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Abstract. Flapping wings display complex flows which can be used to generate large
lift forces. Flexibility in wings is widely used by natural flyers to increase the aerody-
namic performance. The influence of wing flexibility on the flow can be computed using
numerical analysis with Fluid Structure Interaction (FSI).

The influence of inertial, elastic and aerodynamic forces is quantified using a 2D wing.
A sinusoidal flapping motion is imposed on the leading edge of the vertical wing. The
inertial force on the wing dominates for high mass ratios and the wing deflection is rather
independent of the flow. For a low mass ratio, the wing deformation scales with the
increasing elasticity. The maximum lift and lowest drag were found for the wing with
large flexibility and low mass so the passive deformation by aerodynamic forces creates a
favourable shape for lift production.

Flexible translating and revolving wings at an angle of attack of 45 degrees show
that chordwise flexibility decreases both lift and drag, however the lift over drag ratio is
increased. The flow around both wings forms a coherent structure with a Root Vortex
(RV), Tip Vortex (TV), Leading Edge Vortex (LEV) and Trailing Edge Vortex (TEV).
The LEV on the revolving wing is stable for approximately up to half the span because
vorticity is transported outward in the vortex core. The flowfield and LEV breakdown
are consistent with experimental data of the same wing. The translating wing builds up
circulation but the LEV detaches quickly near the centre of the wing. Chordwise bending
reduces the angle of attack which decreases the distance to the core of the shed LEVs.
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1 INTRODUCTION

Over the past years increased interest in Micro Air Vehicles (MAVs) has lead to an
increase in research towards flapping wing aerodynamics. This research is often based on
natural flyers as these display remarkable capabilities in force production, manoeuvrability
and efficiency. Currently, these capabilities are unmatched by man-made flyers. The
aerodynamic phenomena found on flapping wing are different from the classic airfoil theory
that is used at higher Reynolds numbers. Unsteady phenomena play a large role in the
force production by flapping wings. The Wagner effect, added mass effect, clap and fling
effect, Kramer effect, wake capture effect, tip vortex contribution and a stable LEV. The
latter effect was first recognised in 1996 and is often the most prominent feature for lift
generation in flapping wing aerodynamics [10]. It is seen on wings moving at a high angle
of attack which feature dynamic stall [20]. A vortex is formed over the leading edge which
can remain stably attacked to the wing surface and creates a low pressure area inherent
to the vortex with a large suction force on the wing. The suction force acts perpendicular
to the wing surface and is dominant in lift production. The high suction force leads to a
maximum in the lift coefficient for 45° angle of attack [17, 22, 18].

The motion of flapping wings is determined by an acceleration phase and a phase of
rectilinear motion. Both translating and revolving wings at high angles of attack are
capable of developing a LEV at the acceleration phase, but only for revolving wings the
LEV can remain stably attached to the wing surface [15]. For translating wings a vortex
streak is formed which resembles the von Karmén vortex street behind a cylinder. Early
research postulated that the LEV stability in revolving wings was caused by outboard
vorticity transport [10]. Subsequent researches evaluate the influence of the various ap-
parent rotational effects on the LEV, and reach the conclusion that mainly the Coriolis
force is responsible for the stability of the LEV [15, 13, 12]. The relative influence of the
Coriolis force is related to the degree of translating versus rotating motion, expressed in
the Rossby number. The rotational effects scale inversely with the Rossby number on the
wing, and the LEV stability is deteriorates for higher Rossby numbers.

Apart from a different flapping motions, natural flyers exhibit flexible wings. Birds
and bats actively deform their wings, while most insects rely on passive wing deformation
[21]. Experimental research showed that the application of flexibility on a simple revolving
wing leads to smaller lift but decreases the drag likewise [30]. Numerical research on 2D
and 3D flapping wings showed that the wing efficiency for a given angle of attack can
be increased by the application of flexible wings. The dynamic behaviour of the wing is
categorised by the mass and frequency ratio, which determine the relative importance of
the inertial, elastic and aerodynamic force on the wing. Flapping wing with a low mass
ratio reach the largest lift over drag (L/D) for a frequency ratio near FR = 1/3 [27, 8, 16].
Heavier wings create an advanced pitching motion.

More recently, experiments towards the influence of flexibility on flapping wings was
performed using tomographic PIV [26]. In this work a revolving wing was tested for three
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wings with a varying elasticity. The lift and drag decreased for the added flexibility,
but an increase in L/D ratio was noted. The flowfield showed similar structures with
more coherency with increasing flexibility. Furthermore, the LEV of the flexible cases
was more compact and showed higher levels of vorticity transport through the LEV core.
Breakdown of the LEV is seen for all three wings around midspan after the wing revolved
for approximately 40°.

