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Chapter 1

Introduction

1.1 Background

A mechanical wave is an oscillatory motion of a continuum accompanied by a

transfer of energy that travels through space. Measurable characteristics of waves

are linked to the physical properties of the medium where waves propagate. This

is used, for example, in nondestructive testing of materials and structures. In

geophysics, seismic waves are used to study Earth’s interior. Seismic motion is

often associated with earthquakes. An earthquake is one of the natural sources of

seismic waves. On the one hand earthquakes can severely damage structures, but

on the other hand they are very useful for studying the Earth’s interior. Among

others, seismic waves excited by earthquakes are used to define locations of natural

seismic sources. Movements in the Earth generating seismic waves happen not only

naturally, but are also induced by humans, and it is very important to monitor

this seismic activity; e.g. from mining, hydraulic fracturing, enhanced oil recovery,

geothermal operations or underground gas storage. Passive seismic monitoring of

natural wave motions cannot provide all the information about the subsurface we

are interested in. That is why active seismic acquisition is used, seismic signals are

generated in the vicinity of an object of interest to get some information about it.

This can be offshore, on land, and even on another planet. Even some animals,

like mole rats, for example, actively generate seismic waves, they use them for

communication and orientation.

In geophysics, a seismic survey is an important and powerful tool for explo-

ration and production of resources. It helps to find potential locations of new

oil and gas reservoirs, and to monitor existing reservoirs. It is very important,

1



2 Chapter 1. Introduction

for example, to predict possible leakage which can happen due to injection and

production-induced fracturing and other processes in the subsurface. In order to

interpret data collected from a survey, researchers study, among other things, the

dependencies between the attributes of seismic signals and the properties of the

reservoir. One of the challenges in the interpretation is the presence of transition

zones in the reservoir, where oil and gas are mixed with water. Such zones are often

called partially or patchy saturated. They represent highly heterogeneous porous

media. It was observed that such heterogeneities cause significant attenuation of

seismic waves which is also frequency-dependent (Müller et al., 2010). Attenuation

can severely impact the quality of seismic data and cause errors in interpretation,

but at the same time seismic attenuation is an attribute for characterization of

the subsurface. Studying the dependence between inhomogeneities in reservoir

properties and seismic attributes can provide an insight into the complexity of the

subsurface. To this end, various models are being developed to obtain quantita-

tive relationships between rock and fluid properties and seismic attributes (e.g.,

velocity, attenuation). The ultimate goal of using models is to reduce uncertainty

in predictions. Studying the sensitivities of the model predictions to the change

of parameters gives insight into the possible cause of observed phenomena. For

example, changes in velocities can be related to changes in fluid saturations, etc.

One of the reasons of growing attention to models for predicting sensitivity

of observed wave-propagation attributes to changes in fluid saturations and other

subsurface properties is the injection of gas in reservoirs for enhanced oil recovery.

In the second half of the last century, when the first gas injections took place,

it was not known what consequences this could have. Observations over many

years showed that different fields respond differently to gas injection. High-rate

injections were linked with the increase of small earthquakes in the vicinity of

many fields. Oil and gas fields are extensively monitored and available data are

used to study effects of gas injection and predict possible scenarios for processes

happening in the field, such as fluid movements, changes in the pressure conditions,

etc.

Carbon dioxide (CO2) is widely injected in fields; one of the first projects was

initiated in 1972 in the Kelly-Snider oil field in Texas. Until recently, the CO2 used

for injection originated from naturally occurring CO2, but technologies have been

developed to deliver CO2 produced from industrial processes to nearby fields. At

the moment, the possibilities are discussed to inject CO2 as captured from indus-

trial activities into abandoned gas fields to control CO2 emissions worldwide. This
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is related to the fact that more and more CO2 is released into the atmosphere,

especially in developing countries, where the energy demand is getting higher ev-

ery year and industrial activity expands rapidly. The long-term consequence is a

global climate change that can drastically change life on our planet if no measures

are taken. Governments of the developed countries support many research projects

on carbon capture and storage (CCS). In particular, the research in this thesis was

carried out in the context of the Dutch national research program on CCS tech-

nology (CATO-2) supported by the Dutch government and consortium partners.

Many questions have to be answered before large-scale CCS can be implemented.

Research is being carried out not only in physics, chemistry and other techni-

cal disciplines, but also in economy, public perception, policy making and other

non-technical disciplines. The main challenges for research in geophysics are the

long-term consequences of storing large amounts of gas underground, developing

cost-effective but accurate techniques to monitor the storage site and predicting

possible leakages of CO2. It is important to reduce uncertainty in predictions to

ensure safety. This thesis contributes to the development of models for predict-

ing quantitative relations between wave-propagation characteristics and reservoir

properties, which are important for monitoring CO2 storage sites, but not limited

to application in CCS.

One of the challenges for practical application of quantitative models is a lack

of input data. In practice, we do not have all the details about the structure of

the subsurface. Although modern computational techniques allow to carry out

simulations with very complicated models, it is often advantageous to use simpler

ones with less parameters. Complicated models with many parameters provide

more accurate estimates from a theoretical point of view, but in practice increase

uncertainty since it is often hard to determine input parameters required to run

the model because of lack of available measurements. Therefore, a compromise

has to be found between the desired accuracy of predictions and the introduced

assumptions.

1.2 Models for wave propagation in porous me-

dia

Seismic waves contain important information on subsurface properties. In this

thesis, we propose models to quantify the dependence between wave-propagation
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characteristics and subsurface properties related to a porous medium, specifically

a poroelastic solid. The commonly used equations for wave propagation in poroe-

lastic solids are Biot’s equations (Biot, 1956a,b, 1962). Biot’s theory is a linear

theory of two-phase media: one phase corresponds to an elastic solid, and the

second phase corresponds to a fluid moving through the pores of the solid. The

assumptions in Biot’s theory are:

• The solid frame is homogeneous and isotropic with constant porosity φ, bulk

modulus Km, permeability k0 and shear modulus µ. The solid grains have

constant density ρs and bulk modulus Kg.

• The medium is fully saturated by one type of fluid with viscosity η, bulk

modulus Kf and density ρf .

• Darcy’s law governs the relative motion between solid and fluid phases.

• The wavelength of the passing wave is much larger than the characteristic

size of the pores and grains.

It is widely accepted that Biot’s theory underestimates observed attenuation

and dispersion of elastic waves (Johnston et al., 1979; Winkler, 1985; Gist, 1994).

One of the reasons is a violation of the assumption of uniform saturation with

a single fluid. Inhomogeneities in solid-frame properties also cause attenuation.

Many models for wave propagation in heterogeneous porous media were developed

to address this effect. Each model proposes an attenuation mechanism which is

based on certain assumptions. These assumptions are related, among other things,

to the scale of the heterogeneities and their distributions, and the frequency range

of interest. Seismic waves used to probe the subsurface usually have a frequency

range 1 – 100 Hz. Well-logging tools use the frequency range extended up to

100 kHz, and ultrasonic measurements (up to MHz) are used in the laboratory.

The wavelengths vary from meters to kilometers in field studies to millimeters in

laboratory studies. Depending on the scale of observations, different models are

used to study wave attenuation and dispersion. Attenuation due to dissipation at

the pore scale is described by a squirt-flow mechanism (O’Connell and Budiansky,

1977; Mavko and Nur, 1979; Palmer and Traviola, 1980; Dvorkin and Nur, 1993).

Differences in fluid saturation between thin compliant pores and larger stiffer ones,

the presence of thin cracks, different shape and orientation of the pores, as well as

distribution of immiscible fluids in a pore cause attenuation and dispersion due to

local or squirt flow. This mechanism usually plays a role at ultrasonic frequencies.
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In this thesis, we consider a frequency range between 1 Hz and several kHz,

where the wavelengths are much larger than the typical pore and grain size. In

this case, the wavelength is not sensitive to the geometry of the pores and other

local pore-scale effects, and Biot’s theory can be used to predict wave attenua-

tion and dispersion. The attenuation mechanism in Biot’s theory is driven by the

wavelength-scale fluid-pressure gradients created by a passing wave, which results

in relative fluid-to-solid movement accompanied by internal friction due to the

viscous forces between the solid and fluid phases. For many typical rocks, this

mechanism is significant for frequencies of the order of kHz and higher, well out-

side the seismic frequency range. However, significant attenuation and dispersion

at seismic frequencies can be observed in heterogeneous porous media when the

heterogeneities are much larger than the pore and grain sizes but smaller than

the wavelength. Spatial variations in solid-frame and fluid properties at this scale,

which is called the mesoscopic scale, cause fluid-pressure gradients that drive the

so-called mesoscopic fluid flow. It results in attenuation and dispersion which is

not captured by Biot’s theory.

One possible solution to account for the mesoscopic-scale effects when modeling

wave propagation in heterogeneous media is to solve the equations of motion with

spatially varying parameters. However, this approach can be inefficient in practice.

First, it can require a lot of computation time, but it can also be counterproductive

because it will require introduction of assumptions on the distribution of hetero-

geneities and introduction of additional parameters, thus increasing uncertainty

in the analysis.

Another solution is to use an effective-medium approach. This approach, as

mainly discussed in this thesis, allows to describe the macroscopic properties of the

heterogeneous medium using equations of motion with spatially invariant coeffi-

cients. These coefficients can be derived analytically or numerically using different

homogenization techniques. Then, a medium containing heterogeneities is replaced

by an equivalent homogeneous medium. Equivalence means that all wave propa-

gation characteristics in the initially heterogeneous medium and the corresponding

homogenized one are the same, provided that the assumptions used in the deriva-

tion of the effective coefficients are met. For example, one common assumption for

modeling mesoscopic-scale heterogeneities is that the wavelength is much larger

than the characteristic size of heterogeneities. This assumption is also assumed in

the models presented in this thesis. Such models are mostly used in the seismic

frequency range (i.e., at relatively low frequencies), since the wavelength decreases
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with frequency. However, they can be used to compare numerical results and ob-

servations in the laboratory at higher frequencies provided that heterogeneities in

a sample are small enough and the wavelength assumption is met.

Another assumption used in the derivation of an effective medium is the one on

the distribution of heterogeneities. A choice is often made between periodic and

random or non-periodic configurations. In reality, there are no strictly periodically

distributed properties, and a non-periodic distribution is more realistic. However,

models with periodic configurations can be advantageous in different applications.

First, they require less parameters, which helps to reduce uncertainty. Second,

many methods and theories have been developed to deal with periodic configura-

tions, including exact solutions that can be used to validate effective models. The

solutions for periodic media can be used as benchmark for models that deal with

more complicated geometries. In some cases, analytical expressions for effective

coefficients can be obtained for a periodic geometry. This is why many models for

seismic wave propagation in porous media with mesoscopic-scale heterogeneities

assume a periodic distribution of inclusions.

One of the first models to account for mesoscopic-scale inclusions in porous me-

dia are the ones of White et al. (1975) and White (1975) for periodically layered me-

dia and porous media with periodically distributed spherical patches, respectively.

In that work, it was emphasized that the presence of different fluids in mesoscopic-

scale patches causes significant dispersion and attenuation at seismic frequencies.

Each model provides an analytical expression for a frequency-dependent P-wave

modulus, which is being used in numerous studies (e.g., Carcione et al., 2003, Car-

cione and Picotti, 2006, Krzikalla and Müller, 2011, Deng et al., 2012, Nakagawa

et al., 2013, Zhang et al., 2014, Quintal et al., 2009, 2011, Quintal, 2012, Morgan

et al., 2012, Wang et al., 2013, Lee and Collett, 2009, Amalokwu et al., 2014,

Qi et al., 2014, Sidler et al., 2013). The improvements of the models of White

were discussed by Dutta and Seriff (1979), Dutta and Ode (1979a,b), Vogelaar

and Smeulders (2007) and Vogelaar et al. (2010). Arbitrary geometries of patches

were considered by Johnson (2001), but this model requires more parameters. Ar-

bitrary shape and distribution of inclusions is also assumed in the approach of

Rubino et al. (2009), and is extensively used in numerous studies (Rubino et al.,

2011, Rubino and Velis, 2011, Rubino and Holliger, 2012, Rubino et al., 2013). A

comprehensive review on different models for mesoscopic-scale heterogeneities in

porous media can be found in Toms et al. (2006) and Müller et al. (2010).
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The models of White and many other models dealing with seismic wave prop-

agation in heterogeneous porous media provide a frequency-dependent plane-wave

modulus that can be used to describe an initially heterogeneous porous medium

with fluid and solid phases by an equivalent homogeneous effective viscoelastic

one-phase medium. In many cases, it is advantageous to deal with the equations

of viscoelasticity, because they simplify the analysis and computations, compared

to the equations of poroelasticity. However, the macroscopic attenuation mecha-

nism due to viscous interaction of the solid and fluid phases is not captured in the

effective viscoelastic medium, since it represents a one-phase medium. In this the-

sis, effective poroelastic models are proposed and their performance is compared

to the performance of effective viscoelastic models.

1.3 Objective and outline of this thesis

The objectives of this thesis are to propose new effective models for wave propaga-

tion in porous media with mesoscopic-scale heterogeneities and to evaluate their

applicability compared to some of the currently used effective models. The thesis

is structured as follows. Chapter 2 is an introductory chapter on Biot’s theory,

which is extensively used throughout the thesis. In Chapter 3, a new effective

model is introduced for one-dimensional wave propagation in periodically layered

media. The exact analytical solution is obtained to validate the new model and to

compare its performance with the model of Vogelaar and Smeulders (2007), which

provided an extension of the original model of White et al. (1975). In Chapter

4 another widely used model of White is considered (White, 1975), where het-

erogeneities are modelled as spherical inclusions, and an extension is proposed.

Models proposed in Chapters 3 and 4 account for Biot’s global-flow attenuation

mechanism, which extends their applicability compared to the previous models.

In Chapters 3 and 4 effective models with frequency-dependent coefficients are

considered, while in Chapter 5 the analytical result of White et al. (1975) is used

to derive an effective model with coefficients that do not depend on frequency.

Such models are advantageous in some situations, as discussed in Chapter 5. In

Chapter 6, the method of asymptotic homogenization with multiple scales is ap-

plied to a periodically layered poroelastic medium to evaluate applicablity of the

method. Finally, in Chapter 7, an effective model is proposed for periodically

layered media to describe angle-dependent attenuation and dispersion. Discussion

of the presented results and conclusions are given in Chapter 8.





Chapter 2

Elastic wave propagation in

fluid-saturated porous media:

Biot’s theory and extensions

In this chapter, we review the theory of wave propagation in fluid-saturated porous

media, first developed by Maurice Biot, and its extensions. This theory is exten-

sively used in this thesis. We touch upon historical background, introduce main

equations, discuss some aspects of the theory important within the scope of this

thesis and briefly review other works on dynamic equations of poroelasticity.

2.1 Introduction

Biot’s theory (Biot, 1956a,b, 1962) is a linear theory of a two-phase medium con-

sisting of a porous solid frame filled with a fluid moving through the pores of the

solid. Biot laid the foundation for the linear elasticity of porous media which plays

a tremendously important role in the field of poromechanics. Earlier works in this

field that stipulated the development of Biot’s theory are the works of Karl von

Terzaghi (see, e.g., von Terzaghi, 1943) who was deservedly called the father of

soil mechanics. A comparison of Biot’s equations with the theory of consolidation

by von Terzaghi was presented by Cryer (1963). A set of equations governing the

acoustic wave propagation in isotropic porous media was also developed by Frenkel

(1944), before Biot’s publications, but his work did not receive as much attention

as the work of Biot. The comparison of Frenkel’s and Biot’s equations was pre-

sented by Pride and Garambois (2005). A very interesting historic overview on the

9



10 Chapter 2. Biot’s theory and extensions

development of the theory of poromechanics can be found in the book by de Boer

(2000).

2.2 Constitutive equations

In Biot’s theory the medium is assumed macroscopically isotropic, with a constant

porosity φ, bulk modulus Km, permeability k0 and shear modulus µ. The solid

grains are assumed to have constant density ρs and bulk modulus Kg. The solid

frame contains connected pores fully saturated by one type of Newtonian fluid with

viscosity η, bulk modulus Kf and density ρf . Sealed void pores are considered

part of the solid. The wavelength of a passing wave is assumed to be much larger

than the characteristic size of grains and pores. A representative volume element

is introduced, which is small compared to the wavelength but large compared to

the grain and pore sizes. The deformation of the poroelastic medium is described

by two displacement fields averaged over the representative volume. They are the

solid particle displacement vector ui(x, y, z, t) and vector Ui(x, y, z, t) for the fluid

particle displacement, or, instead, vector wi = φ(Ui − ui) for the relative fluid-

to-solid displacement. The equations of motion can be expressed in terms of (ui,

Ui), (ui, wi) or (ui, p), where p is the fluid pressure. It can be more convenient to

work with (ui, p) formulation since the geophones and hydrophones measure the

components of the solid particle velocity and fluid pressure p, whereas the fluid

particle velocity cannot be measured directly, but it is related to the measured

quantities mathematically via the equations of motion.

The porosity in Biot’s theory is defined as a volume fraction

φ = Vf/V, V = Vf + Vs, (2.1)

where V is a volume of a representative element, Vf and Vs are the volumes

occupied by the pores and the solid grains within the volume V , respectively.

Since linear elasticity is considered, the deformations are small and the strain

tensors eij for the solid phase and εij for the fluid phase read

eij = 1
2

(uj,i + ui,j) ,

εij = 1
2

(Uj,i + Ui,j) ,

(2.2)
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where a comma in the subscript denotes a spatial derivative with respect to the

index following it. The total stress tensor τij is defined as

τij = τ̃ij + τδij, (2.3)

where τ̃ij and τ are the components of the stress tensor corresponding to the solid

and fluid parts, respectively, and δij is the Kronecker delta. The stress components

are defined as
τ̃ij = −σij − (1− φ)pδij,

τ = −φp,
(2.4)

where σij are the intergranular stresses and p is the fluid pressure. The stress-strain

relations read
τ̃ij = 2µeij + (Aekk +Qεkk) δij,

τ = Qekk +Rεkk.

(2.5)

Throughout the thesis, Einstein’s summation convention is used, i.e., repeated

indices are summed over, unless otherwise specified. In equations (2.5), µ and

A correspond to the Lamé parameters in the equations of elasticity, where µ is

a shear modulus of the drained frame. The conventional Lamé coefficient of the

drained frame λ = Km − (2/3)µ is equal to A − Q2/R, which follows from the

expressions given below (equation (2.6)). Coefficient R is a measure of pressure

required on the fluid to force a certain volume of fluid into the porous aggregate

while the total volume remains constant. Q is a coupling coefficient between the

volume changes of the solid and fluid.

Four independent measurements are required to define these four elastic pa-

rameters (A, Q, R, µ). The shear modulus µ is obtained directly using a shear test

on a drained sample. The so-called drained (jacketed) and undrained (unjacketed)

experiments are used to define the remaining coefficients. In the jacketed test, a

porous sample is enclosed in a thin impermeable jacket and put into a watertank

subject to an external fluid pressure p. The internal fluid pressure is kept con-

stant. This test is used to study volumetric effects caused by the intergranular

stress, since there are no changes in pore fluid pressure. In the unjacketed test,

the fluid can move freely. Then, there are no changes in intergranular stresses

across the boundaries of the sample, and the effect of fluid pressure on volumetric

response is studied. More details about the derivation of the relations between the

elastic coefficients and the physical properties of the solid and fluid can be found
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in Biot and Willis (1957) and van Dalen (2013). The expressions of the parameters

A, Q and R in terms of the measurable physical properties of the medium read

A =
φKm + (1− φ)Kf (1− φ−Km/Ks)

φ+Kf (1− φ−Km/Ks) /Ks

− 2

3
µ,

Q =
φKf (1− φ−Km/Ks)

φ+Kf (1− φ−Km/Ks) /Ks

,

R =
φ2Kf

φ+Kf (1− φ−Km/Ks) /Ks

.

(2.6)

2.3 Equations of motion

The equations defining the elastic wave propagation in a poroelastic medium ac-

cording to Biot’s theory consist of stress-strain relations and momentum equa-

tions, similar to the equations for the elastic medium. An important mechanism

incorporated in Biot’s equations is a dissipation mechanism due to viscous friction

between the solid and fluid phases in motion. No other dissipation mechanisms

are taken into account.

We do not reproduce the detailed derivation of Biot’s equations of motion; it is

well described in Biot’s papers and reviewed in many publications by other authors

(e.g., van Dalen, 2013). In general, there are seven field variables, namely, three

components of the solid (ui) and the fluid (Ui) particle displacements, and the pore

fluid pressure (p); alternative to Ui, the relative fluid-to-solid particle displacement

wi can be used. Bonnet (1987) showed that only four of the variables are indepen-

dent. Biot (1956a) formulated the equations of motion for a statistically isotropic

(the directions x, y and z are equivalent and uncoupled dynamically) poroelastic

solid in terms of solid and fluid particle displacements:

ρ11üi + ρ12Üi + b0(u̇i − U̇i) = τ̃ij,j

ρ12üi + ρ22Üi − b0(u̇i − U̇i) = −φp,i.
(2.7)

He introduced mass coefficients ρ11, ρ12 and ρ22 which take into account non-

uniformity of the relative fluid flow. Coefficient ρ12 is a mass coupling parameter

between fluid and solid which must be negative. Coefficients ρ11 and ρ22 must be

positive, and ρ11ρ22−ρ2
12 > 0, in order to ensure positive definition of the quadratic
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form of kinetic energy (Biot, 1956a). The expressions for these coefficients read

ρ11 = (1− φ)ρs − ρ12,

ρ22 = φρf − ρ12,

ρ12 = −(α∞ − 1)φρf ,

(2.8)

where α∞ is the high-frequency limit of the tortuosity factor α, a measure for

the shape of the pores. The frequency dependence of this factor is discussed in

Section 2.5. Tortuosity is one of the key parameters defining the behaviour of

Biot’s slow wave (discussed in Section 2.6). It is real-valued for a non-viscous

fluid, and can be defined for a specific pore geometry. It can be measured using

slow-wave arrival times and derived from electrical measurements (Brown, 1980,

Johnson, 1980, Berryman, 1980). Biot also introduced the viscous factor b0 which

is related to Darcy’s permeability k0:

b0 =
ηφ2

k0

. (2.9)

Note that this frequency-independent formulation of the viscous factor is valid

at low frequencies, where the fluid flow is of the Poiseuille type. High-frequency

corrections were proposed; they are discussed in Section 2.5.

In this thesis, we also use equations of motion formulated in terms of (ui, wi).

In the general case of an anisotropic tortuosity αij and permeability kij, they read

(Biot, 1962)

ρüi + ρf ẅi = τij,j,

ρf üi +mijẅj + ηrijẇj = −p,i,
(2.10)

where ρ = φρs + (1 − φ)ρf , mij = αijρf/φ and tensor rij is an inverse of the

permeability tensor r = k−10 . In the isotropic case k0ij = k0δij and αij = α∞δij. As

has been mentioned above, this formulation with frequency-independent coefficient

mij and rij is only valid at low frequencies. An alternative formulation valid at

higher frequencies is discussed in Section 2.5.
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2.4 Biot’s critical frequency

Biot’s critical frequency is defined as

ωB =
ηφ

α∞k0ρf
. (2.11)

It separates two different regimes. For frequencies below ωB, the relative fluid-

solid motion is governed by viscous forces, and only a fast P-wave can propagate

in the porous medium. Above ωB, inertial coupling dominates, both a fast and a

slow P-wave can propagate, and the tortuosity factor becomes important. Many

natural rocks have a relatively high Biot’s critical frequency, of the order of MHz,

well outside the seismic frequency range. But the critical frequency is decreasing

with increasing permeability, and for high-permeable sandstones and sands it can

become of the order of kHz and even lower, and it thus enters the seismic frequency

band. In this case, Biot’s attenuation mechanism due to relative motion of fluid

and solid phases described by (2.10) is not negligible and should be accounted for

in models for seismic attenuation, which is discussed in this thesis.

2.5 Dynamic permeability

The time-independent viscous factor b0 in (2.9) is valid in the low-frequency range.

For corrections at higher frequencies, models of frequency-dependent permeability

were developed (Biot, 1956b, Auriault et al., 1985, Johnson et al., 1987). For for-

mulations of the equations of motion in the time domain, the frequency-dependent

viscous factor has to be transformed to the time domain, which yields replacing

frequency-dependence by a convolution operator.

In this thesis, we solve the equations of motion in the frequency domain. The

Fourier transform is applied for transforming to the frequency-domain:

f̂(x, y, z, ω) =

∞∫
−∞

exp(−iωt)f(x, y, z, t)dt. (2.12)
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Since the time signal is real-valued, the inverse Fourier transform is formulated in

the following way:

f(x, y, z, t) =
1

π

∞∫
0

Re
(
f̂(x, y, z, ω) exp(iωt)

)
dω. (2.13)

We therefore only need to consider positive frequencies ω ≥ 0.

In this thesis, we adopt the formulation of Johnson et al. (1987) of dynamic per-

meability k̂ which describes transition from the viscous- to the inertia-dominated

regime. Throughout the thesis, a hat above a quantity stands for frequency-

dependence. The expression for k̂ reads

k̂(ω) = k0

(√
1 + iM

ω

2ωB
+ i

ω

ωB

)−1

, (2.14)

where parameter M = 8α∞k0/(φΛ2) is a pore-shape factor, and Λ is the char-

acteristic length scale of the pores. It was mentioned by Johnson et al. (1987)

that M is often close to 1. In this thesis, we assume M = 1; furthermore,

Re(
√

1 + iMω/ωB) ≥ 0. Incorporation of dynamic permeability (2.14) results

in the following formulation of the second equation in (2.10) in the frequency

domain (for the isotropic case):

− ω2ρf ûi +
η

k̂(ω)
iωŵi = −p̂,i. (2.15)

An alternative to the formulation of frequency-dependent permeability, frequency-

dependent tortuosity can be used:

α̂(ω) = α∞

(
1− i

ωB
ω

√
1 + iM

ω

2ωB

)
. (2.16)

In this case, the second equation in (2.10) is formulated as follows (for the isotropic

case):

− ω2

(
ρf ûi +

ρf α̂(ω)

φ
ŵi

)
= −p̂,i. (2.17)

Formulations (2.15) and (2.17) are equivalent. We define the frequency-dependent

viscous factor b̂ as

b̂(ω) = b0

√
1 + iM

ω

2ωB
. (2.18)
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It replaces the factor b0 in equations (2.7), when the high-frequency correction is

adopted. With this definition, equation (2.15) (or (2.17)) reads

− ω2

(
ρf ûi +

α∞ρf
φ

ŵi

)
+ iω

b̂(ω)

φ2
ŵi = −p̂,i. (2.19)

2.6 Biot’s slow wave

One of the significant findings in Biot’s theory is the prediction of three types of

waves. Together with the shear wave, Biot’s theory predicts two compressional

waves, a slow and a fast one. The existence of the slow wave was first experimen-

tally observed by Plona (1980), using a synthetic rock. It was a very important

observation which confirmed the validity of the equations of poromechanics. Fur-

ther discussion of laboratory experiments and the possibility to observe the slow

wave in real rocks can be found in Kliments and McCann (1988). The authors

mentioned that it is not likely to observe the slow wave in real rocks. The slow

wave is highly attenuated, and it cannot be observed in seismic data. However,

it was observed in real sandstones in laboratory experiments (Nagy et al., 1990,

Kelder and Smeulders, 1997). An overview of different experiments is given by

Smeulders (2005). Despite the fact that Biot’s slow wave is not visible at seismic

data, it still affects the observations (Allard et al., 1986, Rasolofosaon, 1988, Ru-

bino et al., 2006). Slow waves generated at an interface can significantly affect

the predicted amplitudes and phases of the fast compressional wave (Pride et al.,

2002). This is why it is important to take into account mode conversions at the

interface properly.

