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Abstract

A startup company, inPhocal, specializing in laser marking systems, develops their own optical
module to generate the laser beam with a long depth of focus. Due to the long depth of focus,
3-dimensional curved surfaces can be marked without changing the distance between the target
surface and the laser marking system, accomplishing high-speed 3D laser marking.

Nowadays, people use ink and stickers to label information like expiry date, barcode, logo, etc on
products, which causes a serious environmental problem. On the other hand, laser marking will
not produce extra waste, making it a sustainable way to do the labeling. Consequently, inPhocal
tries to replace ink and stickers with their laser marking system. However, laser marking will
project 2-dimensional patterns onto the 3-dimensional surfaces orthogonally, and these patterns
will be inevitably distorted. In this research, the state-of-the-art method to eliminate this dis-
tortion will be introduced and the problem of this method will also be discussed. Then, a new
method will be developed in this research.

Currently, to map 2-dimensional patterns onto 3-dimensional surfaces, surface parameterization
is used. By finding the 2-dimensional parameterized plane of the target surface and putting a
2-dimensional pattern onto this plane, this pattern can be mapped by reversing the parameter-
ized plane as well as the 2-dimensional pattern to the original 3-dimensional surface. Then, by
extracting the x and y coordinates of the mapped pattern, a 2-dimensional corrected pattern is
obtained and can be marked on the curved surface without distortion. This method has some
issues, making it take too long for correcting patterns for doing laser marking in the production
line.

In this research, a new method based on non-uniform rational b-spline (NURBS) is proposed in
order to provide a fast and precise method to get the corrected pattern. The full development
process and the simulation results will be provided. After that, a comparison of time consumption
and performance between this new method and the existing method will be given.

Finally, there are some different scenarios when applying this new shape correction method, and
each scenario will take a different time to finish the shape correction for a 2-dimensional pattern,
and the correction errors within these scenarios are also different. Therefore, a discussion of these
scenarios and how to choose the proper scenario in practice will be presented.
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Chapter 1

Introduction

In this chapter, the background and motivation of this research project will be discussed. Then,
the problem statement of the project and the deficiency of the current solution will be discussed.
Finally, the goal of this research project and the outline of this thesis will be introduced.

1.1 Background and motivation

Light Amplification by Stimulated Emission of Radiation (Laser) is electromagnetic radiation
emitted by stimulating atoms or molecules. In Atomic theory, electrons orbit randomly around
the atomic nucleus and the distances between the atomic nucleus and electrons depend on its en-
ergy level. If an electron is stimulated by the external energy, it can be excited to a higher energy
level. When this electron falls back to a lower energy level, it will emit radiation with energy equal
to the energy difference between this high and low energy level. shows the design of
a laser, the electrons of the gain medium will get stimulated by the pumping energy, and when
the excited electrons fall back to the lower energy level, they will emit photons. However, if the
electrons emitted photons through spontaneous emission, the photons will have low coherence. To
solve this, the laser uses the metastability of electrons. The electrons in a meta-stable state will
be less likely to have spontaneous emission, but more likely to emit photons when other photons
pass through them, and the emitted photons will have the same wavelength as the passed-through
photons. This process is also known as stimulated emission. Then, these emitted photons will be
bounced back and forth between the high reflector(a mirror) and the output coupler (a partially
transparent mirror) and make stimulated emission occur again and again to get more photons to
form a laser beam and goes out from the output coupler. The light beam coming out of the laser
will have high coherence, low divergence, and high power density within a small spot.

Due to these characteristics, lasers are widely used in the industrial sector, from leaving visible
markings on the materials to even cutting through the materials. Since laser processing is a process
to make materials melt or evaporated by absorbing the energy from the laser beam, the absorption
rate of materials, which is related to the wavelength of the laser beam, plays an important role in
laser processing. However, the wavelength of the laser beam can be manipulated by applying dif-
ferent gain mediums(e.g. CO4 laser with wavelength 10600 nm can be used in processing organic
materials, and Nd:YAG laser with wavelength 1064 nm can be used in processing metals), making
laser processing extraordinary flexible and it can be used for almost all materials.
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Laser pumping energy

High reflector

Output coupler
C Gain medium \}
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Figure 1.1: Design of laser [I].

Besides, Laser processing is a non-contact machining method, so it gets rid of the cutting tool
wear in traditional machining methods, thereby reducing the cost and time-consuming need of
replacing cutting tools. Even more, with the laser marking machine, information about products
such as expiration dates, bar codes, or logos (this ”information” will be represented by ”pattern”
in the rest part of this thesis), can be printed directly without ink and stickers, which are the
dominant way to show such pattern. These, however, pollute the environment by a large degree.
As environmental awareness rises, a sustainable way to leave the pattern on products without
producing pollutants is demanded, and laser marking seems to be an ideal way to replace inkjet
printing and stickers. Nevertheless, since the products usually have 3-dimensional surfaces, there
is still a severe problem with traditional laser marking systems. For laser marking, a laser beam
should be able to focus on any position where it is expected to leave a mark, which needs to
refocus the laser beam again and again when marking on a 3-dimensional surface and slows down
the processing speed.

inPhocal, a startup company specializing in high-speed laser marking systems, develops a novel
optical module to make the depth of focus of a laser beam much longer than traditional laser
beam. Based on CERN’s technology [2], inPhocal utilized spherical aberration to transform the
incoming laser beam with Gaussian energy distribution into a laser beam with concentric energy
distribution. The concentric structure enables a laser beam to stay in focus for a long distance
after being converged by a positive lens (seesection 2.1)). In|[Figure 1.2) how the depth of focus of
the laser beam affects the laser marking is shown. The laser beam with a short depth of focus will
be out of focus easily, so the energy with be dissipated into a large area, making the energy density
too low to leave marks. On the contrary, the laser beam with a long depth of focus can retain
its energy density at a much longer distance than the short depth of focus laser beam can, so it
can even leave mark on a curved surface. In traditional laser marking system, the laser beam’s
depth of focus is usually a few mm, but it can reach 5cm in inPhocal’s system, enabling the laser
marking system to process a wider range without refocusing the laser beam. With the high-speed
laser marking system of inPhocal, the main drawback i.e., the processing speed, of laser marking
compared to inkjet printing and stickers is solved. Yet, a distortion will be inevitably introduced
when marking a 2-dimensional pattern onto a 3-dimensional surface. Hence, to accomplish leav-
ing marks on 3-dimensional objects by laser marking, a shape correction method for marking
distortion-free patterns onto 3-dimensional objects is required.




CHAPTER 1. INTRODUCTION

Incoming laser beam Incoming laser beam
- Galvanometric scanner Galvanometric scanner
- T ———_ A
// \ 7 W
LAY ! *
L =T
__—_;1’_//( \ - Il ,//\\\
- R ‘\ \‘ e \\\
A2 W e Y o
s \ 7 7 W
PESTES We % w\$
PR A" ’, Y \3
. N ! El ’ O\ \o
. /o Oy o IRY S @ A NG
e ‘) ETRA N Curved surface PRV B T s
S 2,93 s X 5 ()
2N = v Q 9 o 1Y %
o | [ PRGN, =4 v @
S, v e o P R
ol \ 1L o
[SH & Q I \
o \ / c \
2 \ , g 1 N
« \ \ 1 !
\ \ 1
1 \ 1 N
(a) Laser marking with short depth of fo- (b) Laser marking with long depth of fo-
cus. cus.

Figure 1.2: Effects of laser beam’s depth of focus on laser marking.

1.2 Problem statement

A laser marking system is mainly composed of a laser source, two mirrors that can be rotated
perpendicularly with respect to each other by galvanometers, and an f-theta lens that can focus

the laser beam on the image plane (Figure 1.3).

Galvanometer x

Laser source .
Mirror x

Mirror y -

Galvanometer y

F-theta lens

Figure 1.3: Sketch of laser marking.

By giving the x and y coordinates of 2-dimensional pattern that wants to be marked as the control
signal of a galvanometer, the laser beam will be directed to this position on the image plane. If
the 2-dimensional pattern is marked on a 3-dimensional curved surface, it will be distorted like
Thus, a method to deform the 2-dimensional pattern beforehand to diminish this

distortion to get a proper marking on the 3-dimensional surface is necessary.
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Figure 1.4: 2D information(blue) and distorted mark after marking onto 3D surface(red).

1.2.1 State-of-the-Art: surface parameterization

In the current state of the art, the pre-deformed 2-dimensional pattern for laser marking without
distortion can be obtained by finding a 2-dimensional parameterized plane of the 3-dimensional
surface, mapping the 2-dimensional pattern onto this plane, and reversing the 2-dimensional pa-
rameterized plane as well as the mapped 2-dimensional pattern back to the original 3-dimensional
surface. Then, by removing the original 3-dimensional surface, the mapped pattern without dis-
tortion is left, and the laser marking process can be finished by giving the x and y coordinates
as the control signal of the laser marking system. The 2-dimensional parameterized plane can be
obtained by triangulating the original 3-dimensional surface first, and by following two different
criteria: keep the edge-lengths [3] or keep the angles [4] of triangles of the triangulated surface,
the triangulated surface can be flattened into a 2-dimensional plane. Because some surfaces, such
as spheres, are topologically non-developable, they will lose the accuracy in angle when they are
flattened by following the edge-lengths criterion and vice versa. In some cases, the surfaces will be
flattened into a plane with a complex shape (Figure 1.5)), so the 2-dimensional pattern needs to be
pre-processed in order to fit this shape, making the mapping process very complicated. Therefore,
there is another way to get a parameterized plane. Based on graph theory [5], Michael S Floater
[6] proposed a method to parameterize surfaces into a predefined convex polygon. In this method,
the boundary of the triangulated surface will be mapped into a convex polygon like a unit square
or a unit circle . Then, the inner vertices of triangles will be determined by solving a
linear system based on convex combinations. In this method, the area of the parameterized plane
will not be the same as that of the original 3-dimensional surface, so the 2-dimensional pattern
still needs to be resized before being mapped onto the parameterized plane. For both methods,
the relationship between a 3-dimensional surface and its parameterized plane is a unique affine

mapping (Figure 1.7):

_ A(u,ug,uz)pr + A(ug, u,uz)ps + A(ul, uz, u)ps
A(Ul,ubus)m

P(u)

(1.1)

where {p1,p2,ps} are the vertices of a triangle of the 3-dimensional triangulated surface and
{uy,us,u3} are the vertices of its corresponding triangle on the parameterized plane. To map
the 2-dimensional pattern onto the 3-dimensional surface, each point of the 2-dimensional pattern
should be located in one triangle on the parameterized plane, and the corresponding location on
the 3-dimensional surface can be found through affine mapping.



