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On the Efficiency of Multicast

Piet Van Mieghem, Gerard Hooghiemstra, and Remco van der Hofstad

Abstract—The average number of joint hops in a shortest-path  model for the hopcount in the Internet in [17] and foary
multicast tree from a root to m arbitrary chosen group member  graphs [13]. Finally, using the same measurement data as in
nodes is studied. A general theory for all graphs, hence including 131 oyr analysis indicates that the Internet is an exponentially

the graph representation of the Internet, is presented which . . . . . .
quantifies the multicast reduction in network links compared to growing graph (defined in Section VI) with an effective degree

m times unicast. For two special types of graphs, the random Of approximately 3.2.
graph G,(IN) and the k-ary tree, exact and asymptotic results Inspired by a remarkable paper by Phillips, Shenker, and
are derived. Comparing these explicit results with previously Tangmunarunkit [13], which was in turn triggered by the
published _Internet measurements [13] indicates that the number work of Chuang and Sirbu [5], the present article extends and
of routers in the Internet that can be reached from a root grows . ’ . L
exponentially in the number of hops with an effective degree of COmMplements their work. The extension lies in the fact that
approximately 3.2. we present general results fgr(m) which show that the

Index Terms—Efficiency, k-ary tree, multicast, random graph, ~ €mpirical power lawyx (m) = E[Hy]m"*®, coined by Phillips
et al. the Chuang-Sirbu scaling law,might be a reasonable
approximation for smalln, but cannot be valid forn large
(meaning of the same ordeas the number of Internet routers,

T IS BELIEVED that multicast will grow substantially ini.e., m = =N, with 0 < x < 1). This result is illustrated

importance in the near future. Multicast will enable diredh Figs. 4 and 6. The complementarity refers to the need of
marketing, pay TV, movie distribution, automatic update afonsidering their many multicast measurements on MBone
software releases, and many other services, besides the already Internet, which offer a reality check for the modeling of
known applications such as video conferencing, teleclassing;(m) or for the approximation of Chuang and Sirbu [5]. In
and electronic games. Although a large number of protocaliew of this reality check, we feel we ought to mention some
for multicast has been proposed, as recently reviewed odeling assumptions also made by Philigsl. and Chuang
Ramalho [11] and Almeroth [2], besides the classical ground Sirbu. First, the multicast process is assumed to deliver
multicast model, new types such as explicit multicast [18] anghckets along the shortest path from source to each ofithe
source-specific multicast [15] are being investigated. Thegestinations. The assumption ignores shared-tree multicast
new types are one-to-many and forward IP-packets along fg@warding such as core-based tree (CBT, see RFC2201). As
shortest-path source tree. most of the current Internet protocols forward packets based

In this article, we focus on the efficiency or gain of multicasgp, the (reverse) shortest path, the assumption of shortest-path
in terms of network resource consumption compared to unicagge delivery is quite realistic. The second assumption is that
Specifically, we co_nce_zntrate on a one-to-many com_municatio(ﬂe m multicast group member nodes are uniformly chosen
where a source distributes messages (packets) tfferent, ¢ of the total number of node¥. This assumption has been

uniformly distributed destinations along the shortest path. scussed by Phillipet al. They concluded that, iz andV are
unicast, 'these messages are sefimes from the source to eaChIarge, deviations from the uniformity assumption are negligibly
destination. Hence, unicast uses on averfagen) = mE[H |

link traversals or hops, whed8[H x| is the average number of
hops of a message to a uniform location in the graph under ¢
sideration containingV nodes. One of the main properties o
multicast is that it economizes on the number of link traversa
If we define for multicasy(m) to be the average number of
hops in the shortest-path tree rooted at a souree tandomly
chosen distinct destinations, then, of cougse(m) < fx(m).
The purpose here is to quantify the multicast efficiepgym).

. INTRODUCTION

small, as also follows from the close agreement with Internet
measurements. Also, the recent measurement of Chalmers and

meroth [4] seem to confirm the validity of the uniformity
%ssumption.

‘The paper is organized as follows. Section Il states and
proves the general theorems. In Section lll, the empirical
Chuang-Sirbu law is discussed. Sections IV and V apply the
general theory to random graphs of the clégg V), where

We present general results valid & graphs and more explicit the existence of links are independent of each others with

results valid for the random graph, which was proposed aé)&)babilityp » and to ’f'a“/ trees, respectively. Observatior)s
concerning the exponential growth of a graph and a practical

method to deduce exponential growth from (measurements of)
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on our results. The Appendix contains some mathematical gn(m)

derivations. N-1

Nm/(m+1)

Il. GENERAL RESULTS FORgy ()
Theorem 1: For any connected graph witki nodes

N/2

Nm
m < gn(m) <

< ®

Proof: Clearly, we need at least one edge for each (dif-

ferent) user; thereforgyy(m) > m and the lower bound are clog(N)
attained in a star topology with the source at the center.
We will next show that an upper bound is obtained in a 1
topology on a line. Observe that it is sufficient to consider trees, 1 N-1

because multicast only uses shortest paths without cycles. If the
] Allowable region (in white) ofjx (m). Note that for exponentially

tree has not a line topology, then at least one node has degr%{% ing graphs defined in Section VE[Hx] = clog N, implying that the
or the root has degree 2. Take the node closest to the root VétBwable region for these graphs is smaller and bounded at the left (in dotted
this property and cut and paste one of the branches at this ndiie), by the straight linen (clog V).

we paste the branch to a node at the deepest level. Through
this procedure, the multicast functigny (m) stays unaltered Proof: DefineY,, to be the random variable giving the

or increases. Continuing in this fashion until we reach a lingyitional number of hops necessary to reachittieuser when

topology g_ives the claim. o the firstm — 1 users are already connected. Then, we have that
For the line topology, we place the source at the origin and the

other nodes at the integets?2, ..., N — 1. The edges of the E[Yy] = gn(m) — gn(m — 1).
graph are given bgi, i+1), i =0, 1, ..., N—2. Observe that "
gn(m) = E[M], where)M is the maximum of a sample of ordery ;o over. lefi”

. . . be the random number of additional hops nec-
gb v_vltholut replacement, from the integets2, ..., N — 1. essary to reach theth multicast group member, when we dis-
viously

card all extra hops of thgr — 1)st group member. An example
isillustrated in Fig. 2. The random varialifg, has the same dis-
< k ) tribution asY,,, _, because both tHen—1)th and thenth group