Biot’s theory does not predict any slow S-waves. Sahay (2008) proposed a

correction to Biot’s constitutive equations and predicted a slow S-wave mode that

is generated at interfaces and other inhomogeneities and influences attenuation of

fast P- and S-waves. In this theory, an attenuation mechanism due to viscous loss

within the fluid is taken into account, in addition to Biot’s attenuation due to

viscous forces between the solid and fluid phases.

2.7 Boundary conditions

Boundary conditions have to be defined to solve equations of motion in a poroe-

lastic medium. In an infinite medium, Sommerfeld’s radiation condition is used
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implying that there is no incoming energy flux from infinity (Sommerfeld, 1949).

The boundary conditions at an interface of a poroelastic medium are not uniquely

defined. They depend on the surface flow impedance (Deresiewicz and Skalak,

1963) which defines the connection of the pores at both sides of the interface.

The two limiting cases are the open and closed-pore boundary conditions. The

open-pore conditions assume full connection between the pores in contact, while

the closed-pore ones do not assume any direct connections between the pores. The

situation when the pores are partially connected is in between these two limiting

cases. The choice of the boundary conditions strongly affects predicted reflec-

tion and transmission coefficients. Open-pore boundary conditions give a better

agreement between predicted reflection coefficients and the ones measured in a

laboratory (Rasolofosaon, 1988, Wu et al., 1990, Jocker and Smeulders, 2009).

Experimental results showed that it is hard to generate the slow wave with closed-

pore boundary conditions (Rasolofosaon, 1988), which do not allow a fluid flow

across the interface. Sidler et al. (2013) showed that there is a discrepancy in pre-

dictions of poroelastic and equivalent viscoelastic solutions at a fluid/porous-solid

interface, where the poroelastic solution with the open-pore boundary conditions

predicts an energy loss related to the generation of a slow wave at the interface.

The viscoelatic solution does not account for this energy loss. With closed-pore

boundary conditions, the agreement between the solutions is much better. This

example clearly shows the importance of choosing the correct boundary conditions

depending on the problem and the desired accuracy in capturing physical effects.

While most algorithms used in exploration geophysics are based on the viscoelastic

modeling, the poroelastic modeling with open-pore boundary conditions can be

advantageous for fitting the model with observed data.

Interface conditions consistent with Biot’s equations were derived by Gurevich

and Schoenberg (1999). They showed that they correspond to the limiting case of

the open-pore boundary conditions proposed by Deresiewicz and Skalak (1963).

These are the only boundary conditions derived from the macroscopic Biot equa-

tions, without taking into account microscopic details of the interface. Gurevich

and Schoenberg (1999) also found that the realistic scenario of a partially per-

meable contact between two porous media can be modelled within the scope of

Biot’s theory by introducing a transition layer with an infinitely small thickness

and a small interface permeability coefficient, provided the open-pore boundary

conditions hold at both sides of this layer.
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The influence of fully or partially impermeable interface assumptions is a mat-

ter of many studies since it is not yet fully resolved. The correspondence between

experimental and numerical studies with poroelastic materials is severely influ-

enced by the boundary conditions. The properties of an effective homogeneous

medium, which is equivalent to some heterogeneous medium, are significantly in-

fluenced by the choice of the boundary conditions at the internal interfaces related

to heterogeneities. This is confirmed in this thesis by comparing the predictions of

effective models derived from the same heterogeneous medium, but with different

boundary conditions used (Chapters 3, 4 and 7). In our models, we use Biot’s

theory with the open-pore boundary conditions (Deresiewicz and Skalak, 1963),

which imply the continuity of the following field variables at interfaces:

• solid-particle displacements;

• relative fluid-to-solid particle displacement normal to the interface;

• normal and tangential intergranular stresses;

• pore fluid pressure.

2.8 Other formulations of dynamic equations of

poroelasticity

Apart from the works of Biot, equations of dynamic poroelasticity were reported

in other publications. As has been mentioned in the beginning of this chapter,

Frenkel (1944) was the first one to develop the theory of dynamic poroelasticity.

A thorough review on further developments and generalizations of Biot-Frenkel

theory made by Russian scientists was carried out by Nikolaevskiy (2005). Biot’s

theory was compared to the linear theory of porous media for wave propagation

problems in case of incompressible constituents and zero apparent mass density

(Bowen, 1982, Ehlers and Kubik, 1994, Schanz and Diebels, 2003). The theory

of porous media is based on the theory of mixtures (Truesdell and Toupin, 1960,

Bowen, 1976), and extended by the concept of volume fractions (Bowen, 1980,

1982). The dynamic formulation of this theory is published by de Boer et al.

(1993), Diebels and Ehlers (1996) and Liu et al. (1998).

In Biot’s theory, a fully saturated porous medium is assumed. The extension

to a partially saturated poroelastic medium (three-phase medium) was presented
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by Vardoulakis and Beskos (1986). A different approach to derive the govern-

ing equations of a fully saturated poroelastic medium was used by Burridge and

Keller (1981). It is a micromechanical approach based on a two-scale asymptotic

homogenization. The obtained equations coincide with Biot’s equations in case

the viscosity of the fluid is relatively small. The two-scale homogenization method

applied to a porous solid, which results in the equations similar to Biot’s equa-

tions, was also used by Auriault (1980a). In Chapter 6 of this thesis we use the

same homogenization approach, but we apply it to a mesoscopic-scale structure,

to derive macroscopic equations for porous media with mesoscopic-scale hetero-

geneities. Pride et al. (1992) derived equations of poroelasticity in the form of

Biot’s equations using a volume-averaging method. More on these studies can

be found in the review by Berryman (2005). A comprehensive review of differ-

ent formulations of equations of poroelasticity and their numerical and analytical

solutions is given by Schanz (2009).

2.9 Concluding remarks

Different formulations of equations of poroelasticity and extensions to Biot’s theory

have been discussed. However, classical Biot’s theory remains a common approach

to describe wave propagation in linear poroelasticity. As also mentioned in the

previous chapter, Biot’s theory underestimates attenuation as observed in real

data. It does not account for the presence of inhomogeneities in solid and fluid

properties. In this thesis, we study wave propagation in heterogeneous porous

media with layered or spherical inclusions. Both host media and inclusions are

assumed macroscopically homogeneous and Biot’s theory is used to describe wave

propagation in each of these domains.





Chapter 3

Effective poroelastic model for

one-dimensional wave

propagation in periodically

layered porous media

In this chapter, an effective poroelastic model is proposed that describes seismic

attenuation and dispersion in periodically layered media. In this model, the layers

represent mesoscopic-scale heterogeneities (larger than the grain and pore sizes

but smaller than the wavelength) that can occur both in fluid and solid properties.

The proposed effective medium is poroelastic, contrary to previously introduced

models that lead to effective viscoelastic media. The novelty lies in the application

of the pressure continuity boundary conditions instead of no-flow conditions at the

outer edges of the elementary cell. The approach results in effective Biot elastic

moduli and effective porosity that can be used to obtain responses of heterogeneous

media in a computationally fast manner. The model is validated by the exact

solution obtained with the use of Floquet’s theory. Predictions of the new effective

poroelastic model are more accurate than the predictions of the corresponding

effective viscoelastic model when the Biot critical frequency is of the same order

as the frequency of excitation, and for materials with weak frame. This is the

case for media such as weak sandstones, weakly consolidated and unconsolidated

This chapter was published as a journal paper in Geoph. J. Int. 195, 1337–1350 (Kudarova
et al., 2013). Note that minor changes have been introduced to make the text consistent with
the other chapters of this thesis.
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sandy sediments. The reason for the improved accuracy for materials with low Biot

critical frequency is the inclusion of the Biot global flow mechanism which is not

accounted for in the effective viscoelastic media. At frequencies significantly below

the Biot critical frequency and for well consolidated porous rocks, the predictions

of the new model are in agreement with previous solutions.

3.1 Introduction

A lot of attention has been paid to the proper description of seismic wave attenu-

ation in porous media over the last decades. Currently, it is widely accepted that

attenuation in porous materials is associated with the presence of pore fluids and

caused by a mechanism often referred to as wave-induced fluid flow. Flow of the

pore fluid can occur at different spatial scales, i.e., on the microscopic, mesoscopic

and macroscopic scales. Generally, flow is caused by pressure gradients created

by passing waves. The flow dissipates energy of the passing wave as it implies a

motion of the viscous fluid relative to the solid frame of the porous material.

Wave-induced fluid flow resulting from wavelength-scale pressure gradients be-

tween peaks and troughs of a passing seismic wave is often called macroscopic or

global flow as the flow takes place on the length scale of the seismic wave. In

many practical situations, this mechanism is not the dominant attenuation mech-

anism of a seismic wave, though it is not always negligible since it depends on

parameters such as permeability and porosity. For a medium containing inho-

mogeneities smaller than the wavelength but much larger than the typical pore

size, a passing wave induces a pressure gradient on the sub-wavelength scale that

drives a so-called mesoscopic flow. It is widely believed that it is this mechanism,

the wave-induced fluid flow between mesoscopic inhomogeneities, that is the main

cause of wave attenuation in the seismic frequency band (e.g., Müller and Gure-

vich, 2005; Müller et al., 2010). Inhomogeneities can also be present on the scale

of the pore size. In that case, passing waves induce local or microscopic flow, but

its effect is often rather small for seismic waves as the mechanism becomes active

only at relatively high frequencies (Pride et al., 2004).

In this thesis, media that have mesoscopic inhomogeneities are considered. In

such media the inhomogeneities can occur both in fluid (partial or patchy sat-

uration) and in frame (e.g., double porosity) properties. The direct method to

account for the presence of such inhomogeneities and its effect on attenuation is
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to solve the equations of poroelasticity (Biot, 1956a; Schanz, 2009; Carcione et al.,

2010) with spatially varying coefficients. However, this can be computationally

cumbersome and time consuming, thus motivating the development of effective-

medium approaches where frequency-dependent coefficients are derived and used

as input for the equations of a homogeneous effective medium. The simplest ex-

ample of this approach is the homogenization of a periodically layered medium

in which each layer is homogeneous and waves propagate normal to the layer-

ing. White et al. (1975) derived a low-frequency approximation of an effective

compressional (P) wave modulus for such a medium by applying an oscillatory

compressional test to the representative element that consists of half of the pe-

riodic cell and has undrained boundaries (i.e., no-flow conditions). This analysis

showed that attenuation is quite significant when the fluid content in each of the

layers is considerably different, like for the combination of water and much more

compressible gas. White’s result has been confirmed by other authors who came

to the same effective modulus in a slightly different way. Norris (1993) derived the

asymptotic approximation of the fast P-wave Floquet wavenumber in the context

of quasistatic Biot’s theory and defined the effective modulus based on that. Bra-

janovski and Gurevich (2005) also based the effective modulus on a wavenumber

but used a low-frequency approximation of the matrix propagator method. The

low-frequency approximations were overcome by Vogelaar and Smeulders (2007),

who solved the White’s model in the context of full Biot’s equations.

Dutta and Seriff (1979) showed that the geometry of heterogeneities plays a

minor role on the behavior of the media as long as the heterogeneities are much

smaller than the wavelength. This justifies studies with periodic stratification,

the great advantage of which is the availability of analytical expressions for the

effective moduli that provide insight and that are easy to apply. Based on White’s

periodic model, Carcione and Picotti (2006) focused on the analysis of different

heterogeneities in rock properties that led to high attenuation. They found that

changes in porosity and fluid properties cause the most attenuation compared to

inhomogeneities in the grain and frame moduli. Wave propagation in fractured

porous media is studied by taking a limit case of White’s model in which the thick-

ness of one of the layers goes to zero and its porosity goes to one (Brajanovski and

Gurevich, 2005; Deng et al., 2012). Krzikalla and Müller (2011) made an extension

of the periodic model to arbitrary angles of incidence, thus accounting for shear-

wave attenuation as well. Carcione et al. (2011) used this analytical extension to
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validate their numerical oscillatory tests on a stack of layers from which they deter-

mined the complex stiffnesses of an effective transversely isotropic medium. They

refer to this extension as Backus/White model, because it is based on White’s

result and the extension of the O’Doherty-Anstey formalism, and on Backus aver-

aging applied to poroelasticity by Gelinsky and Shapiro (1997). Apparently, the

periodic model of White is the starting point of many other studies on partially

saturated media. Rubino et al. (2009) proposed an equivalent medium for a more

realistic geometry of heterogeneities than in White’s model, also using oscillatory

compressibility (and shear) tests in the space-frequency domain. This approach

is used, in particular, in studies on CO2 monitoring (Rubino et al., 2011; Picotti

et al., 2012).

The above-discussed effective media that capture the mesoscopic attenuation

mechanism are in fact viscoelastic media. In all 1-D models, only one frequency-

dependent elastic modulus is obtained for the considered representative element.

This is a result of employing the no-flow boundary condition (undrained bound-

ary), which implies that there is no relative fluid-to-solid motion at the outer edges

of the representative element. Consequently, there is only one degree of freedom in

the effective medium, which is the displacement of the frame; the effective medium

thus allows for the existence of only one P-wave mode. Though the derivation of

the effective modulus is based on the equations of poroelasticity, the obtained ef-

fective models can therefore be referred to as viscoelastic, as it was explicitly done

for the 2D case by Rubino et al. (2009). A viscoelastic model is after all charac-

terized by a single complex-valued frequency-dependent bulk modulus, being the

counterpart of a temporal convolution operator in the time-domain stress-strain

relation (e.g., Carcione, 2007); a poroelastic model would require more effective pa-

rameters. Reduction of parameters and degrees of freedom in the effective medium

facilitates its application and increases efficiency of computations, thus making the

application of the equivalent viscoelastic media popular for studies of mesoscopic

loss in porous media. Dutta and Ode (1979a) noted, however, that the choice of

boundary conditions at the outer edges of the representative element, as originally

made by White et al. (1975), is not unique. Instead of the no-flow condition, the

pressure continuity condition may be applied, as commonly used at the interface

of two porous layers (Deresiewicz and Skalak, 1963).

In this chapter, we derive an effective model for the same periodic configuration

as considered by White, but using the pressure continuity boundary condition

that allows relative fluid-to-solid motion at the outer edges of the representative
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element (for which we take the full periodic cell). We show that this leads to

an effective poroelastic model that has two degrees of freedom, the frame and

fluid displacements, and that allows the existence of both the fast and the slow

compressional waves. The choice of boundary conditions implies that flow on the

wavelength scale is permitted and the effective poroelastic model thus also captures

the macroscopic attenuation mechanism (next to the mesoscopic mechanism). The

effect of both global and mesoscopic flow on wave propagation in layered media

normal to the layering was also captured by Gelinsky et al. (1998), who proposed a

statistical model for small fluctuations of the medium parameters and introduced

an approximate solution for frequencies well below the Biot critical frequency. We

derive frequency-dependent effective poroelastic parameters valid for any contrast

in medium parameters and for all frequencies where the effective model approach

is valid. We also derive low-frequency approximations of the effective parameters.

The frequency-dependent (fast) P-wave attenuation and transient point-source

responses are compared to those predicted by the full-frequency range version of

White’s model (Vogelaar and Smeulders, 2007) and to the analytical solution as

obtained using Floquet’s theory (Floquet, 1883). It appears that the effective

poroelastic model yields the proper P-wave attenuation even in situations where

the macroscopic attenuation mechanism plays a significant role.

The chapter is structured as follows. First, the basic equations of Biot’s theory

are introduced in Section 3.2. Then, the derivation of the effective porous medium

is given (Section 3.3, supported by Appendices 3.A and 3.B). Expressions for point-

source responses are derived in Section 3.4 (and Appendix 3.C), and numerical

results are presented in Section 3.5. Limitations of the effective poroelastic model

are discussed in Section 6.4 and conclusions are given in Section 3.7.

3.2 Biot theory overview

In this section, the basic equations of Biot’s theory (Biot, 1956a) expressed for the

displacement fields in porous media are introduced. The one-dimensional form of

the stress-strain relations read

−φp = Qu,z +RU,z,

−σ − (1− φ)p = Pu,z +QU,z.

(3.1)
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Here φ is the porosity, p is the pore fluid pressure, σ is intergranular stress, u is

the solid and U is the fluid displacements with respect to an absolute frame of ref-

erence. The comma stands for the spatial derivative. The poroelastic coefficients

P , Q, R are related to the porosity, the bulk moduli of the grains (Ks), fluid phase

(Kf ) and the drained matrix (Km), as well as to the shear modulus (µ), via the

following expressions:

P =
φKm + (1− φ)Kf (1− φ−Km/Ks)

φ+Kf (1− φ−Km/Ks) /Ks

+
4

3
µ,

Q =
φKf (1− φ−Km/Ks)

φ+Kf (1− φ−Km/Ks) /Ks

,

R =
φ2Kf

φ+Kf (1− φ−Km/Ks) /Ks

.

(3.2)

The momentum equations read

−σ,z − (1− φ)p,z = ρ11ü+ ρ12Ü + b ∗ (u̇− U̇),

−φp,z = ρ12ü+ ρ22Ü − b ∗ (u̇− U̇),

(3.3)

where a dot stands for a time-derivative, ∗ for temporal convolution, ρ11, ρ12 and

ρ22 are the real-valued density terms related to the porosity, the fluid density ρf ,

the solid density ρs and to the tortuosity α∞:

ρ11 = (1− φ)ρs − ρ12,

ρ12 = −(α∞ − 1)φρf ,

ρ22 = φρf − ρ12.

(3.4)

In the original low-frequency Biot’s theory Biot (1956a) the damping operator

b = b(t) is a time-independent viscous factor b0 = ηφ2/k0 , where η is the viscosity

of the fluid, and k0 is permeability. With the adoption of the correction to this

factor to account for dynamic effects (Johnson et al., 1987) the visco-dynamic

operator b̂ in the frequency domain reads:

b̂ = b0

√
1 + i

ω

2ωB
M, Re(b̂) > 0 for all ω. (3.5)

Here M is the parameter that depends on the geometry of the pores, permeability

and porosity. Following Johnson et al. (1987), we will assume M = 1 throughout
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the chapter. ωB = φη/(k0α∞ρf ) is the Biot critical frequency. A hat above a

quantity stands for frequency dependence. The transition to the frequency domain

is carried out by a Fourier transform defined as

f̂(ω) =

∞∫
−∞

exp(−iωt)f(t)dt. (3.6)

The transition back to the time domain is carried out by applying the inverse

Fourier transform

f(t) =
1

2π

∞∫
−∞

exp(iωt)f̂(ω)dω. (3.7)

The combination of the stress-strain relations (3.1) and the equations of motion

(3.3) leads to a set of equations in terms of the fluid (U) and solid (u) particle

displacements. These equations are solved in the frequency domain via seeking

a solution in the form û = Â exp(ikz), Û = B̂ exp(ikz). Substitution of these

expressions leads to a system of linear homogeneous equations for the amplitudes

Â, B̂, which has a non-trivial solution when the determinant of the system is zero:

(PR−Q2)− (P ρ̂22 +Rρ̂11 − 2Qρ̂12)
k2

ω2
+ (ρ̂11ρ̂22 − ρ̂2

12)
k4

ω4
= 0. (3.8)

Here frequency-dependent density terms are defined as:

ρ̂11 = ρ11 − ib̂/ω,

ρ̂12 = ρ12 + ib̂/ω,

ρ̂22 = ρ22 − ib̂/ω.

(3.9)

The dispersion equation (3.8) has four roots ±kP1, ±kP2 that correspond to the

wavenumbers of the up- and down-going fast and slow P-waves. The fluid-to-solid

amplitude ratios for both waves are:

β̂P1,P2 = −
Pk2

P1,P2 − ρ̂11ω
2

Qk2
P1,P2 − ρ̂12ω2

. (3.10)
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Figure 3.1: Left: periodically layered medium; right: its elementary cell.

Thus, for arbitrary excitation the displacement fields read

û(z) = Â1eikP1z + Â2eikP2z + Â3e−ikP1z + Â4e−ikP2z,

Û(z) = β̂P1(Â1eikP1z + Â3e−ikP1z) + β̂P2(Â2eikP2z + Â4e−ikP2z).

(3.11)

The amplitudes Â1 to Â4 are determined by the excitation and boundary condi-

tions. These expressions will be used in further derivations.

3.3 Effective poroelastic model for periodic lay-

ering

In this section, effective frequency-dependent poroelastic parameters are derived

to describe wave propagation in periodically stratified media normal to the stratifi-

cation. The periodic medium and its elementary cell are depicted in Fig. 3.1. The

thicknesses of the layers are denoted by lI and lII , and L = lI + lII is the period

of the system. Each of the layers I and II is homogeneous and is described by

Biot’s equations introduced in the previous section, and has its own set of material

properties contained in the coefficients of equations (3.2), (3.4) and (3.5).

Since we consider the period L much smaller than the wavelength, it is reason-

able to regard some elementary cell as a representative volume of the homogeneous

effective medium. Then the elastic moduli can be determined from oscillatory

compressional-stress tests. A similar approach has been used by White et al.

(1975), but with a different choice of boundary conditions; they chose a repre-

sentative elementary cell that consists of the halves of the layers and applied the



Chapter 3. 1-D poroelastic model for layered media 29

total stress continuity and no-flow conditions at the outer edges of the elementary

cell. Here, the full periodic cell is chosen and an oscillatory pressure p is applied

together with an oscillatory intergranular stress σ at the outer edges of the ele-

mentary cell, as depicted in Fig. 3.1 (right panel). We emphasize that, with this

choice (suggested by Dutta and Ode, 1979a), no kinematic condition restricting

the flow across the outer edges of the cell is applied; two phases, solid and fluid

displacements, remain in the effective medium, while the no-flow condition allows

for only one phase in the effective medium.

The solutions of Biot’s equations in each of the layers consist of up- and down-

going plane waves [as in eq. (3.11)]:

ûI,II =
4∑
i=1

ÂI,IIi exp(ikI,IIi z),

ÛI,II =
4∑
i=1

β̂I,IIi AI,IIi exp(ikI,IIi z).

(3.12)

Throughout the chapter the indices and superscripts I and II refer to the prop-

erties of the layers I and II, respectively. The wavenumbers kI,IIi for each of the

layers are found as the roots of the corresponding dispersion equations (3.8) and

the fluid-to-solid amplitude ratios β̂I,IIi are found according to relations (3.10).

In order to find the unknown amplitudes ÂI,IIi a system of eight linear algebraic

equations has to be solved that follow from the eight boundary conditions:

{ûI , ŵI , σ̂I , p̂I}|z=0 = {ûII , ŵII , σ̂II , p̂II}|z=0 ,

p̂I(−lI) = p̂, p̂II(lII) = p̂,

σ̂I(−lI) = σ̂, σ̂II(lII) = σ̂.

(3.13)

Here, the first four boundary conditions assume the continuity of intergranular

stress, pore pressure, solid particle displacement and fluid displacement relative to

the matrix ŵ = φ(Û − û) at the interface between the layers I and II (following

Deresiewicz and Skalak, 1963). The latter four conditions express the excitation

at the outer edges; they are thus different from those applied by White et al.

(1975) and Vogelaar and Smeulders (2007). The coefficients of the linear system

of equations are written out explicitly in Appendix 3.A.



30 Chapter 3. 1-D poroelastic model for layered media

As mentioned before, the elementary cell is regarded as a representative volume

of the homogenized effective medium. Thus, the strains of the elementary cell

û,z =
ûII(lII)− ûI(−lI)

L
, Û,z =

ÛII(lII)− ÛI(−lI)
L

(3.14)

can be regarded as the strains of the effective medium. They are related to the

intergranular stress and pore pressure according to Biot’s stress-strain relations

(3.1) ûe,z

Û e
,z

 = E−1
e

 σ̂

p̂

 , Ee =
1

φe

 Q̂e(1− φ̂e)− φ̂eP̂e R̂e − φ̂e(Q̂e + R̂e)

−Q̂e −R̂e

 .
(3.15)

Substitution of the amplitudes ÂI,IIi , which are found after solving the system of

equations from Appendix 3.A, into equations (3.12), and then substitution of the

result into (3.14), provides the following relations:

û,z = α1σ̂ + α2p̂,

Û,z = α3σ̂ + α4p̂.

(3.16)

Here α1 to α4 are frequency-dependent complex-valued coefficients. In order to

derive the effective Biot coefficients, equations (3.15) and (3.16) should be com-

pared. This leads to a system of four nonlinear algebraic equations, the solution

of which is

P̂e = − −α3α2 − α4α3 + α4α1 + α3
2

α3
2α2 − α3α1α2 − α4α1α3 + α4α1

2
,

Q̂e =
α3(α1 − α2)

α3
2α2 − α3α1α2 − α4α1α3 + α4α1

2
,

R̂e = − α1(α1 − α2)

α3
2α2 − α3α1α2 − α4α1α3 + α4α1

2
,

φ̂e =
α1 − α2

α1 − α3

.

(3.17)

These coefficients are the effective complex-valued frequency-dependent elastic

moduli and porosity of the effective poroelastic medium.

In the low-frequency regime, all effective models that capture the mesoscopic

attenuation mechanism predict similar behaviour of the inverse quality factor Q−1

of the fast compressional wave (Pride et al., 2003). In order to validate the ef-

fective coefficients (that are combined in Q−1) in the current effective poroelastic



Chapter 3. 1-D poroelastic model for layered media 31

model, we derive low-frequency analytical expressions using a perturbation method

described in Appendix 3.C. The terms of the expansion

Φ̂e = Φ0 + ωΦ1 + ω2Φ2 +O(ω3) (3.18)

can be found for each of the effective coefficients (3.17). The matrix E [eq. (3.15)]

containing the zeroth-order terms turns out to be a harmonic average of the ma-

trices for each of the layers, exactly like a single Young’s modulus for an elastic

solid (also known as Wood’s law):

E−1
0 =

lI
L

E−1
I +

lII
L

E−1
II . (3.19)

The analytical expressions for the first-order terms are quite big; they depend

on the properties of both layers, including the viscous terms. Rather simple

expressions can be obtained in the specific case of small inclusions, i.e., when

lII << lI , using Taylor series in lII . An expansion of the Gassmann modulus

Ĥe = P̂e + 2Q̂e + R̂e around ω = 0 reads:

Ĥe = H0 + iχbI0lIIω. (3.20)

Here, H0 = P0 + 2Q0 + R0, bI0 = (ηφ2/k0)I is the Biot damping factor of the first

layer, and the coefficient χ depends on elastic moduli and porosities of the layers

and is not presented here explicitly because of its size.

