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Sparsity-Based Human Activity Recognition With
PointNet Using a Portable FMCW Radar

Chuanwei Ding™, Student Member, IEEE, Li Zhang™, Student Member, IEEE, Haoyu Chen,
Hong Hong™, Senior Member, IEEE, Xiaohua Zhu™', Member, IEEE,

and Francesco Fioranelli

Abstract—Radar-based solutions have attracted great atten-
tion in human activity recognition (HAR) for their advantages in
accuracy, robustness, and privacy protection. The conventional
approaches transform radar signals into feature maps and then
directly process them as visual images. While effective, these
image-based methods may not be the best solutions in terms of
representation efficiency to encode the relevant information for
classification. This article proposes a novel HAR method combin-
ing sparse theory and PointNet network, with both operations in
the time-Doppler (TD) and range-Doppler (RD) domains. First,
sparsity-based feature extraction is introduced to use a limited
number of sparse solutions to characterize human activities in the
form of TD sparse point clouds (TDSP) or dynamic RD sparse
point clouds (DRDSP). This new representation is validated by
comparing the reconstructed and original signals. Then, PointNet
networks are adopted to summarize multidomain features and
predict human activity labels by a sparse set of input point clouds.
Comprehensive experiments were conducted to demonstrate that
the proposed method can yield a higher representation efficiency,
classification accuracy, and better generalization capability than
existing ones.

Index  Terms—Frequency-modulated continuous wave
(FMCW) radar, human activity recognition (HAR), PointNet,
sparse representation.

I. INTRODUCTION

UMAN activity recognition (HAR) has drawn significant
attention in wide applications, such as public monitoring,
disaster rescue, intelligent interaction, and assisted living [1],
[21, [3], [4], [5]. Numerous approaches for HAR have been
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studied [6], [7], [8], [9], [10], [11]. Radar-based solutions may
complement conventional wearable and video technologies
because of their advantages in accuracy, robustness, and pri-
vacy protection [12], [13], [14]. Radar reflections from human
subjects performing activities cause modulations in the signal
frequencies defined as micro-Doppler. These signatures con-
tain prominent features that are specific to different human
activities.

Most of the conventional radar-based HAR works can be
considered to be inspired from image-based methods. Their
primary idea is to transform radar signals into matrices or
feature maps first and then directly process them as images.
The typical feature maps in the literature include time-range
(TR) maps, time-Doppler (TD) maps, and range-Doppler (RD)
maps/frames. After generating these images, subsequent fea-
ture extractions generally include two categories: 1) traditional
methods and 2) deep learning ones.

Traditional methods apply various algorithms to extract mul-
tidomain features from feature maps as input to the classifiers.
They consist of envelope features, singular value decompo-
sition (SVD) features, principal component analysis (PCA)
features, constant false alarm rate algorithm (CFAR) features,
among others. For example, in [15], envelope-based features,
including extreme Doppler, torso frequency, and event length,
were extracted from the TD map to a support vector machine
(SVM). In [16], the SVD algorithm was applied on the TD
map to obtain feature vectors and their statistic information,
including average, standard deviation, and variance, was used
with a Naive Bayes classifier to distinguish between armed
and unarmed people. In [17], a multilinear PCA was intro-
duced to extract features from a radar data cube, a fusion
of TR and TD maps. The output principal components were
used as extracted features for HAR. In [18] and [19], a CFAR
detector was applied on range-velocity maps to get the pixels
through a power intensity threshold to construct feature point
groups. In [20], a cell-averaging CFAR (CA-CFAR) algorithm
was utilized to extract multiple scatterers of the human body
from the RD map. The extracted scatterers constitute a set of
point clouds to reveal the person’s physical shape information.
In [21], the high-intensity RD points were extracted in
a time sequence. Their statistic values were calculated to
indicate the dynamic RD trajectory of human activities.
In general, traditional approaches rely on empirical thresh-
olds and are easily influenced by noise resulting in a poor
generalization.

2327-4662 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. Framework of the proposed sparsity-based PointNet method.

Deep learning has drawn significant attention in HAR for its
advantages in automatic deep features extraction and large data
processing [22], [23], [24], [25]. Deep learning methods can
directly treat feature maps as images to automatically extract
features and classification boundaries by applying hierarchi-
cal abstractions and generalization. The popular deep neural
networks in HAR can be divided into three categories: 1) deep
convolutional neural network (DCNN); 2) recurrent neural
network (RNN); and 3) DCNN + RNN. In [26], a DCNN
was applied to the TD map for the joint learning of neces-
sary features and classification boundaries without any explicit
features. A dual-channel DCNN (DC-DCNN) was proposed
in [27] for human gait recognition. Two separate TD spec-
trums with different temporal resolutions were taken as input
to the dual-channel architecture. Moreover, a 3-D convolu-
tional neural network (CNN)-based network was designed to
extract the complex features from RD frames and achieved
good performance in real-time fall detection [28]. RNN-based
methods perform well in processing sequential data streams for
considering both current and previous observations [29], [30].
In [31], long short-term memory (LSTM) units were intro-
duced to automatically identify sequential features from TD
maps to classify six different types of human motions. In [32],
both temporal forward and backward correlated information
in the Doppler spectrogram were captured by a bidirectional
LSTM (Bi-LSTM) architecture for continuous activity moni-
toring and classification. Furthermore, in [33], a deep neural
network combining DCNN and LSTM was proposed to pro-
cess TD maps to reach approximately a global accuracy rate
of 90% in identifying falling and nonfalling events based on
ultrawide band (UWB) radars.

