<]
TUDelft

Delft University of Technology

To Mock or Not To Mock?
An Empirical Study on Mocking Practices

Spadini, Davide; Aniche, Mauricio; Bruntink, Magiel; Bacchelli, Alberto

DOI
10.1109/MSR.2017.61

Publication date
2017

Document Version
Accepted author manuscript

Published in
Proceedings - 2017 IEEE/ACM 14th International Conference on Mining Software Repositories, MSR 2017

Citation (APA)

Spadini, D., Aniche, M., Bruntink, M., & Bacchelli, A. (2017). To Mock or Not To Mock? An Empirical Study
on Mocking Practices. In Proceedings - 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories, MSR 2017 (pp. 402-412). Article 7962389 IEEE. https://doi.org/10.1109/MSR.2017.61

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/MSR.2017.61
https://doi.org/10.1109/MSR.2017.61

Delft University of Technology
Software Engineering Research Group
Technical Report Series

To Mock or Not To Mock? An Empirical
Study on Mocking Practices

Davide Spadini, Mauricio Aniche, Magiel Bruntink, Alberto
Bacchelli

Report TUD-SERG-2017-016

%
TUDelft SE

TUD-SERG-2017-016

Published, produced and distributed by:

Software Engineering Research Group

Department of Software Technology

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Van Mourik Broekmanweg 6

2628 XE Delft

The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

This paper is a pre-print of:

Davide Spadini, Mauricio Aniche, Magiel Bruntink, Alberto Bacchelli — To Mock or Not To Mock? An
Empirical Study on Mocking Practices

In Proceedings of the 14th International Conference on Mining Software Repositories (MSR’17), May 20-
21, 2017 — Buenos Aires, Argentina

doi: http://dx.doi.org/10.1109/MSR.2017.61

Acknowledgments. This project has received funding from the European Unions’ Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie grant agreement No. 642954 and the Swiss
National Science Foundation through the SNF Project No. PPOOP2 170529.

(© copyright 2017, Software Engineering Research Group, Department of Software Technology, Faculty
of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. All rights
reserved. No part of this series may be reproduced in any form or by any means without prior written
permission of the publisher.

http://dx.doi.org/10.1109/MSR.2017.61

SE Davide Spadini et al. — To Mock or Not To Mock? An Empirical Study on Mocking Practices

To Mock or Not To Mock?
An Empirical Study on Mocking Practices

Davide Spadini*T, Mauricio Aniche?, Magiel Bruntink*, Alberto Bacchellit
*Software Improvement Group
{d.spadini, m.bruntink } @sig.eu
Delft University of Technology
{d.spadini, m.f.aniche, a.bacchelli} @tudelft.nl

Abstract—When writing automated unit tests, developers often
deal with software artifacts that have several dependencies. In
these cases, one has the possibility of either instantiating the
dependencies or using mock objects to simulate the dependen-
cies’ expected behavior. Even though recent quantitative studies
showed that mock objects are widely used in OSS projects,
scientific knowledge is still lacking on how and why practitioners
use mocks. Such a knowledge is fundamental to guide further
research on this widespread practice and inform the design of
tools and processes to improve it.

The objective of this paper is to increase our understanding
of which test dependencies developers (do not) mock and why,
as well as what challenges developers face with this practice.
To this aim, we create MOCKEXTRACTOR, a tool to mine
the usage of mock objects in testing code and employ it to
collect data from three OSS projects and one industrial system.
Sampling from this data, we manually analyze how more than
2,000 test dependencies are treated. Subsequently, we discuss
our findings with developers from these systems, identifying
practices, rationales, and challenges. These results are supported
by a structured survey with more than 100 professionals. The
study reveals that the usage of mocks is highly dependent on
the responsibility and the architectural concern of the class.
Developers report to frequently mock dependencies that make
testing difficult and prefer to not mock classes that encapsulate
domain concepts/rules of the system. Among the key challenges,
developers report that maintaining the behavior of the mock
compatible with the behavior of original class is hard and
that mocking increases the coupling between the test and the
production code.

I. INTRODUCTION

In software testing, it is common that the software artifact
under test depends on other units [36]. Therefore, when
testing a unit (e.g., a class in object-oriented programming),
developers often need to decide whether to test the unit and
all its dependencies together (similar to integration testing) or
to simulate these dependencies and test that unit in isolation.

By testing all dependencies together, developers gain real-
ism: The test will more likely reflect the behavior in produc-
tion [41]. However, some dependencies, such as databases and
web services, may (1) slow the execution of the test [31], (2) be
costly to properly setup for testing [37], and (3) require testers
to have full control over such external dependencies [18]. By
simulating its dependencies, developers gain focus: The test
will cover only the specific unit and the expected interactions
with its dependencies; moreover, inefficiencies of testing de-
pendencies are mitigated.

TUD-SERG-2017-016

To support the simulation of dependencies, mocking frame-
works have been developed (e.g., Mockito [7], EasyMock [2],
and JMock [3] for Java, Mock [5] and Mocker [6] for Python),
which provide APIs for creating mock (i.e., simulated) objects,
setting return values of methods in the mock objects, and
checking interactions between the component under test and
the mock objects. Past research has reported that software
projects are using mocking frameworks widely [21] [32] and
has provided initial evidence that using a mock object can ease
the process of unit testing [29].

However, empirical knowledge is still lacking on how
and why practitioners use mocks. To scientifically evaluate
mocking and its effects, as well as to help practitioners in
their software testing phase, one has to first understand and
quantify developers’ practices and perspectives. In fact, this
allows both to focus future research on the most relevant
aspects of mocking and on real developers’ needs, as well
as to effectively guide the design of tools and processes.

To fill this gap of knowledge, the goal of this paper is to
empirically understand how and why developers apply mock
objects in their test suites. To this aim, we analyzed more
than 2,000 test dependencies from three OSS projects and
one industrial system. We then interviewed developers from
these systems to understand why some dependencies were
mocked and others were not. We challenged and supported
our findings by surveying 105 developers from software
testing communities. Finally, we discussed our findings with a
main developer from the most used Java mocking framework.

The main contributions of this paper are:

1) A categorization of the most often mocked and not mocked
dependencies, based on a quantitative analysis on three
OSS systems and one industrial system (RQ1).

2) An empirical understanding of why and when developers
mock, after interviewing developers of analyzed systems
and surveying 105 developers (RQ2).

3) The main challenges faced by developers when making use
of mock objects in the test suites, also extracted from the
interviews and surveys (RQj3).

4) An open source tool, namely MOCKEXTRACTOR, that
is able to extract the set of mocked and non mocked
dependencies in a given Java test suite. The tool is available
in our on-line appendix [12] and GitHub.