The theory of Biot predicts the low-frequency attenuation of the fast compres-

sional wave Q−1 to be proportional to permeability k0 (Berryman, 1986). However,

in media with mesoscopic heterogeneities the situation is different: the attenuation

is inversely proportional to the permeability (Pride et al., 2003); this is confirmed

for the current effective poroelastic model:

Q−1 = 2

∣∣∣∣∣Im(Ĥe)

Re(Ĥe)

∣∣∣∣∣ =
2χωηφ2lII
H0k0

. (3.21)

Here, for reasons of comparison Q−1 is defined as in Pride et al. (2004) for their

patchy saturation model; in the remainder of this chapter, a slightly different

definition of Q−1 is adopted.
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(a) (b)

Figure 3.2: Geometry of a periodically stratified poroelastic solid (a) and its
homogenized analogue (b)

3.4 Configuration and dynamic responses

The dynamic response predicted by the current effective poroelastic model is val-

idated by an exact solution (Floquet’s theory, Appendix 3.C) and compared with

the response predicted by the effective viscoelastic model proposed by Vogelaar

and Smeulders (2007); see next section. In this section, the specific configuration

and excitation are given, as well as the derivation of the dynamic responses for

different models.

3.4.1 Configuration

The configuration chosen for the simulations of wave propagation in different mod-

els is the typical case of partial saturation; it has been used in numerous studies,

starting from White et al. (1975). Two different fluids fully saturate the poroelas-

tic solid with the periodic zones in z− direction, as depicted in Fig. 3.2(a). Fig.

3.2(b) depicts the effective homogenized medium that is described either with one

single viscoelastic equation, or with the single set of Biot’s poroelastic equations,

both with the effective coefficients. The saturations of the fluids are sI = lI/L,

sII = lII/L. The dry rock properties are the same for both layers, and they do

not depend on depth z. This simple configuration allows to account for the effects

of fluid flow specifically.

At the top interface z = 0 a stress as a function of time is applied. The pore

pressure is assumed to be zero at z = 0 (free surface). Then, the boundary con-

ditions at the top interface for the exact solution and for the effective poroelastic
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model read

− σ|z=0 = f(t), p|z=0 = 0. (3.22)

For the viscoelastic model, there is only one boundary condition at the top inter-

face, namely, the continuity of the solid stress τ :

τ |z=0 = f(t). (3.23)

As source function, the Ricker wavelet is chosen:

f(t) = f0

(
1− 2π2f 2

R(t− t0)2
)

exp
(
−π2f 2

R(t− t0)2
)
. (3.24)

Here, f0 is a constant scaling coefficient with the dimension of stress (Pa), fR

is the central frequency of the wavelet and t0 is an arbitrary time shift chosen

such that the non-zero part of the wavelet lies within the positive domain t > 0;

only the components that are very small are left in the domain t < 0. The

dynamic responses of the media are compared far away from the source (in terms

of wavelengths) in order to capture the attenuation effects, at a distance zr below

the source.

3.4.2 Exact solution

The exact solution for the periodically layered half-space is obtained with the use

of Floquet’s theory (Floquet, 1883). For elastic composites, the procedure has

been implemented by Braga and Hermann (1992). For periodic poroelastic lay-

ering, Floquet’s theory has been applied by Norris (1993), but the full solution

is not present in that paper, as the author worked with low frequencies and only

with the fast P-wave mode. In most cases of interest, the low-frequency solution

suffices within the seismic frequency band. However, this is not always the case.

In particular, when the Biot critical frequency is relatively small so that the as-

sumption ω << ωB is violated in the seismic frequency band, the full solution is

required. Examples are shown in the next section. The procedure of obtaining

the exact solution, which contains two modes, in the frequency domain is given in

Appendix 3.C. In the examples provided in the next section, this solution is used

for validating the effective media at frequencies well below the stop and pass bands

typical for periodic structures, because the effective media cannot be applied at

higher frequencies where the assumption of the wavelength being much larger than

the period is violated. Nevertheless, the exact solution is valid for any frequency.
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3.4.3 Effective poroelastic model solution

The system of linear equations from Appendix 3.A is solved numerically (with

the application of the standard function of IMSL library for Fortran) for each

frequency. Then, the effective coefficients (3.17) are obtained. In order to find the

response of the effective poroelastic model Biot’s equations of motion are solved

first in the frequency domain using the derived effective coefficients. Then the

response in time domain is found by applying the inverse Fourier transform (3.7).

The effective density of the fluid is taken as an arithmetic average: ρef = sIρ
I
f +

sIIρ
II
f . The effective frequency-dependent density terms (3.9) are also determined

from arithmetic averages:

ρ̂ij = sI ρ̂
I
ij + sII ρ̂

II
ij . (3.25)

This is consistent with taking (η/k̂0)e = sI(η/k̂0)I + sII(η/k̂0)II as the effective

inverse fluid mobility that can be derived from Darcy’s law applied to the elemen-

tary cell in Fig. 3.1; cf. Schoemaker (2011). Here, for the individual layers, the

dynamic permeability k̂0 is defined as (Johnson et al., 1987):

k̂0 = k0

(√
1 + i

ω

2ωB
M + i

ω

ωB

)−1

. (3.26)

We note that, in the limiting case of a homogeneous medium, this dynamic per-

meability results in the frequency-dependent damping term b̂ given in (3.5), and

thus in the density terms ρ̂ij specified in (3.9).

The solution of Biot’s equations with the effective coefficients is thus found in

the form (3.11). The amplitudes of the up-going waves are zero due to the fact

that there are no sources at infinity, and all the field variables should go to zero at

infinity for a system with viscous damping (on account of the radiation condition).

Thus, only two amplitudes of the exponential terms exp(−ikeP1z) and exp(−ikeP2z),

where keP1,P2 are the effective fast and slow compressional wavenumbers, respec-

tively, and Im(keP1,P2) < 0, are to be found. The two boundary conditions (3.22)

determine the system of linear equations with the unknown amplitudes Â3 and

Â4:

(Q̂e + R̂eβ̂
e
P1)keP1Â3 + (Q̂e + R̂eβ̂

e
P2)keP2Â4 = 0,

i(P̂e + Q̂eβ̂
e
P1)keP1Â3 + i(P̂e + Q̂eβ̂

e
P2)keP2Â4 = f̂(ω),

(3.27)
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where f̂(ω) is the Fourier transform of the wavelet (3.24). Â3 and Â4 are easily

found from this system of equations:

Â3 =
i(Q̂e + R̂eβ̂

e
P2)f̂

keP1(P̂eR̂e − Q̂2
e)(β̂

e
P1 − β̂eP2)

Â4 = − i(Q̂e + R̂eβ̂
e
P1)f̂

keP2(P̂eR̂e − Q̂2
e)(β̂

e
P1 − β̂eP2)

.

(3.28)

3.4.4 Effective viscoelastic model solution

Following Vogelaar and Smeulders (2007), the effective viscoelastic model defines

the effective frequency-dependent bulk modulus Ĥ. The wave propagation in the

effective medium is described with the viscoelastic wave equation

− ρω2û− Ĥû,zz = 0, (3.29)

where the effective density ρ is an arithmetic average of the fluid and solid densities

ρI,IIf and ρI,IIs in each of the layers, defined as

ρ = sI
(
(1− φ)ρIs + φρIf

)
+ sII

(
(1− φ)ρIIs + φρIIf

)
. (3.30)

The solution of the equation (3.29) in the frequency domain can be found in

the same way as for the poroelastic model. Only a down-going wave is allowed

due to the same radiation condition:

û = Â exp(−ikz), k = ω

√
ρ/Ĥ, Im(k) < 0. (3.31)

The excitation is the same as in the poroelastic model. The amplitude Â is found

from the boundary condition (3.23) in the frequency domain:

τ̂ |z=0 = f̂(ω) = Ĥû,z|z=0 = −ĤÂik ⇒ Â =
if̂(ω)

Ĥk
. (3.32)

3.5 Results

In this section, the results of simulations and comparison of the dynamic responses

are presented. The sets of chosen material properties for the solid phase are given

in Table 3.1. They represent a typical porous rock with stiff frame and high Biot
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Parameter Notation Units Rock Sand 1 Sand 2 Sand 3 Sand 4
Density of solid grains ρs kg/m3 2650 2650 2650 2690 2650
Bulk modulus of
solid grains Ks GPa 40 36 36 32 40
Bulk modulus of frame Km GPa 12.7 0.22 0.044 0.044 0.2
Porosity φ – 0.15 0.35 0.4 0.38 0.38
Permeability k0 m2 10−13 10−10 10−10 2.5·10−11 6.49·10−12

Shear modulus µ GPa 20.3 0.1 0.026 0.03 0.12
Tortuosity α∞ – 1 1.25 1.25 1.35 1.25
Biot critical frequency

(100% water saturation)
ωB
2π

Hz 2.4 · 105 446 509 1792 7514

Table 3.1: Sets of material properties chosen for simulations.

Parameter Notation Units Water Gas
Density ρf kg/m3 1000 140
Bulk modulus Kf GPa 2.25 0.056
Viscosity η Pa · s 0.001 0.00022

Table 3.2: Mechanical properties of the sample pore fluids: water and gas.

(a) (b)

Figure 3.3: Inverse quality factor Q−1 (a) and frequency spectrum of the
transmission response |û| (b). Rock, L=0.1m, gas saturation 10%. On both

plots all three lines coincide.

critical frequency (Rock), and a number of sands ranging from unconsolidated to

weakly consolidated with much lower Biot critical frequency for which we expect

different behavior of the effective poroelastic and viscoelastic models. The refer-

ences for each of the sets are given in the text below. Pore fluid and gas properties

are listed in Table 3.2. They are taken from Gelinsky and Shapiro (1997). The

following parameters are chosen for the Ricker wavelet [eq. (3.24)]: t0 = 0.022

s, fR = 50 Hz, f0 = 1 GPa. The position of the receiver is chosen at a distance

zr = 103 · L below the source.
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(a) (b)

Figure 3.4: Inverse quality factor Q−1 (a) and frequency spectrum of the
transmission response |û| (b). Sand 1, L=0.1m, gas saturation 10%.

The first set of material properties from Table 3.1 (Rock) is taken from Gelinsky

and Shapiro (1997). It is a porous rock with high Biot critical frequency (well

outside the seismic range) and well consolidated. For a gas saturation of 10%, the

inverse quality factor Q−1 = 2 |Im(keP1)/Re(keP1)| (where keP1 is the fast P-wave

wavenumber) versus frequency f = ω/(2π) is depicted in Fig. 3.3(a). As one can

see from the plot, the responses of the effective poro- and viscoelastic models (gray

solid line and black dotted line, respectively) and the exact solution (black circles)

almost coincide. In agreement with this prediction, we find that the magnitudes

of the responses in the frequency domain (the absolute values of the solid particle

displacement) of all three models coincide (see Fig. 3.3(b)).

Sand 1 from Table 3.1 is an example of coarse sand. It has much higher

permeability than Rock and, as a consequence, much lower value of the Biot

critical frequency that is of the same order as the frequency of excitation. The

set of physical properties is taken from Turgut and Yamamoto (1990). Because

of the lack of data of tortuosity for this sand, it is assumed to be the same as for

Sand 2. As one can see in Fig. 3.4, the agreement between the attenuations and

responses predicted by the models is violated for Sand 1. There is a large difference

between the models in the predicted attenuations [Fig. 3.4(a)]. The poroelastic

model predicts practically the same attenuation as the exact solution over a broad

frequency range; deviations occur with increasing frequency, but that is expected

because the associated wavelengths get smaller so that the effective model becomes

inappropriate. However, the viscoelastic model significantly underestimates the

attenuation at all frequencies where the effective-model approach is supposed to
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be valid. As a result, the magnitude of the response of the viscoelastic model

differs from that of the exact solution and the poroelastic model [Fig. 3.4(b)],

while the latter two coincide. The low value of Biot critical frequency in case

of Sand 1 implies that the frequency dependence of the visco-dynamic operator

b̂ that is contained in the effective densities (3.25) [cf. (3.9) for a homogeneous

medium] starts to play a role, and that the macroscopic attenuation mechanism

gives a non-negligible contribution to the damping of the propagating wave, which

is not captured by the effective viscoelastic model. The latter model only captures

the mesoscopic mechanism and does not allow fluid flow on the macroscopic scale

due to the no-flow boundary conditions at the outer edges of the representative

elementary cell.

One can notice that different frequency ranges are shown in the plots of the

attenuations and responses. The frequency range in the plots of the responses

corresponds to the width of the frequency spectrum of the excitation wavelet. Rel-

atively low frequencies have been chosen for the excitation wavelet to demonstrate

realistic responses of the different models at a certain depth (100 m). In principle,

the difference between the predictions of the models varies with frequency, ratio of

inhomogeneities (gas saturation) and distance from the source. The attenuation

plots show the difference between the models at a broader frequency range and

provide an insight into possible deviations in the magnitudes of the responses at

higher frequencies. In most of the plots [Figs. 3.4(a), 3.5(a), 3.7(a), 3.8(a), 3.9(b)]

the predictions of attenuations by the effective poroelastic model start to deviate

from the predictions of the exact solution at higher frequencies. This is due to the

violation of the effective medium approach: the wavelength of a propagating wave

becomes shorter (compared to the period of the system).

The next example (Sand 2 from Table 3.1) is also a high-permeable material

with low Biot critical frequency which has weaker frame than Sand 1. It is an un-

consolidated sand sediment. This set of material properties is taken from Williams

(2001) keeping only real parts of the bulk moduli. The inverse quality factor for

gas saturation 10% is depicted in Fig. 3.5(a). The poroelastic model predicts the

same attenuation as the exact solution at all frequencies of interest for the current

configuration (where the effective medium approach is valid). The magnitudes of

the responses for different saturations are depicted in Figs. 3.5(b), 3.6(a)–3.6(d).

As one can notice, the difference in the magnitudes of the responses increases

with the increase of gas saturation. Again, the viscoelastic model underestimates

attenuation for all gas saturations, while the poroelastic model is in agreement
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(a) (b)

Figure 3.5: Inverse quality factor Q−1 (a) and frequency spectrum of the
transmission response |û| (b). Sand 2, L=0.1m, gas saturation 10%.

(a) (b)

(c) (d)

Figure 3.6: Frequency spectrum of the transmission response |û| for gas sat-
urations (a) 30%; (b) 50%; (c) 70%; (d) 90%. Sand 2, L=0.1m.
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(a) (b)

Figure 3.7: Inverse quality factor Q−1 (a) and frequency spectrum of the
transmission response |û| (b). Sand 3, L=0.1m, gas saturation 10%.

(a) (b)

Figure 3.8: Inverse quality factor Q−1 (a) and frequency spectrum (b). Sand
3, L=0.1m, gas saturation 90%.

with the exact solution. The viscoelastic model underestimates the attenuation

by almost a factor two for high gas saturation [Fig. 3.6(d)].

Sand 3 has been chosen as an example of a weakly consolidated material with

lower permeability and higher Biot critical frequency than in the previous exam-

ples of sands. This set of material properties has been taken from Hefner and

Jackson (2010). The parameters of this sand are referred to as SAX99 in the

mentioned paper; they were obtained during the sediment acoustics experiment in

1999. The predicted attenuations for gas saturations of 10% and 90% are depicted

in Figs. 3.7(a) and 3.8(a), respectively. As in the previous examples, the poroelas-

tic model predicts practically the same attenuation as the exact solution, and the
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(a) (b)

(c)

Figure 3.9: Inverse quality factor Q−1 for gas saturation 10% (a) and for gas
saturation 90% (b); frequency spectrum for gas saturation 90% (c). Sand 4,

L=0.1m,

viscoelastic model significantly underestimates the attenuation. The difference in

the magnitude of the responses for gas saturation 10% [Fig. 3.7(b)] is not as large

as for Sand 2 [Fig. 3.5(b)], but it also increases with the increase of gas saturation

[Fig. 3.8(b)].

As can be concluded based on the examples shown above, the differences in

predictions of the models become less pronounced with the decrease of permeability

(increase of Biot critical frequency; cf. Sands 2 and 3) and increase of bulk and

shear moduli of the frame (for materials with equal permeability, cf. examples Sand

1 and Sand 2). This observation is confirmed by the results for Sand 4 (see Fig. 3.9)

that has even lower permeability than Sand 3 and stiffer frame. This set of material

properties has been taken from Chotiros (1995), where it is referred to as Ottawa

sand. As in the previous examples, the difference between the models is more

pronounced for higher gas saturations. The inverse quality factor for saturation

10% is depicted in Fig. 3.9(a). The poroelastic model and the exact solution

are in agreement; the viscoelastic model slightly underestimates the attenuation

with increasing frequency. However, this would hardly affect the magnitude of the
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responses for the chosen configuration (the corresponding plot is left out). The

difference between all three models is significant for a gas saturation of 90% [Fig.

3.9(b)]. At low frequencies the poroelastic model still gives the same result as the

exact solution, while the viscoelastic model predicts less attenuation. At higher

frequencies, where the effective medium approach is violated, all solutions give

different results. Still, the prediction of the poroelastic model is closer to the exact

solution than that of the viscoelastic model. The response in the frequency domain

for a gas saturation of 90% is depicted in Fig. 3.9(c). A higher central frequency

(200 Hz) of the Ricker wavelet is taken for this example in order to distinguish

differences between the responses. As can be expected based on the attenuation

plot, the viscoelastic model overestimates the magnitude of the response. The

results for Sand 4 show that the viscoelastic model can still be less accurate for

materials with Biot critical frequency much higher than the frequency of excitation,

but this inaccuracy has a much less pronounced effect on the magnitude of the

responses in the frequency range of interest for seismic applications. For materials

with much higher Biot critical frequency and stiffer frame, like Rock from the first

example, both effective viscoelastic and poroelastic models are in agreement with

each other and the exact solution.

3.6 Discussion

The use of an effective medium requires that the involved wavelengths are much

larger than the period L of the medium. The weak point of the current effective

poroelastic model is that the wavelength of the slow P-wave can be very small

(i.e., of the order of the period of the system or even smaller), which thus violates

the requirement. However, this inconsistency hardly affects the response of the

effective poroelastic medium as the contribution of the slow P-wave to the total re-

sponse is generally very small at seismic frequencies. Possibly superior approaches

of homogenization that circumvent the inconsistency exist, but the present analy-

sis shows that the choice of the pressure continuity condition in (3.13) at the edge

of the representative elementary cell, rather than the no-flow condition, can be im-

portant for the behavior of the effective model. The no-flow boundary condition

is in fact quite restrictive as it excludes the macroscopic attenuation mechanism

from the effective model (see also Sections 3.1 and 3.5). This restriction is thus cir-

cumvented by applying the pressure continuity condition suggested by Dutta and

Ode (1979a), and this is particularly important when dealing with high permeable
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materials such as weak sandstones, unconsolidated and weakly consolidated sandy

sediments. The effective poroelastic model, or the exact solution, should be used

when the signal frequency is of the same order as the Biot critical frequency. The

predictions of the effective viscoelastic model are also less accurate for materials

with weak frame.

3.7 Conclusions

The effective viscoelastic model of White, which consists of a homogeneous porous

frame saturated by gas and fluid layers that are organized in a periodic way, has

been the starting point of many studies in the research on wave attenuation in

partially saturated media (i.e., media having gas inclusions). The model describes

wave propagation in the direction normal to the layering and employs the so-called

no-flow boundary condition at the outer edges of the representative elementary cell

of the effective medium. In this chapter we derived an effective medium for the

same configuration, but employed the pressure continuity condition rather than

the no-flow condition, as suggested by Dutta and Ode (1979a). This choice leads to

an effective poroelastic model that has two degrees of freedom, the frame and fluid

displacements, and that allows the existence of both the fast and slow compres-

sional waves. We derived frequency-dependent effective poroelastic parameters as

well as their low-frequency approximations. The numerical results show that the

frequency-dependent attenuation of the fast compressional wave and the transient

point-source response are in agreement with the exact solution obtained using

Floquet’s theory, both for materials with stiff and weak frames, and for materials

with high and low Biot critical frequency. For materials with weak frame, the

predictions of White’s model are less accurate. In the case of low Biot critical fre-

quency, White’s effective viscoelastic model fails as it does not incorporate Biot’s

wavelength-scale attenuation mechanism. This mechanism is, however, captured

by the current effective poroelastic model due to the application of the pressure

continuity condition that allows relative fluid-to-solid motion at the outer edges

of the representative element, and consequently on the wavelength scale. We ex-

pect that the analysis in this chapter has consequences for the applicability of the

other models that employ the no-flow boundary conditions, particularly for wave

propagation through relatively high permeable (low Biot critical frequency) ma-

terials and materials with weak frame. For well-consolidated materials with stiff

frame and with Biot critical frequency much higher than the signal frequency, the
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newly introduced model is in agreement with the previously introduced viscoelastic

model and the exact solution.

3.A Matrix of coefficients

In this appendix the coefficients of the system of linear algebraic equations Ax = B

that follow from the boundary conditions (3.13) are written out. A is the 8 × 8

matrix of the coefficients, x is a vector of unknown amplitudes ÂI,IIi :

x = [ÂI1 ÂI2 ÂI3 ÂI4 ÂII1 ÂII2 ÂII3 ÂII4 ]T. (3.33)

The amplitudes ÂI,IIi are the amplitudes of the displacements ûI,II , ÛI,II :

ûI,II = ÂI,II1 eikI,IIP1 z + ÂI,II2 eikI,IIP2 z + ÂI,II3 e−ikI,IIP1 z + ÂI,II4 e−ikI,IIP2 z,

ÛI,II = β̂I,IIP1 Â
I,II
1 eikI,IIP1 z + β̂I,IIP1 Â

I,II
2 eikI,IIP2 z + β̂I,IIP2 Â

I,II
3 e−ikI,IIP1 z + β̂I,IIP2 Â

I,II
4 e−ikI,IIP2 z.

(3.34)

B is a vector containing the right-hand side of the system:

B = [σ̂ p̂ σ̂ p̂ 0 0 0 0]T. (3.35)

The coefficients Aij of the matrix A read:

A11 = ikIP1(QI − φI(PI +QI) + (RI − φI(QI +RI))β̂
I
P1) exp(−ikIP1lI)/φI ,

A12 = ikIP2(QI − φI(PI +QI) + (RI − φI(QI +RI))β̂
I
P2) exp(−ikIP2lI)/φI ,

A13 = −ikIP1(QI − φI(PI +QI) + (RI − φI(QI +RI))β̂
I
P1) exp(ikIP1lI)/φI ,

A14 = −ikIP2(QI − φI(PI +QI) + (RI − φI(QI +RI))β̂
I
P2) exp(ikIP2lI)/φI ,

A15 = A16 = A17 = A18 = 0.

(3.36)
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A21 = −ikIP1(QI +RI β̂
I
P1) exp(−ikIP1lI)/φI ,

A22 = −ikIP2(QI +RI β̂
I
P2) exp(−ikIP2lI)/φI ,

A23 = ikIP1(QI +RI β̂
I
P1) exp(ikIP1lI)/φI ,

A24 = ikIP2(QI +RI β̂
I
P2) exp(ikIP2lI)/φI ,

A25 = A26 = A27 = A28 = 0.

(3.37)

A31 = A32 = A33 = A34 = 0,

A35 = ikIIP1(QII − φII(PII +QII) + (RII − φII(QII +RII))β̂
II
P1) exp(ikIIP1lII)/φII ,

A36 = ikIIP2(QII − φII(PII +QII) + (RII − φII(QII +RII))β̂
II
P2) exp(ikIIP2lII)/φII ,

A37 = −ikIIP1(QII − φII(PII +QII) + (RII − φII(QII +RII))β̂
II
P1) exp(−ikIIP1lII)/φII ,

A38 = −ikIIP2(QII − φII(PII +QII) + (RII − φII(QII +RII))β̂
II
P2) exp(−ikIIP2lII)/φII .

(3.38)

A41 = A42 = A43 = A44 = 0,

A45 = −ikIIP1(QII +RII β̂
II
P1) exp(ikIIP1lII)/φII ,

A46 = −ikIIP2(QII +RII β̂
II
P2) exp(ikIIP2lII)/φII ,

A47 = ikIIP1(QII +RII β̂
II
P1) exp(−ikIIP1lII)/φII ,

A48 = ikIIP2(QII +RII β̂
II
P2) exp(−ikIIP2lII)/φII .

(3.39)

A51 = A53 = φI(1− β̂IP1),

A52 = A54 = φI(1− β̂IP2),

A55 = A57 = −φII(1− β̂IIP1),

A56 = A58 = −φII(1− β̂IIP2).

(3.40)

A61 = A62 = A63 = A64 = 1,

A65 = A66 = A67 = A68 = −1.

(3.41)
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A71 = −A73 = −ikIP1(QI +RI β̂
I
P1)/φI ,

A72 = −A74 = −ikIP2(QI +RI β̂
I
P2)/φI ,

A75 = −A77 = ikIIP1(QII +RII β̂
II
P1)/φII ,

A76 = −A78 = ikIIP2(QII +RII β̂
II
P2)/φII .

(3.42)

A81 = −A83 = ikIP1(QI − φI(PI +QI) + (RI − φI(QI +RI))β̂
I
P1),

A82 = −A84 = ikIP2(QI − φI(PI +QI) + (RI − φI(QI +RI))β̂
I
P2),

A85 = −A87 = −ikIIP1(QII − φII(PII +QII) + (RII − φII(QII +RII))β̂
II
P1),

A86 = −A88 = −ikIIP2(QII − φII(PII +QII) + (RII − φII(QII +RII))β̂
II
P2).

(3.43)

3.B Low-frequency approximation of the effec-

tive coefficients

In this appendix a perturbation approach is presented which is used to derive the

low-frequency approximations (3.18) of the effective coefficients (3.17). For this

purpose, the displacement fields are expanded in the Taylor series:

û = u0 + ωu1 + ω2u2 +O(ω3),

Û = U0 + ωU1 + ω2U2 +O(ω3).

(3.44)

The visco-dynamic operator b̂ contained in the density terms ρ̂ij is also expanded

in a series of ω:

b̂ = b0

√
1 + i

ω

2ωB
= b0

(
1 +

iω

4ωB
+

ω2

32ω2
B

+O(ω3)

)
. (3.45)

These expansions are substituted into Biot’s equations in the frequency domain.

Then the equations are solved for each power of ω with the boundary conditions

(3.13). The strains of the elementary cell are found as linear combinations of σ̂ and

p̂, as before [eq. (3.16)], but now the analytical expressions for the low-frequency
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terms of the coefficients α1 to α4 can be obtained:

û(lII)− û(−lI)
L

= (a10 + ωa11 + ω2a12 + ...)σ̂ + (a20 + ωa21 + ω2a22 + ...)p̂,

Û(lII)− Û(−lI)
L

= (a20 + ωa21 + ω2a22 + ...)σ̂ + (a40 + ωa41 + ω2a42 + ...)p̂.

(3.46)

All the coefficients aij are independent of frequency, but do depend on the proper-

ties of both layers, and can be found analytically. Then the terms of the expansions

of the effective coefficients [eq. (3.18)] can be obtained analytically as combina-

tions of the coefficients aij. The explicit expressions are not presented here for

reasons of brevity. They can be derived with the use of any symbolic software.

3.C Floquet solution

In this appendix the exact solution for a periodically layered porous half-space

with excitation at the top (see Fig. 2a) is derived by the use of Floquet’s theory

(Floquet, 1883). The derivation is similar to that given in Braga and Hermann

(1992) for an elastic layered composite.

