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It is commonly accepted that the sound reflections from real physical objects are much more complicated than what usually is and
can be modelled by room acoustics modelling software. The main reason for this limitation is the level of detail inherent in the
physical object in terms of its geometrical and acoustic properties. In the present paper, the complexity of the sound reflections
from a corridor wall is investigated by modelling the corresponding acoustic transfer functions at several receiver positions in front
of the wall. The complexity for different wall configurations has been examined and the changes have been achieved by altering
its acoustic image. The results show that for a homogenous flat wall, the complexity is significant and for a wall including various
smaller objects, the complexity is highly dependent on the position of the receiver with respect to the objects.
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1. INTRODUCTION

For the simulation and prediction of the acoustics in en-
closed spaces, the geometry and acoustic properties of the en-
closing boundaries are the primary parameters. The acoustic
properties are represented by the acoustic impedance of the
boundary. For a simple shoebox room with perfectly rigid
walls (i.e., infinite acoustic impedance), the method of mir-
ror image sources leads to a solution that satisfies the wave
equation exactly [1]. In practice, rooms are neither of sim-
ple shoebox shape nor are the walls perfectly rigid. Instead,
the modelling of all geometric details down to the order of
the shortest acoustic wavelength would be required and the
acoustic impedances of practical materials are generally com-
plex, frequency-dependent, and nonlocally reacting [2].

One of the primary aims in room acoustics research over
the past two to three decades has been the realistic and reli-
able prediction of room acoustics from a subset of the de-
tailed geometric and acoustic information required theo-
retically [3–5]. In particular, the scattering of sound from
nonsmooth finite-size surfaces, leading to diffuse reflections
[6–9] and diffraction [10–12], has been recognised as one, if
not the, key contributing factor.

The research presented in the current paper aims to shed
some light on the complexity of measured reflected sound
from a single wall comprising a number of smaller objects.
As an objective parameter, the complexity is measured by the
required model order of the acoustic transfer function (ATF)
resulting from the reflections/scattering from the wall. The
interesting questions to be raised are to what extent is the
complexity of the ATF dependent on the structural details of
the wall in the immediate vicinity of (i) the receiver in the
case of scattering and/or (ii) the specular reflection point for
specular reflection? If the receiver is immediately in front of a
wall section containing a sound diffusing object, do the more
distant homogenous flat sections of the wall affect the com-
plexity of the ATF or is the scattering by the diffusing object
the main influence? What is the complexity when the wall is
rendered completely flat compared to the complexity of the
original wall configuration? The aim is to find partial answers
to some of these questions in terms of quantitative objective
parameters, a perceptual evaluation is beyond the scope of
the paper.

These problems will be studied using the method of
acoustic imaging. Whilst the fundamentals of this method
have been explained by the authors in [13], the current paper
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is an extension and application of the method to a practi-
cal problem and investigates the changes in the ATFs when
the acoustic image is altered. It is important for the reader
to understand that the alternative procedure for studying re-
flections from a single wall in different configurations re-
quires free-field conditions, that is, the wall would have to
be built and physically altered in, for example, an anechoic
chamber. The proposed method requires neither free-field
condition nor the physical alterations. Further, the purpose
of the current paper is not to quantify the scattering by the
reflecting objects, this approach has been presented in [14].
Whilst, similar to the energetic scattering coefficient, some
of the results in the paper are also quoted as single figures for
the required model order, this serves merely as an example
and the method is much more powerful in that it allows one
to obtain and study ATFs from single reflecting objects with
geometrical and acoustic properties that are close to reality.
The method thus includes both the effects of scattering and
the frequency-dependent acoustic impedance of the objects.
Since the latter are usually smooth functions of frequency, it
is anticipated that the scattering has a larger influence on the
model order.

This paper is organised as follows. In the following sec-
tion, a brief description of the measured reflecting object
(wall plus objects) and a brief overview of how acoustic im-
age of the object is obtained and augmented are given. In
Section 3, the mathematical basis for the transfer function
models is outlined. Finally, the numerical results and the dis-
cussion thereof are presented in Sections 4 and 5.

