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Summary

The growing space debris environment poses a significant threat to operational satellites and the future of space-
flight. Due to the high velocities in orbit even a small debris fragment can pose a considerable collision hazard
to active satellites. A collision can either destroy satellites, or further increase the already growing debris popula-
tion. The worst-case scenario is the realization of the Kessler syndrome, in which an unstoppable chain reaction
of collisions occurs. As satellites have become an integrated part of society, the accessibility to space should
be maintained. Conjunction analysis is focused on analysing close approaches between objects in orbit. This
analysis consists of assessing the collision risk at the time of closest approach. To this end, often probabilistic
methods are used, which suffer from the fact that very uncertain states will lead to a low probability of collision, a
phenomenon described as the dilution effect. Apart from this drawback, satellite operators are required to decide
whether to mitigate a risk well before the time of closest approach. However, the time horizon in which this deci-
sion can be made reliably, may be too short to adequately plan for a collision avoidance maneuver. This research
aimed to study whether novel risk assessment metrics could complement current practices in conjunction analy-
sis. Furthermore, this research set out to explore whether the time horizon available for decision making can be
extended or improved. Last, since operators are considered the end-users of the risk assessment metrics, as they
have to make the critical decision of whether or not to mitigate a collision risk, the operational application of the
novel metrics has been investigated. Specifically, it has been studied how operators would prefer new metrics to
be presented to them. The study aimed to understand their perspectives and to ensure that proposed metrics are
not only theoretically valuable but also operationally relevant.

To determine how conjunction analysis can be improved, current practices used in conjunction analysis have been
analysed and evaluated, along with the limitations thereof. This has been done using various test cases, including
simulated collisions, near misses, and large misses, for both satellite and debris combinations. It has been found
that the probability of collision metric works well for high-relative velocity conjunctions if the uncertainty on the
states is small, as expected. However, for larger state uncertainties, the probability becomes diluted and the risk
is often underestimated. A metric that can mitigate this effect has already been established, that is, the maximum
probability of collision can be used to address the dilution effect. This research investigated the reliability of the
metric and identified some limitations.

Potential novel riskmetrics that could enhance conjunction analysis have been identified, implemented, and tested
on said test cases. The two metrics that have been studied in detail are the outer probability measures metric [21]
and the relative orbital parameters metric [19]. The former metric distinguishes random from systematic errors,
to mitigate the dilution effect. In current practice, the uncertainty, or the knowledge an operator is missing, is
often considered as random. In this approach however, this missing knowledge is treated explicitly as systematic
uncertainty. Using this approach, the collision risk can be categorized as safe, unacceptable or undetermined.
The metric has a highly conservative nature, as was also found when evaluating the performance of the metric.
So, the metric can correctly mitigate the dilution effect, but may lead to more false alarms. Therefore, the metric
requires care in its interpretation. The relative orbital parameters metric focuses on the relative geometry of
the objects’ orbits. Using the geometry, it can be determined whether a risky situation occurs by studying the
potential vanishing of the separation in the radial and cross-track directions. The concept is currently already
used for formation control, however a meaningful use of the metric for conjunction analysis has found to be
difficult to establish. This is due to the complicated interpretation of the metric, the absence of a clear safety
threshold, and the large uncertainties in the metric as a result of the initial state uncertainties.

The practical needs of satellite operators were explored through an online survey. It was found that when pre-
senting new risk analysis metrics, transparency and replicability of the metrics are of utmost importance. The
conservative nature of each metric is inherent to its design. This means that every metric should be interpreted dif-
ferently, based on how the metric handles uncertainty and balances risk. This can complicate the decision-making
process when one is presented with multiple metrics, underscoring the importance of having transparency in the
process of the risk quantification.
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Introduction

In 2009, the first accidental collision between two intact satellites in-orbit took place. The American Iridium-33
satellite and the Russian Kosmos2251 satellite had a relative speed of 11.7 km/s when colliding in LowEarth Orbit
(LEO). The collision was estimated to cause the generation of at least 2300 trackable pieces of debris, and both
satellites were destroyed [27]. The risk of satellite collisions was a subject of discussion even before spaceflight
became reality, initially focusing on impacts with natural satellites such as meteoroids. Some history on this
matter has been described by Hall [41]: due to the concern of having a spacecraft impact with a celestial object,
a search for natural satellites orbiting the Earth began. The search project ran from 1953 up until 1958 and was
conducted using optical telescopes. During this period, no evidence suggested the existence of objects that could
possibly endanger spaceflight. Thus, spaceflight was deemed safe from the potential risk of impactingwith natural
satellites [41]. Then, the space race began with Sputnik 1 launched in 1957. During this period, a competition
initiated between the United States and the Soviet Union to achieve breakthroughs in space exploration. This led
to the first manned spaceflight in 1961 [60] and the first landing on the Moon in 1969 [61]. The space race also
led to a fast increase in the number of satellites present in space, introducing the chance of collisions between
artificial satellites. In 1978, a problematic scenario in which satellite collisions would lead to an unstoppable
chain reaction of collisions, reducing access to certain regions of Earth orbit, was suggested by Kessler et al. [49].
Contrary to this worrisome theory, others believed in the so called Big Sky Theory (BSK). The Big Sky Theory
philosophized that due to the immensity of space and the relatively small size of the objects launched into it, the
probability of collision between man-made objects is near zero [64]. The theory proved false after the former
mentioned first accidental collision in 2009 and thus it can be concluded that the sky is not big enough to prevent in-
orbit collisions [64]. At present, the high number of satellites launched into space and the expansion of the space
debris population yield an increasing collision risk between any of these objects. This poses a significant threat
to spaceflight operations, as a collision could cause the destruction of operational satellites and the generation of
even more debris fragments. When new debris fragments are created, this may in its turn again lead to an even
higher collision risk, as envisioned by Kessler et al. [49]. The occupation of space objects in highly populated
orbits has gone from nearly zero to a problematic number of objects in the short time span of fifty-five years [41].

As mentioned, there are multiple different reasons for the growing number of objects present in space. The space
debris population is defined by ESA as “all non-functional, human-made objects, including no longer functioning
spacecraft or fragments of them, in orbit or reentering Earth’s atmosphere” [28]. The space debris environment
arises due to various reasons. First, nonactive satellites can stay in their orbit for a very long time, depending on
the altitude at which they are orbiting. For example, the second American satellite to ever be launched (Vanguard
1) is still in orbit and is estimated to stay there for another 200 years [41]. Second, debris fragments can be
generated through in-orbit collisions, mission-related fragmentation, or satellite break-ups (e.g. explosions) [41].
Moreover, so called anti-satellite (ASAT) tests are conducted to test anti-satellite weapons and to demonstrate
the capability of destroying satellites, causing numerous amounts of space debris fragments. The first ASAT
test was conducted in 1959 by the US, only two years after the first satellite ever launched [73]. The Soviets
have demonstrated their ASAT capabilities as well [73]. Similarly, China tested their ASAT capabilities on their
own defunct weather satellite FengYun 1C in 2007. This event caused the generation of approximately 2000
pieces of trackable space debris [64]. Even 60 years after the first test was conducted in 1959, ASAT capabilities
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are currently still being tested. That is, in 2021 Russia performed an ASAT test on one of their own satellites,
again generating thousands of debris pieces [76]. Space debris fragments generated through an ASAT test or a
collision will quickly spread over the orbit in which they are generated. Each fragment poses a significant threat to
operational satellites as they all represent potential collision hazards, increasing the overall collision risk. To cite
ESA: “Any collision or explosion creating large number of debris pieces would be catastrophic for all satellites
sharing a busy orbit – as well as for all spacecraft having to pass through these orbits” [26]. Figure 1.1 shows a
representation of the dispersion of the debris fragments generated during the Iridium33-Kosmos2251 collision.

Figure 1.1: Evolution of debris generated after collision of Iridium33 and Kosmos2251, from Reference [58].

As can be seen in the figure, it is only amatter of hours before the fragments are spread out over the orbit. Currently,
there are approximately 35,000 space debris fragments with a size larger than 10 cm present in orbit that can be
tracked [30]. On top of these tracked objects, there are almost one million objects of a size larger than 1 cm and
more than 128 million objects in orbit of sizes larger than 1 mm [30]. Due to the improvement of sensors, such as
the new space fence radar, the number of tracked objects will increase [69]. Moreover, the multitude of satellites
launched every year could also cause an increase in the number of fragments generated. Figure 1.2 shows the
number of objects launched in LEO over the course of time. As can be seen, from approximately 2016 onward,
the number of objects has increased drastically due to the rising number of commercial providers.

Figure 1.2: Objects launched into LEO over the course of time, from Reference [30].
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At present, mega-constellations are launched more often, further increasing the risk of collisions [2]. Figure 1.3
gives an overview of the objects present in space over the course of time. When studying the pink dashed line,
representing fragmentation debris, it can be observed that this line shows some steep increases. The in-orbit
collision between Iridium33 and Kosmos2251 and the various ASAT tests performed all resulted in the growth
of the debris population. The blue line indicates the number of spacecraft present, in which there is also a high
increase to be noted. This is due to the rise of constellations and the increase of commercial providers, which
could also be noticed in Figure 1.2.

Figure 1.3: Objects in space over the course of time, from Reference [58].

The most problematic scenario resulting from in-orbit collisions is called the Kessler syndrome. The chain reac-
tion that would arise in this scenario is the result of the fact that every collision will cause the generation of debris
fragments, which in turn will cause more collisions [49]. To prevent the Kessler syndrome, multiple measures
can be taken. First, space debris can be actively removed. An example of active space debris removal is the
Clearspace-1 mission, which is planned to launch in 2028. The goal of the mission is to remove the PROBA-1
satellite from its orbit and to make it re-enter and burn up in the atmosphere using robotic arms [25]. Active
debris removal is currently still under development and will be prohibitively expensive to apply on a large scale.
Second, orbits can be cleared once a satellite reaches its mission end-of-life. The United Nations Office for Outer
Space Affairs (UNOOSA) published sustainability guidelines that advise to de-orbit satellites after the mission
end-of-life [77]. De-orbiting can either mean that a satellite moves to a graveyard orbit, in other words, an or-
bit without operational satellites, or that the satellite re-enters back to Earth. Third, new satellites launched into
space can be protected from small debris impacts by shielding critical components. Last, the collision risk be-
tween space objects can be analysed, such that possible collisions can be prevented using collision avoidance
(COLA) maneuvers if necessary and possible. It must be noted that performing unnecessary collision avoidance
maneuvers is not desirable due to the limited propellant budget satellites have and the possible interference of the
mission objective. This fact emphasizes the need for a reliable risk assessment. All these measures fall under the
term Space Traffic Management (STM) [43]. The focus of this thesis will be on analysing the risk of a collision,
which is a part of conjunction analysis (CA).

One speaks of a conjunction “when the objects approach one another within a certain distance” [59]. In a conjunc-
tion assessment, the catalog of tracked objects is studied, and the collision risk is identified. Since the number
of tracked objects (both operational satellites as well as space debris pieces) is high, CA is often divided into
multiple steps: screening, analysing, action. The screening part of CA consists of filtering all tracked objects
by determining which objects have a realistic potential to collide. This is needed since a complete conjunction
analysis of all objects, called an all-on-all analysis, is very inefficient [48]. Possible filters that can be used during
the screening process are shown in Figure 1.4. During the second step of conjunction assessment, the analysis
stage, the collision risk between two objects is quantified and assessed. This step will be the focus of the research.
Last, during the action stage, mitigation measures might be taken.
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Figure 1.4: Commonly used filters to eliminate impossible conjunctions, adapted from Reference [48].

Spaceflight has become an integrated part of society. Applications of spaceflight are used for science, civil, and
military purposes [35] and therefore it is important to maintain the availability of space and avoid the reality of
the Kessler syndrome. The research objective of this thesis is to contribute to current conjunction assessment
methods. This is done by studying the current practices used in analysing the collision risk and assessing whether
these methods can be expanded or improved. In the remainder of this chapter, the current practices of CA are
introduced and the limitations thereof are identified. The chapter concludes with the research questions.

1.1. Current Practices in Conjunction Analysis
In this section, the current practices used in conjunction analysis are introduced.

1.1.1. Conjunction Warnings
The United States Strategic Command (USSTRATCOM) tracks satellites and fragments of space debris. Further-
more, USSTRATCOM has been studying conjunction events for US satellites that need to be protected already
before the first collision between two intact satellites. After the collision in 2009, the USSTRATCOM has started
to study conjunctions for non-US satellites as well, due to the threats that in-orbit collisions yield [69]. Certain
warnings (later introduced in more detail) are published when a conjunction is identified, which are used by
multiple agencies.

To be able to identify possible conjunctions, first data of the space objects is needed. There are three different
types of data available. The first type is observational data. This data type can be a result of radars, optical
measurements or satellite laser ranging. The data is often difficult to obtain, therefore it is scarce. Using this
observational data, orbital parameters can be set up which can be used to find the state of the object at a certain
moment in time. This is the second datatype. Six parameters are needed to describe the orbit of a space object.
This description can be given in various different coordinates systems, such as Keplerian elements or Cartesian
coordinates for example. The last datatype consists of ephemerides, which give the states of the orbit over a certain
time interval. Ephemerides can be used to find the state at certain moments in time by interpolation. One is thus
dependent on the time window for which the ephemerides are available. The US Space Surveillance Network
(SSN) tracks satellites and space debris objects using sensors located all over the world [1]. The observations
generated by the network are used to find the orbital parameters of an object. The orbital parameters are published
in the Two-Line Elements (TLEs) format. These TLEs are created by the United States Space Command. TLEs
can only be propagated with the semi-analytical Simplified General Perturbations Model 4 (SGP4) propagators
and are publicly available on Space-Track. Apart from this publicly available database, for some Space-Track
users the Special Perturbations (SP) catalog is accessible. These, more accurate, ephemerides are generated by
the 18th Space Defense Squadron (18SDS). As mentioned before, a drawback of using ephemerides is the length
of the validity of the data, although there are methods to extend this validity. In this case the data of the SP
catalog is valid for three days [48]. Another provider for orbital ephemerides is the company Privateer [66]. The
ephemerides are published in the form of Orbital Ephemeris Messages (OEMs). The downside of using Privateer,
is that there is no automatic data retrieval available.

Having the orbital data, possible conjunctions between different objects can be studied. When discussing a po-
tential collision between space objects, the object that is operating (and is to be protected) is called the “primary”
or the “chief” (subscript 1). The other space object (either another satellite or a fragment of space debris) that
is a part of the conjunction is called the “secondary” or “deputy” (subscript 2) [69]. When one has a catalog of
available data consisting of owner / operator (O/O) ephemerides, the publicly available TLE catalog, or more
restricted catalogs such as the SP one, the complete database can be studied for possible conjunctions between
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different objects. An all-on-all analysis could be done, but as mentioned in the introduction, this is costly. So
often a screening process is conducted in which filters, as shown in Figure 1.4, are used to prevent the analysis
of impossible conjunctions. The first filter will for example ensure that no analysis is done for a conjunction
between a LEO and a GEO satellite, as it is impossible that these will collide. The conjunction warnings, as intro-
duced briefly before, are generated by the 19th Space Defense Squadron (19SDS). 19SDS performs conjunction
analysis between all objects present in the 18SDS High Accuracy Catalog (HAC) and all objects for which O/O
ephemerides are available [1]. The data is analysed for possible conjunctions by propagating the states of the
objects for seven to ten days for near-Earth objects (NEO) and deep-space objects respectively [1]. Within these
time intervals, the time of closest approach (TCA) and the miss distance (MD) at TCA can be identified. Possible
calculation metrics for TCA will be discussed in Section 2.1. For near-Earth objects, the probability of collision
is determined as well [1], which will be discussed in more detail in the next subsection. If TCA, MD (and Pc for
NEOs) cross certain thresholds, a possible conjunction is identified, and a warning is generated and sent to the
operators of the objects involved in the potential collision. The warning generated is called a Conjunction Data
Message (CDM). The thresholds used to determine whether a CDM needs to be generated are shown in Table 1.1
[1]. It must be noted that some other organizations also generate their own CDMs, for which other generation
criteria might be applicable. The use and regeneration of CDMs by other organizations will be discussed later in
this section.

Table 1.1: Basic reporting criteria as defined by the 18th & 19th Space Defense Squadron, from Reference [1].

Objects Space-Track Criteria Emergency Criteria
Deep Space (GEO/MEO/HEO) TCA ≤ 10 days TCA ≤ 3 days

Overall MD ≤ 5 km Overall MD ≤ 5 km
Near-Earth (LEO) TCA ≤ 3 days TCA ≤ 3 days

Overall MD ≤ 1 km Overall MD ≤ 1 km
Pc ≥ 10−7 Pc ≥ 10−4

A CDM contains the following information [17]:

• Primary and secondary objects’ positions and velocities at TCA with respect to a reference frame.
• Primary and secondary objects’ covariances at TCA with respect to an object-centered reference frame.
• The relative position and velocity of the secondary object with respect to the primary object centered refer-
ence frame.

• Information relevant to how all of the above was determined.

The available object database is screened at least once every day for possible conjunctions [1]. For a certain
conjunction, the first CDM is usually provided a week before TCA. The message will be updated approximately
three times per day until TCA [78]. The closer the event becomes time wise, the more accurate the data of the
conjunction will be. This is due to the fact that the propagation time until TCA will decrease, and hence the
uncertainty will decrease. Furthermore, additional data may have been collected to refine the orbit estimate and
reduce the uncertainty. The most recently updated CDM can be presumed to be the most accurate [78]. The
CDM does not provide any advice on whether a collision avoidance maneuver is necessary, it merely serves as a
warning. The fast increase of objects in space will also increase the amount of CDMs published [69]. CDMs are
available on Space-Track. However, publicly available CDMs as found on Space-Track do not provide all the
information present in the original CDM [71].

CDMs are often used as indicators for upcoming conjunctions by many agencies. NASA started with conjunction
assessments in 1988 for manned space missions [64]. Operational collision avoidance began in 2005, which was
expanded to all unmanned space missions by 2010 [69]. The Conjunction Assessment Risk Analysis (CARA)
team at NASA is tasked with studying all conjunctions for non-manned spaceflight [69]. The team uses CDMs
as provided by 19SDS and O/O ephemerides that are available to them [48]. Privateer also publishes their own
CDMs, which do show more detailed information compared to the ones published on Space-Track. Most of the
generation process is not known, however it is stated on their website that NASA CARA’s Software Develop-
ment Kit (SDK) [38] is used for the calculation of the probability of collision [66]. ESA also already studied
conjunctions in the mid-1990s [69]. Operational collision avoidance again started a bit later, in 2006. ESA’s
Space Debris Office (SDO) formerly used the TLE catalog available to scan for conjunctions, but since 2010
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they have also been using the CDMs as retrieved from Space-Track [69]. If needed, they can request additional
data from the Fraunhofer Tracking and Imaging Radar (TIRA). ESA also provides services and databases that
can be used for CA. DISCOS is a database consisting of information on the physical properties of space objects,
such as the size and mass [48]. Furthermore, tools are available to predict conjunctions and assess the collision
risk, such as CRASS [48]. The DISCOS database is also often used by other agencies, such as DLR for example.
DLR previously also used the TLE catalog prior to the CDM generation. Now, DLR uses CDMs as well, together
with O/O ephemerides and ESA’s DISCOS database [69]. Other agencies, such as CNES and JAXA, additionally
use their own catalogs and create their own CDMs [69]. The probability of collision is also often computed by
agencies themselves. Agencies commonly use a threshold of Pc > 10−4 to identify High-Risk Events (HREs)
for which maneuver action should be considered [69]. As of 2021, the European Union Space Surveillance and
Tracking (EUSST) became an official sub-component of the EU Space Program. Multiple different services are
offered by SST, including collision avoidance, re-entry analysis and fragmentation analysis [31].

1.1.2. Probability of Collision
Multiple different formulations have been established for the calculation of the probability of collision. Many of
these formulations are implemented in the open source SDK as developed by the NASA CARA team [63]. The
probability of collision can be determined with 2D or 3D analytical calculations or with Monte Carlo techniques
[42]. The detailed methods for determining Pc, using these different techniques, are described in Section 2.2.
When using analytical techniques, a number of assumptions are required to simplify the calculations. These
assumptions will limit the reliability of Pc for certain conjunctions. The assumptions are shown below, such that
the corresponding limitations can be studied in further detail.

For 2D analytical calculations, the following assumptions are made [7]:

1. The potentially colliding objects are approximated as spheres. With this assumption, the relevance of the
satellite attitude is removed.

2. The relative acceleration is assumed to be much lower than the relative velocity between the objects. Con-
sequently, the relative motion between the objects can be assumed to be linear during the encounter.

3. The errors in position are considered zero-mean, Gaussian, uncorrelated and constant during the encounter.
4. The relative velocity at TCA is assumed to be large enough such that the encounter is short and the velocity

uncertainty can be neglected.

For the 3D analytical calculations, the encounter does not need to be linear. In principle, the Monte Carlo analysis
does not require any assumptions, although the spherical shape model is still commonly applied, as the attitude at
the encounter is likely to be unknown. The different formulations represent a balance between the accuracy and
efficiency of the calculations.

Since Pc is used to assess whether a conjunction is risky or not, the problem can be treated statistically. Thus
it would be appropriate to define a null hypothesis, where the probability of collision determines whether this
hypothesis can be rejected or not [42]. Hejduk et al. have established an appropriate null hypothesis that reads:
“The actual miss distance is greater than the hard-body radius” [42]. The hard-body radius (HBR) is defined as
the sum of the sizes of the two space objects. When the miss distance is greater than this hard body radius, it
means that the two objects are not colliding. The base state is thus that there is no maneuver needed. Hence, if this
hypothesis can be rejected, the objects could collide and a maneuver might be needed. The fundamental question
that is answered with this null hypothesis is defined as: “Do the presented data justify a decision to mitigate the
conjunction?” [42].

1.1.3. Limitations on Current Practices
All conjunction analysis methods have limitations. One important limitation is that during the generation of
CDMs, there are many error sources which lead to uncertainties in the identification of a possible conjunction,
including:

1. Sensors produce noisy measurements, with errors incurred from signal propagation through the atmosphere
and ionosphere, among other sources [69].

2. Uncertainties in the dynamical model will increase the errors when propagating the state. Often states are
propagated with a limited dynamical model for efficiency [20].



1.1. Current Practices in Conjunction Analysis 7

3. Since debris fragments are generated when already in orbit, the physical properties of these pieces have to
be estimated from observations. So, the size, mass, and dynamical parameters are all estimations and thus
contribute to the uncertainty of the problem.

4. When a state is propagated, the associated covariancematrix also needs to be propagated. Themost accurate
method of doing this is with a Monte Carlo algorithm, but this is computationally costly. Instead, local
linearization methods can be used, introducing additional errors [52].

5. Estimation of TCA and MD will also initiate an additional error source in the conjunction assessment [22].
6. Unexpected maneuvers of active satellites introduce additional uncertainties [21].
7. The unknown attitude information is a source of uncertainty. This will be discussed further when analysing

the limitations arising from the assumptions made in the calculation of Pc.

Researches have also found that the covariance matrices used for the calculation of Pc are often estimated to be
smaller than the actual state error distribution. The reason for this is that in the computation of the covariance,
no dynamical model errors are taken into account [10]. However, since many possible conjunctions present
themselves in LEO,where perturbing forces such as atmospheric drag are dominant, these dynamical errors should
be taken into account. The underestimation of velocity uncertainties leads to an underestimation of positional
uncertainties of approximately one order of magnitude [10]. It must be noted that according to 19SDS, their Pc

calculation overestimates the covariances for safety [1].

Another limitation of current conjunction analysis is the timeliness of the CDMs and conjunction information.
An operator would ideally make a decision on whether to perform a collision avoidance maneuver at least one
day before TCA. This time is needed to plan the maneuver and check whether the maneuver might be combined
with a preplanned station-keeping maneuver, limiting propulsion costs [10]. Furthermore, it must be checked
whether the maneuver will not cause additional conjunctions after the satellite has moved [48]. There have been
attempts to improve the timeliness of conjunction warnings by studying whether Pc can be predicted forward
using machine learning [78].

The calculation of Pc also has a significant amount of drawbacks associated with it. One important drawback of
Pc is the number of different assumptions that need to be made for the calculation to hold:

• Assumption 1 states that the shapes of the objects are assumed to be spherical. In a conjunction analysis
this can be problematic when the objects have large solar arrays, for example. The rotational attitude of the
objects is important to take into consideration.

• Assumption 3 states that the positional covariance is zero-mean Gaussian. This may be true after the initial
orbit determination process. However, when propagating the state for a longer time, the error becomes
non-Gaussian. Since CA operators need to determine whether a collision avoidance maneuver is needed
approximately two days before TCA (and it would be handy to have a first notice approximately one week
before TCA) the propagation time may be too long to assume Gaussian behavior. Using Monte Carlo
simulations, it has been shown that the effect of this was actually rather small for HREs in LEO [36].

• Assumption 4 states that the velocity at TCA is large and consequently this implies that the encounter time is
short. A study has been conducted to test this assumption, carried out byCoppola [18]. As noted in the study,
a short encounter assumption is reasonable, but will not hold for all encounters. Namely, the assumption
will not hold when an encounter involves formation flying objects and objects in GEO for example. During
Coppola’s study an all-on-all analysis was done, and based on an encounter duration formula it was tested
how often the assumption was actually valid by defining a short-term encounter validity interval. Most
potential collisions were found to meet the short encounter requirement needed for the calculation of Pc in
its present form. However, there are some cases, when an encounter involves slowly drifting objects for
example, that need further investigation [18].

Alfano studied methods for determining Pc without all the aforementioned assumptions [8]. Earlier researchers
often note that the calculation of Pc could be performed more accurately when using a Monte Carlo simulation,
such as Carpenter [16]. However, as also mentioned by many experts in the field, the accuracy of the method is at
the cost of the computational efficiency of the method. For high-fidelity analysis, the computational inefficiency
of the algorithm may render the analysis prohibitive [37].

Apart from the limitations arising from the assumptions used for the calculation of the probability of collision,
the method of quantifying the risk is also limited due to another phenomenon. The Pc value will namely become
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less useful when the uncertainties of the states are large. This will lead to a large joint covariance, and thus the
probability density will be spread out over a very large area. As a result, due to the spread in the distribution
within the covariance ellipsoid, Pc will be low. Whilst this probability of collision is low, it does not mean that
the situation is safe, the significance of the value is low due to the uncertain data used to generate it. Hence, no
conclusion can be drawn from this value. The effect of finding a low Pc for a high joint covariance is described
as the dilution of probability [43]. When a probability is diluted, the value is said to lie in the dilution region.
This region defines the range of covariances sizes for which the probability is diluted. To the contrary, when the
uncertainty on the states are low, Pc is reliable. Hence, in that case, Pc is said to lie in the robust region [43].
Using the safety threshold for the decision to mitigate a risk, the following conclusions can be made when in
diluted or robust regions [43]:

Table 1.2: Conclusions that can be drawn from Pc within the dilution or robust regions, from Reference [43].

Pc ≥ Threshold Pc < Threshold
Robust region Risky Safe
Dilution region Risky No Conclusion

The limitation ofPc lies within the existence of these two regions. Although the action needed in the robust region
appears clear, the problem lies in the fact that when using Pc, one is not able to separate an uncertain collision
from an unlikely one [21]. Returning to the null hypothesis introduced previously, in the dilution region one
cannot draw a conclusion as to whether the null hypothesis can be rejected, as can be seen in Table 1.2. When the
null hypothesis cannot be rejected, the default state is maintained, and thus no mitigation action is taken. So in
the dilution region, even though a low Pc does not necessarily translate to a safe situation, still no action is taken
[42]. According to Hejduk et al. this does not have to be a worrisome fact, since objects with highly uncertain
states might be categorized as untracked objects. That is, for some objects, no data are available at all and the
risk these objects pose is accepted. So, the same may be done for possible conjunctions with data that is too
uncertain. However, Pc could also be seen as an insufficiently reliable approach to be the sole decision criteria
used to quantify the collision risk [42].

1.2. Research Questions
The problem description given in the previous section has led to the following research question:

How can the conjunction analysis as currently used be further expanded or improved?

This research question can be further divided into multiple sub-questions:

• How can the performance of existing CA methods be improved via the incorporation and combination of
novel risk assessment methods?

• Is it possible to extend the risk analysis time horizon, in order to enable reliable decision making further in
advance of the potential collision?

• How can the new methods be synthesized to produce useful output for operators?

In the remainder of the thesis one will first be introduced to the theoretical framework that provides the basis of
the study. Chapter 2 consists of a description of the algorithm used to find the time of closest approach and the
different formulations used to find the probability of collision. In the second theoretical chapter, Chapter 3, the
novel metrics that are implemented are introduced. Then, the methodology used for the research is outlined in
Chapter 4, followed by the results in Chapter 5. The thesis concludes with the final findings, conclusions, and
recommendations in Chapter 6. The appendices provide further analysis and results for complementary studies
conducted for the thesis.



2
Theoretical Framework

In this chapter, the various theoretical frameworks used to address the research questions are described. The
chapter consists of the algorithm used for the determination of TCA, the different formulations that are currently
used for the determination of Pc and an assessment of other statistical risk metrics.

2.1. Time of Closest Approach & Miss Distance
An important part of conjunction analysis is determining the time of closest approach and miss distance between
two objects. There are multiple different methods available to achieve this [22]. Denenberg has given an overview
of these different methods and has proposed a new one [22]. Methods often consist of root-finding algorithms to
find the time for which the derivative of the distance function is zero. One of these methods, called the Alfano
Negron Close Approach Software (ANCAS) [4], uses cubic proxy-polynomials to this end. This method is fast,
but the estimation can cause inaccurate results [22]. Another method consists of simply propagating the orbits
and finding the relative distances at every timestep. Here, the timestep taken needs to be very small, leading to
a slow algorithm [22]. These two methods have been combined as the Surrogate-based Optimization method
(SBO) [23]. Although the accuracy and speed of finding TCA were increased using SBO, the method still needs
a high computational power [22]. The new method suggested by Denenberg tries to find a balance between
the drawbacks of the formerly introduced methods. CATCH, or Conjunction Assessment Through Chebsyshev
Polynomials uses Chebsyshev Proxy Polynomials (CPPs), as indicated by the name of the algorithm, to again
find the roots of the distance function derivative. The difference with the ANCAS algorithm is that simple cubic
polynomials are used for ANCAS, whilst CATCH uses CPPs, which are optimized to find the minimal maximum
error using root finding, leading to high accuracies whilst still being computationally efficient. The algorithm
will be introduced next.

The goal of the algorithm is to find the closest approach between two satellites, thus two orbits. Since the orbits
are elliptical, there will be two points in time at which the distances between the orbits is maximal and two points
in time at which the distance between the orbits is minimal. This is depicted in Figure 2.1. These four extreme
points can all be found in the shortest orbital period of the two periods. This orbital period can then be halved to
ensure that at most one local minimal point is found: Γ = Tmin

2 = min(T1,T2)
2 . Here, Γ represents a subinterval

and T1 and T2 represent the orbital periods of the deputy and chief. The time interval in which to search for the
local minimum is then defined as [t0, t0 + Γ], with t0 the initial time. When searching for TCA in a seven-day
screening period, the search can be conducted using many subintervals. The first interval has been defined above,
the second interval is defined as: [t0+Γ, t0+2Γ] and so on, until the last interval given by [t0+(B−1)Γ, t0+7
days ], withB the integer number of sections. Only the close approach corresponding to the lowest miss distance
could be saved, or one could choose to save all times with approaches below a certain critical distance.