Numerical modelling of the wing using a F'SI method can be used to gain more insight in
the fundamental interaction that takes place between the structure and the fluid. Several
commercial methods exist for the modelling of FSI coupled simulations, however, on the
open-source side a smaller variety is available. The most used open source CFD code,
openFOAM does not include standard methods of creating a FSI simulation [1]. Recent
progress by on a generic OpenFOAM adapter has opened the door for a new approach
[7].  Coupling of the simulation is performed using the multi-physics coupling library
preCICE [24]. The adapter was extended to support Fluid structure interaction modelling
[19]. The method was validated along the Cylinder with a Flap benchmarking case [23].
In this paper the influence of flexibility in flapping wings is investigated using the newly
developed FSI method. The following section treats the influence of flexibility on 2D
flapping wing, where the influence of the wing mass and elasticity on the force coefficients
is derived.

2 2D Flapping wing

In this section a simple hovering flapping wing in a 2D domain is considered, at the
low Reynolds number of 150 [29]. The mass and stiffness of the wing are varied to change
the relative importance of the aerodynamic, elastic and inertial forces which act on the
wing. The structure for this case shows large, nonlinear deformations, therefore the case
is solved in an implicit FSI simulation using the newly developed FSI method [19].

2.1 Model description

The flow around the wing is characterised by several non-dimensional numbers which
can be obtained by combining the structure and fluid parameters. Figure 1 shows the
wing with the kinematic parameters and with the surrounding mesh. The chord (¢) and
thickness (h) influence both the fluid and the structure side. The angle of attack is defined
with respect to the horizontal direction z.

The wing kinematics are purely defined by the translation zy and angle of attack «
of the wing at the leading edge. In the current set-up no phase differences between the
translation and pitching of the wing are considered. The wing kinematics are determined
by the following equations:

zo(t) = % cos(2m ft), a(t) = ag + Bsin(27 ft). (1)

Following from the wing movement the non-dimensional time can be defined: 7 = t/T,
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with T the period of the flapping motion: T'= 1/f. The non-dimensional numbers are
the Reynolds number, non-dimensional stroke amplitude, mass and frequency ratio:

Re = Tt A= Ao, (2)
I/f C
N
m* =28 R =L (3)
,Ofc fn

where f, is the frequency of the first bending eigenmode of the wing. The frequency ratio
(FR) is a measure for the flexibility of the wing with respect to the fluid forces and is
used to define the relative importance of elastic and inertial forces. Previous research has
shown that there is an optimum in the frequency ratio such that the wing has the highest
efficiency [27, 16, 8]. The mass ratio (m*) defines the ratio between the aerodynamic
forces and the inertial force. For a simple flapping wing with no active pitching the
drag increases for higher mass ratios [16]. The forces generated by the airflow typically
bend the wing into a shape with a lowered angle of attack, reducing the frontal area and
thus the drag. The parameters used to set up the simulation are given in table 1. The
relation between the fluid and structural component are determined using the expressions
in equation 4

4 2
m*psc 12ps [ ¢ 2 f
= —I~ E = — — ), 4
P h h2 <kn> ( FR (4)
where k, is a constant for a given bending eigenfrequency.

Table 1: Set-up for the

flexible flapping wing Table 2: Structural parameters for the flexible wings
Parameter ~ Value m* [-] py [kgm™? E [kgm™'s7?]

FR=1/6 FR=1/4 FR=1/3
¢ [m] 1-1072 / / /
h [m] 5-1074 1 200  3.295-10* 1.465-10*  8.240-103
vy m*s7!]  5-107° 5 1,000 1.647-10° 7.320-10*  4.117-10%
pr [kgm™?] 10 25 5,000 8.235-10° 3.660-10°  2.059-10°
f[s7!] 1.910

The flexible definition of parameters easily allows for the choice of different settings.
The mass ratio can be increased to increase the relative effect of inertial over aerodynamic
forces. Three different mass ratios are tested as shown in table 2. In flapping wing analogy,
the lowest mass ratio is comparable with a dragonfly wing, the m* = 5 wing is close to
a moths wing [9]. For the highest mass ratio the wing deformation is largely determined
by the inertial forces [16].
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2.2 Mesh sensitivity study

For the mesh sensitivity study a rigid wing is selected. Ay = 2.5¢ and = 7/8 in
equation 1 define the sweeping and rotation of the wing. A small pitching angle is used
to assert some asymmetry in vertical direction to the flowfield and to generate a finite
average lift. An O-grid is shaped around the wing and extruded for 40 chord lengths
to form a circular domain. A large domain is required to avoid large recirculation of
shed vortices which create chaotic behaviour. A free inflow /outflow and zero pressure is
applied on the outer boundary. The mesh surrounding the wing is shown in figure 1 for
the coarsest grid.