Davide Spadini et al. — To Mock or Not To Mock? An Empirical Study on Mocking Practices

II. BACKGROUND

“Once,” said the Mock Turtle at last, with a deep
sigh, “I was a real Turtle.”
— Alice In Wonderland, Lewis Carroll

A. Mock objects

Mock objects are used to replace real software dependencies
by simulating their relevant features [28]. Typically, methods
of mock objects are designed to return some desired values
given specific input values. Listing II-A shows an example
usage of Mockito, one of the most popular mocking libraries
in Java [32]. We now explain each code block of the example:
1) At the beginning, one must define the class that should be

mocked by Mockito. In our example, LinkedList is being
mocked (line 2). The returned object (mockedList) is now
a mock: It can respond to all existing methods in the
LinkedList class.

2) As second step, we provide a new behaviour to the
newly instantiated mock. In the example, we inform the
mock to return the string ‘first’” when mockedList.get(0)
is invoked (line 5) and to throw a RuntimeException on
mockedList.get(1) (line 7).

3) The mock is now ready to be used. In line 10 and 11
the mock will answer method invocations with the values
provided in step 2.

//1: Mocking LinkedList
»| LinkedList mockObj = mock(LinkedList.class);

i/ // 2: Instructing the mock object behaviour
s| when (mockObj. get (0)). thenReturn (" first");

o/ when (mockObj . get (1))

7 .thenThrow (new RuntimeException ());

/! 3: Invoking methods in the mock
System.out. println (mockObj. get (0));
11| System . out. println (mockObj. get (1));

Listing 1: Example of an object being mocked

Overall, whenever developers do not want to rely on the real
implementation of a dependency, (e.g., to isolate a unit test)
they can simulate it and define the expected behavior using
the aforementioned approach.

B. Motivating example

Sonarqube is a popular open source system that provides
continuous code inspection [10]. In January of 2017, Sonar-
qube contained over 5,500 classes, 700k lines of code, and
2,034 test units. Among all test units, 652 make use of mock
objects, mocking a total of 1,411 unique dependencies.

Let us consider the class IssueChangeDao as an example.
This class is responsible for accessing the database regarding
changes in issues (changes and issues are business entities of
the system). To that end, this class uses MyBatis [8], a Java
library for accessing databases.

There are four test units that use IssueChangeDao. The
dependency is mocked in two of them; in the other two, the
test creates a concrete instance of the database (to access the

SE

database during the test execution). Why do developers mock

the dependency in somes cases and do not mock in other

cases? Indeed, this is a key question motivating this work.

After manually analyzing these tests, we observed that:

o In Test 1, the class is concretely instantiated as this test unit
performs an integration test with one of their web services.
As the test exercises the web service, a database needs to
be active.

o In Test 2, the class is also concretely instantiated as Is-
sueChangeDao is the class under test.

o In both Test 3 and Test 4, test units focus on testing two
different classes that use IssueChangeDao as part of their
job.

This single example shows us that developers may have
different reasons to mock or not mock a class. In the remainder
of this paper, we investigate patterns of how developers mock
by analyzing the use of mocks in software systems and
we investigate their rationale by interviewing and surveying
practitioners on their mocking practices.

III. RESEACH METHODOLOGY

The goal of our study is to understand how and why
developers apply mock objects in their test suites. To that end,
we conduct quantitative and qualitative research focusing on
four software systems and address the following questions:
RQ:: What test dependencies do developers mock? When
writing an automated test for a given class, develop-
ers can either mock or use a concrete instance of its
dependencies. Different authors [28], [17] affirm that
mock objects can be used when a class depends upon
some infrastructure (e.g., file system, caching). We aim
to identify what dependencies developers mock by means
of manual analysis in source code from different systems.

RQy: Why do developers decide to (not) mock specific
dependencies? We aim to find an explanation to the
findings in previous RQ. We interview developers from
the analyzed systems and ask for an explanation on why
some dependencies are mocked while others are not.
Furthermore, we survey software developers with the goal
of challenging the findings from the interviews.

RQ3: Which are the main challenges experienced with
testing using mocks? Understanding challenges sheds
a light on important aspects on which researchers and
practitioners can effectively focus next. Therefore, we
investigate the main challenges developers face using
mocks by means of interviews and surveys.

A. Sample selection

We focus on projects that routinely use mock objects. We
analyze projects that make use of Mockito, the most popular
framework in Java with OSS projects [32].

We select three open source software projects (i.e., Sonar-
qube [10], Spring [11], VRaptor [13]) and a software system
from an industrial organization we previously collaborated
with (Alura [1]); Table I details their size. In the following,
we describe their suitability to our investigation.

TUD-SERG-2017-016

SE Davide Spadini et al. — To Mock or Not To Mock? An Empirical Study on Mocking Practices
TABLE I: Description of our studied sample (N=4).
. # of # of # of test # of # of Sample size Sample size
Project classes Loc test units mocked not mocked of mocked of not mocked
units with mock dependencies dependencies (CL=95%) (CL=95%)
Sonarqube 5,771 701k 2,034 652 1,411 12,136 302 372
Spring Framework 6561 997k 2,020 299 670 21,098 244 377
VRaptor 551 45k 126 80 258 1,075 155 283
Alura 1,009 75k 239 91 229 1,436 143 302
Total 13.892 1.818k 4419 1.122 2,568 35,745 844 1,334

Spring Framework. Spring provides an extensive infrastruc-
tural support for Java developers; its core serves as a base for
many other offered services, such as dependency injection and
transaction management.

Sonarqube. Sonarqube is a quality management platform that
continuously measures the quality of source code and delivers
reports to its developers.

VRaptor. VRaptor is an MVC framework that provides an
easy way to integrate Java EE capabilities (such as CDI) and
to develop REST webservices.

Alura. Alura is a proprietary web e-learning system used by
thousands of students and teachers in Brazil; it is a database-
centric system developed in Java.

B. Data Collection and Analysis

The research method we used to answer our research ques-
tions follows a mixed qualitative and quantitative approach,
which we depict in Figure 1: (1) We automatically collected
all mocked and non-mocked dependencies in the test units
of the analyzed systems, (2) we manually analyzed a sample
of these dependencies with the goal of understanding their
architectural concerns as well as their implementation, (3) we
grouped these architectural concerns into categories, which
enabled us to compare mocked and non mocked dependencies
among these categories, (4) we interviewed developers from
the studied systems to understand our findings, and (5) we
enhanced our results in a on-line survey with 105 respondents.

1. Data collection. To obtain data on mocking practices,
we first collected all the dependencies in the test units of
our systems performing static analysis on their test code. To
this aim, we created the tool MOCKEXTRACTOR [38], which
implements the algorithm below:

1) We detect all test classes in the software system. As done

in past literature (e.g., Zaidman et al. [43]), we consider a

class to be a test when its name ends with ‘“Test” or ‘Tests’.