9
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Figure 2.1: The geometry of two orbits, indicating that there are four extreme points, from Reference [22].

Within every subinterval, the extreme points of the distance between the two orbits must be found. This can thus
be done by taking the derivative of the distance function and finding the associated roots. The distance function
can be defined by [22]:

f(t) = r⃗d(t) · r⃗d(t), with r⃗d = r⃗1 − r⃗2. (2.1)

Here, r⃗1 and r⃗2 represent the position vectors of the two spacecraft. The local minima can then be found by
finding the values tTCA for which:

ḟ(tTCA) = 0 and f̈(tTCA) > 0. (2.2)

Although the function f(t) can be defined as shown in Equation 2.1, the relation for the distance as a function of
time r⃗d(t) is not known, so the roots of ḟ(t) cannot be found analytically. Hence, a proxy polynomial can be used
for which the roots can be found. If the proxy is chosen correctly, these roots will be approximately the same as
those of the actual function. A Chebsyshev proxy polynomial is one of the possible proxies that can be used, and
this will be done for this algorithm. To find the roots of a general function g(x) defined on the interval [ă, b̆], the
CPP reads [22]:

g(x) ≈ gN (x) =

N∑
j=0

aj cos(j arccos(x))

(
2x− (b̆+ ă)

b̆− ă

)
. (2.3)

HereN is the order of the polynomial, j is the point index and ă, b̆ are defined by the interval in which one wants to
find the roots. There are many different forms possible for the CPP, which are defined by the coefficients aj . For
every problem, the correct values for these coefficients thus need to be found. To find aj , samples of g(x) can be
taken on certain points x. The ideal points to take the samples on are found using the Chebsyshev-Gauss-Lobatto
Nodes, defined as:

xj =
b̆− ă

2
cos

(
π
j

N

)
+
b̆+ ă

2
. (2.4)

The coefficients aj can then be found by sampling some data points on the found nodes resulting in the samples
gk = g(xk), such that:

aj =

N∑
k=0

ζj,kgk with j = 0...N. (2.5)
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Where ζj,k is defined as the interpolation matrix, found by:

ζj,k =
2

lj lkN
cos

(
jπ

k

N

)
where lj =

{
2, j = 0, N

1, otherwise.
(2.6)

Now that the coefficients aj are found, the polynomial is defined. The next step would be to check for tolerance
convergence. The order N namely determines how close gN (x) will be to g(x). Whether N is high enough
should be checked by iteration. Denenberg found that N = 16 is often sufficiently high enough for a close
approximation of TCA [22]. So, for this application, this step can be skipped. The next step is then to find the
roots of the proxy polynomial. This can be done by building the companion matrixA from the CPP coefficients:

Aj,k =


δ2,k j = 1, k = 1...N
1
2 (δj,k+1 + δj,k−1) j = 2...N − 1, k = 1...N

−ak−1

2aN
+ 1

2δN−1,k j = N, k = 1...N

where δq,r =

{
1 q = r

0 otherwise.
(2.7)

The eigenvalues of the matrix A represent the roots on the interval [−1, 1], so these eigenvalues need to be
rescaled to the search interval [ă, b̆]. With ei the ith eigenvalue:

x∗ =
b̆+ ă

2
+ ei

b̆− ă

2
. (2.8)

Using this formula, one can find the roots x∗ for which g(x) equals zero. This algorithm can be applied to the
problem at hand, where g(x) = ḟ(t). Therefore solving the roots will determine TCA. The next step is then to
find the miss distance at TCA. As found by Denenberg, this can be done by fitting another CPP separately to each
component of r⃗d(t) = (rdx , rdy , rdz ). The same order and sampled data as found for the calculation of TCA
can be used. Then the CPP of rdx

reads [22]:

rdx
(t) ≈ rNdx

(t) =

N∑
0

aj cos(j arccos(t))

(
2t− qΓ

Γ

)
. (2.9)

Here q is the section number containing the minimum. The CPP for the other two components is defined similarly.
With tTCA representing TCA the distance can then be found by taking the norm of the components:

rd =
√
r2Ndx

(tTCA) + r2Ndy
(tTCA) + r2Ndz

(tTCA). (2.10)

During this research, the miss distance has been found by propagating the states from t0 to the established tTCA

and calculating the norm of the positional difference between the primary and secondary object.

2.2. Probability of Collision
This section describes various collision risk assessment methods, with a primary focus on the probability of
collision. The probability of collision is referred to as “vanilla” Pc by Hejduk et al. [42]. The NASA CARA
Software Development Kit [63] has various different calculations of the probability of collision implemented.
The 2D probability calculation is implemented using both the formulation developed by Foster and Estes [32]
and the one proposed by Elrod [24]. The derivation outlined by Foster and Estes is often used and will thus be
discussed in detail. Other implementations of the calculation, such as the 3D metric derived by Hall and a Monte
Carlo analysis will also be discussed.

2.2.1. 2D Pc Calculation Foster and Estes
The assumptions used for the 2D probability of collision calculation are already provided in Section 1.1.2. It is
important to keep these in mind during this description. To calculate the probability of collision between two
objects, both the covariances and states are needed at TCA. Both are provided in CDMs. The covariances are
combined into a joint covariance. As a result of Assumption 3 (uncorrelated errors), the joint covariance can be
found by summing the individual covariances for both objects [7]. Due to the fact that the encounter duration is
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short, as per assumption 4, only the positional covariance needs to be taken into account [3]. The joint covariance
then forms a covariance ellipsoid in three dimensions. This ellipsoid is typically placed at the center of the
primary object. A collision is assumed to occur when the distance between the primary and secondary objects
is less than the sum of their two radii [7]. This sum represents the joint size of the objects, called the HBR. The
HBR is often defined by the user. For the determination of the HBR, some additional information is needed in
addition to the information given in the CDM [43]. Information on the physical properties of an object might
be available through O/Os, or ESA’s DISCOS database might be used. The HBR is placed at the center of the
secondary object. When this secondary object passes through the defined covariance ellipsoid, a tube-shaped path
is created, also called the collision tube [7]. This is depicted in Figure 2.2a. A potential collision will take place
in the plane perpendicular to the relative velocity vector. The probability perpendicular to this plane approaches
unity, so it has no effect on the calculation of the probability of collision (multiplication by 1) [43]. As a result,
the calculation can be simplified to a two-dimensional problem. A visualization of the so-called encounter plane
can be seen in Figure 2.2b, where the covariance ellipsoid has transformed to a covariance ellipse.

(a) Conjunction encounter visualization, from Reference [7]. (b) Encounter plane [7], from Reference

Figure 2.2: The approach geometry between two potentially colliding objects, from Reference [7].

Alternately, the encounter plane can be represented by placing both objects on the x-axis, with the HBR placed
at the origin. This results in the geometry as depicted in Figure 2.3.

Figure 2.3: Encounter plane for the 2D Pc calculation, adapted from Reference [43].

The covariance ellipse represents the joint state uncertainty, such that the probability of collision can be deter-
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mined by calculating the extent to which this distribution overlaps with the HBR [43]. Since the ellipse extends to
infinity (when not setting a confidence interval), the density function always overlaps with the HBR. The spread
of the density function will therefore determine the value of Pc [43]. The probability of collision can then be
computed using [63]:

PcFoster
=

1

2π
√
|P|

∫ HBR

−HBR

∫ √
HBR2−x2

−
√
HBR2−x2

e−
1
2 (r⃗−r⃗d)

TP−1(r⃗−r⃗d)dz dx. (2.11)

HereP represents the combined covariances, and the vector r⃗ and r⃗d are given by:
(
x
z

)
and

(
x1 − x2
z1 − z2

)
respec-

tively [63]. The components x and z are defined in the relative encounter frame, as the secondary object is set
at the origin. A summary of the relevant attributes of the Foster and Estes method is provided in Table 2.1, to
facilitate later comparison and discussion of the available methods in Chapter 5.

Table 2.1: Relevant attributes for the 2D Foster and Estes calculation.

Objective Rating Explanation
Accuracy - Limited due to assumptions
Computationally lean + The analysis is fast
Mitigates dilution effect - 2D Pc is affected by the dilution effect
Works for low velocity encounters - Rectilinear motion is assumed, so doed not work

for low velocity, as for such encounters,
the non-linear motion between the objects
becomes more significant.

2.2.2. 2D Pc Calculation Elrod
Elrod further simplified the two dimensional calculation of the probability of collision, such that it can be found
with even more efficiency [24]. However, the same assumptions as made for the formulation of Foster and
Estes hold. Specifically, Elrod uses Cholesky decomposition for covariance matrix factoring, and Chebyshev
quadrature for a faster convergence of the integration. The complete derivation for this method can be found
in the dissertation of Elrod [24]. This metric is also implemented in NASA CARA’s SDK. [63]. Table 2.2
summarizes the relevant attributes of the formulation derived by Elrod.

Table 2.2: Relevant attributes for the 2D Elrod calculation.

Objective Rating Explanation
Accuracy - Limited due to assumptions
Computationally lean + The analysis is fast and more efficient than PcFoster

Mitigates dilution effect - 2D Pc is affected by the dilution effect
Works for low velocity encounters - Rectilinear motion is assumed,

so does not work for low velocity encounters

2.2.3. 3D Pc Calculation Hall
The 3Dcalculation of the probability of collision as derived byHall [37] can be used for single isolated conjunction
cases, or cases where multi-encounters can occur. The calculation focuses on using the statistically expected
collision rate Ṅc between the two involved objects, which can be calculated based on the uncertainty distributions
of the initial states. For the implementation of the formulation in NASA CARA’s SDK, it must be noted that the
initial states are defined in equinoctial orbital elements, as this mitigates inaccurate covariance modeling [38].
Using the expected collision rate, the number of collisions Nc can be calculated using integration [37]:

Nc(τa, τb) =

∫ τb

τa

Ṅc(t)dt. (2.12)
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Here, τa and τb define the risk assessment interval τa ≤ t < τb. The statistically expected collision rate Ṅc(t)
represents the number of collision expected to occur between the two objects at time twithin the time interval [38].
This expected collision rate can be calculated with a Monte Carlo algorithm, or semi-analytically. Conceptually,
a 2D Ṅc is calculated for the semi-analytical method, using the uncertainty distributions of the involved objects.
This 2D Ṅc is then integrated over time. This way, the metric considers a window of time around TCA in which
a collision can occur, instead of just focusing on the encounter plane at TCA. The detailed derivation of Ṅc can
be found in the paper written by Hall [37]. When analysing single, isolated, high-relative velocity encounters,
the number of collisions is equal to the probability of collision [37]:

Pc = Nc(τa, τb). (2.13)

For intervals with multiple encounters, or low-relative velocity cases, the following holds [37]:

Pc ≤ Nc(τa, τb). (2.14)

So, the expected number of collisions can exceed the probability of collision. It thus represents an upper boundary
for Pc [38]. For multiple encounters, the interval can be divided such that the expected collision rate is only
determined for one encounter [37]. There is no need to assume linearity of relative motion (Assumption 2), the
equation holds for non-linearity. Table 2.3 summarizes the relevant attributes of the formulation derived by Hall.

Table 2.3: Relevant attributes for the 3D Hall calculation.

Objective Rating Explanation
Accuracy + Less assumptions so more accurate
Computationally lean + The analysis is fast
Mitigates dilution effect - 3D Pc is affected by the dilution effect
Works for low velocity encounters + Nc represents an upper boundary

of the probability for low velocity

2.2.4. 3D Monte Carlo Pc Calculation
Foster and Estes have described how a Monte Carlo algorithm can be used to find Pc [32]. That is, a random
number generator can be used to sample deviated states using the uncertainty distributions. The conjunction can
then be simulated with these deviated states. In the code implemented by NASA CARA, the samples are taken in
the equinoctial coordinate frame, taking into account the non-linearity of a satellite orbit. The individual sample
pairs may have a different close approach compared to that of the mean samples, so they are propagated forward
and backward for short intervals from the mean TCA to find the appropriate pair-wise close approach, deemed
proper TCA. The propagation is performed using two-body Keplerian dynamics. If the miss distance at proper
TCA is lower than the hard-body radius, a collision is flagged. The probability of collision is then determined
using Equation 2.15.

Pc =
Number of collisions
Number of simulations

. (2.15)

Note, in SDK, the required sample size for theMonte Carlo analysis is determined for every conjunction separately
[62]. Table 2.4 summarizes the relevant attributes of the Monte Carlo analysis.

Table 2.4: Relevant attributes for the 3D Monte Carlo calculation.

Objective Rating Explanation
Accuracy + Accurate results as minimal assumptions are needed
Computationally lean - The analysis is slow to run
Mitigates dilution effect - When the covariance of the objects is

large the resulting Pc will still be low
Works for low velocity encounters + No linearity assumptions are needed,

so works for low velocity
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2.3. Alternatives to Pc and Probability
It must be noted that many other calculations of Pc have been developed over the years. An often used derivation
for the 2D Pc calculation is given by Akella and Alfriend [3]. Furthermore, Patera [65] and Alfano [5] have also
developed alternative formulations for the 2D calculation of Pc. However, the methods presented in this research
are deemed sufficient for this thesis work. The approaches of Akella andAlfriend are conceptually similar to those
presented above and suffer the same drawbacks, stemming from the assumptions made and the dilution effect.
Furthermore, the methods presented are the ones that are implemented in NASA CARA’s Software Development
Kit and will thus be used for the calculations carried out in this research.

Apart from the different formulations available to describe the probability of collision, Hedjuk et al. have pro-
vided an overview of alternative statistical representations of the collision risk [42]. The different representations
are placed on a spectrum ranging from probability to plausibility to possibility. When a metric can be closely
described as a probability, it can be said that the metric is a determination or an attempt thereof, to find the actual
probability that an event will take place. When a metric leans more to a possibility, the metric tries to determine
whether an event is even possible within a certain confidence interval. Metrics that cannot be characterized as
quantifying the probability nor possibility, may describe the plausibility of an event [42]. As discussed before, the
problem could be addressed statistically due to the probabilistic method of quantifying the collision risk. For the
calculation of the vanilla probability of collision, the null-hypothesis and fundamental question have already been
introduced in Subsection 1.1.2. This section provides a brief introduction to the different metrics, including their
null-hypothesis and associated question, which can be categorized within the probabilistic spectrum of Hejduk et
al.

2.3.1. Probability: Wald Sequential Probability Ratio Test
Apart from the vanilla Pc calculation, another possible quantification of the collision risk was suggested by Car-
penter and Markley [15]. The method is called the Wald Sequential Probability Ratio Test (WSPRT). The ratio
compares the collision risk at hand with the usual collision risk between the objects. The test uses an upper alarm
boundary and a lower dismissal boundary. When the ratio falls between the two boundaries, further analysis is
needed. A difficulty in the use of WSPRT as risk metric is the background risk value that needs to be calculated
additionally. WSPRT is still under the probability part of the spectrum of Hejduk et al. [42], so the same null
hypothesis as defined for vanilla Pc can be used. Due to the use of an additional background risk analysis, the
fundamental question reads: “Do the presented data and background risk analysis justify a decision to mitigate
the conjunction?” [42].

2.3.2. Plausibility: Pc Uncertainty, Maximum Pc and Scaled Pc

The former discussed methods can be characterized under the probability part of the spectrum. Since the proba-
bility of collision has its limitations, one might study the plausibility of collision. The metrics introduced in this
section, can be categorized under the plausibility segment of the spectrum of Hejduk et al. These metrics are
more conservative than the probability metrics.

Pc Uncertainty
A limitation of the calculation of Pc is that the covariance used often does not accurately reflect reality. One way
of dealing with this drawback, is to create a multitude of possible covariances. Then, all the different covariances
can be used to find a multitude of Pc values. This way, a probability density function of the Pc values can be
created. If a large area of the Pc distribution falls above a certain threshold, a mitigation action is needed. The
drawback of this method is that for the generation of the Pc distribution, much historical data is needed. This
historical data is often not available [42]. The fundamental question for this metric reads: “Given the current data
and historical covariance realism information, does the Pc range of values justify a decision to mitigate?”. The
null hypothesis is given by: “The actual miss distance is greater than the hard-body radius” [42].

2D Maximum Pc Calculation
As mentioned, there are two situations for which Pc is low. Specifically, this occurs in the case for which one
is either very certain (and the conjunction is a miss) or very uncertain of the state estimates. This is an inherent
consequence of the way in which Pc is calculated, as depicted in Figure 2.4a. As can be seen, for a given
MD and HBR, both a large uncertainty (dotted green line) and small uncertainty (dashed blue line) can yield a
small Pc when integrating over the HBR. In between these uncertainty distributions, there is an uncertainty that
will produce a maximum probability, notionally depicted by the red line. This was demonstrated by Alfano [6].
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Figure 2.4b shows the behavior of Pc when scaling the joint covariance and keeping MD and HBR fixed. For a
low covariance size, the data is certain, and Pc is thus in the robust region. When the covariance increases, the
probability of collision reaches a maximum, after which it will decrease again due to the dilution effect. This
maximum Pc can be used to mitigate the dilution effect. So, when one increases or decreases the covariance from
either extreme, there is a maximum Pc value to be found somewhere in between. Scaling of the covariances can
be done using a brute-force technique [42], so contrary to the WSRT method, no historical data or experience is
needed.

(a) Visualization of Pc calculation, adapted from Reference [48]. (b) Robust and dilution region, adapted from Reference [63].

Figure 2.4: Explanatory figures for the dilution effect, adapted from References [48] and [63].

The maximum Pc construct is implemented in NASA CARA’s SDK. The algorithm first checks whether the
conjunction at hand is in the dilution region. This is achieved by calculating Pc using any of the other methods,
and comparing this to Pc after scaling either the primary, secondary or joint covariance. If Pc increases as the
covariance increases, so ∂Pc

∂P > 01, this means that the object is in the robust region. If Pc decreases as the
covariance increases, ∂Pc

∂P < 0, the probability becomes diluted. When ∂Pc

∂P is equal to zero, an extreme has been
found, equal to Pcmax

. It must be noted that, if both objects are already in the robust region, Pcmax
is taken to be

equal to the vanilla Pc calculated based on the current data available, which will be denoted as Pcinitial
. This is

done as generally, the covariance size will not increase significantly with new data updates [63]. If the objects are
not in the robust region, Pcmax is found using a span of scale factors. This span is refined until Pcmax is reached
[63].

The maximum probability of collision can then be used to test the following null hypothesis: “The actual miss
distance is less than the hard-body radius”. By rejecting or accepting this null hypothesis, the fundamental ques-
tion: “Given the data and assumptions regarding possible values of the covariance, does the maximum Pc value
justify dismissal of the event?” is answered. If the value is above the threshold, a maneuver can be performed.
If it is below it, it can be dismissed at the current time. Since the Pc curve can change due to a changing miss
distance per update, the null hypothesis should be tested at every new CDM update. The method has been tested,
and it was shown that the number of collision avoidance maneuvers needed doubled compared to the number
found when assessing the risk based on vanilla Pc, when analysing a conjunction two days before TCA [43].

Although Pcmax is not a formulation of vanilla Pc, a table to summarize the relevant attributes of the metric is
also presented, shown in Table 2.5. This way, all metrics implemented in NASA CARA’s SDK can be compared.

1In SDK’s documentation, ∂Pc
∂P

> 1 was documented
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Table 2.5: Relevant attributes for the 2D maximum Pc calculation.

Objective Rating Explanation
Accuracy Left blank as the metric represents the pessimistic

scenario, ensuring mitigation of the dilution effect
Computationally lean + The analysis is fast
Mitigates dilution effect + Dilution effect is mitigated
Works for low velocity encounters - Rectilinear motion is assumed,

so does not work for low velocity
Actionable - Useful for disregarding some events
Effective - Needed twice the maneuvers

when testing

Scaling Pc

Instead of creating a multitude of possible covariances based on historical data, as done for the Pc uncertainty
metric, one could also define a maximum and minimum covariance based on experience, for both space objects
separately. Then it is assumed that all possible covariances for an individual object will lie between the two
extreme values defined for that object. Furthermore, a uniform spread of these possible covariances can be
assumed over the established region. A grid can then be created using all the possible uncertainties for both
objects, to find the associated scaled Pc values [42]. This is depicted in Figure 2.5.

Figure 2.5: Grid of probabilities created for the scaled Pc metric, from Reference [42].

This metric is similar to the maximum Pc metric. This case however uses two different scale factors to adjust
the individual covariance matrices, whilst the Pcmax

metric scales either the joint covariance, or only one of the
two individual covariances. Furthermore, for this metric, experience is needed to establish the minimum and
maximum covariance. The fundamental question for this metric reads: “Given the current data and covariance
realism assumptions, do the Pc range of values justify a decision to mitigate?”. The null hypothesis is given by:
“The actual miss distance is greater than the hard-body radius” [42].

2.3.3. Possibility: Ellipse Overlap
Apart from the probability and plausibility, the possibility of a collision can also be tested. One approach to find
the possibility is to use the covariance ellipsoids of both the primary and secondary objects at a given confidence
level (e.g. 3σ). It is then checked whether the ellipsoids of the objects overlap, and whether this overlap is above
a certain threshold, namely the chosen HBR [42]. The method was developed by Balch et al. [12]. This metric
constitutes a conservative approach, whereas for the probability of collision, a larger uncertainty can lead to a
reduction of Pc due to the dilution effect. In this case however, a larger uncertainty will result in a larger overlap
of the ellipses. The null hypothesis for this method reads: ”The covariance ellipses overlap to a non-discountable
degree” [43]. The fundamental question answered is given by: “Do the data rule out the possibility of a collision?”.
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This method has also been tested, and it was found that the number of actions needed increased by a factor of 7.6
when analysing a conjunction two days before TCA [43].

2.3.4. Summary Null Hypotheses and Questions
As a summary, the different metrics and corresponding questions and null hypothesis are presented in Table 2.6.

Table 2.6: Summary of the fundamental questions and null hypothesis, from Reference [42].

Metric Fundamental Question Null Hypothesis
Vanilla Pc “Do the presented data justify a “The actual miss distance is greater
(Section 2.2) decision to mitigate the conjunction” [42] than the hard-body radius” [42]
WSPRT “Do the presented data and “The actual miss distance is greater
(Section 2.3.1) background risk analysis justify than the hard-body radius” [42]

a decision to mitigate
the conjunction?” [42]

Pc Uncertainty “Given the current data and historical “The actual miss distance is greater
(Section 2.3.2) covariance realism information, does the than the hard-body radius” [42]

Pc range of values justify a decision
to mitigate?” [42]

Maximum Pc “Given the data and assumptions “The actual miss distance is less
(Section 2.3.2) regarding possible values of the covariance, than the hard-body radius” [42]

does the maximum Pc value
justify dismissal of the event?” [42]

Scaled Pc “Given the current data and covariance “The actual miss distance is greater
(Section 2.3.2) realism assumptions, do the Pc range of than the hard- body radius” [42]

values justify a decision to mitigate?” [42]
Ellipse Overlap “Do the data rule out the possibility “The covariance ellipses overlap
(Section 2.3.3) of a collision?” [42] to a non-discountable degree” [42]



3
Novel Metrics

This chapter consists of a description of the proposed novel risk metrics.

3.1. Outer Probability Measures
Probability theory is often used to describe the behavior of events, however it may not always be the most suitable
method to do so. In conjunction analysis, employing conventional probabilistic methods to quantify the collision
risk inherently frames the collision as a random event [21]. However, a collision event is in fact, not entirely
random. That is, when studying a conjunction event, one has to deal with both random and systematic uncertainty.
Random uncertainty occurs when the outcome of an event is inherently random, such as when rolling a die or
tossing a coin. This randomness can be studied using a Monte Carlo algorithm. For instance, if a balanced
die is rolled an infinite number of times, the results will show that each side has a one-in-six chance of being
rolled. Thus, by studying the behavior of the die, a probability distribution can be generated. Although this
provides some degree of predictability, each roll remains uncertain and independent of other roles. A systematic
uncertainty is defined as the uncertainty due to the (missing) level of knowledge, or ignorance, one has of the
event. The uncertainty can thus decrease with increasing knowledge [21]. An example of this is when one uses
an incorrectly calibrated ruler to measure lengths. If the ruler is said to be 30 cm but in reality is only 28.98 cm,
the resulting error will consistently occur each time the ruler is used, and thus the error is predictable. If one
learns from this permanent imperfection, this limitation can be compensated for.

Whilst probability theory can be used for events with both systematic and random uncertainties, it assumes an un-
derlying probability distribution for the systematic uncertainty, treating it as random in nature. For scenarios with
missing, vague or inconsistent information, other statistical theories may provide a better representation of real-
ity. Among the different alternative methods available are Dempster-Shafer theory, possibility theory and fuzzy
logic [14]. Note, the statistical spectrum, as defined by Hejduk et al. (Subsection 2.3), ranges from probability to
possibility. Although certain metrics were defined to represent the possibility or plausibility of a collision, they
remain probabilistic in nature, due to the assumption of an underlying probability distribution. Therefore, the
position of a metric on the spectrum of Hejduk et al. should not be confused with possibility theory mentioned
here. Dempster-Shafer theory, possibility theory, and fuzzy logic all have their distinct ways of handling different
types of uncertainty. For conjunction analysis, the different uncertainty types occur due to various reasons. For
example, random uncertainty can be attributed to measurement noise from sensors used for tracking [21]. The
noise is unpredictable and can vary over time. An example of systematic uncertainty is the uncertainty introduced
by the choice of the initial orbit determination process used [21]. Specifically, the uncertainty of the state esti-
mate depends on the accuracy of the chosen process. If the process relies on incomplete or incorrect data, for
example, this will result in a larger uncertainty for the state estimate. This also implies that, if the accuracy of the
process is improved, the state uncertainty will decrease. The uncertainty introduced by the appropriateness of the
chosen initial orbit determination process is thus systematic in nature [21]. Furthermore, when perturbing forces
are omitted from the dynamical model used to predict the state of an object in time for efficiency, the accuracy
of the predicted state is reduced. The uncertainty introduced by this omission is also systematic in nature, as it
can be reduced by increasing the model fidelity. A distinct treatment of these different types of uncertainty can
be important, because as Cai et al. rightfully question: “how can it be that the probability of collision depends

19
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upon our ignorance and the more ignorant we are the less probable the collision might be?” [14].

Delande et al. have developed a holistic approach to treating random and systematic error sources separately, in
the form of outer probability measures (OPMs) [21]. Using this framework, one can distinguish an event to be
either uncertain or unlikely. This solves the known limitation of using the probability of collision, where a low
probability can be a result of both uncertain and unlikely events, due to the dilution phenomenon [21]. Specifically,
instead of assuming random behavior, the uncertainty can be used to find the worst-case scenario and the best-case
scenario. These worst- and best-case scenarios represent upper and lower boundaries, respectively. With properly
formulated information, the observer can be confident that the actual probability lies somewhere in between the
two bounds. The range of possible values between the bounds reflects the uncertainty due to the observer’s lack of
knowledge, which can be defined as ignorance. The lower the ignorance, the closer these two bounds are together.
This implies that as the observer gains information, any remaining uncertainty is adequately modeled as random
and the possibility distribution converges to a probabilistic description of the event. Using a fully probabilistic
description when ignorance is high masks the distinction between random and systematic uncertainty, which can
require additional assumptions and impact the validity of conclusions.

The concept of OPMs can be explained using a random die. For a balanced die, the probability of rolling a one
(p(1)) is equal to 1

6 . Now, consider the case where the side with the number six is substituted with a question
mark, which could represent a repeat of the digits one to five, or the original value of six. In this case, what is
the probability of rolling a one? The question mark introduces an uncertainty in the problem. For a probabilistic
representation, an assumption needs to be made about the underlying distribution of digits represented by the
question mark. When the uncertainty introduced by the question mark is assumed to be random (uniformly
distributed), the probability of having any number between one and six on the question mark is assumed to be
equal to 1

6 . The probability of rolling a one is then equal to p(1) =
1
6 +

1
6 ·

1
6 . Namely, the player has a one-in-six

chance of rolling the side with one, a one-in-six chance of rolling the question mark, and then a one-in-six chance
that the question mark represents a one. A more holistic approach to finding the probability of rolling a one is by
foregoing any assumption on the nature of the side with the question mark and to compute an upper and lower
bound of the probability. Specifically, it is completely certain that the digit one is on one of the sides of the die,
so the lower probability of throwing a one is given by p(1) ≥ 1

6 . The upper probability can be determined by
realizing that the highest probability of rolling a one occurs when the question mark represents a one. In this case,
two sides of the die have a one, and therefore p(1) ≤ 2

6 . Alternatively, one could rely on the certainty that the
digits two, three, four and five can be rolled. This establishes a lower bound for the probability of not rolling a
one, given by p(¬1) ≥ 4

6 . Outer probability measures then use this lower bound to find the upper boundary for
the probability of rolling a one, given by p(1) ≤ 1− p(¬1) as p(1) + p(¬1) = 1. Hence, the range in which the
actual probability lies is given by:

1

6
≤ p(1) ≤ 1

3
. (3.1)

Here the difference between the upper and lower boundary
(
1
6

)
represents the ignorance introduced by the ques-

tion mark, reflecting the observer’s missing knowledge. The OPM framework uses concepts of Demspter-Shafer
theory. In Dempster-Shafer theory, beliefs are used to express the degree of support for a certain outcome, based
on an observer’s evidence. Furthermore, plausibility is used to represent the degree to which an outcome is possi-
ble, considering the evidence that does not contradict it [70]. This plausibility can be calculated using the belief
that the outcome will not occur, as done similarly for the upper probability of p(1) in the die example. Together,
the belief and plausibility provide an lower and upper boundary describing the uncertainty surrounding the actual
outcome.

AnOPM can describe the possible probability distribution, based on the knowledge that is available to an observer.
The theory behind probability distributions and OPMs will be briefly introduced here, as was described before
in the paper written by Delande et al. [21]. For a general case, when a system state is represented by a random
variableX ⊆ Rd with a probability distribution function P (R) with associated probability density function (pdf)
p(x), the probability that the state lies in subset R is given by [21]:

P (R) =

∫
R

p(x)dx, R ⊆ X. (3.2)
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The OPM P̄ onX can give the bounds of the “subjective” pdf with an upper and lower boundary (subjective as it
is “the probability distribution assumed to be that of the system according to the knowledge they possess”) [21]:

1− P̄ (X\R) ≤ P (R) ≤ P̄ (R), R ⊆ X. (3.3)

Since random behavior is no longer assumed for the variableX , it can now be described as uncertain, instead of
random [21]. Then, 1 − P̄ (X\R) represent the lower probability, whilst P̄ (R) represents the upper probability,
also defined as the credibility. Since both bounds represent a probability, the conditions 0 ≤ P̄ (R) ≤ 1 and
0 ≤ 1 − P̄ (X\R) ≤ 1 must hold. These values represent the upper and lower probability that the system lies
in R according to the observer [21]. Again, the interval between the two boundaries, represents the level of
knowledge that the observer does not have, formally referred to as ignorance. Hence when the observer gains
knowledge, the ignorance gets smaller [21]. When the system is completely random and there is no knowledge
missing, the function becomes a probability function. Note, if the observer’s knowledge is incorrect, the function
is incorrect as well [21]. Using the upper and lower bounds of the probability, it can then be determined whether
the information and data available to an operator are accurate enough to say something meaningful about the
collision risk [21]. The risk can be qualified by:

Table 3.1: Conclusions that can be drawn from outer probability measures, from Reference [21].