However, image-based processing of radar data may not be
the optimal solution in all cases and suffer from poor inter-
pretability or artefacts, such as the side lobes of stronger
components that may hide the contribution of weaker ones.
Sparse theory can provide a new perspective for radar signal
processing in HAR because of its potential for less dependency
on empirical parameters and the possibility to compact the rel-
evant information into a small number of points/coefficients.
This technique has been studied for instance to extract
dynamic hand gesture micro-Doppler features [34]. Moreover,
our preliminary work has validated its feasibility in extract-
ing TD features of human activities [35]. However, the study
was limited to micro-Doppler features and traditional machine
learning classifiers, which may not be the best choice.

In this work, a novel method for HAR combining sparse
theory and PointNet network is proposed. First, sparse

N e, —— -

representation theory was applied to project echo signals in
both TD and RD domains. Next, orthogonal matching pur-
suit (OMP) and its modified version were adopted to achieve
corresponding sparse solutions. These sparse solutions could
use a limited number of nonzero items to characterize human
activities with physical meanings in the form of TD sparse
point clouds (TDSP) or dynamic RD sparse point clouds
(DRDSP). These representations can be validated by a com-
parison between the reconstructed signals and the original
ones. Then, PointNet architectures were adopted to take the
coordinates and values of the point clouds as input and
predict their corresponding labels. The results of compre-
hensive experiments demonstrate that our proposed method
obtains significant improvement compared to the conventional
image-based ones. The contributions of this study are as
follows.

1) To the best of our knowledge, this is the first work
to investigate the fusion of sparse theory and PointNet
network for HAR, differently from point cloud pro-
cessing for mm-wave radar data as in [18], [19],
and [20].

2) A sparsity-based algorithm is formulated to extract TD
and RD features from human activity in the form of
sparse point clouds. The advantages of the sparsity-
based algorithm are its high representation efficiency,
less dependency on empirical parameters, and clear
physical meaning.

3) PointNet networks are applied to support the multido-
main sparse point clouds as direct input for classifi-
cation. This architecture overcomes the constraint of
the conventional ones which requires transforming point
clouds into images, and shows high robustness to small
perturbation of input points [36].

The remainder of this article is organized as follows.
Section II introduces the theory and proposed algorithm. In
Section III, we explain the system, data acquisition, and imple-
ment details. Section IV presents analysis and discussion of
the key parameters and recognition performance. Section V
contains the conclusion.

II. THEORY AND PROPOSED ALGORITHM

The simplified overview of our proposed sparsity-based
PointNet method for HAR is illustrated in Fig. 1. In the data
acquisition part, the echo signals are recorded by a frequency-
modulated continuous wave (FMCW) radar system. In the
signal processing part, after preprocessing, sparse feature
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Fig. 3. Feature maps of an example of fall motion in TD domain.

(a) Conventional TD map with STFT. (b) TDSP. (¢) Reconstructed TD
map with TDSP. (d) TD point cloud generated by applying CFAR on the
conventional TD map.

extraction algorithms in the TD and RD domains are proposed
to obtain the corresponding sparse point clouds, respectively.
In the activity classification part, the above point cloud fea-
tures are input to the proposed PointNet network to achieve
the final classification results.

A. Sparsity-Based Features in Time-Doppler Domain

The flowchart of the sparsity-based feature extraction in the
TD domain is illustrated in Fig. 2 (Top). The received signals
can be expressed in a form of the signal matrix consisting
of slow time and fast time. In the preprocessing part, a fast
Fourier transform (FFT) is performed along the fast time axis
to obtain the TR map. After direct current (dc) removal, the
range bin with the maximum intensity value is regarded as
where human activities happen. This can be denoted as an
N x 1 vector y. Traditionally, y can be transformed into a TD
map by short-time Fourier transform (STFT). Fig. 3(a) shows
the conventional TD map of an example fall motion. It can

IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 11, 1 JUNE 2023
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be noticed that the high-intensity parts only occupy a limited
area in the TD map. In other words, the projection of human
activity information in the TD domain can be assumed sparse.
Inspired by the work in [34], y can be expressed as a sparse
representation

(D

where ® is an N x M sparse dictionary, X indicates an M x 1
sparse vector, and 5 represents an N X 1 noise vector. To
project the received signals into the TD domain, @ is set as
the Gaussian-windowed Fourier basis signal

O, ml = [P (1), ¢n(2), ..., Gu(N)]"

y=&x+7

(2
where

dm(n) o ltm, fin)

I
exp|:—
2i /o

t, is the time shifting, f;, is the frequency shift, o indicates
the variance of the Gaussian window, and n = 1,2, ..., N.

According to the sparse theory [37], when K < N < M, the
K-sparse approximated vector, X can be calculated from y as
follows:

(I’L - tm)z
o2

]exp(—jznfmm 3)

“4)

where ||-|lop and ||| are Lo and L, norm, respectively. K repre-
sents the number of nonzero items in x. Since human activity
is always related to high-intensity parts in the TD domain, the
classic OMP algorithm is considered to solve (4) [38]. During
each iteration of OMP, the sparse support of x is calculated at
first. Then, the nonzero coefficients are determined by the least
square estimator. Therefore, the estimated K-sparse solution
can be expressed as follows:

X = OMP(y, ®, K)

% = argminly — @x|,, s.L.x]o < K
X

=(,...,%0,....,%,0,...., 307 5)
where X (k = 1,2, ..., K) represents nonzero items. In this
way, y can be expressed as follows:

K
Y =Y R (nlix, fi) + (). 6)

k=1
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Algorithm 1 Modified 2-D OMP Algorithm
Input: Sparse dictionary ®, the received signal matrix Y,
sparsity K; R
Output: K-Sparse approximated matrix X;
Initialization: Residual y =Y;
for k=1 to K do

Step 1: [ix, jx] = argmax [(y;, §,)|

l

J
Step 2: X = argmin [|y;, — ¢; xll>
X
Step 3: Vi = yjkA— é;x
Step 4: X(i,j) =X
end

The position coordinates of nonzero items X; in K-sparse
solution X represent the extracted time and Doppler features.
Thus, the TDSP of y can be denoted as follows:

T(y) = (t fio T, k=1,2,....K )

where [X;| represents the power intensity at (¢, f;) in TDSP.

