvidia Jetson Xavier NX with MIPI-CSI camera. Figure 6.2: Real time hardhat detection on the author.

6.3. Software pipeline
To employ a deep learning model on an edge-device, often a standard sequence of steps need to be followed:
First, a pretrained model is taken and retrained on task-specific data. Then, the model will be compressed,
which might need additional retraining, whereafter it can be converted for the inference hardware. To achieve
the aforementioned pipeline, two different paths have been explored, one being Nvidia TLT and the other
being using OpenMMLab. Both will be discussed below, together with their (dis)advantages.

5https://developer.arm.com/documentation/102420/0200/Neural-processing-unit-introduction/Description-of-the-neural-
processing-unit, accessed March 22, 2022
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6.3.1. Nvidia TLT
Note: At the time of writing Transfer Learning Toolkit (TLT) is being rebranded to Train, Adapt, Optimize (TAO),
but it is still referenced here as TLT

Retraining. TLT is Nvidia’s platform for (re)training deep learning models and deploying them on all de-
vices with an Nvidia GPU. It is capable of doing most of the steps in the pipeline. The pipeline is illustrated in
Fig. 6.3 and is used as a guide for the steps in this subsection. Nvidia has a repository where checkpoints of
pretrained models are housed, called NGC. Models can be divided into two types of tasks: general models for
classification, detection and segmentation, and purpose built models for specific use cases like PeopleNet,
TrafficCamNet, etc. In the project, only the general models have been considered. Pre-trained models are
added to the repository constantly, but currently the support for Instance Segmentation and Semantic seg-
mentation is limited, which leads to one of the main reasons to explore other options than TLT as well. How-
ever, most of the object detection models are developed well. To train a model with TLT, one needs to supply
all parameters in configuration files (spec files), which are json-like files.

Model compression. For model compression, TLT supports two types of compression: pruning and quan-
tization. Pruning is applied after model retraining and can be done with a certain threshold controlling prun-
ing granularity. The model size decreases after the pruning step and so does the accuracy. Therefore, it is
advised to apply retraining after the pruning step to recover lost accuracy. In practice, it was found that the
pruning threshold is a delicate parameter and should be tuned. Not all models support pruning at the time of
writing, but support for new models might be added in new updates. For the other compression technique,
quantization, two flavours are available: FP16 and INT8 quantization. FP16 can be applied post-training, as
this can be applied nearly lossless. INT8 quantization however requires the model to be retrained to com-
pensate for the accuracy loss. TLT supports Quantization Aware Training (QAT) as an extra training step, but
folds the actual quantization into the export step. The benefit of using pruning and quantization in TLT is
the fact that it is rather straightforward to get it working. The downside of this abstraction however is that for
example it is not known which pruning algorithm is used underneath the hood.

Exporting. In the exporting step of TLT, the trained model will be prepared for inference on the target
device. TLT has two ways of doing this: The first is to run the export step onto the target and create a TensorRT
(TRT) engine, optimized for the target. More common however, is to export the model into an intermediate
format, called encrypted tlt (.etlt), which can then be moved to the target device. Later, on the target
device the tool tlt-converter can be used to convert the .etlt file into a TRT engine (.engine). As an option
during this export step, the model can be quantized to an INT8 model as well. For post-training quantization,
this step needs a folder of calibration images. If the model was trained using QAT, a calibration cache can be
supplied during exporting, which holds information about the quantization operation. Exporting in TLT uses
TensorRT in the backend. TensorRT is Nvidia’s workhorse for GPU optimization and is a versatile tool. In the
part of OpenMMLab, TensorRT will be discussed in more detail.

Inference. In order to inference the model on target, Nvidia has a program called Deepstream. It has
functionalities to get data from various data sources such as live video, video files, image folders and more.
It applies preprocessing, inference and does postprocessing of the results. With deepstream it is possible to
apply models in a cascaded fashion, so that the output of one model can directly be used in another model.
Deepstream makes use of Gstreamer and TensorRT in the backend. Deepstream uses separate configuration
files where the settings of the aforementioned steps can be tuned. Alternatively to using the standard Deep-
stream program, it is possible to write custom apps in C/C++ and do custom pre/post processing with custom
code. As Deepstream uses TensorRT in its backend, exported models can also be perfectly run with TensorRT
outside of Deepstream.

6.3.2. OpenMMLab
OpenMMLab is an open source community which contributes to the deployment of deep learning models.
OpenMMLab’s repositories like MMdetection and MMsegmentation house a variety of models and tools and
are built around Pytorch.

