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Abstract 
 

Evolution of coastline position under the influence of natural and anthropogenic processes is 

directly linked to the development of seaside societies. In the context of coastal zone management, 

process-based morphodynamic models are often used to predict coastline evolution and support 

the decision-making process for adaptation/mitigation strategies. Frequently, the processes 

driving the morphodynamic evolution transcend the applicability limits of a single model. In those 

cases, model ensembles can be used to estimate coastline change under the joint effect of the 

relevant processes. However, model output and in extent the aggregated result are characterised 

by uncertainty originating among others from forcing variability and parameter imprecision. The 

increasing exposure of coastal societies to coastal recession risks and emergence of risk-informed 

coastal zone management create the need for aggregated coastal recession estimates with 

quantified uncertainty.  

This study investigates different statistical methods for forcing and parameter uncertainty 

quantification around coastline change estimates from process-based morphodynamic models. 

Subsequently a numerical convolution approach for the aggregation of the probabilistic coastal 

recession estimates from multiple models was formulated to account for the combined uncertain 

effect of processes acting on different timescales.  

The methods of this study were applied on Anmok beach, South Korea, a coastal stretch 

experiencing erosion caused by long, intermediate and short timescale processes. Available 

UNIBEST-CL+ and Delft3D model schematizations from the CoMIDAS research program, capable 

of simulating the relevant processes, were utilised. Following a literature review, two methods 

were considered applicable for process-based morphodynamic models: Standard Monte Carlo 

(SMC) and Latin Hypercube Sampling (LHS). The application of both methods on the UNIBEST-

CL+ model schematisation enabled the evaluation of their relative performance based on the 

precision of the different coastline change estimates achieved for the different sample sizes. Only 

LHS was applied on the Delft3D model schematisation due to computational demands limitations.  

Subsequently, the scenario-based approach currently used for the aggregation of multi-model 

coastline change outputs was extended to explicitly account for the uncertainties quantified in the 

individual model outputs. A numerical convolution approach, using Monte Carlo sampling, was 

suggested for linear superposition of the contributing probability distribution functions. The 

advantages of this approach include speed, ease of implementation, comprehensibility and high 

resolution even at the tails of the aggregated distributions. Utilising this approach, the effect of 

alternative interventions (combinations of various breakwater designs with a small-scale 

nourishment) on the coastline change probabilities was quantified. 

The results showed that both methods (i.e., SMC and LHS) with adequate sampling can produce 

probability distribution outputs for coastline change when applied to the process-based models. 

SMC remains the most suitable method for coastline change uncertainty quantification for models 

with small simulation durations. The method gives quantified estimates of the precision, enabling 

the achievement specific target precisions, with the respective computational cost. For the 

smaller sample sizes used, LHS gave better precision results, proving more suitable for models 

with longer computational time. On the downside, without extra iterations of the procedure only 

upper estimates of the achieved precision for a specific sample size can be obtained.  
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The probabilistic aggregation framework presented in this thesis has several advantages 

compared to the scenario-based approach currently used. It allows for quantified coastline 

change uncertainty estimates with the respective precision estimates and provides the 

distribution of the uncertainty across its range, information that could not be derived using the 

scenario-based approach. Different coastline change percentile estimates or confidence intervals 

with practical use to decision makers and the likelihood of any coastline change realisation of 

interest can be evaluated. The probabilistic uncertainty quantification and aggregation 

framework is believed to be useful for intervention assessment and comparison. It allows for the 

assessment of uncertainty around the morphological response under the combined effect of the 

processes acting on the coast with/without the intervention and thus the evaluation of the 

probabilistic intervention impact. Different interventions can be compared in terms of the 

probability of inducing desired/undesired morphodynamic realisations as well as in terms of the 

uncertainty range in the coastline change estimates. 
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1 

Introduction 
 

1.1 Background 
Coastal zones worldwide are places of dense population, high economic, social and environmental 

value, while in some places they comprise the first line of coastal defence against flooding of the 

low-lying hinterland. According to recent estimates, 24% of the world’s sandy beaches are 

affected by chronic erosion (A. Luijendijk et al., 2018), driven by natural and anthropogenic 

causes of varying time and spatial scales. Extreme forcing conditions, coastal structures in the 

littoral zone, and climate change are some of the causes of coastline retreat. Both chronic and 

episodic erosion can disrupt the environment and negatively affect economic growth of seaside 

areas. Additionally, coastal recession combined with rising water levels threatens the 

functionality of expensive coastal developments and poses risks for low-lying inlands and islands 

(Nicholls et al., 2010; Ranasinghe et al., 2012). In the case of high risk associated with coastal 

erosion, adaptation (e.g., set back lines) or mitigation (e.g., breakwaters, revetments, 

nourishments) measures are implemented in the context of coastal zone management. Future 

projections show that the exposure of coastal societies and infrastructure to coastal recession 

risks will continue to increase as the effects of climate change become more pronounced (IPCC, 

2014) and the coastal zones develop further (McNamara et al., 2013; Ranasinghe, 2016). Under 

these conditions, there is an emerging need for risk quantification and mitigation strategies in the 

coastal zones and in extent, for risk informed coastal zone planning/management.  

Prediction of the coastline position and the effects of the adaptation and mitigation measures 

form a cornerstone of risk informed coastal zone management. In current engineering practice, 

process-based models are used to simulate the hydrodynamic and morphodynamic processes in 

the coastal zone and predict the impact/effectiveness of suggested adaptation/mitigation 

measures. Nevertheless, despite the ongoing research and advancement in the coastal 

morphodynamic modelling, the outputs cannot directly facilitate risk informed coastal zone 

management. This can be traced back to the deterministic character of the model output that 

cannot directly capture the stochastic character of the simulated processes and the sources of 

uncertainty that relate to process based modelling, such as natural variability, model 

uncertainties and parameter value limitations (Fortunato et al., 2009; Scheel et al., 2014). In a 

morphodynamic simulation, those uncertainties are transferred through the mathematical 

equations and the generated outcome is in turn characterized by uncertainties and imprecision. 

In present coastal engineering studies, the uncertainty in the simulated coastal morphology is 

usually addressed by means of expert opinions and a sensitivity analysis. Both methods can raise 

the awareness of the end users for the uncertainty in the model outputs and provide a first 

estimate of the possible range of coastline changes. However, they do not provide insight into the 

likelihood of predictions and do not account for the combined system sensitivity i.e. the output 

from simultaneously incident extreme values of parameters values (Klis, 2003; Vrijling et al., 

1992). 
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On the other hand, information on the likelihood of different coastal evolution realizations has 

high value for coastal managers and decision makers. Management of the coastal zone involves 

multiple stakeholders, communal uses and high value assets. The decisions should satisfy 

economic, social and environmental criteria and should be made in an informed and transparent 

manner. Disregarding or misinterpreting uncertainty could lead to misplaced investments, loss of 

assets and unsafe situations. Proposed solutions should be judged and compared based on the full 

spectrum of the possible effects and, equally important, on the probability distribution of those 

effects. This information can neither be acquired through expert judgment, nor through 

sensitivity analysis. It should be noted that solutions with the same range of probable outcomes 

may vary significantly in the distribution of probabilities across this range, leading to different 

robustness levels. Those can be in turn translated to different risk levels when the quantified 

consequences are considered and used as indicators in the decision-making process.  

Identification and quantification of coastline recession uncertainties implies that the 

morphodynamic model output is no longer a single coastline/profile determined by a 

deterministic approach. On the contrary we aim for a range or bandwidth of possible 

coastlines/profiles with a distribution function or confidence bandwidths that accommodate the 

stochastic character of the processes involved and the uncertainties of the models. Associating 

coastline recession with a probability distribution or confidence band, allows insight into the 

likelihood of the deterministic prediction and opens the way for effective assessment of the 

associated risk. It facilitates a better understanding for the elements of the system in question, 

the nexus between those elements and the properties of the system they form, such as robustness 

and flexibility. Additionally, it enables the quantification of the potential effects of proposed 

mitigation/ adaptation measures and allows for comparisons. In conclusion, it supports risk 

informed decision making and allows for flexibility in the decisions of coastal planners regarding 

the level of risk societies are willing to undertake, compared with economic and social benefits 

and the preservation of ecosystem services (Ranasinghe, 2016; Ranasinghe et al., 2012).  

In the last years increase in computational resources enables the expansive use of process-based 

models in larger scales and the exploration of the morphodynamic effects of climate change. In 

the context of managing a complex coastal environment under changing and uncertain pressures 

assessing the reliability of morphodynamic predictions becomes increasingly important. 

1.2  Problem definition  
Despite the continuous rise of computational power, computational time remains a very 

important limiting factor in probabilistic morphodynamic analysis. The latter generally demands 

more iterations than a traditional deterministic analysis. The use of crude Monte-Carlo 

simulations is possible in combination with a fast coastline model like Unibest-CL+ (Scheel et al., 

2014), however pairing it with more computationally expensive models may require time that 

exceeds the scope of the project.  

Additionally, engineering problems frequently relate to a range of timescales/spatial 

scales/processes that cannot be simulated using a single model. When a combination of different 

models is required to simulate the different aspects of the problem, the models can be 

interconnected either by means of aggregation, coupling, or by boundary conditions extracted 

from a model and used in another. For coastal engineering, the impact of proposed interventions 

on the coast should be assessed beyond the initial impact in combination with processes of 

shorter timescales (e.g., storms) and longer timescales (e.g., climate change, large scale 

interventions). A set of morphodynamic models, such as UNIBEST-CL+, Delft3D and XBeach, with 

different spatial and temporal applicability ranges (Figure 1.1) can be used to simulate the 

processes that act on different timescales and contribute to the evolution of the coastline. In the 

context of risk informed coastal zone management, the uncertainties present should be accounted 
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explicitly and propagated not only through the morphodynamic simulations but also through the 

aggregation process to enable quantitative assessment of shoreline position estimates under the 

effect of interventions.  

 
Figure 1.1: Common application ranges of coastal models, after A. Luijendijk et al. (2011). 

1.3 Research objective and research questions  
The aim of the present study is to gain insight in the statistical methods that can be applied 

together with processed-based morphodynamic models (such as Delft3D, Unibest-CL+) to 

quantify probabilities of coastline recession precisely and efficiently. Subsequently, we aim to 

suggest an approach for the aggregation of the resulting probabilistic model outputs from 

different timescales to systematically assess the effect of interventions on coastline recession 

risk/probabilities.  

Obviously, it is not possible to study all nearshore processes that may affect coastal morphology, 

consider all the statistical methods and the total of the available coastal morphodynamic process 

-based models. The research domain of this project is therefore restricted by the specifications of 

case study, time and resources available. It is expected however, that the conclusions drawn from 

this study can prove useful for uncertainty quantification and aggregation for similar or more 

complex cases.  

The methods will be applied specifically for a case study in South Korea, at a coastal stretch that 

is affected by erosion processes of varying timescales (episodic erosion, response to human 

interventions, climate change). Data, model configurations and knowledge from a recent research 

program (CoMIDAS) carried out by Deltares and the Korean Institute of Ocean Science and 

Technology (KIOST) for the area of interest are used in the present study. They foster a better 

understanding of the system and support the implementation of the proposed methods in the 

case study. 

The selection of the above mentioned morphodynamic models, was based on the findings of the 

CoMIDAS research project (Deltares, 2016, 2017). The models were found capable of simulating 

the processes acting at Anmok beach on individual timescales as well as the required spatial 

scales. Nevertheless, these models could also be used with different schematisations to model 

different sets of processes and be applied to simulate different interventions than the existing, or 

processes on other coastal stretches, thus serving the general aim of this project. 
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Based on the problem definition and objectives, the following main research questions and sub-

questions are formulated.  

1. Which statistical methods can be used with process-based morphodynamic models 

(such as Delft3D, Unibest-CL+) to provide precise probabilistic estimates of coastline 

change on varying timescales in a computationally efficient way? 

2. How can the probabilistic model results of the individual timescales be integrated to 

assess the impact of the selected mitigation/adaptation measures?  

a. What are the steps in a generic approach for the aggregation of probabilistic model 

outputs to arrive to one probability distribution function of coastal recession? 

b. What is the impact of the considered measures on the uncertainty of the coastline 

position for the case study of Anmok beach? 

1.4  Research approach  
The methodology followed to answer the research questions presented above will be presented 

in the following paragraphs. The approach consists of (1) literature review and data acquisition, 

(2) selection of the uncertain variables (3) application of the statistical methods for uncertainty 

quantification, (4) aggregation of the coastline change uncertainties from different 

processes/models and (5) analysis of the results of coastline change uncertainty evolution after 

the application of different adaptation/ mitigation measures. The general approach is presented 

in the flowchart of Figure 1.2. 

 

Figure 1.2: Flowchart of the approach followed to address the research questions 

Phase 1- Literature review & data acquisition 

As a first step a study of the available literature was carried out to obtain knowledge on the 

different aspects of the research problem (Chapter 2). The aim is to familiarise with the sources 

of uncertainty in simulations and the methods available for uncertainty quantification, the 

benefits and drawbacks of each one as they have been identified by other researchers. Among the 

reviewed methods, those considered more suitable to be used with coastal morphodynamic 

Literature review 

Uncertain variable 
selection 

Uncertainty 
quantification 

Aggregation of 
coastline change 
uncertainties  

Probabilistic assessment of different 
adaptation/ mitigation measures 

Quantification of coastline 
recession probabilities 

Starting point 
simulations 
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models were selected. A study on the applications of uncertainty quantification in coastal 

morphodynamic modelling with process-based models and present aggregation frameworks was 

used to identify potential gaps.  

An important aspect of this phase is acquiring more information regarding the case study. Model 

schematisations and scenarios selected to support the application of the statistical methods were 

selected and presented in this phase. 

Phase 2- Selection of uncertain variables  

Phase 2 includes the identification of the parameters that were included as stochastic in the 

uncertainty analysis (Section 3.2). Focusing on forcing and parameter uncertainty, sensitivity 

analysis and expert judgement were used to select those variables for which imprecision/value 

variability have significant influence on the model output. The range and distribution of each 

parameter were obtained from expert judgement. 

Phase 3- Uncertainty quantification  

Having selected the variables that introduce the uncertainty in process based morphodynamic 

model simulations, this phase centres on the quantification of the uncertainty as manifested in 

the model outputs (Sections 3.3, 4.1 and 4.2). Standard Monte Carlo and Latin Hypercube 

sampling, selected as the ‘best candidates’, were applied on UNIBEST-DL+ and Delft3D model 

schematisations of the case study area. In this phase, the applicability of the statistical methods 

with each model was investigated in terms of the precision of the results and the computational 

resources required to reach this precision.  

Phase 4- Aggregation of coastline change uncertainties from different processes 

Phase 4 focuses in the combination of the probability distribution functions of coastline change 

of individual processes/different timescales (as described in phase 3) on a single probability 

distribution function of coastal recession in the time horizon of interest (Sections 3.4 and 4.3). 

The application of a numerical convolution approach for the propagation of uncertainty through 

the aggregation process was investigated. The method was applied on the case study area to 

quantify the coastline change uncertainty from the combined effects of long-term processes, 

sandbar dynamics and a submerged breakwater-nourishment implementation.  

Phase 5- Probabilistic assessment of adaptation/mitigation measures 

In the final stage alternative interventions were simulated. The probabilities of coastline change 

with and without the interventions were quantified and combined with the coastline change 

probabilities of the autonomous evolution and the long-term wave climate variation. This enabled 

the assessment of the effect of each intervention on the coastline change uncertainty in a 20-year 

management horizon. Apart from the submerged breakwater-nourishment, two other designs 

were considered: a set of submerged-breakwaters-nourishment and an emerged breakwater-

nourishment. Comparisons were made in terms of the location, dispersion of the aggregated 

probability distributions, the probability of several coastal change scenarios as well as in terms 

of the spatial scale of the intervention impact.  



 

  6 

2 

Literature Review 
 

In the following paragraphs a short literature review will be presented to illustrate the present 

state of knowledge concerning the topics directly relevant with the research objective. An 

overview of the process-based models to be used is presented, the sources of uncertainty in 

morphodynamic models are introduced as well as statistical methods available for uncertainty 

analysis. Subsequently, an initial selection of methods to be investigated further regarding their 

applicability with process based morphodynamic models is carried out. Current knowledge and 

existing research in the quantification and aggregation of uncertainty in coastal engineering are 

presented.  

2.1 Process based morphodynamic models 
Coastal morphodynamic models, either empirical or process based, are widely used to predict or 

hindcast coastal development on different spatio-temporal scales by assessing values of different 

system behaviour indicators. Process-based models (Delft3D, Unibest etc.) couple different 

numerical modules to simulate wave and current propagation, hydrodynamics, sediment 

transport and bathymetry changes. They can give detailed information on the effect of processes 

on the morphodynamics of a coast and in extent on the impact of potential interventions in the 

littoral zone. Currently, process-based models are often designed to simulate natural processes 

on specific spatial and temporal timescales.  

UNIBEST-CL+ (Deltares, 2011) is a 1D coastline model able to simulate morphodynamic change 

due to wave driven longshore sediment gradients at locations along the coast. The model does 

not account for cross-shore transport or complex bathymetry and is widely used to assess coastal 

impacts of structures. The small computational costs allow for simulations over large scales 

(~100km, 100 yrs), multiple scenarios and detailed schematization of the wave climate. Delft3D 

(G. Lesser et al., 2004) can simulate non-steady flow and transport from tidal and meteorological 

forcing and the resulting morphodynamics in 2 or 3 dimensions. It is capable of handling complex 

geometries and is applied to cases of small to intermediate scales (up to kms, yrs).  

2.2  Sources of uncertainty in morphodynamic models 
The output of coastal morphodynamic models depends on the forcing input time series, the model 

structure and several parameters which describe the simulated system. Inaccuracy and 

uncertainty of the output are inherent characteristics of morphodynamic modelling as the model 

itself is a simplification of the physical system. These simplifications lead to inaccurate 

representation of the present state; however, uncertainty is certainly more pronounced in 

predictive simulations.  

There are different classifications of uncertainty in literature. In the present study a classification 

of uncertainty based on the source will be used, as presented by Scheel et al. (2014): 

• Forcing uncertainty, stemming from natural variability, spatial and temporal, which 

characterise the forcing input series. Forcing uncertainty cannot be reduced by selecting 
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more refined models, additional data, or better calibration techniques. Forcing 

uncertainty becomes quite pronounced especially for long-term predictive simulations, 

where it is not guaranteed that historical data will describe adequately future forcing e.g., 

under the effect of climate change. 

• Parameter uncertainty refers to initial condition imprecision, approximation of uncertain 

factors as probability distribution functions (statistical uncertainty) and use of 

parameters with unclear physical context either due to data or knowledge gaps, 

inaccurate measurement or recording etc.  

• Model uncertainty, uncertainty is introduced by the approximation of the natural system 

in a model with inevitable simplifications, the schematization, accuracy limitations, 

unsuccessful calibration etc. 

•  Unknown uncertainty sources, including all the uncertainty sources natural and 

operational that have not yet been identified.  

Some kinds of uncertainty can be decreased by additional data collection or further knowledge 

acquisition. Model uncertainty for example, could be reduced by developing more representative 

models that are able to approach better natural processes. However, extra data collection would 

result in additional cost, sometimes disproportionate to the achieved uncertainty reduction. 

Additionally, the more representative models are generally more expensive in computational 

resources, require larger input sets and involve a greater number of parameters, thus 

contributing to the output inaccuracy through higher parameter uncertainty (Loucks et al., 2017). 

Uncertainty sources that relate to natural variability cannot be eliminated. Lastly, unknown 

uncertainty sources cannot be confronted without prior identification.  

It is evident that eliminating uncertainty from predictive model simulations is for the time 

impossible while reducing uncertainty is not always a practical choice. Therefore, it is wise for 

engineers to communicate the existing uncertainties in a quantified manner to enable coastal 

recession risk assessments and risk informed decisions concerning potential adaptation or 

mitigation strategies.  

2.3  Statistical methods for model uncertainty analysis 
According to Uusitalo et al. (2015), there are 3 ways to derive information about the uncertainty 

of a variable of interest, in this case coastline recession, to support decision making:  

• Using field observation data, in this case coastline recession measurements.  

• Probabilistic modelling, incorporating uncertainties into every stage of the modelling 

procedure, 

• Performing uncertainty analysis on deterministic model outputs. 

Coastline recession observations are however scarce and for the time being cannot facilitate a 

statistical analysis that would enable prediction of the future trends. Additionally, the widely used 

morphodynamic models have not yet been developed to accommodate probabilistic modelling. 

They provide a clearly deterministic output, characterised by uncertainty that must be evaluated 

separately by means of uncertainty analysis. 

The techniques presented in the following paragraphs vary in terms of their conceptual approach, 

the computational cost and the power of the results. They have been applied in engineering 

problems of varying nature and compared in literature. It is generally accepted that there is no 

objectively ‘best’ method but the choice of the method to be applied should be based on the 

specifications of each problem and the resources available for the uncertainty analysis. The 

general principles of each method, their advantages and limitations derived from literature are 

presented below. 
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2.3.1  Probability tree 

In the context of uncertainty analysis through scenarios, and for a limited number of possible 

values for each uncertain input variable/parameter, the uncertainty of the model output can be 

presented as a discrete probability distribution. Morgan et al. (1992) present the use of a 

probability tree as the method to define the discrete distribution of the output. A probability tree 

consists of branches -possible values of the uncertain variables, and terminal nodes that define 

the possible paths -the possible scenarios. The probability of each scenario can be calculated as 

the product of the conditional probabilities of the crossed branches.  

 

Figure 2.1: Example of a probability tree. Two branches (possible values) have been defined for each uncertain 
variable (θ, Hs). The terminal nodes define the possible paths -the possible scenarios. The probability of each 
scenario can be calculated as the product of the conditional probabilities of the crossed branches.  

Probability tree is not a preferred method for uncertainty analysis in coastal morphology 

engineering models where the uncertain variables are mostly continuous rather than discrete. 