The above method is performed on the same fall sample
from Fig. 3(a). The sparsity K is set as 100, and the variance
o of the Gaussian window is set to be 32 as a tradeoff between
time and Doppler resolutions. The nonzero items in the sparse
solution calculated by (6) and (7) can be rearranged to con-
sist of a TDSP, as shown in Fig. 3(b). In detail, red points
indicate the 100 nonzero items, i.e., sparse point cloud. Their
x-coordinates represent time information, y-coordinates repre-
sent Doppler information, and the point sizes indicate power
intensity. Therefore, these sparse points can reveal the time,
Doppler, and power intensity features of human activity.

Moreover, once obtaining the sparse dictionary ® and the
sparse solution X, we can achieve the reconstructed signal yyec
as follows:

Viec = PX. 8)

Next, STFT is performed on the reconstructed sig-
nal to obtain a reconstructed TD map, as illustrated in
Fig. 3(c). Compared with Fig. 3(a), the reconstructed signal
Yrec preserved most TD information and suppress low-intensity
noises. This validates that the TDSP can use only 100 feature
points, instead of a 1800 x 100 picture, to characterize human
activity in time, Doppler, and power intensity domains with a
small information loss.

Furthermore, a 2-D CFAR detector [39] was applied on the
STFT-based TD map of Fig. 3(a) as a conventional acquisition
method for point cloud features. The CFAR detector depends
on empirical parameters which need to be fine-tuned for a good
performance. In detail, these parameters include: the train cell
size set as 3 x 3, the guard cell size set as 2 x 2, and the proba-
bility of false alarm set as 0.483. Then, the detected points are
shown in Fig. 3(d). Though the number of CFAR-based point
clouds was increased to 3000, most of them were overlapping
and distributed in a small high-intensity area. These clustered
point clouds can hardly describe the complete trend of Doppler
changes over time, not to mention the correct representation
of TD information.

10027

This phenomenon is assumed to be caused by image-based
processing way. When using STFT, the side lobes of stronger
components may hide the contribution of weaker components
that are not detected by the CFAR or require a large num-
ber of points for their representation. On the contrary, in the
proposed sparsity-based feature extraction method, OMP is
adopted to address this problem. In Algorithm 1 step 3, the
update of residue y = y — ¢jk3? removes the “explained signal
portion” and takes the “unexplained portion” as the residue
at each iteration. This helps ignore the side lobe effects of
strong components and avoid repeatedly extracting the same
component, thus, improving feature extraction.

B. Sparsity-Based Features in Range-Doppler Domain

The distribution of Doppler information in the range domain
is also essential for HAR. The sparsity-based feature extraction
in the RD domain is proposed as shown in Fig. 2 (Bottom).

Unlike in the TD domain, the target signal that needs to be
represented in sparse form changes from a vector signal in the
chosen range bin to an N x M matrix signal Y in all range
bins. N is the slow time index, and M is the range bin index.
Then, matrix Y can be expressed as a sparse representation in
the RD domain

Y=®X+7 9)

where ® represents an N x N sparse dictionary, X is an N x M
sparse matrix, and  indicates an N x M noise matrix. Similarly,
X can be called K-sparse signal if there are only K nonzero
items. To achieve the sparse representation of human activity
in the RD domain, the Fourier basis function is adopted as
the sparse dictionary ®. Then, the nth row, mth column of the
dictionary can be expressed as follows:

®(n, m) zefj%”(nfl)x(mfl)' (10)

When K < NM, the sparse matrix X can be approximated
from Y as follows:

X=|Y-@X|[, st [Xlp=<K. (11)

As shown in Algorithm 1, the OMP algorithm can be modi-
fied for 2-D processing to search for the optimal solution along
both the range and Doppler axis. Then, (11) can be solved to
obtain sparse solutions as follows:

X = OMP(Y, @, K)

O - 0 ... 0
% o

=10 X 0 0 (12)
: - jf\k :
O --. 0 ... 0

where X is a K-sparse matrix, i.e., the sparse solution,
and X (k = 1,2,...,K) are corresponding nonzero items.
Similarly, their positions in the matrix indicate the range and
Doppler information, and their values denote power inten-
sity. Therefore, the sparse solution matrix X can be used
to form an RD sparse point cloud of human activities from
the received signal Y. Furthermore, since human activity is
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Fig. 4. Feature maps of the example fall motion in RD domain. (I) Conventional DRDF with the original signal. (I) DRDSP with the sparsity parameter K
equal to 400. (III) Conventional DRDF with the reconstructed signal. (IV) RD point clouds generated by applying CFAR on the conventional DRDFE.

dynamic, temporal information is significant in HAR. In our
previous study [21], a sliding window with limited duration
was adopted to achieve a time sequence of RD maps, i.e.,
dynamic RD frames. Similarly, RD sparse point clouds can
also be transformed into DRDSP to describe time-varying fea-
tures better. In this work, the sliding window length was set
as 0.4 s with an overlap of 50%. Considering real-life situ-
ations, nine frames covering 2 s are selected to describe an
entire human activity.

Fig. 4 shows feature maps of the example fall motion in
the RD domain. In detail, row (I) consists of conventional 2-D
FFT-based dynamic RD frames. During the entire fall motion,
the human body got close to the radar with a small Doppler at
first. Then, as the fall went on, the point target model turned to
a body target model, resulting in an extension of the spectro-
gram in the Doppler axis. This phenomenon peaked at the fifth
frame corresponding to the highest radial speed and the widest
bandwidth. Finally, after a steep decrease, Doppler returned to
zero, and the intensity gathered around the baseband again as
the human body lay on the floor.