Risk Condition
Acceptable Upper bound ≤ threshold
Undetermined Lower bound ≤ threshold ≤ upper bound
Non-acceptable Threshold ≤ lower bound

This way, if an operator would set the safety threshold equal to 10−4, and both bounds are below this threshold,
this indicates that the conjunction is safe, as one is sure that the highest probability possible is below the set safety
threshold (in case that the knowledge available to the observer is correct). To the contrary, if both boundaries are
above the threshold, one can be sure that even the lowest probability possible indicates a risky situation (again,
in case of correct knowledge), and thus the situation is unacceptable. And last, if the threshold is in between the
boundaries, the level of knowledge about the situation is insufficient.

For the application of conjunction analysis, the definition of the upper probability has been derived by Delande et
al. This upper boundary can be calculated using possibility theory. The Gaussian possibility function is defined
by [21]:

N̄ (r⃗; r⃗d,P) = e−
1
2 (r⃗−r⃗d)

TP−1(r⃗−r⃗d). (3.4)

To study the difference between this possibility function and the probability function, the Gaussian probability
density function is given below [21]:

N (r⃗; r⃗d,P) =
1

| det 2πP|2
e−

1
2 (r⃗−r⃗d)

TP−1(r⃗−r⃗d). (3.5)

Note the similarity to the Gaussian probability density function employed to compute Pc, as formulated in Equa-
tion 2.11. The difference between the behavior of probability distributions and possibility distributions is depicted
in Figures 3.1a and 3.1b.
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(a) Gaussian probability density function. (b) Gaussian possibility function.

Figure 3.1: Probability distribution (left) and possibility distribution (right), regenerated from Reference [14].

As can be observed, for an uncertainty approaching infinity, the probability will approach zero and the possibility
will approach one for all possible outcomes [14]. A fundamental difference between the distributions is that for
probability distributions, all probabilities must add up to one, whereas this is not the case for the possibilities
from the possibility distribution. For this reason, when working with a probability density function, one needs to
take the integral over the entire relevant area (for CA the HBR, for example) to find the probability, whilst the
possibility is determined by the maximum value of N̄ over the region (in this thesis found by sampling). The
upper bound of the possibility, also referred to as credibility, can thus be calculated using:

Uc(tf , t0) = sup
r⃗ ∈HBR(r⃗d)

N̄ (r⃗; r⃗d,P). (3.6)

So, the credibility (Uc) can be determined by sampling points over the HBR, and subsequently calculating the
Gaussian possibility for each sample. The credibility is then equal to the maximum of all Gaussian possibilities
found, according to Equation 3.6. The samples can be generated using a mesh grid of polar coordinates around
the center of the HBR. The coordinates for this center are given by xc = ||r⃗d||, yc = 0, when setting the HBR on
the x-axis. Note that this is slightly different from the geometry introduced previously in Figure 2.3, where the
HBR was set at the origin, and the covariance was set along the x-axis. Then, to find r⃗ in Formula 3.4 for each
sample, the deviations∆xij and∆yij are added to xc and yc. These deviations are defined by:

∆xij = ri cos θj ,

∆yij = ri sin θj .
(3.7)

Here, ri ranges from 0 m to the size of the HBR, and θj ranges from 0◦ to 360◦. The vector r⃗d is set to (0, 0), as
for this calculation, the covariance is located at the origin. The geometry of the problem used for this calculation
is shown in Figure 3.2, including a visualization of the samples r⃗ and the possibility contours.
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Figure 3.2: Geometry for the calculation of the credibility.

The OPM metric is a very conservative method of assessing the collision risk. The conservative nature indicates
that false alarms are favored over false negatives and emphasizes the importance of a nuanced interpretation, in
line with Table 3.2 which will be later introduced. The lower boundary of the probability has not been derived
yet, however the upper boundary could already be used to mitigate the dilution effect. Namely, if this boundary
is below the safety threshold, one can say with certainty that the situation is safe. If the boundary is above the
threshold, and vanilla Pc is below the threshold, the situation is undetermined (as the lower boundary of the
probability will be below vanilla Pc). When the credibility is above the threshold and vanilla Pc is as well, the
situation is risky, as vanilla Pc also indicates this.

Although the maximumPc construct also provides a method of mitigating the dilution effect, this method does not
make the distinction between random and systematic uncertainties. Moreover, the construct scales the covariance
to find a more conservative, maximum probability of collision. In contrast, the OPMmetric computes a true upper
boundary (for properly defined information) by identifying the maximum value of the possibility function over
the HBR, representing the worst-case scenario. In literature it has been found that NASA CARA is currently also
studying the credibility for use as risk assessment metric and tracking sensor priority metric [39].

3.2. Relative Orbital Parameters
The relative motion between satellites is often used for rendezvous, close proximity or formation flying missions.
Using the Clohessy Wiltshire (CW) equations, the relative motion between two satellites can be described if the
distance between the two satellites remains small (rd ≪ 1) and if both orbits are near circular [81]. Apart from
the former mentioned applications, the relative motion between two objects might also be used for conjunction
analysis. Specifically, the relative geometry between two orbits can provide information on the direction of the
miss distance. From the surveys carried out by Kerr et al., it is apparent that satellite operators would be interested
in the geometry of close approaches [48]. Furthermore, the geometry of a conjunction is often already assessed
during conjunction analysis by studying in which direction the miss distance is aligned. This alignment could be
studied and predicted forward using relative orbital parameters. An advantage of using relative orbital parameters
is that the prediction over time will be more stable when using orbital elements, rather than using a Cartesian
representation. Namely, for the latter, small changes in the position or velocity can lead to significant variations in
the spatial coordinates x, y and z. To the contrary, orbital elements describe the shape and orientation of the orbit,
making them less sensitive to small changes in the position and velocity. Due to the stable description that orbital
elements provide, their use will lead to more stable solutions for long-term predictions, potentially extending the
time horizon of conjunction analysis. The relation between the alignment of the miss distance and relative orbital
elements has already been established. D’Amico et al. have derived equations for the relative separation of two
objects in the radial, tangential and normal (RTN) frame as a function of their relative eccentricity and inclination
vectors. These equations are currently used for the control of formations [19]. Specifically, the vectors are used
to ensure that the spacecraft involved do not collide. This concept will be further explained in this section.
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Figure 3.3 shows a representation of the RTN directions. The primary is defined at the origin of the reference
frame, such that the state of the secondary can be described with respect to the primary.

Figure 3.3: Geometry of right, along-track and cross-track directions, adapted from Reference [19].

As can be seen in Figure 3.3 the tangential, or along-track, direction (e⃗T ) is aligned with the velocity direction of
the spacecraft. Due to this alignment, the along-track direction uncertainty increases the most when propagating
the state and covariance of a spacecraft. Namely, the initial velocity uncertainty translates into a growing along-
track error over time. Furthermore, the velocity direction is influenced by atmospheric drag, which has a large
impact on the state of an object. Moreover, maneuver errors have a large influence on the velocity [57]. Due to
the fact that the along-track uncertainty is larger than the radial and cross-track uncertainties, a concept has been
derived that ensures a separation in either the radial or cross-track direction at all times, as these separations can
be established with more certainty. This can be done using relative eccentricity and inclination vectors. It was
shown that when the two vectors are parallel to each other, this will yield a maximum radial separation when the
cross-track separation is zero and vise versa [19]. This separation will disappear for orthogonal vectors.

The vectors ∆e⃗ and ∆⃗i have been derived (Appendix F) and are given by [19]:

∆⃗i = sin δi

[
cos θ
sin θ

]
, ∆e⃗ = δe

[
cos(φ)
sin(φ)

]
. (3.8)

Where δi, δe, θ and φ are defined as shown in Figures 3.4a and 3.4b.
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(a) Relative eccentricity vector, from Reference [19]. (b) Relative inclination vector, from Reference [19].

Figure 3.4: Visualizations of the relative eccentricity and inclinations vectors, from Reference [19].

Alternatively, the relative eccentricity vector can be visualized as shown in Figure 3.5.

Figure 3.5: Alternative presentation of the relative eccentricity vector.

The vectors are calculated using the mean orbital elements [46]. The alignment of the two vectors can be studied
based on the angle between them. The angle deviation∆γ is given by:

cos∆γ =
∆⃗i ·∆e⃗

||∆⃗i||||∆e⃗||
= cos(φ− θ). (3.9)

When φ = θ, the resulting angle deviation is equal to zero, and the vectors are thus parallel. When the drift due
to∆a and ∆u is ignored, the different separations can be given by (see Appendix F for derivation) [19]:

∆rR = −aδe cos(u− φ),

∆rT = 2aδe sin(u− φ),

∆rN = aδi sin(u− θ).

(3.10)

For formation flying satellites, the drift can be ignored as often∆a should be kept very close to zero as a nonzero
∆a can induce a drift in ∆u [11]. To use these equations for CA, the space objects involved should thus also be
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bounded. This means that the metric can only be applied to conjunctions involving formation-flying satellites.
The relation of these equations to the CW equations has also been derived, as again shown in Appendix F.

Based on these separations, the secondary moves around the primary in an ellipse. This geometry is depicted in
Figure 3.6.

Figure 3.6: Relative motion of the secondary drawn around the primary, adapted from Reference [19].

As can be seen in the figures, there is a maximum radial separation at u ∈ {φ, φ + π} and a minimum radial
separation at u ∈ {φ+ 1

2π, φ+
3
2π}. For the cross-track separation, the maximum occurs at u ∈ {θ+ 1

2π, θ+
3
2π}

and the minimum, equal to zero, occurs at u ∈ {θ, θ + π}. From this it can be concluded that if φ − θ = kπ,
with k ∈ Z, there is a maximum radial separation equal to aδe when the cross-track separation is equal to zero,
and there is a maximum cross-track separation equal to aδi when the radial separation is zero [19]. The minimal
separation in the plane perpendicular to the along-track direction is always greater than the minimum of aδi and
aδe [11]. The lower threshold for the separation can be given by [57]:√

∆r2R +∆r2N ≥ a

2

√
(δe2 + δi2)−

√
(δe2 + δi2)− 4(∆e⃗T · ∆⃗i)2. (3.11)

When the phasing angle φ − θ equals kπ + 1
2π, the radial and cross-track separations can be equal to zero at

the same time. And as mentioned, due to the uncertainty in the along track direction, the separation in these two
directions should never vanish together. According to Equation 3.9, a phasing angle of φ−θ = kπ means that the
relative eccentricity and inclination vectors are parallel to each other, whereas a phasing angle ofφ−θ = kπ+ 1

2π
implies that the relative vectors are orthogonal to each other. The geometry of orbits with parallel or orthogonally
oriented relative eccentricity and inclination vectors is shown in Figure 3.7 and as can be seen, the orthogonal
alignment can lead to a joint vanishing of the R and N separations [19].

Figure 3.7: Geometry of parallel (left) and orthogonally (right) aligned orbits, from Reference [56].

It can be observed that, for the parallel case, at points in the orbit where R goes to zero, N is maximal and vise
versa. Conversely, for the perpendicular case, both R andN go to zero at the same point in the orbit. Asmentioned,



3.3. Null Hypotheses and Questions for the Novel Metrics 27

considering that the concept is used to ensure a safe formation, the concept might also be useful for conjunction
analysis. As new data becomes available, the geometry of the two vectors can be evaluated, such that when the
vectors move to a more orthogonal geometry, the event can be flagged as risky. Previous research demonstrated
the stability of the relative orbital elements in the case of the TerraSAR-X (TSX) and TandemX (TDX) formation,
in which a simulated scenario took 25.5 days to transition from a safe to an unsafe condition as a result of orbit
perturbations, primarily the second-order zonal coefficient J2 [19]. Adapting the metric for use in conjunction
assessment could therefore potentially extend the time horizon available for decision making. However, it should
be noted that if the miss distance is smaller than the HBR, the situation is risky even with a parallel configuration
of the relative vectors. This complicates the interpretation of the metric, which will be further discussed in the
relevant results section.

3.3. Null Hypotheses and Questions for the Novel Metrics
For these novel risk metrics, questions and null hypotheses can be formulated as Hejduk et al. did for the other
statistical representations, as shown in Table 2.6. For the OPM metric, this is more clear than for the relative
orbital parameters metric. For the latter, it was namely found that the angle between ∆⃗i and ∆e⃗ can not be used
as sole criteria to dismiss an event, and no clear safety threshold has been set yet. So, the question and null
hypothesis proposed for this metric are recommended to be thoroughly reviewed if the metric is deemed useful
for conjunction analysis. The null hypotheses and questions are presented in Table 3.2.

Table 3.2: Extensions of possible fundamental questions and null hypothesis for novel risk metrics.

Metric Fundamental Question Null Hypothesis
Outer probability Given the data do the upper and lower boundary The actual miss distance is less
Measures justify a dismissal of the event? than the hard-body radius.
Relative orbital Given the data does the angle deviation There is a joint vanishing of the
geometry justify a dismissal of the event? radial and cross-track separations.



4
Methodology

This chapter consists of the methodology. With the different theories used for conjunction analysis introduced,
they can be tested. To test the methods, conjunctions need to be simulated. This chapter will first introduce how
the simulations are performed. Furthermore, the conjunction scenarios chosen are explained, and the selection of
metrics to be tested is made.

4.1. Conjunction Simulation
To study current practice in conjunction analysis and possible extensions thereof, conjunctions need to be simu-
lated. For this, data of the states and covariances of two potentially colliding objects at some time t before TCA
are needed. This time t will be set to be somewhere between the range of one day to seven days, as a screening
period of seven days is often used in current practices and this period is deemed sufficient. The time t will be
considered the starting point for analysing the conjunction, thus it is denoted as t0 onward. To get the states of
two potentially colliding objects, a conjunction can be modelled by initializing two objects with a similar position,
and back propagating both states. Another option is to use data from the previously described CDMs. The latter
option has the advantage of representing realistic conjunction cases, with reasonable values for the probability of
collision and miss distance. Thus, CDMs are used as a basis for the conjunction simulation. The needed data in
the CDMs are given at TCA and thus also require backward propagation. In the remainder of this section, the
steps used to find the states and covariances at t0 are described (Step 1 - Step 3). Furthermore, the steps taken to
test the metrics are explained (Step 4 - Step 7).

Step 1: Back propagation of states at tTCA to tTCA −∆tback (t0)
The CDMs available on Privateer Wayfinder give a wide range of information on the conjunction at hand, as
mentioned before in Section 1.1.1. This information includes the start time of the screening period, and the states
and covariances of the objects at TCA. The states as given in the CDM can be backpropagated from tTCA to an
artificial start of the screening period t0, such that these back propagated states can be used for analysis of the
new risk metrics. The settings for the back propagation have been studied in order to ensure that the conjunction
parameters in the CDM can be regenerated at sufficient accuracy. The description of this study can be found in
Appendix B. For the physical characteristics of the objects present in the CDM, ESA’s DISCOS database is used.
As a short summary of the results, Table 4.1 shows the propagation settings.

Table 4.1: Settings for backward propagation.

Settings
Dynamical Models Earth spherical harmonics 20D 20O,

Atmospheric Drag (Cd = 2.2, model = US76),
Sun radiation pressure (Cr = 1.3),
Sun point mass gravity,
Moon point mass gravity

Integrator Fixed RKDP7 ∆t = 4 s
Propagator Cowell

28
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The time∆tback for which the states are backpropagated is set to vary between one and seven days, as mentioned
before. As discussed in Section 1.1.1, when a conjunction is identified in reality, the conjunction is studied
up until the point of TCA. The corresponding CDM is updated every day during this process. Furthermore, as
TCA approaches, the uncertainty on the conjunction decreases [78]. This effect can be studied by performing
the simulation for ∆tback = 7, 6, . . . , 1 days. When the states and covariances are then found at t0 and are
propagated forward to tTCA (discussed in Step 5), the uncertainty on the conjunction will vary due to the varying
propagation time as given by ∆tback. Thus, the time horizon of the risk assessment can be studied by assessing
how the different metrics behave as the time approaches TCA.

Step 2: Covariance estimation at t0
The back propagation of the covariance requires further attention. A covariance matrix will grow when forward
or backward propagating it from a time t. This can be explained by thinking about the problem in Monte Carlo
samples. In a Monte Carlo analysis, multiple samples are initiated with a deviated position and velocity. When
propagating all the samples forward from t to t + ∆t, the samples will all follow a different trajectory leading
to a growth of the uncertainty. If one were to propagate backward from t to t−∆t, the samples will go into the
opposite velocity direction, thus also leading to a growth of the uncertainty. When propagating backward from
t + ∆t to t, or propagating forward from t −∆t to t, the samples will go back to their initial deviated states at
t (with some numerical errors). In this case, the covariance matrix will thus shrink. If the covariance matrix as
given in the CDM would be generated with forward propagation and if one were to have the exact same model
that was used for this covariance propagation, one might be able to retrieve the initial, shrunken covariance at t0.
However, in the CDMs it is often stated that the covariance is generated by calculation and the models used to
do so are not publicly available. After backward propagation of the covariance using the settings in Table 4.1, a
growing trend was observed, as can be seen in Figure 4.1. The figure shows the volume of the covariance over
time, computed as the product of the eigenvalues of the covariance matrix. The top figure shows the covariance
volume as a result of back propagating the covariance from tTCA (0 days) to t0 (−7 days). So, the top plot needs
to be read from right to left. The covariance found at t0 as a result of back propagation was then used as initial
covariance for forward propagation from t0 (0 days) back to tTCA (7 days). In the second plot, the covariance
was thus forward propagated from t = 0 days to t = 7 days.

Figure 4.1: Volume of the covariance after backward and forward propagation.

From the figure it can be observed that the backward propagation leads to a larger covariance at t0 than at tTCA.
In reality, the opposite is expected due to the prediction conducted from t0. Thus, the conclusion was made that
the covariance matrices from the CDM cannot be simply propagated backward, and a batch estimation algorithm
needs to be used for the generation of the covariance matrices at t0. This algorithm is described in Appendix
C. In short, radar measurements are simulated and used for a batch estimation of the covariance. The algorithm
will ensure that a covariance is estimated with realistic cross correlations between the different state components.
This will ensure that the covariance evolves realistically when propagating it forward in time.
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A last note needs to be made before moving on to the next step. Namely, a pattern can be observed in Figure
4.1. This pattern can be attributed to the fact that the covariance does not grow smoothly, but rather shrinks and
grows within every orbit. The overall growing trend is still dominant. The pattern indicates that the uncertainty
on the states depends on the position in the orbit. In Figure 4.2, the covariance volume over time is again shown,
but now with a log scale on the y-axis. This figure clearly illustrates the difference between the initial and final
covariances.

Figure 4.2: Volume of the covariance after backward and forward propagation visualized with a log scale.

Step 3: Scaling the covariance
The research is focused on analysing conjunctions including both satellites and debris fragments. The states of
debris fragments are often much less certain than the states of satellites. The reason for this is that debris frag-
ments are often much smaller and thus harder to track. Furthermore, the physical characteristics of debris pieces
generally need to be measured from the Earth [48]. Moreover, space debris fragments are always non-cooperative
[35]. The distinction between the two types of space objects can thus be made by scaling the covariance matrices
of the objects, reflecting the differences in the uncertainty of their states. The covariance matrix of a satellite is
scaled to have a positional uncertainty in the range of 1 meter, whilst the debris positional uncertainty is set to be
in the range of 1000 meters. The entire covariance matrix is scaled according to the smallest positional standard
deviation present in the covariance matrix as given in ECI. When a conjunction is tested for multiple∆tback days
of back propagation, the scaling factor is kept constant for every∆tback. This is done to ensure that the effect of
the propagation length is studied with a consistent initial covariance size.

Step 4: Finding time of closest approach
With the simulated data of two potentially colliding objects available at time t0, TCA can be found. There is little
documentation available on how TCA is determined during the CDM generation of Privateer. This quantity can
be determined using multiple different calculations. For this research, the algorithm as found by Denenberg [22]
has been used. This is a relatively fast and accurate method. The derivation of this algorithm is given in Section
2.1. The dynamical model and propagation settings used during the operation of this algorithm are the same as
those used in Step 5, where the settings are explained in more detail.

Step 5: Finding states, covariances and miss distance at tTCA

When the time of closest approach is retrieved, the states and covariances at TCA can be found by propagating the
states and covariances at t0 to tTCA. The analysis of the settings for the forward propagation can again be found
in Appendix B, where the method used for the covariance propagation is also studied in more detail. The settings
for the forward propagation have been studied in addition to the settings for the backward propagation, as the
objectives of the forward and backward propagations are different. For the backward propagation, the states need
to be relatively close to truth for the realization of a realistic conjunction scenario. In addition, backward propaga-
tion must be performed only once for each time ∆tback. The propagation settings for forward propagation were
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designed to be more flexible for adjustments, as forward propagation will be performed more frequently. This
includes cases with mismodelled dynamical models to assess their impact on conjunction analysis, as explained
later in this chapter. Thus, it was important to find a balance between computational efficiency, and model accu-
racy for the forward propagation. The final propagation settings have been defined as shown in Table 4.2. The
covariance has been propagated linearly.

Table 4.2: Settings for forward propagation.

Settings
Dynamical Models Earth spherical harmonics 20D 20O,

Atmospheric Drag (Cd = 2.2, model = US76),
Sun radiation pressure (Cr = 1.3),
Sun point mass gravity,
Moon point mass gravity

Integrator Variable RKDP87, tolerance = 10−13

Propagator Cowell

Step 6: Covariance remediation
Due to numerical issues, it can occur that the propagated covariance matrices are not positive definite. The
covariance matrices need to be positive definite for the calculation of the probability of collision [38]. In the
NASA CARA Software Development Kit an algorithm developed by Hall et al. [40], called the Eigenvalue
Clipping Method, has been implemented to remediate the covariance if needed. The method uses eigenvalue
decomposition, and uses a threshold to determine whether the eigenvalues of the matrix are sufficiently large. If
this is not the case, the covariance matrix is remediated accordingly [40]. During the conjunction simulation, this
algorithm is employed to remediate the covariance as found at tTCA, if needed. The formulas used are given
below [38]. The covariance matrices of the primary and secondary object are summed in ECI and rotated to the
RTN frame resulting in PRTN . Then, with λinit a diagonal matrix with the initial eigenvalues of PRTN andV
a column matrix with the eigenvectors of PRTN , the matrix can be written as:

PRTN = VλinitV
T . (4.1)

If any of the individual eigenvalues are less than a certain threshold λclip, the value is replaced by this threshold:

λiniti =

{
λiniti if λiniti > λclip,

λclip if λiniti < λclip.
(4.2)

The threshold has been recommended to be set equal to 10−4HBR [38]. With the clipped eigenvalue matrix
λclipped, the remediated covariance can be established:

Prem = VλclippedV
T . (4.3)

Step 7: Assess the collision risk at tTCA

For the calculation of Pc it is stated on Privateer Wayfinder that NASA CARA’s SDK is used [66]. There are mul-
tiple different methods implemented in the SDK, as introduced in Section 2.2. To summarize, the 3D formulation
as found by Hall [37], the 2D formulation as derived by Elrod [24], the 2D formulation as found by Foster and
Estes [32], the maximum Pc calculation and a Monte Carlo analysis are implemented. In every CDM it is stated
which formulation was used for the calculation of Pc. These formulations can thus be tested on the simulated
conjunction. Apart from the vanilla Pc calculations, other risk metrics can be tested and assessed as well.

Remarks
It must be noted that as the states found in the CDM are back propagated and the covariances are synthesized, the
states and covariances found at t0 will have an offset compared to the data that was initially used for the generation
of the CDM. The states have been backward and forward propagated with a numerical error of 10−1 m (shown in
Appendix B). Furthermore, there will also be an offset due to the dynamical model used for the generation of the
CDM and the dynamical model used in this research (discussed in Appendix B). Moreover, the generation of the
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covariance matrices will also cause a deviation from the original data used by Privateer Wayfinder. Nevertheless,
the CDM is merely used for the production of a realistic conjunction scenario. The deviations of the states and
covariances will thus not be of great concern given that the test cases can be generated at known and repeatable
high precision.

4.2. Test Cases
Since CDMs are used, relevant conjunction test cases can be selected. All the different test cases selected are
flying in LEO, as the density of space objects is largest in LEO [30]. Chosen conjunctions should either occur
frequently, challenge current conjunction analysis practices or show potential for the use of new risk assessment
metrics. The conjunction data or dynamical model settings of a test case can be altered for further testing of the
methods. Possible data changes are:

• One of the limitations described in Section 1.1.3 is that there are many error sources present in current
conjunction analysis practices. In general, the dynamical model used for the propagation of the state and
covariance will not be a perfect representation of reality. The model fidelity can be limited, due to the omis-
sion of perturbing forces for example. Furthermore, inaccuracies in the estimation of dynamical parameters
such as the drag coefficient or radiation pressure coefficient, can further reduce accuracy. It is important to
note the effect of mismodelling, and thus test cases can be run with different dynamical models or different
settings for the environmental parameters, such as Cd. When running a simulation with a deviated Cd for
only one of the two objects, a misestimation of the ballistic coefficient is simulated. By tweaking Cd for
both objects, a mismodelled atmospheric density is simulated. The latter option is chosen, only Step 5
(forward propagation) is run with a mismodelled drag coefficient for both objects.

• To test how the effect of mismodelling can be mitigated, process noise can be introduced to the propagation
of the covariance. Process noise can account for uncertainties in the dynamical model, by increasing the
uncertainty in the states. The noise factor thus depends on the uncertainties introduced by the mismodelled
accelerations. For a covariance matrix defined in the ECI frame, the process noise factor is given by
R(ECI/RTN)ΓQΓTR(ECI/RTN)T , withR(ECI/RTN) the rotation matrix to rotate the process noise from
RTN to ECI, andQ and Γ defined as [33]:

Q =

σ2
R̈

0 0

0 σ2
T̈

0

0 0 σ2
N̈

 , Γ =



∆t2

2 0 0

0 ∆t2

2 0

0 0 ∆t2

2
∆t 0 0
0 ∆t 0
0 0 ∆t


(4.4)

The derivation for the rotation matrixR(ECI/RTN) can be found in Appendix D. The standard deviations
σR̈, σT̈ and σN̈ are the uncertainties in the acceleration due to the dynamical model. How these values are
determined, will be discussed in the relevant section of the results in Chapter 5.

• Another limitation found was that the covariances used are not a good representation of reality and that the
Pc calculation suffers from the dilution effect. This effect is studied both by scaling the covariance matrices
to represent either satellites or debris fragments (Step 3), and by propagating them for different lengths of
time∆tback (Step 1).

• As the CDM is merely used for the simulation of a realistic conjunction scenario, the values in the CDM
are flexible for adjustments as well. The miss distance can be changed to simulate a collision, near miss or
large miss.

The selected CDMs consist of a frequently occurring Starlink on Starlink conjunction, and a conjunction involving
the formation-flying satellites TerraSAR-X and TanDEM-X.

Case 1: Starlink on Starlink conjunction
The first test case consists of a Starlink on Starlink conjunction. Starlink is a satellite constellation of SpaceX.
The satellites are used to provide internet [55]. There are many Starlink satellites currently in orbit and SpaceX
is planning to launch a satellite mega-constellation consisting of approximately 12,000 satellites operating in
LEO in the near future [55]. The velocities of the satellites are relatively high, so when a possible conjunction
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between these satellites occurs it will obey the high-relative velocity assumption. In general, most conjunctions
have a high-relative velocity [18], and thus this test case lends itself well to study the performance of current
conjunction analysis practices. It can be noted that the satellites are maintained by the same O/O, and thus in
reality it is very unlikely that a Starlink on Starlink collision will occur. Namely, often operators have state
estimates with a smaller uncertainty and are thus more certain of the probability to collide. Furthermore, in case
a collision is likely to occur, no communication on who should maneuver is needed, which avoids complications
in the mitigation process. Although it is unlikely that the satellites collide, the test case will still be valuable
due to aforementioned reasons. Furthermore, an anomaly or control error can occur, potentially resulting in the
satellites becoming debris objects. Moreover, Starlink on Starlink conjunctions are highly prevalent on Privateer
Wayfinder.

The conjunction at hand was found on Privateer Wayfinder on August 14, 2024 [66]. The conjunction involves
Starlink-3254 and Starlink-4000 and the conjunction is depicted in Figure 4.3. The test case will be adjusted
to test the effect of changing the miss distance, mismodelling the dynamical model, and studying the effect of
scaling the covariance. All different simulations conducted using this conjunction can be seen in Table I.1 in
Appendix I.

Figure 4.3: Starlink-3245 on Starlink-4000 conjunction, retrieved from Reference [66].

Case 2: Terra Sar X & Tandem X
Another interesting test case is a conjunction between TerraSAR-X and TanDEM-X. TerraSAR-X and TanDEM-
X are two controlled formation-flying satellites operating as a radar interferometer [19]. As the satellites are
flying in formation, they will often be in close proximity with each other. These objects have been used in former
research to evaluate the performance of the use of the geometric relationship between the relative eccentricity and
inclination vectors for formation control, as described in Chapter 3. As the metric is suitable for this application, it
may also serve to analyse conjunctions in low-relative velocity scenarios. Furthermore, the stability of the metric
shown in the study conducted by D’Amico et al., in which the formation was passively safe for 20 days [19],
indicates it may prove useful to extend the time horizon for conjunction analysis. Using conjunctions between
TSX and TDX can help establish whether this is the case. As the satellites are flying with a low-relative velocity,
the test case is also more challenging for current practice in conjunction analysis, as it violates Assumption 2
(Subsection 1.1.2) for the 2D Pc calculation.

Sixteen CDMs were found on September 10, 2024. All conjunctions occur within a time span of ten hours. As
can be seen in Figure 4.4, the satellites are continuously passing around each other.
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Figure 4.4: TerraSAR-X on TanDEM-X conjunctions, retrieved from Reference [66].

4.3. Exploration of Potential Improvements
Various methods and metrics could be evaluated to potentially improve conjunction analysis. Examples of en-
hancements that could be made to improve conjunction analysis are taking into account attitude information,
providing alternatives metrics for risk quantification, or providing a more timely, stable, or reliable solution for
conjunction analysis. Every improvement comes with its own advantages and disadvantages. In this section, mul-
tiple metrics are introduced and the ones that will actually be implemented are chosen. The possible extensions
are:

• Alternative statistical representations of the collision risk, such as the possibility and plausibility could be
used. Within these representations, there are multiple different metrics available to quantify the risk. A
detailed description of these methods can be found in Chapter 2.3.

• Different distance metrics including the uncertainty or representing the distance using other coordinate
frames could lead to a more reliable miss distance.

• Relative orbital parameters could provide a more stable representation of the encounter over time. Often a
CDM is updated 3 times a day. When Cartesian coordinates are used for the representation of the encounter,
the solution will be highly variable. This is due to the fact that a change in any of the RTN directions will
yield a change in x, y, z simultaneously. Using relative orbital parameters such as the relative e/i vector
separation (explained in Chapter 2.3) could lead to a more stable solution when updating the conjunction
data every day until TCA.

• Taking into account attitude information when determining the probability of collision may result in a more
reliable analysis. One disadvantage of the current probability of collision is that it is often calculated with
assumed spherical shapes. Using rotational dynamics to describe the attitude of the objects would be a
good improvement. Attitude information could also be used to get a better estimate of the HBR [54].