Retraining. The availability of models is the strong point of the OpenMMLab repositories. The models
are updated very frequently (monthly) and most of the state-of-the-art models are included in the repository.
MMdetection builds upon another repository of OpenMMLab, called MMCV. MMCV is the computer vision
toolbox of OpenMMLab, and is the fundament of MMdetection and MMsegmentation. With most architec-
tures, there are various amount of pretrained models available with many different backbones. If wanted,
each model can be configured differently very easy. MMdetection works with configuration files in which dif-
ferent parts of the model can be swapped easily. Most of the models have been pretrained on COCO-dataset.
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Figure 6.3: Nvidia workflow for deploying AI at the edge using TLT and Deepstream.

Model compression. MMdetection natively does not support any model compression. However, because
it is based on Pytorch, in theory all of the compression techniques from Pytorch and industry can be used
on the models. At the time of writing, this has not been performed yet. There has been a little research
on possibly interesting compression techniques. Pytorch offers QAT, which can be achieved by performing
fake quantization (no speedup, only a change of values) in training, so that the model can learn around the
quantization. Additionally, pytorch also offers post-training quantization and also offers options for pruning
the model.

Exporting. For exporting the model for use on the Jetson device, MMCV, and so also MMdetection have
support for TensorRT integration. For this, during installation MMCV needs to be built with the TensorRT
plugin. The workflow of exporting a MMdetection model to a TensorRT engine is as follows: First, the trained
MMdetection model is converted to an ONNX model. Because this requires custom ONNX operators, MMCV
also needs to be built with the custom ONNXRuntime plugin. Once the ONNX model has been generated,
the ONNX model can be converted to a TensorRT engine. MMCV has a wrapper around the TensorRT python
package. MMdetection currently only supports FP16 mode exporting. This has been found to work well. The
TensorRT python package also supports INT8 exporting in a similar way as for the TLT exporting. An attempt
has been made to export the model in INT8 precision. Although the exporting of the model succeeded, the
model did not seem to reduce in size significantly, and the model output was incorrect. Due to shifting focus,
these issues have not been further explored. A hypothesis for these problems might be that the quantization
support of some operators was causing issues.

Inference After a TensorRT engine has been exported, the model could be loaded into Deepstream just
like TLT. However, because the exploration of MMdetection has initially been chosen because of its freedom
in developing models, there was a desire to explore a different option for inferencing. For exporting of the
model, the python TensorRT package has already been introduced, which can also be used for applying in-
ference. The benefit of this is that there is full control over the inferencing pipeline, as it is more low-level
customizable than Deepstream. To do inference in python, one needs to write custom methods for applying
pre- and post-processing. For custom user applications this is beneficial, because it will become very easy to
connect the in- and output of the model to other building blocks for easy system integration.
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6.4. Experimental Setup
As stated before, it was desired to run both object detection and instance segmentation tasks. To make this
more concrete, two domain specific tasks are evaluated:

Object detection model for hardhats: Hardhats are an essential safety equipment for people working
in construction and plant operations where the risk of falling objects is quite high. Real time surveillance
and monitoring can help ensure compliance and prevent safety incidents. It is not always feasible to set
up such a system in remote areas. Portable solutions such as edge based hardhat detectors can solve this
problem. Therefore, for the object detection task, a Single Shot Detector (SSD) [30] model was trained on
images hardhats. The lightweight mobilenet_v2 [40] architecture was used as a backbone for the model. 5000
images of construction and field operation workers with hardhats were collected from MakeML open source
datasets 6. TLT 3.0 (version 02/02/2020) was used to train, prune and quantize the model to int8 precision.

Instance segmentation model: For instance segmentation a Mask R-CNN [19] model was trained on
domain-specific data. Two different backbones were used - resnet50 and resnet18 to train the models. TLT
3.0 (version 02/02/2020) was used to train and export the model.

6.5. Results
The exported models from TLT are converted to TensorRT engines on Jetson Xavier NX and Jetson Xavier AGX,
using tlt-converter method. Inferences are tested on video streams using NVIDIA’s deepstream frame-
work. The models get exported in FP32, FP16 and INT8 precision and both their accuracy and inference
speed is recorded. The result of object detection is listed in Table 6.1 and the result of the instance segmen-
tation is listed in Table 6.2. Where available, the results are compared to the benchmarks provided by Nvidia.
Both tables include the maximum and average inference FPS given an input stream. For object detection, it
was not possible to collect average precision values for FP16 and INT8. In the table of instance segmentation,
it can be seen that the accuracies do not drop during quantization. From the tables it can be seen that ob-
ject detection is able to easily run real-time, but instance segmentation is still rather costly. The compressed
INT8 models run around 1.75× as fast for object detection, where for instance segmentation it provides a
speedup of around 3.75×. Qualitative results on test data are visualized in Fig. 6.4 and Fig. 6.5. Furthermore,
a snapshot of live hardhat detection on the author is shown in Fig. 6.2.