On the other hand, row (II) illustrated DRDSP obtained by
the proposed sparse method. The sparsity K in each frame
was set to 400. The blue dots containing range, Doppler, and
intensity information can describe the RD distribution of fall
motion. Particularly, Y., can be recon}s\tructed with the sparse
dictionary @ and the sparse solution X as follows:

Yo = ®X. (13)

Then, the conventional dynamic RD frames based on the
reconstructed signal can be achieved, as shown in Fig. 4
row (IIT). Compared to row (I), a conclusion can be drawn
that the proposed method can extract 400 sparse points per
frame, instead of the 512 x 51 pictures, to characterize human
activity through the time-varying RD features with a small
information loss.

In addition, the 2-D CFAR method (train cell size: 2x2;
guard cell size: 1x1; and probability of false alarm: 0.435)
was applied on each frame of row (I) to extract CFAR-based

point cloud features, as shown in row (IV). The number of
CFAR-based feature points was normalized to 400 for each
frame. Most of them gathered around clutter components and
lost some key information, especially, in the 5th—7th frames.
Compared with the sparse point clouds, the extraction of
the CFAR-based point clouds highly depends on the empir-
ical parameters of the algorithm, including the size of cells
and false alarm probability, and showed a lower efficiency in
representing the salient information within the data.

C. PointNet Network

The point clouds have attracted extensive concerns as an
essential type of data structure. Usually, they are forced to a
regular format, such as images or 3-D voxel grids before fed
into conventional neural networks. PointNet network breaks
this constraint by supporting point clouds as direct input [40].
Since the sparsity-based feature extraction method succeeds
in using sparse point clouds to characterize human activities
in time, Doppler, range, and intensity domains, the PointNet
network is applied to process TDSP and DRDSP.

The proposed PointNet network is based on the architecture
of the one introduced in [36]. As shown in Fig. 5, the input
sparse point cloud is rearranged as a n x P feature matrix,
where n is the number of sparse points and P is the num-
ber of feature vectors. For TDSP, P is set to 3 to build the
3D-PointNet, corresponding to time, Doppler, and intensity,
respectively. For DRDSP, P is 4 to add the range vector as the
4D-PointNet. In particular, unlike conventional space coordi-
nates, the above radar-based features do not satisfy the affine
invariance. Therefore, the input transformation from [36] that
aligns features from different input by a mini network (T-Net)
can be ignored. Then it is mapped to a Cj-dimensional fea-
ture by multilayer perceptron (MLP) and aligned by a feature
transformation of the T-Net network. Next, the MLP algorithm
is adopted again to map the point clouds into C> dimensions,
and a maximum pooling is used to obtain the global features.
Finally, the data are fed to the following classification mod-
ule for final activity recognition. The first layer is a batch
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Fig. 5. Architecture of the proposed PointNet network.
TABLE I TABLE III
KEY PARAMETERS OF THE FMCW RADAR SYSTEM MAIN PHYSICAL PARAMETERS OF VOLUNTEERS
Center frequency 5.8 GHz No. Gender Age (yr) Weight (kg) Height (m) 133 I/VHZ
Bandwidth 320 MHz (kg/m’)
Sampling frequency 192 KHz ! M 2 85 175 2776
Ramp repetition period 3.3 ms 2 M 32 78 1.80 24.07
Range resolution 0.47 m 3 M 24 72 1.79 22.47
Maximum detection range 150 m 4 M 25 70 1.77 22.34
Unambiguous velocity 3.88 m/s 5 M 23 68 1.80 20.99
Transmitted power 8 dBm 6 F 24 50 1.58 20.03
TABLE Il 7 F 23 55 1.62 20.96
TYPICAL HUMAN ACTIVITIES UNDER RESEARCH 8 M 23 72 1.78 22.72
9 F 23 55 1.64 20.45
Activity Detailed Description 10 M 23 85 1.91 23.30
Fall Suddenly drop down to the floor by gravity. 1 M 23 54 1.75 17.63
Step Lift the foot and set it down in a new position. 12 F 22 52 1.65 19.10
Jump Spring clear of the ground. 13 M 23 60 1.72 20.28
Squat Sit in a low position with knees bent. 14 F 23 52 1.70 17.99
Walk Proceed through at a moderate pace on foot. 15 M 23 74 1.82 22.34
Jog Run at a slow pace with with fist around chest. 16 M 24 72 1.70 24.91
Total |M/F(12/6) 23.6+1.4 65.9+11.9 1.74+0.09 21.71+2.61

normalization layer, allowing for much higher learning rates
and less dependence on the chosen initialization. The second
layer is a drop-out layer and the overfitting problem is sup-
pressed by randomly dropping parameters proportionally. The
third layer is fully connected (FC) with the ReLU activation
function. The final layer is the softmax layer to achieve the
result score. Here, the cross-entropy loss function is used with
the Adam optimizer.

III. EXPERIMENTAL SETUP AND DATA
A. System and Data Acquisition

The experimental setup is illustrated in Fig. 6. The system
device is a portable FMCW radar whose key parameters are
listed in Table I [41]. To verify the versatility and robustness
of our method, six typical human daily activities were selected:
1) fall; 2) step; 3) jump; 4) squat; 5) walk; and 6) jog. They
are illustrated in Fig. 7 and described in Table II. Sixteen
volunteers were enrolled in this study, including 11 males

and 5 females. Their main physical parameters are given in
Table III. In detail, their ages ranged from 22 to 32 years,
and weights ranged from 50 to 85 kg, with the height from
1.58 to 1.91 m. In the data collection, the radar system was
set at the height of 0.8 to 1 m. The volunteers were asked
to perform the above activities toward the radar at the dis-
tance between 2 and 5 m. Each activity was performed 240
times to achieve a balanced data set of 1440 samples. The data
set has been shared in IEEE DataPort with the title “Human
Activity Data with a 5.8-GHz FMCW Radar”(available at
https://dx.doi.org/10.21227/aze5-h339).