Nevertheless, when climate change effects are considered and variables such as the water levels 

are expressed as discrete scenarios, probability trees could be used in conjunction with other 

methods.  

2.3.2  Analytical derivation 

Uncertainty analysis on deterministic model outputs yields the distribution of the model output 

given a joint distribution for the input variables/parameters. When the model structure is simple, 

and equations are relatively linear this can be achieved analytically. Numerical models like 

Delft3D are constructed to approximate numerically the solution to complex equations simulating 

natural processes. Therefore, deriving the probability distribution of the outcome analytically is 

not possible in this case, and simulations using sampling techniques have to be used (Kurowicka 

et al., 2006).  

2.3.3  Standard Monte Carlo sampling 

Standard, or Crude, Monte Carlo sampling technique, has a wide range of applications due to the 

advantages it offers. The technique involves generating a set of random scenarios for the 

uncertain input of a model using the prescribed probability distributions and correlation 

functions. Scenarios are subsequently fed to the model which generates a set of output 

realisations. These realisations are used as random and independent samples of the model output 

and the model output distribution can be estimated using standard statistical techniques (Morgan 

et al., 1992).  

According to Klis (2003) the advantages of SMC method include ease of implementation, 

accommodation of the non-linearity of models and the different uncertainty distributions, and 
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lastly use of standard statistical methods to estimate the total of the statistical properties of the 

output as well as the precision of the output distribution without the need for any assumptions 

on its distribution. These properties constitute SMC technique a robust method for uncertainty 

analysis with complex non-linear models. 

 

Figure 2.2: Cloud of points generated by Standard Monte Carlo, (Hurtado et al., 1998). The uncertain input space 
is framed from the probability distributions assigned to the uncertain variables.  

However, the coupling of SMC simulations with complex morphodynamic models such as Delft3D 

for the time being presents obstacles related to time requirements. The generally large number 

of numerical simulations needed to arrive to a desired convergence level, can lead to a 

computational time that exceeds the budget of the project.  

Keeping into account the advantages and the drawbacks of the Standard MC approach, aiming to 

the reduction of the required simulations for a model seems reasonable. According to Morgan et 

al. (1992) the number of simulations in a Standard MC approach decreases with a decreasing 

desired accuracy level. Additionally, sample size in an MC simulation depends on the demand on 

convergence in the extreme percentiles of the probability distribution.  

Variance reduction techniques have been developed for the cases when the rate of convergence 

of the output distribution is slower than desired. Variance reduction refers to the statistical error 

in Standard MC results and exploits information about the structure of the model in an effort to 

reduce this error in the output distribution. The different techniques developed include 

Importance Sampling, Stratified Sampling, Latin Hypercube Sampling etc. Each technique is 

characterised by different limitations and thus needs to be adapted to each specific problem. 

Some of the variance reduction techniques will be briefly presented in the following paragraphs.  

2.3.4  Latin Hypercube sampling 

Latin Hypercube Sampling (M. D. McKay et al., 1979) is a variance reduction technique that aims 

towards equal, more spread-out coverage of the input space. The range of each uncertain input 

variable is divided in n equiprobable intervals and the variable gets a value randomly in each 

interval. The randomly selected values for the variables are grouped at random so that no 

replacement happens and the Latin Hypercube requirements are met, i.e. only one sample at each 

axis-aligned hyperplane (Kurowicka et al., 2006). The resulting sets of input are used as input in 

the numerical model to obtain the corresponding output realisations. Subsequently, distribution 

and statistical characteristics of the output can be estimated using standard statistical methods. 

Midpoint LH sampling is a variation of the standard method in which each variable takes the 

value of the median of each equiprobable interval. 

LH sampling technique is concluded to perform better than Standard MC sampling for linear and 

monotonic systems or for systems with uncertainty dominated by one or two variables (Morgan 
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et al., 1992). For non-linear and/or non-monotonic system the efficiency of the sampling 

technique can reduce to the levels of Standard MC or lower. In general midpoint LHS performs 

better than standard LHS but attention should be paid when the model outputs are periodical. 

The drawbacks of LHS technique relate to determination of the sample size and precision 

assessment. More specifically, there is no method available to estimate the required sample size 

based on the desired accuracy before the application. Model precision can be estimated by 

repeating the model several times and assessing the variation in the cumulative distribution 

functions. This process can lead to an increase of the simulations needed in the end and defeat the 

purpose of variance reduction technique application.  

 

Figure 2.3: Cloud of points generated by Latin Hypercube sampling, (Hurtado et al., 1998). The uncertain input 
space is framed from the probability distributions assigned to the uncertain variables, divided into equiprobable 
parts -the strata. 

2.3.5  Stratified Sampling 

Stratified sampling resembles Latin Hypercube sampling. Similarly, the range of each uncertain 

input variable is divided in n equally probable intervals and the variable gets a value randomly in 

each interval. In stratified sampling each subset of the variable values forms a sample and is used 

as input scenario in the model.(Hurtado et al., 1998) 

 

Figure 2.4: Points generated by Stratified Sampling (Hurtado et al., 1998) 

2.3.6  Importance Sampling 

When the end user is not interested at the output distribution, but only a part of it, Importance 

Sampling technique can be applied. This variance reduction technique aims at generating more 

points in the area of interest that will lead to the output of interest. This target is achieved by 

adjusting the probability distributions of the input variables so that the ‘important’ values are 
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encouraged. To avoid the bias in the output mean, the sampled values are corrected. Importance 

sampling finds frequent application in structural uncertainty analysis used in conjunction with a 

limit state function and a design point estimated using approximate analytic techniques. Morgan 

et al. (1992) highlight the potential of using this method to predict low likelihood, high 

consequence events, when the emphasis lies on the tail of the distribution. 

 

Figure 2.5: Importance sampling on a two variable space (Hurtado et al., 1998) 

2.3.7  Directional Sampling 

Directional Sampling technique was developed for multivariate distribution functions and is a 

method that, like Importance sampling, depends on the limit state function. In literature it is 

described as particularly efficient compared to SMC, for systems with almost spherical failure 

surface, as in this case only one simulation is needed to calculate the probability of failure 

(Bjerager, 1988). 

2.3.8  Approximate Analytic Techniques 

First Order Reliability Method (FORM), known also as First Order Variance Estimation is one 

of the approximate analytic techniques that use first or higher order moments of probability 

distributions to estimate the output uncertainty. FORM method is applicable with the assumption 

of independent and Gaussian distributed inputs and output. FORM makes use of the Taylor 

expansion and more specifically the first order terms to express the deviation of the output from 

its nominal value in terms of the deviations of the inputs from their expected value (Beckers et al., 

2017; Morgan et al., 1992; Villaret et al., 2016). In engineering problems FORM method is 

generally used to define the probability of a certain state of the system named ‘limit state’ and 

described by the ‘limit state function’ that distinguishes the ‘Failure space’ from the ‘Safe space’ 

(Figure 2.6).  

According to the review of Klis (2003) and Morgan et al. (1992), FORM performs well when the 

function is smooth and close to linear in the region of interest and the range of uncertain variables 

is small. For a strongly non-linear model an even shorter range needs to be considered.  

Second Order Reliability Method (SORM) utilises up to the second order terms in the Taylor 

expansion. Effectively, instead of linearizing the limit state function around the design point, a 

parabola is obtained. Using second order (or even higher) Taylor terms can improve the accuracy 

of the analytical approximation for nonlinear functions. However, using higher order terms of 

Taylor expansion can quickly increase the complexity of the algebra (Morgan et al., 1992).  
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Figure 2.6: FORM/SORM methods (Hurtado et al., 1998) 

2.3.9  Other methods for uncertainty propagation 

Except from the above mentioned there are several other methods that could be used for 

uncertainty propagation through a numerical model. Bayesian networks make use of the Bayes 

theorem and are used to represent graphically a set of variables and their probabilistic relations. 

After the model is trained, observed evidence are used to update the joint distribution by 

conditioning on the observation (Nielsen et al., 2009). Applications of Bayesian networks can be 

found in literature (Kroon et al., 2017; Plant et al., 2011) and the method remains out of the scope 

of this study. Response surface methods or meta-models are approximate versions of more 

complex sophisticated models that can reduce significantly the computational cost when a large 

number of simulated e.g., for a SMC simulation for an uncertainty analysis (Morgan et al., 1992; 

Villaret et al., 2016).  

2.4  Applicability of statistical methods 
The selection of a suitable statistical method for the description of uncertainty propagation 

through numerical models requires the consideration of several factors that relate to the model, 

the method itself, the analysis requirements and the available resources. Morgan et al. (1992) 

provide a detailed inventory of decision factors for the selection of a statistical method. Assuming 

that for the models to be used, Delft3D, UNIBEST-CL+, model uncertainty does not dominate over 

input uncertainty, the criteria to be used for the selection of a method are presented below:  

• Statistical method limitations that relate to the structure and the nature of the model: 

Can the method be applied to complex models, nonlinear, non-smooth relations? Does it 

accommodate the different uncertainty types or the uncertainty ranges that we want to 

propagate? 

• Uncertainty analysis requirements: What is the aim and impact of this analysis? Does the 

analysis aim to calculate failure probabilities or the full output distribution? Is the 

emphasis placed on achieving a certain precision for a certain fractile, for the mean, for 

the tails? What is the desired level of precision to achieve? 

• Available resources: how much computational time is required per computational run? 

What is the computational time and resources budget of the project?  

Based on the above criteria, the initial analysis of the statistical methods, the models to be used 

and the uncertainties the following remarks can be made: 

• The present study aims to gain insight in the uncertainty propagation through coastal 

morphology models. The desired output is the probabilistic estimate of shoreline 

position change for different processes. That translates to the distribution function(s) for 

one or more coastal positions. For different projects, the probability of ‘failure’ i.e. 

probability of exceedance of a particular threshold could be of interest but this is not the 

case for the specific thesis.  
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• Monte Carlo simulation is a robust method that can accommodate the nonlinearity and 

complex nature of coastal morphodynamic models as it does not make any assumptions 

in the output distributions or the model function. This method estimates the whole 

probability density function of the output and can accommodate space and time 

variability if expressed in the input variables. However, it becomes very laborious for 

long simulation durations. It is therefore recommended for coastline models with short 

simulation durations so that the required number of simulations is in the budget of the 

project. Such models are Unibest-CL. Delft3D computations even in 2DH are not expected 

to be efficient coupled with SMC. 

• Applying Latin Hypercube Sampling on Delft3D could prove effective in reducing the 

required iterations/resources for the uncertainty analysis especially if only a few 

variables are considered uncertain. However, caution is recommended in the initial 

selection of the sample size and the subsequent precision estimation.  

• For Stratified sampling with equiprobable strata the number of samples is related to the 

number of uncertain input variables and strata. For example, for n=3 variables and m=4 

strata defined the number of samples is nm=81. The steep increase in sample size for each 

extra variable/stratum renders the method unsuitable for the computationally expensive 

morphodynamic models with more than 2 uncertain inputs. Although Stratified Sampling 

could be applicable with models such as UNIBEST-CL+, the limited applicability on 

Delft3D excluded it from further investigation.  

• Although the selection of variables to be considered has not yet been applied, it is 

expected that the uncertainty ranges will be large. Due to the large uncertainties, the 

complexity and non-linearity of the equations in Delft3D the application of moments 

methods is not expected to produce accurate results. Additionally, moments methods as 

well as directional sampling technique depend on the definition of the limit state function 

that is not always clearly defined in a coastal recession study. As mentioned before, these 

methods could be utilised if we wanted to estimate the probabilities of recession past a 

certain threshold (e.g., assessment of the failure likelihood of a setback line), however, 

generally in the uncertainty analysis for coastal recession modelling the desired outcome 

is the range of probable outcomes and not only the likelihood of a single realisation.  

• Lastly, the method of probability tree paired with numerical integration could be used to 

arrive to an approximation of the probability distribution function of the model output. 

The accuracy of this method to estimate for a limited number of scenarios is expected to 

be low. 

The conclusions presented above are summarised in the following table (Table 1). 

 UNIBEST-CL+ Delft3D (2DH) 

Monte Carlo ✓ 
 computational 

 resources 

Latin Hypercube ✓ ✓ 

Stratified Sampling  computational resources 

Importance Sampling  require limit state function, suitable for smooth functions, 
(close to) linear in the region of interest, short range of 
uncertainty, not recommended for complex models FORM, SORM etc 

Directional Sampling 
 developed for systems with (approaching) spherical failure 
surface 

Probability tree  low accuracy for a limited number of scenarios 

Table 1: Initial selection of the statistical methods that will be investigated further per morphodynamic mo del 
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2.5 Combination of probability distribution functions  
There are several methods listed in literature for combining probability distributions: 

convolution, moments method, Taylor’s series, Monte Carlo, to mention a few (Fullwood, 1999). 

The most common way to combine individual continuous or discrete probability distribution 

functions as a union is by using the convolution operation. The convolution operation for two 

independent variables A,B continuously distributed with marginal cumulative distributions FA,FB 

respectively can be described as follows (𝐹𝐴 ∗ 𝐹𝐵)(𝑧) = ∫ 𝐹𝐴(𝑧 − 𝑦)𝑑𝐹𝐵(𝑦)
∞

−∞
 (Regan et al., 2004). 

As mentioned in Regan et al. (2004) numerical evaluation of the convolution integral is preferred 

due to ease of implementation over analytical calculation. Numerical evaluation can be performed 

among others by discretising the variable range and subsequently calculating the convolution 

integral on a number of points, or through a Monte Carlo approach -by sampling from the 

individual distributions and performing linear addition of the realisations to obtain the 

aggregated probability distribution. Monte Carlo approach can also be used when there is a 

specific dependence between the uncertain variables aggregated with the assumption that the 

uncertainty of the random variables is fully described in the prescribed probability distribution 

functions. 

2.6 Current progress in coastline change uncertainty 

quantification 
Uncertainty quantification has found frequent application in fields like flood risk management 

and river morphodynamics. As far as coastal recession is concerned, probabilistic studies 

emerged just in the last decades with the effects of climate change becoming more pronounced 

on the coastal stretches worldwide and consequently stressing the need for uncertainty 

quantification in coastal morphodynamic modelling. Studies about the quantification of coastal 

morphodynamic uncertainty have had varying objectives and applications. Most studies however 

focused on input variable and parameter uncertainties due to limitation of methods available to 

quantify other kinds of uncertainties. One would also note that MC sampling techniques dominate 

in the literature while there is an effort to investigate the use of more computationally efficient 

models so that multiple simulations are possible. 

Vrijling et al. (1992) compared long term coastal recession estimates derived using deterministic 

approach, sensitivity analysis approach and probabilistic approach on a single line model. An 

implementation of a probabilistic approach was presented, using Monte Carlo sampling methods 

to generate sets random input parameter values. Applying these sets of values to the structural 

function (transfer function) of the model allows for multiple realisations of coastline position and 

for the estimation of the distribution function of coastal change in time. Vrijling et al. (1992) 

highlighted the relation between the coastline change distribution function (standard deviation 

and skewness) not only with the characteristics of the input distribution functions but also with 

the transfer function as a function of time. For a coastal system immediately after an abrupt 

disturbance from the equilibrium, a strongly nonlinear transfer function will result in skewed 

coastline position distribution function with increased standard deviation. As the system 

approaches equilibrium again the coastline position distribution function will become more 

symmetrical and narrow. For the total probabilistic description of the coastline evolution in time, 

superposition of coastline models and shorter scale models is suggested. 

The use of importance sampling technique is presented by den Heijer et al. (2012) in a 

probabilistic assessment of dune failure to counterbalance the necessity of multiple integrations 

of Standard MC in order to converge on small probabilities of failure. Fortunato et al. (2009) 

investigated the space and time variability of uncertainty in a 2D morphodynamic modelling 

system for an estuarine environment with an ensemble of simulations; varying each time several 
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input parameters as well as the transport formulae. The authors concluded that uncertainty 

increases with time scales and with larger morphological changes, while uncertainty is smaller in 

systems that evolve slowly. 

Ranasinghe et al. (2012) developed the Probabilistic Coastline Recession model (PRC model) 

aiming for probabilistic assessment of SLR induced coastal recession, as a replacement of the 

Bruun rule that has been for decades the standard deterministic approach. In PCR model, 

coastline recession is defined as the landward movement of the foot of the dune, while the 

processes of SLR, storm erosion and dune recovery are assumed to affect the long-term 

movement of the dune foot. Water level and wave measurement (or hindcast) timeseries as well 

as one or more SLR scenarios are required as input. The input data are used to fit distributions to 

storm conditions (maximum wave height, duration, storm surge etc.), to water levels and 

subsequently Monte Carlo sampling method is used to generate a 100years storm timeseries. The 

coastal recession of every storm is calculated using an analytical wave impact model developed 

by Larson et al. (2004) that is preferred over detailed process based numerical models for dune 

erosion mainly for computational efficiency reasons. Allowing for dune recovery between the 

storms, the final dune foot position is estimated, and the long term coastal erosion is defined for 

this timeseries. Multiple timeseries are generated until the probabilities of exceedance over the 

user defined threshold converge.  

The model does not account for effects of climate change other than SLR such as increased storm 

peaks and changing wave climate, while gradients in the longshore transport can be simulated as 

sediment sources/sinks. It was evaluated in Narrabeen beach, Sydney, Australia, and the long-

term coastal recession probabilistic estimates were compared with the respective estimates using 

Bruun rule, showing the latter to be highly conservative. Jongejan et al. (2016) in a proposal of a 

framework to estimate the economically optimal setback line, used PCR model to derive the time 

dependent exceedance probability distribution of the setback lines in the same beach, assuming 

a moving setback line that is defined by the maximum annual coastal recession. 

Monte Carlo Sampling approach coupled with coastline model Unibest-CL+ was presented by 

Ruggiero et al. (2007) and Scheel et al. (2014) in an initial assessment of long term coastline 

change in Long Beach Peninsula, WA and Holland coast respectively. The latter sampled values 

for the uncertain variables using assigned probability density functions while the former utilised 

the probability tree approach. The authors investigated the graphic opportunities for 

communication of uncertainty and proposed the exploration of different statistical methods for 

coastline recession risk quantification. 

Villaret et al. (2016) applied First Order Second Moment method using Algorithmic 

Differentiation to produce a Tangent Linear Model of a river morphodynamic 2D model. The 

method was compared with LH sampling method and was found to complete the research in a 

fraction of the time needed for the sampling method. However, the FOSM calculated variances 

were found to deviate from LH calculated variances as the simulation time increased due to 

nonlinearity.  

The process of aggregation of model results in a deterministic framework does not have a much-

defined framework in literature and is dependent very much on the case study specifications, the 

target framework and the knowledge and understanding of the engineer. Aggregation of coastal 

of coastal recession probabilities relating to different timescales can be encountered in literature 

under two different approaches. The first one, encountered in the research of Jongejan et al. (2016) 

involves using a model that simulates coastline recession from different timescale processes (PCR 

model) paired with SMC to derive probabilistic results. Alternatively, different components of 

coastal recession corresponding to processes on different timescales are evaluated 

probabilistically and the aggregated probability distribution is estimated analytical using the 
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convolution operation (Wainwright et al.). The work of Vousdoukas et al. (2018), using a Monte 

Carlo approach to aggregate extreme water level projections from different processes, provided 

the inspiration for the use of the Monte Carlo approach in the coastline change aggregation 

framework presented in the present study. 

As can be seen in this section, quantification of uncertainties is more common in fields of river 

engineering and flood risk. Uncertainty quantification in coastal recession estimates is an 

emerging approach. Although SMC approaches have been applied with simple morphodynamic 

models there has not been an analysis concerning the feasibility of application of other statistical 

methods on more laborious process-based models like Delft3D. 
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3 

Approach 
 

The chapter gives a short description of the case study and describes the model schematisations 

and parameterisations used in the present thesis. The methods used to quantify the uncertainty 

in the coastline position estimates from process-based models are presented. Lastly, the 

framework followed for the aggregation of these probabilistic results for the quantification of the 

uncertainty reduction due to interventions in the coastal environment is described.  

3.1 The case study in South Korea  
Information about the case study in Anmok Beach on the East coast of South Korea has been 

obtained from the outputs of the 5-year research program CoMIDAS (Coastal Modelling, 

Intelligent Defence and Adaptation based on Scientific understanding) carried out by Deltares and 

KIOST (Korean Institute of Ocean Science and Technology) and financed by the South Korean 

government. A summary of the most relevant findings is presented here, however for more detail 

the reader is referred to Deltares (2016), Deltares (2017) and de Boer et al. (2017). 

The South Korean East coast consists of many sandy beaches connected by rocky stretches. Both 

natural processes and human interventions cause a dynamic evolution of the shoreline. Severe 

erosion has been observed on the sandy stretches threatening infrastructure and seaside 

developments. 

 
Figure 3.1: Gangwon province in South Korea (upper left), Gangneung city in Gangwon province (down left), 
Anmok beach near Gangneung city (right) (Deltares, 2017). 

Anmok beach is located near the city Gangneung in the Gangwon province in South Korea, at the 

southern part of the 9.5-km long beach stretching among the port of Sacheon and Gangneung. The 

coastal stretch is straight, faces NNE and is characterised reflective, wave dominated, with winter 

swell and occasional typhoon events, while tide and currents have small amplitudes. Several 
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interventions implemented in the past decades have affected the morphodynamic evolution of 

the coast. More specifically, these interventions include the northern breakwater of Gangneung 

Port (constructed by 2002), the submerged breakwater at the southern end of Anmok beach 

(constructed by 2014) and the beach nourishment behind the breakwater (implemented by 

2014). 

 
Figure 3.2: Coastal interventions in Anmok beach, adapted from Deltares (2016)  

The research carried out in the context of CoMIDAS project showcased the different physical 
processes that drive the coastal evolution in Anmok. Process based numerical models were 
selected to simulate the effect of the coastal processes thought to contribute to erosion on 
different timescales. The identified processes, the relevant timescales and the selected models can 
be seen in Table 2. 