CHAPTER 1. INTRODUCTION

Figure 1.5: Flattened sphere with complex shape [7].
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Figure 1.6: Surface parameterization through Floater’s method [6].

Figure 1.7: Affine mapping.
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1.2.2 Gap in State-of-the-Art

As mentioned in [subsection 1.2.1], the 2-dimensional pattern needs to be either pre-processed or
resized before being mapped, and the process of locating points of the 2-dimensional pattern in
the triangles on the parameterized plane is time-consuming. When applying laser marking to the
production line, it is desired to mark products as fast as possible to maximize productivity. In
other words, a time-consuming pattern mapping method that will slow the speed of production
line down is not suitable for the fast production line. Although it is possible to use a powerful
computer to speed up the calculation, the cost will also be dramatically increased since the expense
of the powerful computer itself and the energy consumption of operating it can be extremely high.
Due to these drawbacks, surface parameterization is not an ideal way for generating pre-deformed
2-dimensional patterns for laser marking, and it can be said that there is still lacking a fast and
easy way to generate pre-deformed 2-dimensional patterns.

1.3 Research objective

With the unique optical module developed by inPhocal, the laser beam is able to maintain its
focus entirely over a 3-dimensionally shaped object. Therefore, some companies are interested in
employing this novel system in their production line. For example, with the increasing demand
for personalized computer hardware, such as mouses and keyboards, Logitech plans to use laser
marking to decorate these products with unique patterns. This system can also be used in labeling
the expiry date, barcode, or logo on the products themselves, so the usage of ink and sticker
would be reduced. For this application, the objective of this project is to provide an algorithm
that can deform the 2-dimensional pattern properly beforehand so that it can be marked onto
a 3-dimensional surface without losing its profile. For Logitech case, the surface of the object is
determined, but for the other cases, e.g. marking on a fruit, the surface of the object needs to
be acquired by a shape detection device. Hence, the algorithm proposed in this project should be
able to deal with correcting the shape of the 2-dimensional pattern after marking onto both an
object with a pre-determined model and an object with an unknown shape.

1.4 Outline

This thesis has introduced the basic knowledge of the laser and how inPhocal’s laser marking
system can possibly replace ink and stickers on labeling products in [chapter 1 In [chapter 2|
the detail of the long depth of focus laser beam, NURBS, which is the background knowledge of
the pattern’s shape correction in this research, and how to calculate the curve length on NURBS
surfaces will be presented. The algorithm of the new shape correction method proposed in this
research will be developed in [chapter 3| [chapter 4] shows the shape-detecting sensor set-up for
getting the surface information of objects without the given surface model and the inPhocal’s
laser marking system set-up. The simulation results of mapping distortion-free patterns by using
python for both objects with and without the given surface model are shown in this chapter as well.
For the experimental results of the NURBS-based shape correction method proposed
in this research will be shown, and the simulation results of the state-of-the-art shape correction
(surface parameterization-based) also will be given for comparison. In the factors that
will affect the performance of the shape correction will be discussed, and the optimal scenario will
be provided. Besides, the advantages of the new shape correction method will also be discussed.
Finally, the conclusion will be made in




Chapter 2

Preliminary knowledge

In this chapter, the way to produce a long depth-of-focus laser beam will be discussed to give
an insight into how inPhocal’s laser marking system can process a 3-dimensional object without
losing focus. Then, Non-uniform rational B-spline (NURBS) will be introduced to reconstruct 3-
dimensional object surfaces for deforming the 2-dimensional patterns beforehand. In order to map
a distortion-free 2-dimensional pattern onto a 3-dimensional surface, the length between two given
points of the 2-dimensional pattern should keep consistent after mapping onto the 3-dimensional
surface, so the line integral on NURBS will also be introduced.

2.1 Structured beams

In laser marking, the laser beam should be focused on the point that should be processed to make
the material absorb enough energy to induce chemical reaction, charring, melting, or evaporating.
A laser beam with a short depth of focus will quickly lose its focus when processing a surface with
height variation, making it only applicable to flat surfaces. On the other hand, a laser beam with
a long depth of focus and high energy intensity can make the beam spot contain enough energy
for a long distance, which allows it to process curved surfaces and make it an ideal source for
laser marking. Traditionally, the light beam that comes out from the laser is a Gaussian beam,
whose depth of focus is short, and the energy distribution within the beam’s spot is a Gaussian
distribution, making it far from an ideal source for laser marking. In contrast, the Bessel beam
is a type of light beam that has a concentric structure that can be used to make a depth of
focus that is much longer than what can be obtained with a Gaussian beam. A Bessel beam can
be produced by making a Gaussian beam pass through an axicon lens. (Figure 2.1)). Because
of the conical structure of an axicon, a Gaussian beam with a planar wavefront will be bent in
different progressing directions. Then, these bent wavefronts will interact with each other to form
a light beam with intensity distribution on the cross-section plane being represented by the Bessel
function, which is known as a Bessel beam. When a Bessel beam is converged by a positive lens,
the central spot will be focused at the focal point. With the propagation of the beam, this central
spot will diverge after the focal point, but the surrounding rings will also be converged to form
the new central spot, making the long depth of focus of the Bessel beam. There are still some
other properties of the Bessel beam to make it supremely qualified for serving as the source for
laser marking: non-diffracting, self-healing, low divergence of the central spot, and small size of
the central spot.
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. .

Figure 2.1: A Bessel beam created by an axicon. [g]

Theoretically, the central spot of the Bessel beam is surrounded by infinity concentric rings, and
the energy within a Bessel beam is evenly distributed into the central spot and these rings. That
is to say, the Bessel beam will contain infinite energy, so the ideal Bessel beam can never be
generated. Besides that, since only the central spot is used in laser marking, the energy within
the rings would be wasted. To solve this problem, CERN proposed several optical systems for
producing structured beams (SBs), which share the same properties as Bessel beams(i.e., long
depth-of-focus, low divergence, etc.) but don’t have infinity concentric rings and most of the
energy is in the central spot. When a collimated light beam passes through a convex lens with a
high refractive index, the different radial segments of the incoming beam will follow different paths
with different phase delays due to the spherical surface of the convex lens, which is also known
as spherical aberration. After emerging from the convex lens, the rays with different phases will
interfere with each other and form aSB. Because of the high refractive index of the convex lens, the
emerging beam would diverge quickly, so putting a focusing lens behind the convex lens is needed
to capture the SB. shows one of the optical systems proposed by CERN to generate
SBs, the convex lens used in this system is a ball lens, and the focusing lens used in capturing the
SB is called an expander lens.

Figure 2.2: An optical system with a ball lens and an expander lens to generate structure beams

2.

There is still a downside to CERN’s technology. The SB that comes out from the ball lens will
diverge so rapidly that the expander lens cannot capture all this beam, making a lot of energy not
applicable in laser marking. A possible solution is to put the expander lens as close to the ball lens
as possible. In this way, an extremely short focal length expander lens might be required, which
has limitations since that kind of lens might be difficult to manufacture. Based on the technology
from CERN, inPhocal developed their own SBs [9] [10] [II], which solve this disadvantage. In
inPhocal’s laser system, a spherical mirror or a spherical lens is exploited to induce spherical
aberration. In this case, the outgoing beam will not diverge fast as the ball lens system do. Then,
by carefully choosing the shape, refractive index, and position of the expander lens, SBs have
a longer focus, a larger depth of focus, and a high power ratio within the central spot can be
generated. shows the comparison of beam profile, intensity, and energy ratio encircled



CHAPTER 2. PRELIMINARY KNOWLEDGE 9

within a certain radius. It can be found that radius of the central spot (distance between the
peak of the central spot and the peak of the first ring) of inPhocal’s SB is around 0.1lmm, and
the energy ratio encircled within this radius is around 70%. On the contrary, the central spot of
CERN’s SB only has less than 10% energy ratio.
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(a) Profile (left), intensity distribution and full width at half maximum (middle, full width at half
maximum(FWHM) is denoted in red lines), and the energy ratio encircled within a given radius
(right) on the cross-section plane of the SB of inPhocal. [I1]
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(b) Profile (left), intensity distribution and full width at half maximum (middle, full width at half
maximum(FWHM) is denoted in red lines), and the energy ratio encircled within a given radius
(right) on the cross-section plane of the SB of CERN. [I1]

Figure 2.3: Beam profile and properties of SB generated by (a) inPhocal’s system and (b) CERN’s
system.

2.2 Non-uniform rational B-spline (NURBS)

Non-Uniform Rational B-Spline (NURBS) [12] is a common way to construct a curve or a sur-
face in 3-dimensional space in computer-aided design software. In this section, a simple case to
reconstruct a given curve will be discussed in order to give an insight into applying NURBS first,
and the way to create NURBS surface will be introduced after that.

