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Summary 

The European PASSME project aims to provide passengers with a less stressful and more enjoyable 

experience at airports. Part of the project is the development of a new passenger demand forecast 

(PDF) system to accurately predict passenger demand on a short timescale. Contrary to current PDF 

systems, the PASSME PDF aims to integrate multiple sources of data. Data from a mobile app, sensor 

data, airport data, and airline data, enhanced with detailed information about the passenger process 

and airport process are combined to create a detailed PDF that is able to forecast on a scale as small 

as 20 to 30 minutes ahead, which is much smaller than current PDF systems. One part of the PASSME 

PDF is a behavioural simulation, for which a method for behavioural classification of passengers 

should be developed. Based on the mentioned data sources, passengers should be classified into a 

behavioural class, which can then be used in the behavioural simulation of the PDF. 

This thesis concerns the creation of a passenger classification framework that is able to perform such 

behavioural classification. As such, the main research question has been defined as follows:  “How 

can individual airport passengers be classified according to (visual) sensor-obtained personal 

characteristics in behavioural classes that can be used to predict passenger behaviour?”. To answer 

this question, the subject has been broken down into three interacting blocks: Sensing, Processing, 

and Modelling. The Sensing block concerns acquiring data about passengers through sensors and 
other data sources. Next, in the Processing block, this data is processed into behavioural classes. 

Lastly, the behavioural classes are used in a behavioural model in the Modelling block. The main 

focus of the thesis is on the processing block. However, in order to address this block, the other two 
blocks should be discussed first. 

Sensing can be broken down into three main subjects: the passenger process, passenger 
characteristics and their effect on behaviour, and collecting passenger data. The passenger process 

concerns the various interconnected processes a passenger has to go through at the airport. This 

includes processes such as check-in, passing security, and finally boarding the plane. Between the 

various mandatory parts of the process, passengers are free to perform discretionary activities in the 

terminal. The passenger process is different for departing, arriving, and transferring passengers. 

Hence, these three types of passengers should be treated separately during behavioural 

classification.  

Passengers should be classified into behavioural classes based on their characteristics. As such, two 

types of characteristics are defined: passenger characteristics and behavioural characteristics. 

Behavioural characteristics are characteristics that are regarded as behaviour. Essentially, these are 

the characteristics that are to be predicted by the behavioural classification. The behavioural 

characteristics form the basis of behavioural classes. Passenger characteristics describe the 

passenger himself. Those characteristics are used to classify a passenger into a behavioural class. 

Both types of characteristics can be collected using various sources of data, such as camera data, 

radio frequency (RF) sensors, the airport database, and the airline database. Challenges associated 

with this are, however, combining these sources into one data set, containing information on an 

individual basis, and the privacy issues of a detailed data set on an individual level.  

Regarding Modelling, passenger behaviour can be broken down into three levels of behaviour: 
strategic, tactical and operational. Activities are chosen on the strategic level. On the tactical levels, 

activities are (re-)ordered and the route to these activities is chosen. The operational level mainly 

pertains to walking behaviour, such as collision avoidance. Behavioural models most often model on 

one or two of these levels. Consequently, models greatly differ with respect to their model inputs. To 

effectively combine behavioural classification with a behavioural model, these inputs should be 

known. 
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The Processing block connects the Sensing and Modelling blocks; based on the collected passenger 

and behavioural characteristics, behavioural classes are formed. To perform this behavioural 

classification, the Clustering and Classification (CC) framework was developed, shown below in 

figure i.  

 

Figure i: The Clustering and Classification (CC) framework 

The CC-framework consists of three main parts: 

 Passenger data: The data input of the framework consists of the two types of 

characteristics: behavioural characteristics and passenger characteristics. This data is 

aggregated over a period of time in order to create a training data set that contains many 

passengers. 

 Clustering: This part of the framework creates behavioural classes using Latent Class 

Analysis (LCA). The LCA creates behavioural classes solely based on the behavioural 
characteristics. After clustering, the training data also contains the class label for each 

passenger in the data set.  

 Classification: Based on the passenger characteristics and the behavioural class to which 
each observation in the data set was assigned, a classifier is constructed using a classification 

algorithm. This classifier is then able to classify ‘new’ passengers into a behavioural class 

solely based on their passenger characteristics.  

For both parts of the framework, several techniques are available. For the clustering part, Latent 

Class Analysis has been chosen, as this is a model-based technique that has proven to yield good 

results and that additionally has the benefit of providing good performance metrics that allow 

optimizing the behavioural classes formed by the method. The classification part of the algorithm 

uses the SAMME algorithm, which is a decision tree-based boosted ensemble classifier. Because 

decision trees are logic-based, the trees in the classifier can be easily interpreted. However, as the 

performance of decision trees is generally worse than some other algorithms, it was chosen to use 

boosting to increase accuracy. The CC-framework has been implemented using the R programming 

language. 

To assess the performance of the framework, it has been applied to the PASSME data set. This data 

set contains several passenger and behavioural characteristics. The data set contains both departing 

and transferring passengers, totalling to about 4,000 observations, which is considered as an 

appropriate amount. In line with the aforementioned observation of differing passenger processes, 

the subsets of departing and transferring passengers have been treated as separate data sets. 

Analyses of this data set have been performed in order to assess the properties of the behavioural 

characteristics and possible relations between passenger characteristics and behavioural 
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characteristics. Various relations were found, some of which are also confirmed by literature. Based 

on the data analysis, it was concluded that the PASSME is suitable for use with the CC-framework. 

After analysis, the framework was applied to the PASSME data. Because the framework consists of 

two parts (clustering and classification), the results of clustering affect the results of classification. 

Both parts each have their own settings that affect the outcome. Therefore, a grid search has been 

performed in order to find the best classification performance. In this grid search, the number of 

classes, the bin size for discretisation of numerical behavioural attributes, and the maximum tree 

depth of the decision trees in the ensemble classifier were varied. The results for this grid search 

indicated that the classifier performance increases as the number of classes decreases and the bin 

size increases. The effect of the maximum tree depth is limited.  

The grid search resulted in an optimum of two behavioural classes for both subsets. The resulting 

behavioural classes are very similar for both subsets and are primarily distinguished by the time that 

passengers spend at the gate, and the time between the decision of heading to the gate and flight 

departure. There are no significant differences between the other attributes.  

Table i: Overview of behavioural classification results 

Metric Departing passengers Transferring passengers 
AUC 0.6883 0.6774 
Overall accuracy 0.6363 0.6733 
Average accuracy 0.6363 0.6733 
Macro F1-score 0.6250 0.6138 

 

The performance of the classification is shown in table i. The average accuracy for classification of 

departing passengers, indicating the average number of objects classified into the correct class, was 

found to be 64%, while the average accuracy of transferring passengers was found to be 67%. 

Although the classification meets the minimum requirement, set at an AUC of above 0.5, the 

classification performance cannot be regarded as very high. However, it should be kept in mind that 

the level of detail of the PASSME data was quite low and that the data set does not fully represent the 
data that would be available from actual (sensor) data. Consequently, it was concluded that the CC-

framework yields promising results. Regarding possible further development of the framework, 

several recommendations have been made. Most importantly, it is recommended to use the 
framework with better data that is more alike to the actual data as it could be expected in 

combination with the PDF.  
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1 

Introduction 

In the top 20 of busiest airports in the world, Amsterdam Airport Schiphol (AAS) ranks 14th with 

more than 58 million enplaning and deplaning passengers per year. Schiphol ranks 5th when only 

accounting for international passenger traffic , according to the ACI world rankings (Airports Council 
International (ACI), 4 April 2016). Recent news headlines such as “Extra staff Schiphol against long 

queues” (AT5, 22 April 2016) and “Schiphol advises travellers to arrive on time during the May-

holidays” (NU.nl, 20 April 2016) highlight the fact that Schiphol is a busy airport that has to 
effectively deal with crowd management in order to serve such a high number of passengers safely, 

efficiently and satisfactorily. This means that adequate information is needed to be able to adjust 

operations to these high demands. To this end, Passenger Demand Forecast (PDF) systems are in 

place. These PDF-systems provide forecasts about the passenger demand at various areas in the 
terminal. However, the static nature of the data used in current systems limits the accuracy of these 

forecasts to a level which is not usable for adjusting and optimising operations during the day of 

operation itself.  

In June 2015, the PASSME project was initiated. This European project pursues four main objectives 

with respect to improving the passenger experience in airports. One of these objectives is to “reduce 

door-to-door airport travel time for passengers in Europe by 60 minutes” (PASSME, n.d.-a). For this 

goal, a new proactive and real-time PDF-system is being developed. This new system aims to 

combine data from sensor observations, passenger behaviour data and data from the airport 

operations plan into a detailed forecast of the demand at various areas of the airport, such as the 

security filters or check-in desks (PASSME, n.d.-b). Whereas current PDF-systems accurately predict 

for a scope of a few days to a few hours in advance, the PASSME PDF-system will be also be able to 

forecast the coming twenty to thirty minutes. Passenger-centric operations, which have been 

planned on a quarterly, monthly and weekly basis, can be planned, controlled and optimised on the 

day of operation with this new information. Due to the optimal staffing that can be realised, 

passengers experience minimal delays during any of the passenger-centric operations. This will lead 

to an almost seamless experience for passengers in the terminal. 

The new PDF-system will rely on multiple data sources and techniques to create an accurate forecast. 

One of the techniques that will be used is the behavioural classification of passengers. These 

behavioural classes represent classes of passengers having certain characteristic behaviour with 

respect to the choices they make and the walking behaviour they show. Based on sensor-obtained 

passenger characteristics, passengers will be classified into a specific behavioural class. This 

technique is yet to be developed. This thesis researches the possibilities of finding and defining 

behavioural classes of passengers and classifying individual passengers to such a behavioural class. 

Amsterdam Airport Schiphol is the main case for this thesis. Main questions that are involved in this 
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subject are what kind of passenger characteristics can be obtained from sensor data, how clusters 

can be formed and verified, subsequently how passengers can be assigned to a behavioural class and 

what the corresponding accuracy is. 

The subsequent sections in this chapter further outline the problem. First, the problem statement is 

presented in section 1.1. This includes the main research question, the objective of the thesis study, 

and the sub research questions. Section 1.2 details the scope of the research. Sections 1.3 and 1.4 

specify the research contribution and methodology. Section 1.5 closes off the first chapter by giving 

an overview of the structure of the rest of the report. 

1.1 Problem statement 

This section further introduces the topic of this thesis report. First, the main research question is 

introduced. To support this research question, the objective of the research is then defined. Next, to 

clarify the various aspects of the research, the thesis is divided into three blocks of interest. 

Additional research sub-questions are defined based on these blocks.  

1.1.1 Main research question 

The main topic for this thesis is to categorise passenger into behavioural classes based on their 

characteristics and relate these to their behaviour. This results in the following main research 

question: 

How can individual airport passengers be classified according to 

(visual) sensor-obtained personal characteristics in behavioural classes 

that can be used to predict passenger behaviour? 

1.1.2 Objective 

The objective of the thesis will be to create a passenger classification system. This passenger 

classification system will classify individual passengers in the airport terminal into a behavioural 

class, with a focus on using (visual) sensor-observed characteristics for classification. The aim of the 

behavioural classes is to predict the passenger’s behaviour with respect to activity choice, route 

choice and walking behaviour.  

The goal of the thesis work is threefold. The first goal is to develop a methodology to distinguish 

behavioural classes based on data regarding passenger behaviour and characteristics. The second 
goal is to develop a methodology to classify observed passengers to a behavioural class. The third 

and last goal is to create and implement a framework that can perform both aforementioned tasks in 

an integrated manner. 

1.1.3 Research questions 

So far, several aspects of interest for the thesis work have been mentioned. To clarify this, the thesis 

has been broken down into three interacting main blocks in figure 1.1: Sensing, Processing, and 

Modelling. These three blocks form the main areas of interest for the thesis, and based on these, 

further research questions have been formulated. The double-headed arrows between the blocks in 

the figure signify the relations between the different blocks; i.e. the blocks interact with respect to 

requirements, data, et cetera. 

 

Figure 1.1: The three thesis blocks 

Sensing 

Gathering data  
about passengers 

 

Processing 

Identifying and classifying 
behavioural groups 

 

Modelling 

Using behavioural groups  
in behavioural models 
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1.1.3.1 Sensing 

The first block is the Sensing block. This block pertains to the aspect of gathering information about 

passengers. This could be either via visual or non-visual sensors, airport information systems, or 

airline information systems. Additionally, this block focusses on the process that a passenger goes 

through at the airport. The sub-question related to this block has hence been formulated as follows. 

 Sensing sub-question: Which passenger characteristics that can be used for behavioural 

classification can be obtained from sensors and information systems in an airport terminal? 

1.1.3.2 Modelling 

The last block is the Modelling block. This block pertains to the behavioural models and how these 

could interface with a behavioural classification as proposed in the thesis. However, because this 

aspect of the PASSME project has not been fully developed as of yet, this part of the thesis is more on 

a global, general level. The sub-question associated with this block is as follows.  

 Modelling sub-question: How could behavioural classes form the input to behavioural 

models such as in a passenger demand forecast system? 

1.1.3.3 Processing 

The middle block, which is also the most important block, is the Processing block. The importance of 

this block follows from the position in the figure; it connects the Sensing and Modelling block. 

Consequently, this block forms the bridge between raw data from observations and the behavioural 

models in a passenger demand forecast system. The main subject of this block is the development of 

a framework to transform the passenger observations into behavioural classes and the subsequent 
generation of classification rules. As the processing block is the main focus of the thesis, multiple sub-

questions have been formulated for this block: 

 Processing sub-question 1: Which behavioural classes can be used to predict passenger 

behaviour? 

 Processing sub-question 2: How can passengers be classified to these behavioural classes? 

 Processing sub-question 3: When is the result of classification satisfactory? 

1.2 Scope of research 

The main focus of this thesis is on the processing block of figure 1.1. This pertains primarily to the 

relation between passenger characteristics and their behaviour. The focus for this is mostly on 

passenger characteristics that can be derived from visual detection systems and other sources of data 
within the airport.    

As the main focus is on segmenting and classifying passengers into behavioural groups, the two 

building blocks Sensing and Modelling are mainly discussed to provide information about what 

information is realistically available for passenger classification and what information should ideally 

be available at airports. Additionally, as there is currently no data available for classification (in an 

operational sense), it is discussed what kind of data can and should be collected. For instance, camera 

footage from cameras placed in the terminal, observation based on footage from security cameras or 

questionnaires. However, the main focus remains on passenger classification. Furthermore, it will be 

studied how this passenger classification can interface with a yet to be implemented behavioural 

model in a passenger demand forecast system. Hence, the two blocks Sensing and Modelling are 

mainly to provide information about how the behavioural classification fits in the whole operation.  

1.3 Research contribution 

The thesis work aims to deliver a contribution to scientific knowledge, but also keeps in mind the 

practical relevance of the work. After all, the forecasts resulting from behavioural classification are to 

be used in a practical setting of the PASSME project. The relevance and contribution of the thesis 
work are explained in the next two subsections. 
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1.3.1 Scientific contribution 

Literature that is currently available mostly pertains to sensing and modelling. With respect to 

sensing, literature is available, for example on the possibilities of identifying events in camera 

footage and tagging, tracking and tracing (Ouyang & Wang, 2012). Additionally, with respect to 

modelling, ample literature is available. Again, these two aspects of the thesis work are mainly there 

to provide an overview. 

The scientific contribution of this thesis can mainly be attributed to the Processing block, which is 

where the scientific knowledge gap is mainly present. Techniques for segmenting data into classes, as 

well as classifying objects into such classes are separately well-described fields of science. However, 

both operations are usually treated separately and not in an integrated manner. Additionally, there 

are works available that relate the characteristics of passengers to their behaviour using discrete 

choice models, such as in the works of Kalakou and Moura (2015); X. Liu, Usher, and Strawderman 

(2014). However, to the best of the author’s knowledge, techniques to find groups of airport 

passengers based on their behaviour have not been applied yet. Consequently, this thesis aims to fill 

in the knowledge gap by developing an integrated framework for segmenting passengers into 

behavioural classes and classifying new observations to these classes. The approach is not entirely 

theoretical as the framework is tested on an actual set of survey data collected at an airport within 

the PASSME project. 

1.3.2 Practical contribution 

The behavioural classification that is to be done in the thesis work will be used to create behavioural 

classes that can be used in the behavioural modelling in PASSME. These behavioural classes will 
allow creating a heterogeneous population in the simulation of a PASSME PDF. This can help 

improving simulation accuracy as each detected passenger is assigned a specific set of behaviour that 

can recreate their behaviour more realistically. 

1.4 Research methodology 

The previous sections have presented the facets of the topic that will be researched. To satisfactorily 

answer the main question and sub-questions of the problem at hand, the research has been split into 

various phases. These phases of the research methodology are explained below. 

1.4.1 Site visits and literature review 

The thesis work has started off with site visits and conversations with involved individuals. These 

activities are mostly focussed on getting acquainted with the process that passengers go through at 
the airport. Additionally, literature has been reviewed with respect to Sensing and Modelling. This 

part of the research hence answers the research sub-questions associated with these blocks. 

Moreover, this part also concerns the processing block as possible techniques for performing 

behavioural classification have been researched. Based on the findings of this part, the requirements 

for the framework for behavioural classification that is to be developed were determined. 

1.4.2 Development of a clustering methodology 

To find groups, or clusters, in passenger behaviour, additional research in literature has been done to 
find techniques that could be appropriate for this goal. One technique has been selected, 

implemented, and tested on an actual data set. 

1.4.3 Development of a classification methodology 

For classification, a similar method has been performed. First, techniques have been researched 
using literature, keeping in mind that the technique should be ‘compatible’ with the clustering 

methodology. One technique was then chosen, implemented, and tested on the same data set, using 

the results from the clustering. 
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1.4.4 Integrating clustering and classification 

During this part of the research, the clustering and classification techniques have been combined into 

one complete framework. This has been applied as a whole on the data set. Additionally, different 

parameters of the framework have been optimized by collecting the results of various ranges of 

parameter values and determining the best result. The implementation of clustering and 

classification answers the research question related to the processing block. 

1.4.5 Formulating conclusions and recommendations 

Based on the previous parts of the research, conclusions and recommendations for further 

improvements are made. Furthermore, limitations of the proposed framework are discussed. 

1.5 Structure of the report 

The subsequent chapters of this report aim to solve the problem and research questions that were 

introduced in this chapter. The structure of these chapters is as shown in figure 1.2. Each chapter of 

the report is visualized as a separate block with several interconnected topics. The light blue blocks 

indicate the main topic of the chapter. The orange strips on the right hand side of the figure indicate 

which of the thesis blocks are the most relevant for the chapter. 

 

Figure 1.2: Structure of the report 

The main topic of chapter 2 is passengers. This chapter focusses on the sensing and modelling block 

of the thesis. For the sensing block, this chapter starts out with the passenger process that departing, 
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transferring, and arriving passengers go through. Next, passenger characteristics and their relation to 

passenger behaviour are discussed based on literature. Sensor data sources and other data sources 

can provide information about passenger characteristics and their passenger process, which are 

discussed next. Lastly, the modelling block is discussed, introducing some principles of behavioural 

models and the levels of passenger behaviour. 

Having addressed the sensing and modelling block in chapter 2, chapter 3 shifts the focus to the 

processing block. The main topic in this chapter is the definition of a framework to find behavioural 

classes and perform classification, based on the types of characteristics set out in chapter 2. The 

framework definition is broken into two main parts: clustering and classification. Clustering divides 

passengers into behavioural classes, while classification creates the rules for assigning passengers to 

such classes. For both methods, various techniques and their characteristics are discussed, along 

with how to assess their performance. Finally both methods are implemented separately and later in 

an integrated manner. The specifics of this integrated application are then discussed.  

Chapter 4 continues with the integrated framework of chapter 3 and still pertains to the processing 

block. The chapter introduces the PASSME data set, which contains passenger characteristics and 

behavioural characteristics. The data are analysed to find possible patterns and correlations in the 

data, based on which an expectation with respect to behavioural classes to be found can be made. 

Next, using the integrated implementation from chapter 3, the clustering and classification are 

applied to the PASSME data set. Because there are several parameters that can be adjusted, the 

results are optimised using a grid search. The optimal results are finally presented in the last part of 

the chapter. 

Chapter 5, the last chapter of the report, takes into account the finding of all previous chapters and 

formulates the findings, conclusions, and recommendations for further research. 

  



7 
 

2 

Passenger Process, Behaviour and Sensors 

The previous chapter has introduced the subject of this thesis and the three conceptual blocks into 

which the topic has been divided. This chapter mostly pertains to the first and last blocks: Sensing 

and Modelling. It thereby aims to provide the background knowledge that is required to be able 
create a methodology for passenger classification. 

The PASSME project, briefly introduced in the previous chapter, aims to improve the passenger 
experience. One of the project’s goals is to develop a new PDF system, as laid out in the work of 

Grosmann (2016). In contrast with currently used PDF systems, the PASSME PDF aims to integrate 

multiple sources of data and use continuous, detailed monitoring of individual passenger’s 

movement. Data about passengers in the terminal are collected and analysed, and a forecast is made. 
This concept is shown in figure 2.1. 

 

Figure 2.1: PASSME PDF and behavioural classification, adapted from Grosmann (2016) 

As shown in the figure, the PDF uses multiple sources of data. An app on passengers’ mobile devices 

can provide information about the passenger to the system. In return, the system can help 
personalise the passenger experience by providing personal advice to the passenger. Sensor data 

from visual sensors such as cameras, or systems such as Wi-Fi tracking, airport data, and airline data 

also provide information about the passenger. All this data is used for the PDF, which creates a 

passenger demand forecast in interaction with the passenger process, which describes the processes 

a passenger goes through. One of the aspects of the PDF is the modelling of passenger behaviour by 

using a behavioural model. This is where the behavioural classification of this thesis comes into play: 

based on the characteristics from the data fed into the PDF, a passenger should be assigned to a 
behavioural class that has a specific behaviour. These behavioural classes are then input to the 

behavioural model of the PDF.  
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This chapter further elaborates on the different aspects of the PDF as displayed in the figure. First, 

the passenger process is discussed in section 2.1. This passenger process encompasses all the 

(mandatory) steps that passengers have to go through from arriving at the terminal until the 

moment of boarding the aircraft. After that, the types of passenger characteristics and their relation 

to behaviour are introduced in section 2.2. Information about these passenger characteristics can be 

collected using various methods, which are introduced in section 2.3. Finally, as the PDF 

encompasses a behavioural model, such models are introduced in section 2.4 in order to shed light 

on the usage of behavioural classes in the PDF. Finally, the chapter ends with section 2.5 , which 

summarizes the finding of the chapter and draws conclusions. 

2.1 The passenger process 

Passengers departing from, arriving or transferring at AAS have to go through a number of 

mandatory steps in the passenger process. Hence, the knowledge about this process can help 

predicting the next activity of a passenger. This is why the passenger process is a valuable source of 

information for a PDF. As such, the passenger process is discussed here. 

Figure 2.2 shows the various steps that are involved in the passenger-centric operations at AAS, 

outlined by the white boxes. Due to European regulations, this passenger process is similar in all 

European airports. However, airports that are not subject to these regulations may have a different 

process than discussed here. Note that each step in the process can only be initiated once the 

previous process has been completed. The three grey boxes indicate the parts of the process that are 

specific to a certain type of passenger: departing, transferring, or arriving. In the remainder of this 

section, these three types of passengers and their process in the terminal will be discussed. Lastly, 

the difference between the process at the airport and similar locations such as train stations is 

discussed. 

 

Figure 2.2: Passenger-centric operations at Schiphol, adapted from Grosmann (2016) 

2.1.1 Departing passengers 

Regarding activities and activity scheduling, departing passengers have the most complicated 

process out of the three types of passengers. This is because there are three main phases during their 
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entire stay in the terminal (X. Liu et al., 2014). These phases are a result of the three main mandatory 

process steps during the passenger trip and the fact that lead times for these process steps are (to a 

certain extent) uncertain to the passenger. During the three phases, indicated by the red boxes in the 

figure, the passenger is free to perform discretionary activities not related to the passenger progress. 

The passenger decides when he will proceed to the next phase. Hence, the length of each phase can 

be designated as behaviour. 

The first of the three phases is the before check-in phase, which is the time period that starts once the 

passenger arrives at the airport and ends once the passenger commences check-in (or baggage drop-

off). Once the passenger has checked in, or in case the passenger has already checked in beforehand 

and has no baggage to drop off, he proceeds to the next main phase. This phase is the before security 

phase, which starts after check-in and ends once the passenger commences the security filter process 

(and passport control process, if applicable). The final phase is the before boarding phase, which 

starts after the security filter process and ends once the passenger starts the boarding phase.  

As mentioned before, these three main phases are separated by mandatory steps in the passenger 

process. During the three phases, passengers can engage in discretionary activities as they please, 

although limited by the time remaining until boarding.  