Physical process Time scale Model 

Large scale coastline realignment due to wave climate 
variations 

years to 
decades 

UNIBEST-CL+ 

Large scale coastline realignment due to port construction years to 
decades 

UNIBEST-CL+ 

Coastline undulations due to bar dynamics seasons to 
years 

(Data 
analysis) 

Effects of submerged breakwater construction and 
nourishment 

seasons to 
years 

Delft3D 

Storm effects hours to days XBeach 

Table 2: Numerical modelling framework for the identified coastal erosion drivers in Anmok beach (Deltares, 
2017) 

As a starting point, model schematisations and scenarios from CoMIDAS research program are 

used in the present study. Focusing on the effect of the long-term wave climate variations and the 

effect of the breakwater construction and nourishment, a UNIBEST-CL+ and a Delft3D model 

schematised and calibrated to capture the relevant properties were selected. These model 

schematisations were coupled with statistical methods aiming to quantify the uncertainties.  

The following paragraphs present a short overview of the original model schematisations  and 

parameterisations (Deltares, 2016, 2017) as well as a description of the modifications made for 

this project.  
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3.1.1  UNIBEST-CL+ model schematisation 

The original UNIBEST-CL+ schematisation simulates the evolution of the coastline of ca. 9.5km 

between Sancheon and Aninjin, an area much bigger than the area of interest of the present study 

(Figure 3.3).  

 

Figure 3.3: Overview of the coastal stretch modelled in UNIBEST-CL+, spanning form Sacheon to Aninjin port 
(Deltares, 2016). The area of interest for this present study is marked by the white line. 

The wave conditions that force the model were derived by averaging long term wave data 

propagated from offshore to nearshore (to the 4m contour line) using a Delft3D-WAVE model. 

The wave climates used can be seen in Figure 3.4. The initial coastline and the 45 cross shore 

profiles defined were based on bathymetric survey data from 2015. The scenario simulates the 

effects of Gangneung port (at the south end of Anmok beach) and several other interventions at 

the edges and outside the area of interest for a period of 20 years. The submerged breakwater in 

Anmok beach (Figure 3.2) is not included in this simulation. The Van Rijn (2004) sediment 

transport formula was used with d50=400μm, d10=250μm and d90=600μm. The run time is 

approximately 70mins for both the LT and CL modules of UNIBEST. 

 

Figure 3.4: Nearshore wave climates used as boundary conditions in the UNIBEST -CL+ model (Deltares, 2016) 

For the UNIBEST-CL+ simulation, run time reduction was considered in order to facilitate the 

Standard Monte Carlo simulations. Modifications regarding the number of cross-shore profiles 

considered, as well as the cross-shore grid cell size, were applied to the original model 

schematisation, and assessed based on the computational time reduction achieved as well as 

similarity of coastline change at the end of the simulations to that of the original schematisation.  

area of interest 
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In the changes applied, the full number of profiles and a dense grid resolution were preserved in 

the region of interest, while outside the region bigger changes were allowed. Table 3 and Figure 

3.5 present an overview of the modifications applied and the results. It is clear that the changes 

applied in the grid cell size result in faster simulations than changes in the profile number. The 

model schematisation named ‘mod 1’ gave the best approximation of the final coastline combined 

with a significant decrease of the run time and was chosen to be used in the following phases of 

this project. 

  
Original 
schematisation 

Mod 1 Mod 2 Mod3 

Total number of profiles   45 45 24 24 

Grid cell size  
inside Anmok beach 

1-2 m 
4-8 m  

1-2 m 
4-8 m  

outside Anmok beach 6-12 m 8-16 m 
Total run time 70mins 20mins 45 mins 10 mins 

Table 3: Overview of modifications applied in the original model schematisation and the resulting run durations  

 

Figure 3.5: Coastline change at the end of the original and modified UNIBEST -CL+ simulations for the area of 
interest (Anmok beach). Positive coastline change indicates accretion. 

Following the modifications described above, the value of d50 defined in Unibest–CL+ model 

(400μm) was changed to a value (450μm) for consistency across the models used. 

3.1.2  Delft3D model schematisation 

The scenario selected for Delft3d features Anmok beach, the Gangneung Port and the submerged 

breakwater and nourishment at the northern side of the port. Both interventions are indicated in 

the bathymetry and roughness files while thin dams are used for the port breakwater. The 

submerged breakwater is modelled with dimensions 250m x15m, crest level at -0.5m MSL and is 

located at 100m from the shore. The beach nourishment has a volume of 11000m3 and is 

implemented during the timesteps 2 to 4. The modules WAVE and FLOW are used in parallel 

(online coupling), in 2DH mode, with communication intervals of 20min. The grid resolution 

varies from 5x3.5m close to the beach to 15x25m towards the lateral and offshore boundaries.  

Timeseries of wave boundary conditions are applied uniformly to the open boundaries of the 

domain, derived from offshore measurements propagated to the domain boundaries using a 

SWAN model. Conditions that do not contribute significantly to sediment transport (Hs<0.5m and 

offshore directed waves) were not included in the timeseries. Timeseries of water levels are 

applied uniformly across the offshore boundaries to incorporate tidal forcing. The tidal forcing at 

the domain boundaries was derived using a larger FLOW model forced with astronomical 

boundary conditions and calibrated using local tidal station data. Neumann gradient boundary 

conditions are used on the lateral boundaries. Equilibrium concentration conditions are imposed 

at the inflow boundaries.  
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The van Rijn (1993) formula is used for the computation of the sediment transport with 

d50=500μm. A morphological time scaling factor (MorFac=3) was applied to speed up the changes 

in morphology.  The simulated hydrodynamic period is ~3.5 months, equivalent to 3 years of 

morphological changes using the 2015 initial bathymetry. The run time is approximately 160hrs 

with 6s timestep.  

  

Figure 3.6: Spatial plot of bed level during the 2nd timestep of Delft3D simulation (right). Zoom in for the area of 
the interventions(left). The dimensions of the submerged breakwater and the location of the nourishment are 
shown on the figure.  

To guarantee stability of the model during the probabilistic simulations the timestep was reduced 

to t=1.5s. Subsequently, input reduction was performed on the wave forcing conditions reducing 

the run duration to ~96 hrs. For more details about the performed input reduction the reader is 

referred to Appendix A. Lastly, the value of d50 defined in Delft3D model (500μm) was changed to 

the value 450μm, consistent across the models used. 

3.2 Selection of uncertain variables 
The type and amount of uncertainties that will be assessed in this project is limited both due to 

time constraints and limitations imposed from the statistical methods to be used. A selection of 

the uncertainty sources that will be considered is therefore necessary to be carried out aiming to 

discern those parameters whose variations affect the model output the most.  

An overview of the methodology followed to identify the final set of parameters/variables that 

will be included as uncertain in the next phases of the current project is presented in the flowchart 

below (Figure 3.7). The selection of the parameters to be included as uncertain was based on 

literature, focusing on the study area, the uncertainty types we wish to explore (forcing and 

parameter uncertainty), and past uncertainty analyses on coastal morphodynamic models. Since 

model schematisations and configurations are already available for the case of Anmok beach, it is 

useful to consult the model input files as well. Expert consultation was used to further refine the 

initial set of parameters. Experience in coastal modelling for diverse cases and especially for the 

case of South Korea can support the exclusion of some of the variables whose potentially 

uncertain value has less significant impact on the model output. At this stage, estimates of the 

range and distribution of the variables were also obtained. 

Subsequently a simple sensitivity analysis was performed to explore the relative impact of the 

value uncertainty of variables/parameters in the model output. The method used (One-at-a-time 

-OAT- method) includes varying one uncertain parameter value at a time, taking a high or low 

value, while keeping the other parameter values at the median value and evaluating the response 

-0.5m MSL  
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of the model output to these variations (Hamby, 1994; Loucks et al., 2017; Saltelli, 1999). 

Variables that were not described with uncertainty were considered deterministic and their value 

was considered to be true and accurate (without error). 

 

Figure 3.7: General approach for uncertain variable selection 

OAT method was selected as a simple and easily implemented method for sensitivity analysis. It 

provides a rough estimate of the sensitivity of the model output relative to the median value of 

the varied parameter, not accounting for the entire parameter distribution (Hamby, 1994). 

Additionally, the method does not account for combined system sensitivity or correlation 

between the input variables and is generally recommended for linear models and narrow range 

variables (Saltelli, 1999; Vrijling et al., 1992). Although the assumption of non-correlation 

between the variables can be held valid for the set of variables considered, the morphodynamic 

models themselves are highly non-linear. As a result, OAT is used to assess the relative and not 

the absolute sensitivity of the model output to the varying input, that is to distinguish those 

variables whose uncertainty impacts model output the most, resulting to the final set of 

parameters/variables to be included as uncertain in probabilistic modelling.  

The procedure described was carried out separately for each of the numerical models included in 

this research, Delft3D, UNIBEST-CL+, as the differences in the model input, structure and 

schematisation are expected to lead to different final sets of uncertain variables.  

3.2.1  Selection of uncertain variables – UNIBEST-CL+ 

A sensitivity analysis had already been completed for the UNIBEST-CL+ model schematisation for 

Anmok beach developed during CoMIDAS program (Deltares, 2016). The sensitivity analysis 

investigated the effect of the variation of 3 parameters (Hs, d50, θ) on the model output as well as 

the effect of using different transport formulas. The main assumptions from that sensitivity 

analysis were utilized in the present study. The three parameters (Hs, d50, θ) were included in the 

new sensitivity simulations, with the same or updated ranges.  

UNIBEST-CL+ was recommended for the simulation of the large scale processes acting on the 

coast, namely the reorientation of the coast due to the Gangneung port construction and the effect 

of climate change, regarding the changing wave climate, disregarding  the effect of SLR or 

changing storm patterns (Deltares, 2017). In the present study the interest lies more on the effect 

of the changing wave climate due to climate change and that is reflected in the selection and the 

Review of literature 

and input files  

Expert judgement 

Initial set of uncertain parameters 

Intermediate set of uncertain 

parameters (range & distributions) 

Sensitivity analysis 
Final set of uncertain parameters 

(range & distributions)  
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ranges of the variables in the sensitivity analysis. The incident wave height is varied using an 

amplification factor on the original timeseries while the incident wave direction is varied applying 

a uniform addition to the timeseries. The ranges for these parameters (Table 4) have been derived 

from an explorative climate change impact assessment (Deltares, 2017) conducted for the same 

area using Global Climate Models for the intermediate and very high baseline emission scenarios 

(RCP 4.5 and RCP 8.5) in a hundred year period. The results suggest minor changes in the incident 

wave energy and a small reorientation of the yearly averaged wave climate (-1o) in a century. 

Accordingly, for a 20-year UNIBEST-CL+ simulation a variation in the average wave direction of 

±0.2o was adopted. 

The range for the median grain diameter (d50) was selected in accordance with the range applied 

in the sensitivity analysis conducted during CoMIDAS program, derived from analysis of sediment 

samples from the area. Additionally, an extra parameter was introduced in the sensitivity analysis. 

The kb, coefficient for bottom roughness is one of the hydraulic coefficients of UNIBEST-CL+. It 

appears in the definition of the Chezy friction coefficient, C=18 log (12d/kb) (Deltares, 2011). Due 

to the wide range of values it can take, it can affect the transports significantly (see also de Bruijn 

(2005)). The range of kb for a sandy coast was defined after expert consultation (B. Huisman, 

personal communication, July 25, 2018).  

Parameter Description P0.15 P50 P99.85 

αHs  significant wave height amplification 0.8 1 1.2 

d50 [μm] median grain diameter 300 450 600 

βϑ [oN] incident wave direction addition -0.2 0 +0.2 

kb [m] coefficient of bottom roughness 0.02 0.1 - 
Table 4: Parameter values for the sensitivity runs in UNIBEST-CL+ 

The values of these variables, as presented in Table 4 were varied according to the OAT method 

in the LT module of UNIBEST for the run configuration presented in Section 3.1.1 . The resulting 

transport rates were used as input for the CL module, providing in turn the varied position of the 

coastline at the end of the simulation. The results are presented only for the area of interest, 

Anmok beach, between the Anmok port northern breakwater (x=4.956*105 m) and the outflow 

of Namdae stream (x=4.93*105 m), (Figure 3.8). 
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Figure 3.8: Spatial plot of the initial coastline position (black) and the f inal (red) coastline positions of the 
reference/sensitivity runs. 

 

Figure 3.9: Coastline change at the end of the reference and sensitivity simulations for the points along Anmok 
beach. Positive coastline change indicates accretion. 

 

Figure 3.10: Coastline change at the end of the simulation for the different sensitivity runs relative to the 
coastline change of the reference simulation. Positive coastline chang e indicates additional accretion w.r.t. the 
reference simulation. 

Both the reference and the sensitivity simulations result to the same trend of coastline movement: 

reorientation of the coastline with accretion at the northwest side of the simulated coastal region 

and erosion at the southeast side, suggesting that the coast is close but has not yet acquired the 

equilibrium position for the incident wave climate and the interventions present (Gangneung 

Port). The area of interest is modelled as a coastal cell, with longshore transport impeded by the 

port breakwater at the south end and by a shorter groyne situated at the north end. Negative and 

positive gradients in the longshore sediment transport at the two ends of the modelled cell create 

erosive and accretive disturbances locally. These disturbances grow over time forming the 

reorientation pattern observed and leading the coast towards an orientation in equilibrium with 

the incoming wave energy.  
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Varying the wave incidence angle for the sensitivity runs modifies the target equilibrium position 

of the coast leading to less or more reorientation. Additionally, variations in the significant wave 

height lead to changes in the equilibrium coastline position through the non-linear relation 

between significant wave height and resulting sediment transport. But more significantly, higher 

or lower values in Hs and the remaining sensitivity parameters change the speed at which the 

coast adapts to the wave climate. Reduced wave height/roughness coefficient or increased grain 

diameter are expected to yield smaller reorientations of the coast in the same simulation duration.  

The results of the sensitivity analysis give rise to the following remarks:  

• Variations of the variable values mostly reduce the coastline rotation compared to the 

reference situation except for the reduced wave incidence angle and the increased wave 

height. 

• The model output shows increased sensitivity to variations in the kb, wave incidence 

angle and incident wave height. Variations in each of these variables values trigger 

significant changes in different areas of the coast.  

• The model output (coastline position change at the end of the simulation) displays 

spatially varying sensitivity to changes in the variable values. The sensitivity becomes 

more pronounced when moving from the centre towards the edges of the modelled coast. 

• As can be seen in Figure 3.10, there are areas for which evaluating a variable at the mean 

value leads to more extreme (or more conservative) results than using the P0.15 or P99.85 

values for the same variable. This can be attributed to the nonlinear processes that 

UNIBEST-CL+ simulates and the wide uncertainty range considered for the variables 

(Loucks et al., 2017).  

Taking the above into consideration it is decided that all 4 variables (Hs, d50, ϑ and kb) are to be 

included as uncertain in the probabilistic analysis in the following chapters. 

3.2.2  Selection of uncertain variables -Delft3D 

Following the review of literature and the input files of the available Delft3D model 

schematisation for Anmok beach, and expert consultation (F. Scheel, personal communication, 

April 26, 2018), the list of variables to be included in the sensitivity analysis was defined.  

The variables whose variability/imprecision is expected to influence the model output are the 

following: 

• bottom roughness coefficient, C (m0.5/s),  

• median sediment diameter, d50 (m),  

• significant wave height, Hs, 

• peak period, Tp, 

• Incident wave direction, ϑ(oN) 

• Submerged breakwater height, defined in bathymetry 

This set of variables was restricted even further so that sensitivity analysis becomes feasible for 

a model with long simulation time. The final set of variables and the values considered in the 

sensitivity analysis is presented in Table 5. Sensitivity runs were performed using a 3-year 

Delft3D simulation including both the port and the submerged breakwater, as described in 

paragraph 3.1.2 . 
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Parameter Description P0.15 P50 P99.85 

C [m0.5/s] bottom roughness coefficient 55 65 75 

αHs  significant wave height amplification 0.8 1 1.2 

βϑ [oN] incident wave direction addition -0.2 0 0.2 

d50 [μm] median grain diameter 300 450 600 

Table 5: Parameter values for the sensitivity runs in Delft3D 

Delft3D is an area model and does not provide coastline position output directly as coastline 

models such as UNIBEST do. Considering that coastline position is an indicator of interest in the 

current study, the Momentary Coastline (MCL) position was used to obtain the output variable of 

the model for the sensitivity analysis. The MCL represents the momentary horizontal position of 

the coastline from a reference line evaluated in a cross-shore profile using the volume of sand (A 

in Figure 3.11) between a landward and seaward boundary. In this study, the MSL+1m and MSL-

1m contour lines were used as the landward and seaward boundaries respectively. This range 

was considered to enclose both the tidal range and the small storm surges incident in the area. 

 
Figure 3.11: Definition sketch of the MCL, (Rijkswaterstraat, 2018). 

The MCL approach was preferred over the simple contours as it allows for a single representation 

of the coastline, making it more suitable for comparisons. At the same time, it is less affected by 

local instabilities that can appear in the swash zone of Delft3D results. However, MCL might 

display steep shifts that do not correspond to simulated morphological features. This is especially 

the case when the beach evolves to a non-uniform shape, with multiple crossings of the upper and 

lower boundaries. In this case, the standard procedure of the MCL calculation would assume the 

most landward upper and lower crossings. In the present model domain, the simulated 

morphology yields complex contourline patterns for the area behind the submerged breakwater. 

Nevertheless, using a narrow range of contourlines to define the landward and seaward 

boundaries was found to minimize the sudden shifts in the MCL.  

Lastly, the difference of the cumulative sedimentation volume in the model domain during a 

sensitivity simulation from the cumulative sedimentation volume in the model domain during the 

reference simulation was computed (Table 6). Although this indicator does not provide any 

spatial resolution as the previous one (MCL position), it shows the relative impact of variable 

values variation not only on the coastline position but also in the evolution of the active shore 

face.  

MCL= A/(2h) +x 
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Cumulative sedimentation for the model domain relative to that of the reference run 

Sensitivity 
simulation 

high Hs low Hs high d50 low d50 ϑ +0.2o ϑ -0.2o high C low C 

Volume 
(*105 m3) 

1.23 -0.96 -0.19 1.85 -0.003 0.0003 1.3 -0.46 

Table 6: Cumulative sedimentation at the end of the sensitivity simulations, summed over the domain, relative 
to the cumulative sedimentation volume of the reference run 

 
Figure 3.12: Spatial plot depicting the shoreline position at the end of the sensitivity simulations, the position 
of the initial shoreline and the position of the submerged breakwater.  

 
Figure 3.13: Coastline change with respect to initial coastline for the different sensitivity runs. The MCL 
approach is used between MSL-1m and MSL+1m. Positive coastline change indicates accretion.  

 
Figure 3.14: Coastline change for the different sensitivity runs w.r.t. coastline change of the reference simulation . 
The MCL approach is used between MSL-1m and MSL+1m. Positive coastline change indicates accretion.  
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The following remarks can be made based on the results of the sensitivity analysis on the 

described simulation of Anmok beach:  

• Coastline position appears to be more sensitive to changes in the median sediment 

diameter, with higher grain diameters leading to more accretion/less erosion and 

smaller diameters leading to more erosion. 

• Variations in the median grain diameter and the incident wave height cause the strongest 

changes in the morphodynamics of the domain as can be seen in Table 6. 

• The variable, whose variation has the least effect on both the coastline position and the 

cumulative sedimentation in the domain, seems to be the incident wave direction. This is 

in contrast with the results of the sensitivity analysis on the UNIBEST-CL+ model 

schematisation, where coastline change proved very sensitive to the variations in the 

incident wave direction. This difference in the relative significance of parameters 

between the different model schematisations can be attributed to various reasons. The 

Delft3D model schematisation simulates a three-year period using wave timeseries 

derived from offshore wave measurements. On the contrary, the UNIBEST-CL+ 

schematisation simulates a 20-year period using schematised wave climate as forcing 

conditions. The smaller simulation period and the non-schematised forcing input could 

justify reduced sensitivity of the Delft3D output to the incident wave direction variations. 

The difference in the parameter significance could also be traced back to the different 

ways the relevant processes are included in the two models. In UNIBEST-CL+ the net 

sediment transport as a function of the coastline angle (derived from the LT) module is 

used in the coastline morphology simulation (CL module). On the other hand, in Delft3D 

alongshore sediment transports are evaluated for every wave condition and every 

timestep using the defined transport formula and are subsequently used to update the 

morphology.  Differences like this, in the model structure and the modelling assumptions 

may lead to deviations in the relative significance of parameters between different 

models even when the same processes are simulated. 

• The effects of uncertainty on the coastline position seem to be quite monotonic in this 

case. The reference scenario coastline is consistently framed between the coastline 

positions of the sensitivity runs. Additionally, opposite variations in the sensitivity 

parameters consistently give opposite results. However, the asymmetry of the sensitivity 

analysis’ results around the reference simulation illustrates non-linearity in the response 

of the model to the variations in the uncertain variables.  

The effect of the definition of the target variable (output variable) on the sensitivity results was 

investigated. Graphs of coastline change for the sensitivity runs were produced for different 

definitions of the coastline: MCL approach between the levels MSL [-2 2], the contourlines 0m 

MSL and MSL-1m. The relevant graphs are to be found in Appendix B. Although the results change 

as the target variable definition changes, the relative sensitivity of the output to the varied 

variable values is the same irrespective of the definition of the coastline.  

From the variables selected, it is decided that Hs, d50 and C are to be included as uncertain in the 

probabilistic analysis on the Delft3D simulations in the following chapters. 

3.3 Uncertainty quantification 
Already from literature review (Section 2.4) the statistical methods found to satisfy the 

applicability criteria were selected to be investigated further. Table 1 summarises the conclusions 

of this selection process. The application of statistical methods on the process-based 

morphodynamic models was carried out as described in Table 1 on each of the model 

schematisations described in Sections 3.1.1 and 3.1.2 for the uncertain input of 3.2.1 and 3.2.2 

while assuming zero correlation.  
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The assumption of no correlation between the uncertain variables was adopted to simplify the 

next steps. This assumption is not strictly true for the significant wave height Hs and the incident 

wave direction θ, variables selected to be included with uncertainty in UNIBEST-CL+ simulations. 