B. Implementation Details

In the feature extraction part, STFT-based TD map, and
2-D FFT-based RD frames were utilized as references.
Furthermore, a 2D-CFAR detector was applied to the tradi-
tional feature maps above to obtain intensity-based point cloud
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Fig. 6. Experimental setup with radar system and area where the activities
are performed, including a mattress for controlled falls.

Fig. 7. Illustrations of six typical human activities: (a) Fall, (b) Step, (c) Jump,
(d) Squat, (e) Walk, and (f) Jog.

features. In the CFAR-based method, there are very signifi-
cant differences in the number of points among different maps
(i.e., hundreds of points in one map and thousands in another).
Therefore, a normalization method, including interpolation and
sampling, was applied to align the CFAR-based points to a
fixed number, 3000 for a single TD map, and 400 for a single
RD frame, respectively.

In the classification part, for the proposed PointNet model,
Cy and G, were set to 64 and 1024, respectively. The drop
ratio of the drop-out layer was 0.3. Furthermore, we have
tried our best to rebuild the CNN [26], 3DCNN [28], and
CNN + LSTM [20] networks from the reference studies. A
few parameters, such as convolution kernel size, were adjusted
to fit our data format. The data set was divided into train and
test sets containing 840 and 600 samples.

The feature extraction was implemented with MATLAB
R2019b. All the networks were trained based on the Pytorch

IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 11, 1 JUNE 2023

framework. An NVIDIA GeForce RTX 2060 graphics card
(GPU, with a 6-GB memory) and AMD Ryzen 74800H were
used on a laptop with 32G of memory.

IV. RESULTS AND DISCUSSION
A. Sparsity Versus Information Preservation

The advantage of our proposed sparsity-based feature
extraction is to utilize a smaller number of sparse points to
represent most key information from received signals. This
has been preliminarily confirmed by a qualitative visual com-
parison between the reconstructed and original feature maps
in Section II, Figs. 3 and 4. In this experiment, we analyzed
the effect of the sparsity on information preservation first and
demonstrated its superiority in a quantitative way.

For TDSP, Fig. 8 shows the results of the example fall
motion generated by different values of sparsity K. In detail,
row (I) shows TDSP, and row (II) shows their correspond-
ing conventional TD maps with the reconstructed signals.
Compared with the conventional TD map with STFT in
Fig. 3(a), when K < 100, noticeable TD information loss can
be observed, especially, in the Doppler peak and in the lying
down part after the peak. The complete distribution of most TD
information appeared to be preserved when K = 200. On this
basis, when K continued to increase, the added sparse points
were all small in size, which indicated low intensity and lit-
tle contribution to information preservation. As expected, their
reconstructed TD maps were almost the same as the one of
K = 200.

To evaluate the information preservation performance in a
quantitative way, a 2-D correlation coefficient between the
original TD map from STFT and the reconstructed one from
TDSP was calculated as follows:

o SEw-Pw-0

\/(Zm Zn (Pmn - a2> (Zm Zn (an - @)2)

where P was the matrix of the TD map from STFT, P was its
mean value, Q was the matrix of the reconstructed one from
TDSP, Q was its mean value, m and n represented their row
and column indexes. A high value of the correlation coeffi-
cient r corresponds to good consistency between the original
and reconstructed images, i.e., better information preservation
performance. The results of r for the example fall motion with
different K were illustrated in Fig. 9. The curve of correlation
coefficient r grew quickly at first and then slowly after K = 75.
Accounting also for the results of Fig. 8, after achieving a rate
of 0.94 at K = 200, the reconstructed noisy parts contributed
to the continuous increase of r, hence, the value of K was
considered a good compromise.

Furthermore, a similar investigation was conducted in the
DRDSP-based method. Taking the 5th frame of the fall motion
as an example, Fig. 10 shows its DRDSP and reconstructed
RD maps with different values of sparsity K. In particular,
DRDSP required more sparse points to preserve most key fea-
tures. This is reasonable, because the TDSP only refers to a
single sparse projection, whereas the DRDSP is a set con-
taining multiple Fourier-based sparse projection results among
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Fig. 9. Correlation coefficient in TDSP versus sparsity parameter K.

all range bins. It can be noticed that when K > 400, the
main parts of the RD distribution have been reconstructed
well. The additional points only reflected little information.
Fig. 11 illustrates the correlation results with different spar-
sity K in a line chart. The correlation coefficient r climbed up
as the sparsity increased and showed a slowdown in the pace
of increase after K = 400. Moreover, if we ignored the noisy
contributions whose intensity was lower than —25 dB, the cor-
relation coefficients were improved by about 10%, indicated
as the dashed green line. Therefore, although noisy contribu-
tions reduced the correlation between the reconstructed and
the original map, they had little effect on preserving valuable
information.
In general, two conclusions about the feature extraction
performance of our proposed method can be drawn as follows.
1) A larger sparsity K corresponds to a more significant
number of sparse points along with a better information
preservation performance.
2) When K exceeds a certain empirical threshold, a contin-
uous increase of sparsity will bring little improvement
in the extraction of key features.

B. Sparsity Versus Classification Accuracy and Time Cost

Sparsity K is the key and the only empirical parameter in
our proposed feature extraction methods. Its value is directly
related to the recognition accuracy and time consumption. In
this experiment, the selection of sparsity K was discussed and
determined. The accuracy rate was yielded by recognizing
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Results of the example fall motion with different values of the sparsity parameter K in TDSP from 25 to 300. (I) TDSP. (II) Corresponding

six typical human activities based on the proposed PointNet
networks, and the time cost indicates the time consumption
for the processing to obtain sparse point clouds.