_ m member are chosen uniformly from the remainifig- m — 1
P(M < k) = N-1\’ m<k<N-1 nodes: Obviously, in generalY,!, # Y,,_1, but, for eachk,
m PHY, = k] = P1Y,,—1 = k] and, hence
Hence ElY)]= E[Y 1] 2
< k ) <k -1 ) Furthermore, we have by construction that < ¥/, with prob-
N—-1 — ™ . .
m m ability 1, implying that
r = k
P ,
o m E[Ynl] S E[an] (3)
N1 < k-1 ) N1 < k ) Indeed, attaching the:th group member to the reduced tree
o Z I m—1/ m Z m takes at least as many hops as attaching that same group member
B = N-1Y\ = (N-1 to the nonreduced tree because the former is contained in the
- m - m latter and the extra hops added by the- 1 group member can
L only help us. Combining (2) and (3) immediately gives that
N—1
SRS <m> - v gx(m) = gx(m = 1) = B[Y,n] < E[Y; ]
m + k=m< N ) m+ —gn(m—1)—gn(m—2). (4
m+1

. This is equivalent to concavity of the map — gx (m).
where we used tha0 Y 1 (ky/( N 'y = 1 because itisasum i ina. it suffi
us CIPM. m/ \my1) = 5 In order to show thagn (m)/ fx (m) is decreasing, it suffices
of probabilities oveall possible disjoint outcomes. B {0 show thatm — gy (m)/m is decreasing, sincgy(m) is
Fig. 1 shows the allowable state spacedgi(imn).
Theorem 2: For any connected graph wifi nodes, the map 2Two di/screte random variables andY’ are equal in distribution if PX =
. dthe m o ( )/f ( ) is k] = Rr{l = k] for all k. For example, ifX is the outcome of a throw with a
m gl\t(m) IS concave an ap — gnim)/fnim red (fair) die and’” the outcome of a green (fair) die, th&handY” are equal
decreasing. in distribution, but, in generalX # Y.



VAN MIEGHEM et al. ON THE EFFICIENCY OF MULTICAST 721

and
E[XQ]IE[|A70AJ|], fori<i<j<N

etc. NOWgN( ) = E[JA1 UA> U---U A, |]. SinceQ(4) =

[|A|]/( ') is a probability measure on the set of all edges, we
obtain from the inclusion— exclu5|on relation [8, Theorem, p. 99]
applied to? and multiplied Wlth( ') afterwards

gn(m) :E[|A1 UAsU---UApl

—ZE|A|]—ZE|A N A

<

+...+(— e 1E[|A10A20"'0Am”

=mE[X{] - <”21> E[X5]+ -
. . o + (=1t <m> E[X ]

Fig. 2. Multicast session withe = 5 group members whefg; = 1 (namely, m

link C-5). To constructy’/, the three dotted lines must be removed, and we

observe that’, = 2 (A-C-5), which is referred to as the reduced tree. In thiSThis gives the statement of the theorem. [

exampleY, = Y4 = 2 because A-C-4 and A-C-5 both consist of two hops. In Note that

general, they are equad distributionbecause the role of group member 4 and

5 are identical in the reduced tree.

gy(1) = fnv(1) = E[X1] = E[HN]

so that the decrease in average hops (or “gain”) by using multi-
cast over unicast is precisely

proportional tom. Defining gx(0) = 0, we can writegy (m)
as a telescoping sum.

; ; (k= 1), " i
() = 3 low(F) a1} am) = ftm) =3 (1) (-1 LY
=2
Then . . .
. However, computingZ[.X;] for general graphs is a highly non-
gn(m) 1 S trivial exercise.
m  om po b Corollary 4: For any connected graph witk nodes
and " m 4
ovm—1) 1 EL1 =30 (1) D a0, ©)

m—1 :m—lzxk =t
The corollary is a direct consequence of the inversion formula
wherez, = gy (k) — gv(k— 1),k =1,..., m. By (4),the o the binomial [12, Ch. 2]. Alternatively, in view of the Gre-

sequence;, is decreasing and, hence gory—Newton interpolation formula [10, Ch. 4, Sec. 2] for
m m—1
gn(m) 1 _gn(m—1) (m\ L
m _Ekz m—1 2 —1 gA’(m):Z<i>A9A’(O)
= i=1

This proves the claim that — gN(m)/m is decreasing. ®
Next, we will give a representation fgy () valid for all
graphs. We need the following definition. L& be the number
of joint hops thatall ¢ uniformly chosen and different group

members have in common. Then we have the identity:

we can writeE[ X,

i1 = (=1)""tA’gn(0) whereA is the differ-
ence operator) f(0) =

f(1) = £(0).

Ill. THE CHUANG—SRBU LAW

Theorem 3: For any connected graph wifli nodes Let us consider the Chuang-Sirbu scaling law,(m) ~
. E[Hx]m"8 in more detail.
_ m i—1 ) Corollary 5: For any connected graph, the multicast effi-
r = . -1 EX;]. 5 . i
gw(m) ; < 1 ) (-1 il ) ciency gy (m) is bounded by
Proof: Let A, A, ---, A,, be sets wherel; consists of In(m) < E[Hy] e
all edges (hops) that constitute the shortest path from the source g N( ) N

to multicast group member Denote by|A;| the number of , ) ,
elements in the set;. The multicast group members are chosef{n€réE[H v ] is the average number of hops in unicast.
Proof: We give two demonstrations.

uniformly from the set of all nodes except for the root. Hence
1) Fromgy (N — 1) = N — 1 (all nodes, source plu§y — 1