Generally, these two variables are correlated, e.g., in every coastal stretch a dominant wave 

direction for the more energetic wave conditions can be found. However, in this specific case, 

where the incident wave direction is varied in a very restricted range, the assumption of 

uncorrelated variables can be considered valid. 

Model output realisations constitute the empirical distribution i.e., samples from the yet unknown 

model output distribution (Kurowicka et al., 2006). It is expected that when the sample size n 

approaches infinity, the sample distribution converges uniformly to the true distribution 

(Glivenko-Cantelli theorem). 

The performance of each statistical method on the different process-based models will be judged 

based on two aspects: the computational resources required, and the precision achieved. In this 

study, as with most engineering projects, the computational and time limitations set a ceiling to 

the number of samples that can be used. Precision of the model output distribution usually refers 

to a specific fractile of interest and is dictated by the demands for the future use of the resulting 

distributions, under the assumption of sufficient knowledge about the input uncertainty. In cases 

where the uncertainty distribution of the input variables is not adequately known (high statistical 

uncertainty), there is no point in demanding high precision or convergence in the extreme high 

or low probabilities as the statistical uncertainty will dominate the approximation uncertainty 

contributed by the iterative simulations. SMC sampling offers the tools for the quantification of 

the achieved precision. For LHS, the achieved precision can only be evaluated through comparison 

with results from different sample sets/LHS iterations or from the SMC application.  

3.3.1  Standard Monte Carlo 

As depicted in the flowchart Figure 3.15, Standard Monte Carlo involves sampling from the 

probability distributions of the uncertain input to obtain the samples of the model input vector. 

Those samples are pushed through the model to obtain an empirical distribution of the model 

output and to estimate the precision of the output distribution (Kurowicka et al., 2006).  

 

Figure 3.15: Overview of a Standard Monte Carlo Analysis (Klis, 2003) 

The number of samples required in a Standard Monte Carlo simulation depends on the relative 

precision required of the output distribution. A first estimate of the sample size for this project 

will be acquired using a method presented in Morgan et al. (1992) in which the desired precision 

is expressed as a maximum allowed deviation from an estimated percentile in meters of coastline 

change.  
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The first step of this method as applied in the research of Klis (2003) includes the definition of 

the target precision: the p percentile of coastal erosion to be computed should lie within a 

confidence interval ci with associated confidence level α. Subsequently, SMC is applied (50 

samples), an initial set of samples of the output distribution is obtained and assuming normal 

distribution, the initial estimates of the model output mean (μ) and standard deviation (σ) are 

calculated. For the probability interval 2Δp that corresponds to the allowed confidence interval ci 

around the percentile p the required sample size m can be calculated as: 

𝑚 = 𝑝(1 − 𝑝)(
𝑐𝛼

∆𝑝
)2, 

where cα is the interval in the unit normal distribution that encloses probability α and Δp defined 

as in Figure 3.16. The number of samples required is independent of the number of uncertain 

variables considered for a given standard deviation of the output distribution. 

 

Figure 3.16: Estimating the required SMC sample size for an allowable confidence interval around p 75 for a 
coastline point. 

The required SMC sample sizes for every point along the coastline, for different percentiles of 

interest (p5, p25, p50, p75 and p95) and different error margins (±0.5m, ±1m, ±2.5m) with 95% 

confidence level were calculated following the steps described above for an initial set of 50 MC 

samples (Figure 3.17). The required sample size increases with higher precision requirements 

and wider ranges of possible coastline change –towards the edges of the coastal cell. It should be 

noted that a set of 80 SMC samples is expected to yield ci ranges up to 4m around the percentile 

estimates alongshore. A sample size of 1000 leading to ci ranges lower than 1m for the majority 

of the coastline points was selected.  

Following the completion of the SMC sampling method, a check will be performed to ensure that 

the estimated number of samples m leads to the target precision. For m sorted values of the model 

output (y1≤y2... ≤ym), the values yi,yk determine the confidence interval for the percentile p where 

according to Morgan et al. (1992): 

𝑖 = 𝑚𝑝 − 𝑐𝛼√𝑚𝑝(1 − 𝑝) 

𝑘 = 𝑚𝑝 + 𝑐𝛼√𝑚𝑝(1 − 𝑝) 

In the case that the target precision is not met, the sample size can be extended easily, and the 

checks will be repeated.  

ci 

2Δp 

p
75
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Figure 3.17: Required number of SMC samples for the points along the coastline calculated according to the 
method presented from Morgan et al. (1992) and employed from Klis (2003). Sample sizes computed for the 
different percentiles of coastline change and different confidence interval allowable ranges ( 4m, 2m, 1m). The 
confidence level is 95% in all cases. 

3.3.2  Latin Hypercube Sampling 

Latin Hypercube Sampling was applied by dividing the range of each uncertain variable into n 

non-overlapping equiprobable intervals (strata). The input vector for each simulation was 

created by sampling from a random stratum for each of the uncertain variables under the 

condition that every stratum was sampled once in the sampling process (Eamon et al., 2005). 

Input vectors were pushed through the model to obtain the empirical distribution of the model 

output.  

LHS process produces random but serially dependent samples of the output distribution and thus 

the methods described above, used to estimate the cumulative distribution precision and sample 

size for SMC, are inaccurate for LHS, typically underestimating the precision achieved (Helton et 

al., 2003; Morgan et al., 1992).  No generally applicable formulations exist in literature relating 

LH sample size with the achieved precision for the cumulative distribution. For n random 

variables,  J. McKay (1988) suggests  a sample size of 2n, Iman et al. (1988) 4/3n, while Manache 

et al. (2007) conclude that an even larger sample size may be required for adequate output 

uncertainty estimation. In the current study it was decided to perform the LHS on several 

different sample sizes. More specifically, sample sizes of 10, 20, 40 and 80 were selected. The 

samples were selected such that the bigger sample sets include the smaller ones. As a result, the 

computational resources required were reduced significantly as only 80 simulations instead of 

150 were required for each morphodynamic model in total. 
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Figure 3.18: Example of sample selection for LHS. The right sample set (n=10) is included in the next sample set 
(n=20). That is included in the next sample set (n=40), which is in turn included in the left sample set (n=80). 

In the absence of any relative formulas, the precision of the resulting empirical cumulative 

distributions was not quantified. Qualitative conclusions about the precision were drawn through 

comparison of the empirical distribution functions and percentiles resulting from the different 

sample sizes. Comparisons also were made between the empirical distribution functions and 

percentiles resulting from SMC sampling. 

3.4 Multi-model coastline change uncertainty aggregation 
Although information on the relevant processes needs to be obtained on individual time and 

spatial scales using the relevant models, the results on individual timescales can be aggregated to 

simulate the response of the system in a specific time horizon. The aggregation procedure 

followed in this chapter was based on the relevant framework developed during the CoMIDAS 

research program (‘scenario-based’ approach). The basic idea of the aggregation is that coastline 

change in a specific management horizon can be evaluated as the superposition of the 

independent coastline change resulting from the individual processes acting on different time-

spatial scales. Figure 3.19 presents the main steps of the aggregation process: (1) appropriate 

model schematisations selection, (2) modelling of the defined scenarios and uncertainty 

identification, (3) result conversion to coastal impact, and (4) result visualisation (Deltares, 2017). 

The aggregation framework does not accommodate any interdependencies between the 

processes at the different timescales.  

 
Figure 3.19: Aggregation approach steps (Deltares, 2017) 

In the scenario-based approach the mean coastline change is estimated from the deterministic 

model outputs with all the variables estimated at their expected values. Uncertainty bandwidths 

around the mean coastline change are estimated using sensitivity analysis/ data analysis. The 

aggregation operation entails the superposition of the deterministic mean coastline change 

estimates as well as the superposition of the uncertainty bandwidths. 
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In the present thesis, this framework has been extended to account explicitly for the uncertainties 

propagated from the inputs, through the process-based models and the aggregation operation to 

the cumulative coastline change results. When the coastline evolution from individual processes 

is expressed in the form of probability density functions then superposition entails the linear 

combination of the individual pdfs, i.e. convolution of probability distributions.  

A Monte Carlo approach was proposed to be applied for the convolution of the probability 

distributions. It requires sampling from the cumulative density functions (cdfs) of coastline 

change estimated using the uncertainty quantification methods (SMC, LHS) for each of the 

coastline evolution components and performing addition/subtraction of the samples to obtain 

samples of the unknown distribution of the aggregation. These samples form the empirical 

distribution, an estimator of the true distribution of the aggregated coastline change.  

The Monte Carlo approach was selected as a simple and easily implemented method of probability 

distribution convolution. The method is very fast allowing for the use of large sample sizes and 

consequently high precision even at the tails of the aggregated distribution. Although Monte Carlo 

procedure can accommodate correlation between the sampled components, in this case it is 

applied under the assumption of independence of the aggregated processes.  

The assumption of independence between the aggregated processes is not always true. For this 

specific application, it is assumed that the coastline evolution under the effect of the intervention 

is not affected by the long-term processes. Indeed, the evaluation of the net intervention impact 

as the difference in coastline change between a set of simulations with and without the 

intervention can be safely assumed to remove the effect of the initial bathymetry/coastline that 

is shaped by the longer-term processes. However, there are cases when interdependencies 

between the process become relevant and have to be accounted for in the aggregation process. 

One such case is explored in the results with the inclusion of the sandbar dynamics effect in the 

aggregation. Other cases include the effect of long-term processes on storm impact, and the effect 

of interventions on storm impact.  

The steps that were followed in the aggregation procedure are presented below: 

1) Identification of the time horizon, the variable and the spatial scale of interest. The 

selection of these basic elements will guide the aggregation process. There is a difference 

in the approach to estimate coastal recession in terms of coastline change in a coastal cell 

over a decade or in terms of cumulative eroded volume of the coast of Netherlands over 

a century. For small management horizons the effect of processes acting on significantly 

longer timescales may be omitted from the aggregation process.  

In this first step, a definition of any precision targets would also be useful as it can 

influence the decisions in the different steps of the framework:  the selection of processes 

that will be included, the level of complexity of the models used, the statistical methods 

for uncertainty quantification  and the variables that will be included as uncertain. 

2) Identification and listing of the processes that drive the changes of the variable of interest 

across the time and spatial scales. With respect to coastline change, some of these 

processes are: relative sea level rise, climate change driven wave climate variation, initial 

morphodynamic impact to interventions, long term morphodynamic response to 

interventions, effect of sandbar dynamics, seasonal/long period coastline oscillations, 

storm impact, river (sediment) discharge fluctuations etc. 

3) Delineation of the appropriate model schematisations to simulate the processes. The 

models selected must be able to simulate all the processes listed above on the 

corresponding timescales. At the same time, inclusion of a process effect more than once 

should be avoided. For this reason, one baseline simulation is selected, usually with the 

longest simulated period including one (or more) of the larger timescale processes. For 
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the remaining processes, their net effect is evaluated either by a single simulation or 

through comparison of the model output with and without the specific process. 

4) Definition of the uncertainties that will be quantified. Literature review, expert 

judgement and sensitivity analysis can be used to determine the variables that introduce 

significant uncertainty in the model output and their distributions. 

5) Quantification of the uncertainties on the individual timescales/processes. Statistical 

methods like the ones described in the current thesis (SMC, LHS) can be applied to obtain 

the probability density distributions of coastline change for the different schematisations 

selected.  

6) Definition of the aggregation formula and aggregation of the coastline change probability 

distributions using the MC approach as described above.
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4 

Results 
 

In this chapter the results from the implemented methodology are presented. Firstly, the results 

of the implementation of SMC and LHS on the Unibest-CL+ and Delft3D schematisations for 

Anmok beach are introduced. Subsequently, the implementation of the aggregation framework to 

estimate the probability distribution functions of coastline change in a management timeframe of 

20 years is presented.  

4.1 Uncertainty quantification for Unibest-CL 
Four variables were selected to be included as uncertain in the uncertainty quantification process 

for the model 20-year simulation of UNIBEST-CL+ as described in paragraph 3.2.1 . The variables 

with their associated statistical characteristics are presented in Table 7. The statistical 

characteristics were derived from the sensitivity analysis ranges, assigning p0.15 and p99.85 (for the 

normally distributed variables) to the low and high values respectively. 

Parameter Description Distribution 

αHs [m] significant wave height amplification N (1, 0.067) 

d50 [μm] median grain diameter N (450, 50) 

βϑ [oN] incident wave direction addition U (-0.2, 0.2) 

kb [m] coefficient of bottom roughness U (0.02, 0.1) 

Table 7: Uncertain input variables for UNIBEST-CL+. 

Following the application of the statistical methods on each of the process-based models as 

described in Sections 3.2.1 and 3.2.2 , rescaled histograms were used for coastline change density 

estimation at the different points along the coast. From a total of 57 resulting probability density 

and cumulative distribution plots of coastline change only 12 will be presented. These correspond 

to the different cross-sections selected from a cross-sectional grid (Figure 4.1). The grid allows 

for higher resolution -denser cross-sections- in the areas close to coastal interventions. The 

distance between the considered cross-sections varies from 130m for those located near the port, 

to 530m for those at the northern end of the coast.  

Additionally, different percentiles (p5, p25, p50, p75, p95) were chosen to be computed as measures 

of central tendency and dispersion of the model output sample without any underlying 

distributional assumptions.  
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Figure 4.1: Spatial plot of Anmok beach. The markings show the location of the cross-sections for which results 
of the statistical methods’ application on UNIBEST -CL+ application will be presented. 

4.1.1  Latin Hypercube Sampling  

Sample sets of four different sizes were selected for LHS; n=10, n=20, n=40 and n=80, with the 

smaller sample sets being subsets of the larger ones. Each sample vector includes one value for 

each of the four uncertain variables, sampled according to the Latin Hypercube requirements, and 

was used as input to the model simulations. All other input variables/parameters were treated as 

deterministic and used with a fixed, ‘true’ value in the model. The dependence between d50, d10, 

d90 and dss was accounted for; fixed coefficients were used to vary the diameter percentiles 

according to the sampled median diameter values. In Figure 4.2 2D projections of the cloud of 

points sampled by Latin Hypercube can be seen for n=10. The projections for the different sample 

sizes can be found in Appendix C.  

 

Figure 4.2: 2D projections of the cloud of sample vectors (red filled dots) generated by LHS for Unibest, (n=10). 
The sampled probability distributions of the variables (median grain diameter, wave-height amplification factor, 
coefficient for bottom roughness) have been plotted on the sides along with the sampled values from each 
variable (red circles). 

The sample vectors created with LHS were used as input for the UNIBEST-LT module and the 

coastline change realizations were computed for every point along Anmok beach using the 
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UNIBEST-CL module. Probability distribution plots and cumulative distribution plots of coastline 

change for different positions along Anmok beach (as indicated in Figure 4.1) were computed 

based on the empirical distributions of the output for the different sample sizes used. The rescaled 

histogram approach was used for coastline change density estimation. Most of the resulting 

figures can be found in Appendix C, with the exception of Figure 4.3 below, which compares the 

performance of the different sample sizes.  

Since there are no formulas that explicitly link the used sample size and/or the uncertain 

parameter statistical characteristics with the precision achieved through LHS, initially, the 

performance assessment of the different sample sizes will be conducted qualitatively. According 

to the Glivenko-Cantelli theorem, the probability distributions that resulted from the largest LH 

samples set (n=80) are a better estimator of the true probability distributions of coastline change 

in the different cross-sections. From Figure 4.3, comparing the results of the different sample sizes 

to those of the largest sample, it is clear that even the smallest sample size (n=10) can represent 

quite well the coastline change distribution for the points with the most restricted modelled 

coastline change range (Points 4 to 6).  For the points closer to the edges of the coastal cell, where 

more diverse coastline change realisations are likely, there is a clear difference in the 

performance of the different sample sizes. Although all sample sizes produce a similar range of 

coastline change, the resulting shape of the distribution varies. Using too few samples, 10 or 20, 

leads to the distributions containing a number of peaks, overestimating the probability of specific 

coastline change realisations, while at the same time underestimating the probability of others. 

In contrast, both the shape of the distribution and the coastline change range originating from 40 

samples are very similar to those of the biggest sample set. 

Taking a closer look at the deviations of the smaller sample set percentile estimates (n=10, n=20, 

n=40) w.r.t. the largest sample set percentile estimates (n=80) along the coastline (Figure 4.5), 

we can see that indeed even 10 samples yield an estimate of the coastline change median within 

less than 0.5 m deviation from the 80 sample estimate. For the remaining percentiles, 40 samples 

estimates deviate no more than 1m from the 80 samples estimates, while 20 or 10 samples 

estimates deviate a maximum of 2m from the 80 samples corresponding percentile estimates. 

This indicates that being willing to sacrifice 1 or 2 meters of relative precision (keeping in mind 

that 80 is a practical upper limit in the number of samples used in this case) we would be able to 

reduce the computational time significantly, even to 1/8th of the time required for the biggest 

sample size. 
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Figure 4.3: Probability density plots of coastline change at different cross-sections (as marked in Figure 4.1) 
along the coast for the different LH sample sizes (red: 10 samples, yellow: 20 samples, green: 40 samples and 
blue: 80 samples). Positive coastline change indicates accretion.  
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Figure 4.4: Alongshore distribution of coastline change percentile estimates for the different LH sample set sizes (red: 10 samples, yellow: 20 samples, green: 40 samples, blue:  80 samples). 
Positive values of coastline change indicate accretion. The black markings on the horizontal axis indicate the location of different cross -sections (points 1 to 12) presented in Figure 4.3. 
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Figure 4.5: Deviations of coastline change percentile estimates using different sample sizes (red: 10 samples, 
yellow: 20 samples, green: 40 samples) from the percentile estimates  of the biggest sample size (n=80) 

To investigate whether the above observations can be attributed to a fast convergence of the 

model output or whether they are incidental to the specific sample set, the LH Sampling procedure 

was repeated 9 times. Figure 4.6 presents the resulting alongshore distributions of coastline 

change percentiles as estimated using the 10 LHS realisations with 10 and 80 samples. The results 

of the 10 LHS realisations for 20 and 40 samples can be found in the Appendix C. The dispersion 

of the percentile estimates is evident in both graphs. As expected, this dispersion is more 

pronounced for the more extreme percentiles than the median and grows towards the edges of 

the coast. Additionally, the percentile spread narrows for larger sample sizes, implying a better 

convergence of the empirical distribution function from larger sample sizes towards the true 

output distribution. 
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Figure 4.6: Schematic representation of the steps followed. 10 different LH sample sets were drawn for the 
different sample sizes (top). Alongshore distribution of coastline change percentile estimates as estimates from 
10 LH sets of 10 samples (middle). The relevant graphs for the sample sets of 20 and 40 can be found in Appendix 
C. Alongshore distribution of coastline change percentile estimates as estimates from 10 LH sets of 80 samples 
(bottom). Positive values of coastline change indicate accretion. The black markings on the horizontal axis 
indicate the location of different cross-sections (points 1 to 12) for which the results were examined more 
closely. 

The spread of the different percentiles derived from the 10 LHS realisations for the various 

sample sizes is illustrated in Figure 4.7. At the central part of the domain, where the potential 

coastline change range is more limited the percentile estimate spreads for all the different sample 

sizes converge to the minimum values, suggesting a monotonic relation between the uncertainty 

range and the convergence rate. At the edges of the modelled area the spread of the computed 

percentiles ranges from 1 up to 6 meters. This implies that the small deviations observed in Figure 

4.5 are incidental of this specific sample set and cannot be attributed to the sample size related 

convergence. 

Sufficient iterations of the LHS process could provide a statistical measure of the percentile 

spread, thus a measure of the achieved precision of the LHS for the specific model, the defined 

uncertainties and the considered sample size. However, this would raise the required model 

simulations (from 80 to 800 in this case), practically defeating the efficiency of the LHS technique. 
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realizations 

(10 samples) 

10 LHS 
realizations 
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Figure 4.7: Percentile spread for the 10 LHS realisations for different sample sizes (red: 10 samples, yellow: 20 
samples, green: 40 samples, blue: 80 samples) along the coast. 

Apart from the uncertainty range, the choice of the sufficient sample size is heavily influenced by 

the uncertainty analysis requirements. In view of the results presented above, for the median 

estimates a sample size of 10 could be considered sufficient (with an expected spread 0.5-3m). If 

the emphasis is placed on estimates of the 1st and 3rd quartiles, then a sample size of 20 could be 

considered sufficient. When the focus lies in the acquisition of the probability distribution 

functions of coastline change along the coast, 40 samples can yield a good approximation of the 

distributions in most coastline points. However, if the emphasis is placed on the extreme 

percentiles or the tails of the distribution and high precision is required then a sample size of 80 

or even larger sizes should be examined.  

4.1.2  Standard Monte Carlo 

The sample set size of 1000 was selected for SMC. Each sample includes one value for each of the 

four uncertain variables randomly sampled according to the assigned probability distributions. 

2D projections of the samples selected by SMC on the sample space can be found in Figure 4.8. 

The samples were used as input to the model simulations, while all other parameters were 

evaluated at fixed values.  
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Figure 4.8 2D projection of the cloud of points generated by SMC for Unibest, (n=1000). The sampled probability 
distributions of the variables (median grain diameter, waveheight amplification factor, coefficient for bottom 
roughness) have been plotted on the sides. 

Following the completion of the UNIBEST-CL+ simulations, 1000 realisations of coastline change 

along the coast were obtained. These constitute the empirical distribution, an estimator of the 

true probability distribution of the model output. Figure 4.9 shows different percentiles of 

coastline change along the coast, estimated using the SMC (n=1000) empirical distributions of 

each coastline point. 