For TDSP, the corresponding results are illustrated in
Fig. 12. The red diamonds and blue rectangles indicate accu-
racy rates and time cost, respectively. The accuracy rate
climbed up as the sparsity increased, then remained virtu-
ally unchanged around 95% when K > 200. In addition, an
ablation study was carried out to validate the importance of
intensity features shown as the red dashed line. Once these
features were not taken into account, the time and Doppler
coordinates of target points and noise points were treated
equally. As the sparsity kept increasing, the number of noise
points would also increase and reduce the proportion of target-
related ones in model learning. This resulted in a marked drop
in the accuracy rate compared with the solid one. On the
other hand, the time cost is an exponential curve, which would
grow to a nonnegligible degree with the increasing number of
sparse points. Therefore, as a tradeoff of accuracy and real-
time performance, the sparsity K was set to 200 in the TDSP
method corresponding to an average accuracy of 95.0% and
an average time cost of 1.14 s.

For DRDSP, a similar investigation was conducted, as
shown in Fig. 13. Though DRDSP contains nine frames of
sparse points, the time cost in extraction was still short
(approximately 0.81 s) and acceptable. Before K = 400,
the average classification accuracy grew fast along with the
increase of sparsity. After that, adding 100 sparse points
achieved less than 0.2% improvement. This agrees with the
results in Figs. 10 and 11. In particular, when leaving inten-
sity features out, the accuracy drop of DRDSP can be observed
but not apparent than the one of TDSP. In general, the sparsity
K was set to 400 in the DRDSP method to achieve an average
accuracy of 98.0% and an average time cost of 0.81 s.

In general, though the sparsity K is an empirical selection,
its accuracy curve is logarithmic. Therefore, one of the most
straightforward solutions is to select a value as high as possible
while meeting the real-time requirement.

C. Performance Comparison

We evaluated the performance of the proposed methods
by comparing them with existing ones. Different comparative
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TABLE IV
PERFORMANCES OF THE REFERENCE NETWORKS VERSUS THE PROPOSED APPROACH
Extraction  Training Testing Model
Feature | Network/Classifier | Feature size | time/sample time/epoch time/sample Parameters Size (kB) Accuracy Precision  Recall F1 score
(s) (s) (ms)
TD map CNN [26] 128%128 0.10 7.77 3.31 65.7M 256788 92.8% 0.93 0.93 0.93
CFAR-based|  3D-PointNet 3000x3 0.58 5.01 0.57 1.61M 6325 92.7% 0.93 0.93 0.93
TDSP CNN [26] 128x128 1.18 7.77 3.31 65.7M 256788 91.2% 0.92 0.91 091
TDSP 3D-PointNet 200x3 1.14 3.03 0.12 1.61M 6325 95.0% 0.95 0.95 0.95
DRDT  |Subspace KNN[21]| 9x1x3 0.14 0.28 0.02 NA 1286 91.7% 0.92 0.92 0.92
RD frames 3DCNN [28] 9x64Xx64 0.08 5.87 2.55 379K 1109 93.5% 0.94 0.94 0.93
RD frames | CNN+LSTM [20] | 9%x64x64 0.08 8.22 1.03 283K 3768 94.2% 0.94 0.94 0.94
CFAR-based| 4D-PointNet 9x400x3 0.75 7.48 2.20 1.61M 6332 96.2% 0.96 0.96 0.96
DRDSP 3DCNN [28] 9x64x64 0.89 5.87 2.55 379K 1109 93.2% 0.93 0.93 0.93
DRDSP | CNN+LSTM [20] | 9x64x64 0.89 8.22 1.03 283K 3768 93.6% 0.94 0.94 0.94
DRDSP 4D-PointNet 9x400%3 0.81 7.48 2.20 1.61M 6332 98.0% 0.98 0.98 0.98
The results of our proposed methods in bold.
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Fig. 10. Results of the example fall motion with different values of the sparsity parameter K in DRDSP from 100 to 600. (I) DRDSP. (II) Corresponding
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performances of each method were computed and listed in
Table IV. In detail, “Feature size” is the size of the input
used for classification. “Extraction time/sample,” “Training
time/epoch,” and “Testing time/sample” are the average time
cost spent for feature extraction, model training, and model
testing, respectively. “Parameters” indicates the network com-
putational complexity, and “Model Size” reflects the storage
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Fig. 12. Average accuracy, average accuracy without energy intensity features
(Acc-NoEnergy), and time cost in TDSP versus sparsity parameter K.

requirement. In addition, “Accuracy,” “Precision,” “Recall,”
and “F1 score” are calculated to evaluate the classification
performance in more details in term of true positives (TPs),
true negatives (TNs), false positive (FP), and false negatives
(FNs)

TP+ TN

A =
Sy = TP F N+ FP+ TN

15)
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.. TP
Precision = —— (16)
TP 4 FP
TP
Recall = ———— a7
TP+ FN
Precisi Recall
F1 score — 2 x recision X Reca (18)

Precision + Recall

In the TD domain, the TD map with CNN [26] was regarded
as the baseline approach. This required the shortest time dura-
tion of 0.1 s to extract the TD map by conventional STFT, but
this map needed to be scaled into a 128 x 128 image as input
to the CNN network, which resulted in a time cost of 7.77 s in
the model training with the recognition accuracy rate of 92.8%.
The parameters of the CNN network are 65.7M with a largest
model size of 256788 kB. The CFAR-based method utilized
3000 feature points as input to the 3D-PointNet. It required
0.58, 5.01, and 0.57 s in feature extraction, model training,
and model testing, respectively. CFAR + 3D-PointNet did not
improve the average accuracy for its information loss. In con-
trast, with the same network, the proposed TDSP only needed
200 sparse points to achieve the highest average recognition
accuracy rate of 95.0%, with less time cost of 3.02 and 0.12 s
in model training and testing. This result demonstrates the rep-
resentation efficiency of our proposed method and is consistent
with the visual comparison in Fig. 3. On the other hand, we
tried the image-based approach by transforming TDSP fea-
tures into a 128x 128 image as input into the CNN network.
An increase in required time and a decrease in recognition
performance was found. This result validated the effectiveness
of PointNet architectures in processing point cloud features.
The confusion matrix of the proposed combination of TDSP
and 3D-PointNet is shown in Table V. Note that, walk motion
got the highest recognition accuracy, and there were none
samples mislabeled as others. Fall motion achieved a 93%
recognition accuracy and was easy to be confused with squat
motion. In addition, sfep motion owned the lowest accuracy
rate of 86%, where 2% and 12% of them were misclassi-
fied as fall and squat motion, respectively. This is reasonable
that stepping forward with a fast speed and high amplitude is
similar to a slow fall, while a slow step motion acts like a
squat.