2.1.2 Arriving passengers 

The process for arriving passengers is much shorter. All passengers arriving at AAS have to go 

through one mandatory passenger process, which is customs. In most cases, the lead time for this 
process is close to zero, given that a passenger has no goods to declare. For some high risk flights, 

elaborate baggage checks are in place, considerably increasing the time needed for customs. 

Passengers from a flight with a non-Schengen origin will also have to go through border control 
before they can reach the baggage reclaim halls. Due to the limited capacity of border control and the 

fact that often multiple non-Schengen flights arrive shortly after each other, the lead time for this 

process can be considerable.  

Analogous to the three main phases for departing passengers introduced in section 2.1.1, the trip of 

arriving passengers in the terminal can be divided into two phases, indicated by the blue boxes in 

figure 2.2. The first phase can be defined as before border control which is the time between 

deplaning and starting the passport control process. The second phase is then the before customs 

phase. This phase starts after passport control and ends once the customs process is started. Note 

that passengers arriving from a flight with a Schengen origin also encounter the before border control 

phase. In their case, however, they do not have to show their passport, but walk through one-way 

doors once entering the baggage reclaim halls. Hence, the transition between these two phases marks 

a point of no return.  

During the before border control phase, discretionary activities are possible, as passengers have 

access to the lounges at AAS. An exception here are so called ‘dirty’ passengers, who arrive from a 

flight that originated from a country with lower security standards compared to European standards 

and are hence regarded as unsafe. Dirty passengers from these flights arrive on a separate pier that 

does not grant access to the lounges. Consequently, these passengers can only directly proceed to 

border control.  

During the before customs phase, passengers reside in the baggage reclaim hall in which only a very 

limited selection of discretionary activities can be undertaken as the amount of amenities is 

intentionally very limited in this part of AAS. Moreover, passengers in this part of their journey are 

mostly focussed on practical activities (such as informing themselves about their transportation 

away from the terminal) and an efficient execution of these activities (Schiphol Group, 2016). 

2.1.3 Transferring passengers 

The process steps that a transferring passenger goes through greatly depend on the properties of its 

arriving and departing flights. A dirty passenger will have to first proceed through a security filter 
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before he can leave his arrival pier and proceed to the lounges. Clean passengers can go to the 

lounges immediately. A passenger transferring between Schengen and non-Schengen flights, or vice 

versa, has to go through border control. 

2.1.4 Distinguishing aspects of the passenger process at airports 

One might argue that the passenger process of passengers in an airport terminal is similar to other 

(passenger) processes and hence the behavioural classification developed in this thesis might just as 

well be applied to other situations, such as behaviour at a large event, or passengers in a train station. 

However, the main difference between pedestrian behaviour in airport terminals and other venues 

such as large events is the fact that the activity set of passengers in the terminal is largely mandatory. 

Whereas pedestrians at a big event can engage in any activity they want, passengers in an airport 

terminal have to go through a mandatory set of process steps. This notion is similar to passengers at 

a train station. Arriving at the station, passengers have to buy a ticket or check in with their public 

transportation card, they have to move towards the platform where their train will arrive and finally 

board the train once it arrives at the platform. However, due to being required to arrive at the airport 

well ahead of flight departure, passengers often have quite some time for other activities apart from 

the rigid mandatory passenger process. 

It hence becomes clear from figure 2.2 that the passenger process is more involved compared to the 

process of train passengers and even more so compared to other venues. However, the rigidity and 

linearity of the passenger process does bring the benefit of making the activities that passengers will 

deploy in the terminal rather predictable. For example, it is certain that a passenger entering the 
queue for the security filter at a certain time will enter the lounge some moments later, depending on 

the current lead time for the security filter. On the other hand, passengers that have a lot of time to 

kill before their flight departs can engage in more discretionary activities, which are more difficult to 
predict. Nevertheless, such information based on the passenger process is very useful for creating 

forecasts and is hence included in PDFs, such as in the PASSME PDF as shown in figure 2.1.  

2.2 Passenger characteristics and behaviour 

The passenger process, discussed in the previous section, has shown that there are several 

mandatory steps for passengers going through an airport terminal, either departing, arriving, or 

transferring. Despite these mandatory steps in the process, the passenger has enough freedom to 

engage in discretionary activities and is free to decide when he proceeds to the next step of the 

process. Choices a passenger makes in this respect can be regarded as behaviour. Additionally, there 

are characteristics unique to the passenger that can be used to predict their behaviour within the 

context of behavioural classification.  

The ensuing two subsections further elaborate on this. First, the definitions for the different types of 

characteristics that describe passengers and their behaviour are introduced. These definitions will be 

used throughout the rest of the report. Second, the relations between passenger characteristics and 

their behaviour are discussed, based on existing literature. From this, it becomes clear how 

passenger characteristics relate to passenger behaviour and, consequently, what this implies for 

behavioural classification. 

2.2.1 Types of characteristics 

In the previous parts of this report, various terms have been used to describe passenger behaviour 

and properties of passengers. When collecting data about passengers, this data can pertain to the 

passenger himself, such as his age or sex. Alternatively, it can pertain to his behaviour, such as the 

amount of time he chooses to spend in an area of the airport. For the sake of clarity, some definitions 

are introduced here. These definitions will be used throughout the rest of the report. We define two 

main types of characteristics: behavioural characteristics and passenger characteristics. Both of these 
characteristic types can be further specified into personal characteristics, process characteristics, 

and trip characteristics. 
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2.2.1.1 Behavioural characteristics and passenger characteristics 

Behavioural characteristics pertain to the behaviour of a passenger. The definition is broad because 

the type of characteristics depends on the implementation in the PDF. Depending on the data used in 

the PDF, examples of such behavioural characteristics can be: walking speed, time spent in airport 

areas, and discretionary activities performed at the airport. In short, behavioural characteristics are 

those characteristics that are to be predicted by the behavioural classification. As such, the 

behavioural characteristics are typical for each behavioural class. 

Passenger characteristics on the other hand describe the passenger himself. In the context of 

behavioural classification, these are the characteristics of a passenger based on which he can be 

placed in a behavioural class. Examples of passenger characteristics could be sociodemographic 

characteristics, flight number, and travel purpose. 

Relating these two types of characteristics to the behavioural classification of this report, the 

following can be noted. When performing behavioural classification, the passenger characteristics of 

a passenger are known based on one or multiple data sources (i.e. sensors, app, airport database, or 

the airline database). Based on these passenger characteristics, a passenger is assigned to a 

behavioural class. This behavioural class represents the typical behaviour of that class, expressed in 

the values of the behavioural characteristics. These behavioural characteristics can then be used in 

the behavioural model of the PDF in order to model the passenger’s behaviour. 

2.2.1.2 Personal characteristics, process characteristics, and trip characteristics 

Both of the aforementioned types of characteristics – passenger characteristics and behavioural 

characteristics – can pertain to various aspects of the passenger. For example: age is a passenger 

characteristic specific to the person. Another example is the flight destination. Although this is 

specific for a certain passenger, it does not say anything about the passenger itself, but rather about 

his trip. As such, the behavioural characteristics and passenger characteristics can be further 

categorised as personal-, process-, and trip characteristics.  

Personal characteristics 

Personal characteristics pertain specifically to one individual. This includes basic information about 

the person, such as age, gender and nationality. However, other information that is not inherently 

connected to the physical individual, such as group composition or carry-on baggage, is also regarded 

as personal characteristics.  

Process characteristics 

Process characteristics are related to the passenger process as described in section 2.1. More 

specifically, characteristics in this category describe the discretionary activities that a passenger has 

engaged in and the time he has spent on these activities.  

Trip characteristics 

Trip characteristics are related to the trip of the passenger from his origin airport to his destination 

airport and the locations at the airport associated with this trip. This includes, among others, gate 

number, airline, and flight number  

2.2.2 Relation between passenger characteristics and behaviour 

The premise of behavioural classification is that passenger characteristics are somehow related to 

the behavioural characteristics of a passenger. As such, the combination of passenger characteristics 

could explain the behavioural characteristics of a passenger. For example, one could intuitively 

expect that experienced travellers try to minimise their time at the airport and hence perform less 

discretionary activities. In order to verify the correctness of this premise, literature regarding 

passenger behaviour at airport has been reviewed. In addition, the information from literature 

allows setting expectations with respect to the results of behavioural classification.  
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In table 2.1, passenger characteristics are related to their behaviour at the airport. The relations 

described in this table are derived from the works of several authors. Their work is briefly described 

in the ensuing paragraphs. 

Table 2.1: Passenger characteristics and their relation to behaviour 

Passenger 
characteristic 

Relation to behaviour Reference 

Age Younger travellers are more likely to shop compared 
to middle aged travellers, who perform more facility 
use activities 

X. Liu et al. (2014) 

Airline type Low-cost airline passengers are less likely to consume 
food or drinks at the airport 

Castillo-Manzano 
and López-
Valpuesta (2013) 

Carry-on baggage The higher the number of carry-on bags, the lower the 
chance of performing dining activities 

X. Liu et al. (2014) 

Check-in method Passengers who have checked in online are less likely 
to perform discretionary activities before the security 
check 

Kalakou and Moura 
(2015) 

Education level Travellers that have a higher education level are more 
like to perform inquiry activities 

X. Liu et al. (2014) 

Gender Males are more likely to perform inquiry activities 
Females are more likely to perform shopping 
activities 

X. Liu et al. (2014) 

Group composition Single travellers are less likely to shop, while 
travellers with children are less likely to engage in 
dining, shopping and facility use activities 

X. Liu et al. (2014) 

Non-business travellers travelling in a group have a 
larger arrival time safety margin compared to 
individual non-business travellers 

Tam, Lam, and Lo 
(2008) 

Passengers travelling in groups are more likely to 
engage in dining activities 

Castillo-Manzano 
and López-
Valpuesta (2013) 

Passengers travelling in groups that include children 
are less likely to engage in dining activities 

Castillo-Manzano 
and López-
Valpuesta (2013) 

Income High-income travellers are more likely to engage in 
shopping and dining activities 

X. Liu et al. (2014) 

Place of residence/ 
travel destination/ 
travelling company 

Passengers who do not live in the city of the airport, 
are travelling to an international destination, and 
arrive at the airport accompanied by non-travellers, 
are more likely to perform discretionary activities 
before the security check 

Kalakou and Moura 
(2015) 

Total time at the 
airport 

A higher total time at the airport increases the 
likelihood of food or drinks consumption 

Castillo-Manzano 
and López-
Valpuesta (2013) 

The time spent at the airport and consumption by 
passengers are positively correlated 

Torres, Domínguez, 
Valdés, and Aza 
(2005) 

Travel class Economy class travellers have a longer waiting time in 
each of the three time phases than business class 
travellers 

X. Liu et al. (2014) 

Travel destination Intercontinental passengers are more likely to 
consume food or drinks 

Castillo-Manzano 
and López-
Valpuesta (2013) 

Travel experience Frequent travellers are less likely to shop at the X. Liu et al. (2014) 
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 airport 
Frequent travellers and travellers who have planned 
their activities at the airport beforehand are less likely 
to perform discretionary activities before the security 
check 

Kalakou and Moura 
(2015) 

Travel purpose Business travellers are less likely to perform 
discretionary activities before the security check 

Kalakou and Moura 
(2015) 

Business passengers account for a larger safety 
margin when travelling to the airport by bus or taxi, 
compared to non-business travellers 

Tam et al. (2008) 

 

X. Liu et al. (2014) describe five types of discretionary activities: inquiry, dine, shop, wait, and facility 

use. These types of activity were used in a nested logit choice model that predicts passenger activity 

scheduling behaviour based on passenger characteristics. The authors looked only at departing 

passengers and distinguished three time periods, as presented in section 2.1.1. The authors drew 

several interesting conclusions with respect to the relation between passenger characteristics and 

behaviour, as shown in table 2.1.  

Kalakou and Moura (2015) constructed a discrete choice model for behaviour of departing 

passengers before the security filters, based on survey data collected at Lisbon Portela airport. Tam 

et al. (2008) modelled passenger behaviour based on stated and revealed preference for the situation 

of Hong Kong International Airport. They modelled access mode choice and arrival safety margin 
choice, which is the extra time passengers allow between their preferred arrival time at the terminal 

and the expected arrival time for their chosen access mode.  

Also referenced in table 2.1 is the work of Castillo-Manzano and López-Valpuesta (2013), who 
researched the behaviour of passengers with respect to catering facilities at airports, based on 

surveys at eight different airports, yielding a sample of as many as 37,000 passengers. They 

concluded that eating and drinking are the most-performed discretionary activities at airports. The 

primary motivator for these activities is waiting time. Furthermore, as many as 22 variables with 

respect to passengers and their trip were found to be significantly related to the likelihood of 

consuming food or drinks. Seventeen of these variables were even significant at the 1% level. 

Apart from the effect of personal characteristics, the airport itself also has an effect on passenger 

behaviour. In large airports, travellers are less likely to wait before checking in and perform 

discretionary activities instead. Additionally, at small airports, travellers are less likely to perform 

shopping activities, although this may be because there are few shopping facilities present in any 

case (X. Liu et al., 2014). Additionally, numerous studies have found moderating effects of time-

pressure on shopping behaviour (Lin & Chen, 2013). Conversely, the time spent in an airport and the 
consumption by passengers are positively correlated (Torres et al., 2005).  

As shown in the previous paragraphs, there are several established relations between passenger 

characteristics and passenger behaviour. However, it should be noted that all referenced works used 

surveys. Consequently, it should be taken into account that not all passenger characteristics 

mentioned in table 2.1 can be acquired within the context of an operational PDF, i.e. using the 

information sources as shown at the start of this chapter in figure 2.1. For example, it is not possible 
to acquire a person’s education level or income without specifically asking this person.  

Although the several references that have been used mostly researched different passenger 

characteristics, there is some overlap between them. For these characteristics, it can be noted that 

the different sources mostly agree: 

 Group travellers are more likely to engage in dining activities, except for groups with 

children. 

 Experienced travellers are less likely to perform discretionary activities. 
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 Business travellers perform fewer activities before the security check and have a larger 

arrival safety margin; for these passengers it is valuable to not miss their flight. 

 Passengers spending more time at the airport are more likely to consume food or drinks. 

Overall, it can be noted that, out of all characteristics, group composition influences the most aspects 

of behaviour. This characteristic is related to behaviour regarding shopping, dining, performing non-

discretionary activities, and the time spent in various areas of the airport. As such, this behavioural 

characteristic could be important to have available for behavioural classification. However, also the 

other passenger characteristics shown in table 2.1 should ideally be available for behavioural 

classification as they have a relation to one or more aspects of passenger behaviour. 

2.3 Collecting passenger data 

The first sections of this chapter have discussed the passenger process and the relations between 

passenger characteristics and passenger behaviour. The terms ‘behavioural characteristic’ and 

‘passenger characteristic’ have been introduced, indicating the different aspects of a passenger and 

his behaviour in relation to behavioural classification. Based on literature, the relations between 

several of these two types of characteristics have been shown. Because of their shown relation, such 

characteristics should be available for behavioural classification. However, some of the 

characteristics mentioned in section 2.2 can only be obtained by means of surveys, which would not 

be practical in an actual implementation of behavioural classification in combination with a PDF. 
Moreover, the set of characteristics of the previous section is non-exhaustive; several other 

characteristics could be useful for behavioural classification.  

As such, this section introduces several other characteristics, and the data sources that can be used to 

acquire these characteristics. The remainder of this section is divided into two subsections. The first 

subsection gives a general overview of passenger data collection methods and other data sources, 

ranging from tracking of mobile devices to acquiring data from the airline database. This gives an 

idea about how various characteristics can be collected. The second subsection introduces a number 

of characteristics and relates them to a specific data source, focussed on the case of AAS.  

2.3.1 Passenger data collection methods and other data sources 

In order to be able to segment passengers into different behavioural classes, data about their 

behaviour and characteristics have to be available. This subsection introduces various methods that 

can be used to collect data about such characteristics. This includes currently existing and proven 

methods, as well as methods that are still being developed.  

Pedestrian data collection can be divided into four main data collection methods (Millonig, Brändle, 

Ray, Bauer, & van der Spek, 2009): Position Determination Technologies (PDT), video-based data 

collection, observations, and surveying. PDT can be used to determine the position of individuals, 

which can provide valuable information about their location and activities in the terminal and the 

amount of time they spent at these locations. Video-based data collection uses video footage from 
cameras to determine characteristics about the motion of people and their individual attributes. 

Observations and surveying are offline and manual methods that are most suitable to provide 

information about the decision process and factors influencing these decisions. In addition to these 
four main data collection methods, other sources of data collection specific to the airport are also 

discussed. Fitting with the concept of the PASSME PDF as presented in figure 2.1, these are the airline 

database, airport database, and mobile app. 

2.3.1.1 Position Determination Technologies (PDT) 

Position determination technologies (PDT) is a general term for technologies that can provide the 

location of an object or person. There are several traditional PDTs, such as GNSS or cell-based 

positioning. Additionally, there are newer techniques such as position determination based on 

Bluetooth or Wi-Fi signals. These are especially interesting due to the high increase in the percentage 

of smartphone owners worldwide in the last couple of years (Poushter, 2016). In the ensuing, the 
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aforementioned PDTs are further elaborated on with respect to their usability in an airport 

environment. 

Satellite and cell-based positioning 

One of the best known PDTs is probably Global Navigation Satellite Systems (GNSS). GNSS is based on 

a system of non-geostationary satellites that broadcast a signal. There are a few of these satellite 

systems in place, of which the American GPS is the best known. Additionally, there is the European 

GALILEO and the Russian GLONASS system. GNSS receivers compute their location based on the 

signals they receive from the satellites. This signal is one-way; hence there is no communication 

between the receiver and the satellite. As a result, only the receiver is aware of its location. Major 

benefits of GNSS are the fact that they are free to use and that GPS-devices are relatively low-cost. 

Position determination is high frequency and quite accurate in good conditions. However, signal 

obstructions are detrimental to the performance. This means that GNSS is not suitable for indoor use 

(Harle, 2013; H. Liu, Darabi, Banerjee, & Liu, 2007; Millonig et al., 2009).  

Another PDT is cell-based positioning, which is based on mobile telecommunication networks. This 

technique determines location based on the antennas that the mobile device is connected to. The 

technique is suitable for indoor use such as in an airport terminal. However, in this case the 

resolution is quite low. On top of that, data collection can be done client-side or server-based. In the 

first case, the client-device determines its location and is thus not directly available to the researcher. 
In the case of server-based collection, the cell network provider determines the location of the 

connected devices. In this case, however, privacy is a concern that should be addressed (Millonig et 

al., 2009). Generally, the accuracy of cell-based positioning is low (H. Liu et al., 2007), although there 
are examples of increasing accuracy by deploying base stations inside buildings (Otsason, 

Varshavsky, LaMarca, & De Lara, 2005). 

RF-positioning 

Bluetooth, a short distance radio communication technology, can also be used as a means for position 

determination. Bluetooth tracking is based on the tracking of the unique MAC address of the device. 

This tracking can be done in two ways; actively or passively. With passive tracking, a fixed network of 

Bluetooth devices scans for other Bluetooth devices in the vicinity. Found Bluetooth devices are 

registered, yielding the approximate location. Active tracking works the other way around; the client 

device scans for a network of Bluetooth beacons. Based on the scanned devices and the information 

about the network infrastructure, the client device determines its location. Similar to the case of 

client-side cell-based positioning, the position data is not directly available to the researcher, unless 

explicitly shared. Position determination using Bluetooth is relatively accurate, with an accuracy of 
five to ten metres (Millonig et al., 2009). Specific implementations of Bluetooth tracking even 

mention accuracies better than five metres (H. Liu et al., 2007). Due to its dependence on a network 

of devices, this position determination technology is suitable to use indoors. A downside of this 

method is the fact passengers need to have Bluetooth enabled. It turns out that the percentage of 

people that have this is as small as 5% (Millonig et al., 2009). More recent studies, however, mention 

much higher numbers, such as 34% in the case of supermarket shoppers (Phua, Page, & Bogomolova, 

2015). 

Wi-Fi tracking is a technique similar to Bluetooth tracking. This technique also relies on a network of 

sensors and the registration of MAC addresses and determines the position of the Wi-Fi device based 

on the trilateration of the time of arrival of the signal (Vorst et al., 2008). The accuracy of this system 

again depends on the network, but an accuracy of up to three metres can be expected (H. Liu et al., 

2007; Vorst et al., 2008).  

Another possibility for RF-positioning is radio frequency identification (RFID). This technology relies 

on RFID tags that have to be carried by the subject. These tags can be either passive or active 
(Millonig et al., 2009). Active RFID tags are powered by a power source and emit a signal. Similar to 

Wi-Fi and Bluetooth tracking, this signal can be picked up by a network of RFID readers.  Based on 
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the strength of the received signal, the location of the tag can be determined via trilateration. Passive 

RFID tags are powered by the signal from the RFID reader, which means that the range between the 

tag and the reader is very limited. Another approach presented by Vorst et al. (2008) equips the 

subject with an RFID reader and places stationary RFID transponders with a known location in the 

environment. The location is then determined using a particle filter. The authors report an accuracy 

of about 0.4 metres (Vorst et al., 2008), while the aforementioned passive and active RFID tracking 

have an accuracy of respectively a few centimetres and approximately 10-100 metres (H. Liu et al., 

2007; Millonig et al., 2009). However, in any case a major limitation of this method remains the fact 

that subjects have to be equipped with a specific device to be traceable.  

2.3.1.2 Video-based data collection 

Imagery from video cameras can provide a lot of information about crowds. Computer vision 

techniques are employed to extract information from these images, given that the camera setup is 

appropriate. There are three main types of information that are extracted from video (Millonig et al., 

2009; Zhan, Monekosso, Remagnino, Velastin, & Xu, 2008): crowd density, recognition and tracking.  

Crowd density measurement can count the number of people in a specific scene, and consequently 

estimate the density in that scene. Density measurement techniques are divided in three groups 

(Silveira Jacques Junior, Musse, & Jung, 2010): pixel-based analysis, texture-based analysis and object 

level analysis.  

Recognition techniques recognise individuals in scene. Current commercial implementations of facial 

recognition are even able to perform advanced facial analysis, yielding detailed individual 
information, such as mood, age, sex, ethnicity and clothing style (Sightcorp, n.d.). 

Tracking of individuals relies on the recognition of individuals within the image across multiple time 

instances. Often, computer vision techniques are enhanced with a model to help predict the 

movement of individuals (Zhan et al., 2008). Other techniques in literature are able to detect groups 

and human interaction (Tran, Gala, Kakadiaris, & Shah, 2014), or detect specific objects in a scene 

(Hu, Tan, Wang, & Maybank, 2004). Zaki and Sayed (2014) present a method for automated walking 

gait analysis that is able to estimate individual pedestrian’s age category and gender.  

3D vision techniques such as LIDAR can provide more detailed information about the environment 

and objects with respect to distances, increasing tracking accuracies. Techniques like these scan the 

environment and determine the distance to objects and the environment, resulting in a point cloud.  

2.3.1.3 Manual observations and survey techniques 

Apart from sensors and other devices to collect pedestrian data, data can also be collected by hand. 

Methods like this include observations and survey techniques. Obviously, these methods are not 
suitable to use directly as an input in a passenger demand forecast system as this data is not real-

time. However, the available methods are mentioned here as they can be useful to acquire an initial 

data set based on which a preliminary classification can be made.  

Observations 

The first manual method is observation. With observation, a subject is followed and his behaviour is 

observed. Millonig et al. (2009) distinguish three main types of interest for pedestrian data 

collection. First, direct (reactive) observation in which the observer identifies himself and the goal of 

his observations. The second type is unobtrusive observation in which the observer does not 

introduce himself to the studied subject. The subject is unaware that it is being observed, hence 

reducing the risk of the subject altering his behaviour. This type of observation can be done on-site, 

but can also be based on video recordings. The third type is participatory observation. With this type 

of observation, the observer participates in the phenomenon that is being observed, giving him a 

closer look. Observations are generally regarded as most suitable for explorative and descriptive 

research due to its flexible nature.  
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Survey techniques 

Survey techniques are the second manual method. According to Millonig et al. (2009), survey studies 

are one of the most important data sources for research with respect to influence factors on human 

route decision making. Using survey techniques, subjects can be asked about their behaviour. 

However, respondents tend to idealize themselves when asked to participate in a survey, hence 

always leading to a certain degree of inaccuracy. Millonig et al. (2009) differentiate three main 

survey techniques: questionnaires, interviews and trip diaries. Questionnaires can easily be 

distributed amongst a large number and hence lead to a relatively large standardised data set. 

However, the quality of the data can fluctuate as participants can interpret questions differently, or if 

the given answering options do not properly reflect the participants’ opinions. Lastly, the answering 

options can also influence the participants’ response (Millonig et al., 2009).  

The second technique, interviews, can be conducted in either a structured or non-structured fashion. 

In the first case, the interview questions are standardised for each interview. In the latter case, the 

questions are not standardised. Interviews yield highly detailed responses, but the sample size is 

generally rather low due to the method being quite time intensive. Additionally, processing 

interviews is quite involved as it requires categorisation of the responses. 