2. ACOUSTIC IMAGING

The ATFs to be modelled are due to reflections from a corri-
dor wall including smaller objects such as columns, a closet,
and an electrical distribution box. A photograph of the corri-
dor wall is shown in Figure 1. In a previous publication [13],
it has been shown how an acoustic image of this wall and the
smaller objects is obtained by measuring acoustic impulse re-
sponses on a planar array and then extrapolating the acoustic
pressure and particle velocity to the reflecting objects.

The process of acoustic imaging has a few interesting
properties. Firstly, it simply maps the reflections in the acous-
tic impulse response to the reflecting object, and does thereby
retain a significant amount of the acoustic information. Sec-
ondly, it is reversible, that is, the acoustic impulse responses
can be recovered from the acoustic image (with some loss of
acoustic information). This step is referred to as demigration
[13]. Thirdly, the acoustic image can be augmented and then
be demigrated (removing an object from the acoustic image
results in acoustic impulse responses without the reflections
from the object after demigration). Since this involves noth-
ing more than simple copy and paste of measured data, the
result is expected to be very close to physically altering the
reflecting object and remeasuring the acoustic impulse re-
sponses, and arguably closer to reality than the synthetic data
from room acoustic models.

The loss of acoustic information in the process is caused
by the temporal width Δt0 of the source pulse (due to fi-
nite frequency bandwidth). Suppose a reflecting object is

Figure 1: Photograph of the corridor wall.

described by a delta function in space. In the corresponding
acoustic image, it will appear as an object with approximate
width Δt0c, where c is the speed of sound in air. If two re-
flecting objects are less than Δt0c apart, their corresponding
acoustic images overlap, and there are therefore both unre-
solvable ambiguity and a loss of acoustic information. The
losses are quantified by amplitude losses in the demigrated
impulse responses [15]. In practice, further losses are caused
by the finite aperture of the receiver array and the finite size
of the acoustic image. The finite aperture of the receiver ar-
ray means that not the entire reflected wavefront is captured
and the finite size of the acoustic image means that the re-
flections from objects not present in the acoustic image are
missing. In [13], the authors have used a short FIR match-
ing filter to compensate for the difference in magnitude and
phase between the originally measured and demigrated im-
pulse responses.

Until now, the authors have not been able to prove the
accurateness of the “cut-and-paste” method by comparing it
with measurements on the wall with the physical changes.
The reason lies in the resources required to perform such
measurements under the required free-field conditions (be-
cause no other reflections than those from the wall must be
present) and matching real and virtual changes exactly could
prove to be a challenge, too. Regardless of this issue, the au-
thors would like to stress that the processes of acoustic imag-
ing and demigration have significant similarity with the well-
established boundary element method and near-field acous-
tic holography. In particular, they are all derived from the
Kirchhoff-Helmholtz or Rayleigh integrals.

2.1. Signal processing implementation

In the following, the processes of acoustic imaging and dem-
igration are described explicitly for discrete variables. The
position of the single sound source is denoted by rS =
(rSx , rSy , rSz). The vector r

[i j]
R = (r[i]

Rx
, 0, r

[ j]
Rz

) denotes the dis-
crete measurement position at the indices i and j in the re-
ceiver array (for simplicity, the array is in the y = 0 plane)
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with spatial sampling intervals ΔrRx and ΔrRz . The cartesian
coordinate vector of pixel [klm] in the acoustic image is de-

noted by r[klm]
I = (r[k]

Ix , r[l]
Iy , r[m]

Iz ). The value of the time vari-

able t at index h is denoted by t[h].
For discrete temporal and spatial variables, [13, eqaution

(2)] for the acoustic image pIm in terms of reflected pressure
has been converted into a summation using piecewise con-
stant integration and then reads

pIm

(
r[klm]
I

)
=
∑

i

∑

j

[
∂

∂t
vy
(
t[h], r

[i j]
R

) ρ0

4πr
[i jklm]
IR

− 1
c

∂

∂t
p
(
t[h], r

[i j]
R

)cosφ[i jklm]

4πr
[i jklm]
IR

]
ΔrRxΔrRz .