• Extending the time horizon available for decision making could enhance conjunction analysis. It would be
better to determine whether a collision avoidance maneuver needs to be made further in advance of TCA.
It has been tested before if machine learning can be used to predict the probability of collision ahead of
time. If this could be done reliably, this could improve conjunction analysis [78].

In addition to these possible extensions, there are also extensions available to improve the observational data
[47] [20] or to improve the filters [68] used for conjunction analysis. Such solutions are out of the scope of this
research, as they are not part of the analysing step of CA.

Table 4.3 gives a summary of the expected benefits, expected drawbacks and current status for the differentmetrics
and methods. It must be noted that, most drawbacks are related to the nature of the specific metric/method,
however for the HBR/attitude and machine learning methods, (additional) thesis related drawbacks are given,
indicated by a star (∗).



4.3. Exploration of Potential Improvements 35

Table 4.3: Possible methods/metrics that could be used to expand conjunction analysis.

Metric/ method Expected benefit Expected Status
drawback

Maximum Pc [42] Account for unrealistic Increase false Operational and
covariance, mitigate dilution alarms implemented by
effect NASA CARA [63]

WSRT [42] Mitigate dilution effect Historical data Operational
needed experience [42]

Scaled Pc [42] Account for unrealistic Increase false Operational
covariance, mitigate alarms, experience experience [48]
dilution effect needed

Outer probability Distinguish between random Increase false Very recent
Measures [21] from systematic uncertainty, alarms research [21]

mitigate dilution effect
Distance Provide alternative MD Metric specific for Use for spaceflight
metrics [80] and include uncertainty CA not yet derived proposed [80]
Relative orbital Provide more stable Challenge in Used for formation
parameters [19] solutions over time interpretation control[19]
Pc uncertainty Account for unrealistic Increase false alarms, Research and
[42] covariance, mitigate dilution historical data needed testing phase [42]

effect
Overlapping Mitigate dilution effect Increase false Tested on historical
ellipses [42] alarms conjunctions [42]
HBR/attitude [54] Improve HBR or add attitude Attitude data needed, Active area of

information Missing knowledge research [54]
spacecraft dynamics∗

Machine Improve timeliness Missing knowledge Tested during ESA
learning [78] of CDM information ML algorithms∗ challenge [78]

For the selection of methods or risk metrics to implement, the aspects given in Table 4.3 are all taken into account.
First of all, the three top metrics, are already operational. The advantage of this is that these metrics can thus
already be used without needing much time to implement them. The Wald Sequential Ratio Test is a part of the
probability representations. The limitation of the metric is that a multitude of historical data is needed, which is
often hard to obtain [42]. So this metric cannot be used easily. The scaledPc metric and themaximumPc are alike,
but the representation of both is different. The scaled Pc metric uses two scale factors and experience is needed
to determine the minimum and maximum covariance, whilst the maximum Pc value provides the maximum
probability of collision based on one scale factor, found by iteration. The latter is implemented by NASA CARA.
So this metric is easy and quick to use. The metric will thus be used to assess some test cases and to study the
effect of the covariance size. The lower four risk assessment metrics shown in the table all have their drawbacks.
The Pc uncertainty metric, which is a part of the plausibility representations [42], again needs historical data.
Furthermore, the metric is, although not the same, alike the maximum Pc metric and the scaled Pc metric. To
study the attitude information, in depth knowledge of rotational dynamics and spacecraft attitude is needed, which
would be challenging to gain in the time available for the research. The same holds for the use of machine learning
to predict Pc ahead of time. Also, the overlapping ellipses metric, which is part of the possibility representation
[42], will lead to a high amount of false positives.

The outer probability measures metric, distance metric, and relative orbital parameters metric all show great
potential to contribute to current conjunction analysis. The relative orbital parameters metric can provide more
stable solutions which may lead to an extended time horizon for decision making. As this is one of the research
goals, this metric will be implemented. Furthermore, the OPM metric provides potential to reliably mitigate
the dilution effect and to not only determine whether a conjunction is safe or not, but also determine whether
additional tracking data is needed. This metric will thus also be implemented. While not discussed thoroughly
in Chapter 3, distance metrics based on orbital elements used to correlate measurement tracklets [80] may be
adaptable to conjunction assessment. Details of the method are provided in Appendix G for completeness, but
the method is not pursued further due to expected complications and time considerations.
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4.4. Survey on Data Usage for Conjunction Analysis
As new risk metrics are introduced, the question arises as to how the results of the different metrics can be
presented to satellite operators. To this extent, the third research question was posed, as defined in Section 1.2
and repeated here:

“How can the new methods be synthesized to produce useful output for operators?”.

Satellite operators can be considered the end-users of the information generated during conjunction analysis.
Operators namely have the responsibility of determining whether a collision avoidance maneuver should be per-
formed to avoid potential collision risks. As described in Section 1.1, the standardized CDM data format is often
used to inform operators of critical conjunctions. Operators can then use the information provided in the CDMs to
determine whether a certain mitigation action needs to be taken. These actions range from performing a collision
avoidance maneuver to gathering or requesting additional tracking data. As discussed before, the CDM includes
information such as the probability of collision and state information. To understand whether it would be useful
to expand CDMs with other risk assessment metrics and if so, how this should be done, it is important to under-
stand their current usage. Specifically, it is essential to understand whether and how operators use the current
CDMs for their decision to mitigate a risk, or for conjunction analysis in general. Furthermore, the limitations of
CDMs can be investigated, together with the identification of any additional information that might be of interest
to operators. Although the inclusion of Pc in CDMs is not obligatory according to the CDM standard of the Con-
sultative Committee for Space Data Systems (CCSDS), often Pc is included in CDMs. In the CDMs published
by Privateer, the Pc metric as derived by both Hall [37] and Elrod [24] is presented. Both formulations provide
the probability of collision, and thus both PcElrod

and PcHall
answer the same question as posed by Hejduk et

al. (Table 2.6) [42]. However, when introducing other risk metrics, such as OPMs, for conjunction analysis, a
different question is answered (Table 3.2). When this is not apparent to operators, this could lead to potential
problems when they need to interpret the data presented to them. Furthermore, every metric has its own level
of conservatism. Depending on the operator, one might be more inclined to use a certain metric than the other.
The conservative nature of a certain metric is inherent to the metric, thus operators should either be aware of this
when interpreting the data, or this should be indicated to them.

A survey has been created to explore operators’ perspectives on the current application of CDMs and their possible
future extensions. The survey aims to obtain information on the following aspects:

• Do operators currently use CDMs, and if so, what aspects presented in the CDMs do they consider leading
in a decision to mitigate a risk?

• Would operators be open to the use of additional risk assessment metrics and how would they want these
metrics to be presented to them?

• In general, when using multiple risk metrics, how should the data be structured?

The results of the survey provide insights into the challenges and opportunities of using new risk metrics for
conjunction analysis and the incorporation thereof in CDMs. This part of the research aims to bridge the gap
between the theoretical analysis of novel metrics and their associated operational applicability, to hopefully best
serve the actual need of satellite operators.

Kerr et al. have also conducted a survey that focuses on current and best practice in conjunction analysis, methods,
and communication [48]. The survey had three different respondent groups, including satellite operators, SSA
tool developers, and SSA providers. As the final research questions of this thesis is focused on the end-users of
conjunction data, the main goal is to reach satellite operators to answer the research question. Valuable insights
can already be taken from the survey conducted by Kerr et al. The most important ones are:

• The probability of collision as formulated by Alfriend and Akella is often used as risk assessment metric.
Furthermore, the maximum Pc construct and the scaled Pc method are also used in practice.

• If the probability of collision is not utilized for the decision to mitigate a collision risk, it is due to the often
unrealistic covariance. Instead, operators then choose to use the miss distance as measure.

• Among the different possible extensions that could be made to enhance conjunction analysis, geometry
was mentioned. Other extensions named were the generation of metrics that can be used for low-velocity
conjunctions and machine learning algorithms.

• Operators wish to perform their own collision avoidance maneuver analysis.



4.4. Survey on Data Usage for Conjunction Analysis 37

• In general, operators are content with the standard format of data; they only have suggestions for a different
distribution of the data.

• The general aspects of conjunction analysis that could be improved are data quality and timeliness.

In addition to these insights, which can be directly utilized to address the research question, the survey is used as
a reference to identify the general information needed from participants to be able to interpret the results correctly.
That is, information such as the regime the participants are operating in, for example. As mentioned above, the
survey conducted for this research targets satellite operators as the response group. The aim is to find participants
from a range of organizations operating on various numbers of satellites. The survey has been conducted online
using Survalyzer [72]. The responses to the survey remain completely anonymous. The participants of the survey
have been drawn from the academic network. The entire survey can be found in Appendix H.



5
Results

This chapter consists of the results. The current practices used in conjunction analysis have been tested on the
original CDMs found on Privateer Wayfinder. Furthermore, the conjunctions have been simulated to test the
different risk assessments. Last, the results of the survey are shown.

5.1. Verification of Denenberg's Algorithm
The Denenberg algorithm has been utilized to determine TCA, as outlined in Step 4 in Section 4.1. In this section,
its performance is evaluated. The algorithm was tested using the CDM from the Starlink on Starlink conjunction
and one of the CDMs from the TSX on TDX conjunction (CDM identifiers can be found in Appendix J). For the
former case, the states provided in the CDM have been backpropagated from tTCA to t0 = tTCA − 7 days, as
outlined in Step 1 in the methodology. Using the states at t0, TCA was found using the Denenberg algorithm [22]
as described in Chapter 2.1. The interval within which the algorithm had to find TCA was set to range from t0 to
the end of the screening period, as documented in the CDM. The results of the regenerated TCA and its associated
MD can be compared to TCA and MD as provided in the CDM. The results are presented in Table 5.1.

Table 5.1: TCA and MD as found using the Denenberg algorithm for the Starlink on Starlink conjunction.

TCA MD
Original CDM 2024-08-16 02:58:54 98.81 m
Regenerated CDM 2024-08-16 02:58:54 98.81 m
Difference 56 µs 0.34 mm

The results are in line with the expectation. For the TSX/TDX case, sixteen CDMs have been found on Privateer
in one day. All CDMs share the same screening periods. The first CDM was taken, and the states have been
backpropagated for one day. The Denenberg algorithm was again used to identify the various close approaches.
For the Starlink on Starlink conjunction, the algorithm was set to report the global minimum only. In this case
however, all local minima had to be identified, as at least sixteen close approaches were documented during
the screening period. There may be additional close approaches within this period that were not published on
Privateer Wayfinder. Figure 5.1 shows the miss distance over the course of propagation. In green, the TCAs as
provided in the CDMs are displayed. Furthermore, the dashed red lines represent the local extremes found by the
algorithm.

38



5.2. Comparison of Pc Formulations 39

Figure 5.1: Miss distance over time for the TSX/TDX conjunction.

Figure 5.1 shows that the algorithm has correctly identified all local extreme points. Note, the maximum miss
distances have also been located. This is because the algorithm finds all extremes under a specified critical
distance of 1000 meters, unless the search is specifically limited to find only the global minimum. Furthermore,
it can be noted that for every local minimum, two CDMs appear to be published. The local minimum found by
the algorithm seems to either match one of the TCAs from the two CDMs or occur between the two TCAs. The
reason for this has not been established. More information is not available on how Privateer generates its CDMs.
However, it can be concluded that the algorithm developed by Denenberg is sufficient to find either one close
approach or multiple close approaches.

5.2. Comparison of Pc Formulations
The current risk assessments present in NASA CARA’s SDK have been tested using the original CDMs. This
has been done for both the Starlink conjunction as well as the TSX/TDX conjunction. The former conjunction
has a high-relative velocity and is thus expected to receive similar results for the different metrics. The latter
conjunction has a low-relative velocity and is thus expected to receive varying results. For the TSX/TDX case,
the first CDM has been used. The results are shown in Table 5.2.

Table 5.2: Pc from the CDMs and calculated using SDK for the Starlink and the TSX/TDX conjunction.

Metric Starlink CDM Starlink SDK TSX/TDX CDM TSX/TDX SDK
PcFoster

1.21 · 10−2 2.77 · 10−3

PcElrod
3.61 · 10−3 1.21 · 10−2 1.36 · 10−3 2.77 · 10−3

PcHall
3.61 · 10−3 1.21 · 10−2 3.34 · 10−3 6.77 · 10−3

Pcmax 2.03 · 10−2 5.47 · 10−3

PcMC
1.16 · 10−2 6.33 · 10−3

The first thing that can be noticed is that the probabilities found by SDK are not equal to the probabilities as
reported in the CDMs for both conjunctions. This may be caused by the HBR that has been used for the calculation.
The HBR used in this research has been found by summing the average cross sections of the objects as reported
in the DISCOS database. Although this is not the most conservative method for determining the HBR (using
the maximal cross section would be), this method was chosen to ensure that the HBR is not unnecessarily large.
Since many of the metrics tested are conservative in nature, the average was deemed sufficient. The HBR used
by Privateer is unknown. Again, this is not a worrisome fact, as the CDMs used for this research are merely
there to simulate realistic conjunction cases. Thus, as long as the HBR settings are consistent and repeatable, this
deviation is accepted. The second thing that can be noticed is that PcFoster

, PcElrod
, PcHall

and PcMC
are all

similar for the Starlink case. This is as expected, due to the fact that the conjunction adheres to the high-relative
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velocity requirement. The maximum Pc is larger, due to the conservative nature of the metric. For the TSX/TDX
conjunction, PcFoster

and PcElrod
are similar, which is also expected due to the similarity of the formulations. All

metrics are in the same order, however PcFoster
and PcElrod

are not completely the same as PcMC
and PcHall

. The
Monte Carlo metric can be considered to be most accurate, as this metric requires the least amount of assumptions.
It will thus be closest to reality. The maximum Pc is again larger than PcElrod

and PcFoster
, but lower than PcMC

and PcHall
, which can be explained by the fact that the underlying model used for Pcmax is the 2D approach

of calculating Pc. For low-relative velocity encounters, PcHall
(or actually Nc, but denoted as PcHall

onward)
represents an upper boundary for the probability of collision. As can be seen, PcHall

was found to be a bit higher
than PcMC

, as is thus expected. From this it can be concluded that for a low-relative velocity approach, the 2D
risk assessments will not provide accurate results as the approach violates Assumption 2. For a typical close
approach with a high-relative velocity, such as the Starlink conjunction, the 2D risk assessments can be used.

5.3. Analysis of Existing Risk Metrics
In this section, simulated conjunctions are used to evaluate the performance and behavior of different risk as-
sessment metrics. Specifically, the 2D risk assessments have been tested on the simulated Starlink on Starlink
conjunction. The 2D approach of calculating Pc is chosen, as this is often used in practice. The formulation of
Pc as derived by Elrod has been used, as this one is also used by Privateer [66]. It can be noted that the results
for PcElrod

will closely resemble the results of PcFoster
as was shown in Subsection 5.2. In addition to PcElrod

,
Pcmax was chosen to evaluate to test its effectiveness in mitigating the dilution effect for diluted probabilities. The
CDM data and dynamical model have been tweaked as shown in Table I.1 to create 18 test cases. In summary,
the different test cases consist of a simulated collision, a simulated near miss, and a simulated large miss, with
covariances scaled to represent satellites and debris fragments, as explained in the methodology. Furthermore,
every test case has also been simulated with a mismodelled dynamical model. Specifically, the drag coefficient
has been tweaked for both objects, to simulate a mismodelled atmospheric density. For each of these test cases,
the metrics were evaluated, and the results are presented in the figures shown later in this section. The x-axis in
the figures represents the time for which the states have been backpropagated. Then, on the y-axis, the probability
of collision is shown, which was calculated using the states and covariances obtained after backward and forward
propagation of∆tback days. It must be noted that the figures have been limited to show no Pc values below 10−8,
such that the critical decision region Pc ∈ [10−5, 10−3] can be studied in more detail.

During the analysis presented in this section, the term risky and unacceptable will be used. In this analysis, a
conjunction is identified as risky or unacceptable if Pc ≥ 10−4. This is in line with the safety threshold that is
often used in operation [29]. Consequently, the risk is called safe or acceptable when Pc < 10−4. This qualifi-
cation of the risk is then evaluated by analysing the number of false positives and false negatives that occur. To
do this, it is necessary to define the conditions under which each type of error occurs. For a satellite on satellite
conjunction, the state estimates are determined with a relatively high degree of certainty. Thus, an operator is set
to mitigate the collision risk when the miss distance is less than the HBR, and thus a collision is assumed to occur.
For a debris fragment, the certainty on the states is much worse. The question arises as to what extent an operator
is willing to allow a debris fragment of considerable size to fly by their satellite. For a conjunction including a
debris fragment, an operator is set to take a mitigation action if the miss distance is lower than 50 m (assuming
HBR < 50m). If the various risk metrics indicate that a conjunction is safe, but according to the conditions above
an operator should take action, a false negative is flagged. Conversely, if a metric indicates an unacceptable risk
when the true conditions require no mitigation, this is labeled a false positive. A summary of these conditions
is presented in Table 5.3. Here τ defines the safety threshold, equal to the HBR for conjunctions with satellites
only, and 50 m for conjunctions involving a debris fragment.

Table 5.3: Conditions for the occurrence of the different possible outcomes.

Pc ≥ 10−4 Pc < 10−4

MD ≤ τ True positive False negative
MD > τ False positive True negative
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5.3.1. Collision: Satellite x Satellite
Figure 5.2 shows the results for a simulated satellite on satellite collision.

Figure 5.2: Pc for a satellite on satellite collision as a function∆tback , without process noise.

Multiple observations can be made from this figure.

• The simulation without mismodelling results in large probabilities using the Elrod Pc metric for all∆tback.
The probability is above the safety threshold of 10−4 for every instance of backward and forward propa-
gation. As the conjunction was defined to result in a collision and all instances result in the identification
of a risky situation, there are zero false positives or false negatives. All correctly modelled results are true
positives.

• The maximum Pc metric shows very similar results, which is expected, as the covariances of satellites are
set to be small. Thus, these will not lead to a diluted probability. Again, all results are true positives.

• Mismodelling ofCd for both objects, and thus mismodelling of the atmospheric density, leads to a very low
probability for both Pcmax

and PcElrod
for all ∆tback. Due to the limits set on the figure, the probabilities

for ∆tback ≤ −2 are not visible. It has been established however that the probabilities for these cases are
following a decreasing trend as∆tback gets smaller (note, the absolute propagation time ||∆tback|| thus gets
bigger). This is as expected. Namely the Starlink satellites are operating in LEO. Atmospheric drag thus
has a large effect on the trajectories of both satellites. When performing the backward propagation with
the initially chosen Cd, but forward propagating with a mismodelled one (equal to 0.9Cd), the satellites
will drift from their formerly backpropagated trajectories. The time of closest approach was set to match
the time found for the correctly modelled case. This simplification has been deemed acceptable, as the
objective is to examine the general impact of mismodelling, specifically in terms of obtaining a different
miss distance at TCA compared to reality. Due to the drift of the objects, the miss distance found at TCA
will be larger than the miss distance defined at the start of the simulation, leading to a low probability of
collision. The longer the states are propagated for, the further away the satellites will drift. Thus, when
backward propagation is only conducted for one day, the satellites have drifted less far from their original
trajectories, leading to a higher Pc (≈ 10−5). However, all values are still below the risk threshold, leading
to seven false negatives. Hypothetically, if the mismodelled drag parameter would have been closer to the
initial selected coefficient, the states would have drifted less far away from the correct trajectories. At some
backpropagated time ∆tback, close to tTCA, the probability would have been above the critical threshold.
In this case, the time horizon in which it would have become apparent that a collision is going to occur,
would be very short. So the accuracy of the dynamical model will also have an influence on the time
horizon available for operators to take action.

• The maximum Pc metric does not raise the low Pc values to the risky region in the mismodelled case, as the
issue lies not with the covariance but with the drifted states. The covariance size is small, so the dilution
effect is not observed. The maximum Pc calculation also leads to seven false negatives for the mismodelled
atmospheric density.

For the simulated satellite on satellite collision, it has been observed that a mismodelled drag coefficient leads to
an underestimation of the collision risk. Introducing process noise to the covariance propagation could solve this
problem. To incorporate this noise, the matrixQ (Equation 4.4) must be defined. This is achieved by quantifying
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the difference in acceleration caused by drag for a single satellite. This difference is presented in the ECI frame
in Figures 5.3a and 5.3b.

(a) Deviation in acceleration due to drag. (b) Deviation in acceleration due to drag, zoomed in.

Figure 5.3: Deviation in acceleration due to drag as a function of time in the ECI frame.

As can be seen, the variation is significant in all three directions. However, for drag acceleration, the greatest
effect is expected to occur in the along-track direction, since drag by definition acts in the anti-velocity direction.
The uncertainties in the RTN frame will be more stable. The accelerations are thus rotated from ECI to RTN, for
which the result can be observed in Figure 5.4.

Figure 5.4: Deviation in acceleration due to drag as a function of time in the RTN frame.

Indeed, the uncertainties introduced by a mismodelled drag coefficient are more stable in the RTN frame. So,
this frame is used to defineQ. The individual standard deviations have been found by identifying the maximum
acceleration error in each direction, leading toQ:

Q =

4.8 · 10−9 ms−2 0 ms−2 0 ms−2

0 ms−2 7.0 · 10−8 ms−2 0 ms−2

0 ms−2 0 ms−2 4.4 · 10−9 ms−2

 . (5.1)

The noise term is added iteratively during the covariance propagation, such that the effect of noise can accumulate
over time. This is necessary as the effect of mismodelling also grows over time. The iterative steps taken are set
to 60 seconds. To assess whether the noise correctly accounts for the mismodelled acceleration, the 3σ bounds of
the uncertainty are assessed together with the deviations in position due to drag for a single satellite, to determine
whether the covariance correctly encompasses the errors. The result is shown in Figure 5.5. It was found that
the matrix Q needs to be multiplied with a factor equal to 104 to ensure that the noise fully compensates for the
mismodelling. The fact thatQ needs to be larger than expected could be explained by the fact that the acceleration
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due to drag also has an influence on the other accelerations. Drag will namely decrease the altitude of a satellite,
and thus an accumulation of acceleration differences will occur. The matrix Q could be established based on
the total acceleration, however in this case the choice was made to take Q still relatively small. Furthermore,
in reality, two satellites are affected by the change in Cd, and thus the total drift in MD is larger, however the
covariances of both satellites are also summed, so this drift should then be compensated for. The exact reason as
to whyQ needs to be larger than expected has not been thoroughly explored, this should be investigated in more
detail in future research. To establish how well the process noise compensates for the mismodelling with 102Q,
the 3σ bounds for this are also included in the figure.

Figure 5.5: Positional error due to drag and 3σ bounds for 102Q and 104Q.

As can be seen, 104Q completely compensates for the mismodelling, while 102Q only does so in the radial
direction. Note, the 3σN bounds are underneath∆rN , and do not fully encompass the error.

First, the results are shown for the simulated satellite on satellite collision including process noise with 102Q in
Figure 5.6.

Figure 5.6: Pc for a satellite on satellite collision as a function of∆tback , with process noise (102Q).

A couple of observations can be made.

• The noise does not compromise the correctly modelled collision. For this case, the probability of collision
still leads to the identification of a risky conjunction.

• For the mismodelled case, PcElrod
and Pcmax

lie directly on top of each other. As can be seen, the closer
to TCA, the higher the probability of collision. The mismodelled case can now also be correctly identified



5.3. Analysis of Existing Risk Metrics 44

as risky three days before TCA. Furthermore, the covariance growth has not led to the dilution effect. This
is positive, as otherwise the covariance for the non-mismodelled case would also have been diluted. The
time horizon available for reliable decision making is however still very short, as a collision avoidance
maneuver should be planned two to one day(s) before TCA.

As observed in Figure 5.5,Q needs to be multiplied by 104 to completely compensate for the mismodelling.
For the simulated satellite on satellite collision including process noise with 104Q the results can be seen
in Figure 5.7.

Figure 5.7: Pc for a satellite on satellite collision as a function of∆tback , with process noise (104Q).

As can be seen in the figure, the noise now also compensates for the mismodelling at ∆tback = −7 days. The
probability would still not lead to a decision to mitigate, but it is significantly higher. The covariance growth due
to process noise compensates for the effect of mismodelling for ∆tback ≥ −5. However, the larger uncertainty
now also leads to a lower probability for the correctly modelled case, because the probability becomes more
diluted. The magnitude ofQ is thus very important to establish correctly. In reality, the effect of a mismodelled
acceleration might not be known. When the dynamical model is deliberately defined to be of low fidelity for
efficiency, the matrixQ might be determined based on the effect of the omission of perturbing forces. However,
when the accuracy of the dynamical model is affected due to inaccuracies in the estimation of parameters, the
size of the process noise will be harder to establish.

5.3.2. Collision: Satellite x Debris
For the satellite on debris case, the results are shown in Figure 5.8. Note, no process noise was added to the
covariance propagation. This was only done for the satellite on satellite collision, so for the following cases, no
process noise is used.

Figure 5.8: Pc for a satellite on debris collision as a function of∆tback , without process noise.

Another number of observations can be made from this figure.

• For the case with the initially selected drag coefficient, PcElrod
identifies the conjunction as safe for all

∆tback. This is probably due to the dilution effect as the debris covariance is large. This statement is
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supported by the fact that Pcmax is above the safety threshold for all∆tback. This implies that the dilution
effect was properly mitigated. The Elrod formulation has thus led to seven false negatives, whilst the
maximum Pc metric has led to seven true positives.

• For the mismodelled case, PcElrod
is very similar to that of the correctly modelled case, for all instances

of ∆tback. To check whether the atmospheric density has been mismodelled correctly, the miss distances
found have been evaluated. The miss distance found for the correctly modelled case was approximately
equal to 0.1 meters for all ∆tback. For the mismodelled case, the miss distances ranged from 23034 m
for ∆tback = −7 days to 204 m for ∆tback = −1 day. The low probabilities are therefore probably due
to the dilution effect. So, the large covariances lead to low probabilities, which are similar for both cases,
independent of the miss distance at hand. The Elrod metric falsely identifies the situation as safe for all
instances of the simulation.

• The maximum Pc metric for the mismodelled case does give different results from the correctly modelled
case, which can also be expected. As was explained before, the changed drag coefficient will lead to
a larger miss distance, and this effect grows with the propagated time ∆tback, as indicated by the miss
distance range provided above. So, for a backward propagation time of seven to six days, the miss distance
has increased to the point of identifying the collision as safe, even with the maximum Pc metric. However,
the miss distance for ∆tback ≥ −6 days has not grown as much and thus the maximum probability will
still indicate a risky situation. This metric thus yields one false negative and six true positives. From this
test case it can be concluded that it is better to have a wrong miss distance with a large uncertainty, than
a wrong miss distance with a small uncertainty, which was the case for the satellite on satellite collision
(Figure 5.2). Thus, one should never be too reliant on a predicted miss distance alone, or underestimate the
uncertainty on a state. As can be observed from the false negative and true positives, the time horizon in
which a satellite operator would need to determine whether to maneuver, is relatively short. A clear risk
only becomes apparent from tTCA − 6 days, and at this time, the probability still lies very close to the set
threshold.

5.3.3. Collision: Debris x Debris
For a debris on debris conjunction it can be noted that even if the event is identified as risky, neither one of
the objects can maneuver in order to mitigate the risk. However, the conjunction is still tested to evaluate the
effectiveness of the metrics. Then, the following observations can be made for the debris on debris collision, for
which the results are shown in Figure 5.9.

Figure 5.9: Pc for a debris on debris collision as a function of∆tback , without process noise.

From Figure 5.9 it can immediately be observed that all results are false negatives.

• The debris on debris case has the largest joint covariance. So again, the Elrod results are affected by the
dilution phenomenon for both the original and mismodelled dynamical models.

• The maximum Pc metric does not mitigate the dilution effect well enough to have the risk be quantified as
unacceptable. As shown in Figure 2.4b, Pcmax is found by scaling the joint covariance with the expectation
that for some scale factor, a maximum occurs. This maximum will likely be close to the boundary of the
robust and dilution region. It can however occur, that the range of scale factors used is not sufficient to
ensure a crossing from the dilution region into the robust region. In that case, the extreme is not found. The
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finite list of scale factors that are tested is a shortcoming of Pcmax , as it cannot be guaranteed that Pcmax

will be found unless one would scale the covariance until convergence. According to the NASA CARA
SKD documentation, the metric is implemented such that the code does search for Pcmax

until convergence
is reached [63]. So the reason for the low maximum probability has not been established with certainty.

• The results for Pcmax and PcElrod
are similar for the mismodelled and correctly modelled case. This leads

to the belief that the scaled covariances used to find Pcmax are again still too large and thus again lead to a
diluted probability for the mismodelled case.

5.3.4. Near Miss: All Cases
A near miss has been simulated by setting the miss distance equal to 3HBR, which is approximately equal to
80 m for the Starlink on Starlink conjunction. For all cases, an operator should thus choose to not mitigate the
collision risk. The miss distance is divided equally over the RTN directions. Again, these cases are simulated
without the inclusion of process noise. The results for the near miss are shown in Figures 5.10 and 5.11. The
figure for the satellite on satellite case has been left out of the report. The results can be briefly summarized as: all
instances correctly identify the probability to be below 10−8. This is expected, as the covariances for the satellite
on satellite case are small, and the metrics will thus correctly identify a miss. Figure 5.10 shows the satellite on
debris near miss.

Figure 5.10: Pc for a satellite on debris near miss as a function of∆tback , without process noise.

The following observations can be made based on the figure.

• The Elrod metric either correctly identifies the case as non-risky, or is affected by the dilution effect, as
the debris covariance is large. Since the maximum Pc metric has raised the probabilities above the 10−4

threshold for all ∆tback, the latter is more likely. These elevated probabilities lead to the occurrence of
seven false positives. These false positives occur due to the fact that Pcmax

is a conservative method of
quantifying the collision risk. This means that by the nature of the metric, it will flag more false positives
compared to PcElrod

.
• The miss distances for the mismodelled case have again grown from the original set miss distance. Thus,
the Elrod results either represent the correct risk again, or they are affected by the dilution effect. The
maximum Pc values have not grown as much, due to the increased miss distance. It can be seen that Pcmax

does increase at ∆tback = −1 day, as the miss distance after this propagated time is closer to the initially
defined near miss. This results in another false positive.

Figure 5.11 shows the debris on debris near miss.
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Figure 5.11: Pc for a debris on debris near miss as a function of∆tback , without process noise.

As can be seen in the figure, the conjunction is identified as safe in all cases for all∆tback, either because of the
dilution effect or due to the large MD. Similarly to the debris on debris case for the collision, Pcmax

does not seem
to mitigate the dilution effect completely. It can be noted however that the mismodelled and correctly modelled
results are less in line with each other than was the case for the collision.

5.3.5. Large Miss: All Cases
The large miss is simulated by setting the miss distance equal to 100HBR in every direction. Figure 5.12 shows
the results for a simulated large miss. For the satellite on satellite case, all instances were correctly identified as
safe again. The results for the satellite on debris and debris on debris case were almost identical, hence only the
figure of the debris on debris case is shown in Figure 5.12.

Figure 5.12: Pc for a debris on debris large miss as a function of∆tback , without process noise.

