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1 Introduction

A digital elevation model (DEM) is a digital representation of the surface morphology and
contains a wealth of topographic and geomorphological information necessary for analyzing
geological applications. It has become one of the most important and basic geographic infor-
mation data, and there is an increasing abundance of publicly released local and global DEM
datasets. (Polidori and El Hage, 2020)

Accurate elevation data in DEMs are essential for many geoscience applications and other
fields, such as soil erosion, reservoir planning, and flooding prediction. Notice that DEM
is a generic term that concludes two surfaces model, the digital terrain model (DTM) and
the digital surface model (DSM). Since it is widespread to use photogrammetry and LiDAR
to produce DEMs, at the global scale, most DEMs are more like DSMs rather than DTMs.
(Polidori and El Hage, 2020; Hawker et al., 2022)

Directly using DSMs in some applications will cause errors; for example, the threats might
be underestimated in flooding prediction when using DSMs in urban or forested areas. (Kulp
and Strauss, 2016) Therefore, post-processing strategies must be used to remove height bias
from trees and buildings so that the DEM can theoretically be considered a DTM.

Although this issue has been researched in some studies like Hawker et al. (2022); Kulp
and Strauss (2018), which convert global DSMs to DTMs, there are some drawbacks in their
methods: 1) Besides DSM pixels, they need extra inputs from other sources like population
density and vegetation density; 2) There are artifacts created in the results. Some deep learning
methods that are successful in computer vision have been used in DTM extracting recently;
however, most studies (Meadows and Wilson, 2021; Kazimi et al., 2020; Gevaert et al., 2018)
rely on multiple bands of imagery or point clouds as inputs.

This project uses a fully convolutional network (FCN) for semantic segmentation and aims
to:

1. Use only DSM as input;

2. Apply this model on DSMs with higher resolution.

The project will benefit applications that need the correct terrain representation and further
research on correcting DEMs with machine learning.

2 Related work

2.1 DEM, DSM, and DTM

A digital elevation model (DEM) is ”a regular gridded matrix representation of the continuous
variation of relief over space” (Pratibha et al.). DEMs are widely used in geoscience. The
methods for elevation mapping have developed rapidly over the last century. Nowadays,
aerial photography and LiDAR are major methods of producing DEMs.

Based on the different definitions of the nominal surfaces, which are the physical surfaces to
be modeled, two models, i.e., the digital terrain model and the digital surface model (Figure
1), are often considered. The nominal surface used in a DTM is the ground surface, i.e., terrain,
while the upper surface above the trees, buildings, and other natural or artificial objects is used
in a DSM. DSMs are provided by most DEM production techniques such as photogrammetry
and short-wavelength radar technologies. (Polidori and El Hage, 2020)

2



Figure 1: DTM vs DSM in the presence of trees and buildings. (Polidori and El Hage, 2020)

2.2 Regression analysis

The use of regression analysis for correcting the elevation errors is based on a small number
of variables. The approaches use vegetation cover indices and apply mostly to removing the
bias of canopies and are not capable for buildings. (Baugh et al., 2013; Su et al., 2015; Kulp and
Strauss, 2018)

Incorporating additional variables that correlate with elevation error into the model could
further improve correction results. However, as the number of variables increases, the utility
of traditional parametric regression techniques will be limited due to the curse of dimension-
ality (Köppen, 2000) and the highly nonlinear relationship between variables; for example,
Kulp and Strauss (2018) uses population density, vegetation density, and slope information as
inputs. The term curse of dimensionality used there refers to the intractability of systemat-
ically searching through a high-dimensional space, the apparent intractability of accurately
approximating a general high-dimensional function, and the intractability of integrating a
high-dimensional function. (Donoho and others, 2000)

As an effective empirical method for regression and classification of nonlinear systems (Lary
et al., 2016), deep learning may avoid the curse of dimensionality. (Poggio et al., 2017)

2.3 ANN: Artificial neural networks

Artificial neural networks are the most common models to develop nonparametric and nonlin-
ear classification/regression (Rodriguez-Galiano et al., 2015). There are many different types
of ANN. One of the most used ANNs: the feed-forward propagation neural network (Rumel-
hart et al., 1986) is described briefly in this section.

As in the brain, the basic processing elements of an artificial neural network are neurons
(units or nodes). In a neural network, the units are connected in layers, and information flows
in one direction, from the input units - through the units in the hidden layer/layers - to the
units in the output layer. The input unit assigns the signal to the hidden unit in the sec-
ond layer. A neuron performs essentially a linear regression followed by a nonlinear function.
Neurons in different layers are interconnected with corresponding links (weights). The output
signal is generated by algebraically summing all the weighted inputs. The structure is shown
in Figure 2 The goal of the algorithm is to find a set of weights to ensure that for each input
vector, the resulting network vector is equal to or close enough to the desired output vector.
Suppose there is a defined and finite set of input-output cases (patterns). In that case, the
overall error of the network operation with a given set of weights can be calculated by com-
paring the actual output vector of each pattern with the desired output vector, for example, by
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least squares. To train an ANN, it is necessary to choose a structure (hidden layers and num-
ber of nodes per layer), appropriate initialization of weights, learning rate, and regularization
parameters to avoid overfitting. (Rodriguez-Galiano et al., 2015)

Figure 2: The structure of a multilayer perceptrons. (Park and Lek, 2016)

2.4 RF: Random forest

RF is a regression technique that combines the performance of numerous DT (Decision Tree)
algorithms.