(1)

For notational simplicity, the far-field expression has been
used. The mass density and speed of sound in air are ρ0 and

c, respectively, cosφ[i jklm] = |r[l]
Iy |/r

[i jklm]
IR , and the distances

r[klm]
SI and r

[i jklm]
IR are given by

r[klm]
SI =

√(
rSx − r[k]

Ix

)2
+
(
rSy − r[l]

Iy

)2
+
(
rsz − r[m]

Iz

)2
, (2a)

r
[i jklm]
IR =

√(
r[k]
Ix − r[i]

Rx

)2
+
(
r[l]
Iy

)2
+
(
r[m]
Iz − r

[ j]
Rz

)2
. (2b)

The time derivatives in (1) can be performed as a prepro-
cessing step by multiplying with jω in the frequency do-
main, with ω the angular frequency. Equation (1) describes

a weighted summation of pressure p(t[h], r
[i j]
R ) and normal

component of the particle velocity vy(t[h], r
[i j]
R ) on the array.

The time t[h] is given by

t[h] = r[klm]
SI + r

[i jklm]
IR

c
(3)

and the time index h is therefore a function of both the in-
dices k, l, and m of the image point position rI as well as of
the summation indices i and j of the (array) receiver position
rR. In practice, the right-hand side of (3) has to be rounded
to the nearest integer value of h. To minimise this error, mea-
sured pressure and normal component of the particle veloc-
ity are resampled with a 64 kHz sampling frequency.

The reverse step of recreating the impulse responses from
the acoustic image, termed demigration, is given by (7) in
[13]. The discretised, far-field approximation reads

p
(
t[h], r

[i j]
R

)
=
∑

k

∑
m

1
c

∂

∂t
pIm

(
r[klm]
I

)cosφ[i jklm]

4πr
[i jklm]
IR

ΔrIxΔrIz ,

(4)
where ΔrIx and ΔrIz are the sampling intervals of the acoustic
image in the x- and z-direction, and all other variables are de-
fined as above. Since the summand does not depend on time,
the time differentiation can only be performed after the sum-
mation. The necessary swapping of summation and differen-
tiation order is only permitted for smooth functions. Alter-
natively, Tygel et al. [16] replace the time derivative and mul-
tiplication by 1/c with a space derivative in the y-direction,

+Source
Chair

+O
Array

z

x

(a)

+Source
1 m

y

Array
+O

(b)

Figure 2: (a) Elevation and (b) floor plan of the corridor with the
measurement setup.

which is again a far-field approximation. Equation (4) rep-
resents a summation over the acoustic image, where for each

value of t[h], the values of r[l]
Iy are determined by (3). A round-

ing to the nearest integer value of the index l is required.
For the impulse responses sampled at 64 kHz but the ef-

fective bandwidth limited to 8 kHz, the coefficients of the
matching filter used in [13] are given by

f [h] = [11.3,−23.4, 0.5, 10.2, 0,−8.4,−4.6, 1.6,−1.5, 0.3].
(5)

Whether the matching filter is a necessity in the current con-
text is debatable, the authors have included it for reasons of
consistency.

2.2. Application to corridor wall and obtaining the ATFs

A drawing of the measurement setup in front of the corri-
dor wall is shown in Figure 2. The receiver array consists of
140 horizontal and 50 vertical measurement positions and
the pressure and normal component of the particle velocity
have been measured with a SoundField MKV microphone.
With ΔrRx = ΔrRz = 0.05 m, the total array aperture is thus
7 × 2.5 m. The data has been filtered in the wave number-
frequency domain to avoid potential spatial aliasing [17].
A surface representation of the resulting acoustic image of
the corridor wall is shown in Figure 3. The sampling in the
acoustic image is ΔrIx = ΔrIy = ΔrIz = 0.02 m.

In previous works, the acoustic image has been altered
by removing the electrical distribution box [13], replacing
the electrical distribution box and the closet with a flat wall
section [18] and placing an acoustic diffuser on a flat wall
section [14]. The corresponding changes in the impulse re-
sponses have been evaluated perceptually and it was found
that the presence of the electrical distribution box and closet
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Figure 3: Surface presentation of the acoustic image of the corridor
wall.

is only audible if the receiver is in their immediate vicinity.
The presence of the diffuser was audible even when the ratio
of reflected energy between the wall configurations with and
without diffuser was almost unity.