The equations of motion and stress-strain relations (3.1) – (3.3) can be rewrit-

ten in the space-frequency domain into a linear differential equation of the first

order in the following matrix form:

∂ f̂(z)

∂z
= iN̂(z)f̂(z), (3.47)

where f̂ = [iωû, iωŵ, σ̂, p̂] is a vector containing field variables, namely, solid par-

ticle velocity, relative velocity, intergranular stress and pore pressure. All the

elements of this vector are continuous at the interfaces between the layers (Dere-

siewicz and Skalak, 1963). N̂ is a 4 × 4 matrix of coefficients that describe the
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material properties:

N̂ =

 0 Na

N̂b 0

 ,
Na =

1

PR−Q2

 −R φ(R +Q)−R

φ(Q+R) φ(Q+R)− φ2(P + 2Q+R)

 ,
N̂b =

ω2

φ

 ρ̂12(1− 2φ) + ρ̂22(1− φ)− φρ̂11 (ρ̂22(1− φ)− φρ̂12)/φ

−(ρ̂12 + ρ̂22) −ρ̂22/φ

 .
(3.48)

The elements of the matrix N̂ are piecewise constant functions of the coordinate z,

they are constant inside each layer and periodic with the period L = lI+lII . Thus,

equation (3.47) is a system of four linear differential equations with a periodic

matrix of coefficients. Its solution can be expressed via the fundamental matrix

of solutions X̂:

f̂(z) = X̂(z)c, (3.49)

where c is a column of constants to be found from the boundary conditions. Ac-

cording to Floquet’s theory, the matrix X̂(z) can be found in the form

X̂(z) = F̂(z) exp(iÂz), (3.50)

where F̂(z+L) = F̂(z) is a yet unknown periodic matrix and matrix Â is constant

(with respect to z).

First, the matrix Â has to be found. In each of the layers k = 1, 2 the solution

of equation (3.47) is

f̂k(z) = M̂k(z)f̂k(0), (3.51)

where M̂k(z) = exp(iN̂kz) and M̂k(0) = I, where I is the identity matrix. Sum-

mation converntion does not apply here. By analogy, the solution of equations

(3.47) for the stack of periodic layers can be expressed in the same manner:

f̂(z) = P̂(z)f̂(0). (3.52)
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It follows from (3.52) that P̂(0) = I. The solution f̂(z) can be also expressed via

the fundamental matrix (3.50) as

f̂(z) = F̂(z) exp(iÂz)f̂(0). (3.53)

Then, the periodic matrix F̂(L) = F̂(0) = I and P̂(L) = exp(iÂL). On the other

hand, using (3.51), the vector f̂(L) can be expressed as

f̂(L) = M̂2(lII)M̂1(lI)f̂(0). (3.54)

Thus, the matrix A can be found from the following exponential relations:

P̂(L) = exp(iÂL) = exp(iN̂2lII) exp(iN̂1lI). (3.55)

The eigenvalues kFi of the matrix Â are the so-called Floquet wavenumbers.

They are exponentially related to the eigenvalues τi of the matrix exp(iÂL):

τi = exp(ikFi L).

Next, the periodic function F̂(z) is determined. First, the local coordinate zn

is introduced:

zn = z − (n− 1)L, 0 ≤ zn ≤ L, n = 1, 2, ... (3.56)

The following equalities hold true (cf. (3.52) and (3.53)):

P̂(z) = F̂(z) exp(iÂz) = F̂(zn) exp(iÂzn) exp(iÂL(n− 1)) =

P̂(zn) exp(iÂL(n− 1)).

(3.57)

After right-multiplying (3.57) by exp(−iAz) one recognizes

F̂(z) = P̂(zn) exp(−iÂzn). (3.58)

The matrix P̂(zn) is the propagator matrix at a distance zn from the interface

between the unit cells (n− 1) and n. From (3.51) and (3.52) it can be concluded

that

P̂(zn) =


M̂1(zn), 0 ≤ zn ≤ lI ;

M̂2(zn − lI)M̂1(lI), lI ≤ zn ≤ L.

(3.59)

Hence, the periodic matrix F̂(z) is determined.
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Finally, the solution for a periodically layered system, with a unit cell consisting

of two layers, is found in the space-frequency domain. By combining (3.53), (3.56)

and (3.58) the solution f̂(z) is expressed in the following way:

f̂(z) = F̂(z) exp(iÂz)f̂(0) = P̂(zn) exp(iÂL(n− 1))f̂(0). (3.60)

The next step towards the calculation of the field variables contained in f̂ is to

find the four unknowns f̂(0). The displacement field in the first layer 0 ≤ z ≤ lI is

simply a solution of Biot’s equations (3.11). Then the vector f̂(0) can be expressed

as a product of a matrix of coefficients and a column of unknown amplitudes Â1

to Â4:

f̂(0) =



iω iω iω iω

iωφI(β̂
I
P1 − 1) iωφI(β̂

I
P2 − 1) iωφI(β̂

I
P1 − 1) iωφI(β̂

I
P2 − 1)

gP1 gP2 −gP1 −gP2

hP1 hP2 −hP1 −hP2





Â1

Â2

Â3

Â4


,

(3.61)

where

gP1,P2 =
−ikIP1,P2

φI

(
φIPI −QI + φIQI + β̂IP1,P2(φIRI + φIQI −RI)

)
,

hP1,P2 =
−ikIP1,P2

φI

(
QI + β̂IP1,P2RI

)
.

(3.62)

There are four equations to determine the four complex-valued amplitudes Âi.

The first two equations come from the boundary conditions at the top interface

(3.22) that assign the values for the third and the fourth components of the vector

f̂ . The second two come from the elimination of the up-going Floquet waves in the

solution (3.60): as there are no sources of energy at any place below the top of the

half-space z = 0, the field variables (like displacements) should tend to zero when

z → ∞ (not to some finite value due to the presence of viscous damping in the

system). Thus, the coefficients of the exponential terms in (3.60) that correspond

to the up-going Floquet waves (there are two of them, the slow and the fast P

waves) should be zeros, and these conditions provide another two equations to

solve for the unknown amplitudes.



Chapter 4

Effective model for wave

propagation in porous media with

spherical inclusions

In this chapter an effective model is proposed to describe dispersion and attenua-

tion in porous media with heterogeneities distributed as periodic spherical inclu-

sions. Both host medium and the inclusion are fully-saturated poroelastic solids,

with different physical properties. This model is an extension of White’s original

model to a two-phase effective poroelastic medium governed by Biot’s equations

with frequency-dependent coefficients that describe the mesoscopic-scale attenu-

ation mechanism. In addition, Biot’s global-flow attenuation is also captured by

the proposed effective model, contrary to White’s model. The attenuation and

dispersion predicted by both models are compared. It is shown that the new

model is advantageous for highly permeable and weak-frame media where Biot’s

global-flow mechanism is not negligible.

4.1 Introduction

Mesoscopic-scale heterogeneities (i.e., those larger than the pore and grain sizes

but smaller than the wavelength), cause significant attenuation of seismic waves

in porous media. Heterogeneities can occur in fluid or frame properties. It is

The results discussed in this chapter were presented at 74th SEG Annual Meeting, Denver,
USA, October 26-31, 2014
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widely believed that wave-induced fluid flow is the dominant mechanism of seismic

attenuation in these cases; a passing wave induces a pressure gradient on the sub-

wavelength scale and drives the so-called mesoscopic flow (Müller and Gurevich,

2005, Müller et al., 2010). Effective-medium approaches are widely used to model

mesoscopic-scale effects in heterogeneous systems; it saves computational time.

Moreover, the effective moduli can provide insight into the sensitivity of the wave

propagation to the changes in medium parameters.

The patchy-saturation models of White et al. (1975) and White (1975) pro-

vide low-frequency approximations of the effective P-wave moduli for periodically

layered media and media with a periodic distribution of spherical inclusions, re-

spectively. In both cases, the significance of the wave attenuation due to inhomo-

geneities in the fluid content is emphasized. The models and their variations have

been used in numerous studies (Dutta and Ode, 1979a, Johnson, 2001, Carcione

et al., 2003, Carcione and Picotti, 2006, Vogelaar and Smeulders, 2007, Vogelaar

et al., 2010, Zhang et al., 2014). This class of models describe, in fact, effective

one-phase media; they do not account explicitly (i.e., on the macroscale) for the

existence of the slow P-wave and relative fluid-solid motion. In addition, they do

not take into account Biot’s global-flow attenuation mechanism. This mechanism

is in many practical situation negligible at seismic frequencies. However, as re-

ported in the previous chapter, its contribution to the seismic attenuation cannot

be neglected for materials with high permeability (e.g., sandy sediments with weak

frame). In this study, we propose an effective poroelastic model for periodically

distributed spherical inclusions that captures both Biot’s attenuation mechanism

and the attenuation caused by the presence of mesoscopic-scale heterogeneities. It

is a generalization of White’s model for spherical inclusions.

4.2 Periodic-cell problem

4.2.1 Formulation of the problem

We consider a porous medium with periodically distributed spherical inclusions

(Figure 4.1). Each inclusion (blue sphere in Figure 4.1) is located at the center

of a cube formed by a host medium. Wave motions in the host medium and the

inclusion are described by Biot’s equations of poroelasticity (Biot, 1956a, 1962)

with different physical properties (differences can occur in solid frame properties,

saturating fluid, or both). A cube with the inclusion composes a representative
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Figure 4.1: Geometry of the configuration (top), the periodic cell and its
model (bottom).

volume element of such a medium. For the sake of simplicity, the cube is approx-

imated by a sphere, depicted in grey in Figure 4.1 (bottom). This approximation

was proposed by White (1975). As a result, the two concentric spheres form a

representative volume element, where the volume of the outer sphere is the same

as the volume of the initial cube. The radius of the inclusion (inner sphere) is a,

and the radius of the outer sphere is b (see Figure 4.1). The ratio of the volume

of the inclusion to the volume of the unit cell is defined as s = a3/b3. The size

of the initial cubic volume element is b′. Equality of the volumes of the sphere

with radius b and the cube with size 2b′ provides the relation between these two

parameters: b′ ≈ 0.8b. The inclusions are not supposed to have common inter-

faces. Therefore, there is a limitation on the volume ratio values: s < 52%. For

values above 52%, the inclusions from the neighbouring cells will be in contact,

while their interaction is not taken into account in the model.

The cell problem is defined as follows. In the first test, an oscillatory harmonic

fluid pressure is applied at the outer interface of the cell (Figure 4.2(a)), and

in the second test an oscillatory harmonic intergranular stress is applied (Figure

4.2(b)). The boundary conditions used to solve for the response of the cell are

the continuity of total stress, pore fluid pressure, solid displacement and relative

fluid-to-solid displacement at the inner interface r = a, and the continuity of total

stress and pore fluid pressure at the outer interface r = b. This formulation is

different from the one used in White’s model (White, 1975), where the total stress
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(a) (b)

Figure 4.2: Periodic cell of the heterogeneous porous medium subject to an
oscillatory fluid pressure 4.2(a) and intergranular stress 4.2(b).

is applied at the interface r = b and a no-flow condition replaces the pressure

continuity condition. It was noted by Dutta and Seriff (1979) that the choice

of boundary conditions made by White is not unique. Our study thus presents

an alternative formulation of the cell problem. This formulation enables us to

derive effective poroelastic moduli rather than the effective viscoelastic modulus

of White.

4.2.2 Solution to the periodic-cell problem

Biot’s theory is used to describe wave motions in the host medium and the inclu-

sion. The equations of motion in the frequency domain (Biot, 1956a, 1962), where

the Fourier transform is used as defined in equation (2.12), read:

τ̂ij,j = −ω2 (ρûi + ρf ŵi) ,

−p̂,i = −ω2 (ρf ûi + m̂ŵi) .

(4.1)

The stress-strain relations read

τ̂ij = (E1 − 2µ)êkkδij + E2ε̂kkδij + 2µeij,

−p̂ = E2êkk + E3ε̂kk.

(4.2)

In equation (4.2), p̂ is the pore fluid pressure, τ̂ij is the total stress, and the

elements of the small-strain tensors ê and ε̂ are defined as

êij =
1

2
(ûj,i + ûi,j) , ε̂ij =

1

2
(ŵj,i + ŵi,j) . (4.3)
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The visco-dynamic factor m̂ in equation (4.1) reads

m̂ =
α∞ρf
φ
− i

ω

η

k0

√
1 + i

ω

2ωB
, (4.4)

where the high-frequency correction to Biot’s viscous factor by Johnson et al.

(1987) is adopted. The real part of the square root is chosen positive for all fre-

quencies, and k0 is Darcy permeability of the medium. Biot’s critical frequency

ωB = φη/(k0α∞ρf ) separates the regimes where inertial and viscous forces dom-

inate the fluid flow. The density ρ = (1 − φ)ρf + φρs, where ρs and ρf are the

densities of the solid grains and fluid, respectively, and φ denotes the porosity; η is

fluid viscosity, α∞ is the tortuosity; ûi is the displacement of the solid phase, and

ŵi is relative fluid-to-solid displacement ŵi = φ(Ûi− ûi), where Ûi is the displace-

ment of the fluid phase. The coefficients E1, E2 and E3 are the elastic parameters

as used in Biot’s theory:

E1 = P + 2Q+R, E2 =
Q+R

φ
, E3 =

R

φ2
, (4.5)

where

P =
φKm + (1− φ)Kf (1− φ−Km/Ks)

φ+Kf (1− φ−Km/Ks) /Ks

+
4

3
µ,

Q =
φKf (1− φ−Km/Ks)

φ+Kf (1− φ−Km/Ks) /Ks

,

R =
φ2Kf

φ+Kf (1− φ−Km/Ks) /Ks

.

(4.6)

In equations (4.5) and (4.6) Ks, Kf and Km are the bulk moduli of the solid

grains, fluid and the drained frame matrix, respectively; µ is the shear modulus of

the drained frame.

We consider the radial motions û(r, ω) and ŵ(r, ω). The equations of motion

(4.1) combined with the stress-strain relations (4.2) in spherical coordinates read

E1
∂

∂r

(
∂û

∂r
+ 2

û

r

)
+ E2

(
∂ŵ

∂r
+ 2

ŵ

r

)
= −ω2 (ρû+ ρf ŵ) ,

E2
∂

∂r

(
∂û

∂r
+ 2

û

r

)
+ E3

(
∂ŵ

∂r
+ 2

ŵ

r

)
= −ω2 (ρf û+ m̂ŵ) .

(4.7)
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The solution of equations (4.7) can be found in the following form:

û = Âj1(kP1r) + B̂y1(kP1r) + Ĉj1(kP2r) + D̂y1(kP2r),

ŵ = φ(β̂P1 − 1)
(
Âj1(kP1r) + B̂y1(kP1r)

)
+ φ(β̂P2 − 1)

(
Ĉj1(kP2r) + D̂y1(kP2r)

)
,

(4.8)

where kP1 and kP2 are the wavenumbers of the slow and fast P-waves, respectively.

They are solutions of the dispersion equation (3.8), and the amplitude ratios β̂P1,P2

are defined in equation (3.10). The functions j1 and y1 are the spherical Bessel

functions defined as

j1(x) =
sin(x)

x2
− cos(x)

x
,

y1(x) = −cos(x)

x2
− sin(x)

x
.

(4.9)

There are eight unknown amplitudes Âi, B̂i, Ĉi and D̂i, where i = 1, 2, correspond-

ing to the solutions (4.8) of the inner sphere (blue area in Figure 4.2(a), i = 1) and

the outer sphere (grey area in Figure 4.2(a), i = 2). First, the displacement field

should be finite at r = 0. It means that B̂1 and D̂1 vanish, because y1 is singular

at r = 0. There are six unknown amplitudes left. The cell problem is solved with

the use of the remaining six boundary conditions discussed above: continuity of

the displacements û, ŵ, total stress τ̂ and fluid pressure p̂ at the inner interface

r = a, and continuity of total stress and fluid pressure at the outer interface r = b.

The unknown amplitudes are found numerically by solving a system of six linear

algebraic equations corresponding to the boundary conditions in both tests. The

equations read

Ax = B, (4.10)

where matrix A and vector of unknown amplitudes x are given in Appendix 4.A.

In the first test, vector B reads

B(1) = (0, 0, 0, 0, p̂, −p̂)T, (4.11)

and in the second test, it reads

B(2) = (0, 0, 0, 0, 0 − σ̂)T, (4.12)

where the fifth component corresponds to the pore fluid pressure, and the sixth

one to the total stress (the expressions are given in equations (2.3)–(2.4)); the

superscripts 1 and 2 correspond to the first and second test, respectively.
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4.3 Effective coefficients

In White’s model (White, 1975) one test is used to define the effective frequency-

dependent bulk modulus. In the present model, the two tests are used to derive the

effective frequency-dependent coefficients Ê1, Ê2 and Ê3, which correspond to the

coefficients E1, E2 and E3 introduced in stress-strain relations of a homogeneous

medium in equations (4.2). The first test (Figure 4.2(a)) is used to relate the pore

fluid pressure applied at the outer interface of the cell to the relative changes in

volume of the cell, and the second test (Figure 4.2(b)) relates the intergranular

stress at the outer interface to the changes in volume. The relative changes in the

volume in both tests can be expressed as

ê
(1,2)
kk ≈ ∆V

V
=

4πb2û(1,2)(b)

(4/3)πb3
=

3û(1,2)(b)

b
,

ε̂
(1,2)
kk ≈ 3ŵ(1,2)(b)

b
,

(4.13)

where û(1,2)(b) and ŵ(1,2)(b) are the displacements at the outer interface r = b,

for the tests 1 and 2. Then, the effective coefficients are found from the following

system of effective stress-strain relations:

τ̂0 = −p̂ =
(
Ê1 − 4

3
µ
)
ê

(1)
kk + Ê2ε̂

(1)
kk ,

−p̂ = Ê2ê
(1)
kk + Ê3ε̂

(1)
kk ,

−τ̂0 = σ̂ =
(
Ê1 − 4

3
µ
)

2ê
(2)
kk + Ê3ε̂

(2)
kk ,

0 = Ê2ê
(2)
kk + Ê3ε̂

(2)
kk ,

(4.14)

where τ̂0 is the isotropic total stress, the expression of which can be found using

equations (4.2). The first two equations in (4.14) correspond to the first test

(Figure 4.2(a)), and third and the fourth equations to the second test (Figure

4.2(b)). In fact, these four equations are not independent, and we need to take

only three equations from (4.14) to find the unknowns Ê1, Ê2 and Ê3. Solution

of equations (4.10) for each of the tests, taking into account (4.13), provides the

following relations:

ê
(1)
kk = â1p̂, ε̂

(1)
kk = â2p̂,

ê
(2)
kk = −â3σ̂, ε̂

(2)
kk = −â4σ̂,

(4.15)
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where the coefficients of proportionality âi are found numerically. Solution of equa-

tions (4.14), taking into account (4.15), provides the expressions for the effective

coefficients:

Ê1 =
4

3
µ− â2 + â4

â1â4 − â2â3

,

Ê2 =
â1 + â3

â1â4 − â2â3

,

Ê3 =
â3

â1â4 − â2â3

.

(4.16)

Due to the isotropy of the medium, the coefficients âi are not independent: â1 +

â3 + â4 = 0.

The effective coefficients Ê1, Ê2 and Ê3 defined in (4.16) are substituted into

Biot’s equations (4.1)–(4.2), together with the effective densities ρe, ρfe, and the

effective visco-dynamic factor m̂e from the right hand-side of the second equation

in (4.1):

ρe = sρI + (1− s)ρII , ρfe = sρIf + (1− s)ρIIf ,

m̂e = s

(
α∞ρf
φ
− i

ω

η

k0

√
1 + i

ω

2ωB

)
I

+ (1− s)
(
α∞ρf
φ
− i

ω

η

k0

√
1 + i

ω

2ωB

)
II

.

(4.17)

The sub- and superscripts I and II in refer to the properties of the inner sphere

(inclusion), and the host medium, respectively. The definition of the effective pa-

rameters in (4.17) is in correspondence with the definition of the effective densities

in (3.25).

4.4 Comparison with White’s model

Now that the effective coefficients have been defined, the expressions for the

wavenumbers of the slow and fast P-waves can be obtained:

kP1,P2 = ω

√√√√−d̂1 ±
√
d̂2

1 − 4d̂0d̂2

2d̂2

, (4.18)
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where
d̂0 = ρem̂e − (ρfe)

2,

d̂1 = ρeÊ3 − m̂eÊ1 + 2ρfeÊ2,

d̂2 = Ê1Ê3 − Ê2
2 .

(4.19)

The inverse quality factor, that characterizes the attenuation, and the phase ve-

locity are defined as

Q−1 = −2 Im(kP1)
Re(kP1)

,

c =
(

1
Re(ω/kP1)

)−1

.

(4.20)

In the proposed model, the effective medium is described with Biot’s equations,

as shown above. In White’s model, the frequency-dependent bulk modulus K̂b of

the effective medium is derived. It can be used to predict phase velocity and

attenuation in the effective medium governed by the equations of viscoelasticity,

where the effective wavenumber is related to the bulk modulus K̂b:

K̂b = − τ̂

∆V/V
= − b

3û(b)
τ̂ ,

k = ω
ρe

K̂b + 4
3
µ
.

(4.21)

To compare predictions of the proposed model and White’s model, we obtain

White’s bulk modulus K̂b according to its definition in (4.21), where û(b) is the

solid-phase displacement at r = b . It is proportional to the applied total stress τ̂ ,

and the coefficient of proportionality is found by solving the cell problem, similar

to the solution presented above. The difference is in the boundary conditions used;

in White’s model, the pressure continuity condition is replaced with the no-flow

condition ŵ(b) = 0, while the other boundary conditions, namely, the total stress

continuity at the outer interface r = b and the conditions at the inner interface

r = a remain the same. The system of linear equations is given in Appendix 4.A.

A similar solution is presented in Johnson (2001) and Vogelaar et al. (2010).

4.5 Examples and discussion

The sets of material properties chosen for numerical examples are given in Tables

4.1 and 4.2. The properties of Sand 1 are taken from Chotiros (1995), the proper-

ties of Rock, Sand 2 and Sand 3 from Turgut and Yamamoto (1990). The chosen
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Parameter Notation Units Rock Sand 1 Sand 2 Sand 3
Density of solid grains ρs kg/m3 2650 2650 2650 2650
Bulk modulus of solid grains Ks GPa 36 40 36 36
Bulk modulus of frame Km GPa 2.17 0.2 0.1 0.2
Porosity φ – 0.3 0.38 0.4 0.35
Permeability k0 m2 5 · 10−13 6.49·10−12 10−11 10−10

Shear modulus µ GPa 1 0.12 0.05 0.1
Tortuosity α∞ – 1.25 1.25 1.25 1.25

Table 4.1: Physical properties of solid frames.

Parameter Notation Units Water Gas
Density ρf kg/m3 1000 140
Bulk modulus Kf GPa 2.25 0.056
Viscosity η Pa · s 0.001 0.00022

Table 4.2: Physical properties of sample pore fluids.

(a) (b)

Figure 4.3: Inverse quality factor Q−1 (a) and phase velocity (b) versus di-
mensionless frequency. Rock, b=0.1 m.

outer radius b = 0.1 m and remains the same in all examples.

The inner sphere (inclusion) is saturated with gas, and the host medium is

saturated with fluid (for properties, see Table 4.2). The solid properties in the

examples are the same for both regions in the unit cell. We introduce the dimen-

sionless frequency ω/ω0, where ω0 is a frequency at which the wavelength of the

fast P-wave is comparable to the size of the periodic cell b: ω0 = 2πc0/b, where

c0 =
√
E0/ρe and E−1

0 = (1− s) [P + 2Q+R]−1
I + s [P + 2Q+R]−1

II .

It was shown in the previous chapter that the difference between the effective

poroelastic and viscoelastic models is pronounced for unconsolidated sandstones,
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(a) (b)

Figure 4.4: Inverse quality factor Q−1 (a) and phase velocity (b) versus di-
mensionless frequency. Sand 1, b=0.1 m.

(a) (b)

Figure 4.5: Inverse quality factor Q−1 (a) and phase velocity (b) versus di-
mensionless frequency. Sand 2, b=0.1 m.

and the models are in agreement for stiff rocks. In this chapter, we compare

attenuation and phase velocity versus frequency for one stiff-frame medium (Rock),

and several weaker sands. The results for Rock are shown in Figure 4.3. The

attenuation (Figure 4.3(a)) and phase velocity (Figure 4.3(b)) of the fast P-wave

predicted by the model proposed in this chapter and by White’s model are shown

for different sizes of the inclusion a. We see that both models are in good agreement

for a wide frequency range.
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(a) (b)

Figure 4.6: Inverse quality factor Q−1 (a) and phase velocity (b) versus di-
mensionless frequency. Sand 3, b=0.1 m.

The results for Sand 1 are depicted in Figures 4.4(a) and 4.4(b), and the results

for Sand 2 in Figures 4.5(a) and 4.5(b). Both sands have relatively high permeabil-

ity. Sand 1 is a weakly consolidated sand, it has a stiffer frame than Sand 2. We

observe that White’s model predicts significantly lower attenuation and slightly

lower velocities than our effective model. This result is consistent with the result

obtained in the previous chapter for a periodically-layered medium. For Sand 3,

which has higher permeability than the materials in the previous examples, the

discrepancy in predictions are even higher, as shown in Figure 4.6. Especially

the inverse quality factor shows a very deviating curve for White’s model, giving

a very different and lower attenuation, also at the lowest frequencies. We con-

clude that our effective medium is more accurate for a high-permeable material

and a material with weak frame, because it allows for a global-flow attenuation

mechanism.

4.6 Conclusions

We proposed an extension of White’s model for seismic wave propagation in porous

media with spherical inclusions. The extended model incorporates Biot’s global-

flow attenuation mechanism in addition to the mesoscopic-loss mechanism. In

this model, the fluid is allowed to flow in and out of the representative volume

element. We proposed a semi-analytical derivation of the effective parameters that
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can be used as an input to Biot’s equations for homogeneous media. The predicted

attenuation and phase velocity are in good agreement with predictions by White’s

model when the global-flow mechanism is negligible. At higher frequencies, the

model predicts higher phase velocities than White’s model. For sandy sediments,

which are characterized by high permeability and a weak frame, White’s model

predicts significantly smaller attenuation. The result is in agreement with the

predictions obtained for periodically layered media (Chapter 3), where an exact

analytical solution is used for reference.

The proposed model can serve as a reference theoretical framework for predic-

tions of seismic attenuation in heterogeneous media, when the characteristic size

of heterogeneities is much smaller than the wavelength. It can also be used as a

benchmark solution for the models with a more complicated geometry, and to cali-

brate parameters in experimental studies. The model has wider applicability than

White’s model and other similar models where the no-flow boundary condition is

employed.