• It is noteworthy that the probability is not very close to zero for all instances, even though the miss distance
is very large. The probability is very low for the mismodelled case, but for the original drag settings the
probability is in the order of 10−7. Although this is well below the safety threshold of 10−4, it is not as
low as was the case for the satellite on satellite large miss, for which the probabilities were well below
10−8. As the miss distances of both cases are equal, it can be concluded that this is an effect of the large
uncertainties.

5.3.6. Key Takeaways from Analysis of the Current Practice
The conclusion that can be made from the results of running the first test cases, is that NASA CARA’s SDK can
be used for assessing the collision risk. However, it must be noted that the dilution effect is not always mitigated
completely by Pcmax

when one deals with a large joint covariance. Furthermore, mismodelling of the dynamical
model does have a significant effect on the conjunction risk assessment, and it was found that it is especially
detrimental to underestimate the uncertainty on the states. Moreover, the magnitude of the process noise can be
difficult to determine, especially if the inaccuracies are due to the misestimation of parameters. For the deliberate
omission of perturbing forces in the dynamical model, Q may be defined more easily. Increasing the noise can
however have an effect on the problem of having a large covariance. As known, large covariances will lead to
a diluted probability, and the growth of the covariance during propagation will limit the time horizon in which
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operators can make a reliable decision. Although noise can be incorporated in the propagation to account for
errors in the dynamical model, this will further increase the covariance size. Lastly, the maximum Pc metric
proved to be more conservative than vanilla Pc as expected.

5.4. OPM implementation
From literature it has become clear that the growing number of space debris will lead to a growing number of
conjunctions [69]. This could thus lead to the conclusion that it is important to decrease the amount of false
alarms, as this number might become unmanageable otherwise. However, the previous analysis actually showed
a higher amount of false negatives that one could be worried about. Furthermore, as was seen in the previous
section, Pcmax

did not always completely mitigate the dilution effect, such as for the simulated debris on debris
collision. The OPM metric uses a conservative method of assessing the collision risk, and thus this metric could
be used to decrease the number of false negatives. The performance of the metric has been evaluated on the test
cases used for the Starlink on Starlink conjunction.

5.4.1. Verification OPMMetric
Before the risk assessment is applied to the various test cases, the implementation has been verified using results
found in the work of Delande et al. [21]. In the paper, the first test case from Alfano [9] was used. The initial
states as given in the paper have been propagated to TCA by Delande et al. [21]. However, as the dynamical
model used for the propagation is different, the states at TCA as found in the NASA CARA SDK documentation
have been used instead [63]. The states at TCA are given in Table 5.4.

Table 5.4: States at TCA from Alfano’s first test case, from Reference [9].

Deputy Chief
x [m] 153446.7645602800 153447.2642029000
y [m] 41874155.8695660000 41874156.3699030000
z [m] 0.0 4.9999660258
vx [ms−1] 3066.8747609105 3066.8647607073
vy [ms−1] −11.3736149565 −11.3636148179
vz [ms−1] 0.0 −0.0000013581

The covariances, which can also be found in Reference [9], have been scaled, and the probability (PcFoster
) and

credibility (Uc) have been calculated for each scaled joint covariance. The miss distance resulting from the states
defined in Table 5.4 is equal to 5.05 m. When setting the HBR equal to 15 m, a collision thus occurs. When
setting the HBR to be smaller than the miss distance, a miss is simulated. The behavior of Uc and PcFoster

as a
function of the covariance size for HBR = 15m is shown in Figure 5.13a. Figure 5.13b shows the behavior of Uc

and PcFoster
for HBR = 2 m.
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(a) Collision. (b) Near miss.

Figure 5.13: Pc and Uc as a function of the covariance scale factor.

As can be seen in Figure 5.13a, the probability of collision indicates that the collision can be identified as risky
for a covariance scaled with a factor lower than 104. However, as the covariance increases, the probability of
collision decreases due to the dilution effect. To the contrary, the credibility stays equal to one, independent of
the covariance size. This can be explained by the fact that Uc is computed as supremum, rather than the integral.
So in the limit that the uncertainty goes to infinity, the credibility becomes one. For the near-miss case in Figure
5.13b, the probability of collision behaves as expected. It starts low for a small covariance, indicating that the
probability is robust. The probability grows to a maximum for a scale factor of 101. Then, the probability of
collision becomes diluted and decreases again. The credibility also starts low, as the covariance is small and the
objects will not collide. Then, as the covariance grows, the credibility grows as well, indicating the increased
ignorance. It can be noted that the credibility is larger than Pcmax

. This indicates that the OPM metric is more
conservative than the maximum probability metric. The results found match the results presented in the paper
written by Delande et al., and thus the correct implementation of the metric has been verified. The two figures
highlight the issue that Pc cannot always distinguish situations with a large covariance to be unlikely (left side
of Figure 5.13b) or uncertain (right side of Figures 5.13a and 5.13b) [21]. OPMs can be used to make this
distinction. The use of OPMs leads to a conservative assessment of the collision risk. It should be pointed out
that the credibility is low on the left side of Figure 5.13b. The credibility can thus correctly determine whether
the conjunction scenario represents a low-risk situation as well. So, although the metric is conservative, it can
reliably screen for safe conjunctions in the robust region. Based on the results obtained, it is expected that the
OPM metric will offer more reliability in mitigating the dilution effect compared to the maximum probability
of collision. Specifically, the credibility at an unscaled covariance (100) is larger than Pcmax

found at 101. The
difference in computation lies in the fact that Pcmax

is computed probabilistically through covariance scaling,
whilst OPMs are calculated in a possibilistic manner.

It is interesting to note that the difference between the credibility and vanilla probability might also be utilized
to determine whether additional tracking data would be needed. When the threshold set by an operator lies in
between the upper and lower boundary of the probability, it is known that the available data is not sufficient enough
to say something meaningful about the conjunction at hand, as mentioned before. The difference between Uc and
Lc is referred to as ignorance [21]. The difference between Pc and Uc could also be studied however. When
investigating these difference in Figures 5.13a and 5.13b, it can be noted that for the collision in Figure 5.13a,
the difference between these two quantities is very low for a low uncertainty. As the uncertainty increases, the
difference between the risk metrics also increases. The same can be noted for the miss visualized in Figure 5.13b.
The difference Uc −Pc might thus be used as an indication of the extent to which a conjunction needs additional
tracking data. This might be useful especially when the number of conjunctions increases even further due to the
growing space debris environment, and data collection for conjunctions might need to be prioritized.

The use of OPMs has been tested on the Starlink on Starlink simulations. The same threshold has been used as
before for a risky or acceptable conjunction, namely 10−4.
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5.4.2. Collision: Correctly Modelled Cases
First, the results are discussed for the simulated collision with a correctly modelled dynamical model. In Figures
5.2 and 5.8 it was shown that the 2D risk assessments correctly identified the conjunctions for a satellite on
satellite collision and a satellite on debris collision as risky for all instances of backward and forward propagation.
However, for the debris on debris collision, the risk was identified as acceptable, even by Pcmax

, as shown in
Figure 5.9. The OPM metric has also been applied to all three collision cases to find the upper probability. For
the satellite on satellite collision, and the satellite on debris collision, the results are discussedwithout the inclusion
of figures, as the vanilla Pc calculations or Pcmax

calculations had already identified the conjunctions as risky.
For these two cases, the credibility was found to be equal to one for every backpropagated time ∆tback. This is
as expected, due to the fact that the metric is more conservative compared to the vanilla Pc and Pcmax

metrics. A
more interesting case to study in more detail is the debris on debris collision, as this case was falsely identified
as safe. Figure 5.14 shows the results for PcFoster

, Pcmax and Uc. The formulation derived by Foster and Estes
has been chosen to demonstrate that the results for this formulation are almost identical to the results found with
Elrod’s formulation of the probability of collision.

Figure 5.14: Pc and Uc for a debris on debris collision as a function of∆tback , without process noise.

As can be seen, the upper bound of the probability is again equal to one, whilst the other two metrics showed
results below 10−4 due to the dilution effect. As vanilla Pc is below the safety threshold, it is certain that the
lower boundary of the probability lies below this threshold as well. So, even though the formulation of the lower
boundary has not been derived yet, it is certain that it will be below the safety threshold. Hence, it can be concluded
that, based on the OPM metric, the collision risk is qualified as undetermined. Therefore, the data available for
the conjunction is insufficient, and additional data is required. As the collision risk is undetermined, it remains
undetermined whether a true positive, true negative, false positive or false negative has occurred. However, it is
at least certain that the risk is not safe, which could be qualified as true positive. Furthermore, the dilution effect
is correctly mitigated.

5.4.3. Collision: Mismodelled Cases
For the mismodelled cases, the satellite on satellite collision can also provide useful information on the perfor-
mance of the OPMmetric. For a mismodelled (0.9Cd) satellite on satellite collision without process noise, it was
shown that the previously tested metrics almost always provided a false sense of security. Therefore, it becomes
of interest to investigate whether the OPM metric could address this issue. For this case, the results are shown in
Figure 5.15.
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Figure 5.15: Pc and Uc for a satellite on satellite collision as a function of∆tback , without process noise.

As can be seen, the OPMmetric does not mitigate the problem of mismodelling for a satellite on satellite collision.
This can be explained by the fact that the uncertainty for this case is low, so the upper boundary and theoretical
lower boundary will be closely bound around the actual probability of collision. As the drag parameter causes
a drift from the actual miss distance, this will result in a low probability of collision, and thus a low credibility
as well. This proves the statement in the paper of Delande et al., where it is stated that if the knowledge of the
observer is incorrect, the upper probability will also be incorrect. Seven false negatives have occurred.

For the mismodelled (0.9Cd) simulated satellite on satellite collision with process noise (102Q) the results are
shown in 5.16.

Figure 5.16: Pc and Uc for a satellite on satellite collision as a function of∆tback , with process noise (102Q).

As can be seen, the credibility is above 10−4 for∆tback ≥ −5 days. Again, for∆tback = −5 days and∆tback =
−4 days it is certain that the lower boundary is below the safety threshold, as it will be below Pc. At these
times, the risk will thus be undetermined, and additional data is required. For ∆tback ≥ −3 days, the risk is
quantified as unacceptable, as vanilla Pc is also above the threshold. Hence five true positives and two false
negatives have occurred. Based on PcElrod

and Pcmax
, the conjunction would not have been flagged as risky

before ∆tback = −3 days, introducing four false negatives. OPMs thus provide a more reliable mitigation of
the dilution effect compared to Pcmax for an increased uncertainty. Therefore, it is more robust for mismodelled
cases. For the simulation for which the noise was further increased (104Q), the credibility was well above the
safety threshold for both the correctly modelled and mismodelled case for all ∆tback. Thus, the OPM metric
provides a reliable assessment of the collision risk due to its conservative nature. And again, the need to haveQ
correctly estimated is stressed.

For the mismodelled satellite on debris collision without process noise, Pcmax
led to the identification of a risky

conjunction six days before TCA (Figure 5.8). The results for the OPM metric can be seen in Figure 5.17.
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Figure 5.17: Pc and Uc for a satellite on debris collision as a function of∆tback , without process noise.

As can be seen in the figure, the OPMmetric again correctly identifies the collision as undetermined (lower bound
will be belowPcFoster

) well before TCA, and earlier thanPcmax
identifies the conjunction as risky. So, in addition

to effectively mitigating the dilution effect, the metric allows for an earlier identification of the risk compared to
vanilla Pc or max Pc, as also seen in Figure 5.16. Although operators might not decide to mitigate a conjunction
solely based on this metric due to its conservative nature, it allows them to become aware of the risk earlier and
request additional tracking data, thereby extending the time horizon for potential action.

For the debris on debris case, the dilution effect was not mitigated entirely by Pcmax . The OPM metric was also
tested on this case, and again, due to the uncertainties introduced by the presence of debris, the credibility was
found to be equal to one, independent of the backpropagated time. Thus, for a mismodelled conjunction including
at least one debris object, the OPM metric complements the metrics tested before.

5.4.4. Near Miss: Correctly Modelled Cases
For the near miss and large miss simulations, only the results for the correctly modelled simulations are discussed,
all run without process noise. In Figure 5.18, the results for a simulated satellite on satellite near miss can be
observed.

Figure 5.18: Pc and Uc for a satellite on satellite near miss as a function of∆tback , without process noise.

The former two risk metrics studied, PcElrod
and Pcmax

, both led to the identification of a safe conjunction, as
discussed before. The credibility assessment also leads to a safe interpretation of the conjunction (seven true
negatives). This demonstrates that the metric will correctly identify a conjunction as safe when it is, given the
defined uncertainty magnitudes for satellites and a near miss of approximately 3HBR. In such cases, an operator
should not need to take a risk mitigation action. However, one thing to note is that the credibility grows as the
time for which the states are backward and forward propagated decreases. This is contrary to what one might
expect, as the shorter the propagation time, the smaller the covariance. Furthermore, the smaller the covariance,
the closer the upper and theoretical lower bound on the probability of collision are together. Thus, the expectation
would be that Uc is larger for a larger backpropagated time ∆tback. To demonstrate that the joint covariance at
∆tback = −1 day is indeed smaller than the joint covariance at∆tback = −7 days, Table 5.6 has been created.
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Table 5.5: Uncertainty in the different directions for different backpropagated times.

∆tback [days] σR [m] σT [m] σN [m]
1 4.57 36.64 7.58
7 1.64 244.09 4.38

As can be observed, the covariances have grown as expected. The sample size used to calculate Uc has also been
increased to determine whether this changes the outcome, but no difference was found. This behavior should thus
be further investigated.

For the near-miss satellite on debris conjunction, the credibility was again well above the set threshold. The
maximum Pc had also identified the conjunction as risky before (Figure 5.10). So, the high credibility is as
expected. The near miss for the debris on debris case was identified as safe by both PcElrod

and Pcmax , as was
seen in Figure 5.11. Due to the high uncertainties however, the credibility is again equal to one, as can be seen in
Figure 5.19.

Figure 5.19: Pc and Uc for a debris on debris near miss as a function of∆tback , without process noise.

As vanilla Pc is below the safety threshold for both the satellite on debris near miss and the debris on debris near
miss, again, it can be concluded that the risk is undetermined. As the conjunction is simulated to be safe and the
risk is not identified as such, seven false positives are flagged.

5.4.5. Large Miss: Correctly Modelled Cases
The simulated large miss for a satellite on satellite conjunction had led to PcElrod

and Pcmax
being below 10−8.

The upper probability has also been identified to be below 10−8, and therefore, since the figure for this case is
empty, it is left out of the report. The case again proves however, that although the OPMmetric is conservative, it
will identify a safe situation for a low covariance and a large miss. This is important because of the large number
of false positives and/or indeterminate results that the metric will nonetheless introduce. For the satellite on debris
and debris on debris large miss, the results are again very similar. Hence, again, only the results for the debris on
debris case are shown in Figure 5.20.
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Figure 5.20: Pc and Uc for a debris on debris large miss as a function of∆tback , without process noise.

It can be seen in Figure 5.20 that although PcFoster
and Pcmax

had led to the identification of a safe situation, the
same cannot be concluded for the credibility. The large miss including at least one debris object, is a scenario
for which the occurrence of a collision is both unlikely and uncertain. Again, although the equation for the lower
boundary has not been derived yet, it can be concluded that the lower boundary lies below the safety threshold, as
vanilla Pc lies below the threshold as well. Hence, the upper and lower boundary encompass the safety threshold,
and the collision risk is undetermined. Therefore, seven false positives are flagged, as the risk cannot be discarded
based on the metric. Note, again Uc seems to be larger for a shorter propagation time, as was the case for the near
miss. This behavior should be further examined.

5.4.6. Key Takeaways Outer Probability Measure Metric
To conclude, the outer probability measures metric complements the different introduced collision risk assess-
ments. The metric shows to be more reliable in mitigating the dilution effect compared to Pcmax . Even though
the lower probability has not been derived yet, sometimes, the credibility can be used in combination with vanilla
Pc to determine whether a conjunction is safe or undetermined. The metric is very conservative, and thus the num-
ber of false alarms will significantly increase when using the metric. Although the metric is very conservative, it
still correctly identifies safe cases when the uncertainty is small. Thus, using the metric, a safe conjunction can
be dismissed with greater reliability. As stated by Delande et al., the metric can be used to distinguish unlikely
cases from uncertain ones [21].

5.5. Results Relative Orbital Parameters Metric
The relative orbital parameters metric has been used to test whether the time horizon available for decisionmaking
can be improved, using the conjunctions between Terra Sar X and Tandem X. The correct implementation of the
metric is first evaluated.

5.5.1. Verification Relative Orbital Parameter Metric
The concept of using∆e⃗ and ∆⃗i to control a formation has been tested on TSX and TDX in former research [19].
TSX and TDX are flying in a controlled formation such that the configuration of the satellites stays the same.
TSX will perform station-keeping maneuvers to stay within a tube of radius 250 m around a predefined reference
trajectory [45] and will drift due to perturbations, whilst TDX will perform maneuvers to compensate for these
changes in the orbit of TSX. The relative eccentricity and inclination vectors can be used to control the formation
by studying when the angle between them becomes near orthogonal, and thus when a correcting maneuver needs
to be made. A deviation of 30◦ from a parallel or antiparallel alignment is allowed before performing a maneuver
[57].

The results found in Reference [19] can be used to verify the correct implementation of the method. The initial
states defined for the satellites have been derived based on the states used by D’Amico et al. The differences in
Keplerian elements are given by:

∆a = 0 m, ∆e⃗ =
[

0
300 m

a

]
, ∆⃗i =

[
0

−1000 m
a

]
, ∆u = 0. (5.2)
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The chosen separations comply with the requirement of a small orbital difference (∆x⃗K ≪ 1). As can be seen,
the relative eccentricity and inclination vectors were both chosen to only have a nonzero value in the y direction.
Furthermore, the directions of the vectors were chosen to be opposite to each other. This ensures an antiparallel
alignment of the two vectors. In the research carried out by D’Amico et al., the relative elements as defined in
Equation 5.2 were added to the initial state of TSX as found on May 2006 [19]. For this research, the initial state
of TSX at t0 has been found by trial and error. It was defined as follows:

aTSX = 6892945 m, eTSX = 10−8, iTSX = 97◦, ωTSX = 270◦, ΩTSX = 0◦, MTSX = 90◦. (5.3)

The final elemental differences added to the state of TSX to find the initial state of TDX at t0 were then defined
as:

∆a = 0, ∆e =
300 m
a

, ∆i = 0, ∆ω = −180◦, ∆Ω =
−1000 m
a sin iTSX

◦
, ∆M = +180◦. (5.4)

The differences in a, e, i, Ω and u have been kept the same as defined in Equation 5.2. The difference in ω
has been chosen such that e⃗TSX and e⃗TDX are pointing up and down respectively, to ensure that ∆e⃗ is also in
the y direction and is thus antiparallel with respect to ∆⃗i. The mean anomalyM has been chosen such that with
u = ω +M , the set up still yields∆u = 0.

Using Equation 3.8, the relative eccentricity and inclination vectors have been found at t0. To observe the behavior
of the vectors and the angle separation between them over time, the states have been propagated for 30 days. The
propagation has been performed with the propagation settings as defined in Table 4.2 in Step 5 of the methodology.
The timestep has been set to 20 seconds, so that it is in line with the timestep used in the paper. The relative
inclination and eccentricity vectors were then computed at every intermediate epoch. It must be noted that the
results will not be entirely similar compared to the results found in Reference [19]. The reason for this is that
there are no orbit-keeping maneuvers applied in this simulation, whilst they are in the simulation performed by
D’Amico et al. To compensate for this, the physical characteristics of the satellites have been set to be the same.
This ensures that the perturbing forces have the same effect on both trajectories, and thus the satellites will not
drift apart. Figures 5.21a and 5.21b show the behavior of∆e⃗ and ∆⃗i over time. The vectors all originate from the
origin (0, 0), however the vectors are represented in scatter points here, such that the evolution over time can be
clearly seen. Nevertheless, the initial vectors at t0 have been visualized, together with the vectors at the time when
they are closest to orthogonal. The time at which the vectors have a near-orthogonal geometry is equal to t = 25.5
days. At this moment in time, the radial and cross-track separations can vanish jointly, indicating a dangerous
situation in the presence of a large along-track uncertainty. The figures show the results when calculating the
vectors as defined in Equation 3.8 using mean orbital elements. The conversion of osculating elements to mean
elements has been conducted using the Brouwer-Lyddane transformation [44]. Mean orbital elements are also
used in practice [46].
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(a) The relative inclination vector over time. (b) The relative eccentricity vector over the course of propagation.

Figure 5.21: The relative inclination and eccentricity vectors over time.

As can be seen in Figure 5.21a, the relative inclination vector remains very stable over the course of propagation.
This is in line with the results found by D’Amico et al. The vector remains stable due to the fact that the relative
inclination∆i has been set to zero (not to be confused with the relative inclination vector ∆⃗i, which is not equal
to zero). Namely, when ∆i = 0, this ensures that the ascending nodes of the orbits rotate at the same rate, and
thus the relative vector stays stable [57]. Figure 5.21b shows the behavior of the relative eccentricity vector. The
vector seems to drift more compared to the relative inclination vector. This drift can mainly be explained by the
perturbing force due to the oblateness of the Earth [11]. The drift will cause the vectors to become orthogonal
after some time, leading to the need for regular maneuvers to control the formation of TSX and TDX [11]. As
can be seen, the vectors at t0 are parallel, and the vectors at t = 25.5 days are nearly orthogonal. The radial and
cross-track separations can also be plotted against each other. Figure 5.22 shows the separations for one orbital
period every five days. As can be observed for the orbit at t = 0, when the cross-track separation is equal to zero,
the radial separation is maximal and vise versa. To the contrary, for the most risky situation at t = 25.5 days,
both separations can vanish jointly. The results are in line with the results found in Reference [19].

Figure 5.22: Ellipses drawn by TDX around TSX.

Figure 5.23 shows the angle separation∆γ over time.



5.5. Results Relative Orbital Parameters Metric 57

Figure 5.23: Angle separation over the course of propagation.

The results show that it takes 30 days to go from an angle separation of 180◦ to a separation of 60◦. In former
research, it has been found that it would take approximately 17 days to move from an angle separation of 210◦ to
a separation of 270◦, which means that one would have 17 days to respond and ensure an orthogonal alignment is
not reached [51]. The relative eccentricity and inclination metric is thus very useful for controlling the TSX/TDX
formation, as the metric provides a stable solution with timely notice if the geometry is moving towards a more
risky situation.

Although the metric will provide a stable solution over time, it is important to note that the angle deviation cannot
be used as risk assessment for conjunction analysis in solitary. Although either the radial or cross-track separation
is maximal at a parallel geometry between the ∆e⃗ and ∆⃗i vectors, this separation could still be lower than the
HBR depending on the magnitudes of δi and δe, as can be seen in Equation 3.11. It is thus important to combine
the miss distance with the angle deviation when assessing the collision risk. Furthermore, the expressions for the
separations as introduced in Equation 3.10 are based on the fact that the orbits are bounded. So, zero drift in∆a
and ∆u is assumed. To test the use of the metric when this drift is nonzero, the states of TSX and TDX have
been propagated again, but now with the mass of TDX set to 1.1 times the mass of TSX. This will namely cause
the orbits to drift apart due to the difference in accelerations acting on the objects. This will lead to a drift in the
ellipses drawn by TDX around TSX, as shown in Figure 5.24.

Figure 5.24: Ellipses drawn by TDX around TSX for a nonzero∆a.

As can be seen, due to the drift introduced by ∆a, the orbit associated with the time for which ∆γ ≈ 90◦ does
not lead to a joint vanishing of∆rR and∆rN anymore. The drift now introduces a risky situation at t = 15 days,
at which the ellipse crosses the origin. However, the angle at t = 15 days is approximately equal to 128◦, so the
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vectors are not aligned orthogonally yet. This can complicate the use and interpretation of the metric.

5.5.2. CDM data
The sixteen CDMs found for TSX and TDX have been used to analyse the usage of ∆e⃗ and ∆i for conjunction
analysis. The conjunction geometry at tTCA has been found and studied based on the information provided in the
CDMs. Furthermore, the states provided in the CDM have an associated covariance which was used to determine
the uncertainty on the angle deviation∆γ, as defined in Equation 3.9.

The uncertainty on the angle deviation was found using a Monte Carlo algorithm. The states of TSX and TDX
have been sampled using a normal multivariate distribution. Both states were sampled individually, as both
states have their own covariances. Then one can choose to either cross-combine the different samples or to pair
the samples based on their place in the sample set. The latter methodology was chosen as cross-combining the
samples can lead to over and under represented regions, whilst by pairing the samples, every sample is only used
once. The sample size used (4 million) has been verified, as shown in Appendix E. The sampled states x⃗TSXi

and x⃗TDXi
yield sampled relative inclination and eccentricity vectors. The vectors have been found using the

mean orbital element calculation (Equation 5.2), as this method is also used in reality [51]. The sampled vectors
are shown in Figures 5.25a and 5.25b.

(a) The sampled relative inclination vectors for the CDM covariance. (b) The sampled relative eccentricity vectors for the CDM covariance.

Figure 5.25: Sampled relative vectors as a result of the CDM covariance.

As can be seen, the effect of the uncertainty present in the CDM is large. The magnitudes of the individual stan-
dard deviations in the RTN frame, as provided in the CDM, are in the order of 102 m. The deviations found for
∆⃗i and∆e⃗ are larger than the deviations of the initial vectors as a result of propagating the states for 30 days, as
shown in Figures 5.21a, ?? and 5.21b. Moreover, the distributions of ∆⃗i and∆e⃗ fully encompass the origin. This
means that any angle between the two vectors is possible. Furthermore, a positive correlation can be observed
between ∆ix and ∆iy , and similarly between ∆ex and ∆ey . This implies that either parallel or anti-parallel
vectors will occur more often. The angle separation can be found for every sampled ∆e⃗i and ∆⃗ii pair, which
leads to the distribution of∆γ as shown in Figure 5.26.
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Figure 5.26: Distribution of the angle separation as a result of the CDM covariance.

The standard deviation of the distribution was found to be equal to σ∆γ ≈ 60◦. Such an uncertainty on the angle
deviation is too high, as the angle can only lie in between 0◦ and 180◦ when calculating the angle as defined in
Equation 3.9. This interval is also shown in Figure 5.26. Thus, the uncertainty found in the CDM seems too high
to use the geometry between ∆⃗i and ∆e⃗ as a risk metric for conjunction analysis in a meaningful way. The fact
that the uncertainty in the initial Cartesian states translates to such a large angular uncertainty is something that
should be investigated further. Furthermore, the question arises as to how certain one needs to be of the initial
states to be able to say something meaningful about the level of risk. For this research, the positional uncertainties
have been defined to be in the order of 1 meter for satellites. The uncertainty on the angle deviation has also been
determined for covariances scaled to have standard deviations in this magnitude. To evaluate this, the initial
covariances found in the CDM have been scaled. Figures 5.27a, 5.27b and 5.28 show the results.

(a) The sampled relative inclination vectors for the scaled CDM covariance. (b) The sampled relative eccentricity vectors for the scaled CDM covariance.

Figure 5.27: Sampled relative vectors as a result of the scaled CDM covariance.
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Figure 5.28: Distribution of the angle deviation as a result of the scaled CDM covariance.

As can be seen, the distributions of ∆⃗i and ∆e⃗ do not encompass the origin, thus the uncertainty will lead to
a smaller number of possible angles. Furthermore, the variations in the sampled vectors are now much lower,
as expected due to the lower covariances. The standard deviation is now in the order of 1◦. So with a lower
covariance, the metric shows more potential to be used for a qualification of the collision risk. To determine at
which covariance magnitude the uncertainty on ∆γ will make the metric unusable, a plot has been made of the
uncertainty on ∆γ as a function of the magnitudes of the covariances. The result is shown in Figure 5.29. The
figure also includes the behavior of the uncertainty on the miss distance as a function of the covariance size. This
way, the difference between the uncertainty behaviors can be studied in more detail. As a point of reference, the
initial magnitudes of the standard deviations, as provided in the CDM, were previously documented to be in the
order of 102 m.

Figure 5.29: Uncertainty as a function of the covariance scale factor.

As can be seen in Figure 5.29 the uncertainty on themiss distance grows exponentially with exponentially growing
covariances, as expected. The uncertainty of the angle separation however, blows up to 60◦ when the uncertainty
on the position is higher than 1 meter. It must be noted that, the size of the uncertainty for which the angular
uncertainty will blow up depends on the magnitudes of the vectors ∆⃗i and ∆e⃗. Depending on these magnitudes,
the origin will or will not be fully encompassed by the sampled vectors for a certain uncertainty. However, to
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be able to use this relative orbital parameters metric, ∆x⃗K ≪ 1 must hold. Therefore, the hypothesis is that the
uncertainty can not be too large for all cases, as the magnitudes of the vectors will always be relatively small.
This should be further investigated and tested on various test cases.

From the figure, it can also be noted that when the covariance is scaled with a factor higher than 102, the standard
deviation does not grow further as the possible values for ∆γ only range from 0 ◦ to 180◦. Although σMD is
also relatively large compared to an average HBR at for example a covariance factor of 102, this uncertainty is
taken into account when calculating the probability of collision. A correct method of taking into account the
uncertainty on the angle separation should thus be investigated to use the metric in a meaningful way. One could
for example choose to study the angle closest to a risky situation within∆γ ± σ∆γ . Former research has shown
that the achievable control accuracy for the TSX/TDX formation is approximately in the order of 10-20 m for
the along-track direction, and 1-2 m for the radial and cross-track directions [57]. This can be achieved due to
accuracy of the data available to the operators. However, such certain data is currently not available from the
ground-based tracking data presented in the CDMs, and ideally one would have even smaller errors to ensure a
precise quantification of the separation angle, as shown in Figure 5.29.

Although the states documented in the CDM are too uncertain to say something useful about the approach geom-
etry, the angle deviations resulting from the states at tTCA are shown in Figure 5.30 to see whether a pattern can
be observed in the behavior of the angle. The figure includes the uncertainty on the angle deviation and the miss
distance by means of error bars.

Figure 5.30: Angle separation at TCA with the uncertainty, for the sixteen TSX/TDX CDMs.

As expected, no clear pattern can be seen, due to the uncertainty on the angles. To conclude, it has been found that
data in the CDMs is currently too uncertain to use the relative orbital parameters metric as risk assessment metric.
To test how the metric could be utilized if the uncertainties were smaller, an ideal test case has been created.

5.5.3. Ideal Test Case
For the ideal test case, the states defined in Equations 5.3 and 5.4 have been used as a basis. The separations
between the two orbits as introduced in the latter equation have been changed to ensure a close approach between
the two spacecraft. The changed parameters have been defined as:

∆e⃗ =

[
0

30 m
a

]
, ∆⃗i =

[
0

−40 m
a

]
, ∆Ω =

−40 m
a sin iTSX

◦
. (5.5)

Again, the states have been propagated forward for 30 days, as described in Section 5.5.1, to study the behavior of
the relative motion between the two spacecrafts. The ellipses drawn by TDX around TSX were again visualized.
For this test case, the results are shown in Figure 5.31.
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Figure 5.31: Ellipses drawn by TDX around TSX for the ideal test case.