For each test class, we extract the (possibly extensive) list

of all its dependencies. Examples of dependencies are the

class under test itself, its required dependencies, and utility
classes (e.g., lists and test helpers).

3) We mark each dependency as ‘mocked’ or ‘not mocked’.
Mockito provides two APIs for creating a mock from a
given class:! (1) By making use of the @Mock annotation in
a class field or (2) by invoking Mockito.mock () inside

2)

'Mockito can also generate spies which are out of the scope of
this paper. More information can be found at Mockito’s documentation:
http://bit.ly/2kjtEi6.

TUD-SERG-2017-016

the test method. Every time one of the two options is found
in the code, we identify the type of the class that is mocked.
The class is then marked as ‘mocked’ in that test unit. If
a dependency appears more than once in the test unit, we
consider it ‘mocked’. A dependency may be considered
‘mocked’ in one test unit, but ‘not mocked’ in another.

4) We mark dependencies as ‘not mocked’ by subtracting the
mocked dependencies from the set of all dependencies.

2. Manual analysis. To answer what test dependencies de-
velopers mock, we analyzed the previously extracted mocked
and non mocked dependencies. The goal of the analysis is to
understand the main concern of the class in the architecture of
the software system (e.g., a class is responsible for represent-
ing a business entity, or a class is responsible for persisting
into the database). Defining the architectural concern of a
class is not an easy task to be automated, since it is context-
specific [12], thus we decided to perform a manual analysis.
The first two authors of the paper conducted this analysis after
having studied the architecture of the four systems.

Due to the size of the total number of mocked and non
mocked dependencies (~38,000), we analyzed a random sam-
ple. The sample is created with the confidence level of 95%
and the error (E) of 5%, i.e., if in the sample a specific
dependency is mocked f% of the times, we are 95% confident
that it will be mocked f% 4 5% in the entire test suite. Since
projects belong to different areas and results can be completely
different from each other, we created a sample for each project.
We produced four samples, one belonging to each project. This
gave us fine-grained information to investigate mock practices
within each project.

In Table I we show the final number of analyzed dependen-
cies (844 + 1,334 = 2,178 dependencies).

The manual analysis procedure was as follows:

Each researcher was in charge of two projects. The selection
was done by convenience: The second author was already
familiar with the internal structure of VRaptor and Alura.
All dependencies in the sample were listed in a spreadsheet
in which both researchers had access. Each row contained
information about the test unit that dependency was found
and a boolean indicating if that dependency was mocked.
For each dependency in the sample, the researcher manually
inspected the source code of the class. To fully understand
the class’ architectural concern, researchers were allowed to
navigate through any other relevant piece of code.

After understanding the concern of that class, the researcher
filled the “Category” column with what best describes the

Davide Spadini et al. — To Mock or Not To Mock? An Empirical Study on Mocking Practices

Data collection

Sonarqube
=

P,
Alura

Ta

P

S 1,665 dependencies 445 dependencies

VRaptor

L>—' .{. Pl

:Mock :
438 dependencies

1,333 dependencies

Spring Framework

Ta

—

P:

621 dependencies

21,768 dependencies

MockExtractor Sam_pling

Validation

Data analysis

SE
Manual analysis @ Categorisation
Discussion
) 132 -
categories
O/ =
. 7
Manual analysis
(2nd author) H
Categories
Interviews &
@ , Validation

Interview
Guideline

Interview
Transcript

Manual analysis
(1st author)

.
.

Affinity Diagram

Ay
i~

Survey
(105 respondents)

Fig. 1: The mixed approach research method applied.

concern. No categories were defined up-front. In case of
doubt, the researcher first read the test unit code; if not
enough, he then talked with the other research.

« At the end of each day, the researchers discussed together
their main findings and some specific cases.

The full process took seven full days. The total number of
categories was 116. We then started the second phase of the
manual analysis, focused on merging categories.

3. Categorization. To group similar categories we used
a technique similar to card sort [35]: (1) each category
represented a card, (2) the first two authors analyzed the cards
applying open (i.e., without predefined groups) card sort, (3)
the researcher who created the category explained the reasons
behind it and discussed a possible generalization (making the
discussion more concrete by showing the source code of the
class was allowed during the discussion), (4) similar categories
were then grouped into a final, higher level category. (5) at the
end the authors gave a name to each final category.

After following this procedure for all the 116 categories, we
obtained a total of 7 categories that describe the concerns of
classes.

The large difference between 116 and 7 is the result of most
concerns being grouped into two categories: ‘Domain object’
and ‘External dependencies’. The former classes always repre-
sented some business logic of the system and had no external
dependencies. The full list of the 116 categories is available
in our on-line appendix [12].

TABLE II: Profile of the interviewees

Years of programming

Project ID Role in the project .
experience
Spring Framework D1 Lead Developer 25
VRaptor D2 Developer 10
Alura D3 Lead Developer 5

4. Interviews. We used results from the previous RQ as an
input to the data collection procedure of RQ,. We designed an
interview in which the goal was to understand why developers
did mock some roles and did not mock other roles. The
interview was semi-structured and was conducted by the first
two authors of this paper. For each finding in previous RQ, we
made sure that the interviewee described why they do (or do
not) mock that particular category, what the perceived advan-
tages and disadvantages are, and any exceptions to this rule.
Our full interview protocol is available in the appendix [12].

We conducted 3 interviews with active, prolific developers
from 3 projects (unfortunately no developer from Sonarqube
was available for an interview). Table II shows the intervie-
wees’ details.

We started each interview by asking general questions about
mocking practices. More specifically, we were interested in
understanding why and what classes they commonly mock.
Afterwards, we focused on the results gathered by answering
the previous RQ. We presented the interviewee with two
tables: one containing the results of all projects (Figure 2) and
another one containing only the results of the interviewee’s

TUD-SERG-2017-016

SE Davide Spadini et al. — To Mock or Not To Mock? An Empirical Study on Mocking Practices

project. For each category, we presented the findings and
solicit an interpretation (e.g., by explaining why it happens
in their specific project and by comparing with what we saw
in other projects). From a high-level perspective, we asked:
1) Can you explain this difference? Please, think about your
experience with this project in particular.
2) We observe that your numbers are different when compared
to other projects. In your opinion, why does it happen?
3) In your experience, when should one mock a <category>?

Why?

4) In your experience, when should one not mock a <cate-
gory>? Why?

5) Are there exceptions?

6) Do you know if your rules are also followed by the other
developers in your project?

Throughout the interview, one of the researchers was in
charge of summarizing the answers. Before finalizing the
interview, we revisited the answers with the interviewee to
validate our interpretation of their opinions. Finally, we asked
questions about challenges with mocking.

Interviews were conducted via Skype and fully recorded.
Each of them was manually transcribed by the researchers.
With the full transcriptions, we performed card sorting [39],
[20] to identify the main themes.