E[Xq] = E[|Ai], forl<:< N destinations, of the graph are spanned by a tree consisting of
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N — 1 links) and the monotonicity ofn. — gx(m)/fnx(m) “’Sg‘ cTm vt rrrmmem e n A
(see Theorem 2), we obtain i
gN(m) > gN(N_ 1) — N-1 _ 1 10 F A 100000
fn(m) = fN(N=1)  (N-DE[HN]  E[HN] :
2) Alternatively, Theorem 1 indicates thak (m) > m, i
which, with the identity fx(m) = mE[Hy], immediately 3 '°F s 1
leads to (7). n 2
Corollary 5 means that for angonnectedgraph, including 1
the graph describing the Internet, the ratio of unicast ovi 10°F Lo
multicast efficiency is bounded by the expected hopcount i .
unicast ¢n = 1). Corollary 5 implies that the empirical law e . _— '"M o o
of Chuang-Sirbu cannot hold true for ali < N. Indeed, if 101100 - -----1-:)1 - -0---1-1-;)22000? s ""'1'(')3 - ”“'1'(')4 — .....1.(.)5

gn(m) = E[Hx]m"8, we obtain from the inequality (7) and
the identity fx(m) = mE[Hy], thatm®? < E[Hx]. Write

m = zN for afixed0 < x < 1 andz independent ofV. Fig.3. The Chuang-Sirbu power law versus the exact results for the random
Hence. we have shown that: graph with N = 10° on a log-log scale. The insert shows the same data on a

C . linear scale.
Corollary 6: For all graphs satisfying the condition that
E[HN]/N®2 — 0, for large N, the empirical Chuang-Sirbu N . .
law does not hold in the regiom = &N with 0 < < 1 and :))nl;r/1 fo(;_zf;\fstrmght line, the dlﬁirentltz;l\lfop_er?:ojrvcan Ee replaced
sufficiently largeXN . y the difference operator such th#tV) = 8*(N), where

m

The most realistic graph models for the Internet (see [13, Sec. gn(2)
4.2]) assume thab[H ] = clog N, since this implies that the log E[Hy]
number of routers that can be reached from any starting desti- g(N) = ——N (10)

nation grows exponentially with the number of hops. For these log2

realistic graphs, Corollary 6 states that empirical Chuang—Sirhugeneral, for smalhz, the effective power exponent (9) is not
law does not hold for alin. On the other hand, there are more constant 0.8 as in the Chuang—Sirbu law, but is dependent on
regular graphs (such agédattice, whereE[H v =~ (d/3)N*/4)  N. Finally, sincegy(m) is concave by Theorem Z(N) is
with E[Hy] ~ N°2%< (ande > 0) for which the mathematical the maximum possible value for an effective exponent. A di-
conditionm®? < E[Hy] is satisfied for allm and N. How-  rect consequence of Theorem 1 is that the effective power ex-
ever, these classes of graphs, in contrast to random graphs paigent3(N) € [1/2, 1]. From recent Internet measurements,
not leading to realistic shortest-path trees, as shown in [17]. Chalmers and Almeroth [4] found that66 < 8(V) < 0.7.
For the random grap&y,,(/V), we know from [17], for large  In summary, many properties in nature seem linear on an in-
N sensitive log—log scale (see, e.g., [7]). However, deriving from
these plots simple and attractive power laws for complicated
fn(m) ~m(log N +v —1) matter seems a little oversimplified. Many recent articles devote
attention to power law behavior but most of them [9], [4] seem
where~ is Euler's constant. Below, in Theoreom 7, we Prov@rudent: just recall the immense interest (or hype?) a few years

that for the random grapt¥,(V') and for largeN' andm ago in the long-range and self-similar nature of Internet traffic
N N 1 and the relation to the “simple” power law with only the Hurst
gn(m) ~ Nm log <_> - (8) parameter (comparable ft{ V) here) in the exponent.
—1m m

The above scaling explains the empirical Chuang—Sirbu law for IV. THE RANDOM GRAPH

Gp(N): for m small with respect tav, the graphs oflog N + There exists an astonishingly large amount of literature on
v = 1)m®® and(mN/N — m)log(N/m) — (1/2) look very properties of random graphs. We refer to Bollobas [3] and to
alike in a log—log plot as illustrated in Fig. 3. [17] for additional references. The class of random graphs de-
For small to moderate values @f, gn (as observed for noted byG, (V) consists of all graphs wittV nodes in which
Internet-like topologies in [13]) is very close to a straighthe edges (or links) are chosen independently and with proba-
line in a log—log plot. This “power law behavior” implies thatbility p. Although random graphs an®tmodeling realistic net-
log gn(m) = log E(Hy) + (V) log m, which is a first-order work topologies well, computations i&,(N) of the shortest
Taylor expansion ofog g (m) in logm. It further suggests to path from a source to an arbitrary destination result in a re-

computé as effective power exponefit V) markably good model of the hopcount (i.e., the number of links)
from that source to a destination, as demonstrated theoretically

B(N) = dloggn(m) ' (9) in[16] and verified with Internet measurements in [17]. The

dlogm |, explanation for the quality of a random graph with exponen-

3Although (5) only has meaning for integet, analytic continuation to a tially distributed link weights can b? understood when reasomng
complex variable is possible and, hence, differentiation can be defined. ~ from the source node on. The view of the source node is a
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shortest-pathree. In [16], [17], we find that the shortest-path 10’
problem inG, (V) with exponentially distributed link weights
can be reformulated into a Markov discovery process with :
associated uniform recursive tree [14]. The uniform recursi
tree thus seems a quite natural shortest-path tree as seen b
source node. For this uniform tree, the corresponding multic:
gain is computed in this section. ~

We further found in [17] that 1) other topologies and 2) othe
link weight distributions do not fit the Internet data so well oo
which led us to suggest that the random graph model is a ri
sonable model for shortest-path behavior. Moreover (see [€
the resulting hopcount distribution (13) possesses the rema
able property of almost sure behavior, which implies a high d
gree of robustness. Finally, from a modeling perspective, ev ;[
though the model describes reality less accurately, the mainb ~ 1©° 10' 10° 10° 10* 10° 10° 107
efit of the random graphs lies in the fact that it provides relative.y m
simple analytic results and first-order estimates of difficult phgsy 4 multicast efficiency forv = 109 with j = 3, 4, ..., 7. The endpoint
nomena that are unlikely to be obtained from more sophisticat&@ach curve ~ (N —1) = N —1 determinesV. The insert shows the effective
mOdelS. power exponent versuy.

In this section, we confine to the random graphs of the
classG,(N) with independent identically and exponentiallyandz = 1 coincide with (15). This optimum is achieved when
distributed link weightsw with meanE[w] = 1 and where N = 250000, which is close to the current estimated number
Plw < z] = 1 — ¢ %, 2 > 0. Previously [16], [17], we of routers of the Internet (as deduced from measurements of the
have shown that the hopcount of the shortest patrafierost hopcount in [17]). This observation may explain the fairly good
all connected graphs af,(/N) and independent of the link correspondence (on a less sensitive log-log scale) with Internet
densityp can be computed asymptotically. In summary, weeasurements. At the same time, it shows that for a growing
find thatE[Hy] = (N/N — 1)(¢/(N) +v) — 1, whereyy(z) is  Internet, the fit of the Chuang-Sirbu law will deteriorate.