Trip diaries contain the activities, location and duration of the behaviour of the participant. 

Participants fill in these diaries themselves, either as a recall diary, or as a self-administered diary. 
Recall diaries are made ex post and consequently rely on the memory of the subject. Self-

administered diaries, on the other hand, are filled in real-time. Both methods require a lot of effort of 

the participant and can give results of varying quality (Millonig et al., 2009).  

2.3.1.4 Airline database 

Airlines store their booking information in their own data systems. Hence, this database contains 

information about the name of a passenger, and their complete travel itinerary. In addition, a lot of 

airlines offer loyalty programs that could provide additional personal characteristics of the 

passenger, such as age and gender. As such, the airline database could theoretically provide a lot of 

personal and trip passenger characteristics. 

2.3.1.5 Airport database 

The airport database contains operational information with respect to flights. This includes 

departure time, departure gate, check-in desks et cetera. Hence, the airport database mostly contains 

operational information.  

2.3.1.6 Mobile app 

An airport app, such as the one for AAS, provides passengers with information about their flight and 

the airport amenities. This way, travellers can easily gather information on their mobile device. The 

Schiphol app also offers position determination. An airport app like this could be enhanced to let the 

passenger opt-in to share their location and personal characteristics.  

2.3.2 Data sources at AAS and data fusion 

In subsection 2.2.2, various passenger characteristics have been introduced that have a proven 

relation with passenger behaviour. Such characteristics should hence be available. However, there 

are many more characteristics that are not discussed in literature, but which could be used for 

behavioural classification. Therefore, an extensive overview of 37 passenger and behavioural 

characteristics has been compiled. Due to its large size, spanning multiple pages, it has been included 

in Appendix A.  However, hereafter the contents of the overview are described on a global level.  

For each characteristic in the overview, the following information is given: 

 Type of characteristic indicates whether the characteristic is a passenger characteristics or 

a behavioural characteristic. 
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 Category of characteristic gives the category of the characteristic (according to the 

definition of section 2.2.1.2), which can be personal, process, or trip. 

 Value indicates the type of value of the characteristic; i.e. categorical or numerical. 

 Data source indicates what the source for the characteristic could be, based on the 

technologies mentioned in the previous subsection. It is also indicated whether the source is 

presently available, could possibly be implemented at AAS, or is still in development as a 

technology. In addition, it is indicated if the information from the data source is linked to a 

specific passenger, or if it is not linked to a specific passenger and hence some sort of data 

fusion is required to be able to do so. 

 Comments further clarify what has been indicated in the data source columns. 

Out of the total of 37 characteristics, eight are behavioural characteristics. Some examples of these 

are walking speed, activities engaged in the terminal, and the time spent in each step of the 

passenger process. The remaining 29 characteristics are passenger characteristics. Examples of these 

are the age, sex, nationality group composition, and the type of carry-on baggage (if any).  

For some characteristics, there are already systems in place at AAS that could provide such 

information. One of such systems is Bliptrack, which is an RF-positioning system that uses the Wi-Fi 

and Bluetooth signals of passengers’ devices to track them through the terminal. Although this could 

theoretically supply quite detailed location information, the current implementation of the system is 

focussed on lead time prediction and the resolution is hence quite low. Another example of such as 
system is the Self-Service Boarding Pass Check (SSBPC). At the SSBPC, passengers scan their 

boarding pass in order to get access to the security filters. The SSBPC can provide information about 

the time a specific passenger has entered the security process and information related to the 

boarding pass such as the name of the passenger, his flight, gate number, et cetera. 

For some of the passenger characteristics mentioned in the appendix, subsection 2.2.2 has already 

shown that these are related to passenger behaviour and should therefore be available for 
behavioural classification. However, although for the remaining characteristics there is as of yet no 

proven relation between the characteristic and passenger behaviour, these should ideally be 

available for behavioural classification as this maximizes the amount of information used in the 

behavioural classification. Based on the importance of the characteristics in the classification results, 

it can be decided if these characteristics are indeed necessary for classification. 

Out of the 37 characteristics, 27 could be acquired using a current source of data. In spite of this, 

there are two main challenges to be overcome. First, the mentioned sources of data are not coupled. 

Let us illustrate this with an example. Passenger X checks in at a check-in desk. Now, the airline 

database ‘knows’ when X has checked in, his amount of baggage, flight number et cetera. Before X 
checked in, his phone has already been registered at multiple Bliptrack beacons. However, while the 

airline database has X’s name and certain characteristics, the Bliptrack system registers X’s device 

identification and certain characteristics. The system does not register that X’s device actually 

belongs to passenger X. Hence, both systems provide characteristics about the passenger, but one is 

related to the passenger’s name, and the other to the passenger’s device. Consequently, the challenge 

is to combine these two. This example can also be related to the other data sources that have been 

mentioned. As such, it can be concluded that data fusion of such sources presents a challenge. A data 

set following from such data fusion will lead to a very extensive overview of passenger and 

behavioural characteristics on an individual level. The privacy of the passenger should thus be 

insured, for example by anonymizing the data. Privacy is hence the second challenge.  

2.4 Passenger behavioural models 

The result of behavioural classification of this report is to be used in the behavioural model of the 

PASSME passenger demand forecasting system. Though the specifics of this model are not clear yet, it 
is to be based on pedestrian behavioural models. Therefore, a brief overview of such models is given 

in this section. 
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2.4.1 Terminology 

From literature about pedestrian behavioural models, it becomes apparent that there are multiple 

terms used to refer to models that attempt to recreate pedestrian behaviour. Terms such as ‘crowd 

simulation’, ‘pedestrian simulation’, ‘pedestrian behaviour model’, ‘behaviour modelling’, ‘crowd 

behaviour model’ and ‘crowd dynamics model’ are commonly used in literature. Furthermore, the 

use of the word ‘crowd’ is also subject to different interpretations (Duives, Daamen, & Hoogendoorn, 

2013), some referring to at least two individuals, others referring to thousands of individuals. Ali, 

Nishino, Manocha, and Shah (2013) define it as “any collection of individuals or pedestrians where 

behaviour of one individual is influenced by the other”. The chosen term is usually not related to the 

type of modelling that has been chosen, although authors using ‘pedestrian behaviour’ or a similar 

term generally describe agent-based models that are focussed on recreating pedestrian behaviour 

rather than crowd phenomena.  

In this report, the term ‘behavioural model’ is used to indicate models that model any type of 

pedestrian-, or, in this case, passenger behaviour. This behaviour can be on any level; strategic, 

tactical or operational.  

2.4.2 Levels of pedestrian behaviour 

Literature on behavioural modelling generally defines three levels of pedestrian behaviour (Daamen, 

2004; Hoogendoorn, 2001; Hoogendoorn & Bovy, 2004). An overview of these levels is given in figure 

2.3. A combination of the three interacting levels of behaviour in a single model would provide a 

model that covers the entire scope of pedestrian behaviour. Nevertheless, the scope of many models 

in literature is on specific cases such as evacuation scenarios or the recreation of crowd phenomena, 
which both often focus only on the operational aspect of behaviour. Consequently, the focus of these 

models is on the tactical and operational level. In these cases, the strategic level is regarded as an 

input to the model, rather than as a part of the model itself (Abdelghany, Abdelghany, & Mahmassani, 

2016; Daamen, 2004; Hoogendoorn & Bovy, 2004). 

2.4.2.1 Strategic level 

The first and highest level is the strategic level. On this level, a set of activities is chosen and ordered. 

This set of activities contains discretionary and mandatory events. In the case of Schiphol, a 

discretionary event could be buying a coffee, while an example of a mandatory event is passing the 

security filter. A part of the activity set has been formed a priori, i.e. before the pedestrian has 

entered the terminal. However, certain activities can also be added to the activity set based on the 

strategic level, e.g. deciding to buy a coffee when there is time left to do so. Though there are models 

available that include the strategic level, not much work is directly related to pedestrians. 

Additionally, in behavioural models, the strategic level is often regarded as exogenous to the model. 
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Figure 2.3: Levels of pedestrian behaviour 

2.4.2.2 Tactical level 

The second level is the tactical level. This level pertains to the short-term decision of passengers. 
Based on the activity set from the strategic level, activities are scheduled and the activity location is 

chosen (Hoogendoorn, 2001). The route to these activities is also chosen at this level. Activities in the 

activity set may be reordered or removed 

The input from the strategic level, i.e. the set of chosen activities, has to be scheduled on the tactical 

level. This (ordered) list of activities, containing discretionary and mandatory events, will be ordered 

based on the amount of time available. Discretionary events may be removed from the set if there is 

not enough time available to perform this activity (Daamen, 2004).Furthermore, activities may be 

added, should the activities in the activity list not fulfil the time available to the passenger. In 

addition to the activity, the location of the activity is also chosen.  

During route choice, a path towards the chosen goal has to be chosen. Various methods can be used 

to generate route choice sets, see for example (Ali et al., 2013). Based on the generated choice set, a 

route is chosen, often using either a probit or logit model (Daamen, 2004).  

2.4.2.3 Operational level 

The third level is the operational level, which contains walking behaviour. Behaviours involved in 

this level include movements towards the goal defined on the tactical level, collision avoidance with 

other pedestrians or static objects such as walls. 

2.4.3 Types of behavioural models 

Behavioural models consist of three main categories: macroscopic models, mesoscopic models and 

microscopic models (Daamen, 2004), though these categories mainly apply to the models on the 

operational and tactical level. Microscopic models model crowds as discrete individuals that behave 

and interact according to their own behavioural rules (Zhan et al., 2008). The behaviour of the crowd 

as a whole is hence the result of all individuals in the model. Conversely, the crowd is modelled as a 

whole and represented as a density in macroscopic models (Schadschneider, Klüpfel, Kretz, Rogsch, 

& Seyfried, 2009). Crowds are often modelled flow-based or particle-based, respectively adhering to 

fluid dynamics laws or physical laws (Kountouriotis, Thomopoulos, & Papelis, 2014; Schadschneider 

et al., 2009). Mesoscopic models combine microscopic and macroscopic properties and are based on 

a statistical distribution of the states of pedestrians in the model (Cristiani, Piccoli, & Tosin, 2014).  

• Activity set choice 
• Departure time choice 

Strategic 

• Activity scheduling 
• Activity location choice 
• Route choice 

Tactical 

• Walking behaviour 
• Collision avoidance 
• Activity performance 

Operational 



21 
 

A special category of microscopic models are agent-based models. The envisioned PASSME PDF will 

use an agent-based model. In such models, each pedestrian is modelled as an individual agent. These 

agents each possess certain characteristics, such as top speed, acceleration, and how inclined they 

are to follow others. Agents behave and interact according to their characteristics and the governing 

rules of the model. An agent-based model can either have a homogeneous or heterogeneous 

population. In case of a homogeneous population, each agent in the model has the same properties. In 

a heterogeneous population, agents have different properties. This means that agents react 

differently, for instance because they have a different desired following distance, or because an agent 

is a follower rather than a leader. Hence, a behavioural classification methodology such as developed 

in this thesis could be used to populate an agent-based model with a heterogeneous population. 

2.4.4 Implications for behavioural classification 

As mentioned before, the behavioural classes resulting from behavioural classification form the input 

for a behavioural model. Consequently, the type of behavioural model imposes requirements on the 

output. This means that the input parameters for the model that are desired should be available for 

classification. Following the definition of characteristics from 2.2.1, these input parameters are hence 

the behavioural characteristics. Classes resulting from behavioural classification each have specific 

values for the behavioural characteristics. A passenger modelled in the behavioural model is then 

given the model input parameters corresponding to the behavioural class he was assigned to. 

2.5 Chapter conclusion 

In this chapter, the context of behavioural classification has been further explained. It has been 

shown that, as part of the PASSME project, a new PDF-system is being developed that combines data 

from multiple sources of (sensor) data. Based on this data, and the passenger process, a demand 

forecast is made. The behavioural classification of this thesis forms the input for the behavioural 

model of the PDF. The different aspects of the PDF have been discussed in this chapter: the passenger 
process, characteristics and their relation to passenger behaviour, sources of passenger data, and 

behavioural models. 

With respect to the passenger process, the different processes for departing, transferring and 

arriving passengers have been shown. Although the passenger process is quite rigid, including 

several points of no return, passengers often have enough time to perform other optional activities. 

Based on the differences between the processes of the three types of passengers, it can be concluded 

that these three types should be treated separately. 

Two important definitions regarding the characteristics of passengers have been presented. The first 

is behavioural characteristics; these describe the behaviour of the passenger and form the input of a 

behavioural model in the PDF. Behavioural characteristics are those characteristics that follow from 

the behavioural classification. Each behavioural class has its own values for the behavioural 

characteristics. The second definition is passenger characteristics; these are the characteristics that 

describe the passenger. These are collected using various (sensor) data sources. Based on their 

passenger characteristics, a passenger is assigned to a behavioural class. 

Literature has shown that there are several established relations between passenger characteristics 

and behaviour. For fourteen passenger characteristics, it has been shown that these are related to 

one or more aspects of behaviour: activities performed at the airport, likelihood of consumption of 

food or drinks, time spent in the different phases of the passenger process, and time margin with 

respect to the arrival time at the airport. Because these characteristics are related to behaviour these 

should preferably be available for behavioural classification. 

In addition to the passenger characteristics for which a relation with behavioural characteristics has 

been established, there are many more possible characteristics that could be used. An overview of 37 
possible characteristics with their associated possible data source, based on the case of AAS, has been 

presented. This has introduced two challenges with respect to the collection of passenger and 
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behavioural characteristics in an airport environment. First, while there are many possible sources of 

data in an airport environment, these sources are mostly unrelated. This means that data fusion is 

necessary in order to combine the data sources so that data is available on an individual level. The 

second challenge is assuring privacy, as collecting such a detailed set of data on an individual level 

can compromise passenger privacy. 

The PASSME PDF encompasses a behavioural model, for which the behavioural classes should form 

the input. As the specifics of this behavioural model are not yet determined, some main principles of 

behavioural models have been presented. Roughly, passenger behaviour can be segmented into three 

levels: strategic, tactical, and operational. On the strategic level activities are chosen. On the tactical 

levels, activities are (re-)ordered and the route to these activities is chosen. The operational level 

mainly pertains to walking behaviour, such as collision avoidance. Addressing the sub-question for 

the modelling block of the thesis, it can be concluded that a behavioural classification could interface 

with any of the three levels of behaviour, as long as data with behavioural characteristics for these 

levels are available. Based on these behavioural characteristics, behavioural classes can be made, 

which may be used in a behavioural model. Then, ‘new’ passengers may be classified to one of the 

behavioural classes based on their passenger characteristics.  

In the next chapter, a framework for behavioural classification will be introduced. This framework is 

based on the information as set out in this chapter. It classifies passengers into behavioural classes 

based on their passenger characteristics. The classes that follow from the classification carry 

behavioural characteristics specific to that class. For the framework, it is assumed that a data set 

containing passenger and behavioural characteristics based on the data sources as mentioned in this 

chapter is available.  
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3 

Clustering and Classification Framework 

In the previous chapter, various aspects of passengers, passenger behaviour, and the passenger 

process have been discussed. Additionally, methods for data collection with respect to the 

behavioural and personal characteristics of passengers have been discussed. Furthermore, an 
overview of various pedestrian behaviour models has been given.  

While the previous chapter focussed on the sensing and modelling blocks, this chapter shifts the 
focus to the processing block. It introduces and tests the framework that will segment passengers 

into behavioural classes and establish rules to classify new observations to a specific behavioural 

class. This framework consists of two parts. The first part creates the behavioural classes based on 

behaviour. The second part creates the classifier that can classify passenger into one of the 
behavioural classes. For both of these parts, several possible techniques that could be used will be 

discussed, and one of these techniques is chosen and implemented. The techniques chosen for both 

parts are implemented. This integrated framework will then be used on a real data set in chapter 4, 

which will provide some insight into the possible performance of the framework. 

This chapter is structured as follows. The chapter starts with section 3.1, wherein the requirements 

for the framework are set out. Section 3.2 then presents the overall framework. The subsequent 

sections 3.3 and 3.4 further elaborate on the two parts of the framework: clustering and 

classification. Section 3.5 discusses the integration of these two main parts and presents the 

implemented process as a whole. The chapter ends with a conclusion in section 3.6. 

3.1 Framework and data requirements 

The previous chapter has introduced various aspects related to the different parts of the PASSME 

PDF-system. The passenger process, various sources of data, behavioural models, and the difference 

between passenger attributes and behavioural attributes were discussed. Based on this information, 

a framework for behavioural classification will be introduced later in this chapter. This framework 

performs two tasks. First, it segments passenger behaviour into, and thereby defines, behavioural 

classes. Second, it establishes classification rules to assign passengers to such a behavioural class. 

The framework is aimed at using (sensor) data as input. The output of the framework is aimed at 

usage in a behavioural model (of the PASSME PDF). Because of this, there are certain requirements to 

be set with respect to the inputs and outputs of the model. Additionally, a certain performance for 

behavioural classification is required. All of these requirements will be discussed in the ensuing 

subsections. 
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3.1.1 Framework input 

The input for the framework is data about passengers. To be able to create a classification, both of the 

two types of characteristics introduced in section 2.2.1.1 are required in the data: passenger 

characteristics and behavioural characteristics. The framework should use the behavioural 

characteristics to form behavioural classes. The passenger characteristics should be used to assign 

passengers to a behavioural class. Based on the various types of possible input data, the framework 

should be able to handle both categorical and numerical variable types.  

Because the behavioural classification is on an individual basis, the data provided to the framework 

should be formatted on an individual basis. This means that every object in the data represents an 

individual passenger. To train the framework, both passenger characteristics and behavioural 

characteristics have to be available. From an operational viewpoint, this means that both types of 

data should be collected using sensors or other data sources, such as mentioned in section 2.3. This 

data should then be aggregated into a data set that contains many observed passengers. Once the 

framework has been trained using the aggregated training data, newly observed passengers should 

be classified solely based on their passenger attributes. 

3.1.2 Framework output 

The framework should have two main outputs. First, it should output a classifier that can assign 

passengers to a behavioural class. Second, it should output the characteristics of each behavioural 

class. These class characteristics are the typical values of the behavioural attributes of each 

behavioural class. The attributes in the behavioural classes depend on the types of attributes that 

have been used as input to the framework. As such, the behavioural parameters that are desired in 
the outputted behavioural classes should also be available as input to the model. Furthermore, it is 

important to be able to assess the performance of both the behavioural classes that are formed and 

the subsequent classification. Performance metrics that reflect this performance are hence needed. 

3.1.3 Framework performance 

When used with actual data, the performance of the framework should be assessed in order to 

determine whether the results of behavioural classification are satisfactory. With respect to the 

behavioural classes, it should be tested whether there are indeed classes present in the data. As such 

the performance in case of more than one class should be better than the performance of a case with 

one class, which indicates that there are indeed classes in the data. 

Furthermore, classification also requires a certain performance threshold. However, such a threshold 

is hard to define as the performance that can be acquired greatly depends on the type of data used. 

There are various performance measures available for classification, each representing different 

aspects of the performance. Even though this limits the ability to set a specific performance 
requirement, it can be said that the performance of the framework should at least be higher than the 

performance that would have been achieved by randomly assigning passengers to a behavioural 

class.  

3.1.4 Requirements summary 

Summarizing the requirements of the framework with respect to data input, output, and framework 

performance, yields the following list of requirements: 

Framework input: 

 The framework requires and uses behavioural attributes and passenger attributes. 

 Data used in the framework contains information per individual passenger. 

 The framework should be suitable for categorical and numerical attributes. 

 Behavioural classes are formed based on the behavioural attributes in the data. 

 Classification rules are formed based on the passenger attributes. 
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 In order to train the framework (i.e. creating the behavioural classes), passenger attributes 

as well as behavioural attributes are to be provided. Once trained, the framework should 

classify passengers solely based on their passenger characteristics. 

Framework output: 

 The framework should have two main outputs: 

o The characteristics of each behavioural class. 

o A classifier to assign passengers to a behavioural class. 

 Attributes present in the behavioural classes also have to be available as input to the 

framework. 

 Performance metrics that allow validation of the behavioural classes and the classification 

are required. 

Framework performance: 

 There should indeed be classes present in the data, i.e., the performance of using more than 

one class should be higher than using just one class. 

 The classification performance should at least be better than the performance that would be 

achieved by randomly assigning passengers to a behavioural class. 

3.2 The passenger clustering and classification framework 

Based on the requirements laid out in section 3.1, a framework for behavioural classification has 

been designed. The framework receives passenger characteristics and behavioural characteristics 
and performs two main tasks: 

1. Clustering: Based on the behavioural characteristics of passengers, behavioural classes are 
formed. 

2. Classification: Based on the passenger characteristics of passengers, passengers are 

assigned to a behavioural class. 

The framework is further elaborated on in the ensuing subsections.  

3.2.1 The framework 

Figure 3.1 presents the framework that segments input data into various behavioural classes and 
then creates classification rules. In the ensuing, this is referred to as the clustering and classification 

(CC) framework. The CC-framework forms the basis of all further work in this thesis report. 

 

Figure 3.1: Passenger Clustering and Classification (CC) framework 
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The framework consists of two main parts: clustering and classification. The input for the framework 

is passenger data, i.e.: the behavioural characteristics and passenger characteristics as they have 

been previously defined. In the remainder of this subsection, the CC-framework will be explained 

based on the input, clustering, and classification. 

3.2.1.1 Input: passenger characteristics and behavioural characteristics 

The input for the framework is shown in the blue block on the left of the figure. This input consists of 

data about the passenger, which are the behavioural characteristics and passenger characteristics, as 

introduced in section 2.2.1. Further on in this thesis, survey data will be used as the passenger data. 

However, in an operational scenario, this data consists of the information collected through sensors, 

the airport database, and airline database.  

The behavioural characteristics in the input data are used to form behavioural groups using 

clustering. Note that behavioural characteristics are only required when (new) behavioural groups 

are to be formed; once the classifier has been constructed, only the passenger characteristics of a 

passenger are needed to perform behavioural classification. Thus, the behavioural characteristics are 

predicted by the behavioural class to which the passenger is classified based on its passenger 

characteristics. 

3.2.1.2 Clustering 

Behavioural classes are formed in the clustering part at the top of the framework. Because the goal is 

to find groups of passengers with respect to behaviour, clustering techniques are used. These 

techniques can group a set of data into homogeneous subsets. Because clustering is unsupervised, no 

pre-classified training data have to be provided to the algorithm. Consequently, the behavioural 

classes that are formed are solely based on the behavioural attributes that are provided. Contrary to, 

for example, a discrete choice model with multiple classes, cluster analysis does not require 

estimating a model. This takes out the risk of trying to fit a model that cannot properly describe the 

data. Nevertheless, cluster analysis could also erroneously imply the presence of groups in data. It is 

therefore important to assess the validity of the clusters that were found, as shown in the framework. 

The clustering part of the framework takes the training data set as input. Based on the behavioural 

characteristics, behavioural classes are formed by the clustering algorithm. There are two main 

outputs from clustering. The first output is the input data set augmented with information about 

which cluster each object in the data has been assigned to. The second output contains the 

characteristics of the clusters that have been formed, i.e., the passenger characteristics and 

behaviours that are specific to that cluster. These clusters are regarded as the behavioural classes. 

Clusters formed using clustering algorithms can be quite abstract. Intuitively, one tends to think of a 

behavioural class as, for instance, the ‘stressed traveller’ or the ‘experienced traveller’. However, the 

results of a cluster analysis are evidently not interpreted by the algorithm and are thus subject to 

human interpretation, although the abstractness of the results can make it difficult to put into words 

the meaning of a cluster. 

3.2.1.3 Classification 

The clustered data set forms the input for the classification part of the framework. The classification 

algorithm considers the passenger characteristics and the assigned behavioural class of each object 
in the data set. Based on this, it creates a classifier to assign objects to a specific behavioural class. 

With this classifier, new observations that were not part of the initial clustering data set can be 

assigned to a behavioural class. 

Considering the presented framework from an operational point of view, it can be noted that the 

classification process is responsible for classifying newly observed passengers. Hence, this process is 

continuous; each newly observed passenger is passed through the classifier in order to assign this 

passenger to a class. The clustering process provides the behavioural classes and can be executed 

when desired. For instance, different clustering results may appear on weekends and weekdays and 
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so it may be decided to perform a new clustering at the start of the week and at the start of the 

weekend.   

3.2.2 Dataflow through the CC-framework 

The previous subsection provided an overview of the clustering and classification process as a whole. 

This subsection further describes what data is used in the framework, and how it is used. Figure 3.2 

illustrates this. 

 

Figure 3.2: Dataflow through the framework 

The leftmost blue block in the figure represents the passenger (or training) data set. This is a data set 
that contains a number of observations. Each observation represents one passenger and contains a 

number of attributes. These attributes are divided into two categories: passenger attributes and 

behavioural attributes. Behavioural attributes represent the behaviour of a passenger. This can 

pertain to any of the three basic levels of behaviour, as defined in section 2.4.2. Hence, the 

behavioural attributes represent the behaviour of the passenger and are consequently the attributes 

based on which behavioural groups have to be formed. Passenger attributes are the personal, 

process, and trip characteristics that describe the properties of passengers that are not regarded as 

behaviour. 