 

Figure 4.9: Percentiles of coastline change along the coast as estimated using 1000  SMC samples. Positive values 
of coastline change indicate accretion.  The black markings on the horizontal axis indicate the location of 
different cross-sections (points 1 to 12) for which the results will be examined more closely in Figure 4.11.  

As described in paragraph 3.3.1 , a check is performed to ensure that the selected number of 

samples (1000) indeed results in confidence interval ranges lower than 1m for the majority of the 

coastline points with a required level of confidence 95%.  Figure 4.10 displays the range of the 

95% confidence interval each of the percentiles considered (p5, p25, p50, p75, p95), for each of the 

coastline points, estimated using the empirical distribution of 1000 SMC samples. For most of the 

coastline points we are 95% confident that the margin of error in the percentile estimates is equal 

or smaller than ±0.5m (equivalent to ci95 of 1m) while it is smaller than ±0.75m (ci95=1.5m) for 

all of them. 
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Figure 4.10:  Alongshore distribution of the 95% confidence intervals (ci95) around the percentiles of coastline 
change, derived using 1000 SMC samples. Range of ci95% 1m around a percentile is equivalent to ±0.5m margin 
of error. 

The difference between the achieved precision of the 5th and 95th percentiles that can be observed 

in Figure 4.10 indicates skewness or even the additional (smaller) peaks for the probability 

density functions of coastline change at those points. More specifically, more pronounced 

negative skewness is expected for the probability density functions at the right side of the 

modelled coast (0-1000m), while less pronounced positive skewness is expected for the 

probability density functions at the left side of the modelled coast (3000-3500m). 

4.1.3  Methods’ comparison 

Applying both LHS and SMC sampling on the same model, with the same statistical characteristics 

for the variables allows for comparative estimates of the statistical methods’ efficiency. In the 

following figures the SMC results have been projected over the LH results to enable this 

comparison.  

Figure 4.11 presents the coastline change probability distribution plots for the twelve defined 

cross-sections along the coast estimated using LHS with four different sample set sizes (n=10, 

n=20, n=40, n=80) and SMC sampling (n=1000). LHS probability distributions with 80 or even 

with 40 samples resemble the SMC distributions very closely both in terms of coastline change 

range and in terms of shape, even for the cross-sections at the edges of the coastal cell. Similar 

conclusions can be drawn from Figure 4.12: LHS percentile estimates align closely with the 

respective SMC percentile estimates all along the coast. From the different LHS sample sizes used, 

the largest two (n=80 and n=40) have the best performance (see also graphs in Appendix C).  
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Figure 4.11: Probability density plots of coastline change at different cross-sections (defined in Figure 4.1) using 
different LH sample sizes (red: 10 samples, yellow: 20 samples, green: 40 samples and blue 80 samples) and 
SMC of 1000 samples (light blue). Positive coastline change indicates accretion.  
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Figure 4.12: Alongshore distribution coastline change percentile estimates using different LH sample sizes (red: 10 samples, yellow: 20 samples, green: 40 samples, blue: 80 samples) and 
SMC (light blue: 1000 samples). Positive values of coastline change indicate coastline accretion. The black markings on the horizontal axis indicate the location of different cross -sections 
(points 1 to 12) presented in Figure 4.3. 
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However, in Section 4.1.1  we observed considerable deviations in the percentile estimates of LH 

when the process was independently repeated. In fact, the maximum deviation between the 

percentile estimates of the different LHS (n=80) realisations and SMC (n=1000) was found 2m 

(Figure D.4). In view of that, we can conclude that for the UB simulation and the input 

uncertainties considered, LH Sampling with 80 samples approaches but does not quite reach the 

same results’ precision as with SMC (n=1000).  

Nevertheless, for many computationally expensive models the computational and time 

limitations set a ceiling to the number of samples that can be used. To justify the statistical method 

selection for such cases, a comparison of LHS and SMC under the same conditions was carried out. 

To match the 10 LHS realisations carried out previously (Figure 4.6) for the different sample sizes, 

10 SMC realisations for the same sample sizes were performed as indicated in Figure 4.13, using 

the already drawn set of 1000 SMC samples. Different percentiles of coastline change along the 

coast were estimated for each of the SMC and LHS realisations. The resulting distributions of 

coastline change percentile estimates for each method and location along the coast were assessed 

in terms of central tendency and dispersion both between the two methods and with respect to 

the ‘benchmark’ results, the results of SMC (n=1000). 

 

Figure 4.13: Schematic representation of the steps followed. 4 sets of 10 SMC realisations (for the 4 different 
sample sizes) were drawn from the initial SMC sample set (n=10). Subsequently the distributions of the different 
coastline change percentile estimates from the 10 SMC realisations were derived for every point along the coast.  

Five different percentiles of coastline change were considered (p5, p25, p50, p75, p95). The percentile 

estimate distributions along the shore resulting from the 10 LHS and 10 SMC realisations relative  

to the benchmark percentile estimates (SMC n=1000) can be found in Appendix D. Alongshore 

averaged mean absolute and bias error indicators (Figure 4.14 and Appendix D respectively) 

were calculated to assess the success of each method-sample size combination in approaching the 

benchmark results. For the same sample size LHS percentile estimates are mostly closer to the 

benchmark values than the SMC percentile estimates. For each LHS sample size, the performance 

reduces from the median towards the extreme percentiles. For SMC this tendency is not so strong. 
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Interestingly, the Mean Absolute Error (MAE) values across the percentiles are not symmetric. 

Both LHS and SMC give lower MAE values for the higher percentiles 95 and 75 compared to the 

corresponding lower percentiles (5 and 25 respectively). As expected, the performance of both 

statistical methods improves for increasing sample sizes. For the smallest sample size MAE is 

significantly lower when LHS is used while as the sample size grows the difference in performance 

reduces. Notably for n=80 the two methods have almost equal performance in terms of central 

tendency. Both statistical methods tend to underestimate the extreme percentiles and 

overestimate the quartiles (Appendix D). This tendency decreases rapidly as the sample size 

increases and is more pronounced for the LHS method. 

 

Figure 4.14: Alongshore averaged Mean Absolute Error for the different coastline change percentile estimates, 
for SMC and LHS with different sample sets. The results are derived using 10 LHS and SMC realisations for each 
of the different sample set sizes. The percentile estimates derived using SMC (n=1000) were used as the ‘true’ 
values for the MAE calculation. 

The alongshore averaged standard deviation (standard error) of the different percentile 

estimates serves as an indicator of the convergence of the statistical method-sample size 

combination and allows the comparison of the achieved precision. As can be seen in Figure 4.15, 

LHS estimates generally converge more than the SMC estimates for the same sample size, with 

the exception of the extreme percentiles from 40 samples, and p95 from 20 samples. A clear 

convergence pattern can be observed for both methods as the sample set size used increases. 

Once again, for the smaller sample sizes LHS estimates are superior to the SMC estimates. 

However, as the sample set sizes increase this disparity decreases. For the largest sample size of 

this analysis, n=80, the difference in the performance is fractional.  
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Figure 4.15: Alongshore averaged standard deviation (σ) for the different coastline change percentile estimates, 
for SMC and LHS with different sample sets. The results are derived using 10 LHS and SMC realisations for each 
of the different sample set sizes.  

On balance, it appears that for small sample sets LHS performs better than SMC and should be 

preferred for the quantification of the uncertainties. However, as the sample set sizes increase, 

the difference in performance between the two methods diminishes. In this case, for a sample set 

size of 80 the convergence of the two statistical methods is practically equal. In such cases SMC 

should be favoured over LHS for uncertainty quantification in the model output due to the 

capacity for quantified precision estimates.  

The estimation of the sample size for which LHS ceases to be more efficient than SMC for a specific 

model schematization and for the assigned input distributions is a complex issue. Though SMC’s 

convergence rate is related to the sample size and is known in literature (∝1/√n for univariate 

sampling), the convergence rate of LHS is not known. However, based on the results we can 

assume that this convergence rate disparity diminishes faster with smaller uncertain input spaces, 

narrower output uncertainty ranges and more uniform uncertain input distributions. More 

specifically narrow uncertainty ranges in the inputs and outputs lead to faster convergence for 

both methods. This is illustrated in the cross-sections towards the center of the modelled domain 

for which both LHS and SMC converge rapidly. Lastly, the advantage of LHS lies in the guaranteed 

sampling from the tails of the distributions. However, when uniform distributions are assigned to 

the variables the model is most sensitive to, in this case kb and θ, then there are no tails to sample 

from and the difference between the performance of LHS and SMC diminishes faster.  
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4.2 Uncertainty quantification for Delft3D 
Due to the high computational cost of Delft3D simulations for the area of interest, the application 

of SMC sampling was considered inefficient at present. Only the application of Latin Hypercube 

Sampling was investigated further.  

The sensitivity analysis on the D3D 3-year simulation of Anmok beach (paragraph 3.2.2 ) yielded 

three parameters to be included as stochastic in the uncertainty quantification process. The 

variables and their statistical characteristics are presented in Table 8 below. 

Parameter Description Distribution 

C [m0.5/s] bottom roughness coefficient N (65, 3.33) 

αHs  significant wave height amplification N (1, 0.067) 

d50 [μm] median grain diameter N (450, 50) 
Table 8: Stochastic input variables for Delft3D 

Similarly with the application of the statistical methods on UNIBEST-CL+, probability density 

plots as well as cumulative distribution plots of coastline change are presented for 9 different 

locations selected from a cross-sectional grid (Figure 4.16). Additionally, different percentiles of 

coastline change were calculated along the coastline and presented to provide an estimate of the 

location and dispersion of the model output sample. 

 

Figure 4.16: Spatial plot of Anmok beach. The red markings indicate the location of the cross-sections for which 
results of the LH Sampling application on the starting point D3D simulation will be presented. 

4.2.1  Latin Hypercube Sampling  

The application of Latin Hypercube Sampling on D3D simulations was made for four different 

sample sizes; n=10, n=20, n=40, n=80, with the smaller sample sets being subsets of the larger 

ones. The samples were selected from the 3D uncertain input space outlined by the ranges and 

distributions of the uncertain variables. In Figure 4.17 2D projections of the cloud of points 

sampled by Latin Hypercube can be seen for n=10. The projections for the different sample sizes 

can be found in Appendix E. All other variables/parameters were evaluated at a fixed, ‘true’ value.  
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Figure 4.17: 2D projections of the sample vectors (red dots) generated by LHS for D3D, (n=10). The sampled 
probability distributions of the variables (waveheight amplification factor, Chezy coefficient, median grain 
diameter) have been plotted on the sides along with the sampled values for each variable (red circles). 

Probability distribution plots and cumulative distribution plots of coastline change for different 

positions along the modelled stretch (as indicated in Figure 4.16) were computed based on the 

empirical distributions of the output for the different sample sizes used. Figure 4.18 below 

provides an overview of the general shape and position of the coastline change distributions 

generated using Delft3D at the selected cross-sections along the coast.  

This time only a single LH sampling realisation was performed, rendering the quantification of 

the precision achieved per sample set size impossible. Taking that into account, in the following 

paragraphs we will aim to evaluate only the convergence of the different sample size 

distributions/quantiles to those of the largest sample set (n=80). 

In comparison with the probability distribution plots from the UNIBEST-CL+ distributions (Figure 

4.11) the range of coastline change obtained from the Delft3D probabilistic simulations is more 

uniform along the coast, and generally more restricted. A general tendency of coastline recession 

can be observed for the largest part of the modelled stretch.  

The shape of the resulting distributions is an aspect of interest. Many of the distributions feature 

a few distinct peaks. For some of the points (e.g., point 4, point 1 left tail) as the sample set size 

increases, a grading of the peaks can be observed suggesting that a larger number of samples 

would result in a smoother distribution. In contrast the probability distribution estimates of 

coastline change at different points (e.g., point 8, point 2) seem to converge to the irregular shape 

for an increasing sample set size, suggesting different distinct modes of coastline change for 

variations in the stochastic parameters. This shape of the probability distributions of coastline 

change highlights the added value of using sampling techniques over using a traditional 

sensitivity analysis to estimate the range and fitting a distribution to that range. Further 

investigation of the shape could also provide insights to the system behaviour and response to 

variations in specific variables.  

Different percentiles of interest as estimated from different LHS sample sizes along the coast are 

presented in Figure 4.19. The uneven dispersion of the quartiles around the mean suggests 

significant skewness or multiple peaks in the probability distributions. Median estimates from 

the different sample sizes seem to converge rapidly on the median estimates from the biggest 

sample size (n=80). Convergence can also be observed for the 25th, 75th, and 95th percentile 

estimates with the values resulting from the increasing sample sizes gradually approaching those 

of the biggest sample set. On the other hand, there is a wide dispersion of the 5th percentile 

estimates without a clear trend of convergence as the sample sizes increase.  
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Figure 4.18: Probability density plots of coastline change at different cross-sections (defined in Figure 4.16) 
along the coast, estimated using different LH sample sizes (red: 10 samples, yellow: 20 samples, green: 40 
samples and blue 80 samples). Positive coastline change indicates accretion. Bin resolution is 1m. 

Considering more closely the convergence/scatter of the percentile estimates for the different LH 

sample set sizes, Figure 4.20 presents the deviations of the percentile estimates using smaller 

sample sizes (n=10, n=20, n=40) from the percentile estimates from the largest sample size 

(n=80).  We can see that those deviations are negligible (<0.5m) for the median estimates along 

the modelled stretch and for all the different sample set sizes, implying that using 10 samples 

provides us with just as good an estimate of the coastline change median as using 80 samples. The 

same applies for the 25th, 75th and 95th percentile estimates with local exceptions at the areas 

where the variation of the distribution shape (and more specifically the emergence or 

smoothening of the peaks) causes the significant variations in the percentile estimates. It is 

surprising that the 5th percentile estimates resulting from 10 samples converge more towards the 

values of the LHS80 estimates than estimates coming from the larger sample sizes. Generally, the 

observed convergence patterns are not uniform along the coast; for some locations the 

percentiles converge rapidly and for some others we observe this irregular behaviour.  
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Figure 4.19: Percentile estimates for coastline change along Anmok beach for the different LH sample sizes  (red: 10 samples, yellow: 20 samples, green: 40 samples, blue: 80 samples). Positive 
values of coastline change indicate accretion. 
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Figure 4.20: Deviations of coastline change percentile estimates using different sample sizes (red: 10 samples, yellow: 
20 samples, green: 40 samples) from the percentile estimates estimated using the bigg est sample size (n=80). 

As mentioned before, the statistical formulas used to estimate the achieved precision for SMC results 

(Section 3.3.1 ) are not accurate for LHS due to the serial dependence of the samples of the latter. 

According to Morgan et al. (1992) application of these formulas on LHS results will typically result to 

lower precision estimates than those achieved. Nevertheless, these formulas were applied to the LHS 

estimated coastline change distributions to get a conservative estimate, of the precision achieved. 

Figure 4.21 presents the 95% confidence intervals around the different percentiles of coastline change 

estimated from LHS (n=80). The estimated values for the quartiles are for many cross-sections below 

1m. For the extreme percentiles the estimated confidence intervals reach up to 4.5m. 
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Figure 4.21: Alongshore distribution of the 95% confidence intervals (ci95) around the percentiles of coastline change, 
derived using 80 LH samples. Range of ci95% 1m around a percentile is equivalent to ±0.5m margin of error.   

4.3 Multi-model coastline change uncertainty aggregation  
The next paragraphs present the application of the uncertainty aggregation methodology as outlined 

in Section 3.4. The quantification of the uncertain effects of an intervention in the littoral zone on 

coastline position is carried out for a specific management horizon. Several interventions in the littoral 

zone are considered, including different breakwater designs and a small-scale nourishment. The effect 

of the large-scale wave climate variations and sandbar dynamics are incorporated in different parts of 

the aggregation process.  

4.3.1  Submerged breakwater - nourishment 

The first investigatory application refers to the already existing submerged breakwater in Anmok 

beach and the implemented small-scale nourishment behind it (Figure 3.2). We aim to assess the 

uncertain effect on the coastline position of different processes acting on the coast and evaluate the 

potential coastline position change in 2035 with respect to a reference coastline.  

The formula that governs coastline change aggregation is presented below: 

 CCCumulative (m) = CClong-term + CCintervention impact (1) 

CClong term refers to the alongshore distribution of coastline change probability density functions under 

the effect of the long-term processes: autonomous evolution and wave climate variations. The 

UNIBEST-CL+ model schematization described in paragraph 3.1.1 forms the baseline simulation. It 

captures the autonomous evolution of the coastline in Anmok beach for the entire 20-year period, 

including any interventions present in the domain, apart from the Anmok beach submerged 

breakwater and nourishment, whose effect was simulated separately. The impact of climate change on 

the wave climate and in extent on the coastline evolution is incorporated during the probabilistic runs 

through the distributions assigned to the forcing conditions (Hs, dir). Additionally, 2 more variables 

were assigned distributions to address natural variability and parameter uncertainty in the 

simulations. Uncertainty quantification was performed using Latin Hypercube Sampling (n=80) and 

the distributions of coastline change for the cross-sections along the coast were derived directly from 

the model output (Table 9).  
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Process Model Simulated period Uncertain Input 
Uncertainty 

quantification 
method 

Autonomous evolution 
Long-term wave climate 

variation 
UNIBEST-CL+ 2015-2035 

Hs     N  (1, 0.067) 
θ       U  (-0.2, 0.2) 
d50      N  (450, 50) 
kb      U (-0.02, 0.1) 

LHS (n=80) 

 
Table 9: Overview of the uncertainty quantification process for the baseline simulation including the effect of the long-
term wave climate variations. The left graph presents the resulting alongshore distribution of different coastline 
change percentile estimates. Positive coastline change indicates accretion.  On the right, the probability distribution 
plot of coastline change for one location (marked with a grey vertical line in the left graph) is presented. 

For the uncertainty quantification of the considered intervention’s net effect on coastline position, 

CCintevention impact, a set of Delft3D simulations were used: a simulation as described in paragraph 3.1.1  

including the intervention, and an identical simulation without the intervention. The submerged 

breakwater and small-scale nourishment were assumed to be implemented at the start of the 

considered period (2015). Additionally, the morphodynamic response of the coast is expected to reach 

a steady state within a few years following the implementation of the intervention (Figure 4.22). 

Assuming that the coastline change realised by 2018 due to the presence of the intervention will 

remain unchanged until 2035, a 3-year simulation period was selected for the Delft3D model 

schematisations. Following the selection of the stochastic input, Latin Hypercube Sampling (n=80) 

together with the MCL approach were implemented to extract the coastline position change 

realisations from the model results, with and without the intervention. The differences in coastline 

change with and without the intervention were used to estimate the empirical distribution of the 

intervention impact on coastline change.  

 
Figure 4.22: Coastline change per timestep averaged over the general  area of the submerged breakwater (1700-2150m) 
for the Delft3D simulation including the submerged breakwater-nourishment intervention. The results show declining 
coastline changes per timestep indicating that the system approaches a morphodynamic equilibri um towards the end 
of the 3-year simulation. 

In Table 10 the net effect of the intervention on the coastline position can be seen. The results show a 

net accretion for a 330m long stretch behind the breakwater at the end of the 3-year period. The 

interquartile range in the accretion area ranges from 1 to 3m. North of the submerged breakwater, for 

an area of approximately 200m coastline recession is the median effect with the quartiles and extreme 

percentiles located on the negative side. The rest of the coastal stretch is barely impacted by the 

intervention; the median coastline change is situated at zero and the 5th-95th percentile range takes a 

maximum value of 3m.  

The accretion observed in the shadow zone of the breakwater is the combined effect of the artificial 

accretion by means of the implemented small-scale beach nourishment and the sheltering effect of the 

submerged breakwater. The nourishment is incorporated in the initial timesteps of the simulation and 
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causes a significant movement of the coastline seawards. The submerged breakwater creates a shadow 

zone, blocking a large part of the incident wave energy from reaching the coast and minimizing 

transport capacity. Depending on the mean direction of alongshore transport positive or negative 

gradients of sediment transport can be observed in the edges of the shadow zone leading to removal 

of nourishment material from the shadow zone or deposition of material respectively. Diffraction 

patterns can be observed at the edges of the submerged structure enhancing the accretion. For shore-

normal or close to shore-normal wave incidence the onshore flow over the submerged breakwater 

deflects and returns offshore at the sides of the breakwater in a rip-current form removing a lot of 

sediment from the shadow zone. The interaction of these processes, as schematized in the model, 

results in the morphodynamic evolution of the coast during the simulation time and in extent to the 

general trends which we can discern in the probabilistic results.  

Process Model Simulated period Uncertain Input 
Uncertainty 

quantification 
method 

Intervention impact 
(submerged breakwater-

nourishment) 
Delft3D 2015-2018 

Hs     N  (1, 0.067) 
d50     N  (450, 50) 
C       N  (65, 3.33) 

LHS (n=80) 

 
Table 10: Overview of the uncertainty quantification process for the Delft3D simulations used to assess the effect of 
the intervention (submerged breakwater and nourishment). On the left, the re sulting alongshore distribution of 
different coastline change percentile estimates under the effect of the intervention is presented. Positive coastline 
change indicates accretion. The location of the intervention has been marked on the horizontal axis. On the right, a 
probability distribution plot of coastline change for one location (marked with a grey vertical line in the left graph) is 
presented. 

The empirical coastline change distributions resulting from UNIBEST-CL+ and Delft3D models were 

evaluated at the same locations (56 cross-sections) along the coast with respect to a reference 

shoreline to overcome the differences in the spatial schematisation of the two models. In the end, 

although the coastline position definitions differ such that superposition of the coastline positions 

would be pointless, coastline change with respect to a reference coastline can be assumed 

‘independent’ of the coastline definition and be aggregated irrespective of that.  