2.2.1 NURRBS curve

A curve can be regarded as the continuous trajectory of a moving point, so we can only choose some
sample points on a curve to represent it in the discrete system. That is to say, the value between
two sample points should be determined in other ways. One of these ways is an interpolation. By
choosing the proper weight of two adjacent sample points, the value in any position of the curve
can be approximated by the adjacent sample points and their weights. In fact, NURBS is also
an interpolation method, whose interpolated value consists of a number of polynomials. These
polynomials is defined by basis function N; ,(u):

Ui UL Ujpq

, otherwise

Nio(u) = {37
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U — U, Ujrp+1 — U

Nip(u) = Nip-1(u) +

-u Ujtp+1 — Uisl

Nit1,p-1(u) (2.1)

Uitp
where u; is given by knot vector U, ¢ =0, ..., m with m+1 is the number of knots in U, and p is the
order of polynomials used in approximating the curve. In general, a curve will be approximated by
second-order p = 2 polynomials. shows the plot of basis function with order p =0,1,2
and knot vector U = {0,1,2,3,4,5,...}, it can be seen that a smooth curve can be approximated
with at least second order(p = 2) polynomials.

w No Nos N,
m Nyo . N, o N,

" j Nyo " N, . Ny,
Figure 2.4: Visualization of Basis function with order p = 0,1,2 and knot vector U =

{0,1,2,3,4,5,...}.

After having the basis function N; ,(u), a NURBS curve can be represented by The
value at a specific position on the target curve C'(u) can be obtained by summing up the product
of all basis function N; ,(u) with knot vector U = {ug, ..., u;, ..., um—1} and the control points P;
as well as the weight w; and normalized by dividing the summation of product N;,(u) and w;.
shows a sinusoidal curve constructed by NURBS with given control points and knot

vector.

Yito Nip(w)w;P;
Clu) = == (2.2)
Xizo Nip(u)w;
Knots in knot vector:
‘T_
Knot vector: * 0 0 0 0 0 0 0 0 0 0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.004 — sine curve
m corresponding points of knots

* control points

0.75 4
0.50 4
0.25 4
0.00 4
—-0.25 4
—0.50
—-0.75 4

—1.00 A -

Figure 2.5: Sinusoidal curve (black curve) constructed by NURBS with control points (green
dots), knot vector U = {0.0,0.1,0.2,...,1.0} (blue cross) and corresponding point of each knot
(blue square).

It is not always that the control points and knot vector are given. More commonly, the curve
should be reconstructed by using a set of sample points. In this situation, the knot vector U can
be obtained through this approach:
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U ={0,0,...,0,ups1, .., i, 1,1, ..., 1}

J+p-1
Ujup = — Z i, for j=1,...m-p (2.3)
D iz
where the #; is obtained by sample points Q = {Qo, ..., Q;,...Qm } through chord length parame-
terization:

Uy =0, Umn=1
Qi — Qi1
YiolQ - Q)|

Wi =TUiq + for v=1,....m (2.4)

Since the interval of the knot vector is determined by the chord length between sample points of
the target curve, if line segments with the same length in the knot vector domain are mapped onto
the target curve, they will still retain the same length. This is the reason why NUBRS can be
used in eliminating distortion of pattern mapping. After having the knot vector, the sample points
can be treated as the points C'(u) and the u; calculated from sample points are the corresponding
u for the input to calculate basis function N;,(w). Then, by giving value to weights w;, the
control points P; can be determined. shows mapping ten straight line segments of
the same length onto a sinusoidal curve by projecting them orthogonally and through NURBS.
In the line segments projected onto the parts with larger curvature of the sinusoidal
curve will be elongated more than those projected onto smaller curvature parts. That is to say,
each line segment is in different length after mapping. In the line segments mapped
through NURBS will still be the same length because of the chord length parameterization used
in creating a knot vector.

; .
10
05 - //
0.0

o5 4 /

—1.0 4 e

0 1 2 3 4 5 6

(a) Mapping line segments with the same length on a sinusoidal curve through orthogonal projection

0.0 / 0.1/ 02 | o3 \0.4 \o.s 06 | 07 | 08 | 09 | 10
10 3

0.5 | /
0.0 1 /
—0.5 4

~1.0 ~—

0 1 2 3 4 5 6

(b) Mapping line segments with the same length on a sinusoidal curve through NURBS

Figure 2.6: Pattern mapping through orthogonal projection to show the distortion in (a) and
through NURBS with p = 2 and w; = 1 for all ¢ to eliminate this distortion in (b).
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2.2.2 NURBS surface

The process of constructing a NURBS surface is very similar to that of NURBS curve. The
difference between them is the span created by the knot vector. The value on a curve can be
obtained by only considering one parameter, but there are two parameters that should be taken
into consideration to determine the value on a surface. Hence, another knot vector should be added
to expand the span from a 1-dimensional line to a 2-dimensional plane. For the same reason, two
basis functions are required to determine the value of certain point S(u,v) on the surface:

Yico 2o Nip(u) Nj g (v)w; ;P

S(u,v) = —
( ) 2izo Zj=oNi,p(u)Nj,q(U)wi,j

(2.5)

To calculate the knot vectors U and V, the sample points of the target surface Q = {Q; ;} for i=
0,...,m and j = 0,...,n should be sliced in two different directions along i and j respectively
(Figure 2.7). Then, by exploiting [Equation 2.3 and [Equation 2.4} knot vectors U and V can be
obtained. With the same process as reconstructing a NURBS curve, basis functions N; ,(u) and
Nj 4(v) and by giving value to weights w; ;, the control points P; ; can be determined. Usually,
third-order polynomials are used in constructing a NURBS surface. shows a sinusoidal
surface reconstructed through NURBS with 11x11 sample points in ¢ and j direction, knot vectors
U ={0,0,0,0,0.2044,0.2956, 0.3927,0.5,0.6072,0.7044,0.7956, 1,1, 1,1},

VvV ={0,0,0,0,0.2,0.3,0.4,0.5,0.6,0.7,0.8,1,1,1,1}, order p,¢q =3 and w; ; = 1 for all 4, j.

It should be noted that, since NURBS is an interpolation method, the number of sample points
will largely affect the reconstructed surface. If the sample points fail to include some features
of the original surface, these features will not be shown in the reconstructed surface.
shows sinusoidal surfaces reconstructed through NURBS with a different number of sample points.
The sinusoidal surface in is reconstructed with 9 x 9 sample points and the sinusoidal
surface in is reconstructed with 4 x 4 sample points. It is clear that the two peaks of
the sinusoidal surface in are flatter than those of the sinusoidal surface in
It is caused by an insufficient number of sample points. That is to say, the sampling rate is too
low so some peak features of a sinusoidal surface might not be sampled and the sinusoidal surface
will not be approximated by NURBS properly.
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Figure 2.7: Slicing sample points of a sinusoidal surface along (a) i direction and (b) j direction
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control points
m corresponding points of knots

AN
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Pt el = TN
Vol -

Knots in knot vector U
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i

Figure 2.8: Sinusoidal surface reconstructed through NURBS with control points (black dots),
knot vectors U and V (green cross), corresponding point of knots (blue square), order p,q = 3 and

control points
corresponding points of knots

Wy 5 = 1 for all Z,]

control points
m  corresponding points of knots

reconstructed

(b)  Sinusoidalsurface
through NURBS with 4 x 4 sample points

(a) Sinusoidal surface reconstructed
through NURBS with 9 x 9 sample points
Figure 2.9: Effects on number of sample points

2.3 Line integral on NURBS

A mapped pattern without distortion means the distance between every pair of selected points of
the 2-dimensional pattern will remain the same after being mapped onto a 3-dimensional surface.
Thus, a method to calculate the distance between two points on a NURBS surface is needed. In
this section, the first fundamental form, a way to calculate the length of curves in space, will be
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introduced. Then, how to apply the first fundamental form of NURBS will be elaborated by first
applying to the simple case: NURBS curve again, then, applying to the NURBS surface after that.
Since it is extremely complicated to use the Newton-Leibniz formula in calculating the integral
of NURBS, a numerical integration method: Simpson’s rule will be adopted to calculate curve
length.

2.3.1 First fundamental form

Unlike the distance between two points in the points can be easily obtained by calculating the
length of the straight line segment connected by these two points, the distance between two points
lies on a surface should be calculated by considering the curve connected by these two points on
the surface. Imagining there is a bug crawling on a surface from one point to another, then the
path of this crawly bug is the curve v and the distance between these two points is the length of

this path that can be calculated by [13].
JARTOIKE (2.6)

Suppose the surface is represented by o (u,v). Since curve - lies on this surface, it can be written
in v(t) = o(u(t),v(t)) and the differential form of 4 can be written in:

Jo du Oo dv
(1) = —— + —— 2.7
7(®) Ou dt  Ov dt 27)
Let g—’; =0y, g—‘; = 0, then the dot product of 4 and 4 can be writen in :
du o, dv
() 1=~ = lloull® + 20 - 00 (=) (=) + llowl 2.8
140 1245 = ol + 200 0 (G20 + o (28)
Let [|ou|* = E, 0y 0, = F, ||o.]|* = G, the first fundamental form is given in:
first fundamental form = Edu? + 2Fdudv + Gdv® (2.9)
and the length of curve v in can be rewritten in :
f 4 (8) || dt = f(EiF £ 2Fah + Go?)dt (2.10)
where @ = %q; and ¥ = %’. With the first fundamental form of the surface, the length of curves

lying on it can be calculated.

2.3.2 Line integral of NURBS curve

To apply the first fundamental form to a NURBS curve, the derivative of the NURBS curve [14]
should be pointed out first:

W _ oy
du
_ ( Yito Nip(w)w;P; )’
- YiZo Nip(u)w;
_ Zito Nip(u) wiPs ¥iZo Nip(u)w
(ZiZ0 Nip(u)wi)?
_ ZiZo Nip(u)wiPi ¥ Nip(u) w;
(X0 Nip(u)wi)?