As a complement to the research question, whenever feasi-
ble, we also validated interviewees’ perceptions by measuring
them in their own software system.

5. Survey. To challenge and expand the concepts that
emerged during the previous phases, we conducted a survey.
All questions were derived from the results of previous RQs.
The survey had four main parts. In the first part, we asked
participants about their experience in software development
and mocking. The second part of the survey asked participants
about how often they make use of mock objects in each of
the categories found during the manual analysis. The third
part asked participants about how often they mock classes in
specific situations, such as when the class is too complex or
coupled. The fourth part was focused on asking participants
about challenges with mocking. Except for this last question,
which was open-ended and optional, all the other questions
were closed-ended and participants had to choose between a
5-point Likert scale.

The survey was initially designed in English. We compiled
Brazilian Portuguese translation, to reach a broader, more
diverse population. Before deploying the survey, we first
performed a pilot of both versions with four participants;
we improved our survey based on their feedbacks (changes
were all related to phrasing). We then shared our survey via
Twitter (authors tweeted in their respective accounts), among
our contacts, and in developers’ mailing lists. The survey
ran for one week. We analyzed the open questions by also
performing card sorting. The full survey can be found in our
on-line appendix [12].

We received a total of 105 answers from both Brazilian
Portuguese and English surveys. 21% of the respondents have
between 1 and 5 years of experience, 64% between 6 and

TUD-SERG-2017-016

15 and 15% have more than 15 years of experience. The
most used programming language is Java (24%), the second is
JavaScript (19%) and the third one is C# (18%). The mocking
framework most used by the respondents is Mockito (33%)
followed by Moq (19%) and Powermock (5%).

C. Threats to Validity

Our methodology may pose some threats to the validity of
the results we report in Section IV. We discuss them here.

1) Construct validity: Threats to construct validity concern
our research instruments. We develop and use MOCKEX-
TRACTOR to collect dependencies that are mocked in a test
unit by means of static code analysis. As with any static
code analysis tool, MOCKEXTRACTOR is not able to capture
dynamic behavior (e.g., mock instances that are generated in
helper classes and passed to the test unit). In these cases,
the dependency would have been considered “non mocked”.
We mitigate this issue by (1) making use of a large random
samples in our manual analysis, and (2) manually inspecting
the results of MOCKEXTRACTOR in 100 test units, in which
we observed that such cases never occurred, thus giving us
confidence regarding the reliability of our data set.

As each class is manually analyzed by only a single
researcher and there could be divergent opinions despite
the aforementioned discussion, we measured their agreement.
Each researcher analyzed 25 instances that were made by
the other researcher in both of his two projects, totaling 100
validated instances as seen in Figure 1, Point 2. The final
agreement on the 7 categories was 8§9%.

2) Internal validity: Threats to internal validity concern
factors we did not consider that could affect the variables and
the relations being investigated. In our study, we interview de-
velopers from the studied software to understand why certain
dependencies are mocked and not mocked. Clearly, a single
developer does not know all the implementation decisions in
a software system. We mitigate this issue by (1) showing the
data collected in RQ1 first and (2) not asking questions about
the overall categories that we manually coined in RQI.

In addition, their opinions may also be influenced by other
factors, such as current literature on mocking (which could
may have led them to social desirability bias [33]) or other
projects that they participate in. To mitigate this issue, we
constantly reminded interviewees that we were discussing the
mocking practices specifically of their project. At the end of
the interview, we asked them to freely talk about their ideas
on mocking in general.

3) External validity: Threats to external validity concern
the generalization of results. Our sample contains four Java
systems (one of them closed source), which is small compared
to the overall population of software systems that make use
of mocking. We reduce this issue by collecting the opinion of
105 developers from a variety of projects about our findings.
Further research in different projects in different programming
languages should be conducted.

Furthermore, we do not know the nature of the population
that responded to our survey, hence it might suffer from a self-

Davide Spadini et al. — To Mock or Not To Mock? An Empirical Study on Mocking Practices

selection bias. We cannot calculate the response rate of our
survey; however, from the responses we see a general diversity
in terms of software development experience that appears to
match in our target population.

IV. RESULTS

In this section, we present the results to our research
questions aimed at understanding how and why developers
apply mock objects in their test suites, as well as which
challenges they face in this context.

RQI. What test dependencies do developers mock?

As we show in Table I, we analyzed 4,419 test units of
which 1,122 (25.39%) contain at least one mock object. From
the 38,313 collected dependencies from all test units, 35,745
(93.29%) are not mocked while 2,568 (6.71%) are mocked.

As the same dependency may appear more than once in
our dataset (i.e., , a class can appear in multiple test units), we
calculated the unique dependencies in our dataset. We obtained
a total of 11,824 not mocked and 938 mocked dependencies.
Interestingly, the intersection of these two sets reveals that 650
dependencies (70% of all dependencies mocked at least once)
were both mocked and not mocked in the test suite.

In Figure 2, we show how often each role is mocked in
our sample in each of the seven categories found during our
manual analysis. One may note that “databases” and “web
services” can also fit in the “external dependency” category;
we separate these two categories as they appeared more
frequently than other types of external dependencies.

In the following, we explain each category:

+ Domain object: Classes that contain the (business) rules
of the system. Most of these classes usually depend on
other domain objects. They do not depend on any external
resources. The definition of this category fits well to the
definition of Domain Object [15] and Domain Logic [16]
architectural layers. Examples are entities, services and
utility classes.

« Database: Classes that interact with an external database.
These classes can be either an external library (such as
Java SQL, JDBC, Hibernate, or ElasticSearch APIs) or
a class that depends on such external libraries (e.g., an
implementation of the Data Access Object [16] pattern).

« Native Java libraries: Libraries that are part of the Java
itself. Examples are classes from Java I/O and Java Util
classes (Date, Calendar).

o Web Service: Classes that perform some HTTP action. As
with the database category, this dependency can be either an
external library (such as Java HTTP) or a class that depends
on such library.

« External dependency: Libraries (or classes that make use
of libraries) that are external to the current project. Examples
are Jetty and Ruby runtimes, JSON parsing libraries (such
as GSON), e-mail libraries, etc.

« Test support: Classes that support testing itself. Examples
are fake domain objects, test data builders and web services
for tests.

:2RC)
DATABASE

WEB SERVICE

EXTERNAL
DEPENDENCIES

DOMAIN OBJECT
JAVA LIBRARIES

TEST SUPPORT

Percentage of mocked dependencies . Percentage of non-mocked dependencies .

Fig. 2: How often each architectural role is mocked and not
mocked in analyzed systems (/N = 2,178)

o Unresolved: Dependencies that we were not able to solve.
For example, classes belonging to a sub-module of the
project which the source code is not available.