The clustering part of the CC-framework finds the distinctive behavioural groups. Hence, the 

clustering technique is performed only based on the behavioural attributes in the observation data 

set. This yields the clustered data set, depicted in the middle of figure 3.2. This is the same data set as 

the observation data set, but augmented with the cluster label for each observation in the data set. 

This cluster label indicates to which of the clusters the observation has been assigned. Based on these 
cluster labels and the behavioural attributes in the data set, the properties of each cluster can be 

found. Hence, these cluster properties describe the behaviour of observations in the cluster. 

Furthermore, combining the cluster labels and the passenger attributes with a classification 
algorithm leads to the classification rules. These rules can assign new observations to a cluster solely 

based on their passenger attributes.  

It can be seen in the figure that, although they are in the same data set, the passenger and 

behavioural attributes are used separately in the CC-framework. In summary: the behavioural 

attributes lead to the behavioural classes, while the passenger attributes lead to the rules to assign 

(new) observations to these behavioural classes. 

3.3 Cluster analysis techniques 

The first part of the CC-framework consists of clustering. Clustering, or cluster analysis, is a general 

term for machine learning methods that segment a set of data into groups, or clusters. With a 

clustering algorithm, a set of heterogeneous data is grouped into clusters in which each object is 

more similar to other objects within the cluster, than it is to objects in other clusters (Han, Pei, & 

Kamber, 2011). Consequently, clustering forms homogeneous groups of objects out of a 

heterogeneous set of objects. The clusters that are formed are not defined a priori, i.e., the algorithm 

determines the clusters. Depending upon the algorithm that was chosen, the number of clusters can 

be defined beforehand, or found during the clustering process. However, the interpretation of the 
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meaning of these clusters does not follow from the clustering itself. This task is up to the researcher. 

Taking into account the CC-framework, there are several conditions a clustering technique should 

satisfy. Metrics to assess the performance with respect to accuracy of the clustering should be 

available. Because the passenger data will contain both categorical and numerical data, the technique 

should be able to handle mixed type data. Also, the technique should ideally be able to find the 

optimal number of clusters.   

In this section, several clustering techniques are discussed and assessed. This includes conventional 

clustering techniques, as well as the model-based latent class analysis (LCA) technique. After this, the 

data input for clustering and how to assess the validity of clusters is discussed. The section then ends 

with a choice of a clustering technique. The implementation of the selected technique is discussed 

thereafter.  

3.3.1 Conventional cluster analysis 

Conventional clustering techniques separate objects based on their dissimilarity, expressed by some 

measure of distance. The conventional techniques can be segmented into two main types: hard 

clustering and soft clustering. In hard clustering, an object cannot be part of more than one cluster. In 

case of closely grouped objects that form distinct clusters, this can accurately represent the clusters 

in the data. Consider the example of figure 3.3, which represents a data set consisting of twelve 

objects. Using hard clustering, these objects have been clustered into two clusters. In the case of hard 

clustering, the red object falls in the right cluster. However, in this case, the red object may be better 

represented if it were not part of only one cluster, but a combination of the two. This can be done 
with soft – or fuzzy – clustering, which is presented in section 3.3.1.2. 

 

Figure 3.3: Hard clustering a data set in two clusters, the red object may be better represented by soft clustering  

3.3.1.1 Hard clustering 

In hard clustering, an object can belong to only a single cluster. Hard clustering algorithms can be 
divided into two main categories (Abonyi & Feil, 2007): hierarchical or partitional/non-hierarchical.  

Hierarchical clustering 

Hierarchical clustering yields a nested set of clusters. The complete data set is enclosed in an all-

encompassing cluster, which is in turn iteratively divided into smaller, nested sub-clusters. This 

yields a number of nested clusters that can be represented by a dendrogram.  

Hierarchical clustering is done by iteratively applying a clustering algorithm, which can be done in 

two ways. The first is a bottom-up approach, called agglomerative clustering. This method starts with 
every object in its own cluster and combines the most similar clusters in each step, until one large 

cluster is left. The second way of hierarchical clustering is a top-down approach, known as divisive 

clustering. This method starts with one cluster that contains all objects. During each iteration, the 

clusters are split to form new clusters that are less similar (Abonyi & Feil, 2007). The clustering 

process stops once a stopping criterion, such as a minimum or maximum number of objects in a 

cluster, is reached. This stopping criterion is mostly defined from a performance-wise point of view; 
the larger the number of levels in the dendrogram, the more computationally expensive the 

clustering is. Once the hierarchical clustering process is complete, the researcher has to choose the 

level of the dendrogram to use as clusters. Consequently, a smart choice has to be made, which can be 
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based on for example the calculation of performance metrics to assess the fit of the clustering for 

each level of the dendrogram. 

A fictitious example for a data set containing information about travellers is shown in figure 3.4. The 

corresponding dendrogram for this example is shown in figure 3.5. In the example, the traveller data 

set is clustered into two main clusters: cluster 1 and 2. Each of these two clusters is then divided into 

two sub-clusters.  

 

Figure 3.4: Hierarchical clustering of a traveller data set 

 

Figure 3.5: A dendrogram representing the hierarchical clustering of figure 3.4 

Partitional/Non-hierarchical clustering 

Partitional clustering yields a number of separate, non-overlapping clusters. Contrary to hierarchical 

clustering, there are no nested clusters, or sub-clusters. A partitional clustering can be seen as a 

‘slice’ of one level of a hierarchical clustering. A main advantage of partitional clustering lies in the 
fact that it is much less computationally expensive than hierarchical clustering (Abonyi & Feil, 2007). 
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Figure 3.6: Partitional/Non-hierarchical clustering of a traveller data set 

Figure 3.6 shows an example of a clustered data set about travellers. The clusters here are not part of 

a higher level cluster. Note that the cluster names serve only as an example. 

3.3.1.2 Soft/Fuzzy clustering 

In some cases, an object cannot be properly represented as a part of only one cluster. Fuzzy 

clustering, based on fuzzy logic, allows an object to be a member of all clusters. This membership is 

represented by a membership value that lies between 0 and 1 (inclusive). This is especially useful for 

clusters that are not clearly separated, or for data that has a lot of noise. For natural situations, fuzzy 

clustering can better represent the actual situation as objects are not forced to be part of one cluster, 

which may not fully describe the object’s properties (Abonyi & Feil, 2007). Fuzzy clustering allows a 

combination of the properties of two or more clusters, which can better fit the object. Figure 3.7 

illustrates the fuzzy clustering of a traveller data set. Note the two objects that are part of two 

clusters. 

 

Figure 3.7: Fuzzy clustering of a traveller data set 

Figure 3.7 presents a fuzzy clustering of the same data as the example in figure 3.6. Using hard 
clustering, an object could only be part of one cluster. In the case of this example, this means the 

traveller can either belong to the cluster ‘Young’, ‘Old’, ‘Inexperienced’, or ‘Experienced’. Intuitively, 

this does not cohere with the natural situation. A traveller can be old, but also inexperienced. 

Conversely, a young traveller can also be experienced. This notion is solved using fuzzy clustering. An 

object can be part of any cluster, indicated by a certain membership value. Relating this to the 

example, a young, but experienced traveller can have a membership of 0.6 for the ‘Young’ cluster and 

a membership of 0.4 for the ‘Experienced’ cluster. This way, the traveller is represented by a 
combination of the properties of the two clusters. Depending on the chosen algorithm, this can also 

be a probabilistic interpretation. 
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3.3.2 Latent class analysis 

Another method to find groups in data, related to the aforementioned types of clustering, is latent 

class analysis (LCA), also referred to as latent class cluster analysis (LCCA). Contrary to the 

aforementioned clustering methods, LCA relies on a statistical model to find groups in the data. The 

previously presented forms of cluster analysis mainly use the distance between objects to find 

groups in the data. As a consequence, the groups that are found in the data primarily follow from the 

dissimilarities in the data set. In contrast with these clustering methods, LCA is a model-based 

method that performs a probabilistic class assignment (Molin, Mokhtarian, & Kroesen, 2016). The 

main concept of LCA is that there exists an unknown latent variable that can account for the 

unobserved subgroups that are present in the data (Vermunt & Magidson, 2004). This latent variable 

entails the classes that are present in the data and accounts for the associations between the 

attributes in the data in such a way that these associations become insignificant. This important 

aspect of LCA is called the assumption of local independence (Vermunt & Magidson, 2004). The 

principle of LCA is visualized in figure 3.8. Figure 3.8a represents the observed variables, called 

indicators, which have some interrelation. In figure 3.8b, these relations are accounted for by the 

latent variable. Hence, there are not mutual association between the indicators anymore. Latent class 

analysis has been proven to yield good results and even significantly better results compared to, for 

example, k-means clustering1 (Magidson & Vermunt, 2002).  

  
(a) 

Without LCA, there are associations between the observed 
indicators 

(b) 
With LCA the latent variable accounts for these associations 

and contains the classes 

Figure 3.8: Principle of LCA, adapted from Molin et al. (2016) 

3.3.3 Data input 

The aforementioned types of clustering methods require input data that is to be clustered. Such data 

can be characterised as follows. The input data contains 𝑁 objects to be clustered. An object has 𝑌 

features, also called attributes. Relating this to the case of an airport terminal, an object is a 

passenger. Features of such an object can include characteristics of the passenger, for example age or 

sex, but also information about his trip, such as Schengen or non-Schengen. Similar to the two types 

of characteristics: passenger and behavioural, as defined in section 2.2.1, the attributes in the data set 

can also be characterised as passenger attributes and behavioural attributes. Again, behavioural 

attributes are used to form behavioural classes during clustering, while passenger attributes are used 

during classification to assign passengers to a class. 

The complete set of 𝑁 objects and 𝑛 features can be represented as an 𝑁 × 𝑌 matrix 𝑿 that contains 

the data that is to be clustered: 

                                                                 
1 K-means clustering is a well-known partitional hard clustering algorithm 
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𝑿 = [

𝑥1,1 ⋯ 𝑥1,𝑌

⋮ ⋱ ⋮

𝑥𝑁,1 ⋯ 𝑥𝑁,𝑌

] (3.1) 

 

3.3.3.1 Conventional cluster analysis 

Conventional cluster analysis is based on the similarity and dissimilarity of objects; the distance 

between objects is hence important information for clustering algorithms. For some clustering 

algorithms, such as hierarchical algorithms, the distance between objects is the main input (Abonyi & 

Feil, 2007). These distances are represented in the form of a dissimilarity matrix:  

 

[

0 𝑑(1,2) 𝑑(1,3) 𝑑(1, 𝑌)

0 𝑑(2,3) 𝑑(2, 𝑌)

0 𝑑(3, 𝑌)

0

] (3.2) 

 

In the dissimilarity matrix, 𝑑(𝑖, 𝑗) represents the distance measure between two objects 𝑖 and 𝑗. Note 

that 𝑑(𝑖, 𝑗) = 𝑑(𝑗, 𝑖) and hence the dissimilarity matrix is symmetrical. Additionally, the distance 

between an object and the object itself is obviously zero, hence: 𝑑(𝑖, 𝑖) = 0, ∀𝑖.  

The distance measure in the dissimilarity matrix can be calculated in different ways and the chosen 

distance measure affects the outcome of the clustering algorithm. The distance measure should 

hence be chosen wisely (Abonyi & Feil, 2007). The best known example of a distance measure is the 

Euclidean distance, which is similar to the Euclidean norm of a vector. For a pair of two objects 𝑖 and 

𝑗, the Euclidean distance can be calculated as in (3.3). 

 
𝑑(𝑖, 𝑗) = √(𝑥𝑖,1 − 𝑥𝑗,1)

2
+ (𝑥𝑖,2 − 𝑥𝑗,2)

2
+ ⋯ + (𝑥𝑖,𝑛 − 𝑥𝑗,𝑛)

22

 (3.3) 

 

Other well-known distance measures include the Minkowski distance, Manhattan distance and 

Mahalanobis distance (Abonyi & Feil, 2007; Xu & Wunsch, 2005). However, these distance measures, 
including the Euclidean distance, are only valid for numerical attributes. Additionally, data sets that 

have various numerical attributes with different scales should be normalised so as to not skew the 

distance measure due to differences in magnitude of the numerical values.  

Data sets that contain mixed attributes require a distance measure that is also able to handle 

categorical attributes. This is necessary for the present case as passenger behaviour can be 

represented by mixed attributes, for example: a numerical attribute for the time spent in the lounge 
and a categorical attribute that describes whether or not the passenger has visited any shops. One 

possibility to tackle this problem is to the categories of a categorical variable into several dummy 

variables. However, a special distance measure is also possible, such as the Gower distance (Gower, 

1971). The Gower distance calculates the normalised distance between numerical attributes: 

 
𝑑𝑎(𝑖, 𝑗) =  

|𝑥𝑖
𝑎 − 𝑥𝑗

𝑎|

max(𝒙𝑎) − min (𝒙𝑎)
 (3.4) 

 

Categorical attributes are compared and can either be given a distance of 1 or 0, dictated according to 

(3.5): 

 
{

𝑑𝑎(𝑖, 𝑗) = 0,   𝑥𝑖
𝑎 = 𝑥𝑗

𝑎

𝑑𝑎(𝑖, 𝑗) = 1,   𝑥𝑖
𝑎 ≠ 𝑥𝑗

𝑎 (3.5) 

 
The distance measure also accounts for a special case of binary attributes, where the presence of an 

attribute in both compared objects causes a higher similarity than the absence of an attribute in both 
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objects. The total Gower distance is calculated with the mean of the distance measures for numerical, 

categorical and binary attributes. 

3.3.3.2 Latent class analysis 

In contrast with conventional cluster analysis, LCA is not based on dissimilarity between objects. 

Rather than this, it is based on a probabilistic model based on the classes and the outcomes of the 

attributes in the data. In short, this model optimizes the class-conditional outcome probabilities of 

attributes and the class membership probabilities of objects. As such, LCA does not rely on the 

distance between objects as conventional cluster analysis does. It is therefore not necessary to pick a 

fitting distance measure for LCA. 

3.3.4 Validity of results 

Clusters that are formed during cluster analysis can be difficult to validate. In case of well-segmented 

data sets that have two or three attributes, it is possible to inspect the clustering results in 2D or 3D 

space, respectively. An example of a simple clustering of three clusters with two attributes, hence 

represented in a two dimensional graph, is shown in figure 3.9. It is evident that resulting clusters 

(red, green and blue) correctly represent the three groups that are present in the input data. 

  
Figure 3.9: Simple clustering example, left: input, right: clustered output 

However, data sets that contain more than three attributes, or that contain categorical attributes, can 

be less easily represented visually. Moreover, even if they are visually represented, groups present in 

the data may not be visually discernible. Therefore, validity measures are necessary to assess the 

correctness of the achieved clustering results. 

3.3.4.1 Conventional cluster analysis 

There are various options available to assess the clustering validity of conventional clustering 

techniques. Two cases can be distinguished, depending on the availability of the so called ground 

truth (Han et al., 2011). This ground truth contains the actual class labels which are regarded as the 

perfect clustering. Obviously, the ground truth is only available for training data sets. If the ground 

truth is available, extrinsic validity methods can be used. However, in the case of behavioural 

classification, the ground truth is unknown. In such case, intrinsic validity methods can be used. For 

the interested reader, a short overview of extrinsic and intrinsic indices is given in Appendix B. 

3.3.4.2 LCA 

Because LCA is a model-based statistical method, it has its own performance metrics that represent 

the relative goodness of fit of the model. The two most used metrics are the Bayesian Information 
Criterion (BIC) and Akaike Information Criterion (AIC) that represent the goodness of fit of the 

model, adjusted for the complexity of the model. This allows for finding the best fitting number of 

classes for the data. 
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3.3.5 Choice of method and implementation 

The previous sections have introduced a number of techniques that can be used to find groups in 

data. Cluster analysis finds groups in data based on the dissimilarity of objects in the data. This 

brings along the difficulty of defining the distance between objects, certainly in the case of mixed 

variable type data. Because many algorithms are aimed at clustering continuous data, clustering 

mixed data requires reworking the used distance measure. Latent class analysis, originally designed 

for dichotomous variables only, is better able to handle categorical variables.  

Additionally, LCA has been shown to yield better results compared to some algorithms (Magidson & 

Vermunt, 2002). To test this, both conventional cluster analysis and LCA have been tested on mixed 

variable type test data sets from the UCI Machine Learning Repository (Lichman, 2013), which is 

comparable to the type of data that would form the input for the CC-framework. Indeed, LCA 

performs better on these data. Detailed results, comparing LCA and conventional cluster analysis 

methods, are included in Appendix B. Additionally, because LCA is model-based, it offers 

performance measures that allow for easily comparing models. For these reasons, it was decided to 

further use LCA in this thesis work. In spite of this, some work has also been put in implementing the 

other clustering algorithms. Although these did not yield particularly good results, some information 

for the interested reader is included in Appendix B. 

Hereafter, some more information about the specific workings of LCA is introduced. Additionally the 

implementation is discussed along with the performance metrics that follow from it and how to 

interpret these. 

3.3.5.1 Clustering using Latent Class Analysis 

Latent class analysis can be implemented in a number of ways. There are dedicated software 

packages available, such as Latent GOLD®. However, keeping in mind our goal of implementing a 

sequential clustering and classification method, such a separate piece of software would not be 

practical as it introduces additional manual effort between the clustering and classification steps. 
Therefore it was decided to implement LCA using the R programming language (R Core Team, 2015). 

Although mainly aimed at statistical applications, R offers plenty flexibility as a programming 

language and benefits from a high number of available packages. 

The LCA was implemented in R using the ‘poLCA’ package  (Linzer & Lewis, 2011). poLCA is able to 

estimate a latent class model for polytomous, i.e. categorical, variables. As a consequence, any 
continuous variables included in the model have to be binned first. For a full description of the 

algorithm used in poLCA, the reader is referred to the work of Linzer and Lewis (2011). Summarizing 

their work, the steps in poLCA can be described as follows: 

 Define the following: 

o There are 𝐽 categorical, observed outcome variables, called manifest variables. 
o Each of these variables can have 𝐾𝑗  possible outcomes.  

o There are 𝑁 objects in the data. 

o 𝑌𝑖𝑗𝑘 denotes the observed values of the manifest variables, here: 

 𝑌𝑖𝑗𝑘 = 1 if the object 𝑖 has the 𝑘th outcome for the 𝑗th variable 

 𝑌𝑖𝑗𝑘 = 0, otherwise 

o 𝑅 denotes the number of classes to be estimated 

o 𝜋𝑗𝑟𝑘 denotes the probability that an observation in class 𝑟 produces the 𝑗th outcome 

for the 𝑘th manifest variable. 

 The probability density function for all classes is defined as: 

o 𝑃(𝑌𝑖|𝜋, 𝑝) = ∑ 𝑝𝑟
𝑅
𝑟=1 ∏ ∏ (𝜋𝑗𝑟𝑘)

𝑌𝑖𝑗𝑘𝐾𝑗

𝑘=1
𝐽
𝑗=1  

 𝑝𝑟 and 𝜋𝑗𝑟𝑘 have to be estimated by the latent class model, this is done by maximizing the 

following log-likelihood function: 

o ln 𝐿 = ∑ ln 𝑃(𝑌𝑖|𝜋, 𝑝)𝑁
𝑖=1  
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 Optimise the log-likelihood function is using the Expectation-Maximization (EM) algorithm 

(Dempster, Laird, & Rubin, 1977), beginning with arbitrary values for 𝑝𝑟 and 𝜋𝑗𝑟𝑘. 

 Calculate and output the posterior class-probabilities per object, which indicate the 

likelihood of belonging to each class. 

3.3.5.2 Performance metrics 

As mentioned before, a major benefit of LCA is that it has many goodness of fit indicators available 

that can help choosing the best-fitting model. The log-likelihood, as calculated during the estimation 

of the model can indicate model fit. However, this does not account for the complexity of the model 

and hence overfitting the data. As such, the log-likelihood always improves as the number of classes 

(and hence the complexity) in the model increases, while essentially the model is overfit. Fortunately, 

there are indicators available that compensate for this risk. 

poLCA outputs the two most widely used of these indicators. Both of these indicators are based on 

the maximum log-likelihood of the model and a correction based on the number of estimated 

parameters in the model (Linzer & Lewis, 2011).  

The first indicator is the Akaike information criterion (AIC), as introduced by Akaike (1998): 

 𝐴𝐼𝐶 = −2𝐿𝐿 + 2𝜙 (3.6) 
 

Here, 𝐿𝐿 is the maximum log-likelihood of the estimated model and 𝜙 the number of estimated 
parameters. Essentially, this is negative two times the maximum log-likelihood, to which two times 

the number of estimated parameters has been added. This way, overly complex models (with a lot of 

parameters) are penalized. 

The second indicator is the Bayesian information criterion (BIC), as introduced by Schwarz (1978): 

 𝐵𝐼𝐶 = −2𝐿𝐿 + 𝜙 ln 𝑁 (3.7) 
 

The BIC is essentially an adapted version of the AIC, which also takes into account the number of 

objects in the model, indicated by 𝑁. This way, also the statistical goodness of fit of the model is taken 

into account. 

Both the BIC and AIC indicate a better fit of the model for a lower value of the indicator. However, 
they are both relative and can only be used to compare between models; there is no threshold value 

indicating a good model. Nevertheless, the model fit can be tested to compare the metrics between a 

model with only one class and a model with two or more classes. Lower values for the BIC and AIC 

for the latter case would indicate that indeed an LCA with more than one class is appropriate for the 

data.  

Though both metrics often agree on the best model, the AIC has the risk of preferring an overfit, 

while the BIC may favour an underfit (Dziak, Coffman, Lanza, & Li, 2012). Additionally, the BIC is 

consistent, while the AIC is not. This means that the BIC is able to identify the smallest adequate 

model, while the AIC retains the risk of selecting an overly complex model as the number of objects 𝑁 

becomes too large (Dziak et al., 2012). 

3.4 Classification methods 

The previously discussed clustering algorithms find classes in data and label the data accordingly. 
These groups are based on the behavioural attributes in the data set and are hence behavioural 

classes. Now, as a passenger enters the terminal, only passenger attributes of this passenger can be 

collected. Consequently, based on these passenger attributes, it should be predicted to which 

behavioural class the passenger belongs. This is where classification methods, which form the second 

part of the CC-framework, come into play. 
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Classification methods predict an object’s class based on its attributes. Hence, in the present case, the 

classification method should predict the behavioural class based on the passenger attributes of a 

passenger. Preferably, the classification method should be transparent so that it is clear how the 

classifier performs classification. Additionally, the method is preferably quick to compute, accurate, 

and able to deal with both continuous and categorical attributes. 

There are many ways to create a classifier to perform such a classification. In the subsequent 

subsections, the overall classification process and various types of classification algorithms are 

discussed. Additionally, the performance measures of the classifier are discussed. Finally, a 

classification method is chosen and the implementation of the classification method is presented. 

3.4.1 Classification process 

Generally, data classification can be described as a two-step process (Han et al., 2011). An overview 

of this process is given in figure 3.10. The first block represents the data for which a classifier has to 

be constructed. These data contain a number of objects with various attributes and a class label. The 

classification algorithm finds the rules2 that relate the attributes to a certain class. In the case of this 

thesis, the class labels are the clusters as they have been found during cluster analysis, as described 

in section 3.3. 

When constructing a classifier, there is always a risk of overfitting the data. This means that the 

classifier is based too much on the specific properties and quirks of the data set it was made with. An 

overfitted classifier would hence perform well on the data set it was made with, but not with other 
data. To be able to check for, and prevent overfitting, the data set is split into a training subset and a 

test subset. The first is used to create the classifier, while the latter is used to assess the performance 

of the classifier. There are multiple methods to create the training and test data sets. A very common 
method is the holdout method, which randomly picks a number of objects for the training data set, 

leaving the remaining objects for the test data set. A common partitioning is 2/3 of the data for the 

training set and 1/3 for the test set (Han et al., 2011; Kotsiantis, Zaharakis, & Pintelas, 2007).  

 

Figure 3.10: Classification algorithm process 

The training data set is then used for the first step in the classification process: the learning step. 

Based on the attributes and classes of the objects in the training data set, a classifier is constructed. 

This classifier contains some form of rules that can predict the class an object belongs to, based on its 

attributes. The accuracy of this classifier can be calculated based on the classes predicted by the 

classifier and the data’s actual classes. In the next step, which is the classification step, ‘new’ objects 

from the test set are classified by the classifier. Because this test data was not used when 

                                                                 
2 ‘Rules’ is used here as a general term for the way a classifier assigns objects to a class. While indeed 
classification can be in the form of logical rules (e.g.: IF X > Y THEN class A), this is not the case for all 
algorithms. 
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constructing the classifier, the performance on the test data gives a more accurate reflection of the 

actual performance of the classifier.  