(2.11)

where the term NV; ,(u)" equals to:

Nip(w) = —L— Ny oy (u) - —F

Ui+p — Ug Uj+p+1 — Ui+l

Ni+17p_1(u) (212)
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In this case, the crawly bug moves on the NURBS curve C(u) with variable u, so the path length
from the start point a to the endpoint b of the bug can be written in:

b b .
f | C(u) Hdu:f (Eu’? + 2Fu'v + Gv'?) ¥ du (2.13)

where B = [|Cy(w)|* = IC(w)'|?, F = Cu(u) - Colu) =0, G = ||Co(w)|[* =0, u' = G2 =1, v' = 3 =0,

and a,b € [0,1]. In fact, this form can be regarded as the integral of the tangent of NURBS curve
C'(u)" times the infinity small step du within the interval [a,b] and can be rewritten in:

[b C(u) du (2.14)

2.3.3 Line integral of NURBS surface

For the first fundamental form of the NURBS surface, the partial derivative of two different
directions u and v should be calculated respectively [14]:

05 (u,v) = S (u,v)
ou
B (Z?—o Yt Nip(u)Nj g (v)w; ;P ; )
B Yico Z;'n:o Nip(u)Nj q(v)w; ; u
_ Zizo Xjo Nip(w)'Nj g (v)wi jPij Xizo Eizo Nip(u) Ny g (v)wi (2.15)
B (Xito X7k Nip(w)Nj ¢ (v)w; ;)?
 Zito Xjto Nip(u)Nj g (v)wi jPij Xilo EjZo Nip(u) ' Njg(0)wi
(X320 Zj20 Nip(u)Njq(v)w; ;)?
95(w,v) _ g (. v)
ov

B (Z?:o 220 Nip(w)Njq(v)wi;Pi )
B Yio Z;‘nzo Nip(u)Njq(v)wi; v
~_ Zizo Xjzo Nip(W)Nj g (v) wi jPij Xizo Xito Nip(w) Njg(v)wi (2.16)
B (X0 X0 Nip(u) Ny q(v)wi 5)?
Yito Xjzo Nip(u)Njg(0)w; P 5 ¥io Xk Nip(w) Njg(v) wi ;
(Zito Xito Nip(u)Njq(v)wi ;)2

then the length of the curve lying on this NURBS surface can be written in:
b . b 1
f Il $(u,0) | dt = f (Ea? + 2Fii + Go?) b dt (2.17)
a a

where E = ||S,(u,v)|]?, F = Su(u,v) - Sp(u,v), G =||S,(u,v)|]?, @ = %, and v = %. Here, S, (u,v)
and S, (u,v) is given in [Equation 2.15|and [Equation 2.16| N; ,(u)’, N 4(v)" can be calculated by
using [Equation 2.12| To find @ and @, a line segment s(u(t),v(t)) in knot vectors U, V with start
point (Ustart, Vstart) and endpoint (teng, Venq) should be taken into account. With the changing
of variable ¢ from 0 to 1, v and v are also moved from the start point to the endpoint. That is to

say, given a specific ¢ and give it a small change dt, the u(t) and v(¢) in this specific point will

also be changed to u(t + dt) and v(¢ + dt). Then @ and v is calculated by ultrd)-ult) _ du o4

t+dt—-t dt
v(t+dt)-v(t) _ dv
t+dt—t Todte

And [Equation 2.17| can be rewritten in:

fl I S(ut), v(t)) | dt:[l(Eu%zFamaqy?)%dt (2.18)
0 0



2.3. LINE INTEGRAL ON NURBS 16

shows an example that a line segment mapped onto a sinusoidal surface with start
point (0.25,0.25) and endpoint (0.75,0.75) in U, V knot vectors span. Since it is a straight-line
segment, the changing rate © and v of u and v with respect to ¢ is a constant and can be obtained

Uend=Ustart _ 0.75=0.25 _ 0.5

by the variation between the start point and endpoint of u, v, and t: % et = 20

and Vend=Vstart _ 0.75-0.25 =05

tend—tstart 1-0

—— line segment mapped on the sinusoidal surface
—-— line segment in the uv knot vector span

10

0.8 )

07 e

0.6 -

05 ——

0.4 e

03 -

0.2

0 o Q Q Q o Q o
2, %, O, o T, %
% % e B % %Y e

Figure 2.10: Line segment s(u(t),v(t)) mapped onto a sinusoidal surface with start point
(0.25,0.25) and endpoint (0.75,0.75) in U, V knot vectors span.

2.3.4 Numerical integration: Composite Simpson’s rule

When referring to the line length integral of NURBS curve and surface, it is obvious that the
denominator is very complicated so the Newton-Leibniz formula can hardly be used in calculating
this integration. Hence, the assistance of a numerical integration method is required. Simpson’s
rules are several approximations for definite integrals being used in numerical integration[I5].
One of these rules is called Composite Simpson’s 1/3 rule, or just called Simpson’s rule, given in
and will be used in this research to calculate curve length on NURBS surfaces.

b

[ f@yde s o o+ 4 fGa) +2 3 fom) o) (2.19)

—a n/2 n/2-1

3n

The error between the actual interaction value and the value approximated by Composite Simp-
4

son’s rule is — &5 (b;ﬁ) (b - a)fM(€), where £ is some number between a and b. It is clear that

the approximation will be more accurate when n is larger, but it will also be more demanded on

computation power.

To apply Composite Simpson’s rule to calculate curve length on NURBS surface, the square
root of the first fundamental form should be calculated first and this will be served as the function
f(t) in Composite Simpson’s rule. Then the definite integral will be taken from a =0 to b= 1.



Chapter 3

Shape correction through NURBS

In this chapter, an algorithm to reconstruct a freeform surface with given sample points through
NURBS will be introduced. After having the reconstructed NURBS surface, the algorithm to map
patterns onto this NURBS surface without distortion will be developed.

3.1 NURRBS surface reconstruction

To start reconstructing a NURBS surface, a set of points on the target surface should be sampled
first. Here a human face (Figure 3.1)) will serve as the target surface.

sampling points

-04 -0.2 0.0 0.2 0.4 0.6 0.8
X

Figure 3.1: 3D human face surface model with sampling points.

Refer to the number of sampling points in each slice should be the same in both
u and v directions, but it is not always the case. That is to say, a data selection process should be
conducted on the input surface model. Wenchao Wu et al. [I6] proposed a method for selecting
sampling points for reconstructing a NURBS surface. To begin with, the surface model’s position

17
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and posture should be rearranged by moving the center of mass of the surface model to the origin
(0,0) and aligning the three principal components of the surface model to the z, y, and z axis.

By following the rearranged surface can be produced and shown in

—— component 1
—— component 2
—— component 3

. sampling points

Figure 3.2: Rearranged 3D human face surface model.

Then, the surface model will be sliced into several slices, and points within the certain slice will
be projected onto the central plane of this slice . To select the same number of
data points in each slice, the maximum number of data points that can be chosen is the number
of points of the slice with the least points. The criterion to choose the points in each slice is
always choosing the start point and the end point of this slice to make sure the edge will not be
lost and the rest of the points should be chosen evenly. This process can be done by following

and the result is shown in

sampling points
« selected_points

' —1.00
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| 0.00%
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[ 0.50
[ 0.75
. | 0.75
=  1.00
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0.4 y Z-04 -06 -04 -02 00 02 04 06
z y
(a) Slices(colored lines) and projection (b) Points selection of 3D human face sur-
plane(black lines) of 3D human face surface face model for NURBS surface reconstruc-
model. tion.

Figure 3.3: (a)Slicing 3D human surface model, (b)data selection of 3D human surface model for
NURBS surface reconstruction.
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After having the selected points of the surface model, the NURBS surface can be constructed by
finding the chord length parameterization @ and o in each slice of both w, v directions through
and knot vectors U and V through first. Then, using these selected
points as the sampling points of the NURBS surface S(u,v) and @, ¥ as the input of basis functions

Nip, N the control points P;; in [Equation 2.5 can be obtained by: P = SR™', where R
Nip(u)Nj,q(v)ws,;
Yio Xjlo Nip(u)Nj g (v)wi
0,...,m—=1and j=0,..n -1, where m is the number of selected points in slices of u direction and
n is the number of selected points in slices of v direction. With the control points P and knot

vectors U, V, a NURBS surface is constructed, and the corresponding value S(u, v) of each points

(u,v) in the knots vectors span can be found by [Algorithm 3.1| and shown in

for ¢ =

consists of R; ;, which is called rational function and given in:

reconstructed points

-04 -02 0.0 0.2 0.4 0.6 0.8

Figure 3.4: Reconstructed points S(u,v) for v =0,0.01,...,0.99,1 and v = 0,0.01,...,0.99,1 of 3D
human face surface model through NURBS.

Algorithm 3.1 NURBS Surface Reconstruction

Input: u, v, Q, n, p, q
Output: S(u,v)

1: Quearranged = DataRearrangement(Q) > |Algorithm A.1
2: Qgelecteas M = DataSelection(Q,c.rrangeas ™) > [Algorithm A.2
3: & = ChordLengthParameterization(Q,,;....q-reshape((n+1),(m+1),3), m) >
4: U = GetKnotVector(u, m, p) >

o

ctripts_temp = GetControlPoints(Q

Alo A
S

selccteq-Teshape((n+1),(m+1),3), u, U, m, p) >

¥ = ChordLengthParameterization(Q,.;,.;.q-reshape((n+1), (m+1), 3).transpose(1,0,2), n)

V = GetKnotVector(v, n, q)

ctripts = GetControlPoints(ctripts_temp.reshape((n+1), (m+1), 3).transpose(1,0,2), 7, V, n, q)
Uy = mean(U, axis =0)

10: Vi = mean(V, axis =0)



3.2. PATTERN MAPPING 20

11: N, , = BasisFunction(u, Uy, len(Uy), p) > |Algorithm A.6
12: N; 4 = BasisFunction(v, Vj, len(Vy), q)
13: R = RationalFunction(N; ,, N;q, m, n, w=1) > [Algorithm A.7]

14: S(u,v) = R.dot(ctripts)