A DT (Figure 3) represents a set of hierarchically organized restrictions or conditions that
are successively applied from a root to a terminal node or leaf of the tree. To induce the DT,
recursive partitioning and multiple regressions are carried out from the dataset. From the root
node, the data splitting process in each internal node of a rule of the tree is repeated until a
specified stop condition is reached. Each of the terminal nodes, or leaves, has attached to it a
simple regression model which applies in that node only.

Figure 3: Architecture of a Decision Tree.
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When RF receives an (x) input vector made up of the values of the different evidential fea-
tures analyzed for a given training area, RF builds a number K of decision trees and averages
the results (Figure 4).

Figure 4: Random Forest as Tree Ensemble.

To avoid the correlation between the different trees, RF increases the diversity of the trees
by making them grow from different training data subsets created through a procedure called
bagging. Bagging is a technique used for training data creation by resampling the original
dataset randomly with replacement, i.e., with no deletion of the data selected from the input
sample for generating the next subset.

It is worth mentioning that this conclusion can only be applied to the best classification
methods obtained from a complex optimization process since, in general terms, the perfor-
mance of RF for all the parameter combinations was better than that of the rest in terms of
stability and accuracy. (Rodriguez-Galiano et al., 2015)

Recently, Meadows and Wilson (2021) introduced the usage of fully convolutional networks
to generate DTMs from multiple layers of remote-sensed input data and found that the FCN
outperforms the other models.

2.5 FCN: Fully Convolutional Networks

Before we discuss the concept of FCN, the knowledge of convolutional neural networks is
essential. CNN (Figure 5) is a class of deep learning techniques, most commonly applied
to analyzing visual imagery. The structure of a CNN contains one input layer, one output
layer, and multiple hidden layers. The hidden layers include convolutional, pooling, and fully
connected layers. Convolutional layers extract critical information from images to a feature
map; pooling layers reduce data dimension; fully connected layers connect every neuron in
one layer to every neuron in another layer and output classifications.

The critical element of a convolutional layer is the convolution kernels, which are several
matrices containing specific target patterns within the input image. After multiplying the
original image by the convolution kernels and pooling, we can get three outputs indicating
information in different parts of the original picture, respectively. By doing so, CNN targets
the critical features within the input picture and makes decisions according to these extracted
features. CNN has been applied to image classification in many areas and usually has a much
higher classification accuracy than humans and other algorithms.

FCN (Figure 6) is an end-to-end, pixel-to-pixel network mainly used for image semantic
segmentation (Long et al., 2015). The FCN has been applied in multiple domains due to its
outstanding accuracy in image segmentation.

Unlike CNN, FCN replaces the fully connected layers with convolutional layers. Convolu-
tional layers extract features from the original image and compress the information in multiple
convolution outputs. Several rounds of convolution and pooling create a heatmap with ab-
stracted features. The last step in FCN is to unsample the heatmap through deconvolution
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Figure 5: An simple CNN architecture, comprised of just five layers by O’Shea and Nash (2015)

Figure 6: Fully convolutional networks can efficiently learn to make dense predictions for per-
pixel tasks like semantic segmentation. (Long et al., 2015)

layers. Deconvolution is a reverse process of convolution that decompresses the information
and fills the image with additional pixels. After convolution and deconvolution, the item’s
border within the original image will be presented clearly in the output image.

3 Datasets and tools

3.1 Dataset

3.1.1 AHN4

The Actueel Hoogtebestand Nederland (AHN) is the digital height map for the whole of the
Netherlands. The AHN4 is the latest dataset collected in the years 2020 and 2021.

The points in AHN4 have been classified by automatic classification and manual correction
into several classes, such as ground level, buildings, water, artworks, and others (AHN, 2020).
The DSM and the DTM of AHN4 are delivered in 2 different resolutions (0.5 m and 5 m) taking
the use of the classified point clouds. The DSM and the DTM will be resampled to 30m and
the process will be discussed more in the Methodology section.
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3.2 Tools

3.2.1 QGIS

A free and open-source cross-platform desktop geographic information system (GIS) applica-
tion.

3.2.2 Python and Pytorch

Pytorch is an open-source machine learning framework based on Python.

4 Research questions

4.1 Main question

How to produce a reliable DTM from a DSM by removing the pixels of trees and buildings by
semantic segmentation using FCN?

4.2 Sub-questions

1. How to evaluate the results of the model trained with local DEMs in the project with the
results of other models trained with global DEMs?