As can be observed from Figure 5.31, the orbits start parallel and therefore trace an elliptical path in the R-N plane.
This is as expected, as this is how the states of the spacecrafts were defined. Over the course of propagation, the
orbits become orthogonal. The time at which the orbits are close to orthogonal was again found to be equal to
t = 25.5 days. Now, to perform an analysis of the use of the metric, a risky conjunction needs to be found.
Although the alignment between the relative vectors can represent a risky situation due to the presence of a large
along-track uncertainty, it is also crucial to take note of the miss distance at a time for which the geometry between
the two orbits indicates a safe situation, as mentioned before. Denenberg’s algorithm was used to find the time of
closest approach. Multiple different close approaches could be found, as can be observed from Figure 5.32. To
study the metric, two close approaches were studied, one near the time the relative e/i vectors are anti-parallel,
and one near the time they are perpendicular. In both cases, the total miss distance will be small (on the order
of 50 meters or less) allowing to assess the ability of the metric to screen for high and low risk conjunctions on
the basis of geometry. The setup and evaluation follow a similar procedure as described in Chapter 4, to evaluate
the risk metric over a period of several days before TCA. However, in this case the initial state does not need
to be backpropagated from TCA since it is determined by the initial conditions of the ideal case. The first close
approach studied occurs within the first days of propagation. As can be observed from the figure, the minimal
miss distance remains relatively small at this time. Furthermore, the alignment between the vectors will still
be close to parallel, so it is of interest to study Pc and ∆γ. TCA is chosen approximately six days away from
t0, to ensure that the behavior of the angle separation can be studied for the often used screening length. The
close approach will be referred to as TCA1 from now on. The second close approach studied is one of the close
approaches near the time of closest orthogonal alignment. This approach will be referred to as TCA2.
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Figure 5.32: Miss distance over the course of propagation for the ideal test case.

The artificial start of the screening period (t01 ) for TCA1 at tTCA1
= 5.2 days has been taken equal to 0 days,

and t02 for TCA2 at tTCA2
= 26 days has been taken equal to 20 days, to ensure an entire screening period

of approximately seven days. For both cases the covariances are estimated at t01 and t02 respectively. These
covariances have been scaled to represent satellites. This way a scenario in which the available data is sufficiently
certain is simulated. From t0, the states and covariances are then forward propagated to tTCA to observe the
behavior of the angle deviation over time. The uncertainty on the angle separation has been determined at every
full day and at TCA using a Monte Carlo algorithm. For TCA1, the result is shown in Figure 5.33.

Figure 5.33: Angle separation over time for TCA1, including the uncertainty on the angle on every full day.

As can be seen in the figure, the uncertainty seems to grow and shrink over time, this could be due to the growth
pattern that was observed when propagating the covariance as shown in Figure 4.1. Figure 5.33 directly illustrates
the difficulty of the interpretation of the metric. Although the angle separation found implies that there is still
enough time before the alignment between the relative eccentricity and inclination vectors becomes parallel, the
miss distance is equal to 30 m, which is close to the HBR of 21 m. Since the associated joint covariance is small,
the probability of collision will be low, as no collision will take place. The relative geometry of the two orbits
indicates that there is either a separation in the radial or cross-track direction, and thus, although the along-track
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direction uncertainty is high, one can say with certainty that part of the separation is in the other two directions.
Figure 5.34a shows the magnitude of the joint standard deviations over the course of propagation, whilst Figure
5.34b shows the separations in the different directions. As can be seen, the highest separation is present in the
cross-track direction, whilst the uncertainty in this direction is small enough to be sure that this separation is
actually there. However, the miss distance in the along-track direction is much less than the uncertainty in that
direction, so one must be certain that the secondary object is safely missed in some combination of the radial and
cross-track direction.

(a) Radial, along-track and cross-track uncertainties over time. (b) Radial, along-track and cross-track separations.

Figure 5.34: Uncertainty and separations in the RTN frame for TCA1.

For TCA2, the same analysis has been done. First, the angle separation over time is studied as shown in Figure
5.35.

Figure 5.35: Angle separation over time for TCA2, including the uncertainty on the angle on every full day.

As can be observed from both Figure 5.33 and 5.35, the evolution of the angle separation is stable over time, which
is the primary reason for studying this metric. However, it can be noted that the angular uncertainty for TCA2 at
t02 is initially much larger compared to the initial angular uncertainty for TCA1. This can be a consequence of
how the covariances are scaled. The covariances are scaled such that all individual standard deviations (in ECI),
are all at least in the order of 1 m. So the entire covariance is scaled based on the smallest positional standard



5.5. Results Relative Orbital Parameters Metric 65

deviation, as described in Chapter 4. It has been checked whether scaling the covariance based on the uncertainty
in the radial direction will lead to different results, but this was not the case. For completeness, the standard
deviations after scaling are given in Table 5.6 for both cases.

Table 5.6: Standard deviations of the covariance of TSX after scaling for the two close approaches.

TCA1 TCA2

σx 2.79 17.54
σR 2.79 8.85
σy 24.58 7.74
σT 21.61 12.00
σz 24.56 2.94
σN 27.21 12.40

Again, the magnitudes of the uncertainties in the different RTN directions have been analysed for TCA2, together
with the alignment of the miss distance at TCA2. The results can be seen in Figures 5.36a and 5.36b.

(a) Radial, along-track and cross-track uncertainties over time. (b) Radial, along-track and cross-track separations.

Figure 5.36: Uncertainty and separations in the RTN frame for TCA2.

As can be seen in Figure 5.36a, the uncertainty growth is different from the uncertainty growth observed for TCA1.
Although the growth in the along-track direction is still dominant, the increase in size is much lower. This can
be explained by the difference in the initial covariance, as indicated in Table 5.6. When assessing the alignment
of the miss distances as shown in Figure 5.36b, it can be seen that a large amount of the total miss distance is
present in the radial and cross-track directions, this can be explained by the fact that the vector alignment is not
exactly orthogonal. The time chosen represents a close approach close to this time. The angle separation does
however indicate that a risky situation could occur in which a joint vanishing of∆rR and∆rN is reached. In case
the entire miss distance, equal to approximately 60 meters, would have been aligned with∆rT , one could not be
certain of a miss as σT ≈ 400 m. Although the difference in uncertainties might lead to a misleading analysis of
Pc, the probability of collision is calculated using the Hall and Elrod formulations, as also provided on Privateer.
The encounter is of low-relative velocity, so the formulation derived by Hall will be considered leading here. The
results are shown in Table 5.7.

Table 5.7: Probability of collision for close approaches studied for the ideal testcase.

Metric TCA1 TCA2

PcHall
2.38 ·10−6 1.01 ·10−1

PcElrod
1.79·10−15 6.90 ·10−5
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As can be seen, the probability of collision is higher for TCA2 compared to that of TCA1. However, the covariance
of the former case was also found to be much higher, and thus it could be the case that the probability is diluted.

5.5.4. Key Takeaways Relative Orbital Parameters Metric
It was hypothesized that, because of the stability of mean orbital elements, the relative orbital parameters metric
might be able to indicate the possible occurrence of a risky encounter well before TCA, based on the alignment
of the miss distance. However, the use of the metric suffers from multiple drawbacks. Namely, the uncertainty
on the angle separation quickly grows due to the uncertainty on the initial states. This is due to the fact that if the
vectors sampled (during a Monte Carlo analysis) completely encompass the origin, any angle between the two
vectors is possible. The large uncertainties significantly limit the use of the metric. Furthermore, the metric can
only be used for bounded orbits, for which ∆a ≪ 1. Moreover, the interpretation of the metric is still uncertain,
no clear probabilistic safety interpretation has been established that combines both the miss distance, the angle
separation and the angular uncertainty. On top of that, an associated safety threshold needs to be available to
determine when mitigation actions should be considered. This threshold will depend on the time it takes for a
configuration to move from a parallel to an orthogonal alignment, which could be different for different satellite
formations. A meaningful use of the metric for conjunction analysis has thus not been established.

5.6. Results Survey on Data Usage in Conjunction Analysis
The survey, developed using Survalyzer, consists of open questions, multiple choice questions, and rankings.
All participants have given permission for the use of their responses in the thesis with the assurance that the
responses will remain anonymous. The survey consisted of four parts. The first part focused on asking for
general information from the operators, such as in which regime and on how many satellites they are operating.
Using this information, the different responses can be grouped and the diversity of the responses can be evaluated.
To gain insight into the relation between the satellite number and the amount of CDMs that an operator receives,
it has been asked how many CDMs are received per month and how many collision avoidance maneuvers are
performed per month. The second part consisted of information on whether and how operators use CDMs, which
data aspects they consider leading, and what data could be included or excluded. In the third part, the novel risk
metrics proposed in this thesis were briefly introduced and it was determined whether the operators would be open
to the use of these metrics. Furthermore, it was studied how the operators would prefer to have the results of the
metrics presented. Last, general questions were asked to inquire how multiple different risk assessments could be
presented to operators. The survey received a total of fourteen responses. Most responses originate from satellite
operators, but there are also two responses of SSA providers. These participants provide conjunction assessment
services to satellite operators. In total, participants work for eleven distinct organizations.

5.6.1. General Information
Of all satellite operators, 100% (12) is operating in LEO, 8.3% (1) in GEO, 16.7% (2) in HEO, and 8.3% (1) in
MEO. The two SSA providers are working with data from satellites in multiple regimes. As a result, it can be
concluded that LEO is best represented. Operators can be grouped according to the number of satellites they are
operating on. This might be useful, as the approach to conducting conjunction analysis may be very different
depending on the number of satellites that need to be managed. This is also mentioned by one of the participants.
That is, an operator operating on large constellations might have access to more resources compared to an operator
operating on a smaller number of satellites. These might rely more on processed data due to limited available
internal resources. The approach of both can thus be very different.

• The first group consists of operators operating on one to nine satellites. There are three participants present
in this group, all operating on satellites orbiting in LEO.

• The second group consists of operators who operate on satellite numbers in the interval of [10, 100] satel-
lites. Seven participants fall in this category, including one SSA provider. All participants are operating
in LEO. One operator additionally operates on satellites in MEO and GEO, and one operator additionally
operates in both GEO andMEO. The SSA provider works with satellites in LEO and GEO. From this group,
three participants originate from the same organization.

• The last group consists of operators who operate on 100+ satellites. Four participants fall in this group,
again including one SSA provider. The three satellite operators all operating in LEO and the SSA provider
works with satellite data from satellites in all regimes.



5.6. Results Survey on Data Usage in Conjunction Analysis 67

Due to the relatively small number of participants per group, the answers will primarily be analysed collectively
across all three groups. However, when relevant, differences will be highlighted.

The survey includes questions on the number of CDMs received per month and the number of collision avoidance
maneuvers performed per month. Due to the small sample sizes per group, no exact relation can be established
between these numbers. In general however, the number of CDMs increases significantly with a growing number
of satellites, but some unexpected numbers were found in the analysis. For the first group, for example, there
are two operators managing two satellites, however the answers given ranged from as few as two CDMs per
month to as many as 2500 CDMs per month. A larger number of participants would be necessary to clearly
study the relation between these numbers. Across all groups, the maximum number named was equal to one
million CDMs per month, and 71.4% (10) of the answers reported values well above one thousand. One operator
remarked that the number of CDMs received is just “too many”. These numbers further indicate the need for an
effective conjunction analysis. Additionally, participants were asked about the approximate number of collision
avoidance maneuvers performed per month. As noted by multiple participants, these numbers might be skewed,
due to the fact that maneuvers are often combined with station-keeping maneuvers, for example. The highest
number reported was equal to 300 maneuvers per month from an operator part of the third group. Almost half
of the participants indicated that fewer than one maneuver is performed per month. For both event counts, a
scatter plot has been made to observe the relation between the number of satellites, the number of CDMs, and
the number of COLAs. Some numbers are missing, as not all operators were sure about the data. The dashed
line implicates which numbers are linked to each other, meaning that the number of CDMs per month and the
number of maneuvers per month are originating from the same operator. Some operators mentioned an order of
magnitude (e.g. thousands, millions), for these numbers the plot shows the magnitude multiplied by five (5,000
and 5,000,000 respectively). The figure thus merely serves to indicate the overall trend, the numbers should not
be considered as complete truth. The results can be seen in Figure 5.37.

Figure 5.37: Event numbers as a function of the number of satellites.

In general, it can be seen that the higher the number of satellites, the higher the number of CDMs and collision
avoidance maneuvers.

All participants use CDM data for their conjunction analysis. Seven out of the fourteen participants use additional
data sources. It can be noted that none of these participants were part of the last group.

The different external data sources mentioned are:

• Own orbit information and onboard-based (e.g. GNSS data) or ground-based measurements,
• O/O ephemerides,
• Latest orbit information, such as the covariance and planned maneuvers for satellites,
• Own generated CDMs based on operational orbit screening,
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• TLEs to study the history of the objects,
• SP ephemerides for analysis outside of TCA.

The use of O/O ephemeris as additional data source has been mentioned by multiple different operators. This
highlights the importance of data sharing between operators.

5.6.2. Perspectives on Conjunction Data Messages
On average, the CDM is deemed effective, receiving an overall rating of 7.8 out of 10. The extent to which
participants take a certain mitigation action as a result of CDM data is indicated in Figure 5.38.

Figure 5.38: Actions taken based on CDM data.

As can be seen, thirteen participants re-screen the conjunction using O/O ephemeris and reassess the probability
of collision. It must be noted, that previously, only half of the participants mentioned that extra data is used. This
could be due to how the question is posed. That is, the question was open rather than multiple choice, so for
operators, it was not clear what data constituted as extra data. It could be the case, that operators consider their
own data not as extra data. All but three operator perform collision avoidance maneuvers based on CDM data,
and seven participants also gather refined tracking data of the objects. An open question was used to understand
how the operators use the CDMs to determine whether an action needs to be taken. Multiple different processes
have been named. Often, the processes consist of re-screening the conjunction with data from the own satellites
of the operators and deputy information either obtained from:

• CDMs,
• O/O ephemerides,
• (Additional) ground based measurements (conjunctions that are very risky or uncertain are given priority),
• Assessed size from ESA’s DISCOS database.

This was also indicated in Figure 5.38. One operator mentioned that the process of making an action decision is
automatic, except for the decision to perform a collision avoidance maneuver. For this, human involvement is
needed. Another participant mentioned that the decision to perform a collision avoidance maneuver also depends
on the opposing party and their capabilities. Apparently, some operators will always maneuver. Other third
parties are difficult to reach. If the event is of high risk, the risk will then need to be mitigated. One of the SSA
provides replied that multiple CDMs are used to perform comparative SSA. Some participants state that they
have dedicated guidelines to determine when to take a certain action decision. These action decisions are then
mostly based on the aspects given in Figures 5.39a, 5.39b, 5.39c and 5.39d, which shows the leading aspects of
the CDMs on which a decision action is based. It must be noted that previously it was found that only eleven
out of fourteen participants (78.6%) perform a collision avoidance maneuver based on the CDM. However, when
determining which aspect is considered leading in a decision to perform a maneuver, all participants replied as
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can be seen in Figure 5.39c. An additional action performed by one of the operators is to assess the effectiveness
of a collision avoidance maneuver. Furthermore, the operator mentioned that it is studied whether the maneuver
will not cause new conjunctions.

(a) Re-screening the conjunction with owner/operator ephemeris. (b) Reassessing the collision probability

(c) Executing a collision avoidance maneuver (d) Gathering refined tracking data of the objects.

Figure 5.39: Leading aspects in the decision to mitigate a collision risk, Multiple aspects could be selected.

Apart from the data present in the CDM, some other aspects are studied as well for the decision to mitigate the
collision risk. For example, the update frequency of the deputy data is used. This update frequency might be
used to determine the reliability of the deputy data. Additionally, the separations in the radial, along-track and
cross-track directions are studied. This could be due to the reasons discussed in Chapter 3, that is, the uncertainty
in the along-track direction is often more significant than the uncertainties in the radial or cross-track directions.
Hence, if the miss distance is completely aligned in the along-track direction, a potential risky conjunction could
occur.

The next three questions were focused on the limitations and possible extensions of CDMs. The perspectives on
the limitations seem to be consistent among all participants. The foremost mentioned limitations are related to
the covariance, particularly its often large size, lack of realism, and the tendency for it to be overly optimistic.
Although these limitations are related to the covariance, some are conflicting. An overly optimistic covariance
namely implies that the covariance is smaller than it is in reality. However, often the large covariance size is
named as limitation. It could be the case that even if the covariance is too optimistic, it is still too large. Concerns
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were also raised about the covariance quality and the missing information on how the covariances were estab-
lished. Moreover, the lack of information available on the orbit determination process in general and the effect
of unknown low-thrust maneuvers on this are mentioned. To stay on the topic of maneuvers, many participants
mentioned that the lack of knowledge one has about the (planned) maneuvers of other parties complicates the
CA process. Third parties do not always share their maneuver data, and there is a lack of coordination on this.
Commonly, it is unclear who should maneuver, and there is a lack of transparency regarding the typical actions
and protocols followed by the other party. In general, a standard procedure used between different operators
could help. Kerr et al. also recommended that an experienced space lawyer should review regulations on this
[48]. A need for general space traffic management coordination has also been acknowledged by both Europe and
the US [13]. Currently, the United States Traffic Coordination System for Space (TraCSS) and EUSST are both
working on services for SSA. This is thus an active field of research. Participants of the survey also named the
disagreement between different data sources and metrics as limitation, together with the missing HBR informa-
tion. The last topic named is the update frequency of CDMs. The update frequency is often unknown, and the
data changes within updates is significant.

Operators named multiple different aspects that they believe would be helpful to include in CDMs. Before dis-
cussing this, it is noteworthy that the format of the CDM is revised and reviewed every five years. Many inputs
have already been gathered for this and the window in which new adjustments can be suggested is essentially
closed, as mentioned by one of the participants. Nevertheless, the proposed aspects are briefly listed here.

• An indication of when the next CDM update becomes available or the expected time this update will take.
• Recommended maneuvers or maneuver coordination information, which is contrary to the result found by
Kerr et al. [48].

• Information on how the orbit determination process has been performed and the quality thereof, or which
sensor locations have been used to obtain the measurements.

• A warning when the large uncertainty might lead to misleading or diluted probabilities.
• Reliability of the covariance provided by O/Os.
• The HBR used.
• Coordinate transformation quaternions between inertial and fixed frames.
• A trend of the behavior of Pc from previous assessments.
• A link to a visualization of a 3D trend of the objects’ orbits.

Only one of the participants considered the CDMs to include too much information. It is mentioned that the units
and other pre-specified data provided in the CDMs could be excluded. Another operator mentioned that although
the CDM does not include too much information, it includes the wrong information. The participant mentioned
that the information could be overwhelming, when for example Pc is misunderstood.

5.6.3. Data Structure for Proposed Novel Risk Metrics
After the proposed metrics were briefly introduced, operators were asked whether they would be open to the use
of these metrics. It must be noted that multiple operators mentioned the short introduction was not completely
sufficient to give a definite answer. First, the relative orbital parameters metric is discussed. Only six out of
fourteen operators state that they would consider using this metric. The follow up question was how operators
would want this metric to be presented to them. The results from this question did not only provide useful insights
for this presentation, but also offered valuable perspectives on the perceived usefulness of the metric from the
operators’ point of view. First, the presentation is discussed. If the metric would be used, at least the associated
confidence interval should be presented. Two operators would then prefer the worst-case scenario angle at TCA
(angle closest to an orthogonal alignment within the interval), and two would prefer the expected angle at TCA.
Second, the use of the metric is discussed. Most participants considered the metric as more suitable for filtering
or pre-screening of the entire catalog, rather than as a risk assessment metric for a specific event. The participants
also state that this is due to the fact that the metric does not have a clear safety related conclusion, which also
became apparent when analysing the metric (Section 5.5.1). Furthermore, an associated safety threshold is hard
to establish, as also discussed by one of the participants. Another operator concludes that the metric would only
be suitable for long-term continual encounters, which is true as the assumption ∆x⃗K ≪ 1 should hold. That is
also why the metric was deemed more suitable for formation-flying satellites, but this is of course a limitation
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of the metric, and might further complicate its use. Last, it has been noted that 3D geometry calculations and
information are often already used based on the information presented in the CDM.

The outer probabilitymeasuremetric was considered for use by ten out of the fourteen participants (one participant
commented maybe). The desired presentation of the OPMs is often described as something resembling a visual
scale, or a field indicating whether Pc is acceptable, unacceptable or undermined. Others would prefer to be
presented just the upper and lower boundary, such that the operators can set their own safety threshold. It is
mentioned that the metric could be useful for sorting conjunction events based on whether they are irrelevant,
whether a maneuver should be performed or whether one should wait for more data. Different cases could then
be prioritized. Furthermore, it is noted that, although the metric could be included in the CDM, the methods used
for its calculation should be specified transparently and the results should be replicable. One participant namely
mentioned that Pc as presented in the CDM is often replicated, instead of directly used. Furthermore, the way
an operator should interpret the result of a metric should be clear, this would enhance its reliability and make
communication with other operators more effective, as noted by participants. A few operators have noted that
established methods of mitigating the dilution region already exist, such as Pcmax .

5.6.4. Data Structure for Various Risk Metrics
This section set out to determine how data should be structured if multiple different risk metrics are used, such as
both Pc formulations and OPMs for example. The CDMs as provided by Privateer already include two formula-
tions of the probability of collision, as mentioned before. However, although the formulations are different and
have their own assumptions and associated drawbacks, the interpretation of the both is similar. To the contrary,
when presenting both the results of Pc and Uc, the metrics can result in very different conclusions. The first
question of this section explored whether participants would prefer to see the results of all hypothetically tested
risk assessment metrics, or only the one indicating the highest collision risk. All participants agreed that all risk
metrics should be presented, instead of only the metric representing the highest risk, except one, who replied with
“Not Applicable”.

The participants were asked to provide suggestions for the data structure when using multiple different metrics.
One important result was that the data should at least be parsable. The following data structures were suggested:

• Present all different metrics, in a comparative method, but highlight the one that is most suitable for the
specific event.

• Apply weighting factors on the metrics depending on the reliability of the metric for the specific event.
• Present all different metrics, but synthesize a global metric to get an idea of the total risk.
• Present all metrics including the context of the metric. Strong differences in the decision to mitigate per
metric for a specific event should be explainable.

Notes made are again that all information should be shared transparently. Some operators have mentioned that
they do not use raw metrics of CDMs at all. They always calculate the metrics internally, and review all of these
calculated metrics. A metric that cannot be replicated will thus not be used. Furthermore, it was determined
whether participants want the data to be presented quantitatively or qualitatively, it was noted that all participants,
but one who replied “N/A”, want the metrics to be presented to them quantitatively. It is also noted that, for OPMs
for example, it might help to include both the quantitative boundaries together with the qualitative conclusion that
can be made from these boundaries. Last, it was asked whether participants want an action advice. Eight out of
all participants want an action advice.

5.6.5. Key Takeaways Survey on Data Usage in Conjunction Analysis
From the survey, it can be concluded that operators are in general content with the CDM, but the CDM could
benefit from improvements on the covariance realism, size and quality. Furthermore, operators would benefit
from having an indication of how long it will take to the next CDM update. When using multiple different data
sources, all risk metrics should be presented to operators. Furthermore, the method of assessing the risk using a
certain metric should be transparent and reproducible. There is a general interest to receive information on the
reliability of risk assessment metrics, the covariance and the orbit determination process used. This reliability
could be used to generate weights for the different metrics to create a global risk assessment.



6
Conclusions and Recommendations

6.1. Conclusions and Discussion
This thesis set out to explore whether a meaningful contribution could be made to expand or improve conjunction
analysis. The objective of the thesis was to study whether novel risk assessment metrics could complement
currently used methods, to both improve the accuracy of the collision risk assessment and the timeliness in which
the risk becomes apparent. The goal was to both explore the theoretical application of the metrics and to adhere
to the operational needs of satellite operators. The research aimed to answer the following question:

“How can the conjunction analysis as currently used be further expanded or improved?”.

To address this question, multiple sub-questions were posed. The answers to these questions are provided and
discussed below.

Question 1: “How can the performance of existing CA methods be improved via the incorporation and
combination of novel risk assessment methods?”. To answer this question, the risk metrics currently used in
conjunction analysis and implemented in NASA CARA’s SDK have been evaluated on various test cases, where
known limitations of these metrics have been verified. That is, the dilution effect has been observed for large joint
covariances, and it was found that the 2D Pc formulation was only valid for high-relative velocity encounters. For
low-relative velocity conjunctions a Monte Carlo analysis can be used, however, its computational inefficiency is
a significant drawback. Although this limitation weighs against the effect of using the 2D Pc formulation, which
relies on assumptions that do not hold low-velocity encounters, Hall pointed out that for high-fidelity analysis,
the use of a Monte Carlo algorithm may become prohibitive [37]. The Pc formulation derived by Hall [37] can
be used for the low-relative velocity cases, as it provides an upper boundary on the probability of collision. In
addition to these expected outcomes, it was found that the maximum Pc metric does not always mitigate the
dilution effect completely for large joint covariances, highlighting the need for a more rigorous metric.

One of the metrics selected for implementation is the outer probability measures metric as developed by Delande
et al. [21]. Outer probability measures distinguish random from systematic errors. The metric was selected due
to its potential to reliably mitigate the dilution effect, without the need of historical data (WSPRT), experience
(scaled Pc), or a large enough grid of scale factors applied to the covariance (Pcmax

). Furthermore, the metric
does not only provide an estimate of whether the situation is risky or not, but also evaluates whether the available
data of the conjunction is sufficient to quantify the collision risk. Specifically, the upper and lower boundaries
on the probability can be used, together with a safety threshold, to qualify the risk as safe, undetermined or unac-
ceptable. If both boundaries are entirely below or above the threshold, the risk is qualified as safe or unacceptable
respectively. If the safety threshold is in between the two boundaries, the risk is undetermined, and hence, addi-
tional data is required. The metric was also evaluated on the various test cases. It was found that the metric can
correctly mitigate the dilution effect, even in cases where Pcmax

did not. Furthermore, it was observed that, if the
information available on the states is correct (so no mismodelling was applied), no false negatives occur. Thus,
for all risky conjunctions, the metric correctly identified the risk as unacceptable or undetermined. For mismod-
elled cases, random noise should be added to the propagation of the covariance, to ensure that the certainty on
the states is not overestimated. The metric was able to reliable mitigate the dilution effect, however, the number
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of false positives did swiftly increase. Specifically, cases for which the conjunction was safe, but the covariance
was large, were identified as risky, due to the conservative nature of the metric.

The other metric implemented is the relative orbital parameters metric. The concept of relative orbital parameters
is currently already used for the formation control of TerraSAR-X and TanDEM-X [19]. It was expected that the
metric could provide valuable information on the conjunction, specifically on the direction along which the miss
distance is aligned. Furthermore, the metric is stable over time, which will be discussed in more detail in Question
2. The miss distance direction is found using the relative geometry between two orbits. That is, it has been proven
that in the absence of a drift in ∆a, an orthogonal alignment of the relative eccentricity and inclination vectors
can lead to a joint vanishing of the separations in the radial and cross-track directions. Due to the high uncertainty
in the along-track direction, the miss distance in the radial and cross-track directions should never vanish together.
If this does occur, the situation is risky. Apart from the advantage of the stability of the metric, another expected
advantage was that the uncertainties in the initial Cartesian states were expected to provide a small uncertainty
in the angle between ∆⃗i and ∆e⃗. However, the contrary proved true. Namely, when employing a Monte Carlo
algorithm to find the angular uncertainty, it was found that for a small magnitude of the vectors ∆⃗i and ∆e⃗, the
sampled vectors will quickly encompass the origin. This implies that any angle between the two vectors can
occur, leading to a large angular uncertainty. Although the uncertainty magnitude for which the origin is entirely
encompassed by the sampled vectors depends on the magnitudes of the initial vectors ∆⃗i and ∆e⃗, in general
∆x⃗K ≪ 1 must hold for the metric to be employed. Thus, the expectation is that for most cases, the uncertainty
on the initial states needs to be very small in order for the uncertainty on the angle to be small enough for the
metric to be meaningful. This small initial uncertainty can often not be accomplished through ground-based
measurements. Apart from this drawback, the interpretation of the metric proved complicated. First of all, there
should be no drift in ∆a, as mentioned before. Furthermore, the miss distance should be taken into account as
well. That is, if the miss distance is aligned in the radial and cross-track direction, but is smaller than the HBR, the
situation is still risky. No clear safety threshold has thus been established. So, although the relative eccentricity
and inclination vectors seemed useful, the metric does not appear to be suitable for the risk analysis of a specific
event, given the accuracy of the currently available data.

Question 2: “Is it possible to extend the risk analysis time horizon, in order to enable reliable decision
making further in advance of the potential collision?”. As briefly mentioned above, it has been hypothesized
that the relative orbital parameters metric could be used not only to expand conjunction analysis, but also to
enhance the time horizon available for decision making. Namely, as the metric uses mean orbital elements to
determine the alignment of the miss distance, the metric was hypothesized to provide a more stable solution
when assessing the collision risk several days before TCA. The angle behavior over time is namely stable, whilst
the separations in the spatial dimensions x, y and z vary more rapidly over different updates. Although the angle
proved stable over time for the TerraSAR-X and TanDEM-X conjunction, the angular uncertainty discussed above
is too large to use the alignment between ∆⃗i and ∆e⃗ in a meaningful way. Again, although this was only tested
for the specific TerraSAR-X and TanDEM-X conjunction, it is expected that this will hold true for all cases for
which the metric is applicable. This should be further verified in future research. So, although the angle behavior
is stable over time, and could thus be used to predict the alignment of the miss distance forward, the uncertainty
on the angle was found to be too large for the test case used in this research.

Apart from the relative orbital parameters metric employed to extend the time horizon available for decision
making, some insights in the time availability have been found during the analysis of other (existing) metrics.
Namely, upon analysis of the current methods used for conjunction analysis, specifically analysis of vanilla Pc, it
was found that when usingmismodelled dynamics to propagate the states of the potentially colliding objects, these
states will drift from their actual trajectories. The longer these states are propagated with an inaccurate model,
the larger this drift will be. This also has an effect on the time horizon available for decision making. Namely,
when a collision will occur, but the states are propagated with an incorrect dynamical model, the states will have
drifted far from their actual miss distance when assessing the risk far before TCA, due to the long propagation
time. Then, the closer to TCA, the shorter the propagation time, and thus the smaller the drift from the actual
trajectories. The risk will thus become apparent only shortly before TCA. Hence, mismodelling has an effect on
the time horizon available for decision making, and again, the certainty on the states should not be overestimated.

Furthermore, it was found that in some cases the results of the OPM metric seemed to be more stable over time
compared to the results of Pc and Pcmax . This could be due to the fact that far before TCA, the covariance is
relatively large, and thus the credibility will be large due to the large covariance. To the contrary, Pc will be low
due to the dilution effect. However, it was also found that this is not always the case, as sometimes the credibility
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was larger for a smaller covariance. This behavior is unexpected, and due to this reason, it cannot be verified
with certainty that the metric could be used to enhance the time horizon of decision making. However, this could
be analysed in future research.

Question 3: “How can the new methods be synthesized to produce useful output for operators?”. To ad-
dress this research question, a survey was conducted to gather insights and perspectives from satellite operators.
Satellite operators are considered the end-users of risk metrics as they are responsible for the decision to mitigate
a collision risk, thus, their opinions on the data output are considered leading to address this question. The survey
was very valuable for the analysis, however, interpreting the various qualitative answers of different operators
proved challenging. Nevertheless, key takeaways could be identified across the different responses. The research
question focuses mainly on how the newly proposed metrics could be presented to operators. It is also valuable
to discuss the operators’ perspectives on how to structure conjunction data in general, in case potential future
extensions of the research identify other promising metrics.