For the purpose of the present investigation, the acous-
tic image of the corridor wall has been augmented and then
demigrated in three configurations:

(1) the original unaltered image;
(2) cleaning up the original image by removing the sec-

ond-order reflection via the floor and the ceiling;
(3) image with completely flat wall obtained by copy/paste

of homogenous wall sections, that is, no closet, col-
umns, and so forth.

The reader is reminded that all three configurations includ-
ing the last one still contain the frequency-dependent acous-
tic impedance of the wall.

In the following, configuration (3) is referred to as the
homogenous flat wall but it needs to be emphasised that
this wall is only flat and homogenous on a macroscopic
(> 0.05 m) but not microscopic (< 0.05 m) level. A cross-
section of the wall therefore can not be characterised by a
spatial delta function at a constant position, as would be the
case with a mirror image source model, but contains all the
local variations associated with an actual brick wall.

The ATFs H(ω[k]), that are to be modelled in the next
section, are obtained from the demigrated acoustic impulse
responses by

H
(
ω[k]) = DFT

{
p
(
t[h], r

[i j]
R

)}
. (6)

Because of the antispatial aliasing filter, a temporal sam-
pling frequency of 16 kHz is sufficient, and therefore ωmax =
50265 rad/s. The DFT was performed with 2048 samples.

Another processing step was to remove the delay corre-
sponding to the travel time of the (approximate) specular re-
flection path from the source via the reflecting object to the
receiver. Whilst the delay does not influence the magnitude

Measure
impulse

responses
Imaging Image

Alter
image Demigration DFT ATF model

Figure 4: Block diagram of the processing from the acoustic image
to the ATF model.

response, it does introduce a linear phase shift as a function
of frequency, which has to be incorporated into the model
and does bias the results for the model order. The delay was
removed because it would be present even with a mirror im-
age source model and does not represent any acoustic prop-
erties of the reflecting object itself.

A block diagram outlining the required signal processing
steps from the impulse responses to the ATF model is given in
Figure 4. It is to be emphasised that the ATFs contain neither
reflections from other walls in the corridor hall nor the direct
sound.

3. TRANSFER FUNCTION MODEL

The general model of a transfer function can be written as a
rational function of the form

H′(s) = B(s)
A(s)

=
∑M

m=0 b
[m]sm∑N

n=0 a[n]sn
, (7)

where s = jω and B and A are the polynomials with coeffi-
cients b[m] and a[n], respectively.

If H(ω[k]) is the ATF to be modelled, the model is ob-
tained from the following equation error:

min
b,a

∑

k

w
(
ω[k])∣∣H(ω[k])A(ω[k])− B

(
ω[k])∣∣2

, (8)

where B(ω[k]) and A(ω[k]) are the values of the numerator
and denominator of (7) evaluated at the discrete frequency
points ω[k] determined by the DFT grid points. w(ω[k]) is
an optional weight function used to give greater emphasis to
certain frequencies. Equation (8) results in a system of linear
equations in the polynomial coefficients a[n] and b[m] that
can be solved by matrix inversion in the least-squares sense
[19, 20].

The weight function was defined as follows:

w
(
ω[k]) =

⎧⎨
⎩

0 for 0.97ωmax < ω[k] < 0.03ωmax,

1 for 0.97ωmax ≥ ω[k] ≥ 0.03ωmax.
(9)

The low weight at the extreme ends of the frequency band
afford the algorithm a high degree of freedom in that region.

An important and difficult issue is the order selection
of the polynomials in the numerator and denominator of
the transfer function model. It is well known that an accu-
rate model of a measured room transfer function requires
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Figure 5: Typical (a) magnitude and (b) phase of measured room
transfer function in the corridor hall.

in excess of a thousand coefficients [21, 22] for both the
numerator and denominator. The reasons are the numer-
ous peaks and dips caused by the complex summation of
many eigenmodes with quasirandom phases as discovered by
Schroeder [23]. As an example, Figure 5 shows the magni-
tude and phase response of the room transfer function in the
corridor hall (not just the single wall!). Since the average fre-
quency spacing between adjacent dips and adjacent peaks is
equal [23], it would seem that the order of numerator and de-
nominator polynomials should also be approximately equal
at least for the case of the whole room transfer function.