Under the sweeping and rotational motion the mesh is deformed by solving the laplacian
equation for the mesh displacement. To limit deformation and preserve the mesh quality
the leading and trailing edge were rounded. The shape of the leading edge is of relative
low importance for the overall flowfield, so the round-off is not expected to have a serious
impact on the flow simulation [25]. Furthermore, the mesh cells are grown perpendicular
with respect to the wing surface. It was found that this reduced the chance of large
skewness or even cell collapse.

Xo(1)

Figure 1: The flapping wing (left) definition of the motion [16]. (right) The mesh at
critical deformation that shows the coarse O-grid is shaped around the wing. The motion
is defined at the leading edge (top) of the wing.

The force coefficients are evaluated for three meshes of increasing refinement. The
coarse mesh has 4,968 elements. The normal and fine mesh feature respectively 19,440
and 77,760 elements. The wing surface is refined with respectively 54, 108 and 216 cells,
which leads to an average mesh spacing of approximately 0.02¢ for the coarsest mesh.
This is comparable to the mesh spacing used in similar research [29].

Figure 2 shows the phase-averaged lift and drag over the wing for 6 flapping periods.
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The drag is defined as the force opposite to the direction of travel, so the drag vector
changes direction during supination and pronation. The range in which the lift and drag
occurred over this range of periods is shaded. From 7 = 0 to 7 = 0.5 the wing is in
upstroke. While the wing kinematics imposed to the wing movement are completely
symmetric, the lift and drag show very different graphs for the up- and downstroke. This
means that the flow is determined to a large extend by the shed vortices of the previous
motion.

Upstroke Downstroke

3r : 6L
— 2 i - 4 I
R _Q -
@) (@) 2

1 -

O -
or I I I I I 20 I I I !
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
r ] ]

Figure 2: (left) Lift and (right) drag coefficients for one flapping period. The line repre-
sents the average value over 6 periods, and the shaded area represents the range perceived
during these periods. — Coarse, Normal and — Fine mesh.

The total average value for the lift and drag (shown in table 3) shows good correlation
for the average lift and drag.

Taking the finest mesh as the
most accurate solution, both the
coarse mesh and the normal mesh
fall within the range of the av-

Figure 3: Average lift and drag coefficient and the
average maximum deviation over 6 periods

erage force value plus or minus Refinement C [-] AC,[] Cyl-] AC,[]
the average maximum deviation.

Over the range of the motions Coarse 0.82 0.10  2.46 0.22
over 6 periods, it is clear that the Normal 0.79 0.11  2.29 0.23
average lift and drag of the coarse Fine 0.83 0.26  2.47 0.59

mesh fall within the possible val-
ues for the normal mesh and fine mesh.

The mesh deformation method described earlier performs significantly better with
coarser meshes. It is less prone to collapse under large rotation and deformation. Since
the behaviour of the coarse mesh shows good correlation with the fine mesh, it is selected
to investigate the effect of different mass and frequency ratios.
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2.3 Results

Flexibility is added to the wing according to the parameters given in table 2. Fur-
thermore a rigid wing with the same kinematics is tested to obtain the limiting case of
FR = 0. The wing kinematics are defined by a pure sweeping motion: Ay = 2.5¢ and
£ = 0. This entails that the wing can only obtain an angle of attack by structural bend-
ing. The effect of the mass ratio on the tip displacement and force coefficients is shown
in figure 4 for four wings: Rigid, and m* = [1, 5, 25] with a frequency ratio of FR = 1/3.
The first eigenfrequency is noted for all three wings as the oscillation with a value three
times the flapping frequency.