There is one thing that should be noted, in order to get the selected points for applying NURBS
surface, the target surface is divided into several slices, and each slice might have different length
based on the geometry of the target surface. That is to say, there are also several different knot
vectors will be generated during the process of creating the NURBS surface. In the research of
Wenchao Wu et al. [16], they take the mean value of corresponding knots in each knot vector as
the final knot vector for the input of the NURBS surface reconstruction algorithm. However, this
knot vector will have a bad effect on pattern mapping since it can’t represent the distance between
each knot at all. In this research, a new way to determine the knot vector for the input of the
NURBS surface reconstruction algorithm is developed. By finding the point (u,v) that will be
reconstructed is located in which two knot vectors, and using the linear interpolation to calculate
the final knot vector, this knot vector can still represent the distance between each knot. The

can be modified to

Algorithm 3.2 New NURBS Surface Reconstruction

Input: u, v, Q, n, p, q
Output: S(u,v)

1: Qeqrranged = DataRearrangement(Q) > |Algorithm A.1

2: Qgelecteas M = DataSelection(Q, crrangeas ™) > [Algorithm A.2

3: & = ChordLengthParameterization(Q,,;....q-reshape((n+1),(m+1),3), m) >

4: U = GetKnotVector(u, m, p) >

5: ctripts_temp = GetControlPoints(Q, ;. 1.q-reshape((n +1),(m +1),3), @, U, m, p) >

6: U = ChordLengthParameterization(Q,;..;.q-reshape((n+1), (m+1),3).transpose(1,0,2), n)
7. 'V = GetKnotVector(v, n, q)

8: ctripts = GetControlPoints(ctripts_temp.reshape((n+1), (m+1),3).transpose(1,0,2), 7, V, n, q)
9: Uy, Vi = NewKnotVector(u, v, U, V, m, n) > [Algorithm A.§

10: N, , = BasisFunction(u, Uy, len(Uy), p) > [Algorithm A.6

11: N;, = BasisFunction(v, Vi, len(Vy), q)

12: R = RationalFunction(N; ,, N;,, m, n, w=1) >

13: S(u,v) = R.dot(ctripts)

3.2 Pattern mapping

By putting the 2-dimensional pattern into the knot vectors span of the reconstructed NURBS
surface, this 2-dimensional pattern could be mapped onto the 3-dimensional surface. However, as
can be seen in the selected points are not aligned straightly, and since the control
points, which are the main factors to control the positions of reconstructed points, are derived
from these selected points, the reconstructed points also will not be aligned straightly. In short,
when a straight line in the knot vectors span is mapped onto the NURBS surface, it will no longer
be a straight line. shows two iso-parametric lines (parametric line with one parameter is
fixed) u = 0.5 and v = 0.5 that are mapped onto the 3D human face surface model. It is clear that
the original surface is sliced along the = axis, so the selected points are aligned in the y direction
but not aligned in the x axis. Due to this, the iso-parametric line in the y direction is still aligned
straightly but the iso-parametric line in the x direction is distorted. If this NURBS surface is only
used in representing the original surface, then this distorted iso-parametric line is not a problem
since all the reconstructed points are still on the surface. Nevertheless, when it comes to mapping
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patterns onto the target surface, the distorted straight line after mapping is not acceptable, and
zero padding is applied to solve this problem. This will be elaborated in

—— iso-parametric line with v=0.5
—— iso-parametric line with u=0.5

X
—— straight line with v=0.5 in knot vectors span

—— straight line with u=0.5 in knot vectors span ‘0,-4 _(,"2 010 012 014 0"6 0"8
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(a) Straight line with parameter v = 0.5 and (b) Iso-parametric line w = 0.5 and v = 0.5
v = 0.5 in the knot vectors span. mapped onto the 3D human face surface model.

Figure 3.5: Mapped Iso-parametric line u = 0.5 and v = 0.5 in (a)the knot vectors span and (b)onto
the 3D human face surface model.

3.2.1 Zero padding

The reason for the distorted iso-parametric line is the different number of sampling points in each
slice. To solve this problem, points with zero value that would not affect the geometry can be
added to make the number of sampling points in each slice consistent. For convenience, an area
with the same size as the scanning area of the laser system will be defined. In this area, the z-value
of all points that don’t belong to the target 3-dimensional surface model will be set to zero. For
the data selection process, the sampling step along w and v directions should be defined. The
smaller sampling step means more points will be selected and leading to higher precision. The
origin point (0,0) will be the starting point of this process. By moving one sampling step at a
time, choosing the nearest point of the surface model with zero padding as the sampling point at
this step, the data selection process can be done by stepping through the whole defined scanning
area. Following the the result of selected data points with zero padding is shown
in

Algorithm 3.3 Data Selec Zero Padding

Input: Q, .o rangeds SCanning-area, step_size-m, step-size-n

OUtPUt: Qselected
1: Qselected = []

2: m = scanning-area[0]/step_size-m ; n = scanning_area[1]/step_size_n
3: for j=0->n+1do

4 fori=0->m+1do

5 sampling_position = ([i * step_size_m, j * step_size_n])

6 Try

& var = Qrearranged[abS(Qrearranged[:7 0] - Samplmg_posmon[O] < Step-Size-m)]
8 var = var[abs(var(:, 1] - sampling_position[1] < step_size_n)]

9 dist = sqrt(sum(var[:,: 2] — sampling_position,axis = 1))
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10: Q,erecteq-append([i » step_size_m, j * step_size_n,var[argmin(dist)][2]])
11: Except

12: Q,ciccteq-append([i * step_size_m, j * step_size_n,0)

13: end for

14: end for

« selected points

300

0 50 100 150 200 250 300
X

Figure 3.6: Zero padding to 3D human face surface model with scanning area 334 x 334.

By applying this human face NURBS surface can be reconstructed, and since the
selected points in each slice of both uw and v directions are aligned straightly, the iso-parametric

line will not be distorted in this case

—— iso-parametric line with v=0.5
—— iso-parametric line with u=0.5

—— straight line with v=0.5 in knot vectors span I | 1 1 1 1 1
—— straight line with u=0.5 in knot vectors span
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(a) Straight line with parameter u = 0.5 (b) Iso-parametric line uw = 0.5 and v = 0.5
and v = 0.5 in the knot vectors span after mapped onto the 3D human face surface
zero-padding. modelafter zero-padding.

Figure 3.7: Mapped Iso-parametric line u = 0.5 and v = 0.5 in (a)the knot vectors span and (b)onto
the 3D human face surface model.
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3.2.2 Mapping domain

After applying zero padding, the 2-dimensional pattern can be mapped onto the 3-dimensional
without distortion by directly putting it into the 2-dimensional knots span. Nonetheless, one
should keep in mind that the knot vectors originate in chord length parameterization, so if the
2-dimensional pattern is required to be mapped onto the 3-dimensional surface with a certain size,
the size of the 2-dimensional pattern should be scaled to fit the area of the target 3-dimensional
surface. There is no intuitive way to scale the 2-dimensional pattern because most 3-dimensional
surfaces are with nonzero Gaussian curvatures somewhere, which makes them ”doubly curved
surfaces” [17].

To make sure the distance between two points on the 2-dimensional pattern keeps the same after
mapping, some points in the knot vectors span will be chosen evenly, and the distance between
these points will be calculated through line integral on NURBS to form a mapping domain. This
mapping domain is the area extended (m xn) chosen points and can be created by following con-
tinuing steps. First, the knot vector span € [0,1] in U and V direction will be evenly divided into
n and m parts, and the length of iso-parametric line with « = 0.5 will be calculated as [,,. Second,
the position where the center of 2-dimensional pattern wants to be mapped should be defined, and
the distance from the center of the scanning area to the center of 2-dimensional pattern along the
v direction will be calculated. By examining the ratio of this distance and [,, the v parameter of
the pattern’s center can be determined. Then, using the iso-parametric line u = 0.5 as the central
axis of the mapping domain, values of the mapping domain along n/2 will be given. Still then,
finding the nearest point v.enter to the v parameter of the pattern’s center in divided knot vector
span V, the iso-parametric line with v = vcenter Will be the other central axis of the mapping
domain. Thus, values of the mapping domain along the number index of veenter : Meenter € [0,m]
will also be given. Finally, the rest values of the mapping domain domain(m,n) will be given by
calculating the distance between domain(m,n) and domain(m — j,n —1i) when m # Meenter and

n #+ nf2, where i = 1 if n >n/2 else i = -1 and 7 = 1 if m > Meenter €else j = —1. By following
the mapping area of the 3D human face surface model can be created and shown

in With this mapping domain, the 2-dimensional pattern can be mapped onto the
3-dimensional surface in the desired size without scaling beforehand. The detail of the pattern
mapping process will be introduced in the next subsection.

Algorithm 3.4 Mapping Domain

Input: S(u,v), patten_center, m, n, U, V, num, s
Output: mapping_domain
: I, = LineLength(S(u,v),0.5,0.5,0,1,m,n,U,V,s) >
center = patten_center[1]/l, + 0.5
mapping-domain = zeros([num + 1,num + 1,2])
intv = linspace(0,1,num + 1)
¢ = argmin(abs(intv — center))
= int(num/2)
fori:1—>h+1d0
Ustart = R 5 Uend = h ; Ustart =h+i-1 5 Vend = h +1
mapping-domain[:, h][h +i,1] = mapping-domain[:, h][h +i-1,1]
+LineLength(S(u,v),intv[h],intv[h],intv[h +i - 1],intv[h +i],m,n, U, V,s)
h] ]
i]

10: mapping-domain[:, h][h - i,1] = mapping_-domain[:,h][h-i+ 1,1
-LineLength(S(u,v),intv[h],intv[h],intv[h - i + 1],intv[h -

11: mapping_domain|[c][h + i,0] = mapping_domain[c][h +i-1,0]
+LineLength(S(u,v),intv[h+i - 1],intv[h + ], intv[c],intv[c],m,n, U, V,s)

12: mapping-domain[c][h —i,0] = mapping_domain[c][h - i+ 1,0]
—-LineLength(S(u,v),intv[h—i+1],intv[h - i],intv[c],intv[c],m,n, U, V,s)

13: end for

7m7n7U7V7S)



3.2. PATTERN MAPPING 24

14
15
16

17:
18:
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20:
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27:

28:

29:
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31

: mapping_domain[c][h + 1 :,1] = mapping_domain[c][

: mapping_domain|[c][: h, 1] = mapping_domain|[c][h, 1

:for j=1-c+1do

fork=1->h+1do
mapping-domain[c - j][h + k,0] = mapping_-domain[c-j+1][h+ k- 1,0]
+LineLength(S(u,v),intv[h +k - 1],intv[h + k], intv[c - j],intv[c - j],m,n, U, V,s)
mapping-domain[c - j][h - k,0] = mapping_domain[c-j+1][h -k +1,0]
-LineLength(S(u,v),intv[h -k + 1],intv[h - k], intv[c - j],intv[c - j],m,n, U, V,s)
mapping-domain[c - j][h + k, 1] = mapping_-domain[c-j+ 1][h+ k- 1,1]
-LineLength(S(u,v),intv[h + k], intv[h + k], intv[c - j + 1],intv[c - j],m,n, U, V,s)

h,1]
]

mapping_domain[c - j][h — k, 1] = mapping_domain[c—j + 1][h -k + 1,1]
-LineLength(S(u,v),intv[h - k],intv[h - k],intv[c - j + 1],intv[c - j],m,n, U, V,s)
end for
end for

:forj=1-c+1do

fork=1-h+1do
mapping_domain[c+ j][h + k,0] = mapping_domain[c+ j — 1][h + k - 1,0]
+LineLength(S(u,v),intv[h + k - 1],intv[h + k], intv[c + j],intv[c+ j],m,n, U, V,s)
mapping-domain[c+ j][h - k,0] = mapping_-domain[c+j—1][h -k +1,0]
-LineLength(S(u,v),intv[h -k + 1],intv[h - k], intv[c + j],intv[c + j],m,n, U, V,s)
mapping-domain[c+ j][h + k, 1] = mapping_-domain[c+j-1][h+ k- 1,1]
+LineLength(S(u,v),intv[h + k], intv[h + k], intv[c+ j — 1],intv[c+ j],m,n, U, V,s)

mapping_domain[c+ j][h — k, 1] = mapping_domain[c+ j - 1][h -k +1,1]
+LineLength(S(u,v),intv[h — k], intv[h - k],intv[c+ j — 1],intv[c+ j],m,n, U, V,s)
end for
: end for

e central axis along u direction
e central axis along v direction
e points to form the mapping domain
e position of the center of 2D pattern wants to be mapped
200 . . .
. (u=0.5,v=1.0) - .
. L ® °
(u=0.0,v=1.0) o . . (u=1.0,v=1.0)
150 . . .
L] . °
. .
o o . ° . ° .
100 ° d . .
* L] L4 L] °
. . . . ) .
50 Length from (0.5,0.5) to (0.6,0.5)
. . . . M ° ) 0 .
Length from (0.5,0.5) to (0.5,0.6)
0 . . . . . . 3 3 3
(u=p.0,v=0.5) (u=0.5,v=0.5) (u=1.0,v=0.5)
. . . L4 . . . . . . .
=50
. L] . ° L] L]
L] L] ° L] L]
-100 ° ° . .
° ° . . ° . °
® L]
L] L]
-150 * ° R . . °
(u=0.9,v=0.0) ° (u=1,0v=0.0)
.
° . (=05v=00) . °
-200 . . .
-200 -150 -100 -50 0 50 100 150 200

Figure 3.8: The mapping area of 3D human face surface model created by (11 x 11) points.
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3.2.3 Pattern mapping

The distance between two points of the mapping domain is the distance between these two points
on the 3-dimensional surface, so the mapping domain is just like the flattened surface. If a 2-
dimensional pattern is going to be mapped onto a 3-dimensional surface, it can be easily finished
by putting this 2-dimensional pattern into the mapping domain of this 3-dimensional surface and
finding the corresponding (u,v) value for applying NURBS surface reconstruction algorithm. The
way to find the (u,v) parameters can be done by locating the point that should be mapped into a
quadrilateral formed by four points of the chosen points to create a mapping area first. Then, the
(u,v) parameters can be found by applying the inverse bilinear interpolation to the four vertices
of this quadrilateral. See the inverse bilinear interpolation is given in:

U=U00+(u01—Uoo)'96+(Ulo—uoo)'y+(U00—U01+u11—U10)'$'y

(3.1)
U:Uo0+(7101—Uoo)'$+(Ulo—voo)'er(’Uoo—1)01 +U11—U10)'$'y
where

_ Hi_Fz'y

x =
E; -Gi-y

_—kl:i: ]f%—4 ko ]62

y= 2 ko

There will be two roots for y, the root € [0,1] will be chosen, and

H =p(x,y) - poo(w,y)

E = po1(z,y) - poo(z,y)

F =pio(z,y) = poo(z,y)

G = poo(z,y) = por(z,y) + p11(z,y) = pro(z,y)
ky=Gi Fj-Gj-Fi

ky=E; Fj—E;-Fi+H; -G, - H; - G
ko=H; E;— H,-E;

e mapping domain
2D pattern
e target point

200 . 4 .

150 . * .

100 . *
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50

(Uo1,Vo1) (Ug1,V11)
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‘oo (8/)( ‘10

=50
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—-200 . . .
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Figure 3.9: How to get the (u,v) parameters of a certain point for applying NURBS surface.
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By calculating (u,v) parameters of all points in the 2-dimensional pattern (Algorithm 3.5)), it can
be mapped onto the 3-dimensional surface through putting all (u,v) parameters in [Algorithm 3.2}
and this process is the shape correction for mapping 2-dimensional pattern onto the 3-dimensional
surface without distortion. shows a square with side length 30 that is being mapped
onto the 3D human face surface model before and after using shape correction.

mapped pattern before using shape correction mapped pattern after using shape correction
T T 1 250 2

; : ; 250 2 ‘ ‘ . ‘
( \ I [ ‘ [ [ | ]Lzoo ( 1 [ ‘ [ [ | ]Lzoo
| ‘ | | [ | 150 [ ‘ ‘ ‘ I 150
{1 ‘ I T T / ]goo | o 1 | T T ‘ ]goo
i ] - [ I ] - 50
2

NEE s
|250 | [250
\
1225 1225
Il | |
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(a) Mapped square before applying shape cor- (b) Mapped square after applying shape correc-
rection. tion.

Figure 3.10: A square with side length 30 is mapped onto the 3D human face surface model (a)
before applying shape correction and (b) after using shape correction.

Algorithm 3.5 Mapping Parameter

Input: mapping_-domain, pt, num
Output: wug, vg

1: dist = pt — mapping_domain

2: idx = argmin(sqrt(dist[:,0]* + dist[:, 1]?))

3: var = pt — mapping_domain[idz]

4: fo =idz%(num +1) ; f, =idz//(num + 1)

5: if var[0] >0 and var[1] > 0 then

6: oo = fufnum ; upr = (fu + 1) /num ; uio = fu/num ; uig = (fu +1)/num
7 voo = fo/num ; vor = fou/num ; vig = (fu + 1)/num ; v11 = (f, + 1)/num
8: else if var[0] <0 and var[1] >0 then

9: ugo = (fu—1)/num ; ug1 = fu/num ; uio = (fu - 1)/num ; ui1 = fu/num
10: woo = fu/num ; vor = fo/num ; vig = (fy +1)/num ; vir = (fu +1)/num
11: else if var[0] >0 and var[1] <0 then
12: oo = fufnum ; upr = (fu + 1) /num ; uio = fu/num ; u1r = (fu +1)/num
13: voo = (fu = 1)/num ; vo1 = (fu = 1)/num ; vig = fu/num ; vi1 = fy[num
14: else
15: ugo = (fu —1)/num ;5 uor = fu/num ; uig = (fu —1)/num ; uir = fu/num
16: voo = (fo = 1)/num ; vo1 = (fp = 1) /num ; vig = fo/[num ; viy = f,/num
17: end if
18: idxzgg = round(vgp * num * (num + 1) + ugg * num)
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19: idxzor = round (v * num * (num + 1) + ugy * num)

20: idx19 = round(vip * num * (num + 1) + u1g * num)

21: idx11 = round(viy * num * (num + 1) + w11 * num)

22: H = pt — mapping_domain[idxyg]

23: E = mapping_domain[idxo; ] — mapping-domain[idxoo]

24: F = mapping_domain[idzyg] — mapping_domain[idxoo]

25: G = mapping_domain[idzog |-mapping_domain[idxo, |[+mapping_domain[idzy1 |-mapping_domain[idzio]
26: k2 =G[0] » F[1] - G[1] » F[0]

21: k1= FE[0] » F[1] - E[1] * F[0] + H[0] * G[1] - H[1] * G[0]
28: k0= H[0] » E[1] - H[1] » E[0]

29: if k2 == 0 then

30: v=-k0/k1

31: else

32: vl = (~k1 +sqrt(k1% —4 % k0 * k2)) /(2 * k2)

33: v2 = (=k1 - sqrt(k1% — 4+ k0 * k2))/(2 * k2)

34: if v1>0 and vl <1 then

35: v=vl
36: else

37 v =102
38: end if
39: end if

10 u = (H[0] = F[0] * v)/(E[0] + G[0] * v)
41: Ug = ugo + (U01 - Uoo) * U+ (u10 - Uoo) * U+ (UOO —Ug1 + U1 — UlO) * U * V
42: v = vgo t+ (1)01 _UOO) * U+ (”Ulo —1)00) * U+ (UOO — Vo1 + V11 —’Ulo) * U *V




Chapter 4

Methodology

In this research, 2-dimensional patterns should be able to be marked onto 3-dimensional surfaces
with both given CAD models and unknown shapes. If the target surface is given by the CAD
model, then it can be used in the shape correction directly. On the other hand, if the target
surface’s model is not provided, a shape-detecting sensor should be applied to obtain the surface
model. In this chapter, the shape-detecting system for obtaining surfaces’ model and the laser
marking system for leaving markings on the surfaces will be introduced. Then, a mouse will be
served as the surface model with the given CAD model case and a mandarin will be served as the
surface with an unknown shape. The visualized simulation results generated through python will
also be shown.