S law
-random graph

usuodxa 1amod aanayyg
L L i L

. . 4 o Number of nodes N " . 07
ot 10?10t 1t 10 10t 1w 10t 10° 100 d
sl Lol Ll Ll Ll Lol s nul

the digamma function [1, Sec. 6.3] or, for large Fig. 4 compareglog N + v — 1)m%® and (mN/N —
m)log(N/m) — 1/2 for various values ofV on a log—log

E[Hy] ~logN +~—1 (11) scale. ForN > 10°, the Chuang-Sirbu law underestimates
Var[Hy] ~ log N +~ — 72/6 (12) gn(m) for all m. The effective power exponent(N) as

b defined in (9) for the random graph is

k—m
PlHy = k] = w Z Cm+1 ﬁ (13)

m=0

herec,, are the Taylor coefficients of /T'(z) listed in [1, - 1
61.34] vior coefictents ol/ =) fsted n | W -1 (v + -+ 1)

Theorem 7:For the class of random graplis,(N) with _ _
independent, identically and exponentially distributed linkhile, according to (9)

weights (N = DN +7 = 3/2+1/N)
B (N)=1+log { }
ow(m) = mN <w<N> —w<m>> . 14 LN =2)(@(N) +7~1+1/N)
N—m The difference3(V) — 5*(INV) monotonously decreases and is

largest, 0.048 alv = 3 while 0.008 31 afV = 10® and 0.0037

, . at N = 10'° . This effective power exponemt(V) is drawn
Wg;obcgec;ig?ﬁore&lsf)ef%)inf:ng'that since)(1) = in the insert of Fig. 4, which shows tha{V) is increasing and

_ D= N aijN_ 1 N_ - E H " not a constant close to 0.8. More interestingly, for laigewe
% g (1) = N/(N = D(Y(N) + ) — 1 = E[Hx]. find with (11) and (12) thaB(N) ~ wvar[Hy]/E[Hy] and
Usmg_ the asymptotic properties qf the_ digamma function that lim v B(N) = 1. In [17], the ratiovar[Hx]/E[Hx]

we obtain (8) as an excellent approximation for lafgéand all pops up naturally as the extreme value index of the distribu-

m) or, in normalized form withn =z and0 < = < 1 tion of the link weights in a topology. Since measurements of
gn(zN)+0.5  zlogz the hopcount in Internet indicate thedr[Hy|/E[Hn] = 1,
N ~ o1 (15)  this index strongly favors the model of the hopcount based on
shortest paths ii¥,,(V), although random graphs dotmodel
The normalized Chuang-Sirbu lawgs (zN)/N = (E[Hy]/ the Internet topology well.
NO-2)208 1t is interesting to note that the Chuang-Sirbu law is Thus, if the number of nodes in the Internet is still growing
“pest” if E[Hy]/N%? = 1, since then both endpoints= 0 and well modeled by the random graph, we suggesly for

where(x) is the digamma function.
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k=2 k=35

Fig. 5. The left-hand side tre& (= 2) hasN = 31 andD = 4, while the right-hand sidek(= 5) hasN = 31 andD = 2.

small to moderate values of, to consider as a power law ap-which shows thagy, ,(m) is a polynomial inm of degree<
proximation (N —1)/k. Moreover, the terms in thesum rapidly decrease;

o (m) 5 B{Hy]mver )/ EU, their ratio equals

instead of the Chuang—Sirbu law. (*TE-1)/(k=1)—1 m
L (-5)
V. k-ARY TREES g=(k-1)/(k—1) 1
Let us consider, as in [13], the-ary tree of depth D with K i
the source at the root of the tree amdreceivers at randomly
chosen nodes (see Fig. 5). Irkaary tree, the total number of < 1 1_ m_ < 1.
nodes satisfies k kW —1
N-1-
ED+L _q k—1

N:1+k+k2+---+k”—k41 (16)
- Fig. 6 indicates that (17), although derived subject to (16), also
so thatN ~ kP”. seems valid when

Theorem 8: For thek-ary tree

RTEa D log[lJrN(k—l)]_1
<N S At ) log
D1 k-1
—q m
gnr(m)=N —1-— Z kP N —1 . where|z| is the largest integer smaller than or equaltd@his
3=0 < m ) suggests that the deepest lefieheed not be filled completely

to countk” nodes and that (17) may extend to “incomplete”
k-ary trees. As further observed from Fig. 6y i (m) is mo-
Proof of Theorem 8:See Appendix B. notonously decreasing it

Unfortunately, thef summation seems difficult to express in Conjecture 9: The mapk — g, »(m) is decreasing it €
closed form. Observe thaty(N — 1) = N — 1, because all [1, N —1].
binomials vanish. The sum extends over all levels D — 1, After rewriting (18) withk” = N — (N — 1)/k), we find
for which the remaining number of nodes in the lower levelsfor N —1 -k <m < N -1
(i.,e., D > 1 > j)is larger thanm nodes. In some sense, we

(17)

may regard (17) as an (exact) expansion aroune= N — 1. _ mN  N-1 m

Explicitly gx,k(m) = N -1 * k <1 N-— 1) -1
gy k(m) =N —1—-kP <1 — %) which is clearly monotonously decreasingiand independent
- of k for m = N — 1. From the explicit expression (19) for

P_1 r m gn, 1(1) and (21) forgx, (2), the corollary is verified forn =
—k H <1 N N——l—q> 1 andm = 2. Although verified numerically, a rigorous proof
=0 _ for all m and IV is difficult. Intuitively, Conjecture 9 can be
p—1 (BT 1)/ (k—1)—1