0.75

0.3
0.50
0.25 | / S 02}
0.00 /
0.1
—0.25 |
—0.50 | 0.0 I I 1 1

| | | |
12.0 12.5 13.0 13.5 14.0 12.0 12.5 13.0 13.5 14.0

m

Axfe ]
Ay/c

7 [ 7 [
3t 6
4 -
2 -
o - 2+
= Q
O 1F O
0 -
0 -
2}
| | | | |
12.0 12.5 13.0 13.5 14.0 12.0 12.5 13.0 13.5 14.0
™[ 7 [

Figure 4: Influence of the mass ratio m* on the (top) tail x- and y displacement and
(bottom) lift and drag coefficient over two flapping periods. —Rigid, —m* =1, —m* =
5, —m* =25

The tail deflection with respect to the rigid position shows that the wing with the
smallest mass ratio has a phase delay with respect to the two heavy wings. Furthermore
the deflection of the wing is much larger, with a maximum horizontal deflection of approx-
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imately 0.7 chordlength. The delay and larger amplitude of the deflection means that the
light wing creates a lower angle of attack during both the up- and downstroke. In both
these strokes a large portion of lift is created, whereas the drag is comparable or smaller
to the other wings. Large asymmetry is caused because the shedding behaviour between
both strokes is different, as will be treated later.

Small differences can be seen between the m* = 5 and m* = 25 wing but these are
far less pronounced than the differences with the lightest wing. For both these wings
the deflection is nearly symmetrical between up- and downstroke, while the aerodynamic
forces are not. As soon as the wing decelerates during midstroke, the deflection in x-
direction changes sign. During both the middle part of the up- and downstroke the
m* = 5 wing maintains a higher deflection, which is caused by a LEV which stays closely
attached to the wing. The low pressure favours a larger lift and drag creation during this
phase of high translational velocity. During the latter part of the stroke a small portion
of thrust is created by the wing because of the advanced rotation.

In figure 4 the lift and drag profile for the wing with m* = 1 shows irregular behaviour
at the point of large displacement. The discontinuous force coefficients are caused by
large fluctuations in the pressure field between timesteps. This represents the limits of
the current mesh deformation method.

0.6

&)

0.4

0.2 o o
. «’

(il L L L L L L L L 22" L L L L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
FR FR FR

Figure 5: Average (left) lift and (middle) drag coeffient, and (right) lift over drag ratio
for different mass ratios. (top) FSI simulations with —m* = 0.5, —m* =1, —m* =5
and —m* = 25. (bottom) the reference case with —m* = 1, ---m* = 5 and ----m* = 25
[16]. Note the scale difference on the x-axis between the top and bottom figures. For both
the FSI simulations and the reference data the forces are averaged over 15 periods. The
flowfield of points 1, 2 and 3 is shown in figure 6
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The effect of a higher stiffness by changing the frequency ratio (FR) causes the elas-
tic effect to dominate the wing movement in the latter part of the stroke. During the
acceleration part of the stroke, the wing is deflected by the wings’ mass (inertial force).
The aerodynamic forces can help to maintain this deflection during the latter part of the
stoke and prolong a lower angle of attack. This effect is most pronounced for the most
flexible wings. A larger deflection causes a lower angle of attack and decreases the frontal
area. The drag history shows a clear that the drag is reduced for a large portion of the
stroke for more flexible wings. However, the advanced rotation by the stiffer wings create
a small portion of thrust, as also seen for the rigid wing. This lacks for the most flexible
wings.

Figure 5 displays the average lift and drag coefficient, and lift over drag ratio for all
the tested wings over 15 flapping periods. A wing with an even lower mass ratio of
m* = (0.5 is incorporated for two additional mass ratios, which indicates the limit of the
mesh deformation method. Furthermore, reference data is shown on the bottom row for
same wing geometry and kinematics, where a wing was tested up to frequency ratios of
0.8 [16].

For the tested range of flapping frequencies any flexibility increases the lift over the
wing. The wing bending creates a lower angle of attack which points the residual fore
more towards the lift direction. Furthermore, a clear relation can be distinguished be-
tween the mass ratio and the lift. Lower mass ratios lead to a higher lift for this range
of the frequency ratio. This result is also seen for the reference data. The relative higher
importance of the aerodynamic forces with respect to the inertial forces helps in main-
taining a lower angle of attack throughout the latter part of the stroke. The highest lift
coefficient is obtained for the m* = 1 and FR = 1/3 wing with a value of C;, = 1.076.
It appears that the delayed rotation of the wing for low mass ratios helps in decreasing
the drag on the wing by reducing its frontal area. The advanced rotation by the heavier
wings initially increases the drag. The peak for the m* = 5 wing at a frequency ratio
of FR = 1/3 is featured in both the reference data and the simulated data. This point
is interesting since it shows a different behaviour for the wings with m* = [5,25] and
FR =1/3. Up to this point the lift and drag of these two wings were very similar.