Figure 6.4: Qualitative results for hardhat detection.

6https://makeml.app/datasets/hard-hat-workers, accessed March 22, 2022
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Figure 6.5: Qualitative results for hardhat detection.

Table 6.1: Results for object detection on SSD with mobilenet_v2 backbone. Results include the maximum and average FPS achieved
and the average precision.

Jetson Xavier NX (FPS) Jetson Xavier AGX (FPS) Average Precision

Model maximum average maximum average 50 % IOU

FP32 150.31 150.52 231.11 229.54 0.38
FP16 223.19 219.17 353.75 353.48 n/a
INT8 265.20 264.36 390.96 390.73 n/a

Table 6.2: Results for instance segmentation on MaskRCNN with ResNet50 backbone. Results include the maximum and average FPS
achieved and the average precision.

Jetson Xavier NX (FPS) Jetson Xavier AGX (FPS) Average Precision 50 % IOU

Model maximum average benchmark maximum average benchmark detection segmentation

FP32 1.29 1.27 n/a - - n/a 0.404 0.342
FP16 3.8 3.7 n/a 6.51 6.36 n/a 0.405 0.344
INT8 4.86 4.78 5.4 7.93 7.36 9.2 0.405 0.336



7
Conclusion and recommendations

This work describes the effort of deploying deep learning to resource-constrained edge devices. The contri-
butions are twofold: First, LAB-BNN has been presented, which is a novel work that identifies a bottleneck
in BNN design and proposes a completely novel binarization function to alleviate this bottleneck. Second,
efforts have been mentioned to compress existing state-of-the-art models and bring them physically to an
edge device. It has been shown that this forms an interesting use case for technical companies.

Future work in BNNs. Possible future work for LAB-BNN has been described in the paper. As has been
mentioned earlier in this thesis, currently the only way to benefit from BNNs is during inferencing. How-
ever, to reflect on section 1.1, the training of a model is what currently is taking the most energy and time.
Therefore, a good direction of future work for the open-source community could be to merge the benefit of
BNNs into the training stage as well, and provide energy-efficient training to common deep learning training
platforms.
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A
Code for LAB

1 @utils.register_alias("conv_binarizer_depthwise")
2 @utils.register_keras_custom_object
3 class LAB(_BaseQuantizer):
4 r"""Custom learnable activation binarizer (LAB)
5 """
6 precision = 1
7
8 def __init__(self, beta=None, name="convbin_depthwise", **kwargs):
9 super().__init__(name=name+str(tf.keras.backend.get_uid(name)), **kwargs)

10 if beta:
11 self.soft_argmax_beta = beta
12 else:
13 uid = str(tf.keras.backend.get_uid("soft_argmax_beta"))
14 self.soft_argmax_beta = tf.Variable(1.0, name="soft_argmax_beta"+uid)
15
16
17 def build(self, input_shape):
18 self.conv = layers.QuantDepthwiseConv2D(kernel_size=3,
19 strides=1,
20 padding='same',
21 depth_multiplier=2,
22 depthwise_quantizer=NoOp(precision=1))
23 self.n, self.h, self.w, self.c = input_shape
24
25
26 def call(self, inputs):
27 @tf.custom_gradient
28 def soft_argmax(x):
29 out_no_grad = tf.argmax(x, axis=3)
30 out_no_grad = tf.where(out_no_grad==0, tf.constant([-1.0]), tf.constant([1.0]))
31
32 @tf.function
33 def argmax_soft(x):
34 out = tf.nn.softmax(x, axis=3)[:,:,:,1,:]
35 return tf.math.subtract(tf.math.multiply(out,2),1)
36
37 def grad(dy):
38 gradient = tf.gradients(argmax_soft(x), x)[0]
39 gradient = gradient * tf.expand_dims(dy, axis=3)
40 return gradient
41 return out_no_grad, grad
42
43
44 x = self.conv(inputs)
45 x = tf.reshape(x, [-1, self.h, self.w, 2, self.c])
46 x = x * self.soft_argmax_beta
47 outputs = soft_argmax(x)
48
49 return super().call(outputs)
50
51 def get_config(self):
52 return {**super().get_config(), "soft_argmax_beta": self.soft_argmax_beta.numpy()}
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