4.A Coefficients of system of linear equations for

cell problems

The systems of linear equations Ax = B(1,2) are solved to obtain the coefficients

αi in (4.15). Vectors B(1,2) contain the amplitudes of the applied total stress and

fluid pressure; they are defined in equations (4.11) and (4.12). Vector x contains

the unknown amplitudes:

x = [A1, C1, A2, B2, C2, D2] . (4.22)
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The coefficients of the matrix A read

A11 = −j1(ãII), A12 = −j1(c̃II), A13 = j1(ãI)

A14 = j1(c̃I), A15 = y1(ãI , A16 = y1(c̃I),

A21 = φ̃IIP1A11, A22 = φ̃IIP2A12, A23 = φ̃IP1A13,

A24 = φ̃IP2A14, A25 = φ̃IP1A15, A26 = φ̃IP2A16,

A31 = −λII1 j0(ãII) + 2µII

((
3
ã2II
− 1
)
j0(ãII + 3

ãII
y0(ãII)− 1

ãII
j1(ãII)

)
,

A32 = −λII2 j0(c̃II) + 2µII

((
3
c̃2II
− 1
)
j0(c̃II + 3

c̃II
y0(c̃II)− 1

c̃II
j1(c̃II)

)
,

A33 = −
(
−λI1j0(ãI) + 2µI

((
3
ã2I
− 1
)
j0(ãI + 3

ãI
y0(ãI)− 1

ãI
j1(ãI)

))
,

A34 = −
(
−λI1j0(c̃I) + 2µI

((
3
c̃2I
− 1
)
j0(c̃I + 3

c̃I
y0(c̃I)− 1

c̃I
j1(c̃I)

))
,

A35 = −
(
−λI1y0(ãI) + 2µI

((
3
ã2I
− 1
)
y0(ãI − 3

ãI
j0(ãI)− 1

ãI
y1(ãI)

))
,

A36 = −
(
−λI1y0(c̃I) + 2µI

((
3
c̃2I
− 1
)
y0(c̃I − 3

c̃I
j0(c̃I)− 1

c̃I
y1(c̃I)

))
,

A41 = −
(
Q+β̂P1R

φ

)
II
j0(ãII), A42 = −

(
Q+β̂P2R

φ

)
II
j0(c̃II),

A44 = −
(
Q+β̂P2R

φ

)
I
j0(c̃I), A45 = −

(
Q+β̂P1R

φ

)
I
y0(ãI),

A43 = −
(
Q+β̂P1R

φ

)
I
j0(ãI), A46 = −

(
Q+β̂P2R

φ

)
I
y0(c̃I),

A51 = 0, A52 = 0, A53 = −
(
Q+β̂P1R

φ

)
I
j0(b̃I), A54 = −

(
Q+β̂P2R

φ

)
I
y0(d̃I),

A55 = −
(
Q+β̂P1R

φ

)
I
y0(b̃I), A56 = −

(
Q+β̂P2R

φ

)
I
y0(d̃I),

A61 = 0, A62 = 0,

A63 = −
(
−λI1j0(ãI) + 2µI

((
3
b̃2I
− 1
)
j0(b̃I + 3

b̃I
y0(b̃I)− 1

b̃I
j1(b̃I)

))
,

A64 = −
(
−λI2j0(d̃I) + 2µI

((
3
d̃2I
− 1
)
j0(d̃I + 3

d̃I
y0(d̃I)− 1

d̃I
j1(d̃I)

))
,

A65 = −
(
−λI1y0(b̃I) + 2µI

((
3
b̃2I
− 1
)
y0(b̃I − 3

b̃I
j0(b̃I)− 1

b̃I
y1(b̃I)

))
,

A66 = −
(
−λI2y0(d̃I) + 2µI

((
3
d̃2I
− 1
)
y0(d̃I − 3

d̃I
j0(d̃I)− 1

d̃I
y1(d̃I)

))
,

(4.23)

where indices I and II correspond to the properties of the medium I (outer sphere)

and II (inner sphere), respectively. The symbols used in (4.23) are defined as
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follows:
λI,II1,2 =

(
P +Q+ β̂P1,P2(Q+R)− 2µ

)
I,II

,

ãI,II = kI,IIP1 a, c̃I,II = kI,IIP2 a,

b̃I = kIP1b, d̃I = kIP2b,

φ̃I,IIP1,P2 = (φ(βP1,P2 − 1))I,II .

(4.24)

The functions y0 and j0 are spherical Bessel functions defined as

j0(x) =
sin(x)

x
, y0(x) = −cos(x)

x
. (4.25)

A similar system of equations is solved to obtain the effective bulk modulus

of White’s model. In this system, the fluid pressure is not applied at the outer

interface r = b. The pressure continuity condition is replaced by the no-flow

condition, which assumes the equality of the solid and fluid phase displacements:

ŵ = 0 at r = b. The coefficients of matrix A defined above remain the same, apart

from the coefficients A53–A56:

A53 = −φ̃IP1j1(b̃I), A54 = −φ̃IP2j1(d̃I),

A55 = −φ̃IP1y1(b̃I), A56 = −φ̃IP2y1(d̃I).

(4.26)

Vector B (one vector in this case, because only one test is used to derive the

effective bulk modulus) reads

B = (0, 0, 0, 0, 0, −σ̂)T. (4.27)

4.B Alternative approach to derive effective co-

efficients

Effective coefficients can be also derived by comparing the dynamic compliance

matrices of the periodic unit cell of the same size, corresponding to the equivalent

homogeneous medium. We consider the low-frequency solution of equations (4.1),

neglecting the inertia terms and taking the steady-state value k0 of the dynamic

permeability k̂. The solution of equations (4.7) with the inertial terms neglected
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can be found in the following form:

û = Âr +
B̂

r2
+ E2

(
Ĉj1(qr) + D̂y1(qr)

)
,

ŵ = −E1

(
Ĉj1(qr) + D̂y1(qr)

)
,

(4.28)

where

q =

√
iω
η

k0

E1

E2
2 − E1E3

. (4.29)

The stress-strain relations (4.2) can be rewritten in terms of the displacements in

spherical coordinates:

τ̂ = 3

(
E1 −

4

3
µ

)
Â− 4

µ

r
E2

(
Ĉj1(qr) + D̂y1(qr)

)
,

p̂ = −3E2Â+ (E1E3 − E2
2)

(
Ĉ

sin(qr)

r
− D̂cos(qr)

r

)
.

(4.30)

The unknown amplitudes Âi, B̂i, Ĉi and D̂i, where i = 1, 2, correspond to the

solutions (4.28) of the inner sphere (blue area in Figure 4.2(a), i = 1) and the

outer sphere (grey area in Figure 4.2(a), i = 2). The displacement field should

be finite at r = 0, which means that B̂1 and D̂1 vanish. There are six unknown

amplitudes left. The cell problem is solved with the use of the same boundary

conditions, as discussed in Section 4.2.2. However, here both harmonic pressure

and total stress are applied at the outer interface of the cell in a single test.

The equations for the unknown amplitudes read Ãx = B̃, where the structure of

matrix Ã is similar to matrix A, but the field variables are expressed with the use

of equations (4.28)–(4.30). Vector B̃ reads

B̃ = (0, 0, 0, 0, p̂, τ̂)T. (4.31)

The solution of the periodic-cell problem discussed above provides the frequency-

dependent elements of the dynamic compliance matrix (coefficients of proportion-

ality between the displacements and the applied stress τ̂ and pressure p̂ at r = b): û(b)

ŵ(b)

 =

 α̂1 α̂2

α̂2 α̂3


 τ̂

−p̂

 . (4.32)

The elements of the compliance matrix αi in (4.32) depend on frequency and the
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physical properties of the medium in the inner and outer spheres in the periodic

cell. In order to find the parameters of an equivalent homogeneous medium, we

compare the elements of the compliance matrix in (4.32) with the elements of

the compliance matrix obtained for a homogeneous periodic cell with the same

boundary conditions. For a homogeneous cell, the unknown amplitudes of the

displacement fields in (4.28) have to be found, in a similar way as for a non-

homogeneous cell. The amplitudes B̂ and D̂ in (4.28) vanish as û and ŵ are finite

at r = 0, and the remaining amplitudes Â and Ĉ are linear combinations of applied

stress τ̂ and pressure p̂ defined in the system of two linear algebraic equations, i.e.,

the continuity of total stress and fluid pressure (4.30) at r = b. The resulting

displacements at r = b read

 û(b)

ŵ(b)

 =


bgqb
∆

3bE1E2fqb
∆

3bE1E2fqb
∆

E1b(3E1 − 4µ)fqb
∆


 τ̂

−p̂

 ,
where

gqb =
(
q2b2 sin(qb)

(
E2

2 − E1E3

)
− 3E2

2fqb
)
,

fqb = sin(qb)− qb cos(qb),

∆ = sin(qb)q2b2(3E1 − 4µ)(E2
2 − E1E3) + 12E2

2µfqb.

(4.33)

The elements of the compliance matrix in (5.27) are frequency-dependent non-

linear transcendental functions of the medium parameters E1, E2, E3, η, µ, φ

and k0. We compare the zero-frequency approximation of the derived dynamic

compliance matrix in (5.27) with the matrix obtained in (4.32). The zero-frequency

approximation of (5.27) gives the following result: û(b)

ŵ(b)

 =

 − bE3

∆̃
bE2

∆̃

bE2

∆̃

b(4µ−3E1)

3∆̃


 τ̂

−p̂

 , (4.34)

in which ∆̃ = 3E2
2 − 3(E1 − 4µ)E3.

As in White’s model, we assume that the shear modulus remains the same

throughout the cell. Equating the compliance matrices in equations (4.32) and

(4.34) results in expressions for the frequency-dependent coefficients of the effective
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homogenized medium:

Ê1 =
1

3

α̂1b

α̂1α̂3 − α̂2
2

,

Ê2 = −1

3

α̂2b

α̂1α̂3 − α̂2
2

,

Ê3 =
1

3

α̂3b

α̂1α̂3 − α̂2
2

+
4

3
µ.

(4.35)

The effective coefficients defined in (5.28) can be used to calculate the wavenum-

bers in the effective medium according to (5.29) and (5.30). The results obtained

with coefficients (5.28) coincide at low frequencies with the results obtained using

the coefficients (4.16).



Chapter 5

Higher-order elasticity models for

a periodically layered poroelastic

composite

In the previous chapters, effective models were derived with frequency-dependent

coefficients. The frequency dependence was introduced to account for attenuation

and dispersion caused by the presence of mesoscopic-scale heterogeneities. In this

chapter, alternative effective models for a periodically layered poroelastic medium

are proposed with coefficients that do not depend on frequency. This is advan-

tageous for calculations in the time domain, especially in multi-scale numerical

modelling.

5.1 Introduction

The effective homogenized models described in the previous chapters can be used

for modeling wave propagation in the domains where linear elasticity is assumed.

The frequency-dependent coefficients do not complicate the analysis as the linear

problems can be studied in the frequency-domain. However, time-domain analysis

is necessary to account for nonlinear effects that arise, for example close to a pow-

erful vibration source, or within a domain in which significant elastic deformations

or nonlinear fluid-solid interaction processes take place. As the time domain mod-

eling of large domains is computationally expensive, hybrid simulation approaches

are used, based on the application of the boundary element methods. The domain

where nonlinear deformations occur is linked to a domain where linear elasticity

69
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models apply using the time-domain Green’s functions. To enable efficient cou-

pling, the time-domain Green’s functions should be as simple as possible, which is

difficult to achieve when working with models that contain frequency-dependent

coefficients. This motivates introduction of a sufficiently accurate linear model

with coefficients that do not depend on frequency.

Higher-order continuum models are often used when more accurate descrip-

tion of the microstructure of a medium has to be taken into account, not captured

by the classical continuum. This is required, for example, to mimic dispersion

properties of an inhomogeneous medium for more accurate modeling. Higher-

order continuum models are used to account for the influence of the processes on

a microscale on a higher scale of observation (macroscale). Such models can be

derived by means of homogenization of continua with microstructure. They give

more accurate predictions compared to the classical continuum at shorter wave-

lengths. In this thesis, we are dealing with porous media containing mesoscopic

heterogeneities.

For the periodically layered porous media considered in Chapter 3, the mi-

crostructure is represented by the periodic cell, and a higher-order continuum can

be derived to account for the presence of layered heterogeneities. Higher-order ho-

mogenization was extensively studied for periodically layered elastic solids (Chen

and Fish, 2001, Fish et al., 2002, Andrianov et al., 2008). In this chapter, it is

applied to a poroelastic solid. Prior to that, we derive a higher-order viscoelas-

tic continuum from the dispersion equation obtained from White’s model (White

et al., 1975), by matching the associated dispersion relation and that of the pos-

tulated higher-order continuum model for low frequencies. The resulting equation

contains higher-order spatial and temporal derivatives of the displacement. Next,

homogenization with multiple spatial scales is applied to a poroelastic compos-

ite governed by Biot’s equations (Biot, 1956a). A method of asymptotic expan-

sions with multiple spatial scales (Benssousan et al., 1978, Sanchez-Palencia, 1980,

Bakhvalov and Panasenko, 1989) is extensively used for homogenization of hetero-

geneous media. In poroelasticity, the method was applied to derive macroscopic

equations of motion from microstructure by Burridge and Keller (1981). Similar

work was done by Levy (1979). Studies on higher-order homogenization of peri-

odic elastic composites can be found in Chen and Fish (2001), Fish et al. (2002)

and Andrianov et al. (2008). Further extensions to non-periodic cases and mul-

tiple dimensions are described in Capdeville et al. (2010a,b). The method and

its advantages are comprehensively described by Auriault (1980b, 2002), where
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examples are given, including porous-media examples. Homogenization with mul-

tiple scales is applied by Mei and Auriault (1989) to problems of flow in porous

media and consolidation. Here we apply the method to wave propagation in a

periodically layered poroelastic composite.

5.2 White’s model for periodically layered porous

media

The model of White et al. (1975) has been discussed in Chapter 3, where a solu-

tion in terms of the full Biot equations proposed by Dutta and Seriff (1979) and

Vogelaar and Smeulders (2007) was used in numerical examples. In this chapter,

we use the original solution by White et al. (1975), where an analytical expression

for the effective P-wave modulus K̂(ω) is given:

K̂(ω) =
K∗

1 + i 2(RI−RII)2

ωL(ZI+ZII)

, (5.1)

where L is the length of a periodic cell, and other coefficients are defined in terms

of properties of the layers I and II:

1

K∗
=

1− s
KI

+
s

KII

,

KI,II =

(
Km +Ka

(
1− Km

Ks

)2

+
4

3
µ

)
I,II

,

RI,II =

((
1− Km

Ks

)
Ka

M

)
I,II

,

ZI,II =

(
Z0 cot

(
1

2
αwl

))
I,II

,

(5.2)

where Km is a drained frame bulk modulus, µ is a shear modulus, Ks is the solid

grains bulk modulus, Kf is the bulk modulus of the pore fluid, φ is porosity, lI

and lII are the length of the layers I and II in the periodic cell, respectively, and
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s = lII/L. For each layer I and II

Ka =

(
1− φ
Ks

− Km

K2
s

+
φ

Kf

)−1

,

Z0 =
√
ηKei/(ωk0), αw =

√
−iωη/(k0Ke),

Ke = Ka(Km +
4

3
µ)/K,

(5.3)

where η is the fluid viscosity and k0 denotes permeability of the solid frame.

The plane-wave modulus K̂(ω) defined in (5.1) is used in the description of one-

dimensional P-wave propagation in a viscoelastic medium governed by the follow-

ing equation of motion

− ω2ρû− K̂(ω)û,zz = 0, (5.4)

where the density term ρ = (1−s) (φρs + (1− φ)ρf )I+s (φρs + (1− φ)ρf )II and ρs

and ρf are the densities of the solid grains and fluid, respectively. The solution of

the equation (5.4) is û = Â exp(−ikz), and the corresponding dispersion equation

reads

k2 = ω2 ρ

K̂(ω)
. (5.5)

5.3 Derivation of effective models with frequency-

independent coefficients

5.3.1 Viscoleastic model approximating White’s model dis-

persion relation

The equation of motion describing the effective medium is chosen such that it

predicts the same frequency dependence of the wavenumber as White’s model in

the frequency range of interest. The frequency dependence of k in (5.5) is rather

complicated. We expand ω2ρ/K̂(ω) in series of ω around ω = 0, up to the order

O(ω5):

k2 = f2ω
2 − if3ω

3 − f4ω
4 +O(ω5). (5.6)
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The expansion coefficients fi read:

f2 =
ρ

H
, H =

(
K∗(RII −RI)

2 + Lg1

K∗Lg1

)−1

,

f3 =
1

3
iρ

(RII −RI)
2g1g2

Lg2
1

,

f4 =
1

45
ρ

(RII −RI)
2g3g2

Lg3
1

,

(5.7)

where
g1 = nIhII + nIIhI ,

g2 = n2
In

2
II ,

g3 = hIhII (n4
I + 10g2 + n4

II) + 6nInII (n2
Ih

2
I + n2

IIh
2
II) ,

(5.8)

in which the following notations were introduced:

nI,II =

(
η

Kek0

)
I,II

, hI,II =

(
ηKe

k0

)
I,II

. (5.9)

Let us take the approximation k2 = f2ω
2. This dispersion relation corresponds

to the classical wave equation, whose frequency domain form reads

− ρω2û−Hû,zz = 0. (5.10)

At the low frequency band, where f2 >> f3ω and f2 >> f4ω
2, equation (5.6) can

be approximated by the following equations, in which ω2 in the terms proportional

to ω3 and ω4 is either fully or partially replaced by k2/f2:

k2 = f2ω
2 − i

f3

f2

ωk2 − f4

f2

ω2k2, (5.11)

k2 = f2ω
2 − i

f3

f2

ωk2 − f4ω
4. (5.12)

Restricting the expansion order to ω3, the above equations can be further simplified

to

k2 = f2ω
2 − i

f3

f2

ωk2. (5.13)
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The equations of motion, corresponding to equations (5.11)–(5.13) read

u,zz = f2ü− f3
f2
u̇,zz + f4

f2
ü,zz,

u,zz = f2ü− f3
f2
u̇,zz + f4

....
u ,

u,zz = f2ü− f3
f2
u̇,zz.

(5.14)

These are approximations of White’s model. They are also governed by the vis-

coelastic equations, as White’s model, but the effective coefficients do not depend

on frequency, and higher-order derivatives are introduced. We will now discuss

another approximation, where effective model is governed by the equations of

poroelasticity with higher-order terms. The results for all models are discussed in

Section 5.4.

5.3.2 Poroelastic model obtained from homogenization with

multiple spatial scales

Within the concept of separation of scales in the asymptotic two-scale homoge-

nization method of Sanchez-Palencia (1980), the macroscopic scale is associated

with some parameter of length L̃ that is of the same order as the length of the trav-

elling wave, and the microscopic scale is the characteristic size of heterogeneities

which is the period of the system, the length of the unit cell L. The following

small parameter is introduced: ε = L/L̃. Two space variables are introduced:

x and y = x/ε. These variables are treated as two independent space variables

corresponding to the variations along the axis normal to the layering (denoted by

z in the previous section) on length scales L and L̃, respectively.

The displacement vector u = [u, w]T , where u and w are solid and relative

fluid-to-solid particle displacements, respectively, is looked for in the form of the

expansion

u = u0(x, y, t) + εu1(x, y, t) + ε2u2(x, y, t) + ..., (5.15)

where ui(x, y, t) are L̃-periodic with respect to y. Since y = y(x), the full spatial

derivative should now be expressed using the chain rule:

f;x = f,x + ε−1f,y, (5.16)
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where the semicolon in the subscript denotes the full derivative. The stress vector

σ = [τ,−p]T , where τ denotes the total stress τ = −σ−p, σ is intergranular stress

and p is pore fluid pressure. This vector is related to the displacement vector via

the stress-strain relations from Biot’s theory (Biot, 1956a):

σ = Eu;x, (5.17)

where matrix E is given below. Subsituting (5.15) into (5.17) and taking into

account (5.16) gives:

σ = ε−1σ−1(x, y, t) + σ0(x, y, t) + εσ1(x, y, t) + ε2σ2(x, y, t) + ..., (5.18)

where
σi = E (ui,x + ui+1,y) , i = 0, 1, 2, ...,

σ−1 = Eu0,y.

(5.19)

Each of the layers is governed by Biot’s equations of poroelasticity of (Biot,

1956a) reviewed in Chapter 2:

P(a,b)ü(a,b) + B(a,b)u̇(a,b) − E(a,b)u;xx = 0, (5.20)

where superscripts a and b distinguish the regions 0 ≤ y ≤ sL̃ and sL̃ ≤ y ≤ L̃,

respectively. In equation (5.20) the elements of the matrices P, B and E contain

the physical properties of the layers corresponding to the regions a and b:

P =

 (1− φ)ρs + φρf ρf

ρf
αρf
φ

 ,B =

 0 0

0 b0
φ2

 ,E =

 P + 2Q+R Q+R
φ

Q+R
φ

R
φ2

 .
(5.21)

The following notations are used above: α is tortuosity and b0 is Biot’s viscous

factor b0 = ηφ2/k0. The poroelastic coefficients P , Q, R are given in (3.2).

The expansion of u (5.15) is substituted into the governing equation (5.20) for

each of the layers. Each power of ε in the resulting equation can be equated to

zero, thus forming a set of equations that is solved successively with the following

boundary conditions (i.e., L̃-periodicity of the displacement and stress vectors,
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and continuity of these vectors at the interface between the layers):

u
(a)
i (x, 0, t) = u

(b)
i (x, L̃, t),

σ
(a)
i−1(x, 0, t) = σ

(b)
i−1(x, L̃, t),

u
(a)
i (x, sL̃, t) = u

(b)
i (x, sL̃, t),

σ
(a)
i−1(x, sL̃, t) = σ

(b)
i−1(x, sL̃, t), i = 0, 1, 2, ... .

(5.22)

In addition, an averaging operator is introduced:

Ui(x, t) =
1

L̃

 sL̃∫
0

u
(a)
i dy +

L̃∫
sL̃

u
(b)
i dy

 , i = 0, 1, 2, ... , (5.23)

where Ui(x, t) denotes the macroscopic displacement vector.

Equating the terms of ε−2 to zero, the following part from equation (5.20)

remains:

E(a,b)u
(a,b)
0,yy = 0. (5.24)

Solving this equation for the regions a and b using the boundary conditions (5.22)

(i = 0) leads to a simple result: u
(a)
0 = u

(b)
0 = U0(x).

Equating the terms of ε−1 to zero gives

E(a,b)
(
u

(a,b)
0,x + u

(a,b)
1,y

)
,y

= 0. (5.25)

The solution of (5.25) is u
(a)
1 = a1y + b1 and u

(b)
1 = c1y + d1, where a1, b1, c1

and d1 are the vectors of unknown functions of x and t found from the boundary

conditions (5.22) and related to U1 using (5.23).

Equating the terms of ε0 to zero results in the following equation:

P(a,b)ü
(a,b)
0 + B(a,b)u̇

(a,b)
0 − E(a,b)

(
u

(a,b)
0,xx + 2u

(a,b)
1,xy + u

(a,b)
2,yy

)
= 0. (5.26)

Integrating (5.26) over the unit cell y = [0, L̃] and taking into account periodicity

of σ1 leads to the macroscopic equation of motion for U0:

P0Ü0 + B0U̇0 − E0U0,xx = 0, (5.27)
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where the matrices are defined as

P0 = sP1 + (1− s)P2, B0 = sB1 + (1− s)B2,

E0 = sE1 + (1− s)E2 + s(1− s)(E2 − E1)(sE2 + (1− s)E1)−1(E1 − E2).

(5.28)

For an elastic composite, the matrices in (5.28) reduce to scalars, and the matrix of

the effective moduli E0 reduces to the well-known harmonic average of the moduli

of the layers.

The next-order term u
(a,b)
2 is found by solving equation (5.26) in the form of

polynomial u
(a,b)
2 = a

(a,b)
2 y2 + b

(a,b)
2 y + c

(a,b)
2 , where the vectors b

(a,b)
2 and c

(a,b)
2 are

found from the boundary conditions (5.22) and using the expression (5.23) for U2,

and the vectors a
(a,b)
2 are derived from equation (5.26).

Equating the terms of ε1 to zero gives:

P(a,b)ü
(a,b)
1 + B(a,b)u̇

(a,b)
1 − E(a,b)

(
u

(a,b)
1,xx + 2u

(a,b)
2,xy + u

(a,b)
3,yy

)
= 0. (5.29)

Integrating (5.29) over the unit cell y = [0, L̃] and taking into account periodicity

of σ2 and the equation (5.27) leads to the macroscopic equation of motion for U1:

P0Ü1 + B0U̇1 − E0U1,xx = 0. (5.30)

The next-order term u
(a,b)
3 is found from the equation (5.29), similar to the previous

terms.

Equating the terms of ε2 to zero gives

P(a,b)ü
(a,b)
2 + B(a,b)u̇

(a,b)
2 − E(a,b)

(
u

(a,b)
2,xx + 2u

(a,b)
3,xy + u

(a,b)
4,yy

)
= 0. (5.31)

Implementing the same integration as above, and taking into account (5.27) and

(5.30), we come to the macroscopic equation for U2:

P0Ü2 + B0U̇2 − E0U2,xx − L̃2
(
α1U0,xxxx + α2U̇0,xx + α3Ü0

)
= 0. (5.32)

The expressions for the matrices α1−3 in this equation are given in Appendix 5.A.

In the absence of terms α2 and α3 (when there is no damping terms b0 in each of

the layers), (5.32) is canceled out to the equation obtained for the elastic composite

(Fish et al., 2002, Andrianov et al., 2008) assuming the matrices from (5.21) are

scalars.
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Now, we combine the macroscopic equations derived above to come up with a

single macroscopic description of the effective medium. The macroscopic displace-

ment, where orders up to ε2 are kept, reads: U = U0 + εU1 + ε2U2. Substitution

of U into the summation (5.27) + ε· (5.30) + ε2· (5.32) and keeping the terms up

to order ε0 results in

P0Ü + B0U̇− E0U,xx − L2
(
α1U,xxxx + α2U̇,xx + α3Ü

)
= 0. (5.33)

Note that only one length scale L, which is the length of the periodic cell, is left

in the final equation (5.33). The length scale L̃ is reduced in the multiplication

of ε = L/L̃ to the last three terms in equation (5.32). The first three terms in

equation (5.33) are the classical Biot terms for a homogeneous medium with the

matrices of density and damping terms determined as the arithmetic averages of

the corresponding matrices of each of the layers, and the matrix of elastic moduli

determined as the harmonic average of the corresponding matrices of the layers.

As discussed above, a similar result is known for elastic composites, where the

effective density is the arithmetic average of the densities of the layers, and the

effective Young’s modulus is the harmonic average of the moduli of the layers. The

higher-order terms are corrections that explicitly contain information about the

scale of heterogeneities: apart from the properties of the layers and saturations,

they also depend on the characteristic size of heterogeneities, which is the length

of the periodic unit cell L.

The dispersion equation corresponding to equation (5.33) has four pairs of

roots with opposite signs. It predicts four P-waves in each direction: a fast and

a slow wave, as predicted by Biot’s theory, and two additional highly attenuated

waves, which are the results of the scattering of the fast and the slow wave by the

inhomogeneities. The corresponding wavenumbers are found as the roots of the

polynomial equation:

ω4(P̃1,1P̃2,2 − P̃1,2P̃2,1) + ω2(P̃1,2H̃2,1 − H̃1,1P̃2,2 + H̃1,2P̃2,1 − P̃1,1H̃2,2)k2+

(ω2L2(P̃1,1α
2,2
1 − P̃1,2α

2,1
1 + P̃2,2α

1,1
1 − P̃2,1α

1,2
1 )− H̃2,1H̃1,2 + H̃1,1H̃2,2)k4+

L2(H̃1,2α
2,1
1 + α1,2

1 H̃2,1 − H̃2,2α
1,1
1 − H̃1,1α

2,2
1 )k6 + L2(α1,1

1 α2,2
1 − α

1,2
1 (α2,1

1 )k8 = 0,

(5.34)
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(a) (b)

Figure 5.1: Real (a) and imaginary (b) parts of the wavenumber predicted by
different models L=0.1 m, gas saturation 10%.

where αi,j1 are the elements of the matrix α1 and P̃i,j and H̃i,j are the elements of

the matrices
P̃ = P + B/(iω)− L2α3,

H̃ = E0 + iωα2.