Do m understood from Fig. 5. Both thle = 2 andk = 5 tree have
- Z k= H <1 - N——l—q) an equal number of nodes. We observe that the deBpgr
i=2 9=0 the smallerk), the more overlap is possible, hence, the larger
(18) gy i(m).
4The depthD is equal to the number of hops from the root to a node at the Theorem 1 can also be deduced from (17). The lower bound
leaves. is attained in a star topology wheke= N — 1, D = 1, and
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10000 1 7 Sincegn (1) = E[Hy], the average hopcount inkaary tree
- rndom s follows from (17) as
8000 |- — - g+l
N=10* D—1 N-—-1-— %
EHN]=N-1-)Y kPJ =
6000 . il Z N—-1
j=0
—_ 4 D—-1 41
g _ 1 S kP Ritt -1
4000 . N-—-1 = k-1
ND D 1
= - . 19
2000 8 N—1+(N—1)(k—1) k-1 (19)
/ For largeV, we find with
’ 0 R 60[00 ' soloo I 10:)-00 D= log[1 + N(k —1)] -1
m log k

~ log, N +log,(1 —1/k) + O(1/N)
Fig. 6. Multicast functiory x () computed for thé-ary tree with four values
of k, the random graph (with “effectivek,, = e¢ = 2.718 ...), and the that

Chuang-Sirbu power law faN = 10% on a linear scale where the prefactor 1 log; N
E[Hy] is given by (11). E[Hy] =log; N +log, (1 —1/k) — -1 +0 <T"> .
(20)
E[Hx] = 1. The upper bound is attained in a line topology
wherek = 1, D = N — 1, andE[Hy| = N/2. Further, for SInce i1
real values of: € [1, NV — 1], the set of curves specified by (17) po1 <N 1_ g)
covers the total allowable state spacey®f(m), as shown in N =N _1— k-1
. . . g . . gn,k(2) = Z I—D(N _
Fig. 1. This suggests to consider (17) for estimatingp real = Ei=P(N —1)
topologies (see Section VI). L+ 1
The asymptotic form fotV. — oo is deduced from (17) as <N -2 ﬁ)
follows. If N is large % —
N -2
m N (N-1)}N-2) (N-1D(N-2)(k—-1)
(2N - 3) N(N —-1-2D) 4
and similarly (N=-2)(k—1) (N-1(N-2)(k-1)
(N —1-2D) 1
R -1\ TNV —2)(k—12 (N —2)(k— 1)
o <N_1_ﬁ) (V=D =2k - 17 - (W -2)(k - 12
N-1-——"1) (21)
k-1 m!
m or, for large N
. 3 log;, N
Then, using (16 S (9) ~ 9D — k
g (16) gn,k(2) ~ 2D k—1+0< i )
D—1 N m
p kit —1 the effective power exponegst (), as defined in (10), equals
g ~ _ _ D—j - - 1 1
g, k(m) ~ N =1 z_% & <1 kD+1 — 1) for the k-ary tree and largeév
D ED—i+L _1\™ B(N)
:Zk3[1—<1—7]31 ) } 3
et EPFL -1 2D — ——
! log —kl_ 1
This is somewhat deviating from [13, eq. (21)], that, written in b=
our notation, is ~ log 2
D : m
p EpDP—i+l _ 1 1
o ulm) ~ 3 (-S| ] R A R A
i ng ng ]C ]C -1
The difference liesinthe terd”+! — £ in[13, eq. (21)] instead ~ _ 1+log —1 _ 1
of P+ — 1. As the complexity of this asymptotic result is not 2|7 2(k-1)E[HxN]
much lower than that of the exact (17), no additional insight is 1

gained. T Qog4)(k— DEHN] #2
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Comparing (20) with the average hopcount in the randor [ —+— — 7+ 7+ — 71— 71

graph (11) shows equality to first orderkif, = . Moreover, I 0 Intemet measurements
both the second-order terms-1 = —0.42 andlog(1 —1/¢) — 50000 - k=32 graph
1/(e — 1) = —1.04 areO(1) and independent oV . i

0t
40000

VI. EFFECTIVE NODAL DEGREE AND EXPONENTIAL GROWTH

OF A GRAPH 30000

& 56317 (M)

Let us denote by); the number of nodes at precisejy
hops from a source in a shortest-path tree. If we @ke= 1
to include the source, thel"} ' @; = N. The usual def-
inition of exponential growth of a graph states that a tre
grows exponentially in the number of nodes with degteié
lim;,o0(Q;)'/7 = k or, equivalently); ~ &/, for large;. The T A .
fundamental problem with this definition is that it only holds m
for infinite graphsV = oc. For real (finite) graphs, there must

Xi i = [ for which th n - Fig. 7. Internet measurements [13, Fig. 1b] whéve = 56317 and
exist a; I'fo ch the sequence;, Quy.1, » QN-1 gs6 317(m), computed for thek-ary tree withk = 3.2 and for the random

N-1 .
ceases to grow becaus_e E]’:o Q; = N < oo. This _graph on a linear scale. The insert shows the same data on a log—log plot.
boundary effect complicates the definition of exponential

growth in finite graphs. The second complication is that even o o
in the finite setQo, Q1, ..., Q; not necessarily alt); with k = e. One may expect that realistic shortest-path trees lie in
0 < j < Ineedtoobey; ~ k7, but “enough” should. Without Petween these extremes. _
the limit concept, we cannot specify the precise conditions of AS @ practical method, we propose thiatfor a graph
exponential growth in a finite shortest-path tree. If we assurde’() < gn, x(m) [specified in(17)] for all values ofm and
in finite graphs thaty; ~ &7 for j < I, thenZ§»=o Q; = aN somek > 1, then t_he graph grows exponentially with effective
with 0 < o < 1. Indeed, fork > 1, the highest hopcount level degree at least. Since the whole state spacegf(m) can be
possesses by far the most nodes sifié&! — 1)/(k — 1) ~ k¢ covered by the familyy, i.(m) (for realk & [1, N — 1]), all
which cannot be larger than a fractianV of the total number POSsible outcomes that any graph may produce igttiemain,
of nodes. Thusk! ~ «N from which ~ log, N. The relation can be bounded from above byga, ;-curve wherek is the
for the average hopcount(20) indicates that ~ E[Hy]. Smallest value for whictyx(m) < gn, x(m). Conjecture 9
The argument also shows that only very few levels arouriptes thatthe map— gy () is increasing which indicates
! = FE[Hy] play a role in the determination of exponemia;hat such a exists. The _deflnltlo_n (23) further suggests that
growth. These considerations invite us to propose a definitii@m the measurements ixdomain on the shortest-path tree
which takes the size of the graph more naturally into accoun®f the source, the growth of that tree is at lefast