4.1 Experimental setup

In this section, the sensor used in obtaining 3-dimensional surfaces with unknown shapes and the
laser marking system that can mark on a 3-dimensional surface will be discussed.

4.1.1 Shape detecting system

There are three main non-contact ways to acquire the shape of an object [18]:
e Time of flight(TOF) sensor
e Laser scanner
e LiDAR

The time of flight sensor measures the time-consuming of a photon traveling from
the sensor and reflected by the target object and then back to the sensor. Since the speed of light
is a known value, the distance between the sensor and the target can be gotten by multiplying
half of the time-consuming and the speed of light.

The laser scanner projects a line laser onto the target object and uses a camera to
record the deformation of this line laser caused by the geometry of the target object. By observing
the triangulation relationship between the laser generator, the target object, and the image taken
by the camera, the shape of the target object can be derived.

28
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By emitting a modulated laser beam to the target object and comparing it with the returning
beam, LiDAR can acquire the shape of the target object. There is a phase shift
between the emitted laser beam and the returning beam, which is caused by the distance traveled
by the modulated laser beam. Because the wave number of a modulated laser beam is a constant
with a known value, the distance traveled by this beam can be calculated by the phase shift.

Each of these methods has its own pros and cons. The ToF sensor is easy to implement and
is not affected much by the ambient light, but its accuracy is relatively low compared with the
other two methods; for the laser scanner, the advantage of it is its high resolution and accuracy,
but the result will be deteriorated by the effect of the ambient light and the processing time is
much longer than the other two methods due to the high resolution; the accuracy of LiDAR is also
high and it is also not affected much by the ambient light much, but the phase wrapping is always
the issue when using phase shift to examine the distance. Besides that, to use the triangulation
relationship to acquire the shape of the target object, the laser line generator/camera will also be
put at an angle. This angle prevents some regions of the target object to be illuminated/recorded.
Still, the working distance of LiDAR is usually much longer than the other two methods, which
increases the size of the whole shape-detecting system, making it not suitable for implementation
in the production line. Consequently, the ToF sensor will be used in this research to obtain the
surface information of unknown-shape objects.

Object
~ Laser Line —\
Generator

,~— Scanning

/

- unit CCD
Laser Beam Camera
(a) Time of flight(ToF) sensor. (b) Laser scanner.
Returning
Beam
Modulated :
Laser Beam \/

(c) LiDAR.

Figure 4.1: Sketches of different ways to acquire the shape of an object [I§].

shows the shape-detecting system used in this research. This system comprises the
pmd flexx2 ToF camera with specifications in a USB cable for connecting to PC, a
lifting platform that can adjust the distance between the target object and the sensor, and all
components are attached to an optical cable.
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Optical table

ToF camera USB cable

Lifting platform

Figure 4.2: Shape-detecting system.

Table 4.1: Specifications of pmd flexx2 ToF camera

Resolution 224 x 172 Depth pixels
Measurement range 0.1-4m
Frame rate Up to 60 fps
INlumination 940nm, VCSEL, Laser Class 1
Viewing angle(H x V) 56° x 44°

Depth resolution

< 1% of distance

Sunlight tolerance

At 100K Lumens(Full Sunlights), Loses10% max range vs. Indoors

When using this system, the target object will be put on the lifting platform to ensure the whole
object is in the sensor’s measurement range. The detection result will inevitably contain some
noise. Thus, a low-pass filter will be implemented to remove the noise. shows the
detected result of a mandarin’s surface. To eliminate the noise (the zigzags in , the
frequency of the zigzags needs to be observed first. The width of the zigzags is around 8 mm in
this case, and each zigzag can be regarded as half a triangle wave, so the frequency of the noise
is 1/16 = 0.0625/mm. The points of this mandarin surface are sampled every 2 mm, leading the
sampling rate to be 0.5/mm and Nyquist frequency will be 0.25/mm, which is four times that of the
noise. Hence, a low-pass filter with a cut-off frequency equal to a quarter of the Nyquist frequency
is applied to the detected mandarin surface and the filtered result is shown in
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Figure 4.3: The detected mandarin surface (a) before filtering and (b) after filtering.

4.1.2 Laser marking system

The laser marking system used in this research is shown in[Figure 4.4] As the typical laser marking
system, this system also consists of a laser source, two mirrors attached to two galvanometers with
perpendicular rotation axis to each other, and the f-theta lens that can focus the laser beam onto
the target surface. However, with the assistance of inPhocal’s optical module, the outgoing laser
beam will have a long depth of focus. The lifting platform is used for adjusting the distance
between the galvanometric scanner and the target object. Air suction is used in removing the gas
generated during the marking. All components are attached to the optical table. The specifications
of the laser marking system are given in [Table 4.2

inPhocal’s optical module + laser source

Galvanometric scanner

Optical fiber

Working range

Lifting platform

Optical table

Figure 4.4: Laser marking system.
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Table 4.2: Specifications of laser marking system

Power 30W
Laser type Pulsed fiber laser, Laser Class 4
Wavelength 1064nm
Working range(distance from the galvanometric scanner to the target object) 291mm-341mm
Depth of focus 50mm
Beam spot 0.21mm

When using this laser system, the target object will be placed onto the lifting platform, so the
distance between the galvanometric scanner and the target object can be adjusted to the focus
range of the laser beam. In the best case, top of the target object will be at the distance equal
to the lower limit of the working range from the galvanometric scanner, so the whole working
range is possible to be exploited. Then, the 2-dimensional pattern will be processed by the shape
correction method, stored in a vector type file such as dxf file, and imported into BeamConstruct

software (Appendix B|). The vector type 2-dimensional corrected pattern (Figure 4.5)) will be the
signal to control the galvanometers.

Coordinates 15.8099 -5.1797

Al g 15.877 -5.1797

/ A (‘ 1504538  -5.1797
/3N \ 16.0130 -5.1797
L\l AN 160807  -5.1797
16.1485 -5.1797

Figure 4.5: Vector type 2-dimensional pattern visualization and the coordinates of this pattern
for controlling the galvanometers in BeamConstruct software.

In the traditional laser marking system, the laser beam usually has a few mm depth of focus,
so the laser beam will quickly lose its focus when moving along a curved surface directed by the
galvanometric scanner. Hence, either a device to change the focal length of the laser beam or
a device to change the distance between the target object and the laser source in real time is
needed, and both of these devices will increase the complexity of the whole system. However,
the laser beam originating from the inPhocal’s optical module has a 50 mm depth of focus. It
means when thickness of the target surface is less than this value, the laser marking process can
be easily finished by directly moving the laser spot to the position information provided by the
2-dimensional pattern.

4.2 Simulation

In this section, a picture file consisting of three characters A, B, and C will be the 2-dimensional
pattern for laser marking(|Figure 4.6)). A mouse model will be the target surface with a given CAD

model(Figure 4.7al) and a mandarin will be the target surface with an unknown shape(Figure 4.7b)).

Then how the 2-dimensional pattern will be mapped onto these two 3-dimensional surfaces will
be visualized through python.
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Figure 4.6: 2-dimensioanl pattern consisting of three characters A, B, and C.
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(a) The mouse surface model. (b) The mandarin surface model.

Figure 4.7: The target surfaces that will be marked (a) the mouse surface model and (b) the
mandarin surface model.

First, the picture file will be loaded by specifying the size and the center position that needs
to be marked. Then, this pattern will be processed by shape correction for both the mouse
model and the mandarin. shows what a 2-dimensional pattern looks like after being
mapped onto 3-dimensional surfaces. In[Figure 4.9 the pattern with red color is mapped through
orthogonal projection. Compared to the corrected pattern(green color), it is clear that the pattern
mapped through orthogonal projection will be elongated in the position with large curvature. On
the contrary, the corrected pattern still keeps its shape even after being mapped onto the large
curvature position. The laser marking onto the real surfaces model will be shown in the next
chapter.
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(b) The mandarin surface model mapped
with corrected ABC pattern.

Figure 4.8: The target surfaces that are mapped with corrected ABC pattern (a) the mouse surface

model and (b) the mandarin surface model.
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Figure 4.9: The target surfaces that are mapped with both corrected and uncorrected ABC pattern
(a) the mouse surface model and (b) the mandarin surface model.



Chapter 5

Experimental results

In this section, the 2-dimensional pattern will be marked onto a mouse and a mandarin by inPho-
cal’s laser marking system. Before doing the actual marking, the simulation results will be shown
first, then, two performance evaluation methods of the shape correction method will be applied
to the mapped pattern to see whether the distortion is eliminated or not. Finally, the corrected
pattern will be imported into the BeamConstruct software and marked onto the 3-dimensional
surfaces.