(5.35)

5.4 Results

In this section we compare predictions of dispersion and attenuation by the models

with frequency-independent coefficients discussed above. The material properties

of the solid frame in the example are those of Rock from Table 4.1. The pores are

fully saturated with water and gas (Table 3.2). It has been shown in Chapters 3

and 4 that White’s model is in agreement with the exact solution for this type of

material properties, therefore it is used here for reference.

In Figures 5.1–5.3, the real and imaginary parts of the wavenumbers are plotted

for different models: model 1 (equation 5.11), model 2 (equation 5.12), model 3

(equation 5.13), and model 4 (equation 5.34, the root corresponding to the fast

P-wave is considered). The results are plotted for a fixed periodic cell L = 0.1 m,

for saturations s = 10% (Figure 5.1), s = 50% (Figure 5.2) and s = 90% (Figure

5.3). As one can observe in all figures, the models obtained in the previous section

(model 4) predicts dispersion and attenuation only at low frequencies, and the

predictions deviate from the predictions of White’s model at higher frequencies.

For all models, the predictions are more accurate at high gas saturations. For
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(a) (b)

Figure 5.2: Real (a) and imaginary (b) parts of the wavenumber predicted by
different models L=0.1 m, gas saturation 50%.

(a) (b)

Figure 5.3: Real (a) and imaginary (b) parts of the wavenumber predicted by
different models L=0.1m, gas saturation 90%. On the rightmost panel all lines

for models 1–3 and White’s model coincide.

saturation s = 90% (Figure 5.3), all lines corresponding to models 1–3 coincide;

they are also very close to each other in Figure 5.2, for saturation s = 50%.

5.5 Conclusions

The method of asymptotic expansions with multiple spatial scales was applied

to wave propagation in a poroelastic composite with a periodically repeated unit

cell that consists of two layers with different properties, each layer governed by
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Biot’s equations. The results show that this model underestimates attenuation;

its performance is getting worse at higher frequencies. One should note that the

method of asymptotic expansions is formally only correct when the physical con-

stants are of the same order, which is not always the case for poroelastic constants

in media with heterogeneities, especially when heterogeneities occur in saturating

fluid properties. That is why models obtained directly from White’s model pro-

vide more accurate predictions of attenuation. These models are also viscoelastic

models, like the model of White, but incorporate higher-order derivatives to ac-

count for the presence of heterogeneities. They can be used at sufficiently low

frequencies for thinly layered poroelastic composites, where the model of White is

also applicable. The advantages of models with coefficients that do not depend on

frequency is the possibility to use them for efficient time-domain computations.

5.A Effective coefficients

The expressions for the matrices α1, α2 and α3 from equation (5.33) are given in

this appendix. The expression for α1 reads

α1 = −c1

(
P−1

0 E0

)2
+ c2P

−1
0 E0 + c3, (5.36)

where

c1 = 1
12

(P1 −P2)
(
s(s3 − s2)E−1

1 P1 + s(−s3 + 3s2 − 3s+ 1)E−1
2 P2

)
, (5.37)
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c2 = s(P1−P2)
12

((2s2 − 4s+ 2)D(E1 − E2) + (2s2 − 3s+ 1)I) +

E1−E2

12s2
[((9s3 − 3s5 − 6s2)DE1 + (s6 − 9s5 + 2s4 + 6s3)I)DP1 −D((2s4 − s5 − s3)P1

−(6s4 − 6s3)P2)D(E1 − E2)− (s6 − s5)(DE2 − I)E−1
1 P1

−D((3s5 − 12s3 + 6s2 + 9s− 6)E1 − 3s(s− 1)(s3 + 3s2 − s− 3)E2)DE1E
−1
2 P2

+DE2D((18s3 − 6s5 − 12s4)P2 + 3s2(s3 + 2s2 − 3s)P1)+

((s6 + 11s5 + 3s4 − 7s3 − 8s2)I + 6s2(s3 − 3s+ 2)DE1)DP2+

((13s2 − s5 − 3s4 − 5s3 + 6s− 10)sDE1 + s2(s− s4 − s3 − 3s2 + 4)I)E−1
2 P2

+(s(6s2 − s4 − 2s3 − 2s− 1)DE1 + s2(3s− s3 − 3s2 + 1)I)E−1
2 P2D(E1 − E2)

]
,

(5.38)

c3 = E1−E2

12s
[((2s4 + 3s3 − s2 − 4s)I + D (E1(19s4 + 10s3 − 24s2 − 15s+ 10)+

E2(12s2 − 19s4 − 10s3 + 17s) + DE1D(2
s
(13s5 − s4 − 28s3 + 4s2 + 15s− 3)E1+

(2s3 − 26s4 + 53s2 − 8s− 21)E2) + DE2D((26s4 + 28s3 − 32s2 − 22s)E2+

(35s2 − 26s4 − 28s3 + 28s− 9)E1) + 3D
(
(1
s
(3s5 − s4 − 11s3 + 9s2 + 4s− 4)E1

−(3s4 + 5s3 − 13s2 − s+ 6)E2)DE1 + ((s(3s3 + 7s2 − 7s− 3)E2−

− (s− 1)(3s3 + 4s2 − 5s− 2)E1)DE2) D(E1 − E2)] .

(5.39)

In equations (5.37)–(5.39),

D = s(sE2 + (1− s)E1)−1, I is an identity matrix. (5.40)

The expression for α2 is

α2 = c1

(
P−1

0 E0P
−1
0 B0 + P−1

0 B0P
−1
0 E0

)
− c2P

−1
0 B0 + c4 − c5P

−1
0 E0, (5.41)
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where

c4 = s(B1−B2)
12

((2s2 − 4s+ 2)D(E1 − E2) + (2s2 − 3s+ 1)I) +

E1−E2

12

[
(s+ 4− s4 − s3 − 3s2)I + 1

s
(13s2 + 6s− 10− s5 − 3s4 − 5s3)DE1

+(s4 + 11s3 + 3s2 − 7s− 8)DE2 − 3
s2

(s5 − 4s3 + 2s2 + 3s− 2)DE1DE1+

+(6s3 − 18s+ 12)DE1DE2 + 3
s
(s− 1)(s3 + 3s2 − s− 3)DE2DE1−

−6s(s2 + 2s− 3)DE2DE2)E−1
2 B2 + ((3s+ 1− s3 − 3s2)I+

+6s(s− 1)DE2 + 1
s
(6s2 − 2s− 1− s4 − 2s3)DE1)E−1

2 B2D(E1 − E2)+

+((s4 − s3)I + s(s3 − 9s2 + 2s+ 6)DE1 + (9s− 3s3 − 6)DE1DE1+

+(s3 − s4)DE2 + (3s3 + 6s2 − 9s)DE2DE1)E−1
1 B1+

+ s(s2 − 2s+ 1)DE1E
−1
1 B1D(E1 − E2)

]
.

c5 = 1
12

(P1 −P2) s((s3 − s2)E−1
1 B1 + (3s2 − s3 − 3s+ 1)E−1

2 B2)+

+ 1
12

(B1 −B2) s((s3 − s2)E−1
1 P1 + (3s2 − s3 − 3s+ 1)E−1

2 P2).

(5.42)

The expression for α3 is

α3 = −c6 + c5B
−1
0 E0 − c1(P−1

0 B0)2, (5.43)

where

c6 =
1

12
(B1 −B2) s((s3 − s2)E−1

1 B1 + (3s2 − s3 − 3s+ 1)E−1
2 B2). (5.44)





Chapter 6

An effective anisotropic

poroelastic model for elastic wave

propagation in finely layered

media

In this chapter, a new effective poroelastic model for finely layered media is pre-

sented and its performance is evaluated focusing on the angle-dependent atten-

uation behavior. To enable this, an exact solution is obtained for the response

of a periodically layered medium to a surface point load using Floquet’s theory.

This solution is compared to that of the new model and the equivalent viscoelastic

VTI medium available from existing literature. It is observed that the qP-wave

dispersion and attenuation is predicted with high accuracy by the new effective

poroelastic model. For the qS-wave, the effective poroelastic model provides a

perceptibly better prediction of the attenuation, resulting in closer to the exact

waveforms. The qS-wave attenuation is underestimated by the effective viscoelas-

tic model, while for the qP-wave the model gives accurate predictions in all cases

except for highly permeable weak-frame media.

This chapter is accepted for publication as a journal paper in Geophysics. Note that minor
changes have been introduced to make the text consistent with the other chapters of this thesis.
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6.1 Introduction

Horizontally layered models are commonly used for the analysis of wave propaga-

tion in reservoir rocks and sediments. This is a compromise between a relatively

accurate representation of heterogeneities in rocks and simplicity of computations.

Assuming lateral homogeneity of a reservoir is reasonable because the variations

in rock properties in the direction normal to the layering are typical for most

reservoir rocks and sediments. Layered models allow to study the effects of local

inhomogeneities at the macroscopic scale. The layers can represent mesoscopic-

scale heterogeneities when their thicknesses are much larger than the typical pore

and grain sizes, but smaller than the wavelength of a propagating wave. Meso-

scopic heterogeneities are known to cause strong dispersion and attenuation of

seismic waves due to the sub-wavelength scale wave-induced fluid flow (Müller

et al., 2010). The attenuation is particularly strong when a medium is saturated

with different fluids with a large contrast in compressibility (White et al., 1975,

Carcione and Picotti, 2006).

The commonly used equations describing wave propagation in fluid-saturated

media are Biot’s equations of poroelasticity (Biot, 1962). This theory predicts one

shear and two compressional waves in a macroscopically homogeneous medium.

It is widely accepted that Biot’s theory underestimates observed attenuation and

dispersion of elastic waves (Johnston et al., 1979; Winkler, 1985; Gist, 1994). One

of the reasons is a violation of the assumption of uniform saturation with a single

fluid. Inhomogeneities in solid-frame properties also cause attenuation. Many

models for wave propagation in heterogeneous porous media were developed to

address this effect. Each model proposes an attenuation mechanism that is based

on certain assumptions. These assumptions are related, among other things, to

the scale of the heterogeneities and their distributions, and the frequency range of

interest. Depending on the scale of observations, different models are used to study

wave attenuation and dispersion. Attenuation due to dissipation at the pore scale

is described by a squirt-flow mechanism (O’Connell and Budiansky, 1977; Mavko

and Nur, 1979; Palmer and Traviola, 1980; Dvorkin and Nur, 1993). Differences in

fluid saturation between thin compliant pores and larger stiffer ones, the presence

of thin cracks, different shape and orientation of the pores, as well as distribution

of immiscible fluids in a pore cause attenuation and dispersion due to local or

squirt flow. This mechanism usually plays a role at ultrasonic frequencies. At
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seismic frequencies another attenuation mechanism caused by the subwavelength-

scale fluid flow due to the presence of mesoscopic-scale heterogeneities plays a

role. This mechanism is not captured by Biot’s theory which accounts for a global

(wavelength-scale) flow attenuation mechanism. Since gas, oil and water are often

present in rocks and sediments as mesoscopic-scale patches, multiple models are

being developed that describe attenuation of seismic waves in such heterogeneous

media.

One of the pioneering works on seismic attenuation caused by the wave-induced

fluid flow is the work of White et al. (1975), in which a periodically layered

porous medium was considered and a frequency-dependent plane-wave modulus

was derived for normal wave incidence. Similar but differently derived moduli

were reported in other publications: e.g., Norris (1993), Brajanovski and Gure-

vich (2005) and Vogelaar and Smeulders (2007). Some other models of effective

P-wave moduli make use of a frequency-dependent branching function that con-

nects the low- and high-frequency limits (e.g., Johnson, 2001). This approach was

used by Krzikalla and Müller (2011), who introduced an effective vertical trans-

verse isotropic (VTI) medium to describe propagation of qP- and qS-waves at

different angles. In their model, the low- and high-frequency elastic moduli from

poroelastic Backus averaging by Gelinsky and Shapiro (1997) are connected by

a frequency-dependent function — the effective P-wave modulus of White et al.

(1975) for periodic layering and normal incidence. For a randomly layered medium

with a small fluctuation of parameters, the frequency-dependent function can be

derived from Gelinsky et al. (1998). With the approach used by Krzikalla and

Müller (2011), any model where a plane-wave modulus for P-wave propagation

normal to the layering is derived can be extended for arbitrary angle of incidence.

Another approach to compute the frequency-dependent coefficients of the effective

VTI medium numerically was proposed by Carcione et al. (2011). The resulting

effective medium in both approaches is governed by the equations of a viscoelastic

VTI medium and has five complex-valued frequency-dependent stiffnesses. This

means that the fluid-to-solid relative motion is not explicitly present in the model.

Instead, the information about attenuation caused by the interaction of the fluid

and solid phases at the subwavelength-scale is included in the frequency depen-

dence of the effective stiffnesses. Furthermore, this effective model does not predict

a slow P-wave on a macroscopic scale, as predicted by Biot’s theory. On the one

hand, this is advantageous from the computational point of view as the presence of

the slow wave requires a very fine meshing in 3-D numerical simulations. On the
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other hand, the Biot’s global flow mechanism — macroscopic attenuation due to

viscous forces between fluid and solid phases — is not captured in the equations of

viscoelasticity, which may be disadvantageous even in the seismic frequency range

(Kudarova et al., 2013, this thesis, Chapter 3).

In this chapter, we combine the effective constants from the poroelastic Backus

averaging (Gelinsky and Shapiro, 1997) and the method proposed by Krzikalla

and Müller (2011). We use the effective P-wave moduli introduced in Chapter

3. This results in the effective stiffnesses of an effective poroelastic VTI medium

governed by Biot’s equations. This effective medium accounts for the macroscopic

(Biot’s global-flow) attenuation via the effective inertia and viscous terms used in

Biot’s equations, and for the mesoscopic (sub-wavelength scale) attenuation via the

frequency-dependence of the effective stiffnesses. We consider wave propagation in

a 2-D half-space, subject to a point-source at the surface. Solutions to this problem

are obtained for the effective viscoelastic model mentioned above and for the newly

derived poroelastic model. As a reference, an exact analytical solution is obtained

with the use of Floquet’s theory (Floquet, 1883). The responses predicted by all

three solutions are compared.

The chapter is structured as follows. First, Biot’s equations are briefly re-

viewed, and the exact analytical solution for a periodically layered medium is

formulated using Floquet’s theory. Secondly, the equations for the effective vis-

coelastic model are presented. Then, the effective poroelastic model is introduced.

The numerical examples follow, and the discussion of the results and conclusions

finalize the chapter.

6.2 Theoretical models

In this section, we present the equations of Biot’s theory, followed by the equations

of the effective viscoelastic model and the derivation of the effective poroelastic

model. The exact solution for a periodically layered medium governed by Biot’s

equations is given in Appendix 6.A.
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6.2.1 Biot’s theory

Biot’s equations of motion read (Biot, 1962)

τij,j = ρüi + ρf ẅi,

−p,i = ρf üi +
αijρf
φ

ẅj + ηrijẇj.
(6.1)

Throughout this chapter, comma in the subscript denotes a spatial derivative, an

overdot denotes a time derivative, and repeated indices are summed over. The fol-

lowing notations are used: ρf , ρs are fluid and solid grain densities, respectively;

φ is porosity, and the total density ρ = (1 − φ)ρs + φρf ; αij = α∞δij, where α∞

is the tortuosity, δij is the Kronecker delta, and η is the fluid viscosity; τij are the

elements of the total stress tensor, p is the fluid pressure, and u and w are the dis-

placements of the solid phase and the relative fluid-to-solid displacement multiplied

by φ, respectively. Tensor r = k−10 , where the elements of k0 are the permeabil-

ities kij, and for the isotropic case kij = k0δij. The high-frequency correction to

Biot’s viscous damping factor is commonly adopted to account for dynamic effects,

resulting in the dynamic permeability k̂0 = k0(
√

1 + iωM/(2ωB) + iω/ωB)−1 [and

consequently, a temporal convolution operator in equation (6.1)], where M is the

parameter that depends on the pore geometry, permeability and porosity; through-

out the chapter, we assume M = 1 (Johnson et al., 1987). The real part of the

square root is taken greater than zero. Biot’s critical frequency ωB = φη/(k0α∞ρf )

separates the regimes where inertial and viscous forces dominate.

Throughout the chapter, a hat above a quantity stands for frequency depen-

dence and a tilde stands for frequency-wavenumber dependence. The Fourier

transform is applied for transforming to the frequency-wavenumber domain:

f̃(kx, z, ω) =

∞∫
−∞

∞∫
−∞

exp(−iωt) exp(ikxx)f(x, z, t)dtdx. (6.2)

The inverse Fourier transform is formulated in a following way:

f(x, z, t) =
1

2π2

∞∫
0

Re

 ∞∫
−∞

f̃(kx, z, ω) exp(iωt) exp(−ikxx)dkx

 dω. (6.3)

Only positive frequencies are considered, as the negative frequency components do

not provide information independent of the positive components (Wapenaar and
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Berkhout, 1989). We study propagation of the plane waves in the x − z plane,

where x is the horizontal direction, and z is the vertical direction.

The stress-strain relations for an isotropic medium read

τxx = E1ux,x + (E1 − 2µ)uz,z + E2(wx,x + wz,z),

τzz = (E1 − 2µ)ux,x + E1uz,z + E2(wx,x + wz,z),

τxz = µ(ux,z + uz,x),

−p = E2(ux,x + uz,z) + E3(wx,x + wz,z),

(6.4)

where the coefficients are defined as follows (Biot, 1962):

E1 = P + 2Q+R, E2 = (Q+R)/φ, E3 = R/φ2,

P =
φKm + (1− φ)Kf (1− φ−Km/Ks)

φ+Kf (1− φ−Km/Ks) /Ks

+
4

3
µ,

Q =
φKf (1− φ−Km/Ks)

φ+Kf (1− φ−Km/Ks) /Ks

,

R =
φ2Kf

φ+Kf (1− φ−Km/Ks) /Ks

.

(6.5)

In the above equations, Ks, Kf and Km are the bulk moduli of the solid grains,

fluid and the drained frame, respectively; µ is the shear modulus of the drained

frame.

In the frequency-wavenumber domain, we look for plane-wave solutions of the

equations (6.1) in the form

ũ = (Ũx, Ũz, W̃x, W̃z)
T exp(−ikzz). (6.6)

In the isotropic case, the P- and S-wave motions are decoupled. The corresponding

dispersion relations are obtained by introducing the displacement potentials [φ̃s,

ψ̃s, φ̃f , ψ̃f ] = [Φ̃s, Ψ̃s, Φ̃f , Ψ̃f ] exp(−ikzz), where

ũx = −ikxφ̃s − ψ̃s,z, w̃x = −ikxφ̃f − ψ̃f,z,

ũz = φ̃s,z − ikxψ̃s, w̃z = φ̃f,z − ikxψ̃f .

(6.7)
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Substitution of these relations into (6.1) leads to the dispersion equation

{
(E1E3 − E2

2)s4 − (ρE3 + m̂E1 − 2ρfE2)s2 + ρm̂− ρ2
f

}{
µm̂s2 − ρm̂+ ρ2

f

}
= 0.

(6.8)

In equation (6.8), s =
√
k2
x + k2

z/ω denotes slowness. The operator m̂ = ρfα∞/φ+

b̂/(iωφ2), where b̂ = b0

√
1 + iω/(2ωB) is the dynamic viscous factor (the real part

of the square root is positive), and b0 = ηφ2/k0. The first term between curly

brackets in (6.8) is a dispersion equation for P-waves and the second one for S-

waves.

6.2.2 Effective viscoelastic VTI model

We first introduce the equations for the effective viscoelastic model, and then the

additional parameters are defined to obtain the equations of motion for the effective

poroelastic model, given in the next section. The effective vertical transversely

isotropic (VTI) model for wave propagation in layered media at arbitrary angle

was presented by Krzikalla and Müller (2011). This effective model makes use of

the poroelastic Backus averaging (Gelinsky and Shapiro, 1997) and the effective

plane-wave modulus obtained for a periodic 1-D medium (White et al., 1975).

The resulting equations in the effective medium are equations of elasticity with

frequency-dependent coefficients. Throughout the chapter, we refer to this model

as the viscoelastic model.

The analysis of dispersion and attenuation predicted by this model for media

with inhomogeneities in frame properties was carried out by Krzikalla and Müller

(2011). In the current chapter, we present the space-time domain responses of

the effective medium to a surface point load. We discuss examples with inho-

mogeneities both in solid frame and fluid properties. The equations used in this

analysis are outlined below.

The equations of motion for the effective VTI viscoelastic model read

−ikxτ̃xx + τ̃xz,z = −ω2ρũx,

−ikxτ̃xz + τ̃zz,z = −ω2ρũz,

(6.9)

where ρ is the density of the homogenized medium obtained by averaging over

the layers 1 and 2 of the periodic cell: ρ = 〈ρ(z)〉. Throughout the chapter, the
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angular brackets denote averaging over the layers in the periodic cell

〈f〉 =
1

L

∫
L

f(z)dz. (6.10)

The stress-strain relations for the effective viscoelastic VTI model read

τ̃xx = −ikxÂũx + F̂ ũz,z,

τ̃xz = D̂(ũx,z − ikxũz),

τ̃zz = −ikxF̂ ũx + Ĉũz,z.

(6.11)

In the effective medium, the stiffnesses in the above equations are frequency de-

pendent. The expressions for the effective stiffnesses Â, F̂ , Ĉ and D̂ were obtained

by Gelinsky and Shapiro (1997) in two limiting cases of relaxed and unrelaxed pore

pressures (the expressions are given in Appendix 6.C). These limits are referred

to as quasi-static and no-flow limits, respectively. It is assumed that the fluid flow

is independent of the loading direction (i.e., direction of wave propagation), and

a single relaxation function connects the relaxed and unrelaxed limits of the effec-

tive stiffnesses. This function is based on a frequency-dependent modulus K̂(ω),

derived originally by White et al. (1975). The expression for K̂(ω) is given in

Appendix 6.C. The normalized relaxation function reads

R̂(ω) =
K̂(ω)− Cu

Cr − Cu
, (6.12)

where the superscripts r and u refer to the relaxed and unrelaxed limits, respec-

tively. The effective stiffnesses then read{
Â, Ĉ, F̂ , D̂

}
= {A,C, F,D}u − R̂(ω)({A,C, F,D}u − {A,C, F,D}r). (6.13)

It follows from (6.13) that Ĉ = K̂(ω). Since the shear modulus does not depend

on the fluid pressure, it is the same in the relaxed and the unrelaxed cases, and

the effective shear modulus D̂ does not depend on frequency:

D̂ = D = Du = Dr =

〈
1

µ

〉−1

. (6.14)
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To obtain the dispersion equations of the effective viscoelastic VTI model, we look

for the solution of (6.9) in the frequency-wavenumber domain in the form

(ũx, ũz) = (Ũx, Ũz) exp(ikzz). (6.15)

Substituting this into the equation of motion (6.9) and taking into account (6.11),

provides the following solutions of the dispersion equation:

k±1z = ±

√
ε1 +

√
ε2

2DĈ
, k±2z = ±

√
ε1 −

√
ε2

2DĈ
,

ε1 = ρ(Ĉ +D)− (ÂĈ − 2DF̂ − F̂ 2)k2
x,

ε2 = (Â2Ĉ2 − 4(ÂĈ + F̂ )D − 2F̂ 2(ÂĈ − 2D2) + F̂ 3(4D + F̂ ))k4
x+

+2ρ(F̂ (D + Ĉ)(F̂ + 2D) + ĈD(2D + Â)− ÂĈ2)k2
x + ρ2(Ĉ −D)2.

(6.16)

The pairs of the wavenumbers k±1z,2z correspond to up- and downgoing quasi-P

(qP) and quasi-S (qS) waves. The amplitude ratios Ũz/Ũx read:(
Ũz

Ũx

)±
1,2

=
ρω2 − Âk2

x −D
(
k±1z,2z

)2

(F̂ +D)kxk
±
1z,2z

. (6.17)

6.2.3 Effective poroelastic VTI model

In this section, we introduce the effective poroelastic model based on the poroe-

lastic Backus averaging (Gelinsky and Shapiro, 1997) and the effective plane-wave

moduli obtained for P-wave propagation at normal incidence in a periodically

layered porous medium (Kudarova et al., 2013; this thesis, Chapter 3). These ef-

fective moduli result from employing the boundary conditions at the interfaces of

the periodic cell, different from those used in White’s model (White et al., 1975).

The no-flow condition is replaced with the pressure continuity condition, allowing

fluid flow at the macroscopic scale. As a result, two additional plane-wave moduli

are derived to describe the effective medium with Biot’s equations. These effec-

tive moduli are used to define the effective stiffnesses B̂6, B̂7, B̂8 (notation used

as in Gelinsky and Shapiro, 1997) required to describe the effective poroelastic

VTI model. Apart from the effective stiffnesses, the effective densities have to

be defined. We use the results obtained by Molotkov and Bakulin (1999), who
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showed that the effective medium representing a stack of Biot layers is a general-

ized transversely isotropic Biot medium. In this poroelastic medium, the densities

and the viscous terms in Biot’s equations are defined differently in the x and z

directions. The equations of motion read

−ikxτ̃xx + τ̃xz,z = −ω2ρ̂xũx − ω2ρ̂fxw̃x,

−ikxτ̃xz + τ̃zz,z = −ω2ρzũz − ω2ρfzw̃z,

ikxp̃ = −ω2ρ̂fxũx − ω2m̂xw̃x,

−p̃,z = −ω2ρfzũz − ω2m̂zw̃z,

(6.18)

where the coefficients on the right-hand side read (Molotkov and Bakulin, 1999):

ρ̂fx =
s1ρf1m̂2 + s2ρf2m̂1

s1m̂2 + s2m̂1

, m̂x =

〈
1

m̂

〉−1

,

ρ̂x = 〈ρ〉 − s1s2(ρf1 − ρf2)2

s1m̂2 + s2m̂1

,

ρz = 〈ρ〉 , ρfz = 〈ρf〉 , m̂z = 〈m̂〉 .

(6.19)

The indices 1 and 2 in equations (6.19) refer to the layers 1 and 2. The volume

fractions of the layers are s1 = l1/L, s2 = l2/L.

The stress-strain relations read

τ̃xx = −ikxÂũx + F̂ ũz,z + B̂6(−ikxw̃x + w̃z,z),

τ̃zz = −ikxF̂ ũx + Ĉũz,z + B̂7(−ikxw̃x + w̃z,z),

τ̃xz = D(ũx,z − ikxũz),

−p̃ = −ikxB̂6ũx + B̂7ũz,z + B̂8(−ikxw̃x + w̃z,z).