2. How to tune the parameters in the FCN model? How to adjust the window size for
better performance?

3. Will the method be capable for the DEMs with higher resolution? How to apply the
changes?

4. Will the use of morphological filter or other techniques benefits the model?

5 Methodology

In this project, one FCN model will be built. The model takes the samples in the AHN4 DSM
as inputs. After trained, the pixels in the DSM marked as trees or buildings by the models will
be removed and then interpolated with surroundings. The differences between the produced
DTM and the original one are the errors of this method. Similar procedures can be repeated
on other published models to compare the performance differences.

5.1 From regression task to semantic segmentation task

Correcting the elevation errors caused by canopy and infrastructure from DSMs to produce
DTMs is a typical regression task aiming to map the input values with the continuous output
variables. However, as mentioned above, it needs additional input sources and will create
artifacts.

This project uses a method that first associates a label (canopy, infrastructure, or ground)
with each pixel, called semantic segmentation (in computer science); then removes the pixels
marked as canopies or infrastructures; finally, interpolates these pixels with their surrounding
ground pixels.

By doing so, this method converts the regression task to a semantic segmentation task.
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5.2 Data preprocessing

To clarify the description, an area near Wassenaar is used as an example (Figure 7)

Figure 7: Patch 30GN1 of AHN4 on ArcGIS (Esri, 2021) map view.

5.2.1 No-data filling

There are no-value pixels in DSMs due to building blocking and other errors when processing
LiDAR data. Therefore, a no-data filling method is needed for preprocessing to avoid errors.
Figure 8 shows the results made in QGIS.

5.2.2 Resample AHN4 to 30m

In order to evaluate the method by comparing the results with FABDEM and CoastalDEM, the
DTM and DSM of AHN4 will be first resampled to the resolution of 30m.

Although this can be done in QGIS (Figure 9), the standard method will remove the no-data
cells in DTM, which are essential when labeling and making ground truth maps; new methods
are needed for this process. A possible solution is to keep the resampled cell as a no-data cell
by voting, i.e., by counting how many cells are no-data cells before downsampling.

5.2.3 Segmentation and step

The samples are segments of the DSM after resampling and no-data filling with a window size
of 9 by 9. In order to avoid ignoring the pixels at the edges of each segment, a minor step is
used. For a 9 by 9 window, the step for sliding the window is 7 (Figure 10). The labels of the
pixels at the overlapping boundaries should also be determined by voting.
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Figure 8: The DSM of selected area (left) and the result after filling (reight).

Figure 9: The resample method in QGIS will remove the no-data cells in DTM (left).

5.3 Create ground truth

Since canopies or infrastructures performs differently on DEMs, this project designs three la-
bels for canopy, infrastructure, and ground pixels. Notice that only the pixels with label 0 will
remain.

5.3.1 0-1-2 label

As we attempt to remove the pixels of the canopy and the infrastructure, we can use label 1 to
respect the pixels of infrastructures, 2 for canopies, and 0 for the ones to remain. The labeling
(Figure 11) is processed by comparing the values of selected pixels in the DSM between the
values of the corresponding pixels in the DTM.
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Figure 10: An illustration showing the window of segments and a step.

1. If there are no values in the corresponding pixels, the label of the selected pixels is 1;

2. or the difference between values is larger than a threshold, then the label of the selected
pixels is 2;

3. otherwise, it is 0.

Figure 11: Labeling based on the value difference between the DTM and the DSM.

5.3.2 Ground truth map

A ground truth map (Figure 12) for each sample can then be created based on the labeling
rules.
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Figure 12: The corresponding relationship between a sample and its ground truth map.

5.4 FCN model

A V-Net (Milletari et al., 2016) is designed for this project, the input is a 9 by 9 sample of pixels,
and the expected output is a segmentation with label prediction for each pixel (Figue 13).

The approach employs two symmetric contracting (downward) and expanding (upward)
paths. It exploits a fully-convolutional structure, with the presence of convolution operations
exclusively and the absence of pooling layers.

Figure 13: The structure of the V-Net for this project.

6 Evaluation and Further work

6.1 Evaluation

6.1.1 Within the dataset

1. segmentation accuracy;

2. RMSE between the original DTM and DTM produced after interpolation
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6.1.2 Comparison with other products using other datasets

1. COPDEM30 used in Hawker et al. (2022)

2. SRTM used in Kulp and Strauss (2018)

6.2 Further work

6.2.1 Local DEM: higher resolution

Possible solutions:

1. bigger window size

2. deeper V-Net

7 Current progress

7.1 Dataset bulids

A small dataset that contains 5,000 samples has been built. Each sample has 9 features, which
are the normalized values in a 3 by 3 window. The data is labeled and split. Figure 14 shows
the structure of the dataset.

Figure 14: The file structure of the datasets. The labels are stored in a csv file.
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7.2 A demo Neural Network

A demo neural network with 2 hidden layers has been built. High loss and code errors are
shown in the results (Figure 15).

Figure 15: A screenshot of the Python project.

8 Time planning

Further work includes methodology and model improvement, testing, and evaluation process.
The time planning is shown in a Gantt Chart 16. The expected P4 presentation is in November.

Figure 16: A Gantt chart of the time planning.
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