For the metric specific presentations, it was found that OPMs should be presented both quantitatively, i.e. the
upper and (still theoretical) lower boundary should be presented, and qualitatively, i.e. the categorization of the
collision risk as either safe, undetermined or unacceptable should be indicated. As the interpretation of the metric
is different from the conclusions drawn from vanilla Pc, this should be clearly stated to operators. The relative
orbital parameters metric was deemed less suitable for conjunction analysis, due to previously named reasons. In
case such a metric would be used, the presentation should consist of the expected or worst-case scenario angle,
including the confidence interval associated to it.

In general, when using multiple different risk metrics, all metrics should be presented quantitatively. For some
specific metrics, an additional qualitative presentation could be valuable. Operators would benefit from an es-
timate of the reliability of each metric, and an additional global risk could be presented by selecting the most
appropriate metric for the specific event or by adding weights to the different metrics depending on their reliabil-
ity. Ameasure of the reliability of metrics should thus be investigated. Themost important takeaway of the survey
was that the metrics used should always be communicated transparently and the results should be replicable, to
further enhance their reliability.

Main Question: The answer to the main research question is that current conjunction analysis can be improved
using novel risk assessment metrics. Many different statistical representations of the collision risk have already
been derived, including Pcmax , all with their different advantages and disadvantages as outlined by Hejduk et
al. [42]. The OPM metric as derived by Delande at al. [21] would be a good addition to this list, due to its
reliability in mitigating the dilution effect. Furthermore, it has been found that one should never overestimate the
certainty on the information available, as mismodelling can lead to a wrong identification of the event and this
should thus be compensated for using process noise. The time horizon in which satellite operators need to make a
decision is still a subject of interest, as no clear solution has been identified to extend the time horizon available for
decision making. Furthermore, a lot can be gained from the information and perspectives available from satellite
operators. They have very clear views and hands on experience on the current challenges and opportunities of
conjunction analysis, and thus the operational application of novel risk metrics. This could also be concluded
from the research conducted by Kerr et al. [48]. It would thus be very valuable to keep operators, together with
SSA providers and method developers, in the loop when extending research on how conjunction analysis could
be further improved.

6.2. Recommendations
Drawing from the insights gained in this study, a series of recommendations are proposed for further research on
conjunction analysis. First, findings from the survey indicate that satellite operators consider the often unrealistic
covariance as problematic for conjunction analysis. The large size is named, together with the often too optimistic
presentation. As was found, an overestimation of the certainty on states can lead to problems when one uses an
incorrect dynamical model, but noise could compensate for this issue. For this research, the drag acceleration
was mismodelled on purpose, so the size of the matrixQ could be established relatively easily. In reality, unless
one deliberately chooses to propagate the states with a low-fidelity dynamical model, for efficiency for example,
it may be difficult to determine the correct size of this matrix. This should be further investigated. Furthermore,
a consequence of adding noise to the propagation, to address the former limitation, is that the covariance size
will be even larger, as was already a problem implied by the latter limitation. How to achieve a balance between
these two drawbacks would be an interesting topic for research. Moreover, the covariance for this research has
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been propagated using a linear method. The linearization error has been established to get an idea of the error this
induces, however, for further research it is recommended that the method of propagating the covariance is further
analysed. A method that is both accurate and efficient should be established, which could help in the reliability of
the simulated conjunction. Then, the actual covariance will be non-Gaussian after propagating with a nonlinear
dynamical model. This should be accounted for when determining Pc.

Another takeaway from the survey was that operators wish to gain insights into the reliability of risk assessment
metrics. Furthermore, a desire to receive an indication of the covariance quality and quality of the orbit deter-
mination process were mentioned. The quality or reliability of methods used in conjunction analysis in general
thus seems to be a recurrent topic of interest. For a low-relative velocity for example, it is known that the 2D Pc

formulations will not be accurate due to their assumptions. However, in the CDM as given by Privateer the 2D
Elrod probability is still provided for TSX/TDX conjunctions. It would be interesting if a weight or reliability
could then be added to this metric, as suggested by operators. To get an idea of the reliability of the metrics, or
to learn which metrics would be best suitable for a certain event, methods such as Copolla’s bounds could be
applied [18]. The Copolla bounds can be used to determine whether an event is of low-relative velocity. This
way it can be addressed which formulation of Pc needs to be used. This study is already implemented in NASA
CARA’s SDK and can be taken as an example for the development of similar methods to determine which risk
assessment metrics would be best suitable for a certain encounter. The reliability of the metrics then depends on
the encounter at hand.

Furthermore, the time horizon, in which reliable decision making is possible, has not been enhanced. As the
decision to perform a collision avoidance maneuver is critical, and it would be best if the maneuver can be
performed together with a station-keeping maneuver for example, the improvement of the time horizon is still
considered to be an important topic for further research. Although the relative e/i vector formulation could not
provide a meaningful solution, other metrics such as the distance metrics briefly discussed may be utilized. As
explained, the miss distance is currently calculated in Cartesian elements, but orbital element representations
have been proposed [80] which could be useful for conjunction analysis. Due to the use of orbital elements,
the result might be more reliable, although the uncertainty on the distance should be considered well, as the
uncertainty on the angle separation proved to be a significant drawback. Furthermore, the distance metrics as
proposed by Vananti et al. are derived for the application of tracklet linking. For conjunction analysis, the
formulation should thus be altered to only take into account a linking of the position vector, instead of the whole
state vector. Furthermore, in Reference [2] another metric using orbital element differences has been proposed.
The representation presented in this paper requires fewer assumptions than the relative eccentricity and inclination
vectors. This could thus also be investigated. Moreover, as already studied by ESA, machine learning might
also be utilized to enhance the time horizon. Machine learning was considered out of scope for this research,
but operators have mentioned the use of this for conjunction analysis [48]. So the study of machine learning
is recommended for further research. Furthermore, other improvements in conjunction analysis that were not
selected for investigation could be studied to improve the accuracy of risk assessments, such as the inclusion of
attitude information.

In addition, as identified during this research, another potential application of credibility is that the difference
between Uc and Pc might be used to determine which objects should be prioritized for additional data retrieval.
Namely, the difference between the upper and lower boundary, Uc − Lc, represents the knowledge an observer
is missing. The probability of collision, Pc, lies somewhere in between these two boundaries. The smaller
the ignorance, the closer the boundaries are together. Although the lower boundary has not been derived yet, the
difference between the credibility and probabilityUc−Pc could already indicate how large the amount of missing
information is. Based on this, additional data retrieval might be prioritized. The outer probability measure metric
might thus additionally be used as sensor tasking metric. In Reference [39] it was found that NASA CARA is
currently also investigating this. The topic is thus relevant for future research.

Also, the coordination between different satellite operators on when and how to maneuver could be further im-
proved, as suggested by multiple participants of the survey. Kerr et al. also addressed this point by recommend-
ing the review of regulations by an experienced space lawyer [48]. This recommendation is further endorsed,
together with a recommendation to study how this cooperation could be established. This topic is part of the
STM research area. In general, as already mentioned when answering the main research question, the insights of
operators proved very valuable for this study. The operators were able to present problems and ideas arising in
reality. So, a general advice would be to extend to conversation with operators, but also with SSA providers and
developers.



6.2. Recommendations 76

Finally, this research has also left a couple of questions unanswered. Namely, according to the implementation
of Pcmax

in SDK, the dilution effect should be completely mitigated, as the algorithm runs until convergence. It
was however found that this is not always the case. The reason as to why Pcmax

does not always mitigate the
dilution effect is thus not found yet. This should be investigated in more detail, as the metric is already used
in practice. Furthermore, in some cases, the credibility appeared to be lower for a smaller covariance, which is
unexpected. Why this phenomenon occurs, should also be thoroughly investigated, especially if the metric were
to become operational as either a risk assessment metric or a sensor tasking metric. Thus, to get a complete grasp
of the theory, both of these questions should be answered. Moreover, the uncertainty transformation from the
initial CDM uncertainty to the angular uncertainty, has now only been tested for one test case. To be complete
and thorough, various other test cases should be assessed, as discussed before.
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A
Thesis Project Plan

In this appendix, part of the project plan established during the initial stages of the research is presented. The
introduction is omitted to avoid repetition.

A.1. Methods
The expected methods that will be conducted are highlighted in this section. Before new methods can be imple-
mented, current practice in conjunction analysis should be studied and implemented such that TCA, MD and Pc

can be calculated for two potentially colliding satellites. To this end, a benchmark needs to be set up for which the
correct integrator and propagator combination must be chosen, including the correct stepsize. For this baseline
performance, it is important to study which different dynamical models need to be included in the propagation of
the states. For example, the bodies that need to be added in the model and the order and degree of the spherical
harmonics model. A balance needs to be found for the inclusion of as many accurate models as possible, and the
time it will take for a propagation to run. Before the benchmark can be created, physical and benchmark errors
should be chosen. Both the state and the covariance need to be propagated, both backwards and forwards. Both
propagations should be tested and verified. There are different methods for propagating the covariance, thus a
method both efficient and accurate should be chosen [52].

When the benchmark propagation is set up, a conjunction needs to be simulated. Then, algorithms and equations to
find the corresponding time of closest approach, miss distance and probability of collision should be implemented.
Algorithms should be verified before use. As mentioned before, there are some limitations on the assumptions
made for the Pc calculation, the effect of these assumptions could be tested as well. For example, Pc is only
valid for short encounters [10], thus testing what happens for a longer encounter can give more insights into the
problem. The other assumptions can be tested as well. A Monte Carlo algorithm can also be implemented for the
calculation of Pc. Although this is slow, it can give some insights into how well the 2D calculation approaches
the actual collision risk.

Then the next step is to set up a simulation environment, where different conjunctions can be tested. In this
simulation environment, the existingmethods can be tested formultiple different types of orbits. Sun-synchronous
orbits, orbits in GEO, LEO and MEO, circular orbits and highly elliptical orbits can all be tested. In the literature
review, new methods that could be used to expand conjunction analysis are identified. After the simulation set
up is complete and tested, new metrics can be evaluated. The new methods could be applied both individually as
simultaneously, such that the combination yielding the best performance can be identified.

A.2. Tools, Algorithms & Data
For the research TUDAT will be used. The data used will be simulated in the form of conjunction simulations.
Other data types, if available, could be used for further verification and testing. CDMs might be used for this
regard, but a correct data source still needs to be found for this. The extra data depicted in Table J.1 thus needs to
be further investigated. For the calculation of the TCA and MD the algorithm as derived by Denenberg could be
used [22]. This needs to be implemented in Python. Pc can be found using the 2D calculation or a Monte Carlo
algorithm analysis as introduced by Foster and Estes [32]. This also needs to be implemented in Python. The
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NASA CARA team has implemented various different methods for the calculation of Pc. These methods could
be used.

Type of data File formats Collection Purpose Storage Access
Simulated data .txt files Simulation Find collision risk Gitlab TNO and TU Delft

CDMs .cdm Download Conjunction simulation Gitlab TNO and TU Delft

Table A.1: Data that is expected to be used.

A.3. Expected Results
The hypothesis is that the current methods used for conjunction analysis can be further improved using different
methods. When assessing the performance using Type 1 and Type 2 errors, the expectation is that implementing
methods such as possibility and plausibility measures (instead of the probability measure) will lead to a higher
amount of false positives. This is due to the different null hypothesis defined for these different methods. For
the probability, the default state is to not make a mitigation maneuver, whilst for the possibility and plausibility
the default state is to make a maneuver. The amount of false negatives will consequently be decreased. When
combining this with a measure that could be used for filtering potential conjunctions this might yield an optimal
performance. Outer probability measures might decrease the amount of false positives due to the fact that for
some detections the data will be categorized as too uncertain, and thus no mitigation measure will be taken. The
results of the implementation of the distance metrics could be used to get multiple different miss distances and
assess all these different distances by a threshold. Assessing a conjunction on multiple distance metrics might
both yield less Type 1 and Type 2 errors. The relative motion description might yield a faster method of assessing
the collision risk.

A.4. Planning
The methodology can be divided into multiple work packages divided over the different research phases. This is
shown below.

Literary review (Week 1 - Week 6): Research proposal deliverable week 6

• Identify the need for conjunction analysis
• Study the current practices used in CA
• Identify the limitations of current practices
• Study new methods that could be implemented to improve CA

Research Phase 1 (Week 7 - 17): Mid Term deliverable week 16

• Find additional data apart from simulated data
• Create benchmark propagation
• Choose propagation method covariance propagation
• Implement + validate current methods for finding TCA, MD, Pc

• Verify limitations of assumptions for Pc

• Choose a couple of new methods that can be implemented and implement
• Retrieve first result

Research Phase 2 (Week 18- 28): Thesis draft deliverable week 26

• Validate results
• Find conclusion

Submission Phase (Week 29 - Week 37)

• Finish up thesis
• Prepare for defense
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A Gantt chart is used to give a broad idea of the planning for the different phases. Note that research phase 1
is planned out in more detail then research phase 2. Every phase has been given some room for iteration. The
milestone meeting plan can be seen in the chart. Note that the set holidays may change, and the milestones/key
review/deliverables dates might thus change a bit. The initial Gantt chart is shown in Figure A.1.

After the mid-term, an updated planning was made for the second research phase, visualized in Table A.2. As
can be seen, the first results were not entirely retrieved yet, as the covariance estimation was in the final stages at
the start of the second research phase. Furthermore, the different metrics were not implemented yet, which was
the planning according to the Gantt chart. This planning thus had to be updated.

Table A.2: Planning of the second research phase.

Week Deliverable Goal
18 Mid-term review Covariance estimation finished
19 Implement first metric: Relative Parameters or OPMS + document it
20 Assess performance first metric. Define some cases with impact, and

some cases without impact. Check when the OPMs assess the
conjunction as impact, vs the probability of collision. Document results

21 Create interview questions and send out, implement
second metric + document

22 Implement third metric + document
23 Assess newly implemented metrics + document results
24 Assess the metrics for other testcases + document results
25 Work on PPD Every Monday + study for exam
26 Vacation
27 Assess interview results + Finish up Monte Carlo assessment (low

priority) + document + reiteration
28 Re-iteration + draft of conclusion/abstract
29 Draft Submission Hand in thesis draft on Wednesday
30
31 Green Light Review Work on feedback thesis
32 Request Examination Work on feedback thesis
33 Christmas break
34 Christmas break
35 Final details
36 Thesis submission Submit final thesis
37 Prepare defense
38 Thesis Defense
39 7 Extra vacation week for unforeseen events

A.5. Conclusions
The risk of in-orbit collisions between space objects is increasing due to the rising number of spacecrafts and
space debris fragments present in highly populated regimes. The current modus operandi in studying the risk of
such collisions is not representative of the complete picture. These methods may be expanded by looking at outer-
probability measures, relative orbit parameterizations, and distance metrics. Furthermore, the timeliness of the
data will be analysed. The different methods will be studied and tested simultaneously to see which combination
of methods will yield the best performance. When a successful expansion has been found, a further goal is to
present a useful output for the methods.
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Figure A.1: Initial planning given in a Gantt chart.



B
Propagation

B.1. State propagation
The state propagation is analysed using data from the CDM associated with the first Starlink-on-Starlink test
case. For the selection of the integrator, propagator and acceleration models an analysis is conducted using one
of the two Starlink satellites, namely Starlink-3254. The state needs to be propagated forward and backward as
mentioned in Chapter 4. The goal of the backward propagation is to propagate the satellite states from tTCA to t0.
This should approximate the states used for the generation of the CDM. Using these states, a realistic conjunction
scenario is simulated, providing a basis for the evaluation of different conjunction assessment metrics.

A propagation incorporates multiple error sources. The propagation will be affected by numerical errors, which
can originate from both rounding and truncation errors. The latter are caused by the fact that a propagated state
is an approximation of the actual state. Furthermore, the propagation leads to errors due to model simplifications
and imperfect knowledge. The former error source exists due to the fact that often a simplified dynamical model
is used for running efficiency. The latter error source arises from the fact that the initial state used for propaga-
tion is influenced by measurement errors, and the model description is limited in accuracy due to the available
information. For example, parameters such as the drag coefficient and the solar radiation pressure coefficient are
difficult to determine, as their values depend on factors such as the shape, material, and orientation of the satellite.

The accuracy of the dynamical model can be assessed by defining a high-fidelity benchmark model using TUDAT
and comparing it to models where perturbations are removed one by one. By comparing the high-fidelity model
with simplified models, the acceleration model for which a certain accuracy requirement is met can be established.
The accuracy requirement has been set to 1 m. This requirement has been established as a CDM is published
when the miss distance is less than 1 km. Thus, to be certain that the number of missed conjunctions due to the
selection of the dynamical model is limited, the model requirement has been set three orders of magnitude below
the CDM requirement. The state of Starlink-3254 has been propagated for seven days, as this is the common
length of a screening period. The propagation has been conducted using an RKDP7 integrator with a step size
of four seconds. The benchmark model included perturbing forces due to the spherical harmonics (SPH) of the
Earth (degree and order 200), spherical harmonics of the Moon (degree and order 20), point mass (PM) gravity
of the Sun and planets, atmospheric drag (Cd = 2.2, model US76), radiation pressure (RP, Cr = 1.3) and
relativistic effects (RE). All perturbations were then either removed or simplified. The results can be seen in
Figures B.1b and B.1a. In the legend, the simplifications are indicated. For more clarity, they are first explained
here. “Moon PM”, indicates that the acceleration due to the spherical harmonics (degree and order 20) of the
Moon is simplified to the acceleration due to the point mass gravity of the Moon. The lines with a minus before
them (“-Drag”, “-RP”, “-RE”, “-Planets”), show the results for dynamical models without the respective force.
For labels including “Earth” followed by two numbers, the spherical harmonics (degree and order 200) of the
Earth are relaxed to a lower order and degree. The line defined by “All Simplifications” represents the model for
which the simplifications that were deemed justified were relaxed or removed all at once. This thus means that
the Moon is approximated as point mass, the perturbing forces of the planets were removed and the degree and
order of the spherical harmonics of the Earth were set to 100. As the latter force is dominant over the other two
forces, the line for this model simplifications is almost identical to the line of “Earth 100,100”.
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(a) General perturbations adjusted. (b) Spherical harmonics models adjusted.

Figure B.1: Evaluation of acceleration models needed for the propagation.

As can be seen, the models needed for the requirement are of relatively high fidelity. All the planets can be left
out of the simulation, and the Moon can be approximate as point mass, but the degree and order of the spherical
harmonics of the Earth can not be lower than 100. This model was thus very slow to run. The CDM published on
Privateer Wayfinder is however also accompanied with information on the dynamical model used. It states that
the spherical harmonics model of the Earth is set to a degree and order of 20, and the third-body perturbations
included are the Moon and the Sun. Thus these perturbations, together with radiation pressure and atmospheric
drag are used to propagate the states backward and forward. Although the question could arise on whether this
dynamical model will not lead to many missed or wrongly identified conjunctions, the use of the model can be
justified by the fact that the model is also used in reality. Furthermore, the goal of the forward and backward
propagation is to find the states at t0 (the start of the screening period), such that the conjunction scenario can
be predicted at tTCA with identical characteristics as the scenario found in the CDM. The forward and backward
propagation thus needs to be consistent, and the numerical error will be more important. Due to these reasons,
and the advantage of the computational efficiency of the model, the choice was made to run the analysis with the
lower-fidelity model, consistent with that used by Privateer Wayfinder.

For the analysis of the integrator type and its associated stepsize or tolerance, the numerical error is evaluated
using backward and forward propagation. In principle, the object follows a trajectory determined by the laws of
physics (when no thrust is used). The numerical propagator should thus give the same results when backward
and forward propagating the state using an identical dynamical model. However, numerical truncation and round-
ing errors will cause a deviation from the initial state after propagating backward and forward. The numerical
error can be established by assessing the position error after the propagations. The permissible error is set to 1
centimeter (10−2 m), to ensure the propagation is accurate. As objects are screened for conjunctions for approx-
imately seven days, the forward and backward propagation is performed for seven days. For the integrator the
fixed Dormand-Prince (RKDP7) integrator is used. This is an often used integrator for astrodynamics problems.
The order of the integrator is not too high, which would lead to a large stepsize permissible with the require-
ment. This may lead to unreliable results for a fast changing dynamical model. But the order is also not too low,
which would yield a very low stepsize needed to achieve the permissible error. The Cowell propagator is used
for propagation, this is a straight forward and accurate propagator that is valid for many different astrodynamics
problems. The propagation has been initialized at time tTCA, as given in the CDM. Furthermore, the state of the
first object present in the CDM is again used. This state has been back propagated from tTCA to t0. The name of
t0 might be misleading here, as this time is thus not equal to zero, but is defined as minus seven days. This time is
defined as t0 as it represents the start of a screening period for conjunction analysis. Then, to determine the error
after backward and forward propagation, the state of the object is found at t0, and again initialized for a forward
propagation from t0 back to tTCA. At every epoch, the difference between the states after forward and backward
propagation has then been found. Figure B.2 shows the positional error over time. As expected, the error is zero
at t0, indicated by t = −7 days in the plot. This is as expected, as the state at t0 has been directly copied for the



B.1. State propagation 87

forward propagation, and thus the difference between the state at t = −7 days is equal to zero. The maximum
error can be found at tTCA, as the errors accumulate over the course of propagation. The maximum error has
been found to be below 10−2 m when performing the analysis with a timestep of four seconds. The performance
thus obeys the requirement.

Figure B.2: Error in position and velocity after propagating backward and forward.

The backward propagation needs to be very accurate to ensure that, during the test case setup, similar states as
the ones used to generate the CDM are found. When the states at t0 are found, the requirements for forward prop-
agation can be relaxed. Namely, the analysis will consist of finding the miss distance, time of closest approach,
probability of collision, and other possible new metrics. This will often need to be done, leading to the need
for an accurate but fast model. The numerical error requirement for forward propagation can be increased with
an order, such that the permissible error is now set to 0.1 m. For the backward propagation, the fixed RKDP7
integrator was used for consistency. For the forward propagation, variable integrators can also be considered.
These often require fewer function evaluations, and the automatic timestep adaption yields a good performance
for highly elliptical orbits. To test which integrator is best suitable to be used, multiple integrators with various
different stepsizes or tolerances have been tested. The results for these various integrator settings are compared
to the results of the integrator settings as defined for the backward propagation. The trajectory following from the
RKDP7 integrator with a stepsize of four seconds, is thus used as a benchmark. The new, to be tested, settings
can be seen in Table B.1 and the results of the analysis can be seen in Figures B.3a and B.3b.

Table B.1: Integrator settings for the integrator analysis.

. Fixed stepsizes Variable tolerances
RKF4(5) [1, 5, 10, 20, 30] 10−15+i

RKF7(8) [20, 30, 50, 70, 80] 10−15+i

RKDP8(7) [10, 20, 30, 40, 70] 10−13+i

BS(2) [5, 10, 20, 30, 40] 10−13+i

BS(4) [30, 40, 55, 70, 100] 10−13+i

BS(6) [30, 40, 55, 70, 100] 10−13+i
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(a) Runge Kutta and Dormand Prince integrators. (b) Bulirsch-Stoer integrators.

Figure B.3: The maximum position error as a function of the number of function evaluations.

As can be seen, the variable RK integrators use fewer function evaluations than the fixed RK integrators. For
the BS integrators this effect is less visible. The fixed integrators show a more consistent behavior compared to
the variable ones. Meaning that when the stepsize gets lower, the performance gets better. The trend is more
smooth for the fixed integrators. This may be due to the fact that the settings for the fixed integrators are in the
truncation dominated region, whilst the settings for the variable integrators are in the rounding dominated region.
Both the BS6 and RKDP8(7) variable integrators show promising results. Since the fixed step RKDP7 integrator
is also used for the backward propagation, the choice was made to use the variable RKDP8(7) integrator with a
tolerance of 10−13 for the forward propagation.

The complete settings used for the backward and forward state propagation are shown in Table B.2.

Table B.2: Settings for backward and forward propagation.

Backward Forward
Dynamical Models Earth spherical harmonics 20D 20O Earth spherical harmonics 20D 20O

Atmospheric Drag (Cd = 2.2, Atmospheric Drag (Cd = 2.2,
model = US76) model = US76)
Sun point mass gravity Sun point mass gravity
Sun radiation pressure (Cr = 1.3) Sun radiation pressure (Cr = 1.3)
Moon point mass gravity Moon point mass gravity

Integrator Fixed RKDP7 ∆t = 4 s variable RKDP8(7) tolerance = 10−13

Propagator Cowell Cowell

For the physical characteristics of the satellites, the DISCOS database is used.

B.2. Covariance propagation
The covariances of the states at t0 are determined using a batch estimator. An initial uncertainty in a state is a
result of multiple different aspects. First, the state estimate is influenced by measurement errors. Measurements
are used to estimate the state, that is, a state is fitted to the measurements. However, there is a range of states
that can fit these measurements, resulting in uncertainty. Second, the dynamical model used for the estimation
process can also contribute to a deviation from the actual state, leading to additional uncertainty. Third, numerical
errors occur in the orbit determination process, further contributing to the covariance, however this is not typically
accounted for in the batch fitting process. As an object’s state is propagated, the uncertainty in the state increases.
When performing a Monte Carlo analysis for example, all the deviated states follow a different trajectory, leading
to a spread of the possible states over time. This effect can be seen in Figure B.4
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Figure B.4: The covariance growth for two space objects, from Reference [67]

A covariance matrix can be propagated using various methods. For example, a linear stochastic propagation can
be used, the unscented transform method, a Monte Carlo algorithm or numerous other propagation methods. For
the linear propagation the state transition matrixΦ is used. The matrix Φ at a certain epoch t is given by:

Φ(t, t0) =
∂x⃗(t)

∂x⃗(t0)
. (B.1)

With x⃗ the state. For a propagation excluding noise, the covariance matrix P at time t can be found with:

P(t) = Φ(t, t0)P(t0)Φ(t, t0)
T . (B.2)

The covariance can also be propagated by performing a Monte Carlo analysis. This is the most accurate method
of covariance propagation, if the number of samples used for the analysis is sufficient. States can be sampled
using a multivariate normal distribution of the associated covariance. With the deviated sampled states x⃗di

(t0),
the initial deviations in the states can be found with:

∆x⃗MCi(t0) = x⃗(t0)− x⃗di(t0). (B.3)

With x⃗(t0) the initial state, and ∆x⃗MCi
(t) the initial state deviation. Every sample is then again propagated

for seven days. After the propagation, the deviated sample states x⃗di
(t) are used for the computation of the

covariance matrix. For time t, the mean deviated state is calculated using:

¯⃗xd(t) =
1

N

N∑
i=1

x⃗di
(t). (B.4)

With Ns the number of samples. The covariance is then computed using:

P(t) =
1

Ns

Ns∑
i=1

(x⃗di
(t)− ¯⃗xd(t))(x⃗di

(t)− ¯⃗xd(t))
T . (B.5)

Using the state transition matrix, the linear state deviation∆x⃗L at time t can be found using:
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∆x⃗L(t) = Φ(t, t0)∆x⃗L(t0). (B.6)

Where ∆x⃗L(t0) represents the initial deviation x⃗(t0) − x⃗d(t). To assess the linearization error as a result of
propagating the covariance using a linear propagation model, linear initial deviations can be taken equal to the
initial Monte Carlo deviations samples∆x⃗MC(t0). When running the Monte Carlo analysis and the linearization
propagation both for the same sample deviations∆x⃗(t0), the linearization error can be found for a single sample
with:

∆r⃗i(t) = ∆r⃗Li(t)−∆r⃗MCi(t). (B.7)

Where ∆r⃗Li
and ∆r⃗MCi

are the position vectors within the full state vectors. The linearization error∆r⃗ can be
used to quantify the error incurred to the linearization of the problem. To find this linearization error, first it must
be verified that the sample size used for the Monte Carlo analysis is sufficient. For this, a Kolmogorov-Smirnov
test can be used [35]. The Monte Carlo run with 10000 samples can be divided into multiple sub-sample sets.
All sets have different sizes, given by Ns = 100, 200, 400, 1000, 2000, 4000, 6000, 8000. The KS-test can
be used to compare the underlying CDF of the total sample set to the CDF of one of the sub-sample sets. The
KS-statistic then gives a measure of whether the sample sets originate from the same distribution. If this is the
case, this would indicate that the sample size used is sufficient. It must be noted however, that when a sub-sample
set encompass a small part of the total sample size, there are multiple different possibilities for the combination
of different samples drawn into this set. To account for this, the test should thus be repeated multiple times, to
determine the maximum KS-statistic for a certain sample size. The higher the number of sub-samples, the less
times the algorithm needs to be repeated. The number of times for which the sub-samples sizes given above are
run for are given by NR = 3200, 1600, 800, 320, 160, 96, 63, 31 respectively [35]. This leads to the results
shown in Figure B.5.

Figure B.5: Kolmogorov–Smirnov test statistic as a function of the sample size.

To determine if the sample size is sufficient, it is necessary to establish the allowable change in KS. This can be
achieved by defining the maximum allowable offset in the determined linearization error. When considering only
the error after a seven-day propagation, this results in the CDF shown in Figures B.6a and B.6b.
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(a) CDF. (b) CDF, zoomed in.

Figure B.6: Cumulative probability distribution as a function of the linearization error.

To determine the linearization error, it has been determined that 95% of all the errors found, should be below the
set error. This error has been marked in Figures B.6a and B.6b. Since the linearization error is only used as a
measure for the error introduced by linearized propagation method, the allowed offset has been set to 10%. This
ensures that the order of magnitude of the error remains similar. The allowed change in the KS statistic can then
be found using:

∆%KS = ∆%∆r⃗∇∆r⃗95%. (B.8)

Where∇ represent the gradient ∂KS
∂∆r⃗ and was found to be equal to 5.77·10−7. Furthermore, the linearization error

at the 95th percentile∆r⃗95% was found to be equal to 30807.2m, and the allowed change in the error∆%∆r⃗ was
defined to be equal to 0.1. This leads to an allowed∆%KS of 0.018. As can be seen in the figure, the maximum
KS statistic found for both a sample size of 6000 and 8000 samples is below this allowed change. Thus a sample
size of 10000 samples has been deemed sufficient to determine the error due to linearization. The linearization
error after a propagation of seven days was found to be equal to 30807.2 m. Figure B.7 shows the error behavior
over the course of propagation. The linearization errors have been chosen with a 95 percent confidence interval.

Figure B.7: The linearization error over time for a confidence interval of 95%.
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As can be seen the error grows quickly over time. Although this linearization error is very significant, the linear
propagation method is still used for the propagation of the covariance. This choice has been made as the time
required to run multiple different Monte Carlo analysis is deemed too large for an effective analysis of different
risk assessment metrics. A linearized propagation is also often used in practice, due to the same reason. Further-
more, as also mentioned in Chapter 4, it is important that the methodology used is both consistent and repeatable,
which is the case for a linearized propagation. Although other propagation methods could be used, the analysis
and implementation of these different propagation methods is considered out of scope for this research.



C
Covariance Estimation

A covariance matrix can be estimated using orbit determination processes. First, the general orbit determination
process will be explained here. Second, the method used to estimate the covariance is described. Last, the settings
for the estimation process are defined.