3.4.2 Types of classification algorithms 

There is a multitude of classification algorithms available and described in literature. Five main 

categories of classification algorithms can be distinguished (Kotsiantis et al., 2007), of which a very 

concise overview is given below: 

 Logic based algorithms provide logical rules to classify objects based on their attribute 

values.  

 Perceptron-based techniques combine the weighted attribute values of the object to be 
classified and assign the object to a class based on a certain threshold.  

 Statistical learning algorithms, rather than deterministic models, are based on probability 

models to predict the probability that an object belongs to a class. 

 Instance-based learning algorithms, also known as lazy-learning algorithms, do not 

construct a classifier beforehand. Instead, these algorithms classify every new instance 

separately based on objects in the training data that are similar to the input that is given to 

the algorithm. 

 Support vector machines perform binary classification by constructing a hyperplane that 

separates the two classes. 

Although some of the mentioned algorithms, such as support vector machines, are designed for 

binary classification, these can be extended to support multiclass classification (Han et al., 2011). 

This is done by combining multiple binary classifiers that each classify in a one-versus-many fashion. 

Each of the aforementioned classifiers has its own benefits with regards to accuracy, speed of 
classifier construction, speed of classification, et cetera. Additionally, not all the algorithms are 

suitable for either continuous or discrete variables (Kotsiantis et al., 2007). 

The aforementioned algorithms can be used as-is. However, classification accuracy can be improved 

by using ensemble methods (Han et al., 2011). Ensemble methods combine multiple, often relatively 

simple, classifiers to form one ensemble classifier. The classification made by the ensemble is a result 

of the weighted vote of each classifier in the ensemble.  Two major forms of ensemble methods are 

boosting and bagging: 

 Boosting creates classifiers for the training data many times, but focusses on misclassified 
objects. After each iteration, misclassified objects are identified and assigned a higher weight 

compared to correctly classified objects. These weights are taken into account when 

constructing a classifier in the next iteration, hence increasing the accuracy for these 

misclassified objects. The final, boosted classifier consists of the combination of the weighted 

votes of all individual classifiers (Alfaro, Gámez, & Garcia, 2013; Han et al., 2011). 

 Bagging (bootstrap aggregation) also creates many classifiers based on the training data. 

However, the training data set is bootstrapped3 before each iteration. The bagged classifier’s 

classification is based on the majority vote of the individual classifiers in the ensemble 

(Alfaro et al., 2013; Han et al., 2011). 

3.4.3 Evaluating classifier performance 

The performance of a classifier can be assessed by comparing the class labels that were predicted by 

the classifier to the actual class labels of the data. There are at least 24 different metrics available for 

various kinds of classification problems (Sokolova & Lapalme, 2009). None of these metrics is all-

encompassing; hence a few different metrics should be used to assess a classifier’s performance. 

Consequently, several metrics have been selected and will subsequently be introduced. As main 
                                                                 
3 During bootstrapping, the data set is sampled with replacement for the same number of objects as are in 
the data set. Hence, the data set remains the same size, but some original elements will appear multiple 
times, while others will be missing completely. This can help reduce noise in the data set. 
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sources for this, the author has thankfully used the work of Han et al. (2011) and Sokolova and 

Lapalme (2009).  

3.4.3.1 Confusion matrices 

In order to explain the different metrics, some basic terminology regarding classification 

performance needs to be established. The basis for all metrics is the confusion matrix, which 

compares the predicted class labels, as predicted by the classifier, to the actual class labels. For a 

classification problem with two classes, i.e. binary classification, the confusion matrix can be 

represented as in table 3.1.  

Table 3.1: Binary confusion matrix 

  Predicted class 
  Positive Negative 

Actual class 
Positive True Positive (TP) False Negative (FN) 
Negative False Positive (FP) True Negative (TN) 

 

The cells in the binary confusion matrix contain the number of objects that have been classified as 

such. The binary confusion matrix can be extended to multiclass problems by extending the number 

of rows and columns. However, from such a multiclass confusion matrix the number of true positives 

and true negative etcetera is not directly visible. To obtain the TP, FN, FP and TN values for a 

multiclass problem, one-versus-all binary confusion matrices can be constructed for each class. 

Consider the example classification presented in table 3.2, containing nine objects and three classes. 

Table 3.2: Example of a multiclass classification 

Object # Actual class Predicted class 
1 1 1 
2 1 3 
3 1 1 
4 2 3 
5 2 2 
6 2 2 
7 3 1 
8 3 1 
9 3 3 

 

A multiclass confusion matrix can be constructed for this classification, leading to the result in table 

3.3. The numbers on the diagonal of this matrix represent the true positives for class 1, 2 and 3. Let 

us call this matrix 𝐶 and indicate the elements of this matrix as 𝑐𝑖,𝑗 . Now, looking at class 1, the 

number of true negatives can be found as the sum of the elements 𝑐2,2, 𝑐2,3, 𝑐3,2, 𝑐3,3. These elements 

are the objects that do not belong to class 1 and are also not classified as such. The number of false 

positives is found as the sum of elements 𝑐2,1 and 𝑐3,1, which are the objects that do not actually 

belong to class 1, but have been classified as such. Lastly, the number of false negatives for class 1 is 

found as the sum of elements 𝑐1,2 and 𝑐1,3. These are the objects that do actually belong to class 1, but 

have not been classified accordingly.  

Table 3.3: Multiclass confusion matrix 

  Predicted class 
  1 2 3 

Actual class 
1 2 0 1 
2 0 2 1 
3 2 0 1 
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Completing this for all three classes yields three separate one-versus-all binary classification 

matrices. These matrices are shown in table 3.4. 

Table 3.4: Binary confusion matrices for a multiclass classification 

 Class 1 Predicted 
 Pos Neg 

Actual 
Pos 2 1 
Neg 2 4 

 

 Class 2 Predicted 
 Pos Neg 

Actual 
Pos 2 1 
Neg 0 6 

 

 Class 3 Predicted 
 Pos Neg 

Actual 
Pos 1 2 
Neg 2 4 

 

 

3.4.3.2 Accuracy and error 

The two most basic metrics are the accuracy and error. The accuracy represents the fraction of 

objects that was correctly classified, whereas the error indicates the fraction of objects that was 

classified incorrectly. Hence, accuracy and error are complementary.  

However, these two metrics are defined differently for binary and multiclass problems. For binary 

classification the accuracy can be calculated as in (3.8). The error is calculated as in (3.9). 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3.8) 

 
𝐸𝑟𝑟𝑜𝑟 =

𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
= 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (3.9) 

 

For a multiclass classification, the average accuracy is used (Sokolova & Lapalme, 2009). The 

complement of the average accuracy is called ‘error rate’, but in order to differentiate from the binary 

case, the term ‘average error’ will be used here. The average accuracy and average error are shown in 

(3.10) and (3.11). Here, 𝐶 indicates the number of classes. Hence, the average accuracy is the average 

of the accuracies as calculated for the 𝐶 one-versus-all binary confusion matrices. The average error 

is calculated is a similar fashion. 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑

𝑇𝑃𝑐 + 𝑇𝑁𝑐
𝑇𝑃𝑐 + 𝑇𝑁𝑐 + 𝐹𝑃𝑐 + 𝐹𝑁𝑐

𝐶
𝑐=1

𝐶
 

(3.10) 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 =
∑

𝐹𝑃𝑐 + 𝐹𝑁𝑐
𝑇𝑃𝑐 + 𝑇𝑁𝑐 + 𝐹𝑃𝑐 + 𝐹𝑁𝑐

𝐶
𝑐=1

𝐶
 

(3.11) 

 

In addition to the average accuracy and average errors, some authors tend to use another metric as a 

representation of accuracy for a multiclass classification (Sokolova & Lapalme, 2009), such as Alfaro 

et al. (2013) and S. Zhu, Ji, Xu, and Gong (2005). In this definition, accuracy is simply defined as the 

total number of correctly classified objects, divided by the total number of objects. To differentiate 

this metric from the others, in this work it is defined as in (3.12) and (3.13). Where 𝐶𝐶 is the number 

of correctly classified objects, 𝐼𝐶 the number of incorrectly classified objects, and 𝑁 the total number 

of objects in the data set. 

 
𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝐶𝐶

𝑁
 (3.12) 

 
𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐸𝑟𝑟𝑜𝑟 =

𝐼𝐶

𝑁
= 1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (3.13) 

 

To illustrate the difference between these various metrics for accuracy (and error), these values have 
been calculated for the example multiclass classification of section 3.4.3.1. Table 3.5 shows the 

resulting values. The ‘Accuracy’ column shows the per-class one-versus-all accuracy. The average 
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accuracy is simply the average of these values. By contrast, the overall accuracy is the sum of the 

diagonal of the multiclass confusion matrix (table 3.3), divided by the total number of objects. 

Table 3.5: Per class one-vs-all accuracy, average accuracy and global accuracy for the example of Table 3.2 

Class Accuracy Average Accuracy Overall Accuracy 
1 6

9⁄ ≈ 0.67 
(6

9⁄ + 8
9⁄ + 5

9⁄ )

3
≈ 0.70 

2 + 2 + 1

9
≈ 0.56 2 8

9⁄ ≈ 0.89 

3 5
9⁄ ≈ 0.56 

 

3.4.3.3 Precision, recall and F-score 

The average accuracy and overall accuracy are very intuitive and easily interpretable metrics. 

However, they suffer from the class imbalance problem (Han et al., 2011). This means that these 

metrics work well when the distribution of objects over the classes is uniform, but will not properly 

represent accuracy when the classes are imbalanced. To illustrate this, consider an example with 

three classes. Assume that 98 objects are of class 1, while classes 2 and 3 have one object each. 

Assume that a classifier classifies all objects into class 1.  The overall accuracy of this classifier would 

be 98% and the average accuracy 97%. It goes without saying that the actual performance of the 

classifier is thus not reflected by these accuracy metrics. 

The precision and recall metrics can be used to overcome this class balance problem (Han et al., 

2011). The precision measure represents the fraction of objects that have been correctly classified to 

a class out of the total number of objects that have been classified to that class. Conversely, recall 

represents the fraction of correctly classified objects out of the total number of objects actually in 

that class.  The two metrics can either be defined as micro-averaged, such as in (3.14) and (3.15), or 

as macro averaged, such as in (3.16) and (3.17). Whereas the micro-averaged precision and recall 

favour bigger classes, the macro-averaged precision and recall treat all classes equally (Sokolova & 

Lapalme, 2009). 

 
𝑀𝑖𝑐𝑟𝑜 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

∑ 𝑇𝑃𝑐
𝐶
𝑐=1

∑ (𝑇𝑃𝑐 + 𝐹𝑃𝑐)𝐶
𝑐=1

 (3.14) 

 
𝑀𝑖𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙 =

∑ 𝑇𝑃𝑐
𝐶
𝑐=1

∑ (𝑇𝑃𝑐 + 𝐹𝑁𝑐)𝐶
𝑐=1

 
(3.15) 

 

 

𝑀𝑎𝑐𝑟𝑜 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑

𝑇𝑃𝑐
𝑇𝑃𝑐 + 𝐹𝑃𝑐

𝐶
𝑐=1

𝐶
 (3.16) 

 

𝑀𝑎𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙 =  
∑

𝑇𝑃𝑐
𝑇𝑃𝑐 + 𝐹𝑁𝑐

𝐶
𝑐=1

𝐶
 

(3.17) 

 

To illustrate the introduced metrics, these have been calculated for the example classification of table 

3.2. The results are shown in table 3.6. It can be seen that the classifier performs best for class 2 and 

worst for class 3. Overall, the macro-averaged precision is a bit more optimistic compared to the 

micro-averaged precision. This is because the class 1 and 3, for which the classifier performs worst, 

have more objects classified to them compared to the better performing class 2. 
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Table 3.6: Precision and recall for the example of table 3.2 

Class Precision Recall Micro  
Precision 

Micro  
Recall 

Macro 
Precision 

Macro 
Recall 

1 2

2 + 2
= 0.5 

2

2 + 1
≈ 0.67 

2 + 2 + 1

2 + 2 + 2 + 0 + 1 + 2
 

 
≈ 0.56 

2 + 2 + 1

2 + 1 + 2 + 1 + 1 + 2
 

 
≈ 0.56 

2
4 +

2
2 +

1
3

3
 

 
≈ 0.61 

2
3 +

2
3 +

1
3

3
 

 
≈ 0.56 

2 2

2 + 0
= 1.0 

2

2 + 1
≈ 0.67 

3 1

1 + 2
≈ 0.33 

1

1 + 2
≈ 0.33 

 

Precision and recall both indicate different aspects of a classifier’s performance. Consequently, a 

related metric that combines the two is the F-score, see (3.18). The F-score is based on the harmonic 

mean of the precision and recall. It can be computed either with the micro-averaged precision and 

recall, or with the macro-averaged precision and recall. 𝛽 is a non-negative real number, for which 

commonly chosen values are 2 and 0.5 (Han et al., 2011).  

 
𝐹𝑠𝑐𝑜𝑟𝑒 =

(𝛽2 + 1) ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3.18) 

 

3.4.3.4 ROC curves and AUC 

In addition to the aforementioned metrics, Receiver Operating Characteristic (ROC) curves can 

visualise the trade-off between the sensitivity and specificity (Han et al., 2011), shown in (3.19) and 

(3.20). The sensitivity, which is in fact the same as recall, shows the amount of positives that have 

been correctly classified as such. The specificity is the amount of negatives that have been correctly 

classified as such. As opposed to the previously introduced metrics, ROC curves are not sensitive to 

changes in the class distribution (Fawcett, 2006).  

 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.19) 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (3.20) 

 

A detailed explanation of ROC curves would be too elaborate for this report. Despite this, some basic 

notions about ROC curves have to be made. An ROC curve plots the sensitivity against 1-specificity 

(essentially, these are the true positive rate and the false positive rate). Evidently, as the number of 

true positives rises, the number of false positives also rises. For a good model, the false positive rate 

rises less than the true positive rate.  

The class probabilities as they have been predicted by the classifier are needed to construct the 
curve. Based on the class probability, it can be decided if an object belongs to a class. For example, an 

object that has a class probability of 90% is very likely to belong to that class. However, for an object 

with a probability of 50%, this is not so certain. When constructing an ROC curve the threshold for 

the class probability is varied. The curve starts with a very high cut-off (low false positive rate) and 

ends with a very low cut-off (high false positive rate), plotting the sensitivity versus 1-specificity on 

the curve.  
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Figure 3.11: Example of an ROC curve 

Figure 3.11 shows an example of an ROC curve. As mentioned, ideally the true positive rate is high, 

while the false positive rate is low. Hence, the ROC curve for a good classifier will come very close to 

the top left corner of the graph. The diagonal line represents the situation where the true positive 

rate equals the false positive rate. Essentially, this represents random guessing. Based on this notion, 

the performance of a classifier is often expressed as the Area Under the Curve (AUC). As the area 

under the diagonal is 0.5, the performance of the classifier compared to random guessing can be 

assessed. The AUC can also be used to compare different classifiers.  

The ROC curve and the AUC are in principle defined for binary classification problems. However, 

there are methods to create these for multiclass classification problems. One possibility is to create a 

separate ROC curve for each class in a one-versus-all fashion (Fawcett, 2006). The AUC can then be 

calculated as a weighted average of the AUCs of the individual ROC curves. 

3.4.4 Choice of method and implementation 

The previous few sections have introduced a number of classification algorithms and metrics to 

assess their performance. In this section, an algorithm is chosen and the implementation is explained 

in further detail. The implementation has been done using the R programming language (R Core 

Team, 2015). 

3.4.4.1 Classification 

Based on their theoretical benefits over other classification methods, decision trees have been 

chosen. This logic-based method has several benefits that make it very suitable for our application. 

First, decision trees are very transparent with respect to how a classification is established. For a 

single decision tree, it is very simple to retrace the steps that the classifier has taken to classify an 

object to a certain class. Second, decision trees are relatively quick to compute (Kotsiantis et al., 

2007). Third, decision trees are able to deal with both continuous and discrete values. This makes 

them very flexible with respect to the type of input variables. 

Unfortunately, the general accuracy of decision trees is worse than some other algorithms (Kotsiantis 

et al., 2007), such as the currently very popular neural networks. Therefore, boosting is used as this 

has been shown to yield a highly accurate classifier (Alfaro et al., 2013; Dietterich, 2000; Opitz & 

Maclin, 1999). Boosting has been chosen instead of bagging as the former is primarily aimed at 

increasing accuracy, while the latter is primarily aimed at reducing variance. However, because 

boosting leads to many decision trees for one classifier, this decreases the interpretability of the 
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classifier in comparison with a single decision tree. However, this is regarded as an acceptable price 

for increased accuracy. 

This boosted decision tree approach has been implemented using the ‘adabag’ package for R (Alfaro 

et al., 2013). The specific algorithm employed is the ‘Stagewise Additive Modeling using a Multi-class 

Exponential loss function’ (SAMME) algorithm, introduced by J. Zhu, Rosset, Zou, and Hastie (2006). 

The algorithm is an adaptation of the AdaBoost algorithm (Freund & Schapire, 1996), which is the 

best known and well performing boosting algorithm, but only suitable for binary classification. 

SAMME is also suitable for multiclass classification and does so with good results (J. Zhu et al., 2006). 

For a full description of the algorithm, the reader is referred to the work of J. Zhu et al. (2006), where 

the algorithm is first introduced. On a high level, the SAMME algorithm consists of the following 

steps: 

1. Define the total number of decision trees to construct as 𝐵, chosen by the user. 

2. For a data set 𝑁 containing 𝑛 objects, the observation weights are initialised as 𝑤𝑏(𝑖) =
1

𝑛
 

where 𝑖𝜖𝑁. These observation weights indicate the importance of each object when fitting a 

decision tree. 

3. For 𝑏 = 1, 2, … , 𝐵, where 𝐵 is the total number of trees to use in the boosting 

a. Fit a classifier to the data set using weights 𝑤𝑏 

In this case, decision trees are used as the classifier. 
b. Compute the error, which is weighted based on the weights 𝑤𝑏 

c. Compute the constant 𝛼𝑏, which is used to update the weights 𝑤𝑏 

This constant is used to check if the classifier result is better than random guessing. 

d. Update the weights for the next iteration 𝑤𝑏+1 and normalise them. 
e. Return to step 2b and construct the next tree using the updated weights. 

4. Output the final ensemble classifier. This classifier calculates the sum of the weighted votes 

of the decision trees in the classifier. The class with the highest vote is assigned to a classified 
object. 

3.4.4.2 Performance metrics 

The adabag package that is used to create the ensemble classifier is only able to output the 

classification accuracy. This is rather limited when assessing classifier performance. Additionally, the 

error is always calculated in the same way, regardless of the number of classes. In the adabag 

package, the error is calculated as 1 −
𝐶𝐶

𝑁
. Here, 𝐶𝐶  is the number of correctly classified objects and 𝑁 

is the total number of classified objects. While this is in fact correct for a binary classification, it does 
not represent the average accuracy as would be used in for a multiclass classification. Rather, it 

represents the exact match ratio, or overall accuracy, as defined in section 3.4.3.2. To overcome this 

confusion and extend the number of available metrics, the author has created a function to calculate 

the metrics of sections 3.4.3.2 and 3.4.3.3. That is: the average accuracy, overall accuracy, micro- and 

macro-averaged precision and recall, and the F-score. The implementation is as described in sections 

3.4.3.2 and 3.4.3.3, consisting of the creation of a confusion matrix and, if necessary, multiple one-

versus-all matrices.  

The calculation of (multiclass) ROC-curves and the AUC is somewhat more involved. Fortunately, 

existing R packages that can do this are available. For the implementation of these metrics, the R 

package ‘pROC’ was used, created by Robin et al. (2011). The pROC package is also able to calculate 

the multiclass AUC. This calculation is based on the pairwise comparison of classes, and is 

implemented based on the work of Hand and Till (2001). 

Some authors present the AUC as preferable over the other performance metrics (Bradley, 1997), 

such as average accuracy. While it is overall a widely used single-number metric (Hand & Till, 2001), 

other authors argue that it can also be misleading (Lobo, Jiménez-Valverde, & Real, 2008). Therefore, 

many different performance metrics have been implemented. In the ensuing, the results of all these 
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metrics will be considered. The F-score will be used primarily as it combines two important aspects 

of a classifier’s performance: precision and recall. 

3.5 Integrated implementation 

Sections 3.3.5 and 3.4.4 have presented the implementation of the clustering and classification 

methods. The combination of these two components forms the actual implementation of the 

clustering and classification framework as presented in section 3.2. Figure 3.12 gives a schematic 

overview of the implementation, which will be further discussed in this section. 

 

Figure 3.12: Overview of the implementation in R 

The R programming environment, version 3.2.3 released in August 2015, is the foundation of the 

implemented algorithms. The implementation consists of four main functions, shown in the light blue 

blocks on the right of figure 3.12. These functions are all defined in their own .R file. A script forms 

the basis of the implementation that calls the various required functions. In addition, the script 

handles loading the data that is to be used and defines the settings for function calls. A short 

overview of the script is given here, but a more detailed overview of the script and the packages that 

have been used can be found in Appendix C. 

The first step is loading the data that contains the passenger and behavioural attributes that are to be 

used. The data is loaded from a CSV-file, although other formats are also possible as long as they 

result in a dataframe in the R environment. Because the LCA package, poLCA, does not support 

continuous variables, these have to be binned. This is done using the binning function. 

After the continuous variables have been binned, the data set contains only categorical variables. 

Consequently, the data can be used in the LCA function. This LCA function requires a formula that 

defines which of the attributes in the data set should be used to form the classes. In the present case, 

these are the passenger attributes. The LCA function outputs the data set along with the classes. 

Additionally, the function returns the information about the fit of the model in the form of the BIC 

and AIC. Detailed information about the classes that were found is also given, such as the class-
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conditional item response probabilities and the estimated class population shares. Examples of these 

outputs are shown in figure 3.13a and c. 

The data set with the cluster labels can now be used to create the classifier. For this, the classification 

function is used. To use this function, the attributes that should be used for the classification are 

defined. These are the passenger attributes. After the classification has been done, the metrics 

calculation function is called in order to calculate the performance metrics for the classifier. The 

performance, as well as some properties of the classifier is printed on the screen. Examples of the 

classification output can be seen in figure 3.13b and d. The actual classifier remains in the R 

environment and can be interacted with using the functions in the adabag package.   

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.13: Output examples for LCA (a and c) and classification (b and d) in R 
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3.6 Chapter conclusion 

Based on the findings of chapter 2, this chapter has presented requirements to the input, output, and 

performance of behavioural classification. Based on these requirements, the CC-framework has been 

presented. This framework consists of two main parts. First, based on passenger attributes, it 

performs clustering. This forms behavioural classes on a training data set. Second, based on the 

clustered data set and the passenger attributes of the training data set, it creates a classifier. After 

this classifier has been created, ‘new’ passengers can be classified into one of the behavioural classes 

by the classifier. The behavioural characteristics associated with the behavioural class form the input 

for the behavioural model in the PDF. 

For both parts of the framework, requirements have been set and techniques have been introduced. 

Based on these requirements, a specific technique for both parts of the framework has been chosen 

and implemented. For clustering, Latent Class Analysis has been chosen because it offers several 

benefits; LCA is able to handle mixed-type data, has been shown to yield good results, and provides 

good performance metrics due to being model-based. LCA has been implemented in the R 

programming environment using the poLCA package. For the classification part of the CC-framework, 

a boosted ensemble classifier based on decision trees has been chosen. This solution was chosen 

because it offers a transparent classifier, supports mixed-type data, and decision trees are relatively 

quick to compute. However, because decision trees are less accurate than some other algorithms, a 

boosted ensemble classifier has been used in order to increase accuracy. The boosted ensemble 

classifier has also been implemented in the R using the adabag package. Both the clustering and 

classification implementation have then been integrated into one in R.   

In the next chapter, the implementation of the CC-framework will be applied to a data set in order to 

test its performance. Because there are various parameters in the framework that can be adjusted, a 

grid search for these parameters will be performed to find the optimal settings. 
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4 

Clustering and Classification Results 

The previous chapter has introduced various methods for clustering and classifying data into groups 

and finally presented an integrated implementation of the chosen methods. The present chapter will 

go more into depth about the application of the framework. To this end, the framework is applied to a 
data set in order to test its performance. Based on this, some conclusions with respect to the 

behavioural classes of these data and the performance of the framework can be made. 

This chapter is structured as follows. First, a description of possible sources of data and the actual 

data set that is used with the implemented CC-framework is given in section 4.1. The data set is 

presented using descriptive statistics in section 4.2 in order to discover possible relations between 

variables in the data. Based on this, our expectations with respect to the results of classification and 
clustering can be established. Subsequently, the optimal values for some parameters for clustering 

and classification are sought for in section 4.3. Detailed results of clustering and classification on the 

data set based on these optimal parameter values are presented in section 4.4.  The findings in this 

chapter are summarised in 4.5. 