In the RD domain, the DRDT method from our previous
study [21] extracted one trajectory point from each RD frame.
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TABLE V
CONFUSION MATRIX WITH TDSP
Act. Pred. Fall Step Jump Squat Walk Jog
Fall 93% 0 0 7% 0 0
Step 2% 86% 0 12% 0 0
Jump 1% 1% 98% 0 0 0
Squat 4 0 0 96% 0 0
Walk 0 0 0 0 100% 0
Jog 0 0 0 0 3% 97%
TABLE VI
CONFUSION MATRIX WITH DRDSP
Act. Pred. Fall Step Jump | Squat Walk Jog
Fall 99% 0 0 0 1% 0
Step 0 97% 0 3% 0 0
Jump 0 0 99% 0 1% 0
Squat 3% 3% 0 94% 0 0
Walk 0 0 0 0 99% 1%
Jog 0 0 0 0 0 100%

Therefore, it had the smallest size of input features as 9 x 1 x 3
but only obtained 91.7% recognition accuracy with the sub-
space K-nearest neighbor (KNN) classifier. Compared with the
accuracy rate in our previous work, the performance degrada-
tion was caused by the expanded data set, which brought a
great challenge to adjust handcraft feature extraction to all
records. In addition, each RD frame was scaled to a 64 x64
image and fed into 3DCNN [28] and CNN 4 LSTM [20]
networks. They obtained 93.5% and 94.2% classification accu-
racy, respectively. The parameters and model size of 3DCNN
are 379K and 1109 kB, while the ones of CNN + LSTM are
283K and 3768 kB, respectively.

For a better comparison, 400 normalized CFAR-based fea-
ture points were selected from each frame as input to the
4D-PointNet network. After fine-tuning, this approach reached
96.2% average accuracy. In particular, the parameters and
model size of the 4D-PointNet are 1.61M and 6332 kB. The
proposed DRDSP features can obtain the highest recognition
accuracy rate of 98.0% with the same network. Similarly,
DRDSP features were also processed as images to the CNN-
based networks. As expected, a reduction in the accuracy can
be observed. The confusion matrix of the proposed combina-
tion of DRDSP and 4D-PointNet is shown in Table VI. All six
activities had a high recognition accuracy rate of more than
94%. In particular, fall, step, and squat motions are easily con-
fused with each other as they have a similar tendency in time,
range, Doppler, and intensity.

In general, compared with traditional image-based features,
sparse point clouds can utilize a much smaller feature size but
longer time cost for a better human activity representation.
On the other hand, PointNet architectures demonstrated their
superiority in processing point cloud features.
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TABLE VII
ROBUSTNESS PERFORMANCE IN INDIVIDUAL DIVERSITY STUDY
Feature Network 1 2 4 5 6 7 8 9
TD map CNN [26] 85.0% 90.8% 96.7% 91.7% 97.5% 95.0% 86.7% 99.2% 94.2%
CFAR 3D-PointNet 91.7% 95.0% 93.3% 91.7% 89.2% 90.0% 94.2% 91.7% 84.2%
TDSP CNN [26] 77.5% 85.8% 90.8% 91.7% 95.0% 96.7% 86.7% 86.7% 82.5%
TDSP 3D-PointNet 96.7% 96.7% 91.7% 91.7% 99.2% 88.3% 92.5% 89.2% 88.3%
RD trajectory DRDT [21] 82.9% 94.9% 89.4% 80.0% 80.0% 81.2% 90.8% 85.8% 80.5%
RD frames 3DCNN [28] 90.8% 95.8% 80.0% 95.8% 97.5% 96.7% 92.5% 90.0% 95.0%
RD frames CNN+LSTM [20] 91.7% 99.2% 90.0% 91.7% 99.2% 96.7% 90.0% 96.7% 85.8%
CFAR 4D-PointNet 95.8% 100.0% 94.2% 94.2% 92.5% 95.0% 90.0% 93.3% 90.0%
DRDSP 3DCNN [28] 88.3% 91.7% 87.5% 88.3% 97.5% 91.7% 95.0% 93.3% 84.2%
DRDSP CNN+LSTM [20] 95.0% 90.0% 86.7% 91.7% 89.2% 85.0% 86.7% 94.2% 83.3%
DRDSP 4D-PointNet 98.3% 98.3% 94.2% 98.3% 99.2% 100% 96.7% 95.0% 95.0%
Feature Network 10 11 13 14 15 16 Average
TD map CNN [26] 92.5% 98.3% 84.2% 90.0% 70.0% 73.3% 73.3% 88.65+9.32%
CFAR 3D-PointNet 90.0% 93.3% 95.8% 73.3% 73.3% 63.3% 80.0% 86.87+9.49%
TDSP CNN [26] 82.5% 95.0% 87.5% 66.7% 76.7% 63.3% 73.3% 83.65+9.93%
TDSP 3D-PointNet 85.8% 96.7% 95.8% 80.0% 80.0% 86.7% 90.0% 90.58+5.74%
RD trajectory DRDT [21] 82.1% 82.5% 72.5% 60.0% 69.1% 86.7% 89.1% 81.72+8.71%
RD frames 3DCNN [28] 95.0% 95.0% 94.2% 70.0% 83.3% 73.3% 96.7% 90.10£6.76%
RD frames CNN+LSTM [20] 83.3% 100% 93.3% 70.0% 83.3% 83.3% 96.7% 90.68+8.01%
CFAR 4D-PointNet 89.2% 95.0% 91.7% 83.3% 80.0% 70.0% 100% 90.88+7.62%
DRDSP 3DCNN [28] 91.7% 91.7% 88.3% 70.0% 90.0% 86.7% 100.0% 89.74+6.64%
DRDSP CNN+LSTM [20] 95.8% 90.0% 92.5% 70.0% 90.0% 80.0% 100.0% 88.75+7.08%
DRDSP 4D-PointNet 90.8% 98.3% 98.3% 80.0% 80.0% 90.0% 100% 94.53+6.40%