(6.20)

The frequency-dependent stiffnesses in (6.20) are defined in the same way as in

the effective viscoelastic model, but the frequency dependence is incorporated via

the effective plane-wave moduli obtained with the method proposed by Kudarova

et al., 2013 (this thesis, Chapter 3).

These effective moduli are obtained from the solution of the 1-D problem for

the periodic cell consisting of two isotropic layers (see Figure 3.1) where harmonic

stress and pressure are applied to the outer edges of the cell normal to the layering.
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The layers are governed by Biot’s equations (6.1) (with z-dependent field variables

uz, wz, τzz and p). The problem is solved in the frequency domain. In each layer

the displacements uz and wz are found as up- and down-going plane waves (a fast

and a slow P-wave), resulting in eight unknown amplitudes. These amplitudes

are found from the following boundary conditions: continuity of the intergranular

stress σzz, pore pressure p, displacements uz and wz at the interface between the

layers, and continuity of the total stress τzz and pressure p at the outer edges

of the cell. The strains uz,z and wz,z are found as the difference between the

displacements at the outer edges of the unit cell, divided by the cell width. This

gives us the coefficients of the frequency-dependent symmetric compliance matrix

α̂ij:

ûz,z = α̂11τ̂zz + α̂12p̂,

ŵz,z = α̂12τ̂zz + α̂22p̂.

(6.21)

They are equated to the coefficients of the compliance matrix obtained from Biot’s

stress-strain relations (6.4) (for the 1-D case, with kx = 0):

ûz,z = 1

∆̂

(
Ê3τ̂zz + Ê2p̂

)
,

ŵz,z = 1

∆̂

(
−Ê2τ̂zz − Ê1p̂

)
, ∆̂ = Ê1Ê3 − Ê2

2 .

(6.22)

Then, the frequency-dependent elastic parameters Ê1, Ê2, Ê3 are found, describ-

ing attenuation and dispersion due to wave-induced mesoscopic fluid flow in 1-D

periodically layered medium:

Ê1 =
α̂22

α̂11α̂22 − α̂2
12

, Ê2 = − α̂12

α̂11α̂22 − α̂2
12

, Ê3 =
α̂11

α̂11α̂22 − α̂2
12

. (6.23)

The coefficients αij are computed numerically by solving a system of eight by eight

linear algebraic equations corresponding to eight boundary conditions in the cell

problem (for more details, see Chapter 3).

Following Krzikalla and Müller (2011), we introduce a branching function

R̂1(ω) =
Ê1(ω)− Cu

Cr − Cu
. (6.24)

to obtain the frequency-dependent effective moduli Â, Ĉ and F̂ :{
Â, Ĉ, F̂

}
= {A,C, F}u − R̂1(ω)({A,C, F}u − {A,C, F}r). (6.25)
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As discussed above, the modulus D̂ is not frequency dependent, and is defined in

equation (6.14). Note that R̂1(ω) is equivalent to R̂(ω) (equation (6.12)) when

the frequency is much lower than Biot’s critical frequency ωB. The effective plane-

wave modulus Ê1 is an extension of White’s frequency-dependent modulus K̂(ω)

to higher frequencies, first proposed by Vogelaar and Smeulders (2007). Further

generalization was proposed by Kudarova et al., 2013 (this thesis, Chapter 3),

where the no-flow boundary conditions at the outer edges of the unit cell were

replaced by the pressure continuity condition, allowing the global flow to take

place. This results in additional effective moduli Ê2 and Ê3 used to describe the

effective Biot medium.

By comparing the expressions for τzz and p in equations (6.4) (with incor-

porated frequency-dependent coefficients Ê1, Ê2 and Ê3 introduced above) and

(6.20), we can find out how the other moduli of the effective poroelastic VTI

model should be chosen. First, it can be observed that

B̂7 = Ê2, B̂8 = Ê3. (6.26)

Next, the effective coefficient B̂6 should be obtained. In the particular case when

the shear modulus is constant throughout the layers, there is no anisotropy in

the stiffness matrix of the effective poroelastic medium, and B̂6 = B̂7 = Ê2.

Anisotropy remains in the viscous and inertia terms, according to their definition

in (6.19). In the general case, complying with the method used by Krzikalla

and Müller (2011), the frequency-dependence of B̂6 is specified using a second

normalized relaxation function:

R̂2(ω) =
Ê2 −Bu

7

Br
7 −Bu

7

. (6.27)

The final expression for the effective modulus B̂6 then reads

B̂6 = Bu
6 − R̂2(ω)(Bu

6 −Br
6). (6.28)

Now, all effective constants have been determined. For clarity, we underline

that the effective poroelastic model incorporates both the mesoscopic and the

macroscopic attenuation mechanisms; the former is captured by the effective stiff-

nesses in equation (6.20), while the latter comes in through the effective terms

defined in equation (6.19).
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To obtain the dispersion equation of the effective poroelastic VTI model, we

look for the solution of equations (6.20) in the form

{ũx, ũz, w̃x, w̃z} =
{
Ũx, Ũz, W̃x, W̃z

}
exp(−ikzz). (6.29)

Substitution of (6.29) into stress-strain relations (6.20) and the equations of motion

(6.18) gives the dispersion relation det(M) = 0 with solutions kz(kx, ω), where M

is a matrix with coefficients given as:

M =



Âk2
x +Dk2

z − ω2ρ̂x (D + F̂ )kxkz B̂6k
2
x − ω2ρ̂fx B̂6kxkz

(F̂ +D)kxkz Ĉk2
z +Dk2

x − ω2ρz B̂7kxkz B̂7k
2
z − ω2ρfz

−B̂6k
2
x + ω2ρ̂fx −B̂7kxkz −B̂8k

2
x + m̂xω

2 −B̂8kxkz

−B̂6kxkz −B̂7k
2
z + ω2ρfz −B̂8kxkz −B̂8k

2
z + m̂zω

2


.

(6.30)

The matrix determinant det(M) = 0 provides the dispersion relation:

c1k
6
z + c2k

4
z + c3k

2
z + c4 = 0. (6.31)

Explicit expressions for the coefficients ci are not presented here for the sake of

brevity; they can be expressed in terms of the elements of the matrix M. The

solution of (6.31) is

k±1z = ±
√

a
6c1
− 2

3

3c1c3−c22
c1a

− c2
3c1
,

k±2z = ±
√
−(1− i

√
3) a

12c1
+ 2(1 + i

√
3)

3c1c3−c22
6c1a

− c2
3c1
,

k±3z = ±
√
−(1 + i

√
3) a

12c1
+ 2(1− i

√
3)

3c1c3−c22
6c1a

− c2
3c1
,

(6.32)

where

a =
(

12
√

3(27c2
1c

2
4 − 18c1c2c3c4 + 4c1c3

3 + 4c3
2c4 − c2

2c
2
3)c1−

−108c4c
2
1 + 36c1c2c3 − 8c3

2)
1/3
.

(6.33)

These vertical components of the wavenumbers correspond to the up- and down-

going fast qP-waves, the slow qP-waves and the qS-waves.
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(a) (b)

Figure 6.1: Point-force source at the top of the layered half-space and receivers
on a horizontal line below the source (a) and on an arc (b).

6.3 Results

In this section, we compare the space-time domain responses of three half-spaces

subject to a surface point-source (vertical stress component) and evaluate the

performance of the effective models for media with different properties. The first

half-space consists of periodically alternating layers, where each layer is governed

by Biot’s equation. The exact analytical solution presented in Appendix 6.A is

used to obtain the response in the frequency-wavenumber domain. The response

in the space-time domain is obtained with the use of the inverse Fourier transform

(6.3). The second half-space is a homogeneous viscoelastic VTI medium governed

by the equations of the effective viscoelastic VTI model outlined above, originally

introduced by Krzikalla and Müller (2011). The third half-space is a homogeneous

VTI poroelastic medium governed by the equations of the effective poroelastic

VTI model introduced in this chapter.

6.3.1 Configuration

We consider a periodically layered half-space with the normal stress at the surface

applied at some reference point x = 0. The receivers are located on one horizontal

line (Fig. 6.1(a)), and on the arc of a circle with the radius r (Fig. 6.1(b)). The

latter configuration is instrumental to highlight angle-dependent effects. The sets

of the material parameters are given in Tables 6.1 (solid frame properties) and
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Parameter Notation Units Rock 1 Rock 2 Sandstone Medium sand Coarse sand
Density of solid grains ρs kg/m3 2650 2650 2650 2650 2650
Bulk modulus of solid grains Ks GPa 40 40 40 36 36
Bulk modulus of frame Km GPa 12.7 4.3 1.37 0.108 0.217
Porosity φ – 0.15 0.17 0.36 0.4 0.35
Permeability k0 m2 10−13 2 ·10−13 1.6 ·10−12 10−11 10−10

Shear modulus µ GPa 20.3 8.8 0.82 0.05 0.1
Tortuosity α∞ – 1 1 2.8 1.25 1.25

Biot cr. freq. (water)
ωB
2π

kHz 1500 850 80.3 5.1 0.445

Biot cr. feq. (CO2)
ωB
2π

kHz 445 252 23.9 9.5 0.8

Biot cr. feq. (gas)
ωB
2π

kHz 107 60 5.7 2.3 0.2

Table 6.1: Sets of material properties chosen for numerical examples.

Parameter Notation Units Water Gas CO2

Density ρf kg/m3 1000 140 505
Bulk modulus Kf GPa 2.25 0.056 0.025
Viscosity η Pa · s 0.001 0.00022 0.00015

Table 6.2: Mechanical properties of the sample pore fluids: water and gas.

6.2 (saturating fluids properties). The examples with rocks and water- and gas-

saturated coarse sand were used by Gelinsky and Shapiro (1997). The properties

of the coarse and medium sands originate from Turgut and Yamamoto (1990). The

examples with alternating layers of a brine-saturated mudstone and CO2-saturated

sandstone were introduced by Carcione et al. (2011).

The boundary conditions at the top interface z = 0 read

τzz = f(t)δ(x), τxz = 0, p = 0. (6.34)

For the effective VTI viscoelastic model, only the first two boundary conditions

apply, because the fluid pressure is not present in the equations of the viscoelastic

model. For the function f(t), a Ricker wavelet is used:

f(t) = f0

(
1− 2π2f 2

R(t− t0)2
)

exp
(
−π2f 2

R(t− t0)2
)
. (6.35)

In the above equation, f0 is a constant scaling coefficient with the dimension of

stress (Pa), fR is the central frequency of the wavelet and t0 is an arbitrary time

shift chosen such that the dominant part of the wavelet lies within the positive

domain t > 0; only the components that are infinitely small are left in the do-

main t < 0. In the examples, we compare the vertical components of the solid

displacements uz.



100 Chapter 6. 2-D poroelastic model for layered media

6.3.2 Numerical examples

First, we look at the response of a medium consisting of alternating water-saturated

Rocks 1 and 2. The receivers are located on a horizontal line at a vertical distance

z = 400 m from the source, and the layer thicknesses are l1 = l2 = 0.2 m. The

wavelet parameters are fR = 50 Hz, f0 = 109 Pa, t0 = 0.022 s. Since there is a

variation in the shear modulus of the layers, the effective viscoelastic medium is

a VTI medium (not isotropic), as well as the effective poroelastic medium. The

exact solution describes the original layered medium. Time-domain responses are

shown in Figure 6.2. In all the plots, the dashed black line corresponds to the

solution predicted by the effective viscoelastic model, the solid black line corre-

sponds to the exact analytical solution, and the solid grey line corresponds to the

effective poroelastic model. In Figure 6.2 all three lines coincide; both effective

models are in agreement with the exact solution for both the qP- and qS-waves,

as well as for the head wave that can be distinguished.

The second example is a medium consisting of sandstone layers with alter-

nating water and CO2 saturations, the thicknesses of the layers are the same

as in the previous example. This configuration was also considered by Carcione

et al. (2011). The shear modulus is constant throughout the layers, which means

that the effective viscoelastic medium is isotropic (the effective elastic coefficients

Â = Ĉ = F̂ + 2D), resulting in decoupling between P- and S-waves motions. In

this particular case, the qS-wave velocity in the effective viscoelastic model is equal

to the S-wave velocity v =
√
µ/ρ, where µ is a real-valued shear modulus, and

ρ is a real-valued effective density. Hence, the effective viscoelastic model does

not predict any S-wave attenuation. However, the effective poroelastic model is

not isotropic because of the anisotropy in the effective density terms (equation

(6.18)). Therefore, the qS-wave is attenuated in the effective poroelastic model

and the exact solution. To observe this effect, the central frequency of the wavelet

in this example is increased to 200 Hz, and t0 = 0.0055 s. The qP-wave waveforms

are shown in Figure 6.3 and the qS-wave ones in Figure 6.4. The traces for the

qS-wave are shifted in time by −(tn−∆tn+0.01n) s, where n = 2, .., 6 is the trace

number (the numbering in the direction of increasing offset), tn is the actual arrival

time of the qS-wave in the nth trace and ∆tn is the difference between the arrival

time of the qS-wave in the nth trace and the first trace. The interval between the

arrival times is then t = 0.01 s. This is done just for visualization purposes. It

can be observed that the qP-waveforms are all in agreement (all lines coincide),
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Figure 6.2: Time-domain response at a depth z = 400 m for different x. The
medium consists of water-saturated alternating layers of Rock 1 and Rock 2,

l1 = l2 = 0.2 m,fR = 50 Hz. All three lines coincide.

but the qS-wave attenuation is underestimated by the effective models; with the

effective viscoelastic model, it is underestimated to a greater extent, whereas the

difference between the predictions by the effective poroelastic model and the exact

solution is smaller.

In the effective poroelastic model, Biot’s global flow mechanism causes qS-wave

attenuation captured by the viscous terms in equations (6.18). This mechanism

is not present in the effective viscoelastic model, which could result in different

predictions as shown in Figure 6.4. However, the influence of Biot’s global flow

mechanism at this frequency range well below Biot’s critical frequency (see Table

6.1 ) is probably small, which is confirmed by the fact that the predictions for the

qP-waveforms match for all models. The observed differences in the qS-waveforms

are likely to be related to the different description of the mesoscopic-scale atten-

uation mechanism in the models. In the viscoelastic model, there is no S-wave
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Figure 6.3: qP-waveforms at a depth z = 400 m for different x. The medium
consists of water- and CO2-saturated sandstone layers, l1 = l2 = 0.2 m, fR =

200 Hz. All three lines coincide.

attenuation; in the poroelastic model, the mesoscopic-scale attenuation of the qS-

wave is captured in the compressional motion, associated with the qS-wave. The

difference between the effective poroelastic model qS-waveform and that of the

exact solution is probably due to more complicated fluid pressure distribution as-

sociated with the qS-wave (Wenzlau et al., 2010), which is not captured by the

effective moduli derived for the 1-D cell problem.

It was shown in Chapter 3 that Biot’s global flow mechanism is also important

for predictions of P-wave attenuation at seismic frequencies for highly permeable

weak-frame media. In the next examples, we consider such media to compare

the predictions of the three models considered in this chapter for both qP- and

qS-waves. First, water-saturated alternating layers of medium sand and coarse

sand are considered. The thicknesses of the layers are l1 = l2 = 0.2 m, and

the receivers are located at a depth z = 400 m. The central frequency of the

wavelet is defined as fR = 50 Hz. For visualization purposes, the traces in Figure

6.5 are shifted in time, in the same way as in the previous example. It also

applies to the traces in Figure 6.6, but the interval between the arrival times
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Figure 6.4: qS-waveforms at a depth z = 400 m for different x. The medium
consists of water- and CO2-saturated sandstone layes, l1 = l2 = 0.2 m, fR = 200
Hz. The actual arrival times are not shown here, the interval between the arrival

times t = 0.01 s is chosen for visualization purposes.

is chosen differently: t = 0.1 s. It can be observed from the waveforms of the

qP- (Figure 6.5) and qS-waves (Figure 6.6) that the effective viscoelastic model

underestimates both qP- and qS-wave attenuation. The effective poroelastic model

predicts the same qP-waveforms as the exact solution, and its predictions for

the qS-wave are closer to the exact solution than the predictions of the effective

viscoelastic model. In this example, the effective viscoelastic model is a VTI

medium, because there is a variation in the shear moduli of the layers. P- and S-

waves motions are coupled, therefore the qS-wave is not lossless. However, Biot’s

global flow mechanism is still not captured by this model, this is why the model

gives inaccurate predictions. Clearly, the attenuation caused by Biot’s global flow

mechanism is not negligible at low frequencies for highly permeable media. The

difference in the qS-waveforms predicted by the effective poroelastic model and

the exact solution, which changes with offset, suggests again that the mesoscopic-

scale attenuation mechanism incorporated in the model via the effective frequency-

dependent elastic moduli derived from the 1-D cell problem fails to predict the
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Figure 6.5: qP-waveforms at a depth z = 400 m for different x. The medium
consists of water-saturated medium and coarse sand, l1 = l2 = 0.2 m, fR = 50
Hz. Grey and black solid lines coincide. The actual arrival times are not shown
here, the interval between the arrival times t = 0.01 s is chosen for visualization

purposes.

qS-wave attenuation with high accuracy.

The attenuation of seismic waves is known to be very pronounced in finely lay-

ered porous media with patchy saturation (Carcione and Picotti, 2006). The next

example is a finely layered coarse sand saturated with water and gas. The layer

thicknesses are l1 = 0.09 m (water-saturated) and l2 = 0.01 m (gas-saturated).

The vertical distance from the source to the receivers is z = 100 m. The wavelet’s

central frequency is given by fR = 50 Hz. The time-domain responses for the hor-

izontal line of receivers are depicted in Figures 6.7 (qP-wave) and 6.8 (qS-wave).

The horizontal positions of the receivers are chosen differently, compared to those

in the previous examples, for visualization purposes (the medium is highly atten-

uative). In Figure 6.7, each trace is multiplied by the corresponding propagation

distance and the traces predicted by the effective viscoelastic model are scaled by

a factor 0.1 (for visualization purposes). In Figure 6.8, the traces predicted by

the effective viscoelastic model are scaled by a factor 0.5, and the waveforms are

shifted in time by −(tn −∆tn + 0.04n) s, similar to the previous examples, such

that the interval between the arrival times is t = 0.04 s. Clearly, the effective vis-

coelastic model vastly underestimates the attenuation, to a much greater extent

than in the previous examples, while the effective poroelastic model is in good
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Figure 6.6: qS-waveforms at a depth z = 400 m for different x. The medium
consists of water-saturated medium and coarse sand, l1 = l2 = 0.2 m, fR = 50
Hz. The actual arrival times are not shown here, the interval between the arrival

times t = 0.1 s is chosen for visualization purposes.

agreement with the exact solution. The effective viscoelastic model also predicts

lower qP-wave velocities than the poroelastic model and the exact solution, as can

be seen in Figure 6.7. The waveforms predicted by the effective viscoelastic model

are also different, suggesting that the dispersion is not captured properly. It can be

observed in the (f, kx) domain that the effective poroelastic model (Figure 6.9(a))

and the exact solution (Figure 6.9(b)) are in good agreement, while the amplitudes

predicted by the effective viscoelastic model (Figure 6.9(c)) are much higher, and

the P-wave velocity is lower.

Since highly permeable media are also highly dispersive and attenuative, it is

interesting to explore the angle-dependent effects in more detail with the config-

uration of receivers depicted in Figure 6.1(b). The distance from source to the

receivers is r = 100 m. The results for this configuration are depicted in Figures

6.10 and 6.11. In these plots, the time-domain reponses are shown for the loca-

tions of receivers at different angles θ. The results for the qP-wave are depicted
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Figure 6.7: qP-waveforms at a depth z = 100 m for different x. The medium
consists of the layers of coarse sand, l1 = 0.09 m (water-saturated), l2 = 0.01
m (gas-saturated), fR = 50 Hz. Each trace is multiplied by the corresponding
propagation distance, and the traces predicted by the effective viscoelastic model

are scaled by a factor 0.1.

in Figure 6.10. The deviation of the predictions of the effective viscoelastic model

from the exact result is visible even at normal incidence; this result is consistent

with that obtained in Chapter 3. The effective poroelastic model predicts the same

attenuation and dispersion as the exact solution. It can be observed in Figure 6.10

that the effective viscoelastic model does not correctly predict the angle-dependent

dispersion of this medium. There is a significant phase shift between the predic-

tions of the viscoelastic and poroelastic solutions, observed by the change in the

waveform. The dispersion effects are very pronounced in the effective poroelastic

model and the exact solution: with increasing angle, the waveform spreads.

There is again some difference in the predictions of the effective poroelastic

model and the exact solution for the qS-wave as can be seen in Figure 6.11. In
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Figure 6.8: qS-waveforms at a depth z = 100m for different x. The medium
consists of the layers of coarse sand, l1 = 0.09 m (water-saturated), l2 = 0.01 m
(gas-saturated), fR = 50 Hz. The actual arrival times are not shown here, the
interval between the arrival times t = 0.04 s is chosen for visualization purposes.
The traces predicted by the effective viscoelastic model are scaled by a factor

0.5.

these highly dispersive media, the qS-wave attenuation due to the mesosocopic-

scale wave-induced fluid flow is more significant than in the less permeable stiffer

rocks. However, the S-wave attenuation and dispersion due to mesosocopic effects

is not described by the effective models. Only the effective P-wave modulus is

incorporated in the models to describe attenuation due to the mesoscopic wave-

induced fluid flow. Still, the effective poroelastic model gives better predictions of

the qS-wave attenuation than the viscoelastic model.

In this section we have observed that both qP and qS-waveforms are predicted

accurately for Rock 1 and Rock 2 (Figure 6.2), where the influence of Biot’s global

flow mechanism is negligible, and the mesoscopic-scale attenuation mechanism

is captured properly by the effective moduli in both models. The differences in



108 Chapter 6. 2-D poroelastic model for layered media

(a) (b)

(c)

Figure 6.9: Logarithm of the amplitude spectrum in the (f, kx)-domain for
the vertical component of solid particle displacement at a depth z = 100 m.

Water- and gas-saturated coarse sand.

qS-waveforms are more pronounced with increasing the frequency and for softer

sandstones (Figure 6.4). Biot’s global flow mechanism becomes non-negligible for

unconsolidated sands (Figures 6.5–6.11), resulting in underestimation of both qP-

and qS-wave attenuation by the effective viscoelastic model; the poroelastic model

however predicts the proper qP-wave attenuation for such materials, while the

qS-wave attenuation has higher accuracy than that predicted by the viscoelastic

model.
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Figure 6.10: qP-waveforms at a distance r = 100 m from the source at different
angles. The medium consists of the layers of coarse sand, l1 = 0.09 m (water-
saturated), l2 = 0.01 m (gas-saturated), fR = 50 Hz. Grey and black solid lines

coincide.

6.4 Discussion

The effective models discussed in this paper are based on the assumption that

the direction of fluid flow is always perpendicular to the layering: the frequency-

dependent functions in both effective models describe the attenuation due to inter-

layer flow at normal incidence. It was shown in this study that this assumption

is reasonable for qP-waveforms: the predictions by the effective poroelastic model

are in good agreement with the predictions by the exact solution. Predictions by

the effective viscoelastic model are in agreement with the exact solution only in

situations where Biot’s global flow mechanism is not significant.

The exact solution is readily available for periodically layered media. One

may question the justification of the development of effective models for such

configurations. However, it is much easier to work with effective homogenized

equations giving simpler expressions. The model of White et al. (1975) is an

example; many publications report on studies with this model already for decades.
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Figure 6.11: qS-waveforms at a distance r = 100 m from the source at different
angles. The medium consists of the layers of coarse sand, l1 = 0.09 cm (water-

saturated), l2 = 0.01 m (gas-saturated), fR = 50 Hz.

The effective models for periodic structures can in many cases be extended to the

non-periodic case to handle more complicated geometries. The exact analytical

solution available for periodically distributed inclusions validates the methods used

to obtain the effective models. Although only 2-D numerical examples were shown,

the models discussed in this paper can be used to solve problems in 3-D, and can

be extended to the situation of non-periodic layering when different frequency-

dependent relaxation functions are used (derived for a non-periodic case).

Viscoelastic models are often advantageous over the poroelastic ones because

they require fewer parameters and are more computationally efficient. However,

poroelastic models are required for predictions of frequency dependent attenuation

in highly permeable media such as shallow marine sediments with inhomogeneous

frame and partial saturation, and unconsolidated sand reservoirs.
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6.5 Conclusions

Finely layered porous media can be highly dispersive and attenuative, for example

due to the variations in the properties of saturating fluids, the presence of soft

layers and fractures. In previous work, an effective anisotropic viscoelastic model

was proposed for wave propagation in such layered porous media. In this paper,

a new effective poroelastic model is proposed. In this new model, the attenuation

of seismic waves at mesoscopic scale is described by three frequency-dependent

relaxation functions, which were computed for P-waves at normal incidence. The

extension to the angle-dependent propagation is provided by the use of poroelastic

Backus averaging. Both effective models, the viscoelastic and the poroelastic one,

are validated with the exact analytical solution obtained with the use of Floquet’s

theory applied to Biot’s equations with periodically varying coefficients. The ef-

fective models predict different qP-wave attenuation and dispersion for soft uncon-

solidated layers. This is explained by the fact that Biot’s global flow attenuation

mechanism is not included in the effective viscoelastic model. The examples show

that the effective poroelastic model predicts the qP-waveform with high accuracy.

There is a major difference in the predictions of qS-wave attenuation by the

effective viscoelastic model and the newly introduced poroelastic model. The ef-

fective viscoelastic model predicts mesoscopic attenuation of qS-waves due to the

coupling between P- and S-wave motions. The effective medium is isotropic when

the shear modulus is constant; then, there is no coupling between P- and S-wave

motions. In this case, the S-wave in the effective viscoelastic model is lossless.

However, the effective poroelastic model predicts mesoscopic S-wave attenuation

even for constant shear modulus; in addition, there is attenuation due to Biot’s

global flow. The numerical examples show that this results in perceptible differ-

ences between the waveforms predicted by the effective viscoelastic and poroelastic

models, and that the predictions by the effective poroelastic model are much closer

to the exact result.

We conclude that the method used for extension of the attenuation and dis-

persion caused by the inter-layer flow in 1-D to the arbitrary angle of incidence

provides a very good match between the resulting effective model and the exact

solution, especially for the qP-wave. The effective poroelastic VTI model, intro-

duced in this paper, is advantageous when soft unconsolidated layers are present.

It is also applicable at a broader frequency range than the effective viscoelastic

model.
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6.A Analytical solution for periodically layered

porous medium

The solution of the first-order differential equations with periodic coefficients can

be obtained using Floquet’s theorem (Floquet, 1883). This theory is extensively

used in numerous applications in different disciplines. In particular, it has been ap-

plied to elastic composites by Braga and Hermann (1992), and to a 1-D poroelastic

composite by Kudarova et al. (2013) (this thesis, Chapter 3). In this Appendix, we

apply the method to a 2-D poroelastic composite to obtain an analytical solution

that will be used to validate the effective models. The procedure is outlined below.

We consider a periodically layered medium consisting of alternating layers 1

and 2, with the thicknesses l1 and l2, and the period L = l1 + l2 (see Figure 6.1(a)).