By extendingk to real numbers in (20), the parametecan
be interpreted as an effective nodal degree VII. M EASUREMENTS OFgy (1)

20000

10000

) 10!
1000 10000

loe N Precisely the same data as in [13, Fig. 1b] has been fitted
k= lim exp [ o8 } . (23) with (17) yielding for the MBonékyipone = 4.2 and for the
N—=eo E[H] Internet kmternet = 3.2. For the Internet, the difference be-
. . : tween measurement and fit is hardly visible on a linear or on
In ak-ary tree (wheré is an integer), the parameteprecisely a logarithmic plot as illustrated in Fig. 7. Using (23), we can

equals the outdegree and, apart from the source rioglel is
the nodal degree. Hence, (23) reflects the average numberd pute the value of for any graph. From the measurement
%ag56317(1) = 9.217 and g4179(1) = 9.856 for Internet

“new” nodes (the outdegree) that can be reached from a na ; B ;
in one hop. If, fore > 0 and largeN, the average hopcountand MBone, respectively, angly (1) = E[Hx], (23) gives

A ' . the valuesk? = 3.27, k¥ = 2.32, where the su-
E[Hn] = O(log' ™ N), the graph is not exponentially growin X Internet ] “MBone '
[Hn] (log ) grap b yg gperscrlptu refers to the unicast hopcount.(= 1). The exact

(k = 1), whereas ifE[Hy] = O(log'™° N), the graph is su- . ,
: . _ _ formula (19) leads to slightly smaller valugg;,..,.. = 2.95,
perexponentially growingi{ = oc). An example of a nonex k¥sone = 2.03. Although the effective nodal degree is related

ponentially growing graph is the reguldsattice, while a tree i .
. . at first glance to the average degree, definediby= 2E/N
that expands at each level with growikhgthus the root hak; and wheref is the number of links in the graph, thelseralues

children, these each hatrg > ; children and so on, is an eX-have little in common with the reported [13] average degree of
ample of a superexponentially growing graph. A valué ef 1 the graphi. rmserner = 2.7 andda v ome = 4.1. In fact, for

would indicate that the graph is not connected. Ekary tree h withi ink dN nod taini I
can be regarded as the most regular, exponentially growing trE@y grapn wi INks an nodes containing no cycles, we

whereas the uniform tree (the shortest-path tree in a rand vle tha]t\? ; ](;7 " %[ and,f?henceda N 3_ (2/]]}7)' T;us, b
graphG,,(IV) with exponentially distributed link weights) is an.otr arget d! € deviation o ftf? average ?greel rqmth can e;]
example of a highly nonregular, exponentially growing tree witli erpreted as a measure of the number of Cycles in the graph.

6The value ofk is the minimizer ofy. Y"1 (g% (m) — gn, »(m))? where

5In general, for any graph holds th&{H 5] = (1/N) Z;\’:‘ll jQ;. g’ (m) are the Internet measurements and with . () given by (17).
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though we cannot determine the precise growth kgig. .. as
for the Internet.

To understand the close relation of the Internet to tree-like
graphs, note that any shortest path started from a single source
will give rise to a graph containing no cycles, i.e., a tree. This
is because we will always take the shortest path along any
cycle, and disregard the links that are not used. Hence, even
4. though thek-ary tree is clearly not an accurate model for the
Internet topology as a graph, it might be a good model for that
portion of the Internet used by shortest-path routing from a
single source.

4000 = 4 MBone measurements

— 2417 (m) for various k

3000 1= ncreasing k = (2,3, 42,5, 6

2
=
<
<

£4127 (m) [MBone]

1000

1000

, . . X | , VIIl. CONCLUSION
0 1000 2000 3000 4000

In this paper, general results are presented on the multicast
_ efficiency g (m), which are valid forall connected graphs and
Fig. 8. MBone measurement from [13] wheke = 4179 andgaizs:« (1) wherem is the number of multicast group members. Using these
computed for thé&-ary tree for various values &t The upper curve corresponds .
tok = 2; the curves decrease monotonuously for increasinghe best fit 9eneral theorems, we show that the so-called Chuang-Sirbu
corresponds té = 4.2. The insert shows the same data on a log—log scale. power law, gx(m) = E[Hx]m"®, cannot generally hold if

E[Hy] grows logarithmically inV-and the number of multi-

However, it is easy to produce graphs that are not exponentia‘f St group membets, is of the same order as the number of

increasing, but that have an arbitrarily large average degreen gesN in the graph. Moreover, we define the effective power

N grows large. On the other hand, a distribution of the Outdg%(potnentﬁgjt\f)oagd show that, in generg§(V) is not a con-
gree at each level of the tree relates bettek.t€halmers and s 6\‘/:‘/ eﬂua OI ’ .d ved ¢ and ot :
Almeroth [4, Figs. 8-11] present measurements of average de- € have also derived exact and asymplolic expressions

gree per level. Their values agree in magnitude withktivalues or gy in the case of random graphs of the CI?@§(N) .
we found from the data of [13]. and for k-ary trees. These expressions generalize previous

Based on the measurement data, the two di]‘ferentlycompu{gauIts obtained in [13]. They confirm thannly for small
nd moderate values of the number of multicast group

k-values agree for the Internet, which seems to indicate that i

. : : : . mémbers the Chuang-Sirbu law is a reasonable approximation
Internet is exponentially growing with effective degree approxg g Based on computations for the random graph, we find

mately 3.2. Also the quality of the fit on both linear and Iog—loghat the Chuang—Sirbu law is 1) best ff ~ 10°, but 2)

scale in Fig. 7 over the whole-range is persuasive. This is andegrades forv > 106. In addition, the analysis for random

important consequence, since it is difficult to judge Whetherg.;}aphS suggestanly for small to moderate values af, to

graph is exponentially increasing without knowing its preCiS@onsidergN(m) ~ E[H]V]m'vaT[HN]/E[HN1 instead of the
topological structure. The above considerations clearly i”diC%uang—Sirbu law because the effective power exponent
that this fact cannot be decided upon the information of the ayt ') ~ var[H ]/ E[H ] is not constant, but slowly increases
erage degree solely. In contrast to the Internet data, the Mb@psin 0.71 atv = 2 toward 1 asN — oo. Our proposed

data is not so well fltted, as illustrated in Flg 8. The insert Oﬁower law depends on the Siié, which is important since

a log—log scale shows that the MBone shifts gradually when the Internet is still in evolution. A similar expression can be
increases toward highércurves. The discrepancy by almost &leduced from our computations on theary tree whergi(V)

factor 2 betweerky; .. derived from the unicast hopcount afs replaced by3*(NV) in (22).