Numbers are quite similar when we look at each project
separately. Exceptions are for databases (Alura and Sonarqube
mock ~60% of databases dependencies, Spring mocks 94%)
and domain objects (while other projects mock them ~30% of
times, Sonarqube mocks 47%). We present the numbers for
each project in our online appendix [12].

We observe that Web Services and Databases are the most
mocked dependencies. On the other hand, there is no clear
trend in Domain objects: numbers show that 36% of them
are mocked. Even though the findings are aligned with the
technical literature [28], [23], further investigation is necessary
to understand the real rationale behind the results.

In contrast Test support and Java libraries are almost
never mocked. The former is unsurprising since the category
includes fake classes or classes that are created to support the
test itself.

RQ,. Classes that deal with external resources, such as
databases and web services are often mocked. Interest-
ingly, there is no clear trend on mocking domain objects.

RQ2. Why do developers decide to (not) mock specific depen-
dencies?

In this section, we summarize the answers obtained during
our interviews and surveys. We refer to the interviewees by
their ID in Table II.

Mocks are often used when the concrete implementation is
not simple. All interviewees agree that certain dependencies
are easier to mock than to use their concrete implementation.
They mentioned that classes that are highly coupled, complex
to set up, contain complex code, perform a slow task, or
depend on external resources (e.g., databases, web services

TUD-SERG-2017-016

SE

or external libraries) are candidates to be mocked. D2 gives a
concrete example: “It is simpler to set up a in-memory list with
elements than inserting data into the database.” Interviewees
affirmed that whenever they can completely control the input
and output of a class, they prefer to instantiate the concrete
implementation of the class rather than mocking it. As DI
stated: “if given an input [the production class] will always
return a single output, we do not mock it.”

In Figure 3, we see that survey respondents also often mock
dependencies with such characteristics: 48% of respondents
said they always or almost always mock classes that are
highly coupled, and 45.5% when the class difficult to set up.
Contrarily to our interviewees, survey respondents report to
mock less often when it comes to slow or complex classes
(50.4% and 34.5% of respondents affirm to never or almost
never mock in such situations, respectively).

Mocks are not used when the focus of the test is the
integration. Interviewees explained that they do not use
mocks when they want to test the integration with an external
dependency itself, (e.g., a class that integrates with a database).
In these cases they prefer to perform a real interaction between
the unit under test and the external dependency. D1 said “if
we mock [the integration], then we wouldn’t know if it actually
works. [...] I do not mock when I want to test the database
itself; I wanna make sure that my SQL works. Other than that,
we mock.” This is also confirmed in our survey (Figure 3), as
our respondents also almost never mock the class under test.

The opposite scenario is when developers want to unit test a
class that depends on a class that deals with external resources,
(e.g., Foo depends on Boo, and Boo interacts with a database).
In this case, developers want to test a single unit without
the influence of the external dependencies, thus developers
evaluate whether they should mock that dependency. D2 said:
“in unit testing, when the unit I wanna test uses classes that
integrate with the external environment, we do not want to test
if the integration works, but if our current unit works, [...] so
we mock the dependencies.”

Interfaces are mocked rather than one of their specific
implementations. Interviewees agree that they often mock
interfaces. They explain that an interface can have several
implementations and they prefer to use a mock to not rely
on a specific one. D1 said: “when I test operations with side
effects [sending an email, doing a HTTP Request] I create an
interface that represents the side effect and [instead of using
a specific implementation] I mock directly the interface.”

Domain objects are usually not mocked. According to
the interviewees, domain objects are often plain old Java
objects, commonly composed by a set of attributes, getters and
setters. These classes also commonly do not deal with external
resources. Thus, these classes tend to be easily instantiated and
set up. However, if a domain object is complex (i.e., contains
complicated business logic or not easy to set up), developers
may mock them. Interviewee D2 says: “[if class A depends
on the domain object B] I'd probably have a Blest testing B

TUD-SERG-2017-016

Davide Spadini et al. — To Mock or Not To Mock? An Empirical Study on Mocking Practices

so this is a green light for me to know that I don’t need to
test B again.” All interviewees also mention that the same rule
applies if the domain object is highly coupled.

Figure 4 shows that answers about mocking Domain objects
vary. Interestingly, there is a slight trend towards not mocking
them, in line to our findings during the interviews and in RQ1.

Native Java objects and libraries are usually not mocked.
According to DI, native Java objects are data holders
(e.g., String and List) that are easy to instantiate with the
desired value. Thus no need for mocking. D1 points out
that some native classes cannot even be mocked as they
can be final (e.g., String). D2 discussed the question from a
different perspective. According to him, developers can trust
the provided libraries, even though they are “external,” thus,
there is no need for mocking. Both D1 and D2 made an
exception for the Java I/O library: According to them, dealing
with files can also be complex, and thus, they prefer to mock.
D3, on the other hand, affirms that in their software, they
commonly do not mock I/O as they favor integration testing.

These findings match our data from RQ1, where we see that
Native Java Libraries are almost never mocked. Respondents
also had a similar perception: 82% of them affirm to never or
almost never mock such dependencies.

Database, web services, and external dependencies are
slow, complex to set up, and are good candidates to
be mocked. According to the interviewees, that is why
mocks should be applied in such dependencies. D2 said:
“Our database integration tests take 40 minutes to execute,
it is too much”. These reasons also matches with technical
literature [28], [23].

All participants have a similar opinion when it comes to
other kinds of external dependencies/libraries, such as CDI or
a serialization library: When the focus of the testing is the
integration itself, they do not mock. Otherwise, they mock.
D2 said: “When using CDI [Java’s Contexts and Dependency
Injection API], it is really hard to create a concrete [CDI]
event: in this case we usually prefer to mock it”. Two
interviewees (D1 and D2) affirmed that libraries commonly
have extensive test suites, thus developers do not need to “re-
test”. D3 had a different opinion: Developers should re-test
the library as they cannot always be trusted.

In Figure 4, we observe that respondents always or almost
always mock Web services (~82%), External dependencies
(~79%) and Databases (~71%). This result confirm the pre-
vious discovery that when developers do not want to test the
integration itself, they prefer to mock these dependencies.

RQ>. The architectural role of the class is not the
only factor developers take into account when mocking.
Respondents report to mock when to use the concrete
implementation would be not simple, e.g., the class would
be too slow or complex to set up.

Davide Spadini et al. — To Mock or Not To Mock? An Empirical Study on Mocking Practices

The class was not
the unit under test

0
I - I
BN - | B

Never. Almost neverD Occasionally/ SometimesD Almost aIwaysD Always.

The class was very
coupled with other classes

The class was very
difficult to set up

The class was very
very complex

The class would have
been too slow to test

Fig. 3: Reasons to use mock objects (N = 105)

RQ3. Which are the main challenges experienced with testing
using mocks?

We summarize the main challenges that appeared in the
interviews and in the answers of our question about challenges
in the survey (which we received 61 answers). Categories
below represent the main themes that emerged during card
sorting.