Each layer is described by Biot’s equations of poroelasticity (6.1), and each layer

is isotropic. The equations of motion (6.1) and stress-strain relations (6.4) in the

frequency-wavenumber domain can be written in the matrix notation:

∂ f̃

∂z
= iÑf̃ , (6.36)

where Ñ is a matrix given in Appendix 6.B; f̃ = [ṽz, ξ̃z, σ̃xz, σ̃zz, p̃, ṽx] is a vector

containing field variables: ṽz and ṽx are the z- and x-components of the solid

particle velocity, respectively; ξ̃z = (1−φ)ṽz+φṽ
f
z , where ṽfz is a vertical component

of the fluid particle velocity; σ̃xz = −τ̃xz and σ̃zz = −τ̃zz − p̃ are intergranular

stresses.

The elements of the matrix Ñ are periodic functions of the vertical coordinate

z (with the period L) and depend on frequency ω and horizontal slowness sx.

According to Floquet (Floquet, 1883), the solution of (6.36) can be found in the

form

f̃ = X̃(z)c̃, X̃ = F̃(z) exp(iÃz) (6.37)

where c̃ is a vector containing six constants to be defined by the boundary condi-

tions, and matrix F̃(z) is a periodic matrix, F̃(z) = F̃(z+L); matrix Ã is constant

with respect to z. In order to find the matrices F̃ and Ã, let us consider the so-

lution of (6.36) within one period L that consists of two layers and is referred to

as a periodic cell.



Chapter 6. 2-D poroelastic model for layered media 113

For a stack of layers, the solution of (6.36) can be expressed via the propagator

matrix P̃(z): f̃(z) = P̃(z)f̃(z0), where z0 is the vertical coordinate of the top inter-

face. It follows from this expression that P̃(z0) = I, where I is the identity matrix.

Using Floquet’s solution (6.37) at z = z0, one finds f̃(z0) = F̃(z0) exp(iÃz0)f̃(z0),

and consequently, F̃(z0) exp(iÃz0) = I. From this relation and the periodicity of

F̃(z), it follows that

f̃(z0 + L) = F̃(z0) exp(iÃz0) exp(iÃL)f̃(z0) = exp(iÃL)f̃(z0). (6.38)

On the other hand, f̃(z0 + L) = P̃(z0 + L)f̃(z0). Hence, P̃(z0 + L) = exp(iÃL).

Let us now consider the solution for the two layers of the periodic cell with the

coordinates z0 ≤ z ≤ z0 + l1 for layer 1 and z0 + l1 ≤ z ≤ z0 + L for layer 2. In

each of the layers 1 and 2, the solution of (6.36) is

f̃k(z) = M̃k(z)f̃k(zk), k = 1, 2,

M̃k(z) = exp(iÑkz), M̃k(zk) = I,

(6.39)

where zk is the vertical coordinate of the top interface of the layer k. Summation

convention does not apply here. Following this solution, f̃(z0 + l1) = M̃1(l1)f̃(z0),

and f̃(z0 + L) = M̃2(l2)f̃(z0 + l1) = M̃2(l2)M̃1(l1)f̃(z0). Hence,

P̃(z0 + L) = exp(iÃL) = exp(iÑ2l2) exp(iÑ1l1). (6.40)

Matrix Ã is now defined via the relation of the matrix exponentials in (6.40). The

eigenvalues of the matrix Ã are the so-called Floquet wavenumbers that govern the

wave propagation in periodic media. The first step in finding these wavenumbers

is to find the matrix exponential exp(iÑklk), k = 1, 2. In order to compute this

matrix, it is convenient to use the eigendecomposition Ñk = L̃kΛ̃kL̃
−1
k , where L̃k is

a matrix containing the eigenvectors of the matrix Ñk, and Λ̃k is a diagonal matrix

containing its eigenvalues which are the vertical components of the wavenumbers

governing wave propagation inside the layer:

k±1z = ±ω

√√√√−d̂1 −
√
d̂2

1 − 4d̂0d2

2d2

− s2
x, k±2z = ±ω

√√√√−d̂1 +

√
d̂2

1 − 4d̂0d2

2d2

− s2
x,

k±3z = ±ω

√
d̂0

µρ̂22

− s2
x,

(6.41)
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where d̂0 = ρ̂11ρ̂22 − ρ̂2
12, d̂1 = −(P ρ̂22 + Rρ̂11 − 2Qρ̂12), d2 = PR − Q2, the

density terms ρ̂ij are defined in Appendix 6.B. The vertical wavenumbers in (6.41)

correspond to the up- and downgoing fast and slow P-waves, and S-waves. The

elements of the matrices L̃k are not explicitly presented here for the sake of brevity;

they are expressed via the elements of the matrices Ñk and can be found using

the eigendecomposition. The vertical components of the Floquet wavenumbers kFiz

are expressed via the eigenvalues τi of the matrix exp(iÃL): τi = exp(ikFizL).

The next step towards obtaining the solution of (6.36) is to find the periodic

matrix F̃(z). Without loss of generality, we assume the coordinate of the top

interface z0 = 0. Let us define the local coordinate zn = z − (n − 1)L, where n

is the number of the periodic cell and 0 ≤ zn ≤ L. Then, the following equalities

hold:

P̃(z) = F̃(z) exp(iÃz) = F̃(zn) exp(iÃzn) exp(iÃL(n−1)) = P̃(zn) exp(iÃL(n−1)).

(6.42)

Right-multiplying (6.42) by exp(−iÃz) results in the expression

F̃(z) = P̃(zn) exp(−iÃzn), (6.43)

where the propagator matrix P̃(zn) is defined as

P̃(zn) =


M̃1(zn), 0 ≤ zn ≤ l1,

M̃2(zn − l1)M̃1(l1), l1 ≤ zn ≤ L.

(6.44)

The matrices F̃ and Ã have been determined in equations(6.40) and (6.43) , and

the solution of (6.36) can now be obtained:

f̃(z) = F̃(z) exp(iÃz)f̃(0) = P̃(zn) exp(iÃL(n− 1))f̃(0). (6.45)

The vector f̂(0) is the solution of Biot’s equations related to the top layer:

f̃(z0) = S̃ [A1 A2 A3 A4 A5 A6]T . (6.46)

The elements of matrix S̃ are given in Appendix 6.B. The unknown amplitudes Ai

are defined by the boundary conditions. In the examples that follow, we consider

the half-space subject to a point-source τzz = f(t)δ(x) at the top interface. In

this case, the following six boundary conditions are applied: the stress σzz is
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continuous, σzx = 0, fluid pressure p = 0 at the top interface z = 0 and the

radiation condition, which implies the absence of all three up-going Floquet waves.

6.B Matrices of coefficients in the analytical so-

lution

The matrix of coefficients Ñ in the equations of motion (6.36) reads

Ñ = ω

 0 Ña

Ñb 0

 ,

Ña =


− R
d2

φQ
′

d2
sx

(
1− 2µR

d2

)
.. s2xφ

2

ρ̂22
− φ(φP−(1−φ)Q)

d2
+ φ(1−φ)Q′

d2
sx

(
1− φ− φ ρ̂12

ρ̂22
+ 2µφQ′

d2

)
.. .. 4µs2

x

(
1− µR

d2

)
+

ρ̂212
ρ̂22
− ρ̂11

 ,

Ñb =


2ρ̂12(1−φ)

φ
− ρ̂22(1−φ)2

φ2
− ρ̂11

ρ̂22(1−φ)
φ2

− ρ̂12
φ

sx

.. − ρ̂22
φ2

0

.. .. − 1
µ

 ,
(6.47)

where the dots denote the elements below the diagonal which are equal to the

corresponding elements above the diagonal, since matrices Ña and Ñb are sym-

metric. In the elements of Ñ, sx = kx/ω is the horizontal slowness, ρ̂12 =

−(α∞−1)φρf +ib̂/ω, ρ̂11 = (1−φ)ρs− ρ̂12, and ρ̂22 = φρf − ρ̂12. The damping op-

erator b̂ = b0

√
1 + iω/(2ωB), where b0 = ηφ2/k0. The coefficients d2 = PR −Q2,

Q′ = Q− (1− φ)R/φ.

The elements of the matrix S̃ from equation (6.46) read S̃ij = g̃i(k
±
jz, ω), where

k±jz, j = 1, .., 6 are the six wavenumbers defined in (6.41). The functions g̃i(kz, ω),
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i = 1, 6, read

g̃1 = iω, g̃2 = iω(1 + β̃zf ),

g̃3 = −i(1− φ)E3(kzβ̃zf + kxβ̃xf ) + i(µkz − (1− φ)E2kx)β̃x − i(E2kz + µkx),

g̃4 = i ((E1 − 2µ)kx − (1− φ)E2kx) (β̃x + i (E2 − (1− φ)E3)
(
β̃xfkx + β̃zfkz

)
+

+ikz(E1 − (1− φ)E2),

g̃5 = iE2(kz + β̃xkx) + E3(kzβ̃zf + kxβ̃xf ), g̃6 = iωβ̃x.

(6.48)

The coefficients β̃zf , β̃xf and β̃x are the ratios of the amplitudes W̃z, W̃x and Ũx

from (6.6) to Ũz, respectively. They read

β̃x = −m̂kxkz
∆

(
ω2(E2ρf + m̂(µ− E1)) + k2

z(E
′ − µE3

)
,

β̃zf = − 1

∆

(
ω4m̂′ − ω2

(
(m̂µρf + m̂′E2)k2

z + ρfk
2
x(ρfE2 − m̂E1)

)
+

+m̂µE2k
4
z + (µ(m̂E2 − ρfE3) + E ′ρf )k

2
zk

2
x) ,

∆ = m̂ω4m̂′ − ω2
(
(m̂′E3 + m̂2µ)k2

z + m̂(m̂E1 − ρfE2)k2
x

)
+ m̂k2

z(µE3k
2
z + E ′k2

x),

β̃xf = −ρf
m̂
βx, m̂′ = m̂ρ− ρ2

f , E ′ = E1E3 − E2
2 .

(6.49)

6.C Formulas for the effective viscoelastic VTI

medium

The formulas for relaxed and unrelaxed elastic coefficients used by Krzikalla and

Müller (2011) and used in this chapter were originally derived by Gelinsky and

Shapiro (1997). The unrelaxed coefficients read

Au =

〈
4µ(λu + µ)

P u

〉
+

〈
1

P u

〉−1〈
λu

P u

〉2

,

Cu =

〈
1

P u

〉−1

, F u =

〈
1

P u

〉−1〈
λu

P u

〉
, Du =

〈
1

µ

〉−1

,

Bu
6 = Bu

7 =

〈 1−φ
Ks
− Km

K2
s

+ φ
Kf(

1− Km

Ks

) 〉−1

.

(6.50)
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In equations 6.50,

λu = Km −
2

3
µ+

(
1− Km

Ks

)2(
1− φ
Ks

− Km

K2
s

+
φ

Kf

)−1

, P u = λu + 2µ. (6.51)

The unrelaxed limit of B8 is not defined, because this coefficient is not present in

the stress-strain relations, since ∇ · w = 0 (no-flow condition, see Gelinsky and

Shapiro (1997)). The relaxed coefficients read

Ar =

〈
4µ(λr + µ)

P r

〉
+

〈
1

P r

〉−1〈
λ

P r

〉2

+
(Br

6)2

Br
8

,

Cr =

〈
1

P r

〉−1

+
(Br

7)2

Br
8

, F u =

〈
1

P r

〉−1〈
λr

P r

〉
+
Br

6B
r
7

Br
8

, Du =

〈
1

µ

〉−1

,

Br
6 = −Br

8

〈2
(

1− Km

Ks

)
µ

P r

〉
+

〈
1− Km

Ks

P r

〉〈
λr

P r

〉〈
1

P r

〉−1
 ,

Br
7 = −Br

8

〈
1− Km

Ks

P r

〉〈
1

P r

〉−1

,

Br
8 =

〈1− φ
Ks

− Km

K2
s

+
φ

Kf

〉
+

〈(
1− Km

Ks

)2

P r

〉
−

〈
1− Km

Ks

P r

〉2〈
1

P r

〉−1


−1

.

(6.52)

In equations 6.52,

λr = Km −
2

3
µ, P r = λr + 2µ. (6.53)

The frequency-dependent plane-wave modulus that connects the relaxed and un-

relaxed regimes (see (6.13)) was derived by White et al. (1975). It is defined by

the following relations:

K̂(ω) =
K∗

1 + 2(R1 −R2)2i/(ωL(Z1 + Z2))
, K∗ =

〈
(P u)−1〉−1

, (6.54)

where for each layer 1 and 2

R =

(
1− Km

Ks

)
Ka

Pu
, Ka =

(
1− φ
Ks

− Km

K2
s

+
φ

Kf

)−1

,

Z = Z0 cot(
1

2
αwl), Z0 =

√
ηKei/(ωk0)

αw =
√
−iωη/(k0Ke), Ke = Ka(Km +

4

3
µ)/P u.

(6.55)
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Conclusions

In this thesis effective models are studied for wave propagation in porous media

with mesoscopic-scale heterogeneities. There is an increasing demand in estab-

lishing links between subsurface properties, including both reservoir and over-

burden properties, and seismic attenuation, which has a significant potential as

an attribute for subsurface characterization. The presence of mesoscopic-scale

heterogeneities (those larger than the pore and grain sizes but smaller than the

wavelength) in porous media causes significant frequency-dependent attenuation

at seismic frequencies. Effective models are used to link the poroelastic parame-

ters of the subsurface to the observed dispersion and attenuation of seismic waves,

introducing some assumptions on the distribution and size of heterogeneities. This

approach helps to reduce uncertainty in characterization by limiting the number

of unknown parameters by using a homogenized model.

Models for periodically distributed heterogeneities are studied in this thesis.

A new model is proposed in Chapter 3 for 1-D wave propagation in a periodically

layered poroelastic solid, where each layer is governed by Biot’s equations, and

heterogeneities can occur in the porous frame and in saturating fluid properties.

This study was motivated by the effective viscoelastic model of White et al. (1975)

and its extension by Vogelaar and Smeulders (2007), which is also considered in

Chapter 3. The simplicity of White’s model makes it attractive for numerous

applications. One of the important applications is a benchmark solution for more

complicated problems. However, the exact solution can be obtained for periodic

structures with the use of Floquet’s theory. The derivation of the exact solution

for a 1-D periodic poroelastic composite is therefore also presented in Chapter 3.

Comparison of the predictions of White’s model against the predictions of the exact

119
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solution showed that White’s model significantly underestimates attenuation for

high-permeable media, such as marine sediments. This is because White’s model

does not account for Biot’s global flow attenuation mechanism. The new model

proposed in Chapter 3 incorporates Biot’s global flow mechanism together with

the attenuation due to the presence of mesoscopic heterogeneities, and predicts

the same result as the exact solution at the whole frequency range where the

model is valid (up to the frequencies where the wavelength is still large compared

to the period of the system). The novelty of the model lies in the application of

pressure-continuity boundary conditions instead of the no-flow conditions at the

outer edges of the elementary cell. The new model is advantageous in geological

environments where soft and highly permeable unconsolidated layers are present.

A new poroelastic model for periodically distributed spherical inclusions is pro-

posed in Chapter 4. This model also originates from viscoelastic models by White

(1975) and Vogelaar et al. (2010). It is also possible to derive the exact solution

with Floquet’s theory for this configuration, however it is more demanding than

for the layered medium, and is not presented here. The results obtained from

the comparison of the models are similar to those obtained for the periodically

layered composite: the effective poroelastic model is in agreement with the effec-

tive viscoelastic one, but performs better for soft sediments. This result has a

practical application for marine soils. Shallow near-surface sediments are often

partially saturated, containing free gas bubbles. The proposed model can be used

to estimate free gas saturation from seismic reflection data.

In Chapter 5 effective models are proposed that are governed by equations

with coefficients that do not depend on frequency, using higher-order terms in the

equations of motion. Such models are useful for time-domain analysis, which is

advantageous over frequency-domain analysis in nonlinear problems. Although

the effective model is a linear model, it can be coupled to a domain with nonlinear

behaviour. The absence of coefficients with complicated frequency dependence

enables efficient coupling. It is shown that such a model can be derived for a peri-

odically layered porous medium in a simple manner by expanding the dispersion

equation of White’s model in powers of frequency and reconstructing the equation

of motion including higher-order terms from this expansion. The results of such

an approximation for low frequencies are presented and are shown to work well

for sufficiently low frequencies.

Another approximation is also proposed in Chapter 5, which uses homogeniza-

tion with the two-scale method of asymptotic expansions. A similar approximation
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is well-known for an elastic composite. In Chapter 5, we extend the derivation to

a poroelastic composite. The effective matrix coefficients are derived. The model

gives a good approximation at lower frequencies, while at higher frequencies the

viscoelastic approximation from the dispersion equation of White’s model gives

better predictions.

The new effective model presented in Chapter 3 is used in Chapter 6 to derive

a 2-D vertical transversely isotropic effective poroelastic model for periodically

layered media to predict angle-dependent qP- and qS-wave attenuations. The

exact solution is obtained for the periodically layered half-space, using Floquet’s

theory in the frequency-wavenumber domain, similar to the solution for the 1-

D case in Chapter 3. The solution is also obtained for the effective viscoelastic

model, a model based on White’s effective modulus. The time-domain responses

predicted by all solutions are compared. Similar to the 1-D case, the effective

poroelastic model gives accurate predictions of qP-waveforms for soft sediments

whereas the viscoelastic model fails. However, the results for the qS-waveforms

differ for all models. Still, the predictions of the effective poroelastic model are

closer to the exact solution than those of the effective viscoelastic model. In case

of constant shear modulus throughout the layers, the effective viscoelastic model

is isotropic, and the P- and S-wave motions are decoupled, with the S-wave being

lossless. The effective poroelastic model, however, remains anisotropic, and P-wave

motions contribute to the attenuation of qS-wave. Furthermore, the mesoscopic-

scale attenuation mechanism incorporated in the model is based solely on the

mesoscopic P-wave attenuation mechanism; inclusion of a frequency-dependent

shear wave modulus might improve the results. Biot’s global flow also influences

S-wave attenuation, and for soft sediments, where the effect is important, the

differences in qS-wave predictions by the models are even more pronounced, since

the viscoelastic model does not incorporate this mechanism. Another important

result is the validation of the assumption of the 1-D mesoscopic fluid flow (i.e.,

normal to the layering) for description of wave propagation in 2-D layered media.

The models proposed in this thesis can be used to study seismic attenuation

in media with heterogeneities. They can be instrumental in predicting the depen-

dence between material properties and attenuation in media with heterogeneities,

especially in shallow marine sediments with inhomogeneous frame and partial sat-

uration, and in unconsolidated sand reservoirs, where the previously developed

viscoelastic models might give inaccurate predictions.
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Summary

Studying seismic wave propagation in porous media is instrumental in finding links

between subsurface properties and attributes of wave propagation, such as disper-

sion and attenuation. Seismic waves are sensitive to the presence of mesoscopic-

scale heterogeneities in porous media, those larger than the typical pore and grain

sizes but smaller than the wavelength. It is widely accepted that Biot’s theory

which is commonly used to describe wave propagation in poroelastic solids underes-

timates observed attenuation and dispersion of elastic waves in such heterogeneous

media. The attenuation mechanism in Biot’s theory is driven by the wavelength-

scale fluid-pressure gradients created by a passing wave, which results in relative

fluid-to-solid movement accompanied by internal friction due to the viscous forces

between the solid and fluid phases. This mechanism does not account for the

wave-induced fluid flow between mesoscopic inhomogeneities caused by pressure

gradients on the sub-wavelength scale, which is believed to be the main cause of

wave attenuation at seismic frequencies. Many effective models were developed

to describe wave propagation in a medium containing mesoscopic heterogeneities

with an equivalent homogenous medium. Such effective models are obtained by

introducing some assumptions on the distribution and size of heterogeneities. In

this thesis, models for porous media with periodically distributed heterogeneities

are studied.

A new effective poroelastic model is proposed for one-dimensional wave prop-

agation in layered porous media where layers represent mesoscopic-scale hetero-

geneities. The novelty lies in the application of the pressure continuity boundary

conditions instead of no-flow conditions at the outer edges of the elementary cell

which consists of two layers. Effective frequency-dependent elastic moduli are

derived which allow to describe the macroscopic behavior with Biot’s equations

of motion, thus incorporating Biot’s global flow attenuation mechanism at the

macroscale, in addition to the mesoscopic fluid flow. The model is validated by
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the exact solution obtained with the use of Floquet’s theory and compared to well-

known White’s model where the effective medium is described by the equation of

viscoelasticity. A similar model is proposed for periodically distributed spheri-

cal heterogeneities. The new models are advantageous where Biot’s global flow

attenuation is significant at seismic frequencies, i.e., in geological environments

with soft and highly permeable properties, like shallow marine sediments with

inhomogeneous frame or partial saturation, and unconsolidated sand reservoirs.

Effective models with coefficients that do not depend on frequency are also

studied in this thesis. Such models are useful for time-domain analysis, which

is advantageous over frequency-domain analysis in nonlinear problems. A model

is derived for a periodically layered porous medium by expanding the dispersion

equation of White’s model in powers of frequency and reconstructing an equation

of motion including higher-order terms from this expansion. Another higher-order

model is derived by homogenization with the two-scale method of asymptotic

expansions applied to a periodically layered poroelastic solid.

Finally, the layered model with frequency-dependent coefficients obtained for

one-dimensional wave propagation is used to derive the effective elastic moduli for

a vertical transversely isotropic porous medium to study offset-dependent attenu-

ation and dispersion. The exact solution is also extended to the two-dimensional

case. The predictions of the new model and the exact solution are compared to

the predictions of the similar viscoelastic model. It is found that the assumption

of the one-dimensional mesoscopic fluid flow for description of wave propagation

in two-dimensional layered media results in accurate predictions of the P-wave at-

tenuation. The predictions of the S-wave attenuation are less accurate for highly

permeable media, though still better than those of viscoelastic model. The study

also confirms the result obtained for the one-dimensional case that the poroelastic

model is advantageous over the viscoelastic one for soft and unconsolidated media.



Samenvatting

Om de relatie tussen eigenschappen van de ondergrond en kenmerken van golfvoort-

planting, zoals dispersie en demping, te vinden, is het nuttig om seismische golfvoort-

planting in poreuze media te bestuderen. Seismische golven zijn gevoelig voor

de aanwezigheid van mesoscopische heterogeniteiten in poreuze media; dat wil

zeggen, heterogeniteiten die groter zijn dan de typische porie- en korrelgrootte,

maar kleiner dan de golflengte. Het is welbekend dat de Biot theorie, die meestal

gebruikt wordt voor de beschrijving van golfvoortplanting in poroelastische media,

de demping en dispersie van de elastische golven in zulke heterogene media onder-

schat. Het dempingsmechanisme in de Biot theorie wordt aangedreven door grad-

inten in de vloeistofdruk op de schaal van de golflengte van passerende golven. Dit

resulteert in relatieve bewegingen tussen vloeistof en vaste stof die gepaard gaan

met interne frictie door viskeuze krachten tussen de vaste stof en de vloeistof.

Dit mechanisme beschrijft niet de door een golf veroorzaakte vloeistofstroming

tussen mesoscopische inhomogeniteiten die gegenereerd wordt door drukgradinten

op een schaal kleiner dan de golflengte. Dit mechanisme wordt echter beschouwd

als de hoofdoorzaak voor de demping van golven in de seismische frequentieband.

Verscheidene effectieve modellen zijn ontwikkeld die de golfvoortplanting in een

medium met mescoscopische heterogeniteiten beschrijven gebruikmakend van een

equivalent homogeen medium. Zulke effectieve modellen worden verkregen door

bepaalde aannames te doen betreffende de verdeling en de grootte van de hetero-

geniteiten. In dit proefschrift worden modellen voor poreuze media met periodiek

verdeelde heterogeniteiten bestudeerd.

Een nieuw effectief model wordt gepresenteerd voor eendimensionale golfvoort-

planting in gelaagde poreuze media, waarbij de lagen heterogeniteiten op meso-

scopische schaal representeren. Het vernieuwende aspect ligt in de toepassing van

randvoorwaarden waarbij continuteit in de druk wordt opgelegd in plaats van

volledige verhindering van de stroming aan de buitenranden van de elementaire

cel die uit twee lagen bestaat. Effectieve, frequentieafhankelijke elastische moduli
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worden afgeleid die ervoor zorgen dat het macroscopische gedrag beschreven kan

worden door Biot bewegingsvergelijkingen. Daarmee wordt Biot dempingsmecha-

nisme, dat betrekking heeft op globale stroming, op de macroschaal in het model

betrokken als toevoeging op het mesoscopische dempingsmechanisme. Het model

wordt gevalideerd met de exacte oplossing, verkregen door middel van de Floquet

theorie, en wordt ook vergeleken met het welbekende model van White, waarin

het effectieve medium wordt beschreven door de viskoelastische vergelijking. Een

vergelijkbaar model wordt gepresenteerd voor periodiek verdeelde bolvormige het-

erogeniteiten. De nieuwe modellen bieden een voordeel wanneer Biot demping

ten gevolge van globale stroming significant is voor seismische frequenties; dat

wil zeggen, in geologische omgevingen met relatief gemakkelijk samendrukbare en

hoogpermeabele eigenschappen zoals ondiepe marine sedimenten met een inhomo-

gene korrelmatrix of gedeeltelijke verzadiging, en niet-geconsolideerde zandreser-

voirs.

Effectieve modellen met cofficinten die niet frequentieafhankelijk zijn worden

ook bestudeerd in dit proefschrift. Zulke modellen zijn geschikt voor analyse in

het tijdsdomein, wat voor niet-lineaire problemen een voordeel is ten opzichte van

analyse in het frequentiedomein. Een model voor een periodiek gelaagd poreus

medium wordt afgeleid door het ontwikkelen van de dispersievergelijking van het

model van White in machten van frequentie, waarna een bewegingsvergelijking

wordt gereconstrueerd die hogere-orde termen van deze expansie bevat. Verder

wordt een ander hogere-orde model afgeleid op basis van homogenisering, gebruik-

makend van de methode van asymptotische expansie met twee schalen toegepast

op een periodiek gelaagd poroelastisch medium.

Tenslotte wordt het gelaagde model met frequentieafhankelijke cofficinten, afgeleid

voor eendimensionale golfvoortplanting, gebruikt voor het bepalen van de effec-

tieve elastische moduli van een verticaal transversaal isotroop poreus medium

om offsetafhankelijke demping en dispersie te bestuderen. De exacte oplossing

is ook uitgebreid voor het tweedimensionale geval. De voorspellingen op basis van

het nieuwe model en de exacte oplossing worden vergeleken met voorspellingen

op basis van het soortgelijke viskoelastisch model. Het blijkt dat de aanname

van eendimensionale mesoscopische vloeistofstroming voor de beschrijving van

golfvoortplanting in tweedimensionale gelaagde media resulteert in nauwkeurige

voorspellingen van de P-golfdemping. De voorspellingen van de S-golfdemping

zijn minder nauwkeurig voor hoog-permeabele media, maar nog steeds beter dan

de voorspellingen op basis van het viskoelastische model. De analyse bevestigt



Samenvatting 137

ook het resultaat verkregen voor het eendimensionale geval, wat inhoudt dat het

poroelastische model voordelen biedt ten opzichte van het viskoelastische model

voor relatief gemakkelijk samendrukbare en niet-geconsolideerde media.
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