For this frequency range a straightforward relation is seen between the lift to drag ratio.
A more flexible wing leads to higher ratios. Also the lightest wings create higher lift over
drag ratios by means of a high lift creation. This is in good agreement the reference data
which shows the same trend for this range of frequency ratios [16]. In figure 6 the vorticity
flowfield around three wings is shown for one flapping motion. The vorticity is normalised
according to: w* = w%. The left column indicates the wing in which the inertial force is
dominant: m* = 25, FR = 1/3, named hereby wing 1. The middle figure shows the wing
2 with dominance of the elastic forces: m* =1, FR = 1/6. The latter column shows the
wing 3 for which the three forces are more balanced. This wing features the highest lift
and lift over drag ratio in the tested range.
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Figure 6: Non-dimensional in-plane vorticity (left) m* = 25
and FR = 1/3. (middle) m* = 1 and FR = 1/6. (right)
m* =1 and FR = 1/3. A representative period is taken and
the time instance is scaled to the time.

All three cases shows
a similar shedding of the
vortices. In the begin-
ning of the period (7 =
0.1), the LEV of the
previous stroke remains
close to the wing sur-
face and is convected
both above and below
the wing after stroke re-
versal. The wake captur-
ing causes rapid build-
up of vorticity on the
leading edge, but the
newly formed LEV can
not stay attached closely
to the wing (7 = 0.3).
At stroke reversal (1 =
0.5), the LEV catches
up with the wing and it
is shed under the wing
and forms counter ro-
tating vortex pair with
the previous TEV. The
shed vortex pair has a
larger downward compo-
nent for wing 3 com-
pared to the other wings.
This indicates that it is
more efficient in inducing
downward momentum in
the flow, while the other
wings create a larger hor-
izontal momentum.

Without the wake cap-
turing, the formation of
a new LEV takes longer,
and around (7 = 0.7) a
compact core can be seen

around the LE which has grown to a large LEV with significant force contribution near

the end of stroke.
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The effect of the mass ratio is most evident by the phase of the flapping motion.
Neglecting the amplitude of the deflection, the shape of the wing 3 is often similar to that
of wing 1 in for 7 — 0.2, which indicates a phase delay of 1/5" of a period.

Comparing the effect of the wing frequency ratio shows that the vortical structure of
the flows are very similar. Also the wing displacement shows smaller effect of the phase
delay. Only at 7 = 0.9 wing 2 is clearly already near 90° angle of attack, while wing 3
still has a much lower value. The main difference in flowfield is caused by the lower angles
of attack of the flexible wing. This helps pointing the resulting force in the direction of
the lift vector, while reducing the drag at the same time. For wing 1 the upstroke has
a larger deflection and is responsible for the major part of lift production. This effect is
much less pronounced for wing 2, since its shape is more determined by elastic forces.

3 CONCLUSIONS

The section above treats the influence of different degrees of stiffness and mass of a
flapping 2D wing. The newly developed FSI method is able to capture well the relative
importance of the various forces that occur on the flapping wing [19]. A simple translation
motion is prescribed without any pitching. The stiffness and mass of the wing determine
the relative effect of the inertial and elastic forces and can be related to the aerodynamic
forces by defining the frequency ratio (FR) and mass ratio (m*).

A large mass ratio renders the fluid forces insignificant due to high inertial forces. The
wing deformation is determined by the wing kinematics and hardly by the influence of the
flowfield. As soon as the wing starts to decelerate during midstroke the wing deflection
is reversed shortly after. A light wing shows a deflection which causes lowered angle of
attack during almost the entire stroke because the aerodynamic forces help to sustain the
angle of attack. The advanced rotation of the higher mass ratio wings is not beneficial
for the production of lift. For the investigated range of flapping frequencies, a lower mass
ratio always leads to a higher lift and lift over drag ratio. The influence of the frequency
ratio is more predictable. The deflection is lower for stiffer wings which creates lower lift
and higher drag. The more rigid wings show a slight advance in pitching behaviour.

The horizontal flapping motion creates an asymmetric flowfield between the up- and
downstroke which was present for every combination of the mass ratio and frequency for
the tested cases. The wings with a relative large influence from the aerodynamic forces
to be are influenced by the asymmetry in the flowfield and show a difference in deflection
between the up- and downstroke. Especially for the wing with m* = 1 and FR = 1/3
this difference is pronounced. Wings dominated by either elastic or inertial forces are less
affected by the flowfield and show more symmetric deflection of the trailing edge.

The results regarding the influence of the mass and frequency ratio obtained in this
section are in good agreement with comparable research [16]. Therefore the FSI module
is able to simulate the relative importance of the various forces in flapping wing aerody-
namics.
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