m = 1 andkypore fitted from the entiren-range of the multi-  Finally, previously reported Internet measurements have been
cast gairny.179(m) may be explained by the abundant use of IRtted with the exact expression gf; for the k-ary tree. Based
tunnels in the MBone [2]. Tunnels may be viewed as an overlay these measurement data, our analysis seems to indicate that
tree: they shortcut branches in the shortest-path tree and the- Internet is growing exponentially with an effective degree
crease the possible overlap in paths which diminighes (m). approximatelyk = 3.2. As far as we are aware, this is the first
The more group members are subscribed, the more tunnels s&grg the exponential growth of the Internet has been quantified.
to effect the structure of the shortest-path tree. Chalmers and

Almeroth [4] also report differences in the unicast hopcount and APPENDIX A

multicast hopcount and assign the origin to tunnels in the multi- PROOF OFTHEOREM 7

cast architecture, but also hint to the possible influence of policy
routing (as a deviating factor from shortest-path routing) in irfhe following lemma.
terdomain multicast routing. Although the Mbone is a connected Lemma 10:Fora > b,
subgraph of the Internet, exponential growth in the Internet does

not necessarily imply exponential growth in the MBone. How-

Before embarking with the proof of Theorem 7, we first proof

b
ever, the practical method in previous section is applicable withs(a b) = Z (a—k)'1 _ al [(a+1) —p(a— bt 1)]
’ b!

1
k = 2 which suggests exponential growth in the MBone, al- — (b-k)k
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and

=p(b+1) +7.

| =

b
S, b)) ="
k=1

Proof: We start by writing

Since(a — 1= k) -+ (b—k+1) = (a— b= DY(*;1;") and
by the recurrence for the binomial

(3= (07)

1 (a—1)!
a—b (b— 1)

we have that

S(a,b)=aS(a—1,b) —
After p iterations, we have

S(a,b)=ala—1) - (a—p+1)S(a—p, b)

o 2= 1
RO v ey

and, ifp = a — b, the recursions stops with result

' a—b—1
a.

b .
BLETT-0 2 G
>

S(a, b) =

1 a—b 1
k k
k=1 k=1
from which the lemma follows. .
Proof of Theorem 7:We will investigateE'[X;] = E[Xi(]\‘)]

on the uniform tree withV nodes. HereZ[X;] is the number
of joint hops in a multicast shortest-path tree from the root
1 uniformly chosen nodes in the uniform tree and where all t

group member nodes are different from the root. EgK;] be

the same quantity where we allow the group member nodes to

be the root. Then

N —:¢
N

E [X} - E[X)]
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N-k nodes

k nodes

Fig. 9. The two contributing clusters leading to tBgX™"] recursion.

since there arépossibilities each with probability/ N that one
of the nodes equals the root, in which casg= 0.

The average number of joint hogg[X;] is deduced from
Fig. 9, where two clusters are shown each with, respectively,
k and N — k nodes. The first cluster witk nodes does not
possess the root (dark shaded), but it contains tmeilticast
group members (light shaded). There is already at least one joint
hop because the link between the root and nddevhich can
be viewed as the root of the first cluster, and is used by all
group members lying in the first cluster. Given the sizef the
first cluster, the probability that afl uniformly chosen group
members belong to the first cluster equ@iék — 1) - - - (k— ¢+
D)/(N(N —1)--- (N —i+1)), because the probability that
the first group member belongs to that cluster which/i&/, the
probability that the second group member also belongs to the
first cluster which ik — 1)/(N — 1) and so on. Since the size
of the first cluster connected to the root is uniform in between 1
andN — 1, the probability that the size fsequalsl /(N — 1).
When alli nodes are in that first cluster of size X; is at least
1, and the problem restarts, but wilti replaced byt and A
being the root. Hence, if allgroup members belong to the first
cluster, the average number of joint hops is

N-1
VT N (148 [59))

because we must sum over all possible sizes for the first cluster.
If notall + group member nodes are in the first cluster, the group
member nodes are divided over the two clusters. But, in that
case, we have no joint overlaps &% = 0. Thus, if not alli
group members nodes are in the first cluster, the only way that
there are possible joint overlapX{ > 0), is that all group

(k—i+1)
(N—i+1)

e first cluster, we are left again with a uniform recursive tree
o‘? size N — k. The average number of joint hops in this case is

’Eember nodes are in the second cluster. However, by removing

N—-1

1
e

k=1
< B[R]

(N—K)N—k—1) - (N—k—it1)
N(N—1) - (N—i+1)
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Adding both contributions results in the recursion formula

T

k(k — --(k—i+1)
} N-14Z NN-1) - (N=i+1)

x (1 Y 2F [X“)D (24)

E [X(N

We next write

aZ(N) =NN-1)---(N—i+1E [Xi(N)}

- (N]\i! AT [Xi(N)}

then the above recurrence equation (24) turns into

: 1 ‘
P R —— c(k—i+1) 422

o (k—it+1)

5 N-1
(k)
eI

Subtracting

ETON o B C e S CA B DL (-1
(N — De; (N —2)a; “N=i—1) + 2
from which we obtain

chN) o (N=2)! OcEN_l) 25)
N NWN-i-1)! N-1°
Iterating (25) gives
oM "i (N —2—j)! N alNH
N S (N-jN—i-1-j!  N-k

Sincea” = E X(Z)} = 0, because the root is then always ong

of the group member nodes, we finally obtain

—2—ﬂ
N—i—1—j)

a(N =N Z
_NZ k(k —L—].)

k=i+4+1

(26)

It can be shown that, for largh’

a(N) N N (N =2)!
e i
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Because

(V) (N —i—-1)! (N)
EX =5 TNy
we have that

E |:X(N):| — (N—i-1IN

‘ (N —1)! 27)

(ks — 2)!
_Z Bk —i— 1)

and, for largeNV

E[Xi(N)}Niil(NA—fl)Niil'

Invoking Theorem 3, the average number of multicast hops

for m uniformly chosen, distinct group members is

=1]V
(k- 2)!
szﬁk(k—L—l)'
—N T Ww-2-s)
_(N—1)!§ N—s
" /m\ (DN —i—1)!
X;<L> (N—i—1-s)"

The‘-summation can be executed as follows. Consider
m
N—-1/4 mo_ may o iNi N—i-1
2N N1 - 1)) _Z<i>(1)x .