The results of our proposed method in bold.

D. Individual Effect via Leave-One-Subject-Out Test

Recognizing human activities of unknown persons using
well-trained models is essential for practical applications.
A leave-one-subject-out test was applied to investigate the
robustness of the proposed method when facing individual
diversity. Samples from 15 individuals were selected to learn
the classification models. Then, the well-trained model was
tested by the left-out person. The results of 16 individu-
als based on different recognition methods are shown in
Table VII. Notice that there was a marked drop with a rel-
atively high standard deviation in DRDT and CFAR-based
methods. These handcrafted methods were easily influenced
by various activity styles and it is challenging to define robust
empirical thresholds suitable for all individuals. The TDSP
and DRDSP with the PointNet architectures performed well
in the robustness test. The TDSP with 3D-PointNet obtained
the lowest standard deviation of 5.74%, and the DRDSP with
the 4D-PointNet achieved the highest average accuracy rate
of 94.53%. In particular, there was no apparent weakness for
them among all 16 tests, as only two tests were below 85%.
These results demonstrated the robustness of the proposed
approach when facing various individuals.

E. Generalization Performance

To investigate the generality of our proposed method, the
public data set [42] (https://researchdata.gla.ac.uk/848/) col-
lected at the University of Glasgow (UOG) at six different
locations was used. The radar system is an off-the-shelf
FMCW radar (by Ancortek) operating at C-band (5.8 GHz)
with bandwidth 400 MHz and chirp duration 1 ms, delivering
an output power of approximately +18 dBm. The radar is con-
nected to transmitting and receiving Yagi antennas with a gain
of about +17 dB and is capable of recording micro-Doppler
signatures of the people moving within the area of interest.
106 volunteers of various age groups performed six activities,
including: 1) walking; 2) sitting; 3) standing up; 4) drinking
water; 5) picking an object from the floor; and 6) falling. A
total of 1754 collected samples was used.

Table VIII shows the results of our proposed method and
other referenced approaches for the public UOG data set. The
TDSP + 3D-PointNet (K = 200) and DRDSP + 4D-PointNet
(K = 400) both achieved state-of-the-art accuracy rates of
92.16% and 95.69% in the term of tenfold cross validation,
respectively. This demonstrates the generalization performance
of our proposed methods.
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TABLE VIII
COMPARISON WITH STATE-OF-THE-ART APPROACHES USING THE
PUBLIC UOG DATA SET OF RADAR SIGNATURES [42]

Cross Average

Methods Samples Validation | Accuracy
WRGAN-GP+DCNN [43] 750 4-fold 92.30%

Customized feature+Hierarchical o

structure [44] 1080 5-fold 95.40%

Improved PCAJ[riISIEproved VGG16 1633 5-fold 96.34%
CWT+RD-CNN [46] 1282 5-fold 95.71%
CA-CFAR+PointNet [47] 1754 10-fold 88.00%
TDSP+3D-PointNet (K = 200) 1754 10-fold 92.16%
DRDSP+4D-PointNet (K = 400) 1754 10-fold 95.69%

The results of our proposed methods in bold.

V. CONCLUSION

This article proposed a novel HAR method, combining
sparse theory and PointNet networks. The sparse theory can
utilize a limited number of sparse solutions to characterize
human activity in the form of TDSP or DRDSP in the TD
and RD domains, respectively. Compared with the image-
based features, these sparse point clouds had the advantages
of clear physical meanings, less redundant noisy contribu-
tions, and little information loss. Moreover, the PointNet
networks were applied to support multidomain sparse point
clouds as direct input for classification. This overcomes the
constraint of image-based networks, which require convert-
ing point clouds into pictures. Experimental data involving
six typical daily human activities and sixteen volunteers were
recorded. The feasibility and superiority of the sparsity-based
feature extraction method have been demonstrated by com-
paring the reconstructed and original feature maps in both
qualitative visual and quantitative statistical ways. As the key
parameter of the sparse representation algorithm, the selec-
tion of sparsity was also investigated and discussed to obtain
a practical and straightforward solution. In particular, TDSP
showed a higher sparse representation efficiency than DRDSP
but cost more time. Furthermore, compared with the image-
based networks, the proposed PointNet architecture showed
a better recognition performance due to its high robustness
to small perturbation and corruption of input points caused
by noises. Its combination with TDSP and DRDSP achieved
the state-of-art recognition accuracy of 95.0% and 98.0% in
the TD and RD domains, respectively. Furthermore, a leave-
one-subject-out study was applied to validate its robustness
when facing individual diversity effects. Finally, a public
data set was utilized to demonstrate the generality of our
proposed methods by achieving the state-of-the-art recognition
performance.

Future research will explore adding range information in
TDSP or finding a more effective sparse method in the RD
domain. The adaptive selection of sparsity K is also interesting
for further investigation. Moreover, a multi-input multi-output
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(MIMO) system is a worthwhile choice for HAR, as it can
supply angle information, which is crucial for a more complex
situation.
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