4.1 Description of used data 

AAS has several systems in place that could potentially provide data that can be used to test the CC-

framework with. However, in all cases, passenger privacy is a main concern. For this reason, available 

data is anonymised and available passenger characteristics are stripped from the data. As a result, 

there are no personal characteristics available in these data. As established earlier in this report, 

because both passenger characteristics and behavioural characteristics are required for 

classification, these data are hence unsuitable to use in this thesis. Still, there are two interesting data 

sets that contain data acquired from RF-positioning. These two sets are discussed in sections 4.1.1 

and 4.1.2. One other data set contains both passenger and behavioural characteristics, and multiple 

categories of these characteristics, i.e.: personal, process, and trip characteristics. This data set, which 

is the PASSME data set, has therefore been used with the framework. However, contrary to the other 

two aforementioned data sets, the PASSME data set contains no sensor information, but only survey 

data. The PASSME data set is introduced in section 4.1.3. 

4.1.1 Bluetooth and Wi-Fi detection 

AAS has deployed a rather extensive network of combined Bluetooth and Wi-Fi tracking sensors, 

called the BlipTrack system.4 Each mobile device that has Wi-Fi or Bluetooth enabled that comes into 

the range of such a sensor is registered. Combining the observations of the various sensors that have 

registered a device can in theory lead to quite a detailed overview of the behaviour of a passenger 

                                                                 
4 BlipTrack is a product of BLIP systems, based in Denmark. 
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with respect to the amount of time spent in areas of the airport and the route taken. As the 

implementation of BlipTrack at AAS is primarily aimed at lead time prediction, the system is quite 

dense at passenger process areas such as check-in desks and security filters. For example, the check-

in desk area of departures 1 is equipped with 17 of such sensors. Also the security filter 1 and lounge 

1, which follow after departures 1, are equipped with the sensors. In theory, using these data could 

provide quite a complete picture of the locations a passenger has visited, and for how long.  

However, the data have a few limitations to use them for behavioural classification. First, although 

the BlipTrack system can be used as a tracking system, the implementation at AAS is primarily aimed 

at lead time prediction and tracking area occupation. This results in a lower level of detail in the data. 

Combining the raw data still leads to information about entering and leaving the check-in area, 

security area, and lounge area. Second, the data are anonymised and there are no passenger 

attributes available. This means that for every tracked device in the data set, the only data available 

are the timestamps at which it was registered by the sensors and the hashed MAC-address of the 

device. Consequently, it is not possible to couple the BlipTrack data to any other systems, should 

these have more information coupled to a specific device’s MAC-address. For these reasons, the 

BlipTrack data was considered unsuitable for usage in the CC-framework. 

4.1.2 Self-Service Boarding Pass Check 

Passengers that want to proceed from the departure hall to the security filters at AAS are required to 

scan their boarding pass at the self-service boarding pass check (SSBPC). The SSBPC checks if the 

boarding pass is valid and, if this is the case, grants the passenger access to the security filter area. 
The SSBPC-system records various aspects of each scanned boarding pass, such as the access time, 

travel class and flight number. Theoretically, this system could also provide information about the 

passenger, such as name and sex. However, due to privacy regulations, these data are stripped from 
the system. What remains is a rather limited set of information for each individual passenger that 

passed the SSBPC that almost exclusively pertains to the flight of the passenger and not the 

passenger itself. While some attributes do in fact affect behaviour according to the findings in section 

2.2.2, the only attribute in this data that can be characterised as a behavioural attribute is the time 

remaining between scanning the boarding pass and the departure of the flight, which is not 

influenced by the other attributes in the data according to the same findings.   

However, based on some of the attributes in the SSBPC data, some additional attributes can be added 

to the data. Using the IATA code of the destination airport, it can be determined whether or not the 

destination is within the Schengen Area. Additionally, based on the coordinates of the destination 

airport, the great circle distance of the flight can be calculated. This can be used as a proxy for flight 

duration, which may affect how long before their flight passengers enter the security filter. 

Additionally, the exact time in minutes to departure can be calculated based on the date and time of 

passage and the date and time of flight departure. However, even with these added attributes, the 

data set is still very limited with respect to both behavioural attributes and passenger attributes. 

Consequently, the usability of the data for the envisioned goal of finding and classifying behavioural 

groups is limited.  

4.1.3 PASSME survey data 

The PASSME data set consists of surveys taken from departing and transferring passengers at an 

airport within the PASSME context. The data set contains 3,923 respondents, out of which 2,097 are 

departing passengers and 1,826 are transferring passengers. Although there are no specific 
requirements with respect to the sample size for clustering and classification, this sample size is 

quite large and expected to suffice. The two subsets predominantly have the same attributes. Several 

of these have been shown to be related, according to the literature review in section 2.2.2. Because 

there are several attributes unique to either departing or transferring passengers, and the passenger 

process for these two types of passengers differs, the two subsets will be treated as two separate 

data sets. 
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Table 4.1 describes the attributes in the total data set. The column ‘category’ corresponds to the 

three categories of characteristics described in section 2.2.1.2. The column ‘type’ indicates if the 

attribute is either of type ‘passenger’ or ‘behavioural’, corresponding to the definition as introduced 

in section 2.2.1.1. Recall from chapter 3 that clustering is performed based on the behavioural 

attributes, yielding the behavioural classes. Using the passenger characteristics of all observations in 

these classes, classification rules are made.  

The last column of table 4.1 indicates the variable type, which could be either categorical or 

continuous. Recall from section 3.3.5 that continuous variables that are to be used in the LCA, i.e. 

behavioural attributes, should be binned first in order to convert them to a categorical type.  

Table 4.1: Attributes in the PASSME data set 

Common attributes 

Attribute Value Category Type  Variable 
type 

Age group 00-30, 31-60, 60+ Personal Passenger Categorical 
Country of 
residence 

Within or outside European 
Union 

Personal Passenger Categorical 

Destination 
country 

Within or outside European 
Union 

Trip Passenger Categorical 

Flight day of week Monday through Sunday Trip Passenger Categorical 
Flight frequency 0-3, 4-10, 11+, per year Personal Passenger Categorical 
Nationality Within or outside European 

Union 
Personal Passenger Categorical 

Passenger amount Amount of passengers Process Passenger Categorical 
Travel class Economy, business/first, 

unknown 
Trip Passenger Categorical 

Travel duration 1, 2, 3, 4-7, 8-13, 14-21, 21+, 
days 

Trip Passenger Categorical 

Travel purpose Business or leisure Trip Passenger Categorical 
Went shopping Indicates whether the person 

has bought anything in a shop 
Process Behavioural Categorical 

Went to restaurant Indicates whether the person 
has bought and consumed 
anything in a restaurant/coffee 
stand/etc. 

Process Behavioural Categorical 

Departing passenger attributes 

Attribute Value Characteristic 
type 

Attribute 
type 

Variable 
type 

Check in hall 1, 2 or 3 Process Passenger Categorical 
Transport mode Travel mode to the airport Trip Passenger Categorical 
Travel time to the 
airport 

Travel time from home to the 
airport, minutes 

Process Passenger Continuous 

Landside time Time spent landside, minutes 
(area between the airport 
entrance and security check) 

Process Behavioural Continuous 

Lounge time Time spent in lounge, minutes 
(area after security check, but 
before the piers) 

Process Behavioural Continuous 

Go to gate time Time between going to gate 
(from lounge) and scheduled 
flight departure, minutes 

Process Behavioural Continuous 

Gate time Time spent at gate, minutes Process Behavioural Continuous 
Total time at the Total time between arriving at Process Passenger Continuous 
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airport the airport and flight departure 

Transferring passenger attributes 

Attribute Value Characteristic 
type 

Attribute 
type 

Variable 
type 

Total transfer time Total transfer time, minutes Process Passenger Continuous 
Lounge time  Time spent in lounge, minutes Process Behavioural Continuous 
Go to gate time Time between going to gate 

(from lounge) and scheduled 
flight departure, minutes 

Process Behavioural Continuous 

Gate time Time spent at gate, minutes Process Behavioural Continuous 
Origin country Country where transferring 

passenger departed from 
Trip Passenger Categorical 

 

The attribute type of most attributes in the set is quite unambiguous. Yet, the attribute type of some 

attributes in table 4.1 might intuitively seem strange. Some of them are therefore explained here: 

 Flight frequency may be interpreted as behaviour and to an extent it certainly is, however it 
is on a different scale. In the present case we are interested in the behaviour of passengers 

within the terminal, not in their behaviour on a yearly basis. Flight frequency on a yearly 

basis is hence not a behavioural attribute, but rather a passenger attribute that may explain 

the behaviour of a passenger within the airport. After all, an experienced passenger who flies 

several times per year may display different behaviour than a passenger who flies once per 

year or less.  

 Travel time to the airport is a component of behaviour on the strategic level. However, 

with respect to behaviour within the terminal, this attribute is exogenous and hence 
regarded as a passenger attribute.  

 Landside time indicates the amount of time the passenger spends at landside, i.e. the 

amount of time between entering the terminal and joining the security filter queue. A 

passenger may choose to perform discretionary activities during this period, influencing his 

landside time. Hence, landside time is represented as a behavioural attribute. 

 Total time at the airport is also a consequence of the departure time choice and mode 
choice of the passenger, which is exogenous to the behaviour at the airport. However, the 

total time at the airport can affect the activities that a passenger will perform at the airport 

and is hence interpreted as a passenger attribute. 

 Total transfer time is exogenous to the behaviour of the transfer passenger at the airport as 

it has been established when the flight was booked. However, the total time available at the 

airport may affect the behaviour of the passenger at the airport and is hence regarded as a 
passenger attribute. 

Because the PASSME data is based on surveys, and not collected specifically for the purpose of this 

thesis report, the data is somewhat lacking with respect to the amount of detail and the number of 

attributes included. For example, the definitions of all behavioural attributes are quite broad. 

Comparing the PASSME data with the characteristics that have been shown to be related to 

behaviour in section 2.2.2, some of these attributes are present in the PASSME data. Below is an 

overview of these attributes, and their effects on behaviour according to section 2.2.2: 

 Age has been shown to be related to the likelihood of shopping. 

 Total time at the airport has been shown to be related to the likelihood of food and drinks 

consumption. 

 Travel class has been shown to be related to the waiting time in the three departing time 

phases. These phases are not specifically present in the PASSME data, although they do 

contain the time spent in different parts of the airport terminal. 
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 Travel destination has been shown to be related to the likelihood of consuming food or 

drinks. However the PASSME data discerns between travellers with a destination within or 

outside the EU, instead of intercontinental and continental travel. However, these definitions 

are fairly similar. 

 Travel experience has been shown to be related to the likelihood of shopping and 

performing discretionary activities before security. However, the latter is not specifically 

available in the PASSME data. Moreover, travel experience is not available in the PASSME 

data, though this could be approximated by the ‘flight frequency’ attribute. 

 Travel purpose, for which it has been shown that business passengers are less likely to 

perform discretionary activities for the security check. Business passengers also allow for a 

larger safety margin with respect to their arrival at the airport. Both of these attributes are 

not specifically available in the PASSME data, though they could be approximated by the 

‘shopping’, ‘restaurant’, ‘landside time’, and ‘total time at the airport’ attributes. 

4.2 PASSME data analysis 

Using a latent class analysis on the PASSME data set will form a specified number of classes for which 

the model fit can be verified using metrics such as the AIC and BIC. It is however important to realise 

what kind of classes can be expected in order to be able to also logically verify the validity of the 

classes that are formed. In addition, it is useful to explore possible predictor variables for the 

classification. Therefore, the data in the data set will be discussed and analyses will be performed in 

order to find possible relations between attributes in the data.  

In the previous section, the attributes in the data set have been categorised into behavioural 
attributes and passenger attributes. The behavioural attributes will be used to form the classes, while 

the passenger attributes will be used to classify passengers into these classes. We are therefore 

mainly interested in the following two questions: 

1. How are the behavioural attributes distributed, and can groups be observed based on these 

distributions? 

2. Are there relations between passenger attributes and behavioural attributes? 

Subsection 4.2.1 pertains to the first question. Here, the six behavioural attributes are analysed by 

exploring the distributions of the numerical variables and possible correlations between them using 

Pearson correlation. In addition, it is tested if the distributions of the numerical behavioural 

attributes differ significantly across the categories of the two categorical behavioural attributes in the 

set using the Mann-Whitney U test. 

The second question is discussed in subsection 4.2.2. First, the distributions of the travel purpose and 

age over the days of the week are analysed. Significant differences over the days of the week for these 

attributes may be related to differences in behaviour, as these attributes have been shown to be 

related to behaviour (see section 2.2.2). Next, the transport mode and flight destination are shown in 

relation to the total time spent at the airport. Lastly, possible relations between the passenger 
attributes and behavioural attributes are tested. 

Note: due to the confidentiality of the PASSME data, some text and figures regarding the data 

analysis and results of the framework had to be omitted for this public version of the report. 

Omissions are indicated in the text. 

4.2.1 Analysis of behavioural attributes 

This subsection has been omitted. 

4.2.2 Observations with respect to passenger- and behavioural attributes 

 This subsection has been omitted. 
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4.2.3 Summary 

This section has presented various statistics and plots of the PASSME data set. This overview is by no 

means all-encompassing. However, to the best of the author’s knowledge, the most interesting 

combinations of attributes were discussed. Summarizing, this section has shown the following: 

 Some of the numerical behavioural attributes are (slightly) correlated. Time in lounge is 

correlated with all three other numerical attributes, and the go to gate time and gate time are 

correlated. Additionally, the distribution of the numerical attributes in many cases differs 

significantly across the categories of the categorical behavioural attributes. 

 There is some variance in the percentage of business travellers, with a peak after the middle 

of the week. The percentage of business travellers is higher for transferring passengers than 

for departing passengers. 

 As the total time spent at the airport increases, the percentage of travellers that choose to 

either shop or visit a restaurant increases. 

 Omitted. 

 There is not much difference in the total time at the airport for the various ingress transport 

modes; only the mode ‘coach travel organisation-charter bus’ shows a significant difference 

compared to some of the other modes. However, passengers with a destination outside the 

European Union spend more time at the airport compared to passengers with a destination 
within the European Union. 

 As the total time at the airport increases, the proportion of time spent in the lounge 

increases. For departing passengers, the proportion of time spent landside also increases. For 

both departing and transferring passengers, the percentage of time spent at the gate is the 

highest until about three hours dwell time at the airport. After that, more time is spent in the 

lounge, or landside. 

Based on the analyses of the behavioural attributes, it can be mentioned that the differences in the 

shapes of the distributions, the correlation between the various numerical attributes, and the 

significant differences for the distributions across the classes of the categorical variables, lead to 

expect that indeed classes could be found in the data. It is likely that there will be a visible difference 

between shopping and restaurant behaviour across the classes that are to be found. In addition, 

several possible class predictor variables have been identified, such as travel purpose or travel 
experience as predictors for the time spent in the airport lounge. 

4.3 Optimising the Clustering and Classification parameters 

When executing the implemented CC-framework, there are quite some parameters that affect the 

performance of both the clustering and the classification. Hence, there are essentially two models 

that should be optimised. In principle, clustering is the first part of the process. It makes sense to first 

find the best clustering results, and then apply classification based on this clustering. However, the 

best clustering results do not necessarily lead to the best classification result. This could lead to a 

well-fitting division of clusters, but with clusters for which only a mediocre classification can be 

made that is not better than random guessing, such as in the case of AUC < 0.5. Because the goal of 

this thesis work is most of all to be able to classify passengers, it was chosen to adopt an integrated 

approach wherein both clustering and classification are performed and the results of both are 

assessed. Using a grid search, the parameters of clustering and classification are varied in order to 

find the best parameters settings for optimal classification performance. 

During the grid search, three key inputs of the CC-framework are varied: 

 The number of classes to be used in the latent class cluster analysis. 

 The bin size of bins that are used for the time attributes in the data set.5 
                                                                 
5 Recall that the LCA can only deal with categorical attributes, hence binning the time attributes of the 
PASSME data is required 
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 The maximum tree depth of the decision trees that are used in the SAMME ensemble 

Table 4.2: Parameter ranges for classification optimisation 

Parameter Minimum Maximum Step size 
Number of classes 2 7 1 
Bin size 5 minutes 60 minutes 5 minutes 
Maximum tree depth 10 15 1 

 

For both subsets of the PASSME data set, these three parameters were varied as shown in table 4.2, 

which were chosen based on results of preliminary tests to find sensible parameter ranges. All 

possible combinations within these ranges have been tested, leading to a total of 432 results. Each 

result contains the BIC and AIC for the clustering part. The metrics for classification are recorded 

separately for the training set and the test set. Classification metrics that have been used are the AUC, 

overall accuracy, average accuracy and the F1-score6. Recall that the performance of the classifier on 

the training set is expected to be better than the performance on the test set. Therefore the metrics 

for the test set are leading with regards to choosing the best parameter settings. 

In the following two subsections, the results for the departing and transferring subsets of the 

PASSME data are presented and explored. Based on the results, a choice with respect to the 

parameter settings will be made. The next section, section 4.4, will present more in-depth results of 

the chosen parameter settings. 

4.3.1 Departing passengers 

Figure 4.1 shows the results for the subset of departing passengers. The graphs show the 

performance per class, with the bin size for the numerical behavioural attributes on the horizontal 
axis. Because this leaves out the dimension of the maximum tree depth, the maximum performance 

with respect to this parameter is shown. This is acceptable because there is little difference in results 

between the different settings for maximum tree depth. Larger versions of the graphs and some 

additional graphs are included in Appendix E. 

The AUC values in figure 4.1a appear to be rather variable. However, a few observations can be made. 

The absolute maximum AUC of 0.76 is found at four classes and a bin size of 40 minutes. The AUC-

values for all classes tend to move closer together at bin sizes of 25 and 40 minutes.  

The average accuracy, included in the appendix, paints a different picture. The accuracy increases as 

the number of classes increases. Specifically for the two and three class case, the accuracy increases 

as bin size increases. Examining the overall accuracy, the picture is almost reversed; here, the 

accuracy decreases as the number of classes increases. The difference between the overall accuracy 

and average accuracy can be explained by the fact that the average accuracy does not compensate for 

the class size. The F1-scores show an increase in score as the number of classes decreases. There is 

no apparent effect of bin size on the F1-score.  

 

                                                                 
6 The F1-score is the F-score with a 𝛽 value equal to one 
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(a) 

 
(b) 

 
(c) 

Figure 4.1: Optimisation results for the departing passengers subset 

In addition to the metrics of the classification, the model fit of the latent class clustering should also 

be assessed. The AIC and BIC are shown in figure 4.2, summarized as the minimum result of all bin 

sizes that were tested for each amount of classes. The BIC value increases as the number of classes 
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increases, though there is a slight dip at four classes. Consequently, according to the BIC, a clustering 

with four classes yields the best model. The AIC contradicts this, with the value decreasing as the 

number of classes increases. This may be attributed to the fact that the AIC tends to favour overly 

complex models (Dziak et al., 2012). With respect to bin size, it can be noted that both AIC and BIC 

decrease for larger bin sizes.  

 

Figure 4.2: Cluster model performance for various bin sizes for the departing passengers subset 

Summarizing the presented results for clustering and classification, the following remarks can be 

made: 

 Two of the classification metrics favour a low number of classes, one favours a high number 
of classes, and one is not clear. 

 The LCA model fit is best for around two to four classes. 

 The maximum tree depth parameter has little effect on any of the results.  

Based on these observations, the best fit for both clustering and classification is achieved with two 

classes. For two classes, the best performance on all classification metrics is achieved with a bin size 

of 60 minutes. This has led to the values presented in table 4.3. 

Table 4.3: Optimal parameter values for the departing passengers subset 

Parameter Optimum 
Number of classes 2 
Bin size 60 minutes 
Maximum tree depth 14 

 

4.3.2 Transferring passengers 

The results of optimisation on the subset of transferring passengers are quite similar to the results of 

the departing passengers. Some figures are included here. For a complete overview of the results, the 
reader is referred to Appendix E.  

Generally, performance of the classifier on the test set increases as the bin size increases and the 

number of classes decreases. Looking at the AUC values in figure 4.3, the peaks for two classes at 45 

and 55-minute bin sizes stand out, as well as the result for seven classes at a bin size of 60 minutes. 

However, taking into account the overall accuracy, average accuracy and F1-score, the same picture 
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is painted as for the departing passenger subset. Hence, there is a higher F1-score and overall 

accuracy for a low number of classes, whereas the average accuracy is higher for a high number of 

classes.  

 

Figure 4.3: AUC results for the transferring passengers subset 

The LCA model BIC and AIC decrease as the bin size increases, similar to the departing passenger 

subset. However, with respect to the number of classes, the BIC and AIC have their optimal value at 

four and seven classes, respectively. Once again, this may be explained by the fact that the AIC tends 

to favour more complex models. 

 

Figure 4.4: Cluster model performance for various bin sizes for the transferring passengers subset 
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Based on the results for the transferring passengers subset, some remarks can be made: 

 With respect to classification, a low number of classes and a large bin size lead to the best 

classifier performance. 

 The LCA model yields the best results for around four to five classes. However, classifier 

performance for this number of classis is much worse. 

 Again, the maximum tree depth parameter has little effect on any of the results. 

Based on these observations, the parameter values for transferring passengers will be set as shown 

in table 4.4. 

Table 4.4: Optimal parameter values for the transferring passengers subset 

Parameter Optimum 
Number of classes 2 
Bin size 45 minutes 
Maximum tree depth 10 

 

4.4 Final results 

The number of classes, bin size, and maximum tree depth settings for the CC-framework have been 

optimised for the PASSME data set in section 4.3. In this section, results are presented in further 

detail. There are some random components in the framework, for example due to the sampling of the 

training subset for the ensemble classifier. This can lead to slightly different results between 
different runs of the script. Because of this, the CC script has been run 50 times in order to give 

confidence intervals for the performance metrics. Results with respect to the class distributions, class 

probabilities and predictor importance are difficult to verify over different runs as the class labels do 

not remain same over different runs (e.g.: class 1 during the first run could be class 2 during the 

second run). As such, these results are displayed for one run of the script, though with a fixed seed in 

order to guarantee reproducibility. 

4.4.1 Departing passengers 

The results for the subset of departing passengers were obtained using the six behavioural attributes 

as defined in table 4.1 for the LCA. For the ensemble classifier, the thirteen passenger attributes as 

defined in the same table were used. An overview of this is given in table 4.5. 

Table 4.5: Attributes used in the LCA and classification for departing passengers 

LCA Classification 

Landside time Age Flight frequency 

Lounge time Booking class Nationality 

Go to gate time Check-in hall Passenger amount 

Gate time Country of residence Total time at the airport 

Shopping Day of week Transport mode 

Restaurant Destination Country Travel duration 

 Travel purpose  

 

The total number of objects in the subset of departing passengers is 2,097. The fixed result of the LCA 
has 1,218 (58%) in class 1, and 879 (42%) in class 2. 

4.4.1.1 Classes 

The LCA has been performed 50 times. The model fit, expressed by the BIC and AIC values, shows 

very little variation as shown in table 4.6. This means that there is little difference in the goodness of 

fit between the various model estimations.  
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Table 4.6: LCA performance for departing passengers 

Metric Mean 95% confidence interval 

BIC 15877.45 ± 0.17 

AIC 15724.95 ± 0.17 

 

Figure 4.5 shows the estimated class-conditional outcome probabilities of the latent class analysis. 

For each attribute used in the LCA, a bar graph is shown for each of the two classes. Each colour on 

the bar represents the probability that an object classified in that class will have the outcome 
represented by that colour. From the figure it becomes apparent that the go to gate time and the time 

spent at the gate are the main difference between the two classes. The vast majority of class 1 (70%) 

goes to their gate 60 minutes or less in advance of flight departure. For class 2, this percentage is 

almost zero; by contrast, almost 88% percent of class 2 goes to their gate 61 to 120 minutes before 

their flight departs. The same can be seen for the time spent at the gate. For class 1, 99% spends less 

than an hour at the gate, while class 2 has an 87% probability of spending 61 to 120 minutes at the 

gate. The other attributes are very similar between the two classes, though class 1 has a slightly 

higher probability of spending more time in the lounge.  

Consequently, if one has to characterise the two classes, class 1 could be described as the ‘late-at-the-

gate’ class. Class 2 could then be described as the ‘early-at-the-gate’ class. 
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Figure 4.5: LCA result for departing passengers 
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most time in the lounge also has a considerably higher probability for shopping and restaurant visit. 
In addition, the goodness of fit of the LCA and the performance of the classifier are higher compared 

to when the time spent at the gate is included in the model, implying that this results in a better 

model. 

4.4.1.2 Classifier 

Table 4.7 shows the mean and 95% confidence interval of the performance metrics for ensemble 

classifier, based on 50 model estimations. In all cases, the metrics for the training set are better than 

for the testing set. This is not unexpected as the classifier is created using the training set, hence 

creating better results for this set. Note that the overall and average accuracy are equal because there 

are only two classes.  