An orbit determination process is used to estimate the state x⃗ of a satellite at a certain time t. For this process,
tracking data are needed. This data can include radar data, optical data, laser ranging data or various other
data sources. The state vector is often described in Cartesian coordinates: x, y, z, vx, vy, vz . When using radar
tracking data, the observations often consist of the azimuth, elevation and range information. Due to the difference
in coordinates, one cannot directly translate the tracking information into an estimated state for the spacecraft.
The relation between the tracking observations and the state vector components is namely non-linear in nature,
complicating the process [74].

When one has observations, a dynamical model can be used to approximate the reality. Using the state parameters
x⃗, and the dynamical model represented by the design/information matrixH, the observations y⃗ can be modelled
using [74]:

y⃗ = Hx⃗+ ε⃗. (C.1)

Here ε⃗ defines the error between the observations y⃗ and the modelled observations Hx⃗, such that ε⃗ = y⃗ −Hx⃗.
The relation between the parameters and the observation is non-linear, however the matrixH is linearized. This
is often accomplished by taking a first order Taylor series expansion and dropping higher-order terms.

To explain the covariance estimation, a linear relation between the observations and parameters is thus assumed.
The objective function to minimize is defined by J = εTP−1

yy ε, with Pyy the measurement noise covariance
matrix. Using the equation ε⃗ = y⃗ −Hx⃗ it can be found that:

J = y⃗TP−1
yy (y⃗ −Hx⃗)− x⃗THTP−1

yy (y⃗ −Hx⃗). (C.2)

Only the second term can be minimized, using either x⃗T = 0 or x⃗THTP−1
yy (y⃗ − Hx⃗) = 0. The latter can be

rewritten such that:

x⃗ = (HTP−1
yy H)−1HTP−1

yy y⃗. (C.3)

The covariance matrix of the parameters x⃗ can then be found using:

Pxx = (HTP−1
yy H)−1. (C.4)
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Such an estimation process can be performed using TUDAT. If one has an initial state available, and ground
stations which can observe the object are defined, the uncertainty of the initial state can be estimated. TUDAT
simulates observations made by the ground stations, which are then used to find the covariance using [75]:

P = (HTWH+P−1
0 )−1. (C.5)

Where againH is the design matrix, found withH = ∂y⃗
∂x⃗ , for which y⃗ is the vector of computed observations and

x⃗ is the vector of estimated parameters, P0 is the initial covariance, often defined as zero, and W is the weight
matrix [75].

The propagation settings of the estimation are set equal to the propagation settings of the backwards propagation
as defined in Table B.2. This choice was made as the estimation of the covariance is still a part of the truth data
generation, thus the same settings are used. For the estimation, multiple ground stations are defined to simulate
the observations with settings documented by Vallado [79] in Tables 4-2, 4-3 and 4-4. The settings used for the
covariance estimation are shown in Table C.1.

Table C.1: Observation settings for the covariance estimation.

Sensor Longitude [◦] Latitude [◦] Altitude [m] Noise Noise Viability [◦]
Range[m] Doppler [◦]

Ascension, −7.91 −14.40 56.1 101.7 0.02655 1
Atlantic
Clear, AK 64.29 149.19 213.3 62.5 0.05155 1
Antigua, 17.14 −61.79 0.5 92.5 0.01815 0
West Indies
Kaena Point, HI 21.57 −158.27 300.2 92.5 0.01815 0
Millstone, MA 42.62 −71.49 123.1 150.0 0.01000 0
HayStack, MA 42.62 −71.49 115.7 150.0∗ 0.01000∗ 0∗

The values with a star (∗) for the Haystack sensor are assumed to be the equal to the values of the Millstone radar,
as no data was available in the tables for these values. As the estimation is merely used for finding a covariance
matrix that rotates correctly, and the covariance is scaled after the estimation, the estimation is sufficient. The
Doppler noise was found by taking the average over the elevation and azimuth noise as found in Table 4-3 [79].
Every radar was assigned a one-way instantaneous Doppler link and a one way range link. During a period of
three hours, new observations are generated every 60 seconds.

The estimation has been conducted for the Starlink on Starlink conjunction. The states have been backpropagated
for ∆tback = −7 days. The original miss distance as provided in the CDM was kept. The standard deviations
estimated for the primary object at t0 are given in Table C.2.

Table C.2: Standard deviations found after estimation.

σx[m] σy[m] σz[m] σvx [m] σvy [m] σvz [m]

4.23 · 10−2 3.80 · 10−2 2.63 · 10−2 3.83 · 10−5 3.27 · 10−5 5.02 · 10−5

As can be seen, the covariance is very low. It is thus too optimistic, due to the settings used to generate it. For
this reason, the covariance is scaled, as further explained in the methodology.



D
Frame Rotations

An often used and in general more intuitive frame for astrodynamics problems is the RTN frame. The transfor-
mation from ECI to RTN is explained in this appendix. First the transformation matrix is calculated using the
state vector x⃗, the position r⃗, the velocity v⃗ and the angular momentum vector h⃗. Another extra vector s⃗ will be
defined using the angular momentum and position:

r̂ =
r⃗

||r⃗||
,

h⃗ = r⃗ × v⃗,

ĥ =
h⃗

||⃗h||
,

ŝ = ĥ× r̂.

(D.1)

The rotation matixR(RTN/ECI) is then given by:

R(RTN/ECI) =

r̂x r̂y r̂z
ŝx ŝy ŝz
ĥx ĥy ĥz

 . (D.2)

The rotation matrix can be applied to transform a state x⃗(ECI) in ECI to a state x⃗(RTN) in RTN by:

r⃗(RTN) = R(RTN/ECI) · r⃗(ECI),

v⃗(RTN) = R(RTN/ECI) · v⃗(ECI).
(D.3)

To rotate a vector from the RTN frame to ECI, the matrix R(ECI/RTN) can be found with R(ECI/RTN) =
R(RTN/ECI)T . The covariance matrices provided in the CDMs are often defined in the RTN frame, these can be
rotated to ECI with:

P(ECI) = R(ECI/RTN)P(RTN)
(
R(ECI/RTN)

)T
. (D.4)

When the covariance matrix includes both the position and velocity, and is thus 6x6, the rotation matrix also needs
to be 6x6. In general, this can be obtained with [74]:

R =

[
R3×3 03×3

03×3 R3×3

]
. (D.5)
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E
Sample Size Monte Carlo algorithm for σ∆γ

The sample size needed for the transformation of the uncertainty on the initial Cartesian states to the uncertainty
on the angle separation needs to be determined. For this, again the KS statistic is used[35]. As was explained
in Appendix B, the allowable change in the KS statistic can be determined by defining the acceptable change in
the angle separation uncertainty. This latter acceptable change has been set to be equal to 1%. As the possible
angle lies within 0◦ and 180◦, this percentage leads to a maximum offset of 1.8◦. The uncertainty on the angle
separation has been found as a function of the covariance size as shown in Figure 5.29. As can be seen, the
approximate sizes of the standard deviations σ∆γ observed lie within an interval of [1◦, 60◦]. Although a change
of 1.8◦ on an uncertainty equal to 1◦ is a significant, it is acceptable for the application of the metric, as the
metric yields a stable solution over time. As was seen for the TSX/TDX test case, it takes approximately 30 days
to go from an angle equal to 180◦ to 80◦, so the effect of an offset of 1.8◦ will not have a significant effect. The
acceptable change in the KS statistic can then be determined by studying the CDF, as shown in Figures E.1a and
E.1b.

(a) CDF zoomed in on µ∆γ − σ∆γ . (b) CDF zoomed in on µ∆γ + σ∆γ .

Figure E.1: Cumulative probability distribution as a function of the angle separation, zoomed in.

The gradient∇ or ∂KS
∂∆γ can be found at the relevant point in the CDF. The allowed change in the angle separation

∆%∆γ was set equal to 0.01. Then the allowed offset in KS (∆%KS) can be found using:

∆%KS = 0.01
∂KS

∂∆γ
∆γ. (E.1)
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The gradients at µ∆γ − σ∆γ and µ∆γ + σ∆γ have been taken, and it was found that the former gradient was
lower. The acceptable change in KS will thus also be lower, and if the sample size for this case is sufficient, it
will thus also be sufficient for the latter case. The gradient was found to be equal to 3.95 · 10−3. The angle was
found equal to 50.6◦, and the allowed change in ∆γ was set to 1%. The allowed change in KS was found to be
equal to: 0.0021.

The total sample sizes used is equal to 10 million samples. The samples sizes tested are Ns = 100000, 200000,
400000, 1000000, 2000000, 4000000. The number of times for which the sets are subsampled are equal to
NR = 3200, 1600, 80, 320, 160, 96 [35]. The KS-statistics can be seen in Figure E.2b. As can be seen in the
figure, a sample size larger than 1 million is sufficient. As these result might change for every individual case
and run, a sample size of 4 million samples is used to determine the uncertainty on the σ∆γ .

(a) CDF as a function of∆γ. (b) KS statistic as a function of the sample size.

Figure E.2: CDF and KS statistic for the transformation of the initial uncertainty to the angular uncertainty.



F
Derivation Relative Orbital Parameters

F.1. Relative Eccentricity and Inclination Vectors
To find the relative eccentricity vector, the individual eccentricity vectors of both orbits can be used. From Figure
3.4a it can be observed that the eccentricity vector can be found with [34]:

e⃗ = e

[
cosω
sinω

]
. (F.1)

The relative eccentricity vector can then be found with:

∆e⃗ = e⃗2 − e⃗1. (F.2)

Based on Figure 3.4a, the relative eccentricity vector can also be expressed as:

∆e⃗ = δe

[
cos(π − φ)
sin(π − φ)

]
= δe

[
cos(φ)
sin(φ)

]
. (F.3)

Earlier researchers have derived the relative inclination vector from Figures 3.4b and F.1 using spherical geometry.

Figure F.1: Geometry of two orbits, with the relative inclination vector indicated, from Reference [34].

Specifically, it has been found that the relative inclination vector can be expressed as [34]:

∆⃗i = sin δi

[
cos θ
sin θ

]
. (F.4)
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This relative inclination vector can then be further approximated. That is, by using the spherical sine rule, one
can observe that the length of N1 to N12 can be expressed as θ, and by observing that the undefined angle at N2

is equal to π − i2, it can be found that:

sin δi

sin∆Ω
=

sin(π − i2)

sin θ
. (F.5)

Using the fact that i1 ≈ i2 = i, sin∆Ω ≈ ∆Ω and sin(π − i) = sinπ cos i− cosπ sin i = sin i, it can be found
that [34]:

sin δi sin θ = ∆Ωsin i. (F.6)

This leads to:

∆⃗i = sin δi

[
cos θ
sin θ

]
=

[
sin δi cos θ
∆Ωsin i

]
. (F.7)

As ∆⃗i can also be expressed as ∆⃗i =
[
∆ix
∆iy

]
, the simplified expression for ∆ix can be found using the norm of

the inclination vector:

|||∆⃗i||2 = ∆i2 = ∆i2x +∆i2y = ∆i2x +∆Ω2 sin2 i. (F.8)

Due to the small angle∆Ω, ∆ix can be approximated as:

∆ix ≈ ∆i. (F.9)

Thus, the following simplification can be found:

∆⃗i = sin δi

[
cos θ
sin θ

]
≈
[

∆i
∆Ωsin i

]
. (F.10)

F.2. RTN Separations
Using these relative eccentricity and inclination vectors, the separations in the RTN frame can be found. For the
separation in the radial direction, a formula given in the book written by Junkins and Schaub [44] can be used
[34]:

dM

dE
=
r

a
= 1− e cosE. (F.11)

This can be approximated as [34]:
r

a
≈ 1− e cosM. (F.12)

With M equal to the mean argument of latitude M = u − ω. By making use of trigonometric functions, the
equation reads:

r

a
≈ 1− e cos(u− ω) = 1− e(cosu cosω + sinu sinω) = 1− e cosu cosω − e sinu sinω. (F.13)

Substituting the values for∆ex and∆ey , this can be written as:

r

a
≈ −(ex) cosu− (ey) sinu. (F.14)

Now, the goal is the get the radial separation, thus ∆r
a , this can be found by calculating:
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∆rR
a

=
r2 − r1
a

≈ (1− ex2 cosu− ey2 sinu)− (1− ex1 cosu− ey1 sinu) (F.15)

Leading to:

∆rR
a

≈ −∆ex cosu−∆ey sinu. (F.16)

Furthermore, the semi-major axis drift also contributes according to

∆rR
a

≈ ∆a

a
. (F.17)

For the separation in the along-track direction, D’Amico et al. have stated that the following can be shown [19]:

ν −M = 2e sinM = (−2ey) cosu+ (2ex) sinu. (F.18)

With ν the true anomaly. This leads to [19]:

∆rT
a

≈ (ν2 −M2)− (ν1 −M1) = (−2∆ey) cosu+ (2∆ex) sinu. (F.19)

The drift in the semi-major axis and argument of latitude also contribute to this term, according to [19]:

∆rT
a

≈ ∆u− 3

2

(
∆a

a

)
(u− u(t0)). (F.20)

Using Figure 3.4b it can be seen that the cross-track separation∆rN can be found with [34]:

sin(π/2)

sin(u2 − θ)
=

sin δi

sin(∆rN
a )

. (F.21)

Then, sin(π/2) is equal to 1, and the small angle approximation can be used for the cross-track separation
(sin(∆rN

a ) ≈ ∆rN
a as a≪ rN ), thus [34]:

∆rN
a

≈ sin δi sin(u2 − θ). (F.22)

With u1 ≈ u2 = u and sin(u− θ) = sinu cos θ − cosu sin θ one gets [34]:

∆rN
a

≈ sin δi(sinu cos θ − cosu sin θ). (F.23)

Substituting in the values found for∆ix and∆iy , this yields [34]:

∆rN
a

≈ (∆ix) sinu+ (−∆iy) cosu. (F.24)

The separation equations can then be put back in their polar representations to get insight into the angle difference.
By assuming sin δi ≈ δi, Equation F.22 can be written as [34]:

∆rN
a

≈ δi sin(u− θ). (F.25)

And Equation F.26 can be filled in with Equation F.3 to find [34]:
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∆rR
a

≈ −δe cosφ cosu− δe sinφ sinu = −δe cos(u− φ). (F.26)

Lastly, Equation F.19 can be written as [19]:

∆rT
a

≈ 2δe sin(u− φ). (F.27)

The angles φ and θ in these polar representations can be found using Equation F.3 and Equation F.10.

F.3. Relation to Clohessy–Wiltshire Equations
Note the relation to the bounded CW equations, which are given by [44]:

∆rR(t) = A0 cos(nt+ α),

∆rT (t) = −2A0 sin(nt+ α),

∆rN (t) = Bo cos(nt+ β).

(F.28)

As can be seen, A0 = aδe and B0 = aδi. The relation of α and β can be found by using the following trigono-
metric functions: cos(−x) = cos(x), sin(−x) = − sin(x) and cos(π − x) = − cos(x). Then, as u = ω +M
andM =M0 + nt, for the radial separation, it can be found that:

∆rR = −aδe cos(u− φ)

= aδe cos(π − (u− φ))

= aδe cos(π − u+ φ)

= aδe cos(π − ω −M + φ)

= aδe cos(π − ω −M0 − nt+ φ)

= aδe cos(−nt+ (π − ω −M0 + φ))

= aδe cos(nt− (π − ω −M0 + φ)).

(F.29)

And thus, since A0 = δae, from Equation F.28 it can be found that α = ω +M0 − π − φ. As u0 = ω +M0, it
can be concluded that α = u0 − π − φ. Using α, based on ∆rT it can be derived that∆rToff

= aδu.

Similarly, additionally using the trigonometric function sin
(
x+ π

2

)
= cosx, the expression for β can be found

by starting with the fact that:

∆rN (t) = Bo cos(nt+ β)

= Bo sin
(
nt+ β +

π

2

)
.

(F.30)

Hence, since B0 = aδi:

u− θ = nt+ β +
π

2

→ β = u− θ − nt− π

2

= u− θ − (M −M0)−
π

2

= ω − θ +M0 −
π

2

= u0 − θ − π

2
.

(F.31)

So, the relation between the relative eccentricity and inclination vectors and the bounded CW equations are given
by: A0 = aδe, B0 = aδi, α = u0−π−φ, β = u0− θ− π

2 . Thus, based on β and α, it could also be determined
whether a situation is risky or not.



G
Distance Metrics

Distance metrics are also important for conjunction analysis. The miss distance defines how close two satellites
are together at the time of closest approach. There are actually many distance metrics that could could be used
for the calculation of the miss distance. A metric, or metric space, needs to adhere to three different axioms. The
metric [82]:

d : X ×X → R, (G.1)

needs to adhere to the following requirements:

1. d(x1, x2) = 0 ⇔ x1 = x2,
2. d(x1, x2) = d(x2, x1),
3. d(x1, x3) ≤ d(x1, x2) + d(x2, x3).

The most common distance metric that is known is the Euclidean distance, defined as: rd = ||r⃗2 − r⃗1||. When
determining the difference between two orbits, both orbits have uncertainties. This difference in uncertainties
needs to be compensated for, which can be done by normalizing the distance. If this uncertainty follows a multi-
variate ”normal” distribution this normalized distance is called the Mahalanobis distance [80]. The Mahalanobis
distance is defined as:

dM =
√
(r⃗2 − r⃗1)TP−1(r⃗2 − r⃗1). (G.2)

Where P = P1 + P2. This distance metric can also be defined using the local orbital RTN frame [80]. When
the reference frame is based on the curved trajectory of the satellite at the origin of the frame, one speaks of
curvilinear coordinates [80].

Apart from spaceflight, distance metrics are often used in astronomy. One research topic in astronomy for which a
distance metric is needed, is when one wants to see whether meteoroids are originating from the same parent body.
Such parent bodies could be for example comets or asteroids [50]. To this extent, the orbits of the meteoroids are
studied together with the difference between them. For astronomy purposes, often a five-dimensional space is
spanned for the problem. The place of the object in the orbit, defined by the true anomaly, is not important when
determining whether two orbits share the same origin. For spaceflight purposes however, especially conjunction
analysis, the place in the orbit cannot be neglected [80]. So, metrics defined below for astronomy purposes, will
later in this subsection be expanded for spaceflight purposes.

Kholshevnikov et al. defined new natural metrics which can be used for astronomy, since the metrics that are
currently often used in astronomy do not fulfill all three axioms and the metrics can often not be used for circular
orbits [50]. Two vectors are defined, given by ⃗̆u and ⃗̆v, that are aligned with the angular momentum vector h⃗ and
the Laplace-Runge-Lenz vector

(
r⃗×h⃗
µ − r⃗

||r⃗||

)
. The vectors differ in lengths from these two vectors, the lengths

are given by: ||⃗̆u|| = √
p and ||⃗̆v|| = e

√
p, with p equal to semi-latus rectum. The vectors are defined by [50]:
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⃗̆u =

 sin i
√
p sinΩ

− sin i
√
p cosΩ

cos i
√
p

 , ⃗̆v =

e√p(cosω cosΩ− cos i sinω sinΩ)
e
√
p(cosω sinΩ− cos i sinω cosΩ)

cos i
√
p

 . (G.3)

The distance metric is then given by [50]:

d =

√
(⃗̆u2 − ⃗̆u1)2 + (⃗̆v2 − v⃗1)2

L
. (G.4)

The scalar L represents a an arbitrary factor. It was found that this metrics can be used to find the distance
between two close orbits for near-Earth objects [50]. As noted by Vananti et al. (2023), this metric as created for
astronomical research should be extended with a measure for the position on the orbit for spaceflight purposes.
So, the orbital anomaly should be added in the equation. This can be done by adding a vector ⃗̆ω, for which the
alignment of ⃗̆ω1 and ⃗̆ω2 is given by ||M2 −M1||, and the length of the vector is again equal to ||⃗̆ω|| =

√
p [80].

Then,

d =

√
(⃗̆u2 − ⃗̆u1)2 + (⃗̆v2 − ⃗̆v1)2 + ( ⃗̆w2 − ⃗̆w1)2. (G.5)

Maruskin (2010) also developed a natural distance metric, which is not affected by singularities in the orbit. So
the metric can be used for orbits that are rectilinear (e = 1), circular (e = 0) or have zero-inclination (i = 0◦)
[53]. The derivation of the metric can be found in Reference [53], the result is given below:

d =
√
2(a21 + a22 − 2a1a2 cos∆ψ). (G.6)

With:

∆ψ =

√
arccos2(η⃗1 · η⃗2) + arccos2(ξ⃗1 · ξ⃗2)

2
. (G.7)

Here η⃗ is equal to the sum of the Laplace-Runge-Lenz vector and the normalized angular momentum vector(
h⃗√
µa

)
and ξ⃗ is equal to the difference between the two. When expanding this equation with the orbital anomaly,

Equation G.7 reads:

∆ψ =

√
arccos2(η⃗1 · η⃗2) + arccos2(ξ⃗1 · ξ⃗2) + (M2 −M1)2

3
. (G.8)

With M the mean anomaly. In a similar method as for the metric of Kholshevnikov et al., the Mahalanobis
distance can also be found for this metric [80].

It must be noted, that in the application as Vananti et al. [80] has defined, the distance metrics are used for tracklet
linking. Tracklets are short observations of an orbit. Often there are multiple tracklets for a space debris orbit.
To determine whether the tracklets are a part of the same orbit, the distance between the tracklets can be found
[80]. It must be noted that for this application, all the parameters of the tracklets need to be the same. Then it can
be concluded that the tracklets are pieces of the same orbit. This is not the case for a conjunction analysis, two
objects only need to intersect each other’s orbit. Hence, only the positions of the two objects need to be close
or the same. In general, the velocities are expected to be different. This complication led to the decision to not
pursue this metric during this research. It could be an interesting topic for further research however.



H
Survey on Data Usage in Conjunction

Analysis

In this appendix, the survey is presented. Some figures and references are repeated here, to show the complete
survey as presented to the operators. Note, the reference numbers are altered here to match the references in the
bibliography.

Introduction
Thank you for participating in this survey. The goal of this survey is to gather insights into the use of Conjunction
Data Messages in conjunction analysis. Your input is valuable for understanding current practices and exploring
how existing warnings could be enhanced with new risk assessment metrics. The survey consists of four parts
and will take approximately 20 minutes to complete. All responses will remain anonymous, and the results will
contribute to a publicly available thesis project conducted at TU Delft in collaboration with TNO.

Q1 (Single Choice): Do you agree to the use of your responses in the thesis?

Yes No

Part I: General
In this section the questions are focused on collecting general information.

Q2 (Multiple Choice): In which orbital regime are you operating?

Low Earth Medium Earth Geostationary Highly Eccentric
Orbit (LEO) Orbit (MEO) Orbit (GEO) Orbit (HEO)

Q3 (Open): On how many satellites are you operating?

...

Q4 (Open): How many Conjunction Data Messages (CDMs) do you approximately get per month?

...

Q5 (Open): How many collision avoidance maneuvers do you approximately execute per month?

...
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Part II: Collision Warnings
In this section, we are interested in whether you use Conjunction Data Messages for conjunction analysis and
want to gather your opinion on these.

Q6 (Single Choice): Do you use Conjunction Data Messages (CDMs) for conjunction analysis?

Yes No

Q7 (Single Choice): Do you use other (extra) data types for conjunction analysis?

Yes No

Q8 (Open): If so, which data types? Select ’N/A’ if previous answer was ’No’.

... N/A

Q9 (Single Choice): Based on a scale from 0 to 10, to what extent do you consider the current CDMs effective?

1 2 3 4 5 6 7 8 9 10 N/A

Q10 (Multiple Choice): Which type of actions have you taken based on CDMs?

Re-screening the Gathering refined Reassessing the Executing a N/A
conjunction with owner/ tracking data of collision probability collision maneuver
operator ephemeris the objects

Q11 (Open): How do you use the given CDMs to determine whether one of these actions needs to be taken?

... N/A

Q12 (Multiple Choice): Which data aspect in the CDMs do you consider leading in the decision to take an action?

• Re-screening the conjunction with owner/operator ephemeris:

Probability of collision Miss distance Time of closest approach Covariance N/A

• Gathering refined tracking data of the objects:

Probability of collision Miss distance Time of closest approach Covariance N/A

• Reassessing the collision probability:

Probability of collision Miss distance Time of closest approach Covariance N/A

• Executing a collision avoidance maneuver:

Probability of collision Miss distance Time of closest approach Covariance N/A
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Q13 (Open): What do you consider the biggest limitations of current CDMs and/or conjunction analysis in gen-
eral?

... N/A

Q14 (Open): What additional information given in a CDM would you find helpful?

... N/A

Q15 (Single Choice): Do you think there is too much information provided to operators?

Yes No N/A

Q16 (Open): If previous question was answered with ’Yes’, what information could be left out of the CDMs?

... N/A

Part III: Risk Assessment Metrics
Part of the thesis research focuses on studying novel collision risk assessment methods that can be used for
conjunction analysis. Furthermore, when using multiple different risk metrics, we are interested in how these
different metrics could be presented to operators. In this section, two proposed methods are briefly introduced.

Geometry can be used for assessing the collision risk between two objects. In former research on formation control
and safe proximity operations [19] it has been found that the relative inclination and eccentricity vectors, which
describe the orientation and shape differences between two orbits, can help to quantify the separation between
the objects. Specifically, when these relative vectors are parallel to each other, either the radial or cross track
separation is maximal. Whilst an orthogonal alignment of the vectors indicates that both of these separations
could vanish jointly, indicating a more risky conjunction. This is depicted in Figure 3.7.

Figure H.1: Geometry of parallel (left) and orthogonally (right) aligned orbits. Source: [56]

The risk is analysed based on the angle between the relative eccentricity and inclination vectors. Currently we
are studying to what extent this metric can be used for conjunction analysis purposes.

Q17 (Single Choice): Would you consider using relative orbital parameters as risk metric?

Yes No

Q18 (Open): The collision risk is studied based on an angle separation, which has an uncertainty associated to
it. How would you want this risk metric to be presented to you? For example, presenting both the expected
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angle and the associated confidence interval, or by displaying only the angle associated with the highest collision
probability?

... N/A

Another risk assessment that is studied is the outer probability measure metric [21]. A known issue with standard
collision probability calculations is that the metric is not reliable when the uncertainty is high. To mitigate this
issue, outer probability measures provide a method of qualifying the risk based on two bounds, that represent
the upper probability of collision and the lower probability of collision. These bounds can be used to determine
whether the information available on the space objects is sufficient for a reliable collision assessment. Operators
can set a threshold that represents the acceptable probability of collision, such that:

• When both bounds are below the set threshold, the risk can be qualified as acceptable.
• When both bounds are above the threshold, the risk is non-acceptable.
• When the threshold lies in between the two bounds, the information on the conjunction is not sufficient,
and the risk is undetermined.

We are currently studying whether this metric can be incorporated in current conjunction analysis and how it
might complement the previously introduced geometric metric.

Q19 (Single Choice): Would you consider using outer probability measures as risk metric?

Yes No

Q20 (open): How would you want this risk metric to be presented to you?

... N/A

Sources:

[19] D’Amico, S. and Montenbruck, O., “Proximity Operations of Formation-Flying Spacecraft Using an Eccen-
tricity/Inclination Vector Separation”. In: Journal of Guidance, Control, and Dynamics 29.3 (2006), pp. 554–563.

[56] Montenbruck, O., Kirshner, M., and D’Amico, S., “E-/I-Vector Separation for GRACE Proximity Opera-
tions,” DLR/German Space Operations Center, TN 04-08, Oberpfaffenhofen, Germany, 2004.

[21] Delande, E. D., Jones, B. A. and Jah, M. K., “Exploring an Alternative Approach to the Assessment of
Collision Risk”. In: Journal of Guidance, Control, and Dynamics 46.3 (Mar. 2023), pp. 467–482

Part IV: Enhanced Collision Warnings
In this section, we are looking for insights into how multiple different risk assessment metrics can be combined
to provide useful and effective collision warnings for operators.

Q22 (Single Choice): If multiple different risk assessments would be used, would you want to see them all, or
only the one representing the highest risk?

All risk metrics Only the one representing the highest risk N/A

Q23 (Open): How do you think the data should be structured if multiple risk metrics would be represented?

... N/A

Q24 (Single Choice): Would you prefer receiving the quantitative results of a metric, or would you prefer a
qualitative representation of the results?

Quantitative Qualitative N/A
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Q25 (Single Choice): Do you want an action advice?

Yes No

Thank you for your time and valuable input. Your responses are greatly appreciated. If you have any other
remarks before submitting your answers, please provide them below.

Q26 (Open): Additional comments:

... N/A



I
Run Matrix

Table I.1: Overview of the various test cases simulated.

Case Miss Type Object 1 Object 2 Cd Noise PcElrod
PcHall

Pcmax PcMC
∆γ OPM

1 Collision Satellite Satellite ·1.0 x x x
1 Collision Satellite Satellite ·0.9 x x x
1 Collision Satellite Satellite ·1.0 x x x x
1 Collision Satellite Satellite ·0.9 x x x x
1 Collision Satellite Debris ·1.0 x x x
1 Collision Satellite Debris ·0.9 x x x
1 Collision Debris Debris ·1.0 x x x
1 Collision Debris Debris ·0.9 x x x
1 Near Miss Satellite Satellite ·1.0 x x x
1 Near Miss Satellite Satellite ·0.9 x x x
1 Near Miss Satellite Debris ·1.0 x x x
1 Near Miss Satellite Debris ·0.9 x x x
1 Near Miss Debris Debris ·1.0 x x x
1 Near Miss Debris Debris ·0.9 x x x
1 Large Miss Satellite Satellite ·1.0 x x x
1 Large Miss Satellite Satellite ·0.9 x x x
1 Large Miss Satellite Debris ·1.0 x x x
1 Large Miss Satellite Debris ·0.9 x x x
1 Large Miss Debris Debris ·1.0 x x x
1 Large Miss Debris Debris ·0.9 x x x
2 Ideal Satellite Satellite ·1.0 x x x
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J
CDM Identifiers

Table J.1: Identifiers of the CDMs used in this research.

Testcase #Conjunction Message Id
1 1 Privateer_2024− 08− 16T02 : 58 : 54.609134_50204_52605
2 1 Privateer_2024− 09− 13T00 : 33 : 03.972916_31698_36605
2 2 Privateer_2024− 09− 13T00 : 36 : 16.494326_31698_36605
2 3 Privateer_2024− 09− 13T02 : 06 : 07.800251_31698_36605
2 4 Privateer_2024− 09− 13T02 : 08 : 38.614173_31698_36605
2 5 Privateer_2024− 09− 13T03 : 41 : 44.483309_31698_36605
2 6 Privateer_2024− 09− 13T03 : 44 : 21.158728_31698_36605
2 7 Privateer_2024− 09− 13T05 : 17 : 13.03299_31698_36605
2 8 Privateer_2024− 09− 13T05 : 20 : 12.14009_31698_36605
2 9 Privateer_2024− 09− 13T06 : 50 : 01.485209_31698_36605
2 10 Privateer_2024− 09− 13T06 : 52 : 54.657035_31698_36605
2 11 Privateer_2024− 09− 13T08 : 25 : 43.638397_31698_36605
2 12 Privateer_2024− 09− 13T08 : 28 : 30.13528_31698_36605
2 13 Privateer_2024− 09− 13T10 : 01 : 17.924674_31698_36605
2 14 Privateer_2024− 09− 13T10 : 04 : 12.90349_31698_36605
2 15 Privateer_2024− 09− 13T11 : 33 : 58.876101_31698_36605
2 16 Privateer_2024− 09− 13T11 : 37 : 03.773749_31698_36605
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