Dealing with coupling. Mocking practices deal with different
coupling issues. On one hand, the usage of mocks in test in-
creases the coupling between the test and the production code.
On the other hand, the coupling among production classes
themselves can also be challenging for mocking. According
to a participant, “if code has not been written with proper
decoupling and dependency isolation, then mocking is difficult
(if not impossible).” This matches with another participant’s
opinions who mentions to not have challenges anymore, by
having “learned how to separate concepts.”

Getting started with mocks. Mocks can still be a new
concept for many developers. Hence, its usage may require
experienced developers to teach junior developers (which,
according to another participant, usually tend to mock too
much). In particular, a participant said that mock objects are
currently a new concept for him/her, and thus, s/he is having
some trouble understanding it.

Mocking in legacy systems. Legacy systems can pose some
challenges for users of mocks. According to a respondent,
testing a single unit in such systems may require too much
mocking (“to mock almost the entire system”). Another par-
ticipant even mentions the need of using PowerMock [9]
(a framework that enables Java developers to mock certain
classes that might be not possible without bytecode manip-
ulation, e.g., final classes and static methods) in cases where
the class under test is not designed for testability. On the other
hand, mocking may be the only way to perform unit testing in
such systems. According to a participant: “in legacy systems,
where the architecture is not well-decoupled, mocking is the
only way to perform some testing.”

Non-testable/Hard-to-test classes. Some technical details
may impede the usage of mock objects. Besides the lack of
design by testability, participants provide different examples
of implementation details that can interfere with mocking.
Respondents mentioned the use of static methods in Java

SERE

Web service

=
fo 4=
Bl = [
[[o[7]
T

Never. Almost neverD Occasionally/SometimesD Almost alwaysD Always.

External dependency

Database

Domain object

Native library

Fig. 4: Frequency of mocking objects per category (N = 105)

(which are not mockable by default), file uploads in PHP,
interfaces in dynamic languages, and the LINQ language
feature in C#.

The relationship between mocks and good quality code.
Mocks may reduce test readability and be difficult to maintain.
Survey respondents state that the excessive use of mocks is
an indicative of poorly engineered code. Surprisingly during
the interviews, D1, D2 and D3 mentioned the same example
where using mocks can hide a deeper problem in the system’s
design: “when you have to test class A, and you notice that
it has 10/15 dependencies, you can mock it. However, you are
hiding a problem: a class with 15 dependencies is probably
a smell in the code.” In this scenario they find it much easier
to mock the dependency as it is highly coupled and complex.
However, they say this is a symptom of a badly designed class.
D3 added: “good [production] code ease the process of testing.
If the [production] code structure is well defined, we should
use less mocks”. Interviewee D3 also said “I always try to use
as less mocks as possible, since in my opinion they hide the
real problem. Furthermore, I do not remember a single case
in which I found a bug using mocks’. A survey respondent
also shares the point that the use of mocks does not guarantee
that your code will behave as expected in production: “You
are always guessing that what you mock will work (and keep
working) that way when using the real objects.”

Unstable dependencies. A problem when using mocks is
maintaining the behavior of the mock compatible with the
behavior of original class, especially when the class is poorly
designed or highly coupled. As the production class tends to
change often, the mock object becomes unstable and, as a
consequence, more prone to change.

RQs. The use of mocks poses several challenges. Among
all, a major problem is maintaining the behavior of the
mock compatible with the original class. Furthermore,
mocks may hide important design problems. Finally, while
mocking may be the only way to test legacy systems, using
them in such systems is not a straightforward task.

V. DISCUSSION

In this section we discuss the main findings and their
implications for both practitioners and future research. We

TUD-SERG-2017-016

SE

also present the results of a debate about our findings with
a main developer from Mockito. Finally, we provide an initial
discussion on quantitatively mining mocking practices.

A. Empirical evidence on mocking practices

Mocking is a popular topic among software developers. Due
to its importance, different authors have been writing technical
literature on mock objects (e.g., [19], [31], [18], [34], [24],
[27]), ranging from how to get started with mocks to best
practices. Our research complements such technical literature
in three ways that we discuss below.

First, we provide concrete evidence on which of the existing
practices in technical literature developers actually apply. For
example, Meszaros [31] suggests that components that make
testing difficult are candidates to be mocked. Our research
confirms it by showing that developers also believe these
dependencies should be mocked (RQ2) and that, in practice,
developers do mock them (RQ1).

Second, by providing a deeper investigation on how and
why developers use mock objects. As a side effect, we also
notice how the use of mock objects can drive the developer’s
testing strategy. For instance, mocking an interface rather
than using one concrete implementation makes the test to
become “independent of a specific implementation”, as the test
exercises the abstract behavior that is offered by the interface.
Without the usage of a mock, developers would have to choose
one out of the many possible implementations of the interface,
making the test more coupled to the specific implementation.
The use of mock objects can also drive developers towards a
better design: Our findings show that a class that requires too
much mocking could have been better designed to avoid that.
Interestingly, the idea of using the feedback of the test code
to improve the quality of production code is popular among
TDD practitioners [14].

Third, by providing a list of challenges that can be tackled
by researchers, practitioners, and tool makers. Most challenges
faced by developers are purely technical, such as applying
mocks in legacy systems and in poorly-designed classes, or
even dealing with unstable production classes. Interestingly,
none of the participants complained about the framework itself
(e.g., missing features or bugs).

B. Discussing with a developer from Mockito

To get an even deeper understanding of our results and
challenge our conclusions, we interviewed a developer from
Mockito, showing him the findings and discussing the chal-
lenges. We refer to him as D4.

D4 agreed on the findings regarding what developers should
mock: According to him, databases and external dependencies
should be mocked when developers do not test the integration
itself, while Java libraries and data holders classes should
never be mocked instead. Furthermore, D4 also approved what
we discovered regarding mocking practices. He affirmed that a
good practice is to mock interfaces instead of real classes and
that developers should not mock the unit under test. When we
argued whether Mockito could provide a feature to ease the

TUD-SERG-2017-016

Davide Spadini et al. — To Mock or Not To Mock? An Empirical Study on Mocking Practices

mocking process of any of the analyzed categories (Figure 2),
he stated: “If someone tells us that s/he is spending 100 boiler-
plate lines of code to mock a dependency, we can provide a
better way to do it. [...] But for now, I can not see how to
provide specific features for databases and web services, as
Mockito only sees the interface of the class, and not its internal
behavior.”

After, we focused on the challenges, as we conjecture that
it is the most important and useful part for practitioners and
future research and that his experience can shed a light on
them. D4 agreed with all the challenges specified by our
respondents. When discussing how Mockito could help devel-
opers with all the coupling challenges (unstable dependencies,
highly coupled classes), he affirmed that the tool itself can not
help and that the issue should be fixed in the production class:
“When a developer has to mock a lot of dependencies just to
test a single unit, he can do it! However, it is a big red flag
that the unit under test is not well designed.”. This reinforces
the relationship between the excessive use of mocks and code
quality.