For the purpose of modelling the ATFs from the single
augmented wall, the required model orders are much smaller
and it proved feasible to model the entire frequency band
without resorting to subbands [24]. For reasons of simpli-
fication, the order of the numerator and denominator poly-
nomials was kept equal (N = M). Thus, if in the remainder
of the paper a model order N is quoted, the actual total order
of the model is N + M = 2N .

4. RESULTS

The following cases for the groups of eleven receiver posi-
tions have been investigated:

(A) in front of the closet (z = 0.5 m);
(B) in front of the closet (z = 1.5 m);
(C) in front of the electrical distribution box;
(D) in front of a homogenous wall section;

(D) (C) (B)

(A)

Array
+Source

+
O

Figure 6: Extract of Figure 2 showing the positions of some of the
cases considered.

(E) the same as (C) but with reflections from the electrical
distribution box only;

(F) the direct sound at the positions of (B), (C), and (D).

Case (A) is at 0.5 m, whereas all other cases are at 1.5 m above
the lower array edge. Some of the positions of the differ-
ent cases are shown in Figure 6. Each case consists of eleven
(33 for the direct sound) ATFs from the receiver positions at
0.05 m intervals on a horizontal line. The ATFs of the direct
sound in case (F) have been obtained directly from the orig-
inal impulse response measurements. All other ATFs have
been obtained from the impulse responses after demigration.
Where appropriate, each case has been considered with all
three wall configurations listed in Section 2.2. For example,
case (C-3) refers to the ATF at the eleven positions in front of
where the electrical distribution box would be, but the elec-
trical distribution box has been removed and the wall is ho-
mogenously flat. Figure 7 shows the impulse responses used
for the ATFs in cases (B), (C), and (D) in all three wall con-
figurations (1), (2), and (3).

4.1. Example ATFs

Figure 8 to Figure 10 show typical magnitude and phase re-
sponses of the demigrated ATF and its model for one receiver
position of case (C) in all three different wall configurations
(1), (2), and (3).

What the three figures clearly show is how the complex-
ity of the ATF is decreasing as the structural details of the
reflecting wall are decreasing. The general characteristics in
Figure 8 are very similar to those in Figure 9, yet the for-
mer shows larger fluctuations within small frequency bands,
which is to be expected due to interference between multi-
ple reflections. Also, in accordance with expectation is that
Figure 10 exhibits the most smooth magnitude and partic-
ularly phase response of all three figures. It is also worth
noting that the complexity of the ATF in the three figures is
much smaller than that in Figure 5. However, the chosen or-
der of the model is not yet sufficient to model all the details in
the ATFs. This can be seen particularly well by the spurious
spikes at approximately 1.2, 2.7, and 3.1 kHz in Figure 9.

4.2. Estimating the required model order

The error between the ATF and its model is defined by ε(N).
Its definition follows an output error instead of the equation



6 EURASIP Journal on Advances in Signal Processing
T

im
e

(m
s)

16

14

12

10

8

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

x(m)

(a)

T
im

e
(m

s)

16

14

12

10

8

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

x(m)

(b)

T
im

e
(m

s)

16

14

12

10

8

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

(B) (C) (D)

x(m)

(c)

Figure 7: Demigrated impulse responses at z = 1.5 m used for the
ATFs, (a) configuration (1), (b) configuration (2), and (c) configu-
ration (3). The vertical lines indicate the groups of eleven impulse
responses used for cases (B), (C), and (D).

error formulation of (8) and is given by

ε(N) =
∑

k w
(
ω[k]

)∣∣H(ω[k]
)− BN

(
ω[k]

)/
AN
(
ω[k]

)∣∣2

∑
k w
(
ω[k]

)∣∣H(ω[k]
)∣∣2 ,

(10)
with w(ω[k]) defined in (9). The numerator in the above
equation is the weighted sum of the squared amplitude dif-
ferences between the ATF and its model and the denomina-
tor is the weighted sum of the squared magnitude of the ATF.
The latter serves as a normalisation factor such that the error
ε(N) is independent of the absolute magnitudes in the dif-
ferent ATFs. The required model order for a particular case-
configuration pair is then defined as the order N at which the
error ε(N) falls below a predefined threshold. Unfortunately,
defining such a threshold is inevitably a subjective matter be-
cause it depends on the desired accuracy of the model.