 

Figure 4.23: Spatial plot of Anmok beach. The markings show the location of the cross-sections for which probability 
density plots will be presented. 
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The next step includes the aggregation of the intervention impact, evaluated as described above 

(equation 1), with the effect of the long term processes (Figure 4.24 and Figure 4.25). A Monte Carlo 

approach with 106 samples was utilised in all the steps of the aggregation process with minimum 

computational time (2-3 minutes per aggregation). Similar to the previous sections, the results will be 

presented in the form of alongshore distributions of percentile estimates of coastline change. 

Additionally, the individual and cumulative probability density plots of coastline change will be 

presented for several cross-sections along the coast (Figure 4.23). 

The results of the 20-year UNIBEST-CL+ simulation suggest shoreline recession under the effect of the 

long-term processes and the uncertainties included. The median projected coastline change varies on 

the alongshore with maximum values (-25m) at the north part of the area of interest. The dispersion 

of the percentiles around the median increases from north to south. Sparse areas with projected 

accretion can be observed, mainly towards the edges of the results area. When the effect of the 

intervention is superimposed on the aforementioned results, significant change can be observed 

concentrated at the south end of Anmok beach; an area earlier projected as erosive in the autonomous 

evolution simulation under the effect of long-term wave climate change, is now accretive under the 

impact of the submerged breakwater and nourishment. The projected accretion (median) reaches up 

to 8m, while there is 5% possibility that the shoreline propagates more than 12m at this area. The 

submerged breakwater and nourishment implementation does not achieve any reduction in the range 

of cumulative coastline change. On the contrary, the results indicate a slight increase in the 5-95 

percentile range of 4% on average. For the cross-sections in the central and northern part of the coast, 

the characteristics of the cumulative coastline change distributions have been defined largely from the 

UNIBEST-CL+ derived distributions. 

 
Figure 4.24: Overview of the coastline change percentile estimates for Anmok  beach (blue: net intervention impact, 
yellow: climate change –wave climate variability, red: aggregated coastline change). The quartile s are shown with 
continuous lines, while the 5 th and 95th percentile with x markings. Positive values of coastline change indicate 
accretion. The black markings on the horizontal axis indicate the location of different cross -sections (points 1 to 9) 
for which probability density plots are presented (Figure 4.23). The grey dotted line indicates the location of the 
intervention. 
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Figure 4.25: Probability density plots of coastline change (blue: net intervention impact, yellow: climate change –wave 
climate variability, red: aggregated coastline change) for different cross-sections along Anmok beach as defined in 
Figure 4.23. 

Taking a closer look at the results of the aggregation steps carried out, a few points of interest relating 

to the convolution operation between probability distributions can be noted.  

• Convolution is generally dominated by the component with the largest dispersion. The 

aggregated distribution is at least as wide and low as the component with the largest 

dispersion. The final shape also resembles that of the widest component, yet it tends to be 

smoother with lower/fewer peaks present.  

• All the components contribute to the shifting of location of the aggregated distribution. The 

resulting distribution location is defined by a seemingly linear addition of the median 

locations of the components, resembling the linear superposition of normal distributions.  

From the above, it is to be expected that in the coastline change aggregation process the probability 

distribution for the coastline change under the cumulative effect of the considered processes will be as 

wide as the widest contributing distribution. Depending on the aggregation context, and especially for 

aggregations on longer management horizons including long-term processes, these long-term 

processes are expected to define the shape and dispersion of the resulting distributions. For such 

aggregation processes we should not expect any reducing effect from the medium and small-scale 

processes/interventions on the aggregated coastline change range. The most important contribution 

of the net intervention impact lies in the shifting of the aggregated probability distribution function, 

preferably towards the positive side. From the aggregation procedure application above, when the net 

intervention impact pdf is located on the positive side, the aggregated probability is shifted towards 

the positive as well. This can help reduce or even practically eliminate the overall probability of erosion 

or the probability of erosion past a certain limit. 
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When a sufficiently large sample size is used, the Monte Carlo approach used for the aggregation of the 

individual probability distributions of coastline change has a minimal contribution to the uncertainty 

in the aggregated result. Figure 4.26 (a) indicates that the maximum margin of error around the 

aggregated coastline change percentiles due to the sampling uncertainty is ±6cm for a sample size of 

106. The most important source of uncertainty for the aggregated coastline change estimates is in fact 

the imprecise statistical representation of the individual components of coastline change. Assuming 

that the individual components’ errors (δc1, δc2, …., δcn) are uncorrelated and random (normally 

distributed) and the combined uncertainty in the aggregated result (δcaggr) can be calculated as follows 

(Palmer, 2003): 

 
if caggr=c1±c2±…±cn then δcaggr=√δc1

2+δc2
2+…+δcn

2 
(2) 

The presented concept of uncertainty propagation through mathematical operations was used to 

quantify the uncertainty propagation through the applied aggregation equation (equation 1). The 

maximum margins of error around the percentile estimates of coastline change were used as standard 

uncertainty measures for the different aggregation components.   

• δclong-term≈±2m, derived from the 10 LHS realizations 

• δcintervention impact≈±1.7m estimated as described in Section 4.2.1 Figure 4.26 (b). 

The total margin of error around the aggregated coastline change estimates is calculated, δcaggr=±2.6m. 

The aggregated error is always larger than that of any component and is dominated by the largest error 

source.  

 
Figure 4.26: (a) alongshore distribution of the 95% confidence intervals (ci95) around the percentiles of  aggregated 
coastline change, derived using 106 SMC samples. (b) alongshore distribution of the 95% confidence intervals ( ci95) 
around the percentiles of coastline change under the effect of the inte rvention, derived using 80 LH samples. 

4.3.2  Incorporating the effect of sandbar dynamics 

Athanasiou (2017) showed that the alongshore migration of the crescentic sandbars present in Anmok 

beach is correlated with the existing medium-scale rhythmic shoreline patterns. UNIBEST-CL+ cannot 

reproduce these undulations while modelling attempts carried out during CoMIDAS research program 

showed that even state of the art process-based models like Delft3D are not able to simulate the 

relative processes (Athanasiou, 2017; Deltares, 2017). However, analysis of remote sensing and 

bathymetric survey data showed that sandbar migration can have an important effect on the 

instantaneous shoreline position causing undulations ranging from -20m (bays) to +30m (horns) from 

the mean shoreline position.  

The analysis carried out during CoMIDAS program yielded mean and standard deviation estimates of 

the alongshore and time averaged coastline position with respect to a mean coastline, (μ, σ) = (1.2m, 

9.4m). A normal distribution with the same characteristics was selected to quantify the uncertainty 

around the effect of the sandbar dynamics on the coastline position (CCsandbars). The distribution was 

(a) (b) 



 

61  Results 

applied uniformly along the coast except for the area close to the submerged breakwater.  Although 

there are no quantified results for this area, it is expected that uncertainty in the coastline position due 

to sandbar migration is lower close to the breakwater as the sandbar patterns merge with the effect of 

the submerged breakwater. Considering this stabilizing effect of the breakwater on the sandbar 

patterns and in extent the shoreline patterns, a linearly reducing standard deviation (to σ=1m) was 

assumed for the southern part of the coast (Table 11).  

Process Model Simulated period Uncertain Input 
Uncertainty 

quantification 
method 

Sandbar migration 
impact 

Data Analysis  - - - 

 
Table 11: Overview of the uncertainty quantification process for the assessment of the effect of the alongshore sand 
migration on the coastline position. On the left, the assumed alongshore distributions of different coastline change 
percentile estimates is presented. Positive coastline change indicates accretion. The location of the intervention has 
been marked on the horizontal axis. On the right, the probability distribution plot of coastline change for one location 
(marked with a grey vertical line in the left graph) is presented. 

The parametric distributions (CCsandbars) quantifying the sandbar migration effect on coastline change 

were included last in the aggregation process (equation 3) to yield the aggregated probability 

distributions of coastline change under the combined effect of the selected processes: autonomous 

evolution, long-term wave climate variation, intervention impact and sandbar dynamics effect.  

 CCCumulative (m) = CClong term + intervention impact +CCsandbars (3) 

Figure 4.28 and Figure 4.27 present the contributing elements and the results of the last step in the 

aggregation process. The parametric distributions selected to represent the sandbar dynamics effect 

have median values close to zero indicating almost equal probabilities of erosion/ accretion. As a result, 

incorporating this effect does not vary the location of the median but affects significantly the range of 

the resulting distributions. A 350% alongshore averaged increase in the interquartile range (430% for 

the 5-95% percentile range) can be observed between the aggregated distributions with and without 

the sandbar dynamics effect on the coastline.  

 
Figure 4.27: Overview of the coastline change percentile estimates for Anmok (red: climate change & intervention 
impact, green: sandbar dynamics, black: cumulative effect). The quartiles are shown with continuous lines, while the 
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5th and 95th percentile with x markings. Positive values of coastline change indicate accretion. The grey markings on 
the horizontal axis indicate the location of different cross-sections (points 1 to 9) for which probability density plots 
are presented (Figure 4.23). The black dotted line indicates the location of the intervention.  

 
Figure 4.28: Probability density plots of coastline change (red: climate change & intervention impact, green: sandbar 
dynamics, black: cumulative effect) for different cross-sections along Anmok beach as defined in Figure 4.23. 

The results show that the effect of the intervention is not fully quantified through the intervention net 

impact pdfs (CCintervention impact) derived from the Delft3D simulations. Despite the assumption of 

independence between the processes, the influence of the submerged breakwater on the sandbar 

dynamics cannot be neglected. To accommodate this indirect effect of the intervention on the potential 

coastline change, an alongshore varying distribution was selected as described above. Consequently, 

the assessment of the overall intervention impact on the uncertainty of coastline change should be 

based not on the intermediate but on the final aggregation results incorporating the effects of all 

selected processes. To that end, Figure 4.29 is presented quantifying the uncertainty in the coastline 

change in 2035 under the cumulative effect of long-term processes and sandbar dynamics, with (black) 

and without (lilac) the effects of the submerged breakwater-nourishment. For the latter, the normal 

distribution (μ, σ) = (1.2m, 9.4m) was applied uniformly along the coast.  In the area 1750m to 2150m 

both the direct and indirect impacts of the intervention can be observed: shift of the distributions 

towards the accretion side, by 6m on average over the shadow zone for the medians, and narrowing of 

the distributions, by 50% for 5-95 percentile ranges. 
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Figure 4.29: Alongshore distribution of coastline change percentile estimates under the cumulative effect of long -term 
processes and sandbar dynamics, with (black) and without (lilac) the effect of the cons idered intervention (SBW-
nourishment). The quartiles are shown with continuous lines, while the 5 th and 95th percentile with x markings. 
Positive values of coastline change indicate accretion. The grey markings on the horizontal axis indicate the location 
of different cross-sections (points 1 to 9) for which probability density plots are presented (Figure 4.23). The black 
dotted line indicates the location of the intervention.  

The processes that govern the interaction of the crescentic sandbars and the coastline position are not 

very well understood until now. The distributions assumed to quantify the uncertainty of coastline 

position under the effect of sandbar migration with/without the presence of the submerged 

breakwater dominate the aggregated bandwidth and are characterised by significant statistical 

uncertainty. For this reason, this process is omitted from the aggregations carried out in the following 

sections.  

4.3.3  Comparison with present framework 

The uncertainty in the coastline change under the combined effect of long-term processes and the 

intervention (submerged breakwater-nourishment) evaluated probabilistically, as described in 

Section 4.3.1 was compared with the results of the scenario-based approach currently used in order to 

highlight the differences in the performance of the two approaches.  

As mentioned in Section 3.4, in the currently used approach, the mean coastline change under the effect 

of different processes is selected as the output of the simulations with all variables evaluated at their 

mean values. Minimum/maximum coastline change estimates are evaluated using ‘one-at-a-time’ 

sensitivity simulations for the individual models. The total number of simulations implemented was 8 

for UNIBEST-CL and 14 for Delft3D (7 including the intervention and 7 without it). To estimate the 

aggregated effect, a superposition of the mean coastline change estimates and minimum/maximum 

coastline change bandwidths was carried out.  

The resulting mean, minimum and maximum coastline change estimates were visualised with the 

results of the fully probabilistic approach presented in this thesis; using LHS on the individual 

schematisations (80 simulations for UNIBEST-CL+ and 160 simulations for Delft3D in total) and a MC 

approach to convolute the resulting probability distributions. Figure 4.30 and  Figure 4.31 feature the 

comparison of the aggregated uncertainty estimates of coastline change from the two methods. For 

comparisons on the intermediate results of the process the reader is referred to Appendix F. 
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Figure 4.30: Overview of coastline change estimates under the combined effect of long-term processes and 
intervention for Anmok beach using two different approaches. Percentiles of coastline change (red) were estimated 
using LHS (n=80) on the individual model schematisations and convoluting the resulti ng probability distributions of 
coastline change using MC approach. Mean coastline change (green continuous line) was estimated by lin ear 
superposition of the model outputs with all variables evaluated at their mean values. Min/max coastline change (green 
dashed lines) were defined using linear superposition of uncertainty bandwidths estimated through sensitivity 
analysis. Positive values of coastline change indicate accretion. The black markings on the horizontal axis indicate the 
location of different cross-sections for which probability density plots are presented (Figure 4.23). 

Mean coastline change was compared with the median and the mode, statistics that have a practical 

value for coastal zone managers. The median indicates the coastline change with equal probabilities of 

exceedance/non-exceedance (0.5) while the mode shows the coastline change with the highest density, 

the most probable result. The results show that the scenario-based mean coastline change does not 

correspond to the median coastline change. In fact, the deterministically defined median coastline 

change corresponds to 0.2/0.3 exceedance probabilities for the majority of cross-sections along the 

coast. Additionally, the mean coastline change estimates do not coincide with the mode of the 

probability densities. 

The minimum and maximum estimates of coastline change were compared with the 1st and 99th 

percentiles of coastline change. Indeed, the sensitivity analysis sourced minimum and maximum 

coastline change estimates provide a rough approximation of the uncertainty present. However, they 

tend to overestimate the maximum erosion and at the same time underestimate the maximum 

accretion. The scenario-based approach leads to lower uncertainty ranges. The differences are larger 

for the south cross-sections considered where the characteristics of the intervention impact dominate 

and smaller, but still important for the norther cross-sections where the characteristics of the long-

term processes impact dominate. 

These differences stem from the incomplete estimation of the uncertainty present in the model output 

using a scenario-based approach and the invalid underlying assumption of model linearity. They can 

also be observed in the intermediate model results (Appendix F) and are transferred through the 

aggregation process to the aggregated result.  

Figure 4.31 highlights the added value of the proposed framework. The scenario-based approach 

produces rough uncertainty estimates but is unsuited for any quantified results. The resulting coastline 

change estimates do not provide any information about the distribution of probabilities along this 

range. The full probabilistic approach applied in this thesis can provide this missing information. With 

adequate sampling, the shape of the probability distribution is acquired. The range of possible 

coastline change can be estimated in terms of different confidence intervals. Apart from the median 

and extreme percentiles, any percentile of interest can be calculated (along with a 
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quantified/qualitative precision level) or inversely, the likelihood of any realization of interest can be 

quantified. 

 
Figure 4.31: Coastline change estimates under the effect of long-term processes for different cross-sections along the 
coast (Figure 4.23) using two different approaches. Probability density plots  (red) were estimated using LHS (n=80) 
on the individual model schematisations and convoluting the resulting probability distributions of coastline change 
using MC approach. Mean coastline change (green continuous line) was estimated by linear superposition of the model 
outputs with all variables evaluated at their mean values. Min/max coastline change ( green dashed lines) were defined 
using linear superposition of uncertainty bandwidths estimated through sensitivity analysis. Positive values of 
coastline change indicate accretion. The black markings on the horizontal axis indicate the location of differe nt cross-
sections for which probability density plots are presented ( Figure 4.23). 

4.3.4  Uncertainty quantification for alternative interventions 

Subsequently, the uncertainty around the coastline change estimates under the joint effect of the long-

term processes and the impact of alternative interventions was quantified. Apart from the submerged 

breakwater-nourishment impact that was considered in the previous sections, the alternative 

interventions include a set of submerged breakwaters-nourishment (2SBW-nourishment, Figure 4.32-

b) and an emerged breakwater-nourishment (EBW-nourishment, Figure 4.32-c). 

The mechanisms that shape the coastline in the case of the 2SBW-nourishment are similar to those 

described for the submerged breakwater. The set of submerged breakwaters creates a more extensive 

shadow zone that is closed off on the south side from the Gangneung port breakwater. Diffraction, 

accretive or erosive alongshore sediment transport gradients and the horizontal compensation to the 

onshore flow over the submerged breakwaters impact mainly the coastline at the north end of the 

submerged breakwater. As for the last intervention considered, with minimal water level variations 

during the simulation, the breakwater with crest level at MSL practically eliminates the sediment 

transport capacity in the shadow zone as the incident waves break upon reaching the structure. 

Diffraction and accretive/erosive alongshore sediment gradients can be observed at both sides of the 

shadow zone.  
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Figure 4.32: Schematisation of the interventions considered. (a) Submerged breakwater -nourishment: the submerged 
breakwater has dimensions 250m x15m and crest level at -0.5m MSL. (b) Set of submerged breakwaters-nourishment: 
the submerged breakwaters have dimensions 250m x15m and 110m x 12m, the crest level is at -0.5m MSL and the gap 
spans for 30m. (c) Emerged breakwater-nourishment: the emerged breakwater has dimensions 250m x15m and crest 
level at MSL. In all the figures the submerged nourishment (11000m 3) was simulated with the same characteristics.  

For each of the alternative interventions a set of Delft3D simulations was used to evaluate the net 

impact of the interventions (CCintervention impact). The resulting probability distributions were 

subsequently combined with the UNIBEST-CL+ derived probability distributions quantifying the 

uncertainty in the autonomous evolution and the effect of the long-term wave climate variations 

(equation 1). For more details on the application of the aggregation process on the alternative 

interventions the reader is referred to Appendix G.  

Figure 4.33 presents the results of the aggregation process for the three interventions. Alongshore 

distributions of coastline change percentile estimates under the cumulative effects of the long-term 

processes and the net intervention impact (red) as well as only for the effects of long-term processes 

(yellow) are presented. This allows for the comparison of the intervention alternatives effect in terms 

of the change induced by their inclusion/exclusion from the aggregation process.  

In the alongshore distribution graphs 4 regions can be discerned. Along the first area, spanning from 

0 to 1500m, the median effect of all interventions has been estimated at or close to zero and the 

dispersion of the intervention impact probability distributions is for the most part smaller than the 

dispersion of the other aggregation component. As a result, the aggregated distributions resemble the 

long-term distributions very closely in terms of location, shape and dispersion. For this coastline part 

the interventions have minimal effect on the cumulative probability distributions of coastline change 

which are identical for all three interventions. From 1500m to 1700m (as well as for 2100-2150m) the 

long-term percentile estimates are shifted downwards when the net intervention impact is aggregated. 

This downward shift is in the order of 1-2m for the medians, for all different interventions. It is due to 

the high probabilities of negative coastline change under the net effect of the intervention for the area 

downdrift of shadow zone.  

 

(a)SBW-nourishment (b)2SBW-nourishment (c)EBW-nourishment 
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Figure 4.33: Alongshore distribution functions of different coastline change percentile estimates for the different 
interventions considered (left) and probability distribution plots of coastline change (right) for one location, marked 
with a grey vertical line in the left graphs. Yellow colour is used for the probability density plots/ percentile estimates 
quantifying the uncertainty in the autonomous evolution and the effect of long -term wave climate variations (same in 
all the graphs). Red colour is used for the probability density plots/ percentile estimates quantifying the aggregated 
effect of the long-term processes and the net intervention impact.  

The zone 1700m to 2150m is the area for which the effect of the different interventions is most obvious 

on the aggregated results. The common trend that can be observed for all interventions is a lift of all 

probability distributions in this zone towards the accretion region. However, the magnitude and the 

stretch of this effect varies. As mentioned in Section 4.3.1 when the effect of the SBW-nourishment is 

included in the aggregation the projected accretion (median) reaches up to 8m, while there is 5% 

possibility that the shoreline propagates more than 10m in this area. A slight increase (4%) in the 5-

95 percentile range averaged for the shadow zone of the intervention can be observed. The spatial 

range of the SBW-nourishment accretion effect, measured as the alongshore distance along which the 

median of the net intervention impact (CCintervention impact, graphs in Appendix G) is greater than zero, is 

~330m. When the second intervention (2SBW-nourishment) is considered, under the cumulative 

effect of all the considered processes the expected coastline change in the area reaches up to 10m, the 

5-95 percentile range increased by 3.6% on average, compared to the respective range when the 

intervention impact is not considered. The spatial range of the accretive effect for this intervention is 

~340m. Lastly, in the shadow zone of the emerged breakwater the projected accretion (median) 

reaches up to 21m locally in contrast to the expected 8m of erosion when the emerged intervention is 

not considered. Behind the emerged breakwater a 17% increase in the 5-95 percentile range can be 

observed with respect to the respective range without the intervention impact. The length of the 

accretive effect is ~340m.  

Apart from the position of the mean and extreme percentiles, various other indicators of the 

performance of the different intervention designs can be derived from the probability distribution 
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functions that are now available. These indicators may differ according to the aim of the intervention 

design and the demands of the coastal zone managers/stakeholders. Figure 4.34 features some of these 

indicators. For an intervention aiming to reduce/prevent erosion locally, the probabilities of erosion 

or erosion past a specific threshold in a specific time horizon and under the cumulative effect of 

different processes can be assessed. Figure 4.34 (a) and (b) showcase that the implementation of one 

of the considered interventions can significantly decrease the probabilities of erosion and erosion 

exceeding 5m locally. Clearly, the intervention design including the two submerged breakwaters and 

nourishment is the least effective in reducing the probabilities of erosion and erosion exceeding 5m, 

while the emerged breakwater nourishment design is the most effective. For interventions aiming to 

induce accretion the probability of different accretion levels along the coastline can be evaluated to 

assess the level of success of the designs. When the probability of accretion exceeding the 5m threshold 

is considered (Figure 4.34 (c)), the intervention design including the emerged breakwater gives the 

higher probabilities for the majority of cross-sections considered. 