When we discussed with him about a possible support for
legacy systems in Mockito, D4 said Mockito developers have
a philosophical debate internally: They want to keep a clear
line of what this framework should and should not do. Non
supported features such as the possibility of mocking a static
method would enable developers to test their legacy code more
easily. However, he stated: “I think the problem is not adding
this feature to Mockito, probably it will require just a week
of work, the problem is: should we really do it? If we do it,
we allow developers to write bad code.” He also said that
final classes can be mocked in Mockito 2.0; interestingly, the
feature was not motivated by a willingness to ease the testing
of legacy systems, but by developers using Kotlin language [4],
in which every class is final by default.

To face the challenge of getting started with mocks, D4
mentioned that Mockito documentation is already extensive
and provides several examples on how to better use the
framework. However, according to him, knowing what should
be mocked and what should not be mocked comes with
experience.

C. Quantitatively mining mocking practices

Our study sheds lights on some of the most used practices
of mocking objects for testing and their reasons. Work can
be done to check and generalize some of the answers given
by developers by means of software data mining. This would
have the advantage of a more objective view and quick
generalizability to other systems. We take a first step into
this direction by conducting an initial analysis to test the
water and see whether some of our qualitative findings can
be confirmed/denied by means of software data mining. In
the following paragraphs, we discuss the results of our initial
analysis and we provide possible alternatives to mine this
information from code repositories.

The unit under test is never mocked. To confirm this
assertion, we automatically analyzed all test classes. For each

Davide Spadini et al. — To Mock or Not To Mock? An Empirical Study on Mocking Practices SE

test unit, we verified whether the unit under test (e.g. class A
in the test unit AZest) has been mocked or not. Results show
that over ~38,000 analyzed dependencies the unit under test
is never mocked in any of the projects.

Unless it is the unit under test, database dependencies are
always mocked. To confirm this assumption, for each database
dependency (information retrieved from our previous manual
analysis in RQ;) outside its own test, we counted the number
of times in which the dependency was not mocked. In case
of Alura, we found that 90% of database dependencies are
mocked when not in their specific test unit. When extending
this result to all the projects, we obtain an average of 81%.

Complex and coupled classes should be mocked. We take
into account two metrics: CBO (Coupling between objects)
and McCabe’s complexity [30]. We choose these metrics
since they have been widely discussed during the interviews.
Furthermore, as pointed out during the surveys, developers
mock when classes are very coupled or difficult to set up.

With the metrics value for each production class in the four
systems, we compare the values from classes that are mocked
with the values from classes that are not mocked. In general,
as a class can be mocked and not mocked multiple times,
we apply a simple heuristic to decide in which category it
should belong: If the class has been mocked more than 50%
of the times, we put it in the ‘mocked’ category, and vice-versa
(e.g., if a class has been mocked 5 times and not mocked 3
times, it will be categorized as ‘mocked’). To compare the two
sets, we use the Wilcoxon rank sum test [42] (with confidence
level of 95%) and Cliff’s delta [22] to measure the effect size.
We choose Wilcoxon since it is a non-parametric test (does
not have any assumption on the underlying data distribution).

As a result, we see that both mocked and non mocked
classes are similar in terms of coupling: The mean coupling
of mocked classes is 5.89 with a maximum of 51, while the
mean coupling of non mocked classes is even slightly higher
(7.131) with a maximum of 187. However, from the Wilcoxon
rank sum test and the effect size, we observe that the over-
all difference is negligible (Wilcoxon p-value<0.001, Cliff’s
Delta=—0.121). Same happens for the complexity metrics: The
mean complexity of mocked classes is 10.58 with a maximum
of 89.00, while the mean complexity of non mocked classes
is 16.42 (max 420). Difference is also negligible (Wilcoxon
p-value=5.945¢~%7, Cliff’s delta=—0.166).

We conjecture that the chosen code metrics are not enough
to predict whether a class should be mocked. Future research
needs to be conducted to understand how code metrics are
related to mocking decisions.

There are many other discoveries that can be verified using
quantitative studies (i.e. are slow tests mocked more often?
how faster are test that use mocks?). Here we simply proposed
an initial analysis to show its feasibility. Further research
can be designed and carried out to devise approaches to
quantitatively evaluate mocking practices.

10

VI. RELATED WORK

Despite the widespread usage of mocks, very few studies
analyzed current mocking practices. Mostafa et al. [32] con-
ducted an empirical study on more than 5,000 open source
software projects from GitHub, analyzing how many projects
are using a mocking framework and which Java APIs are the
most mocked ones. The result of this study shows that 23%
of the projects are using at least one mocking framework and
that Mockito is the most widely used (70%).

Marri et al. [29] investigated the benefits of using mock
objects. The study identifies the following two benefits: 1)
mock objects enable unit testing of the code that interacts with
external APIs related to the environment such as a file system,
and 2) enable the generation of high-covering unit tests.

Taneja et al. [40] stated that automatic techniques to gen-
erate tests face two significant challenges when applied to
database applications: (1) they assume that the database that
the application under test interacts with is accessible, and
(2) they usually cannot create necessary database states as a
part of the generated tests. For this reasons they proposed
an “Automated Test Generation” for Database Applications
using mock objects, demonstrating that with this technique
they could achieve better test coverage.

Karlesky et al. [25] applied Test-Driven Development and
Continuous Integration using mock objects to embedded soft-
wares, obtaining an order of magnitude or more reduction in
software flaws, predictable progress, and measurable velocity
for data-driven project management.

Kim et al. [26] stated that unit testing within the embedded
systems industry poses several unique challenges: software is
often developed on a different machine than it will run on
and it is tightly coupled with the target hardware. This study
shows how unit testing techniques and mocking frameworks
can facilitate the design process, increase code coverage and
the protection against regression defects.

Tim et al. [28] stated that using Mock Objects is the only
way to unit test domain code that depends on state that is
difficult or impossible to reproduce. They show that the usage
of mocks encourages better-structured tests and reduces the
cost of writing stub code, with a common format for unit
tests that is easy to learn and understand.

VII. CONCLUSION

Mocking is a common testing practice among software
developers. However, there is little empirical evidence on how
developers actually apply the technique in their software sys-
tems. We investigated how and why developers currently use
mock objects. To that end, we studied three OSS projects and
one industrial system, interviewed three of their developers,
surveyed 105 professionals, and discussed the findings with a
main developer from the leading Java mocking framework.