=0

Differentiating s times yields

. (N—di—D! N
(_1)7 y T =58
Z0< ) (N—i—1-9)!
ds N—-1—
- m _ 1 m .
el LA CES Vi
Expanding the right-hand side aroundz = 1 gives
R = dciS [x]\’flfm(x )m]
_ (N-1-m)\ & ktm
= Z < f ) - (z—1)
k=0
_ g (VLo m Gt - e
o k (k+m — s)!
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Evaluation atr = 1 only leads to a nonzero contribution ifUsing Lemma 10

k +m — s = 0. Hence
(m , (N —i—1)!
;@)(—D Wi 1-s
_(N-1-m}) (N -1
= < s—m )S.— m
and
. “N(N—1-m)! \= !
gn(m) (N=1)! ;(N—s)(s—m)!(N—l—s)
N—2 1
+N; (N—5)(N—1—5)
NN —1-m) [ !
(N -=1)! Lg;l (s—m)(N—-1—3s)
= ! A TR |
_Z;(s_m)'(zv | T k_lk_];ﬁ
NN -1-m)! [VE&Y -k -1
N (N —1)! l; (N—k—-1-m)k
&N k)
kz:? (N —k—m)k TN
Rewrite the first summatio#t” as
V& k-1
b= kz_:_l (N—k—1-m)k
W= Nk -DUN -k —m)
_(N—2—m)!+kz_:_2 N —k—m)k
o (N—2r T (v —R
(N —-2-—m)! kz:: (N —k—-—m)lk
= Nk
_mz (N —k—m)k
Then
_-N(N—-1-m)! [ (N-2)
gx(m) (N —1)! [(N—2—m)!
N—m
(N —k—1)!
—m ; RN —k—my| TN
_ Nm-—-1)+1
(N -1)
mN(N —1-m)! " (N —k—1)!
(N —1)! kzzz) k(N —k —m)!
B mN(N —1—m)! "% (N —Fk—1)!
R T ; KN — k= m)!

x
—

finally leads to (14).

APPENDIX B
PROOF OFTHEOREM 8

Let X; be the number of joint hops fardifferentmulticast
group members (we allow the root to be a user in which case
X, = 0), then P[X; > 1] is the probability that all group
members belong to the same cluster connected to the root. Due
to the structure of thé-ary tree, this probability PK; > 1]
equalsk times the probability” that all group members belong
to thefirst cluster connected to the root. Thus

Pr[Xiz1]=k.P

<(N_le)/k)
(%)

<1+k+---+kD—1>
(4

=k

=k <1+k+~~~+k’7> - @9

By self-similarity of k-ary trees, we obtain

Pr[X > 2| X, >1} = piPY
<1+k+~~~+kD—2)
i

<1+k—|—---+kD—1>
i

because each cluster extending from the root is itséteay
tree of depthD — 1. In general, we have BX; > j] = Pr.X; >
J1X: = j — 1|PrX; > j — 1]. Hence, by iteration

%z = I »"

n=D—j+1

j=1,2,...,D—1. (30)

Note that for; > 2 the probability P[rf(i > D] = 0, because
if X; = D some destinations must be identical. From the well-
known identity thatE[X;] = 3~ ,~, P{X > j], we obtain for

1> 2
. 1—|—+k.D7‘1
D—1 D . D_1 LI i
E|X;| = H Pl = .
[ } J=1 n=D=j+1 = <1+~~~+k )
)
.. .
D—1 kD—J 1+ +I$ )
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SinceE[X;] = (N/(N — ))E[X;], we find and
AT ) TN M) g N s 4y —m 1
BNl =52~y oy 122 i DN —m+k)
= < . ) FA; —m+1+k)
7 k=0
(32) Hence
For the value of£[X;] and E[X}], we find 1 TV -m)
T mIT(4 —m+1)
. drn
J . D—j _ m _ . L .
[Xl} = Zk + kD) X [ =)™ F(L, N =i Ay = m+ 15 2)]|=o.
_ 1 (DEPH (N _ 1)) Invoking the differentiation formula [1, 15.2.7], denoted By
Nk-1)" : m
( ) DF — dd - [(1 _ Z)a,-l—rn—l‘Pv(a/7 b7 c; Z)]
d 4
an (“1)"T(a+ m)T(e — b+ m)D(c)
— N L{a)(c — b)[(c+ m)
EXi] = (144 kP
)= Jz:l * ) x (1= 2)"YF(a+m,b; c+m; 2)
oo gD-if 1 K we have, since = 1 andF(a, b; ¢; 0) = 1
Ny ! LM (—1)"T(N — m)[(4; + 1 — N +m)
“N_ 1+ -+ KD 1 L\ —m J - m
N-1: < totk ) N-1 & T(A, +1- M4, + 1)
1
Thus
Invoking Theorem 3 yields
N b gn, 1(m)
mk - N & D
gN,k( Z( ) N—LZ :mk _NZkDJ
=1 j=1

(-1 )"’(N—m— 1).(A] “N4+m)! (N -1
% < (A, — N)IA;! Al )

X
<1+---+k’7) miD Pl
s = ]{;D_j
L N-1° ;
Wwriting A; = (kT! — 1)/(k — 1) and reversing the- and L
. g ; : mHN —m—1)! (4; — N +m)!
j-summation yields using (16 (=1 ( - 7 T
J y g (16) + o Z V)
_ mkD N kD J ;
an, k(m) = - Z N' Z from which (17) is immediate.
N (N —¢—-1)! ACKNOWLEDGMENT
(4 =)t The authors would like to thank R. van den Berg (CWI,
denoted as;, and substituting: = m — ¢, we have J. Chuang, M. Sirbu, G. Philips, S. Shenker, and H. Tangmu-
narunkit for sending the data in [13, Fig. 1b]. Finally, they are
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P k T(A; —m+k+1) proof (B) in Corollary 5.
Invoking the Taylor series of the hypergeometric function [1, REFERENCES
15.1.1] [1] M. Abramowitz and I. A. StegunHandbook of Mathematical Func-
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