 
Figure 4.34: Various indicators of performance for the different intervention designs and the absence of interventions: 
(a) alongshore distribution of probabilities of erosion, (b) alongshore distribution of probabilities of erosi on 
exceeding 5m, (c) alongshore distribution of probabilities of accretion exceeding 5m, (d) alongshore distribution of 
the p5, p95 range as a measure of dispersion of the probability distributions of coastline change.  

Lastly, an indication about the robustness of the proposed interventions can be obtained by assessing 

the dispersion of the aggregated distributions. The narrower the resulting distributions of coastline 

change, the less responsive the intervention is to uncertainty. Interventions that yield narrower 

distributions may appeal better to risk-averse coastal zone managers even when the expected 

coastline change is not the optimal. Figure 4.34 (d) features the alongshore distribution of 5th-95th 

percentile range, as a measure of the coastline change dispersion, under the effect of long-term 

processes with/without the intervention impact. For all the cases examined, the dispersion of the 

coastline change distribution increases from the north end towards the south end of the considered 

domain. This trend originates from the forcing uncertainty in the long-term processes acting on the 

coast, manifested in the varying rotation of the final coastline, affecting more the cross-sections closer 

to the edges of the coastal cell. Generally, the different interventions result in an incremental increase 

of the dispersion of the coastline change probability distributions. At the location of the intervention a 
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local increase in the distribution dispersion can be observed for the emerged breakwater-nourishment 

design. Although this design yields the best results in terms of median coastline change and 

probabilities of erosion/accretion, the higher range of uncertainty in the intervention’s effect in the 

area of interest could lead the selection towards another design. 
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5 

Discussion 
 

The previous chapters presented the methods implemented and the results used to address the 

research questions of Section 1.3. In this chapter we discuss the main assumptions made that shaped 

the research, the restrictions of the methods as well as any points of interest and opportunities that 

appeared during the process and have not been elaborated previously.  

5.1 Selection of the uncertain variables 
The work carried out in this thesis provided a framework for uncertainty propagation through the 

morphodynamic simulations and the aggregation process in order to obtain quantified estimates of 

the uncertainty around the coastline change projections under the effect of multiple processes. 

However, the meaningful and successful implementation of this framework relies on the assumption 

that the input uncertainties selected capture the uncertainties in the system. This refers not only to the 

identification of the input variables that account for most of the variation of the output, but also to the 

ranges selected. Assigning too small ranges will lead to results that do not represent the full 

uncertainty present. On the other hand, by including larger ranges we may stand on the safe side (as 

extreme events will be included in the analysis) but that would most probably lead to an unnecessary 

increase in the computational load to get an estimate of the probability density function. Additionally, 

larger input uncertainties are expected to lead to larger output uncertainties and contaminate the 

aggregation results.  

In this study knowledge on the specifics of the case study, the model schematizations, the aggregation 

timescale and variable of interest was available to guide the selection of the uncertain variables and 

the selected ranges. This creates confidence in the selection of the input uncertainties carried out by 

means of expert consultation, literature review and sensitivity analysis on the model schematizations. 

This selection is very much dependent on the model structure and the formulas used, the processes 

modelled, the target output and the relevant timescales. That means that the relative importance of 

variables can change when there is a change in one of the above-mentioned factors. In an aggregation 

context, where multiple schematizations of a single model may be used, the selection of uncertain 

variables should consider the differences per model schematization. A more complete and 

comprehensive approach would include cataloguing the variables and parameters used in each model 

and the appropriate ranges for each model schematization, and conducting a wider sensitivity analysis 

using the parameters/variables that fall under the uncertainty categories considered. 

For the two methods of uncertainty quantification applied in this study (i.e., SMC and LHS) the number 

of variables to which probability distributions are assigned is not restricted. In practice, if extra input 

uncertainties are included in the analysis increasing the output variance, more samples will be 

required for both methods to reach a certain precision level. Most importantly, as the number of input 

variables increases the relative efficiency of LHS over SMC is expected to reduce as the same number 

of randomly selected input sample sets is used to cover an input space with additional dimensions. 

Although in literature there are no conclusive results as to the maximum number of variables for which 

LHS converges faster than SMC, the use of LHS with computationally expensive coastal 
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morphodynamic models leads to a more restricted selection of input uncertainties in order to maintain 

the relative advantage of the statistical method.  

Lastly, the aggregation process should not influence the selection of the uncertain inputs. The resulting 

coastline change probability distributions are combined independently from the uncertainty sources 

that led to those probability distributions. As mentioned before, the selected variables reflect the 

model structure and the simulated processes which may differ significantly across the different models 

or model schematizations used. Introducing new features (e.g., an intervention) in a model 

schematization may also lead to differentiation to the relative significance of different variables. Even 

for variables that are expected to introduce significant uncertainty in different models (e.g., significant 

wave height), the ranges assigned should be selected according to the relevant processes and 

timescales. In conclusion, a critical selection of the input uncertainties and awareness about the 

uncertainties quantified in the model results is more important than uniformity of the uncertain inputs 

across the different models. 

5.2 Uncertainty quantification 
Both sampling techniques used in this study can deal with correlations between variables (Iman et al., 

1982; Morgan et al., 1992). Nevertheless, in this study the sampling from the uncertain input 

distributions took place under the assumption of no dependence/no correlation of the individual 

distributions. However, this assumption is not generally applicable. As mentioned in Section 3.3, Hs 

and incident wave direction are generally correlated for every coastal region. However, for the small 

values of directional variance considered in this study this dependence can be safely omitted. At the 

same time, independence was assumed between Hs and Tp in the spectral boundary conditions of the 

UNIBEST-CL+ and Delft3D model schematisations. In this study, the significant wave height was varied 

using sampled values of an amplification factor, while Tp was kept constant. Although the effect of this 

assumption has not been investigated further, it would be recommended for further investigations to 

incorporate this dependence by applying correlated statistics.  

 
Figure 5.1: Spatial plot of Anmok beach. The markings show the location of the cross-sections for which probability 
density functions of coastline change will be presented. 

The procedure of uncertainty quantification offers the opportunity of investigating the uncertainty 

evolution in time. Figure 5.2 presents the time evolution of the probability distributions of coastline 

change estimated using the UNIBEST-CL+ simulation and LHS method (n=80) as described in Section 

4.1.1 . The cross-sections located at the centre of the coastal cell are only minimally affected by the 

uncertainty relevant to the reorientation of the coast. As a result, after the changes in the first 5 years 

creating the initial probability density function, this initial pdf does not change a lot in terms of 

location/dispersion. On the other hand, for cross-sections towards the edges of the coastal cell, there 
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is significant change in the coastline change uncertainty between the timepoints considered. The 

location of the distribution changes through time showing the progression of erosion/accretion at the 

edges of the coastal cell. Additionally, the dispersion of the distributions increases indicating 

increasing uncertainty in time. The rate of change in the location and dispersion of the distributions is 

higher towards the start of the simulation and subsequently decreases as the coast approaches the 

equilibrium orientation.  

 
Figure 5.2: Probability density plots of coastline change at different cross-sections (as marked in Figure 5.1) along the 
coast for different timesteps (red: 5years, yellow: 10 years, green: 15 years and blue: 20 years). Positive coastline 
change indicates accretion. The probability density plots have been derived using Latin Hypercube Sampling (n=80) 
on the UNIBEST-CL+ simulation varying the uncertain parameters as described in Section 4.1.1 . 

The concept of precision used to evaluate and compare the performance of the different methods 

describes the sampling error, the fact that a sample will be inevitably different from the population. 

Sampling precision indicates the variation in repeated estimates of the response (e.g., for different 

percentiles) and is in this thesis quantified using statistics such as the confidence intervals and 

standard error. Wide confidence intervals/large standard errors indicate high variability in the 

repeated response, low precision and thus unreliable results. Accuracy describes systematic errors 

that can introduce bias in the estimators used. When sampling is used to estimate an unknown 

probability distribution function, bias in the statistical estimators could be introduced from the 

assumption of a specific distribution. According to Helton et al. (2003) both SMC and LHS give unbiased 

estimates of the distribution when percentile estimates are used.  

Most importantly, in the context of simulating the uncertain coastline change under the effect of 

different processes, accuracy relates to the performance of the model itself and its capacity to simulate 
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the relevant processes and the response. Governing equations and modelling assumptions impose 

restrictions on model applicability. Disregarding or misinterpreting these restrictions can lead to 

unrealistic outputs. For process-based morphodynamic models, modelling choices such as the use of 

upscaling factors, the timestep, or sediment transport formula may influence the accuracy of the 

modelled response while frequently, improvements in model accuracy come at a computational cost. 

Processes such as calibration and verification are used to enhance and measure the model’s capacity 

to reproduce the response for a specific case study. In case studies where modelled bathymetry has 

been verified against measurements, the model skill in reproducing measured bathymetry is either 

judged qualitatively or quantified using indicators such as the Root Mean Square Error or the Brier 

Skill Score, with mixed results (Judith Bosboom et al., 2014; J Bosboom et al., 2014; G. Lesser et al., 

2004; G. R. Lesser, 2009; A. P. Luijendijk et al., 2017; Sutherland et al., 2004). For the utilisation of 

model coastline change estimates in thein real-world applications, in a deterministic or probabilistic 

context, an absolute measure of the model accuracy or the model uncertainty as demonstrated in the 

output of interest would be useful. Minimizing model uncertainties is not a first priority when model 

outputs are used for comparison among different management alternatives. Nevertheless, model 

uncertainties should be smaller than the difference in the management alternatives’ performance for 

a valid comparison. 

In this study, we estimated the precision achieved with different sample sizes using SMC and LHS on 

the Delft3D and UNIBEST-CL+ schematisations for the selected uncertain inputs. We showed that for 

the UNIBEST-CL+ schematisation and small sample sizes LHS gave higher precision estimates than 

SMC. In different applications with different model schematisations and uncertain variables/ranges, 

the convergence rates and precisions for the two methods and selected sample sizes can be different 

than the ones observed in this study. Nevertheless, the approach presented and applied in this study 

for uncertainty quantification in the model output remains valid. 

5.3 Multi-model coastline change uncertainty aggregation 
The numerical convolution approach suggested, using MC sampling, allows for the propagation of the 

quantified uncertainties through the aggregation process to the aggregated coastline change estimates. 

The presented framework provides insight about the uncertainty around the expected 

morphodynamic response that is not available from the currently used scenario-based approach. It 

enables the probabilistic assessment of intervention performance under the effect of different 

processes in terms of the likely coastline change realisations and the induced coastline change 

variability.  

Inclusion of storm impacts on coastline change in the aggregation process would make the 

probabilistic coastline change assessment more meaningful. The inclusion of short-scale processes’ 

impact could be achieved using one of two different approaches that will be discussed briefly in this 

paragraph. During the management horizon considered, storms of different magnitudes are expected 

to hit the coast at various points in time. After a storm, the coast is able to recover partially or 

completely from the storm erosion until the next storm hits. As a result, storm impact cannot be 

included in the aggregation in the same way that the structure impact was considered, assuming that 

the coastline change reaches a steady state and remains unchanged afterwards. An approach that 

would account for the stochastic sequencing of storm events and the recovery processes, not omitting 

the effect of interventions on storm impact would be more appropriate. Such approaches have been 

developed and presented by Callaghan et al. (2008) and Ranasinghe et al. (2009). An alternative 

approach would be to incorporate the storm impact as an ‘envelope’ effect assuming that a storm of 

defined return period hits the coast towards the end of the management horizon defined, such that no 

recovery has taken place. Assuming a distribution of storm induced coastline change the effect could 

then be aggregated with the effects of the other processes in a manner similar to the inclusion of 

sandbar dynamics effects. 
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The probabilistic investigation of coastline evolution with the framework presented in this thesis 

provides extra value for coastal zone managers and decision makers. Not only does it highlight the 

uncertainty around the deterministic morphological response, it provides quantified estimates of this 

uncertainty, information that was not available through the currently applied approach. It enables the 

comparison of alternative interventions based on the full range of possible results and their 

probabilities and lays the foundation for coastline recession risk reduction quantification. 

Undoubtedly, a probabilistic investigation of coastline evolution is a complex process. The uncertainty 

quantification part can increase significantly the computational costs compared to a sensitivity 

analysis. Adding to that, extra time and research need to be allotted to obtain the extra information 

needed to complete the process. The large amount of already available knowledge and data for this 

specific coast made the application of the presented methods in this study feasible. The application of 

the methods provided insight for the expected results, intuitive knowledge about the aggregation 

mechanisms and leads for future research. Whether the presented framework is applicable for other 

case studies depends on the case-specific balance between added value and the available resources. 
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6 

Conclusions & Recommendations 
 

This study examines the use of statistical methods to quantify and aggregate uncertainty in coastline 

evolution based on multiple process-based models. To this end we investigate the application of two 

sampling techniques (i.e., Standard Monte Carlo -SMC and Latin Hypercube Sampling -LHS) on two 

types of numerical models (i.e., Delft3D and UNIBEST-CL+). Subsequently, a Monte Carlo sampling 

technique was suggested as a method to combine probabilistic coastline change estimates from 

individual processes/models into aggregated coastline change distributions. Lastly, the statistical 

methods and aggregation framework are applied on Anmok beach, South Korea, to assess the impact 

of alternative interventions on the coastline change uncertainty under the cumulative effect of 

different processes in a 20-year management horizon.  

This chapter exhibits the outcome of this study, in the context of answers to the research questions of 

Section 1.3. Additionally, recommendations for future research are outlined.  

6.1 Conclusions 
1. Which statistical methods can be used with process-based morphodynamic models 

(such as Delft3D, Unibest-CL+) to provide precise probabilistic estimates of coastline recession 

on varying timescales in a computationally efficient way? 

From the statistical methods initially reviewed in this study, Standard Monte Carlo (SMC) and Latin 

Hypercube Sampling (LHS) were found to satisfy the applicability criteria for uncertainty 

quantification in coastline change estimates from process-based models. Both methods are able to deal 

with the non-linearity and complexity of coastal morphodynamic models, the large input uncertainty 

ranges expected, and yield estimates of the full probability density functions of coastline change. 

The results of SMC and LHS application on UNIBEST-CL+ and Delft3D model schematizations showed 

that both methods with adequate sampling can produce probability distribution outputs for coastline 

change when applied to the morphodynamic models. Evaluation of SMC and LHS relative performance 

highlighted the methods’ advantages and drawbacks and the implications for coastal engineering 

studies.  

SMC remains the most suitable method for coastline change uncertainty quantification for models such 

as UNIBEST-CL+ with small simulation durations. The method yields results of readily quantifiable 

precision and the rate of convergence can be explicitly expressed as a function of the sample size used, 

enabling engineers to meet potential strict precision requirements of the analysis. The observed faster 

convergence of LHS for small sample sizes supports the selection of this method with process-based 

models whose large computational requirements restrict the number of simulations. The capacity of 

the method for faster convergence is highlighted for larger uncertainty ranges and non-uniform input 

distributions. On the downside, there is no formula available relating the sample size with a target 

precision and for a given sample size, only conservative/upper estimates of the achieved precision can 

be obtained.  
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2. How can the probabilistic model results of the individual timescales be integrated to 

assess the impact of the selected mitigation/adaptation measures?  

The second research question is addressed through the answers to the following two subquestions. 

a. What are the steps in a generic approach for the aggregation of probabilistic model outputs to 

arrive to one probability distribution function of coastal recession? 

A multi-model coastline change aggregation approach is frequently used when the driving 

morphodynamic processes transcend the applicability limits of individual process-based models or the 

possibilities for model coupling. In this thesis, the scenario-based aggregation approach developed by 

Deltares was extended to accommodate the synthesis of probabilistic coastline change estimates. A 

numerical convolution approach involving Monte Carlo (MC) sampling was suggested for the linear 

superposition (i.e., aggregation) of the individual coastline change probability distributions. The 

advantages of the MC approach over alternative analytical/numerical convolution methods include 

speed, ease of implementation and comprehensibility. With sufficient sampling the method itself does 

not contribute extra imprecision to the aggregated distribution; the imprecision of the aggregated 

probability distribution is dominated by the lowest precision component.  

Comparison of the probabilistic and scenario-based aggregation framework outcomes illustrates the 

incomplete picture of uncertainty captured from the latter and the added value from the application of 

the first. Application of the scenario-based framework yielded more conservative coastline change 

estimates and underestimated the uncertainty range. By contrast, the presented probabilistic 

framework allows for quantified coastline change uncertainty estimates. The framework provides 

additional information concerning the precision of the aggregated uncertainty estimates and the 

distribution of uncertainty across its range. Additionally, it enables the evaluation of various coastline 

change percentiles, confidence intervals and probabilities of any coastline change realisation of 

interest. 

b. What is the impact of the considered measures on the uncertainty of the coastline position for 

the case study of Anmok beach? 

For a 20-year management horizon, the autonomous evolution of Anmok beach, the effects of long-

term processes and the net impact of three alternative detached breakwater-nourishment designs 

were evaluated, using Latin Hypercube Sampling, and subsequently aggregated to estimate the 

cumulative uncertainty in coastline change. The use of the probabilistic uncertainty quantification and 

aggregation framework allowed for the definition of various indicators to assess the performance of 

the considered interventions. Percentile estimates of coastline change, the probabilities of exceeding 

defined erosion/accretion thresholds and the uncertainty range assigned to a confidence interval as 

an indication of intervention robustness were evaluated. From the designs considered, the emerged 

breakwater-nourishment yielded the best results in terms of erosion/accretion probabilities. However, 

the intervention lead to a significant increase of the uncertainty range in the predicted coastline change 

locally. When included in the aggregation process, the effect of sandbar dynamics dominated over the 

other contributing processes due to the high variance in the selected distributions.   

6.2 Recommendations 
Points of interest for further research and practical applications have been identified during the course 

of the present research topic. They are briefly presented in the next paragraphs.  

Storms are short-term processes that affect coastal morphology and coastline position on coastal 

stretches worldwide. The joint effect of storms and longer-term processes such as climate change or 

intervention impacts is defining for many management practices in the coastal zone, most importantly 

for the creation of setback lines or zoning restrictions. As discussed in Section 5.3, the recurring 
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character of storms and the relevant recovery processes do not allow the direct inclusion of storm 

impacts in the presented aggregation framework. Future research should focus on the simulation of 

the cumulative storm impact on coastline position incorporating the recovery processes’ effect. 

Statistical methods as the ones presented in this thesis could then be used for the quantification of 

uncertainties around the coastline position estimates and the inclusion of this component in the 

aggregation process.     

The applicability of the presented framework in real-world coastal management studies requires 

confidence in the capacity of models to successfully simulate the system response under the effect of 

the relevant processes. Extra research on the relative importance and quantification of model 

uncertainty is therefore recommended. Coastline change verification against bathymetry 

measurements or remote sensing extracted coastline positions can provide quantified estimates of the 

model accuracy on the output of interest (e.g., coastline change error bandwidth). Sensitivity analysis 

on the effect of different transport formulations on the resulting coastline change or output 

comparison from different models applied on the same case study could provide an 

indication/quantification of the uncertainty manifested in the model output due to model structure 

and modelling assumptions. 

A comparison between the performance of the two considered uncertainty quantification methods (i.e., 

SMC and LHS) for a Delft3D schematisation and/or other model schematisations would be advisable. 

Such an analysis could not lead to generally applicable conclusions about the sample size required for 

specific precision targets. Nevertheless, it would lead to more clear conclusions about the relative 

performance of the statistical methods on the different models and could be used as validation of the 

conclusion of this thesis that LHS is generally preferable to SMC in terms of the achieved precision for 

computationally expensive models when only small sample sizes are feasible.  

The results of uncertainty quantification can be used to obtain more information on the response of 

the models to parameter variations than could be obtained from the results of the OAT sensitivity 

analysis conducted. The use of scatter plots of input and output values, correlation coefficients or 

regression analysis expected to define the degree of linearity of the relations between each input 

variable and the output as well as the relevant importance of these input variables. Especially for 

Delft3D, it could be used to explain the patterns of bimodal model behaviour observed in the resulting 

coastline change probability distributions. 

The assumption of negligible interdependences between the long-term processes and the intervention 

impact is generally valid for the specific case study. However, for large coastline change uncertainties 

or different implementation times of the interventions the effect of the long-term processes on the 

intervention impact may be important. Additionally, for studies evaluating large-scale interventions, 

the potential effect on the long-term processes should not be omitted. Inclusion of some aspects of the 

interdependencies could be achieved by a suitable selection of the simulation plan: selection of suitable 

initial bathymetries/coastline positions for the simulations of the intervention impacts or inclusion of 

simulations of the long-term processes incorporating the large-scale interventions respectively. 

Utilisation of the presented uncertainty aggregation framework in additional case studies will help 

define its applicability limits and explore ways to possibly extend them. However, when the coupled 

behaviour cannot be sufficiently captured by the composite approach used in this study, the use of 

coupled models or models that cover multiple timescales should be considered.  

Uncertainty quantification for coastline change estimates under the combined effect of different 

processes is the first step towards a risk-informed coastal zone management and risk-based evaluation 

of coastal interventions. Risk is commonly defined as the product of the probability of an event and the 

consequence of the same event. Combining the coastline change probability distributions with 

quantified estimates of coastline change consequences (e.g., economic, environmental, safety related) 
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would lead to risk probability distributions under the effect of different coastal processes and in extent 

to the evaluation of risk reduction/increase expected due to intervention implementation.  

Additionally, the aggregation framework could be used to investigate the combined uncertainty 

evolution through time. Defining several timesteps, selecting accordingly the simulation plan and 

accounting for the potential interdependencies between processes could provide insight into the 

evolution of the compound uncertainty through time and the derivation of the initial and longer-term 

probabilistic impact of interventions. Investigation of such an application of the framework presented 

in the present study could be applied for the design/assessment of interventions with adaptive 

character. Nourishments are an example of a flexible mitigation measure of coastal recession that can 

facilitate adaptive planning. Nourishment plans can be designed based on the uncertainty calculated 

at the start of their lifetime, implemented and monitored. As the coast evolves over time, new 

information will be collected that will potentially reduce the uncertainty. This information can be used 

to reassess the maintenance of the measure and scale up or down the future nourishment according to 

the changing conditions. It would be useful to explore the capabilities of quantifying the evolution in 

the coastline recession probabilities through the lifetime of a proposed measure with the aim of 

supporting the decision between stiff and flexible/adaptive solutions.  