Table 4.7: Classifier performance for departing passengers 

Set Metric Mean 95% confidence interval 

train AUC 0.9787 ± 0.0016 

test AUC 0.6883 ± 0.0049 

train Overall accuracy 0.9163 ± 0.0040 

test Overall accuracy 0.6363 ± 0.0037 

train Average accuracy 0.9163 ± 0.0040 

test Average accuracy 0.6363 ± 0.0037 
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test Macro F1-score 0.6250 ± 0.0039 
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Overall, the value of all metrics is around 0.65, indicating a relatively poor performance of the 

classifier. Judging from the values in table 4.8, the classifier mainly struggles to recognize objects that 

should be categorized in class 2.  

Table 4.8: Per-class recall and precision for departing passengers 

Class Recall Precision 
Class 1 0.730 0.698 
Class 2 0.571 0.608 

 

With respect to the importance of the predictors used in the classifier, shown in figure 4.6, it can be 

noted that the five most important predictors out of the total of thirteen make up for 77% of the total 

prediction of the classifier. The total time spent at the airport dominates as a predictor and is almost 

twice as important as the next most important predictor, which is the day of the week. It is however 

logical that the total time at the airport has such a high importance, seeing as four of the six attributes 

used in the classification pertain to time, of which this attribute is the total.  However, leaving the 

total time at the airport out of the ensemble classifier drops the performance of the classifier by only 

a few percentage points. Hence, there is some correlation with other predictors. 

Other relatively important predictors, each having an importance higher than ten percent, are the 

day of the week, the transport mode that was used for transport towards the airport, and the total 

duration of the journey.7 This is in line with the observations of 4.2.2, which has shown significant 

differences between the duration of staying at the airport for the different transport modes and the 
difference between passenger types over the days of the week. 

 

Figure 4.6: Importance of predictor attributes for departing passengers 

4.4.2 Transferring passengers 

The results for the subset of transferring passengers were obtained using the five behavioural 
attributes as defined in table 4.1 for the LCA. For the ensemble classifier, the eleven passenger 

attributes as defined in the same table were used. An overview of all these attributes is given in table 

4.9. 
                                                                 
7 Note that this is not the duration of the journey towards the airport, but the time spent at the flight 
destination before returning ‘home’. 
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Table 4.9: Attributes used in the LCA and classification for transferring passengers 

LCA Classification 

Total transfer time Total transfer time Age Travel purpose 

Lounge time Flight day of week Destination country Country of residence 

Go to gate time Travel duration Origin country Booking class 

Time at gate Flight frequency Nationality  

 

The total number of objects in the subset of transferring passengers is 1,825. The fixed result of the 

LCA has 1,226 (67%) assigned to class 1, and 599 (33%) to class 2. 

4.4.2.1 Classes 

The LCA has been performed 50 times, for which the model fit values BIC and AIC are shown in table 

4.10. The range of the 95% confidence interval is considerably higher than for the departing 

passengers subset. However, relative to the mean values these are still relatively small. Hence, the 

LCA is expected to perform similarly for a single run.  

Table 4.10: LCA performance for transferring passengers 

Metric Mean 95% confidence interval 

BIC 19491.06 ± 78.88 

AIC 19210.08 ± 78.88 
 

Figure 4.7 shows results of the LCA per class and per attribute outcome-probabilities. Similar to the 

results of the data set of departing passengers, the predominant difference between the two classes 

is the time spent at the gate and how far in advance one goes to the gate. In class 1, there is a 94% 

probability of heading towards the gate less than 90 minutes before flight departure. This is in 
contrast with class 2, where the probability of heading towards the gate more than 90 minutes in 

advance is as much as 99%. The probability of heading towards the gate 136 to 180 minutes in 

advance is even as much as 24%. Not unexpectedly, the gate time attribute shows similar results, 

where class 1 spends less time at the gate than class 2. However, for this attribute there is more 

overlap; class 1 has a probability of 62% of spending between 46 and 90 minutes at the gate, 

whereas class 2 has a probability of 36% for this outcome. 

Similar to the results for departing passengers, the difference in the restaurant and shopping 

attributes is small. Though here the difference in outcome probabilities is even smaller, being 

virtually the same for both classes. The outcome probabilities of the lounge time attribute is also very 
similar between the two classes. The probability of spending less than 90 minutes in the lounge is 

around 60% for both classes. The only difference between the two classes that stands out is the 

probability of spending between 361 and 405 minutes in the lounge, which is almost double for  

class 1. 

Similarly to the results of departing passengers, characterising the classes would imply class 1 being 

and ‘early-at-the-gate’ class and class 2 a ‘late-at-the-gate’ class. 
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Figure 4.7: LCA result for transferring passengers 
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Similarly to the results of the LCA on the departing passengers, leaving out the time spent at the gate 

leads to two classes that are primarily distinguished based on the time spent in the lounge and even 

more so by the shopping and restaurant attributes. Additionally, the performance of the LCA and the 

classifier is better. 

4.4.2.2 Classifier 

Table 4.11 shows the mean and 95% confidence interval of the performance metrics for the 

ensemble classifier. Overall, the performance of the classifier is somewhat better (around 1 

percentage point) than for the departing passengers subset.  

Table 4.11: Classifier performance for transferring passengers 

Set Metric Mean 95% confidence interval 

train AUC 0.9818 ± 0.0031 

test AUC 0.6774 ± 0.0225 

train Overall accuracy 0.9273 ± 0.0074 

test Overall accuracy 0.6733 ± 0.0102 

train Average accuracy 0.9273 ± 0.0074 

test Average accuracy 0.6733 ± 0.0102 

train Macro F1-score 0.9154 ± 0.0093 

test Macro F1-score 0.6138 ± 0.0169 
 
However, judging from the recall and precision values, presented for both classes in table 4.12, the 

classifier manages to correctly recognise less than half of the objects that should be in class 2. Also, 

out of all objects that are classified as class 2, less than half is correct. This may be caused by the fact 

that for the complete data set, class 2 is significantly smaller than class 1. As a result, the ensemble 

may be trained better for class 1 than for class 2, resulting in higher recall and precision rates for the 

former class. 

Table 4.12: Per-class recall and precision for transferring passengers 

Class Recall Precision 
Class 1 0.738 0.740 
Class 2 0.451 0.449 

 

Figure 4.8 shows the importance of all predictors used for creating the classifier. The predictors are 
dominated by one attribute: the total transfer time, which has an importance of 40%. Leaving out this 

attribute, however, significantly reduces the performance of the classifier. In addition to the total 

transfer time, the day of the week and the travel duration are important predictors for the class.  
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Figure 4.8: Importance of predictors for transferring passengers 

4.5 Chapter conclusion 

In this chapter, the framework developed in chapter 3 has been applied to a real data set. For this 

purpose, several possible data sets have been discussed. The Bliptrack and SSBPC data are both 

based on a form of RF-positioning, which is one of the possible sources of sensor data as introduced 

in chapter 2. However, both data sets are very limited with respect to the number and type of 

attributes and therefore not suitable to use with the CC-framework. Combining the two data sets 

could have yielded a useable data set. However, there is no information present in the data that 

would reliably allow this. 

Ultimately, the CC-framework has been applied to the PASSME data set. This data set contains 

relatively many attributes. Six of the attributes that have been shown to be related to passenger 

behaviour in section 2.2.2, are also present in the PASSME data. However, the data set was not 

specifically collected for the purpose of behavioural classification and is based on survey data. 
Because of this, the level of detail in the data is somewhat lacking, and some possibly relevant 

passenger attributes and behavioural attributes are not available. Relations between the variables in 

the data have been analysed, based on which some conclusions can be drawn: 

 Various relations between passenger characteristics and behavioural characteristics are in 

agreement with the relations as they have been set out earlier in the report: 
o There is a positive correlation between dwell time at the airport and likelihood of 

shopping and restaurant visit. 

o There is a negative correlation between travel experience and likelihood of shopping 

and restaurant visit. 

o Travellers with a destination outside the EU spend more time at the airport 

compared to passenger with a destination within the EU. 

 Passengers staying up to about two hours at the airport spend, on average, most of their time 

at the gate. 

 The behavioural attributes regarding time spent in areas of the airport show a high spread. 
Two of these attributes are normally distributed. There are no apparent classes visible in 

these attributes. 

 Comparing the distributions of behavioural attributes regarding time spent in areas of the 

airport across the two categories of the ‘shopping’ and ‘restaurant’ attributes, shows that for 

departing passengers these differ significantly in all cases. For transferring passengers, there 

is a significant difference for half of the cases. This implies that classes could be found based 

on this difference. 
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 Overall, the results of the analysis are very similar for the transferring and departing subsets 

of the PASSME data.  

The analysis of the PASSME data set hence confirms that there are relations between the passenger 

attributes and behavioural attributes in the data. Moreover, based on the significant differences 

between the distributions of the behavioural attributes regarding time and the fact that these show a 

high spread, imply that there are classes to be found in the data. It can be concluded that applying the 

CC-framework on this data is appropriate. 

After the analysis, the CC-framework has been applied to the PASSME data set. Because the CC-

framework consists of clustering and classification, there are multiple parameters that can affect the 

performance of the results of the framework. As such, a grid search was performed in order to find 

the optimal parameter settings for both subsets regarding the number of classes, the bin size of the 

numerical attributes, and the maximum tree depth of the decision trees in the ensemble classifier. 

Based on the results, some conclusions can be drawn which are applicable to both departing and 

transferring passengers: 

 The LCA fit increases as the bin size increases. 

 The optimal LCA fit is achieved at around four to five classes. 

 The classifier performance generally increases as the number of classes decreases. 

 The classifier performance somewhat increases as the bin size increases. 

 The effect of maximum tree size on classifier performance is very limited. 

For departing passengers, the optimal number of classes was found to be two, with a bin size of 60 

minutes and a maximum tree depth of 14. The behavioural attributes of the two classes are 

distinguished by the time that passengers take for going to the gate and sitting at the gate. In 

addition, a slight difference is visible in restaurant and shopping behaviour and the time spent in the 

lounge. The two classes of departing passengers have been described as a ‘late-at-the-gate’ class and 

an ‘early-at-the-gate’ class. These two classes do not confirm to the observation from the data 

analysis that the distributions of the behavioural time attributes differ significantly across the 

categories of the categorical behavioural attributes. However, leaving the ‘gate time’ and the ‘go to 

gate time’ out of the application of the framework, results in classes that are distinguished by the 

lounge time, and restaurant and shopping attributes, which does agree with this observation. 

Nevertheless, the behavioural attributes of the classes that have been found do not contradict. As 

such, the classes can be considered to be logical. The classification of departing passengers using the 

CC-framework has yielded an average accuracy of only 64% and an F1-score of 63%.  

For transferring passengers¸ the same process has been applied. The results for this subset are 

very similar to those of the departing passengers: two classes, with a bin size of 45 minutes and a 

maximum tree depth of 10. Again, the main difference between the two classes is the time spent at 

the gate and the go to gate time. As such, these classes can also be described as a ‘late-at-the-gate’ 

class and an ‘early-at-the-gate’ class. The late-at-the-gate class spends slightly more time in the 

lounge. However, the shopping and restaurant behaviour for both classes is almost exactly the same. 

Furthermore, again similar to the case of departing passengers, leaving the time spent at the gate out 

of the classification yields two classes that are separated mainly by the difference in time spent at the 

lounge. Also, in that case there is a significant difference in shopping and restaurant behaviour across 

the two classes. The classification accuracy on transferring passengers is somewhat higher at 67%, 

with an F1-score of 61%. 

Considering the framework performance requirements set up in section 3.1.4, it can be concluded 

that the performance of the framework on the PASSME meets the requirements. This means that 

there are indeed classes in the data, and the performance of classification is higher than random 

guessing. However, seeing the achieved accuracy and F1-scores, the classification performance 
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cannot be regarded as very high. Several possible causes for the low performance can be considered 

(and negated): 

 The level of detail in the PASSME data is too limited with respect to the number of attributes 

and the number of response categories for many attributes. Passenger attributes that have 

been shown to be related to behaviour are not included in the data set. Moreover, apart from 

restaurant and shopping behaviour, there is no information with respect to the number and 

duration of activities that passengers have performed in the terminal. 

 Binning the numerical behavioural attributes, required by the R package that has been used 

for clustering, leads to some loss of information. However, the effects of this have been taken 

into account by applying the framework for many different bin sizes, which resulted in rather 

large bin sizes of 45 and 60 minutes.  

 There are actually no classes present in the data. However, this is quite unlikely based on the 

results of the data analysis. Moreover, the performance metrics of the LCA indicate a better 

fit for models with more than one class. 
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5 

Conclusions and Recommendations 

At the start of this thesis report, we set out to create a methodology for finding behavioural classes of 

passengers and classifying passengers to these classes to help predict their behaviour in a 

behavioural model. Recall the main research question that was introduced there: “How can 
individual airport passengers be classified according to (visual) sensor-obtained personal 

characteristics in behavioural classes that can be used to predict passenger behaviour?”. To answer 

this research question, the subject was divided into three main blocks: Sensing, Processing and 
Modelling. For each of these blocks, one or more sub-questions were formulated. 

In this last chapter, the main research question and sub-questions will be answered. To this end, the 

chapter is structured as follows. First, section 5.1 expounds the findings of the report. The research 
questions are then answered in section 5.2. The chapter closes off with section 5.3 by recommending 

further research regarding behavioural classification. 

5.1 Findings 

In this section, the findings with respect to the development of this methodology are presented. The 

findings with respect to Sensing and Modelling are discussed first; these provide the conditions in 

which the behavioural classification operates. The behavioural classification, part of the Processing 

block, is discussed after that.   

5.1.1 Sensing 

With respect to passengers and their behaviour in the terminal, the passenger process has been 

discussed. This is a rigid, linear process. It can be divided into a few phases, separated by mandatory 

processes. During these phases, passengers are able to perform discretionary activities. Although 

there is some overlap, the process is fairly different for departing, arriving, and transferring 

passengers. Consequently, these passenger types should be treated separately in a behavioural 

classification. 

To describe the characteristics of passengers and their behaviour, two definitions for characteristics 
have been set: 

 Behavioural characteristics are the characteristics that are to be predicted by the 

behavioural classification. Each behavioural class has its specific behavioural characteristics. 

These behavioural characteristics form the input for a behavioural model. 

 Passenger characteristics are the characteristics based on which passengers are classified 

into a behavioural class. These can be visible or non-visible characteristics, such as age, sex, 

flight destination and travel class. 
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There are several proven relations between passenger characteristics and behaviour according to 

literature. These are: age, airline type, amount of carry-on baggage, check-in method, education level, 

gender, group composition, income, place of residence/travel destination/travelling company, total 

time spent at the airport, travel class, travel destination, travel experience, and travel purpose. These 

characteristics have been shown to be related to one or more of the following aspects of behaviour: 

activity set, likelihood of going shopping or dinning, and the time spent in the various phases of the 

passenger process. 

For nearly all of these possible characteristics, a possible source of data is (theoretically) available, 

either in the form of visual sensors, RF-positioning, airport databases, et cetera. However, though 

many possible sources of data are already available, or could be implemented, there are two main 

challenges that should be tackled. First, as the data come from different sources, there is no universal 

identifier describing to which passenger the data applies. Fusing these data from these sources into 

one database is a challenge, though it would result in a highly detailed data set on an individual level. 

Second, even though such a data set could be anonymised so it does not contain personal details, 

privacy remains a concern.  

5.1.2 Modelling 

As the final goal of the behavioural classification is to create a more accurate representation of 

passenger behaviour in a future PASSME PDF system, behavioural models and theory with respect to 

passenger behaviour have been discussed. Broadly, the behaviour of a passenger can be 

characterised as a process with three levels of decision-making: strategic, tactical and operational. 
Although most behavioural models focus on the tactical and operational level, an ideal behavioural 

model would accurately model all levels of behaviour. Hence, this implies that for a good behavioural 

classification, behavioural characteristics of passengers should be available on all levels. In order to 
effectively tune the behavioural classification of this thesis to a behavioural model, it should be 

known what behavioural parameters are present the model that the classification forms the input to.  

5.1.3 Processing 

For the Processing block, the clustering and classification (CC) framework for passengers has been 

introduced. The framework performs two main tasks: clustering and classification. For both tasks, 

various methods have been considered. For clustering, Latent Class Analysis was chosen because it 

has been shown to yield good results, is able to handle mixed-type data, and it provides good 

performance metrics because it is model-based. For classification, a boosted ensemble of decision 

trees is used. These have been chosen because they are relatively quick to compute, offer a 

transparent classifier, and support mixed-type data. 

To test the implemented CC-framework, the PASSME data was used. These data comprise of around 

4,000 survey results of departing and transferring passengers at an airport. The set contains a 

limited number of attributes describing behaviour, which are not very detailed. The statistical 

relations between the attributes in the data were assessed. Based on this, it was determined that 

there are several significant relations between the attributes in the data set, and that is likely that 

behavioural classes could be found in the data.  

From the application of the CC-framework on the PASSME data set, it could be concluded that the 

performance of the classifier is optimal for a low number of classes, and a large bin size for the 

continuous time attributes in the data. This resulted in a classification with two classes, both for the 

data set of departing passengers as for the data set of transferring passengers. It has been shown that 

the main difference between the two classes is in both cases based mainly on the attributes regarding 

the time spent at the gate and the time of going to the gate. Additionally the performance of the 

classifier is quite low for both cases; average accuracies are around 65%. A detailed overview of the 

classification performance is given in table 5.1 
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Table 5.1: Overview of behavioural classification results 

Metric Departing passengers Transferring passengers 
AUC 0.6883 0.6774 
Overall accuracy 0.6363 0.6733 
Average accuracy 0.6363 0.6733 
Macro F1-score 0.6250 0.6138 

 

5.2 Conclusions 

The research questions have been formulated per thesis block. One question each has been 

formulated for Sensing and Modelling. Three questions were formulated for Processing. These sub-

questions will be answered here. After this, the main research question will be answered. 

5.2.1 Sensing sub-question 

Which passenger characteristics that can be used for behavioural classification can be obtained from 

sensors and information systems in an airport terminal? 

In an airport, there are quite a few possible sources of data that can theoretically be used to collect 

passenger characteristics. Viable options for an airport terminal are RF-positioning, video analysis, 

3D vision, airport apps, the airport database, and the airlines databases. Looking at the example of 

AAS, there are already several systems in place that collect interesting types of data, such as Bliptrack 

and SSBPC.  

From all these possible sources of data, many different passenger characteristics can be collected. 

The airport and airline data can mainly provide information about the passenger’s trip, i.e. origin, 

destination, flight number, et cetera. Video analysis and an airport app could mainly provide 

information about the personal properties of a passenger, i.e., age, mood, sex, et cetera. Lastly, RF-

positioning can provide information about the location and activities of the passenger. 

5.2.2 Modelling sub-question 

How could behavioural classes form the input to behavioural models such as in a passenger demand 
forecast system? 

Behaviour of passengers consists of three levels: strategic, tactical, and operational. Each of these 
levels describes a part of passenger behaviour. An ideal model would simulate all three levels. 

However, most behavioural models model one or two levels. The other levels are then exogenous to 

the model and are required as input, depending on the specifics of the model. Moreover, there are 

multiple types of models: macroscopic, mesoscopic and microscopic. Each of these models requires 

different inputs. Evidently, there is no universal answer as to what input behavioural models require.  

However, on a more general level, it can be noted how a behavioural classification as created in this 
report can interface with behavioural models. The behavioural attributes of the behavioural classes 

following from behavioural classification should resemble the input attributes of the behavioural 

model. This means that the behavioural classes contain parameter values that can be used in 

behavioural models.  

5.2.3 Processing sub-questions 

Processing sub-question 1: Which behavioural classes can be used to predict passenger behaviour? 

Following the results from the CC-framework applied to the PASSME data set, two behavioural 

classes have been found by optimizing the CC-framework performance based on classifier accuracy. 

The two behavioural classes differ mainly with respect to the time passengers spend at the gate, and 

the time remaining until flight departure when passengers decide to go to the gate. These 

behavioural classes have therefore been interpreted as a ‘late-at-the-gate’ class and an ‘early-at-the-

gate’ class. These classes are valid both for departing, as well as transferring passengers.  
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However, these classes are evidently only valid for this specific data set. Using the framework on 

other data with other or more attributes can lead to different classes. Additionally, although this did 

not appear from the PASSME data, classes could vary over time for different days of the week, 

seasons, holidays, et cetera.  

Processing sub-question 2: How can passengers be classified to these behavioural classes? 

Based on the CC-framework, passengers can be classified according to their passenger 

characteristics. To do this, a classifier is needed that is trained based the clustered data set. The 

classification algorithm assesses the passenger attributes and the assigned class of each passenger in 

the training data. Based on this, the classifier is constructed. 

The classification algorithm used for the CC-framework is the SAMME algorithm. This algorithm is 

essentially a multiclass adaptation of the well-known and well-performing AdaBoost algorithm. It 

uses a boosted ensemble of decision trees. Tests using the PASSME data set have indicated that this 

methodology leads to an F1-score, indicating the performance of the classifier with respect to 

precision and recall, of about 63% for departing passengers, and 61% for transferring passengers. 

Processing sub-question 3: When is the result of classification satisfactory? 

The performance of classification can be expressed using various performance metrics. In this report, 

AUC, overall accuracy, average accuracy, precision, recall, and F1-score have been used. None of 

these metrics are all-encompassing with respect to representing classification performance as a 

single number. Additionally, the classification performance that is to be expected also greatly 

depends on the type of data used for classification. Consequently, it is argued in this report that the 

classification should at least exceed the performance of randomly objects assigning to classes. Such 

performance is achieved at an AUC equal to 0.5; a classifier with an AUC above 0.5 is hence better 
than random assignment.  

Relating this to the performance of the CC-framework on the PASSME data, it can be noted that the 

performance is in both cases higher than this threshold. As such, according to the definition, such a 

classification can be regarded as satisfactory.  

5.2.4 Main research question 

Main research question: How can individual airport passengers be classified according to (visual) 

sensor-obtained personal characteristics in behavioural classes that can be used to predict passenger 

behaviour? 

Passengers can be classified into behavioural classes using the Clustering and Classification 

framework developed in this report. In short, the steps associated with this are as follows: 

 From various (sensor) data sources, passenger characteristics and behavioural 

characteristics of passengers are collected on an individual level.  

 Aggregating these individual observations into a larger data set yields a training data set that 
can be used to train the CC-framework: 

o The first part of the CC-framework, clustering, is done using LCA. This LCA is 

performed only on the behavioural characteristics in the data. This yields the 
behavioural classes. The training data set now also contains a class number for each 

individual in the data set, apart from the behavioural characteristics and passenger 

characteristics. 

o The second part of the CC-framework, classification, is done using an ensemble 

classifier that uses decision trees, based on the SAMME algorithm. The classifier is 

built using only the passenger attributes and the behavioural class of each individual 

in the training data set. 

 New cases of passengers that were not part of the training data set can now be classified 

based solely on their passenger attributes. The behavioural attributes of the behavioural 
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class they are classified to are used in the behavioural model that will predict their 

behaviour. 

 When necessary, the CC-framework can be retrained in order to create new behavioural 

classes. This could be the case when different classifiers are required for weekends and 

weekdays, different seasons, months, et cetera. 

The average per-class accuracy and macro F1-score that were achieved by applying the framework to 

the PASSME data are around 60% to 65%. Though satisfying the requirement of performing better 

than random assignment (the AUC is above 0.5 in all cases), the classification performance is not 

particularly high. However, it should be kept in mind that the data to which the framework has been 

applied, was limited; not all desired attributes are available in the data, and the level of detail is low 

due to being based on surveys that were not collected for the purpose. Therefore, it can be concluded 

that the CC-framework yields promising results that allow for predicting behaviour. 

Recommendations regarding further development and improvement of the framework will be given 

in the next section. 

5.3 Recommendations and further research 

Based on the aforementioned findings and conclusions, several recommendations for practice and for 

further research can be made: 

 Application of the CC-framework on the PASSME data set has given promising results, given 

the aforementioned shortcomings of the data. For further testing of the framework, it is 

recommended to use a more adequate set of data with more and more detailed attributes, at 
least satisfying the list of passenger attributes given in section 2.2.2, though preferably 

satisfying the overview of characteristics given in Appendix A. 

 The possible interaction of behavioural classification with a behavioural model in a PASSME 
PDF has been discussed on a general level. Further research with respect to this interaction 

should be conducted once the PDF is further developed. 

 The CC-framework has been implemented using the R programming language. Although this 

language is very apt for the present initial research, it is limited in terms of performance and 

flexibility. Especially the classification can take a very long time as the model complexity 

increases. Should the framework be further developed, it is advisable to switch to another 

programming language. 

 The implemented LCA does not support continuous variables. Because of this, continuous 

variables in the PASSME data had to be discretised. Although the classification result has also 
been optimised based on the best bin size, discretisation does inherently cause some loss of 

information. Hence, a future improvement of the implementation should support continuous 

variables.  