A practical problem that occurred when trying to find a
threshold was that ε(N) is not necessarily a function that is
monotonously decreasing before asymptotically approaching
a constant value forN large enough. Figure 11(a) shows ε(N)
for all eleven ATFs of case (C-3), where it is evident that the
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Figure 8: Case (C-1): (a) magnitude and (b) phase of ATF from
demigration (solid line) and its model with N = 31 (dashed line).
Magnitude and phase of model have an offset for better compara-
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Figure 9: Case (C-2): (a) magnitude and (b) phase of ATF from
demigration (solid line) and its model with N = 31 (dashed line).
Magnitude and phase of model have an offset for better compara-
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demigration (solid line) and its model with N = 31 (dashed line).
Magnitude and phase of model have an offset for better compara-
bility.

errors shoot up at discrete values of N . The reason for this
behaviour is that the ATF model is optimum for a particu-
lar value of N but there is no guarantee that a lower-order
model does not have a smaller error value ε, and further the
difference between the output error in (10) and the equation
error in (8) may also contribute to the problem. It is also seen
in the figure that for N large enough, the problem no longer
occurs.

In order to circumvent these problems, a modified error
function ε′(N) is introduced as follows:

ε′(N) = 1
N

N∑

n=1

ε(n). (11)

The modified error of the model of order N is therefore the
average of the errors of all models with orders from 1 to N .
This modification is quite arbitrary but has been introduced
solely to render the thresholding process more robust. It did
result in a monotonously decreasing function that asymp-
totes a constant value for all the cases investigated. For all
eleven ATFs of case (C-3), ε′(N) is shown in Figure 11(b). It
can be argued that a fluctuating behaviour of ε(N) is caused
by the complexity of the ATF to be modelled, and hence the
model order is too small and must be increased. Finally, the
required model order was recorded as the value of N , where
ε′(N) ≤ 0.1. This particular value was determined experi-
mentally and was found to (i) guarantee no visual difference
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Figure 11: ε(N) and ε′(N) for all eleven ATFs of case (C-3).

between model and actual ATF on the scale used in Figure 8
to Figure 10 and (ii) to ensure that ε(N) does not shoot up
again for larger values of N at any receiver position.

The results for the required order are expressed as mean
and standard deviation between the eleven ATFs for each case
and configuration and are shown in Table 1.

5. DISCUSSION

From Table 1, a general observation is that the highest orders
for each wall configuration are mainly required for cases (B)
and (C). In fact, for both these cases, the results are very sim-
ilar for wall configurations (1) and (2). For case (D), where
the receivers are positioned in front of a homogenous wall
section, the required order is larger in cases (D-1) and (D-2)
than in cases (D-3), albeit only slightly for (D-2). This sug-
gests that the scattering from objects such as the electrical
distribution box and the columns influence the ATFs at these
positions.

For wall configuration (3), that is, the homogenous flat
wall, the required mean order is 83 with a standard deviation
of 15, the result for case (B-3) is almost 50% lower than for
cases (C-3) and (D-3).

Another observation is that for all cases, the standard
deviation of the model order depends on the wall configu-
ration. Configuration (1) always produces the largest values
and configuration (3) always the smallest. This is consistent
with the fact that in the former configuration, the complexity
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Table 1: Mean N and standard deviation σ(N) of the ATF model order (over the set of eleven ATFs) for the different cases and configurations.

Case (A-1) (A-2) (B-1) (B-2) (B-3) (C-1) (C-2) (C-3) (D-1) (D-2) (D-3) (E) (F)

N 101 79 263 175 65 222 164 91 172 104 93 63 25

σ(N) 24 19 52 16 15 46 25 15 43 29 24 30 13

of the ATF is the most position dependent because of the
amount of details present.

The results for case (A) are rather inconsistent with those
from the other cases. The mean order is much lower, and
in particular when compared to case (B) whose receiver
positions are also in front of the closet. The reason for this
is currently unknown.

For case (E), which contains reflections from the electri-
cal distribution box only, the mean order is 63. Comparing
with case (C-2) at the same positions in front of the wall, the
standard deviation is roughly the same, but the presence of
the entire wall increases the mean model order to 164.