The application of the uncertainty quantification and aggregation framework for different target 

variables beyond coastline change could also be investigated as long as the total effect can be estimated 

as the superposition of the different driving processes effect.  
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Appendix A: Input reduction for Delft3D 

model schematisation 
Specifically for the Delft3D model, frequent instabilities in the model domain hindered the completion 

of the probabilistic simulations. To guarantee the stability of the model under the uncertain forcing 

conditions, a smaller Courant number (<10 for free surface waves) and thus a smaller timestep had to 

be applied. Considering the high initial run duration of the Anmok beach model (~160hrs), the need 

for input reduction was created.  

Input reduction aims to describe the original dataset of forcing conditions using a reconstructed or 

synthetic timeseries of fewer representative conditions, consequently reducing the computational 

effort, without affecting significantly the morphological prediction (de Queiroz, 2017; Walstra et al., 

2013).  The east South Korean coast is wave dominated (de Queiroz, 2017; Deltares, 2017) and thus 

the input reduction focuses solely on the wave forcing. In this study the Input Reduction Tool, 

developed by F. Scheel as a tool to assist wave input reduction, available in OET, was used. The main 

steps followed are described in the following paragraphs and presented in Figure A.1. 

 

A.1: Flowchart of the steps followed to define the reduced synthetic timeseries for D3D 

The representative wave conditions were selected using the fixed bins method, with wave energy 

(E=cg*Hs2*g*ρ/8) as a weighting method. The original wave conditions were distributed over a user 

defined number of directional bins. Each directional bin was subsequently divided in the user defined 

number of wave height bins. The representaA.1tive wave conditions (Hs, dir.) were determined as the 

average wave conditions within the bins. A peak period (Tp) was assigned to each of the representative 

wave conditions using the nearest neighbour interpolation method.  

As in the original model schematisation, the ‘MorFac’ approach was applied. The use of a constant over 

a varying morphological time scale factor was chosen for more efficient computations. Given the value 
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of the MorFac and the original simulation period, the new simulated period was calculated. Lastly, the 

selected representative wave conditions were combined in random sequence, not maintaining any 

chronology patterns, into the synthetic timeseries of boundary conditions. 

The procedure described above was repeated several times with different bin schematisations and 

MorFac values (Table 12). The resultant synthetic timeseries were applied as boundary conditions in 

the model for Anmok beach. Synthetic timeseries including wave conditions with duration shorter than 

the WAVE-FLOW communication file writing interval (20min) were not considered further. Table 13 

includes the timescales of the original model schematisation and the alternative values used. 

Schematisations with hydrodynamic simulation periods shorter than the spring-neap tidal cycle were 

not excluded from the analysis as the microtidal forcing at the boundaries of the domain is not expected 

to affect the morphodynamic evolution in the domain significantly.  

dir. bins * Hs 
bins 

MF=10 MF=20 MF=30 MF=50 

05 x 04 ✓ ✓ ✓ ✓ 
05 x 05 ✓ ✓ ✓ ✓ 
05 x 10 ✓ 

 too short wave conditions 

10 x 05 ✓ 
10 x 10 ✓ 
15 x 05 ✓ 
24 x 05 ✓ 

Table 12: Combinations of bin discretisation and MorFac values applied to reduce the c omputational effort for D3D 
simulations of Anmok beach. 

MorFac 3 10 20 30 50 

Simulated period (hydrodynamics) 95.6 days 28.7 days 14.4 days 9.6 days 5.8 days 

Simulated period (morphodynamics) ~9.6 months 

Run duration 160 hrs 96 hrs 48 hrs 32 hrs 20 hrs 

Timestep 6 s 1.5 s 1.5 s 1.5 s 1.5 s 

Table 13: Different values of MorFac applied in the input reduction process, and the relevant resulting timescales. The 
first column (MF=3) corresponds to the original model schematisation.  

Subsequently, simulations were run using the different synthetic boundary timeseries and the success 

of the input reduction was reviewed. In this case, the variable of interest was the morphology at the 

end of the simulation and more specifically, the coastline position as defined using the MCL approach. 

In Figure A.2  the change of the coastline position along the Anmok beach at the end of the reference 

and reduced-input simulations is presented. Figure A.3 shows the difference of coastline position 

(change) between the reduced-input simulations and the reference simulation with the original 

schematisation. Both figures indicate that the combinations of smaller MorFac values and higher 

directional bin discretisation (red lines) give results closer to those of the original schematisation.  
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A.2: Coastline change at the end of the original and input-reduction simulations. Positive values indicate accretion. 
The coastline position was defined using the MCL approach between levels MSL [ -1 1]m. 

 

A.3: Coastline change at the end of the input reduction simulations relative to the coastline change of the reference 
simulation (original schematisation). Positive values indicate accretion. The coastline position was defined using the 
MCL approach between levels MSL [-1 1] m. 

Two quantitative performance indicators (Root Mean Square Error & Absolute Mean Square Error) 

were used to evaluate the ability of the reduced input model to approximate closely the final coastline 

position of the original model. Figure A.4 illustrates once more that higher directional bin 

discretisation yields lower deviations from the final coastline position of the reference simulation 

which is in agreement with the findings of de Queiroz (2017). 

Subsequently, the success ability of the model to produce a final morphology in the domain similar to 

that of the original model was assessed qualitatively. Figure A.5 shows that the reduced input 

simulation ‘MF=20, (05 x 04)’ results in pronounced erosion and accretion features in the middle and 

south part of the domain which are not present in the reference simulation results, suggesting that the 

bin resolution and the MorFac value choices are suboptimal. In contrast, the morphodynamic 

conditions at the end of the ‘MF=10, (24 x 05)’ simulation are very similar to the target conditions.   
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A.4: Root Mean Square Error and Mean Average Error scores of the coastline position predictions of the reduced input 
models.  

 

A.5: Cumulative erosion/sedimentation at the final timestep of the simulation for (a) the original model 
schematisation (MF=3) , (b) MorFac=20 , 05(dir. bins) * 04(Hs bins) and (c) MorFac=10 , 24(dir. bins) * 05(H s bins). 

The process of input reduction as applied in this project gives sufficiently good results, yet there are 

aspects that could be improved. These relate mainly to the application of different and potentially more 

suitable methods of selecting the representative conditions, taking into account the chronology effect, 

considering the application of varying MorFac and assessing the success of the input reduction based 

on more than the last timestep. However, the optimisation of the input reduction performance is not 

an objective by itself, but a means of ensuring that the objectives of this project as defined in paragraph 

1.3 would be feasible in the given timeframe. With that in mind, the input reduction process was 

discontinued as soon as a sufficiently good approximation of the reference target output was obtained 

with the given assumptions.  
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Appendix B: Alternative coastline 

definitions for Delft3D sensitivity 

analysis 

 

B.1: Coastline change with respect to initial coastline for the different sensitivity runs. The MCL approach is used 
between MSL-2m and MSL+2m. Positive coastline change indicates accretion.  

 
B.2:  Coastline change with respect to initial coastline for the different sensitivity runs. The coastline is defined using 
the MSL+0m contourline. Positive coastline change indicates accretion.  

 
B.3:  Coastline change with respect to initial coastline for the different sensitivity runs. The coastline is defined using 
the MSL-1m contourline. Positive coastline change indicates accretion. 
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Appendix C: Uncertainty quantification, 

Unibest-CL+ -supportive figures 

 

C.1:  2D projections of the cloud of sample vectors (red filled dots) generated by LHS for Unibest, (n=20). The sampled 
probability distributions of the variables (median grain diameter, waveheight amplification factor, coefficient for 
bottom roughness) have been plotted on the sides along with the sampled values from each variable (red circles) . 

 

C.2: 2D projections of the cloud of sample vectors (red filled dots) generated by LHS for Unibest, (n=40). The sampled 
probability distributions of the variables (median grain diameter, waveheight amplification factor, coefficient for 
bottom roughness) have been plotted on the sides along with the sampled values from each variable (red circles) . 

 

C.3:  2D projections of the cloud of sample vectors (red filled dots) generated by LHS for Unibest, (n=80). The sampled 
probability distributions of the variables (median grain diameter, waveheight amplificati on factor, coefficient for 
bottom roughness) have been plotted on the sides along with the sampled values from each variable (red circles) . 
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C.4:  Cumulative distribution plots of coastline change at different cross-sections (as marked in Figure 4.7) along the 
coast for the different LH sample sizes (red: 10 samples, yellow: 20 samples, green: 40 samples and blue: 80 samples). 
Positive coastline change indicates accretion. 

 

 



 

89  Appendix C 

 

C.5: Percentiles of coastline change along the coast as estimated using 10 LH sets of 20 samples each. Positive values 
of coastline change indicate accretion. The black markings on the horizontal axis indicate the location of different 
cross-sections presented in Figure 4.3. 

 

C.6: Percentiles of coastline change along the coast as estimated using 10 LH sets of 20 samples each. Positive values 
of coastline change indicate accretion. The black markings on the horizontal axis indicate the location of different 
cross-sections presented in Figure 4.3. 
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C.7:  Cumulative probability plots of coastline change at different cross-sections (as marked in Figure 4.1) along the 
coast for the different LH sample (red: 10 samples, yellow: 20 samples, green: 40 samples, blue: 80 samples) and SMC 
(light blue: 1000 samples). Positive values of coastline change indicate accretion. 
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C.8:  Probability density plots of coastline change at different cross-sections (as marked in Figure 4.1) along the coast 
for the different LH sample sizes (red: 10 samples, yellow: 20 samples, green: 40 samples and blue: 80 samples). 
Positive coastline change indicates accretion. Bin resolution is 2m.  
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C.9: Alongshore distribution of percentile estimate spread for the 10 LHS realisations with different sample sizes (red: 
10 samples, yellow: 20 samples, green: 40 samples, blue: 80 samples) around the respective SMC percentile estimates 
(1000 samples). 
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Appendix D: SMC, LHS comparison-

supportive figures 

 

D.1: Alongshore distributions for different coastline change percentile realisations from 10 LHS/SMC iterations, 
relative to the percentile estimates from SMC (n=10). Red; percentile estimates from 1 LHS iteration (n=10). Blue: 
percentile estimates from 1 LHS iteration (n=10).  
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D.2: Alongshore distributions for different coastline change percentile realisations from 10 LHS/SMC iterations, 
relative to the percentile estimates from SMC (n=20). Red; percentile estimates from 1 LHS iteration (n=10). Blue: 
percentile estimates from 1 LHS iteration (n=20).  
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D.3: Alongshore distributions for different coastline change percentile realisations from 10 LHS/SMC iterations, 
relative to the percentile estimates from SMC (n=40). Red; percentile estimates from 1 LHS iteration (n=10). Blue: 
percentile estimates from 1 LHS iteration (n=40).  
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D.4: Alongshore distributions for different coastline change percentile realisations from 10 LHS/SMC iterations, 
relative to the percentile estimates from SMC (n=80). Red; percentile estimates from 1 LHS itera tion (n=10). Blue: 
percentile estimates from 1 LHS iteration (n=80).  
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D.5: Alongshore averaged Mean Bias Error for the different coastline change percentile estimates, for SMC and LHS 
with different sample sets. The results are derived using 10 LHS and SMC realisations for each of the different sample 
set sizes. The percentile estimates derived using SMC (n=1000) were used as the ‘true’ values for the MBE calculation.  
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Appendix E: Uncertainty quantification, 

Delft3D - Supportive figures 

 

E.1:2D projections of the sample vectors (red dots) generated by LHS for D3D, (n=20). The sampled probability 
distributions of the variables (waveheight amplification factor, Chezy coefficient, median grain diameter) have been 
plotted on the sides along with the sampled values for each variable (red circles) . 

 

E.2: 2D projections of the sample vectors (red dots) generated by LHS for D3D, (n=40). The sampled probability 
distributions of the variables (waveheight amplification factor, Chezy coefficient, median grain diameter)  have been 
plotted on the sides along with the sampled values for each variable (red circles) . 

E.3: 2D projections of the sample vectors (red dots) generated by LHS for D3D, (n=80). The sampled probability 
distributions of the variables (waveheight amplification factor, Chezy coefficient, median grain diameter)  have been 
plotted on the sides along with the sampled values for each variable (red circles) .
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Appendix F: Uncertainty aggregation 

methods comparison 
Figures F.1 and F.2 present the results of uncertainty quantification in the coastline change estimates 

estimated using LHS or alternatively sensitivity analysis for the UNIBEST-CL+ schematization. The 

variables selected to introduce the uncertainty, the assigned sensitivity ranges and statistical 

characteristics can be found in Table 4 and Table 7. The results show that selecting the mean coastline 

change yields systematically more conservative values than the median coastline change estimated 

using the probabilistic approach: throughout the domain, larger erosion and smaller accretion are 

expected. More specifically, the deterministically defined coastline change consistently approaches the 

25th percentile of coastline change. The sensitivity analysis derived minimum and maximum coastline 

change estimates were compared with the 1st and 99th percentile estimates of coastline change. For the 

cross-sections with low output uncertainty, the minimum/max estimates approach the 1st and 99th 

percentile estimates. However, towards the southern of the coast the differences in the extreme 

coastline change estimates are more pronounced. Using the deterministic method leads to 

overestimates of the maximum erosion and underestimates of the maximum accretion. 

 
F.1: Overview of coastline change estimates under the effect of long term processes for Anmok beach using two 
different approaches. Percentiles of coastline change (yellow) were quantified using LHS (n=80) as described in 
Section 4.1.1 . Mean coastline change (blue continuous line) has been defined as the coastline change resulting from 
the UNIBEST-CL+ simulation with all uncertain variables evaluated at their mean values. Min/max coastline change 
(blue dashed lines) were estimated through sensitivity analysis . Positive values of coastline change indicate accretion. 
The black markings on the horizontal axis indicate the location of different cross -sections for which probability 
density plots are presented (Figure 4.23). 
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F.2: Coastline change estimates under the effect of long-term processes for different cross-sections along the coast 
(Figure 4.23) using two different approaches. Probability density plots (yellow) were evaluated using LHS (n=80) as 
described in Section 4.1.1 . Mean coastline change (blue continuous line) has been defined as the coastline change 
resulting from the UNIBEST-CL+ simulation with all uncertain variables evaluated at their mean values. Min/max 
coastline change (blue dashed lines) were estimated through sensitivity analysis. Positive values of coastline change 
indicate accretion.  

Subsequently, the mean impact of the intervention of coastline change was evaluated as the difference 

in coastline change from two Delft3D simulations (with/without the submerged breakwater-

nourishment) for which all the variables took their mean values.  Minimum and maximum estimates 

of the intervention impact were derived from sensitivity simulations. The resulting mean, minimum 

and maximum estimates of coastline change are presented along with the probabilistically estimated 

percentiles in Figure F.3 and Figure F.4. We can see that the defined mean intervention impact on 

coastline position is a quite close approximation of the median coastline change. The uncertainty 

ranges defined by the minimum and maximum projected coastline change are generally smaller than 

the uncertainty ranges defined from the extreme percentiles, although better results can be observed 

in the area close to the submerged breakwater. 
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F.3: Overview of coastline change estimates under the effect of the intervention for Anmok beach using two different 
approaches. Percentiles of coastline change (blue) were evaluated using LHS (n=80) on two Delft3D simulations and 
convoluted using the SMC approach as described in Section 4.3.1 . Mean coastline change (blue continuous line) has 
been defined as the difference in coastline position between the two Delft3D simulations with all uncertain variables 
evaluated at their mean values. Min/max coastline change (blue dashed lines) have been estimated through sensitivity 
analysis. Positive values of coastline change indicate accretion. The black markings on the horizontal axis indicate the 
location of different cross-sections for which probability density plots are presented (Figure 4.23). 

 
F.4: Coastline change estimates under the effect of long-term processes for different cross-sections along the coast 
(Figure 4.23) using two different approaches. Probability density plots (blue) were evaluated using LHS (n=80) on 
two Delft3D simulations and convoluted using the SMC approach as described in Section 4.3.1 . Mean coastline change 
(blue continuous line) has been defined as the difference in coastline position between the two Delft3D simulations 
with all uncertain variables evaluated at their mean values. Min/max coastline change (blue dashed lines) have been 
estimated through sensitivity analysis. Positive values of coastline change indicate accretion.  



 

 

Appendix G: Alternative interventions 
Emerged breakwater-nourishment 
The first intervention considered includes an emerged breakwater and small-scale nourishment. The 

location, length, width and roughness characteristics were kept identical to that of the previously 

modelled submerged breakwater (Figure 4.32 c). However, the crest level was raised to the MSL, with 

the intention of further reducing the transmission coefficient for the incident wave heights. The 

nourishment characteristics were maintained identical to the original model schematization. Once 

again, a set of Delft3D simulations were used to quantify the uncertainty of the intervention impact on 

the coastline position. An overview of the process followed is presented in Table 14. 

Process Model Simulated period Uncertain Input 
Uncertainty 

quantification 
method 

Intervention impact 
(emerged breakwater-

nourishment) 
Delft3D 2015-2018 

Hs     N  (1, 0.067) 
d50     N  (450, 50) 
C       N  (65, 3.33) 

LHS (n=80) 

 
Table 14: Overview of the uncertainty quantification process for the Delft3D simulations used to assess the effect of 
the intervention (emerged breakwater and nourishment). On the left, the resulting alongshore distribution of different 
coastline change percentile estimates for intervention impact is presented. Positive coastline change indicates 
accretion. The location of the intervention has been marked on the horizontal axis. On the right, a probability 
distribution plot of coastline change for one location (marked with a gr ey vertical line in the left graphs) is presented. 

The net impact of the emerged breakwater was evaluated as described in Section 4.3.1  (CCintevention 

impact) and subsequently combined with the UNIBEST-CL+ derived probability distributions quantifying 

the uncertainty in the autonomous evolution and the effect of the long-term wave climate variations 

(Table 9). In Figure E.1 the alongshore distribution of percentile estimates of the aggregation 

components and the aggregation results are presented. The cumulative probability distributions of 

coastline change by 2035 are located in the negative side for the central part of the area considered. 

Accretion is projected for the area where the effect of the intervention is more pronounced (1500-

2100m). In the area directly northern of the intervention (1500-1750m) the accretion projected in the 

autonomous scenario under the effect of the long-term wave climate variation counteracts the erosion 

caused from the submerged breakwater. In the shadow zone of the emerged breakwater the projected 

accretion (median) reaches up to 21m locally in contrast to the expected 8m of erosion when the 

emerged intervention is not considered. Lastly, behind the emerged breakwater a 17% increase in the 

5-95 percentile range can be observed with respect to the range without the intervention impact.  
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G.1: Overview of the coastline change percentile estimates for  Anmok beach (blue: net intervention impact, yellow: 
climate change –wave climate variability, red: aggregated coastline change). The quartiles are shown with continuous 
lines, while the 5th and 95th percentile with x markings. Positive values of coastline change indicate accretion. The 
black markings on the horizontal axis indicate the location of different cross -sections (points 1 to 12) for which 
probability density plots are presented (Figure 4.23). The grey dotted line indicates the location of the intervention.  

Set of submerged breakwaters-nourishment 
A more complex intervention design consisting of a set of detached submerged breakwaters and a 

small-scale nourishment was alternatively included in the aggregation process. The design maintained 

the dimensions and parameterisation of the first intervention (submerged breakwater-nourishment) 

with the addition of one submerged detached breakwater attached to the north side of the Gangneung 

port breakwater (Figure 4.32 b). The design reflects the current condition of Anmok beach, where a 

second submerged breakwater has been constructed during 2016. The crest level of both submerged 

breakwaters is located 0.5m below MSL. The Delft3D simulations used to quantify the uncertainty of 

the intervention impact on the coastline position can be seen in Table 15. 

Process Model Simulated period Uncertain Input 
Uncertainty 

quantification 
method 

Intervention impact (2 
submerged breakwaters-

nourishment) 
Delft3D 2015-2018 

Hs     N  (1, 0.067) 
d50     N  (450, 50) 
C       N  (65, 3.33) 

LHS (n=80) 

 
Table 15: Overview of the uncertainty quantification process for the Delft3D simulations used to assess the effect of 
the intervention (emerged breakwater and nourishment). On the left, the resulting alongshore distribution of different 
coastline change percentile estimates of the intervention impact is presented. Positive coastline change indicates 
accretion. The location of the intervention has been marked on the horizontal axis. On the right, the probability 
distribution plots of coastline change for one location (marked with a grey vertical line in the left graphs) is presented.  

Following the net intervention impact assessment (CCintevention impact), the uncertainty in the coastline 

change under the autonomous evolution and the combined effect of the intervention and long-term 

wave climate variations was evaluated following the steps described in Section 4.3.1 . The impact of 

the considered intervention is more pronounced at the south edge of the coast. The zone behind the 

breakwaters which was defined as erosive from the UNIBEST_CL+ simulations is mainly accretive 

when the effect of the intervention is considered. Under the cumulative effect of all the considered 

processes the expected coastline change in the area reaches up to 10m, the 5-95 percentile range 

increased by 3.6% on average, compared to the respective range when the intervention impact is not 

considered. 
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G.2: Overview of the coastline change percentile estimates for Anmok beach (blue: net intervention impact, yellow: 
climate change –wave climate variability, red: aggregated coastline change). The quartiles are shown with continuous 
lines, while the 5th and 95th percentile with x markings. Positive values of coastline change indicate accretion. The 
black markings on the horizontal axis indicate the location of different cross -sections (points 1 to 12) for which 
probability density plots are presented (Figure 4.23). The grey dotted line indicates the location of the intervention. 