Our results show that developers tend to mock dependencies
that make testing difficult, i.e., classes that are hard to set
up or that depend on external resources. In contrast, devel-
opers do not often mock classes that they can fully control.
Interestingly, a class being slow is not an important factor

TUD-SERG-2017-016

SE

Davide Spadini et al. — To Mock or Not To Mock? An Empirical Study on Mocking Practices

for developers when mocking. As for challenges, developers
affirm that challenges when mocking are mostly technical,
such as dealing with unstable dependencies, the coupling
between the mock and the production code, legacy systems,
and hard-to-test classes are the most important ones.

Our future agenda includes understanding the relationship
between code quality metrics and the use of mocking as
well as the role of software evolution in developers’ mocking
practices.

(1]
(2]
(3]
[4]
[3]
(6]
(7]
(8]
(91
[10]
(11]
[12]

[13]
[14]

[15]
[16]

(17]

[18]
[19]

(20]

REFERENCES

Alura. http://www.alura.com.br/. [Online; accessed 03-Feb-2016].
EasyMock. http://easymock.org. [Online; accessed 03-Feb-2016].
JMock. http://www.jmock.org. [Online; accessed 03-Feb-2016].
Kotlin. https://kotlinlang.org. [Online; accessed 03-Feb-2016].

Mock. https://github.com/testing-cabal/mock. [Online; accessed 03-Feb-
2016].

Mocker. https://labix.org/mocker. [Online; accessed 03-Feb-2016].
Mockito. http:/site.mockito.org. [Online; accessed 03-Feb-2016].
MyBatis. http://www.mybatis.org/. [Online; accessed 03-Feb-2016].
PowerMock. https://github.com/powermock/powermock. [Online; ac-
cessed 03-Feb-2016].

Sonarqube. https://www.sonarqube.org/.
2016].

Spring Framework. https://projects.spring.io/spring-framework/.
line; accessed 03-Feb-2016].

To Mock or Not To Mock? Online Appendix. https://doi.org/10.4121/
uuid:fce8653c-344c-4dcb-97ab-c9c1407ad2f0.

VRaptor. https://www.vraptor.com.br/. [Online; accessed 03-Feb-2016].
K. Beck. Test-driven development: by example. Addison-Wesley
Professional, 2003.

[Online; accessed 03-Feb-

[On-

E. Evans. Domain-driven design: tackling complexity in the heart of

software. Addison-Wesley Professional, 2004.

M. Fowler. Patterns of enterprise application architecture. Addison-
Wesley Longman Publishing Co., Inc., 2002.

S. Freeman, T. Mackinnon, N. Pryce, and J. Walnes. Mock roles, objects.
In Companion to the 19th annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications, pages 236—
246. ACM, 2004.

S. Freeman and N. Pryce. Growing object-oriented software, guided by
tests. Pearson Education, 2009.

P. Hamill. Unit Test Frameworks: Tools for High-Quality Software
Development. O’Reilly Media, 2004.

B. Hanington and B. Martin. Universal methods of design: 100 ways
to research complex problems, develop innovative ideas, and design
effective solutions. Rockport Publishers, 2012.

F. Henderson. Software Engineering at Google. feb 2017.

T. McCabe. A Complexity Measure. IEEE Transactions on Software
Engineering, SE-2(4):308-320, dec 1976.

TUD-SERG-2017-016

[22]

[23]
[24]

[25]

[26]
[27]
[28]

[29]

[31]

[32]

[41]
[42]

[43]

M. R. Hess and J. D. Kromrey. Robust Confidence Intervals for Effect
Sizes: A Comparative Study of Cohen’s d and Cliff’s Delta Under
Non-normality and Heterogeneous Variances. American Educational
Research Association, San Diego, nov 2004.

A. Hunt and D. Thomas. Pragmatic unit testing in c# with nunit. The
Pragmatic Programmers, 2004.

T. Kaczanowski. Practical Unit Testing with TestNG and Mockito.
Tomasz Kaczanowski, 2012.

M. Karlesky, G. Williams, W. Bereza, and M. Fletcher. Mocking the
Embedded World: Test-Driven Development, Continuous Integration,
and Design Patterns. In Embedded Systems Conference Silicon Valley
(San Jose, California) ESC 413, April 2007. ESC 413, 2007.

S. S. Kim. Mocking embedded hardware for software validation. PhD
thesis, 2016.

J. Langr, A. Hunt, and D. Thomas. Pragmatic Unit Testing in Java 8
with JUnit. Pragmatic Bookshelf, 2015.

T. Mackinnon, S. Freeman, and P. Craig. Endo-testing: unit testing with
mock objects. Extreme programming examined, pages 287-301, 2001.
M. R. Marri, T. Xie, N. Tillmann, J. De Halleux, and W. Schulte. An
empirical study of testing file-system-dependent software with mock
objects. AST, 9:149-153, 2009.

G. Meszaros. xUnit test patterns: Refactoring test code.
Education, 2007.

S. Mostafa and X. Wang. An Empirical Study on the Usage of Mocking
Frameworks in Software Testing. In 2014 14th International Conference
on Quality Software, pages 127-132. IEEE, oct 2014.

A. J. Nederhof. Methods of coping with social desirability bias: A
review. European journal of social psychology, 15(3):263-280, 1985.
R. Osherove. The Art of Unit Testing: With Examples in .NET. Manning,
2009.

G. Rugg. A rticle picture sorts and item sorts. Computing, 22(3), 2005.
P. Runeson. A survey of unit testing practices. [EEE Software, 23(4):22—
29, 2006.

H. Samimi, R. Hicks, A. Fogel, and T. Millstein. Declarative Mocking
Categories and Subject Descriptors. pages 246-256, 2013.

D. Spadini, M. Aniche, A. Bacchelli, and M. Bruntink. MockExtractor.
The tool is available at https://github.com/ishepard/MockExtractor.

D. Spencer. Card sorting: a definitive guide.
http://boxesandarrows.com/card-sorting-a-definitive-guide/, 2004.

K. Taneja, Y. Zhang, and T. Xie. MODA: Automated Test Generation
for Database Applications via Mock Objects. In Proceedings of the
IEEE/ACM international conference on Automated software engineering
- ASE 10, page 289, New York, New York, USA, 2010. ACM Press.
E. Weyuker. Testing component-based software: a cautionary tale. /[EEE
Software, 15(5):54-59, 1998.

F. Wilcoxon. Individual comparisons of grouped data by ranking
methods. Journal of economic entomology, 39(6):269, 1946.

A. Zaidman, B. Van Rompaey, S. Demeyer, and A. Van Deursen. Mining
software repositories to study co-evolution of production & test code.
In 2008 Ist International Conference on Software Testing, Verification,
and Validation, pages 220-229. IEEE, 2008.

Pearson

11

Davide Spadini et al. — To Mock or Not To Mock? An Empirical Study on Mocking Practices SEiE

12 TUD-SERG-2017-016

TUD-SERG-2017-016 S E(i
ISSN 1872-5392