 The optimisation of the parameters of clustering and classification requires human 

interpretation of various performance metrics. This makes it difficult to recognise the best 

result. The creation of one indicator or objective function based on which the best solution 

for the CC-framework can (automatically) be found, can help achieving the best framework 

performance.  

 For the PASSME data set, it has been shown that leaving out some attributes out of the 

behavioural classes, results in different behavioural classes. More research can be done with 

respect to the effects of this. Creating behavioural classes for subsets of behavioural 

attributes could possibly be useful.  
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Appendix A 

Overview of characteristics and data sources 
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Comment - available 
technology 

Comment - possible 
technology 

Comment - future 
technology 

1 

P
assen

ger 

P
erso

n
al 

Age Number 
 

L 
    

L 
 

L 

When booking a ticket, 
it depends on the 
destination if one has 
to provide age 
information. However, 
in some cases this may 
still be available in the 
airline database, for 
example due to a 
frequent flyer 
programme. 

Video analysis 
software, such as 
Crowdsight 
(developing) can 
estimate age. 
Literature on 
categorizing age 
based on walking gait 
analysis is also 
available. 

In the future, 
retrieving the age of 
a passenger may be 
possible through an 
app, such as the 
PASSME app. For 
this, it is required 
that the app asks 
the traveller to 
enter his/her date 
of birth when 
he/she starts using 
the app. 

2 

P
assen

ger 

P
erso

n
al 

Physique Length/footprint 
      

L 
  

There is currently no 
information available 
about a passenger's 
physique. 

Pedestrians can 
currently be detected 
in video, but height 
and width detection 
is inaccurate. 
Occlusion and camera 
setup is a problem. 

Future 
improvements in 
computer vision can 
increase the 
accuracy of 
height/width 
determination. 
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3 

P
assen

ger 

P
erso
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al 

Gender M/F 
 

L L 
   

L 
 

L 

For some destinations, 
passengers have to 
provide their gender, 
making it available in 
an airline database. 
Non-Schengen 
passengers have to 
show their 
identification at border 
control. However, data 
from this could not be 
used due to privacy 
regulations. 

Crowdsight and 
research in literature 
show that it is 
possible to determine 
gender based on 
video analysis 
methods, for example 
walking gait analysis. 

A future PASSME 
app can ask the user 
to provide personal 
details such as 
gender. 

4 

P
assen

ger 

P
erso

n
al 

Nationality Country 
 

L L 
     

L 

For some destinations, 
passengers have to 
provide their 
nationality, making it 
available in an airline 
database. Non-
Schengen passengers 
have to show their 
identification at border 
control. However, data 
from this could not be 
used due to privacy 
regulations. 

 A future PASSME 
app can ask the user 
to provide personal 
details such as 
nationality. 
Alternatively, the 
app can guess the 
nationality of the 
passengers based 
on the locale setting 
of the device. 

5 

P
assen

ger 

P
erso

n
al 

Ethnicity 
Race (Asian, African, 
Caucasian, Hispanic, Etc.) 

      
L 

  

There is currently no 
information available 
with respect to the 
ethnicity of a 
passenger. 

Video analysis 
software, such as 
Crowdsight can 
estimate ethnicity 
based on computer 
vision. 

Future 
developments may 
improve the 
accuracy of 
ethnicity 
estimation. 
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P
assen

ger 

P
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n
al 

Group composition 
Single/Couple/Family/Fri
ends/Tour group 

 
L 

    
U 

  

A ticket can be part of 
one booking containing 
multiple tickets. This 
can be an indication 
that a passenger travels 
in a group and should 
be available from the 
airline database. Based 
on the characteristics 
of the group members, 
an estimation about 
the group type can be 
made. 

 Video analysis 
techniques can 
identify groups in an 
image. The type of 
group may be 
estimated based on 
the analysis of 
interactions within 
the group. 
However, this not 
possible with 
current techniques. 

7 

P
assen

ger 

P
erso

n
al 

Group size Number 
 

L 
    

U 
  

A ticket can be part of 
one booking containing 
multiple tickets. This 
can be an indication 
that a passenger travels 
in a group and should 
be available from the 
airline database.  

Video analysis 
techniques can 
identify groups in an 
image. To be able to 
link this to the 
passengers in the 
image, these 
passengers have to 
be identified. This 
also brings occlusion 
problems. 

Further 
technological 
developments can 
increase the 
performance of 
video-based group 
detection. 

8 

P
assen

ger 

P
erso

n
al 

Role 
Leader/Follower/Wander
er 

      
U 

  

  Leader/Follower 
behaviour is very 
complicated and 
not directly 
observable. Future 
video analysis may 
provide information 
about this. Again, 
observed behaviour 
has to be linked to 
an identified 
passenger 
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9 

P
assen

ger 

P
erso

n
al 

Carry-on baggage 
Backpack/Suitcase/Trolle
y/None 

      
U U 

 

Neither the airport, nor 
the airline has any 
knowledge about the 
amount of carry-on 
baggage carried. 

Video analysis 
techniques can 
identify distinct carry-
on baggage such as a 
small trolley. 

Further developed 
video analysis and 
3D vision 
techniques may be 
able to distinguish 
more types of carry-
on luggage. 

10 

P
assen

ger 

P
erso

n
al 

Holding  baggage 
Backpack/Suitcase/Trolle
y/None L L 

    
U U 

 

The airline registers the 
amount of checked-in 
baggage, its weight and 
whether or not it is 
odd-size. This is linked 
to a specific passenger 
name. Additionally, the 
airport processes 
baggage and scans the 
attached baggage 
labels, which includes 
the passenger's name. 

 Upon terminal 
entrance (hence 
before check-
in/baggage drop-
off), passengers can 
be detected by 
cameras and/or 3D 
vision techniques, 
which can 
distinguish the 
amount and type of 
carried hold 
baggage. 

11 

P
assen

ger 

P
erso

n
al 

Mood 

Attribute values (happy, 
surprised, anger, 
disgusted, afraid, sad) 

      
L 

 
L 

There is currently no 
information available 
about the mood of 
passengers, except, for 
example, observations 
by floor managers. 

Video analysis tool 
Crowdsight is able to 
represent a person's 
mood based on six 
basic mood 
indicators. This 
requires a good 
coverage of cameras 
in order to mitigate 
occlusion effects. 

In the PASSME app, 
passengers will be 
able to give 
feedback about 
their mood. 
However, people 
only tend to report 
negative 
experiences. 
Nevertheless this 
could imply that 
passengers using 
the app that did not 
report a bad mood 
can be considered 
to be in a good 
mood. 
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12 

B
eh

avio
u

ral 

P
erso

n
al 

Walking speed Number 
   

U U U U U 
 

Based on existing 
tracking information 
from systems such as 
Bliptrack (RF tracking) a 
basic walking speed 
estimation can be 
derived. RF tracking is 
based on MAC address, 
which has to be linked 
to an identified 
passenger. 

Walking speed is a 
relatively basic 
characteristic that can 
be observed by video 
analysis/3D vision. 
Once again, the main 
challenge here is to 
link this observation 
to a specifically 
identified passenger. 

 

13 

P
a

ssen
g

er 

P
erso

n
a

l 

Intelligence/educatio
n Category 

         

Except by means of 
questionnaires, it is not 
possible to observe 
one's 
intelligence/education 
level. 

  

14 

P
a

ssen
g

er 

P
erso

n
a

l 

Wealth Wealthy/Poor 
         

Not directly available in 
any case, but may be 
estimated based on e.g. 
travel destination, 
clothing, and location 
in terminal. 

  

15 

B
eh

avio
u

ral 

P
erso

n
al 

Mobility 
Able-bodied/partially 
disabled/disabled L L 

    
U 

  

People who need 
assistance for any 
reason can report so to 
the airline or airport, in 
which respective 
database this will be 
registered. 

Video analysis 
techniques can 
distinguish objects 
such as walking canes 
or wheelchairs. 
Occlusion and 
detection rate are 
limiting factors. 

 

16 

P
assen

ger 

P
erso

n
al 

Experience 
Category (novice-
experienced) 

 
L 

    
U 

  

Passengers registered 
in an airline loyalty 
programme will 
generally be more 
experienced travellers. 
This data is available 
from the airline. 

 Further 
advancements in 
behaviour analysis 
based on video may 
provide more 
information about 
the travel 
experience of a 
passenger. 
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17 

B
eh

avio
u

ral 

P
erso

n
al 

Assertiveness 
(walking behaviour) 

Category (Not assertive - 
very assertive) 

   
U U U U 

  

  Assertiveness is not 
directly observable, 
but is rather a result 
of interaction with 
other pedestrians 
and the 
environment. This 
may be observable 
based on the 
analysis of walking 
trajectories. 

18 

B
eh

avio
u

ral 

P
erso

n
al 

Obedience 
Rule-abiding/rule-
ignoring 

   
U U U U 

  

  Obedience is not 
directly observable, 
but may be 
available based on 
analysis of expected 
behaviour and 
actual behaviour. 

19 

B
eh

avio
u

ral 

P
erso

n
al 

Location X, Y, Z 
  

U U U U U U 
 

Current RF 
technologies such as 
Bliptrack register the 
location of a passenger 
based on MAC address, 
which has to be linked 
to an individual 
passenger. 

Video analysis and 3D 
vision can be used to 
detect and track 
passengers. The 
observed passenger 
has to be identified. 

 

20 

B
eh

avio
u

ral 

P
erso

n
al 

Traversed path X, Y, Z, t 
  

U U U U U U 
 

Analysis of location 
over time. 

Analysis of location 
over time. 

Analysis of location 
over time. 

21 

P
assen

ger 

P
erso

n
al 

Passenger/Non-
passenger 

Category 
(Passenger/Non-
Passenger/Staff) 

  
U 

   
U 

  

Based on touchpoints 
such as check-in and 
boarding pass scans, 
passengers can be 
distinguished from 
non-passengers and 
staff. 

 More advanced 
video analytics may 
be able to identify 
staff from 
passengers based 
on attributes such 
as tools or clothing. 
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22 

P
assen

ger 

P
erso

n
al 

Trip goal 

Category 
(Business/Leisure/Health
/Family visit/Friends 
visit/Education) 

        
L 

Trip goal is currently 
not known, but may be 
derived based on fare 
class. 

 The future PASSME 
app may inquire the 
user about his or 
her trip purpose. 

23 

P
assen

ger 

P
erso

n
al 

Part of trip 
Transferring/Originating/
Destination 

  
U U U U U U L 

In case of one boarding 
pass for multiple 
flights, data from 
touchpoints can help 
determine if a 
passenger is a 
transferring. 

Location analysis can 
help determine what 
part of the trip a 
passenger is in. For 
example, a passenger 
first observed near a 
gate and then later 
for some time in a 
lounge is likely to be a 
transferring 
passenger. 

If a passengers 
enters his itinerary 
in the app, the app 
can determine the 
part of the trip the 
passenger is in. 

24 

P
assen

ger 

P
erso

n
al 

Flight number Flight number 
 

L U 
   

U U 
 

The airline database 
contains the flight 
number based on the 
passenger's name. 
Touchpoint data can 
also provide the flight 
number, but is not 
linked to a specific 
passenger. 

Passengers observed 
at a gate can be 
assumed to be 
boarding the flight 
from that gate. 

 

25 

P
assen

ger 

P
erso

n
al 

Passenger 
appearance 
(departing from 
airport) Time 

 
L U U U U U 

  

In case a passenger has 
to check-in or drop off 
baggage, the time of 
appearance can be 
estimated. Additionally, 
RF observations at the 
terminal entrance can 
determine the time of 
appearance. 

Video analysis near 
the terminal entrance 
can determine the 
time a passenger 
enters the terminal. 
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26 

P
assen

ger 

P
erso

n
al 

Number of 
connections 
remaining Number 

 
L 

      
L 

The airline database 
contains the full 
passenger itinerary. 

 If a passengers 
enters his itinerary 
in the app, the app 
can determine the 
number of 
connections 
remaining. 

27 

B
eh

avio
u

ral 

P
ro

cess 

Activity Activity 
  

U U U U U U 
 

Analysis of location can 
determine the activity a 
passenger is engaged 
in. 

Analysis of location 
can determine the 
activity a passenger is 
engaged in. 

 

28 

B
eh

avio
u

ral 

P
ro

cess Time spent during 
each step in the 
(mandatory) pax 
process Number of minutes 

  
U U U U U U 

 

Analysis of location 
over time. 

Analysis of location 
over time. 

 

29 

P
assen

ger 

Trip
 

Origin 
Airport (Schengen/Non-
Schengen/ICA/100%) 

 
L 

      
L 

The airline database 
contains the full 
passenger itinerary. 

 If a passengers 
enters his itinerary 
in the app, the app 
can determine the 
origin. 

30 

P
assen

ger 

Trip
 

Destination 
Airport (Schengen/Non-
Schengen/ICA/100%) 

 
L 

      
L 

The airline database 
contains the full 
passenger itinerary. 

 If a passengers 
enters his itinerary 
in the app, the app 
can determine the 
destination. 

31 

P
assen

ger 

Trip
 

Hall Hall number L L 
       

Information based on 
passenger flight 
number. 

  

32 

P
assen

ger 

Trip
 

Reclaim Reclaim number L L 
       

Information based on 
passenger flight 
number. 
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33 

P
assen

ger 

Trip
 

Aircraft type Aircraft L L 
       

Information based on 
passenger flight 
number. 

  

34 

P
assen

ger 

Trip
 

Number of pax on 
flight Number 

 
L 

       

Information based on 
passenger flight 
number. 

  

35 

P
assen

ger 

Trip
 

Number of transfer 
pax on flight Number 

 
L 

       

Information based on 
passenger flight 
number. 

  

36 

P
assen

ger 

Trip
 

Gate Gate number 
 

L 
       

Information based on 
passenger flight 
number. 

  

37 

P
assen

ger 

Trip
 

Airline Airline name 
 

L 
       

Information based on 
passenger flight 
number. 
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Appendix B 

Overview of conventional clustering algorithms 

Conventional clustering performance metrics  

Extrinsic indices 

Extrinsic indices compare the achieved clustering to the ground truth. A possible index is the 

correlation. Both for the ground truth and the cluster result, a matrix is constructed with one row 

and one column for each object. For each cell 𝑖, 𝑗, object 𝑖 is compared to object 𝑗. A value of 1 is given 

if the pair of objects belongs to the same cluster. A value of 0 indicates the converse. Combining the 

matrices of the ground truth and the cluster result yields the total number of errors. As the matrix is 

symmetrical, only half of the matrix should be regarded. The correlation is then calculated according 

to: 

 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
𝑒𝑟𝑟𝑜𝑟𝑠

𝑛(𝑛 − 1)
2

 
(0.1) 

 

Another extrinsic index is presented in the work of He, Cai, and Niyogi (2005) and is calculated 

according to: 

 
𝐴𝐶𝐶 =

∑ 𝛿(𝑐𝑖 , 𝑚𝑎𝑝(𝑙𝑖))𝑁
𝑖=1

𝑁
 (0.2) 

 

Here, 𝑁 is the number of objects in the data set. The function 𝑚𝑎𝑝(𝑙𝑖) maps the cluster labels 𝑙𝑖 to the 

corresponding ground truth labels using a mapping algorithm such as the Kuhn-Munkres algorithm. 

The delta function assumes a value of 1 if the ground truth label 𝑐𝑖 = 𝑚𝑎𝑝(𝑙𝑖). Otherwise, the 

function assumes a value of 0. 

Intrinsic indices 

Intrinsic indices are not based on a ground truth but rather assess the cluster validity based on the 

data itself.  There are various intrinsic indices available. Due to the imperfectness of each one, it is 
advised to use multiple indices to assess validity (Abonyi & Feil, 2007). Some examples of intrinsic 

indices include the silhouette coefficient (Han et al., 2011), partition coefficient and classification 

entropy (Abonyi & Feil, 2007; Zhao, 2012). 

 

Other clustering algorithms explained  

In addition to the latent class analysis algorithm that has been implemented in the report, some 

alternative, ‘regular’ clustering algorithms have been tested. Although these algorithms did not yield 
very good results on the data set, the choice for these algorithms and a general description of their 

workings is discussed below. 

Because of size of the data set that is expected to be used in an operational situation, it was decided 

to use non-hierarchical algorithms. Additionally, because of the fact that passenger behaviour can be 

regarded as a natural phenomenon and the intuitive notion of travellers being better represented by 

a combination of multiple clusters, such as explained in section 3.3.1.2, it was chosen to implement a 
fuzzy algorithm. Two fuzzy algorithms with a modified distance measure to account for mixed 

variables were implemented: the expectation-maximisation (EM) and the fuzzy c-means (FCM) 

algorithms. These two algorithms are primarily designed to be used with numerical attributes. 

However, these algorithms can be made suitable for use with categorical attributes or mixed data 

sets. This has been done by using an alternative distance metric, the Gower distance, or by 
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transforming categorical attributes into multiple binary values and treating them as numerical 

values.  

In addition to the two fuzzy algorithms, one non-fuzzy algorithm specifically designed for data sets 

with mixed attributes was used: the iterative clustering learning based on object-cluster similarity 

metric (OCIL) algorithm (Cheung & Jia, 2013). The algorithms have been implemented in MATLAB. 

To assess their performance, various synthetic data sets were produced. Additionally, data sets from 

the UCI repository were used. The following algorithms were implemented: Expectation-

Maximisation (EM), Fuzzy c-means (FCM) and the OCIL algorithm (Cheung & Jia, 2013).  

Expectation-maximisation algorithm (EM) 

The EM algorithm is a relatively simple algorithm that can perform fuzzy clustering. The 

implemented EM algorithm is described in the work of Han et al. (2011). The algorithm was 

implemented using the Gower distance measure, with an option to use Euclidean distance. The 

algorithm consists of the following steps: 

Input: data set, desired number of clusters 𝐾 

1. For 𝐾 clusters, initiate 𝐾 random objects as cluster prototypes 

2. For each object, calculate Gower distance to each cluster 

3. Based on the Gower distance, proportionally assign membership values for each object to 

each cluster 

4. Recalculate cluster prototypes based on the membership values 𝑤𝑖,𝑐𝑗
 and the attribute value 

𝑜𝑖  for all clusters and all objects, using (0.3). 

 
𝑐𝑗 =

∑ 𝑤𝑖,𝑐𝑗

2 𝑜𝑖
𝑁
𝑖=1

∑ 𝑤𝑖,𝑐𝑗

2𝑁
𝑖=1

, ∀𝑗 ∈ 𝐾 (0.3) 

5. Return to step 2 and repeat as desired 

Fuzzy c-means algorithm (FCM) 

The fuzzy c-means is arguably the best-known fuzzy clustering algorithm. The algorithm has been 

implemented using the Gower distance measure, with an option to use Euclidean distance. 

Input : data set, desired number of clusters 𝐶, fuzziness parameter 𝑚 > 1 

1. For 𝐶 clusters, initiate 𝐶 random objects as cluster prototypes 

2. Calculate membership values 𝑢𝑖𝑗 for each object 𝑖 with respect to each cluster 𝑗 according to 

(0.4). Where 𝑑𝑖𝑗 represents the distance measure from object 𝑖 to cluster prototype 𝑗 and 𝑑𝑖𝑘 

represents the distance measure from object 𝑖 to cluster prototype 𝑘. 

 

 

𝑢𝑖𝑗 = (∑ (
𝑑𝑖𝑗

𝑑𝑖𝑘
)

2
𝑚−1

𝐶

𝑘=1

)

−1

, ∀𝑖, ∀𝑗  (0.4) 

3. Recalculate cluster prototypes 𝑐𝑗  based on membership values 𝑢𝑖𝑗 and attribute values 𝑜𝑖  

according to (0.5). 

 

 
𝑐𝑗 =

∑ 𝑢𝑖𝑗
𝑚 ∙ 𝑜𝑖

𝑁
𝑖=1

∑ 𝑢𝑖𝑗
𝑚𝑁

𝑖=1

,  ∀𝑗 (0.5) 

4. Return to step 2 and repeat as desired 

Iterative clustering learning based on object-cluster similarity metric algorithm (OCIL) 

While the aforementioned EM and FCM algorithms are able to cluster mixed data sets, their 

suitability for this type of data set is not optimal. That is, the distribution of the various attribute 
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values is not considered by the distance metric. Hence, similarity information that is actually present 

in the categorical attributes is not considered (Cheung & Jia, 2013). Consequently, an optimal 

clustering algorithm for mixed data sets should consider the information embedded in the 

categorical attributes and combine this with the distance information based on numerical attributes. 

The OCIL algorithm, developed by Cheung and Jia (2013), is specifically aimed at clustering mixed-

attribute data. The algorithm is non-fuzzy and similar to the k-means algorithm8. Likewise, when 

applied to purely numerical data sets, the OCIL algorithm is equivalent to the k-means algorithm 

(Cheung & Jia, 2013). In addition, the algorithm does not require any input parameters apart from 

the number of clusters, though this can also be calculated using the PLC-OC algorithm presented in 

the same paper (Cheung & Jia, 2013). 

The OCIL algorithm employs a similarity metric specifically designed for mixed data sets. This metric 

consists of two separate metrics for the categorical and the numerical parts of the data. Based on its 

importance, a weight is assigned to each categorical attribute. In short, this means that a categorical 

attribute with many different values provides a lot of information and thus has a high weight. 

Conversely, a categorical attribute for which each object in the data set has the same value, is 

considered to be of zero importance. The similarity metric for the categorical attributes is combined 

with the similarity metric for numerical attributes (which is the Euclidean distance). This yields the 

object cluster similarity metric.   

Due to the more complex nature of the algorithm as compared to the previous two algorithms, the 

OCIL algorithm is not presented here. Instead, the reader is referred to the original work of Cheung 

and Jia (2013) for a comprehensive overview of the algorithm. 

 

Clustering results on test data  

The aforementioned algorithms have been tested on two often used data sets in the field of machine 

learning, acquired from the UCI Machine Learning Repository (Lichman, 2013). Two data sets, Zoo 

and Statlog (heart), with mixed variable types have been used to resemble the type of data that is to 

be expected in behavioural classification in an airport situation. For a full description of the data set, 

the reader is referred UCI Machine Learning Repository website9. The results of the various 

algorithms on the test data is shown in the figure below. 

  

                                                                 
8 K-means is an algorithm for hard clustering, which is very similar to the fuzzy c-means algorithm in the 
limit of fuzziness parameter 𝑚 → 1 
9 https://archive.ics.uci.edu/ml/index.html  

Correlation Accuracy Correlation Accuracy

Zoo Statlog heart

EM 0.2331 0.4059 0.7066 0.8222

FCM 0.8646 0.6139 0.6924 0.8111

OCIL 0.8646 0.6477 0.7093 0.8243

LCA 0.945 0.8713 0.6971 0.8148

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

https://archive.ics.uci.edu/ml/index.html
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Appendix C 

Description of the CC-framework implementation 

Performing the clustering and classification is implemented in the R programming language. The 

script that is used for this is described here. This description is roughly based on the sections in the 

used script source. Sections in the source can be recognized by the four preceding and four trailing 

hashes on a line. 

1. The environment is initialized: 

a. Loading required packages: 

i. poLCA version 1.4.1 

ii. statar version 0.6.2 

iii. ggplot2 version 2.1.0 

iv. adabag version 4.1 

v. Hmisc version 3.17.4 

vi. pROC version 1.8 

b. Required functions are loaded: 

i. func_classification.R for the classification 

ii. func_binning.R for binning continuous variables 

iii. func_LCA.R for estimating the latent class model 

2. Settings with respect to binning, LCA and classification are set. Additionally, the random seed 
is fixed if reproducible results are desired. The following parameters can be set: 

a. Binning 

i. The bin size in minutes 

b. LCA 
i. Number of classes/maximum number of classes 

ii. Whether or not the optimum number of classes should be found, based on 

BIC 

iii. The number of times the LCA should be estimated, in order to avoid a local 

optimum 

iv. Whether a CSV-file with the LCA results should be produced 

v. Whether text with the LCA results should be written to the screen 

vi. Whether plots with the LCA results should made 

c. Classification 

i. Whether a classifier should be created 

ii. The maximum number of decision trees to use in the classifier 

iii. The maximum depth of the decision trees in the classifier 

iv. The size of the training set (as a fraction of the total set) 
v. Whether text results should be written to the screen 

vi. Whether plots with results should be made 

3. Data preparation 

a. Data is loaded from a CSV file 

b. Continuous attributes are binned using the func_binning.R function 

4. Performing the LCA 

a. The attributes from the data to be used in the LCA are defined 

b. The LCA is ran using the func_LCA.R function 

c. Optionally, plots with the LCA results are made 

d. Optionally, a CSV with the original data, appended with the found classes is created 
5. Performing the ensemble classification 

a. The attributes to be used in the classification are defined 

b. The classifier is built using the func_LCA.R function 
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i. The func_confmatrix.R function is loaded and executed from this function to 

obtain the performance metrics for the classifier 
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Appendix D 

PASSME data set information 

 

This appendix has been omitted due to the confidentiality of the data. 
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Appendix E 

CC results on the PASSME data set 

Results for the departing passengers subset  
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Results for the transferring passengers subset  
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