For the direct sound (case (F)), the required order
is on average 25. The figures quoted by Greendfield and
Hawksford [25] for the modelling of loudspeaker transfer
functions are roughly twice as large, however, due to the dif-
ferent methodologies employed, a direct comparison is in-
congruous. At any rate, the transfer function of the loud-
speaker source is included in the ATFs of cases (A) to (E).
In order to obtain the order of the ATF from the reflecting
objects only, the order of the loudspeaker transfer function
should be subtracted from the numbers listed. The lowest
mean order thus obtained for a completely flat wall is 40 for
case (B-3).

It is to be noted that the obtained model orders depend
on the efficiency of the transfer function modelling algo-
rithm and also on the value chosen for the error criterion ε′.
The relative values for the model orders are therefore more
meaningful and objective than the absolute values. The main
findings from this paper can then be summarised as follows.
The complexity (in terms of ATF model order) of sound re-
flections from a physical wall comprising a number of de-
tails is between two to three times higher than that of a ho-
mogenous flat wall and varies by roughly 25% between re-
ceiver positions. Further, the required model order for the
physical homogenous flat wall is still relatively large. With a
mirror image source model, the wall would be modelled as
a single planar surface and would require one coefficient in
the case of frequency-independent acoustic impedance and
a slightly larger order to model the usually smooth varia-
tion with frequency. It seems very unlikely that the fluctu-
ations in Figure 10 are only caused by acoustic impedance
variations.

The applications of the acoustic imaging process, pre-
sented in [13] and the present paper, to room acoustics are
the following. The method can serve as a tool to investigate
sound reflection from different reflecting object (e.g., wall)
details without the requirement of physically constructing
the object and measuring its sound reflections in an ane-

choic chamber. The results have shown that reflections from
objects, whose size is in the order of the shortest acoustic
wavelength, are present in the room impulse response since
otherwise the object would not appear in the acoustic image.
In terms of wave-equation-based room acoustic models such
as finite elements, boundary elements or finite differences,
the message is that leaving out objects of the size of the acous-
tic wavelength in question can potentially introduce signifi-
cant errors, from both objective parameters and perceptual
point of view. An example is the increased “diffusion” offered
by the object details as compared to larger planar surfaces. It
is conceivable that the presented method can be extended to
quantify these errors objectively.

For room acoustic models based on geometrical acous-
tics, the results from the macroscopic flat wall with fre-
quency-dependent reflectivity properties reinforce the im-
portance of incorporating and assigning a nonzero value for
the diffusion/scattering coefficient even to planar surfaces.
Further, comparing the complexity of the ATF from the ge-
ometrical acoustics model with that from the acoustic image
can aid in the task of accurately modelling diffraction and
scattering through surface and edge sources. This in turn can
potentially help to improve the physical accuracy versus com-
putational complexity dilemma encountered in room acous-
tics modelling. A further interesting avenue is the perceptual
comparison between the reflections from the macroscopic
flat wall in this paper and the flat wall from a geometrical
acoustics model.

6. CONCLUSION

The modelling of acoustic transfer function (ATF) from the
reflections of single objects has been performed. The purpose
was to investigate the complexity of the reflections from real
physical objects. The ATFs have been obtained by demigrat-
ing the acoustic image of the reflecting objects, consisting of
a corridor wall with a number of details such as columns,
a closet, and an electrical distribution box. The original
acoustic image has been augmented first by simplifying it
and then by replacing larger objects with homogenous wall
sections.

The ATFs to be modelled stem from various receiver po-
sitions in front of the wall. The required model order has
been estimated from the error between modelled and actual
ATFs. It was found that the maximum and minimum to-
tal model orders 2N are 526 and 126, respectively. For the
ATF from the original unaltered acoustic image, the vari-
ation in model order as a function of receiver positions is
the largest and approximately 25%. The lowest model order
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for the homogenous flat wall was 130. Finally, the order 2N
of the loudspeaker transfer function, which is implicitly in-
cluded in the ATF, was estimated as 50. This figure would
need to be subtracted from the above-quoted numbers.

The results in this paper confirmed the applicability of
some of the practices in current room acoustics modelling
and the method itself can be used to further understand
and improve the modelling of reflections from real physical
objects.
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