To evaluate the performance of the shape correction method, the similarity of a 2-dimensional
pattern before and after being mapped should be considered. In this research, the perimeter and
the area enclosed by this perimeter of the 2-dimensional pattern will be the criterion. To be
specific, the contour of the 2-dimensional pattern is composed of many little line segments and the
pattern itself consists of little pixels. By summing up the square root of the square of the length
difference between each line segment before and after being mapped, the total length error e; in
perimeter can be obtained:

length difference = l34_s — l24_s

er= . l3ds — loa_s| (5.1)
s=0

where n is the total number of the line segments, la4 ¢ is the st line segment before being mapped,
and I3y ¢ is the s line segment after being mapped. Also, the total area error e, can be obtained
by summing up the square root of the square of the area difference between each pixel before and
after being mapped:

area difference = asq s — a9q_s

€a = Y, lasd_s — a2d_| (5.2)
s=0

where n is the total number of the pixels enclosed by the perimeter, asq s is the st pixel before
being mapped, and l3q , is the s'* pixel after being mapped. It is obvious that when e; and e, are
low, the similarity between the pattern before and after being mapped is high, which also means
the good performance of the shape correction method.
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5.1 Marking on the object with given well-designed surface
model: computer mouse

shows the simulation and evaluation result of mapping an uncorrected pattern onto
the mouse’s surface. The original 2-dimensional pattern is a picture file of inPhocal’s logo with
1200pixel x 200pixel. This pattern is scaled in 39mm x 13mm and orthogonally projected onto
the target surface and it will be elongated at the parts of the target surface with large curvature
naturally. The original perimeter and area enclosed by this perimeter of this pattern are 318.14mm
and 165.69mm?. After being projected, the perimeter and the area will be increased to 353.86mm
and 197.27mm?, and the total length error e; is 35.72mm and the total area error e, is 31.58mm?.

uncorrected pattern
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Figure 5.1: Simulation of mapping uncorrected pattern onto the mandarin’s surface. The pattern
is the logo of inPhocal and it is in 1200pixel x 200pixel and mapped into 39mm x 13mm. (a) is
the simulation result, (b) is the visualization of the length difference, and (c) is the visualization
of the area difference.
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In the pattern is corrected by the shape correction method through NURBS, which
uses 30points x 30points to create the mapping domain and 50 subintervals in Simpson’s rule to
calculate distance between those points, and mapped into 39mm x 13mm. This process costs
74.55 seconds. It can be found that the distortion has been largely eliminated, especially in the
left bottom corner and the right bottom corner of the mapped pattern. Through the evaluation
method, the decreasing of ¢; (from 35.72mm to 5.42mm) and e, (from 31.58mm? to 2.17mm?)
can also be observed. The perimeter and the area of the mapped pattern are 321.42mm and
166.82mm?

e corrected pattern(NURBS)
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Figure 5.2: Simulation of mapping corrected pattern onto the mandarin’s surface. The shape
correction method uses 30points x 30points to create the mapping domain and 50 subintervals
in Simpson’s rule to calculate distance between those points, and the pattern is mapped into
39mmx13mm. The time cost is 74.55 seconds. (a) is the simulation result, (b) is the visualization
of the length difference, and (c) is the visualization of the area difference.

shows the simulation result of mapping the corrected pattern created by surface parame-
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terization onto the mouse’s surface. As mentioned in [subsection 1.2.1] the surface is parameterized
into a unit square, so it is hard to scale the pattern into desired size. In this case, the pattern
is simply scaled in 1/39mm x 1/13mm and put into the parameterized plane for mapping on the
target surface. One can easily imagine that the dimensions in the x and y directions of the mouse
are different, so the ratio of the mapped pattern will not keep the same. The size and the posture
of the mapped pattern might be slightly different as well. Although both the ¢; (from 35.72mm
to 48.29mm) and the e, (from 31.58mm? to 54.21mm?) are increased (due to the size-changing)
comparing to that of uncorrected pattern, the elongation at the left bottom corner and the right
bottom corner are still eliminated. The whole process takes 1273.23 seconds, and the perimeter
and the area of the mapped pattern are 335.74mm and 218.11mm?

« corrected pattern(surface parameterization)
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Figure 5.3: Simulation of mapping corrected pattern created by surface parameterization onto
the mouse’s surface. The pattern is scaled in 1/39mm x 1/13mm. The total time cost is 1273.23
seconds. (a) is the simulation result, (b) is the visualization of the length difference, and (c) is the
visualization of the area difference.
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is the actual marking result of the simulation shown in The corrected
pattern for being imported into the BeamConstruct software is obtained by extracting the x and
y coordinates of the mapped pattern . Since the marking process can be done without
changing the distance between the laser source and the target surface through inPhocal’s laser
marking system, the z coordinate of the mapped pattern doesn’t need to be recorded and exploited.

Uncorrected pattern:

Corrected pattern:

Figure 5.4: Actual marking result on the mouse’s surface by using inPhocal’s laser marking system.

ELWU
(a) Corrected pattern for being imported into the BeamConstruct software and con-
trolling the galvanometric scanner to mark on the mouse.

{I_I'ET“J Dﬂﬁ U’J—W

(b) Uncorrected pattern for being imported into the BeamConstruct software and
controlling the galvanometric scanner to mark on the mouse.

Figure 5.5: The visualized dxf files in the BeamConstruct software for marking on the mandarin.
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5.2 Marking on the object with unknown shape surface
model: mandarin

shows the simulation and evaluation result of mapping an uncorrected pattern onto
the mandarin’s surface. The original 2-dimensional pattern is a picture file of a string with
572pixel x 192pixel. This pattern is scaled in 39mm x 13mm and orthogonally projected onto the
target surface and again, it will be elongated at the parts of the target surface with large curvature.
The original perimeter and area enclosed by this perimeter of this pattern are 150.58mm and
81.33mm?. After being projected, the perimeter and the area will be increased to 161.38mm and
81.33mm?, and the total length error e; is 10.80mm and the total area error e, is 9.58mm?2.
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Figure 5.6: Simulation of mapping uncorrected pattern onto the mandarin’s surface. The pattern
contains 3 characters A, B, and C and it is in 572pixel x 192pixel and mapped into 39mm x
13mm. (a) is the simulation result, (b) is the visualization of the length difference, and (c) is the
visualization of the area difference.
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In the pattern is corrected by the shape correction method through NURBS, which
uses 30points x 30points to create the mapping domain and 50 subintervals in Simpson’s rule to
calculate distance between those points, and mapped into 39mm x 13mm. This process costs 48.13
seconds. Comparing to the mapped uncorrected pattern, the distortion, especially in the left and
the right bottom part, is eliminated. Through the evaluation method, the decreasing of e; (from
10.80mm to 3.29mm) and e, (from 9.58mm? to 0.99mm?) can also be observed. The perimeter
and the area of the mapped pattern are 152.53mm and 81.66mm?

e« corrected pattern(NURBS)
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Figure 5.7: Simulation of mapping corrected pattern onto the mandarin’s surface. The shape
correction method uses 30points x 30points to create the mapping domain and 50 subintervals
in Simpson’s rule to calculate distance between those points, and the pattern is mapped into
39mmx13mm. The time cost is 48.13 seconds. (a) is the simulation result, (b) is the visualization
of the length difference, and (c) is the visualization of the area difference.

shows the simulation result of mapping the corrected pattern created by surface pa-
rameterization onto the mandarin’s surface. The pattern is scaled into 1/39mm x 1/13mm and
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put into the parameterized plane for mapping. Due to the size-changing mentioned before, the ¢;
is increased from 10.80mm to 38.68mm and the e, is in creased from 9.58mm? to 41.02mm? when
comparing to the that of uncorrected pattern. However, the elongation at the left bottom and the
right bottom parts is still diminished. The whole process takes 135.23 seconds, and the perimeter
and the area of the mapped pattern are 178.75mm and 118.48mm?

e« corrected pattern(surface parameterization)
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Figure 5.8: Simulation of mapping corrected pattern created by surface parameterization onto the
mandarin’s surface. The pattern is scaled into 1/39mm x 1/13mm. The total time cost is 135.23
seconds. (a) is the simulation result, (b) is the visualization of the length difference, and (c) is the
visualization of the area difference.

is the actual marking result of the simulation shown in The corrected
pattern for being imported into the BeamConstruct software is obtained by extracting the x and

y coordinates of the mapped pattern (Figure 5.10)).
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Corrected pattern:

Uncorrected pattern:

Figure 5.9: Actual marking result on the mandarin’s surface by using inPhocal’s laser marking

system.

(b) Uncorrected pattern for being im-
ported into the BeamConstruct software
and controlling the galvanometric scanner
to mark on the mandarin.

(a) Corrected pattern for being imported
into the BeamConstruct software and con-
trolling the galvanometric scanner to mark
on the mandarin.

Figure 5.10: The visualized dxf files in the BeamConstruct software for marking on the mandarin.
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Discussion

In the corrected patterns are created through the shape correction method based on
NURBS by using 30points x 30points to create the mapping domain and 50 subintervals in Simp-
son’s rule to calculate distance between those points. There are always errors when constructing
such mapping domains and using the numerical integration method to do the integral. It is
straightforward that both the mapping domains and the integral value can be created as precisely
as possible when using a large number of points and subintervals, but it will also increase the com-
putational load. Therefore, a trade-off has to be made between the time cost and the accuracy. In
order to choose the proper number of points for creating the mapping domain and subintervals in
Simpson’s rule, both how the number of points to create the mapping domain and how the number
of subintervals used in Simpson’s rule will affect the precision of the shape correction method will
be discussed. What’s more, the current state-of-the-art surface parameterization-based shape cor-
rection method will be compared with the new NURBS-based shape correction method proposed
in this chapter.

6.1 Effects of number of subintervals in Simpson’s Rule on
correction error

To find the effects of the number of subintervals in Simspon’s Rule on correction error, different
numbers of subintervals will be chosen to apply Simspon’s Rule. Then, in each case, the total
length error e; and the total area error e, will be calculated (simulation results can be found in
[Appendix C)). [Figure 6.1) shows the run chart of the number of subintervals verse the cost time
(blue line) and verse the shape correction error (orange line). It can be found that if the number
of subintervals is more than 50, both the total length error e; and the total area error e, are not
decreasing much when the cost time is significantly increased. Therefore, unless the precision of
shape correction is highly demanded, using 50 subintervals in Simspon’s rule can good a good
corrected pattern with acceptable time consumption.

44
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Effects of subintervals number in Simpon's Rule on e, (mandarin)
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(a) Effects of the number of subintervals in Simpson’s rule on total length error e;.
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(b) Effects of the number of subintervals in Simpson’s rule on total area error eq.

Figure 6.1: Effects of the number of subintervals in Simpson’s rule on the shape correction error.

6.2 Effects of number of points to create mapping domain
on correction error

In different numbers of points are chosen to create the mandarin’s mapping domain
(see the simulation results in. It can be seen that the total length error ¢; is decreasing
when the number of points is increasing between 10 x 10 and 30 x 30. After the number of points
is more than 30 x 30, the total length error e; doesn’t change a lot. In the area length error e,.
there is a slightly decreasing when the number of points increases from 10 x 10 to 30 x 30, but after
increasing to more than 30 x 30 points, the variation can not be observed anymore.
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Effects of number of points to create mandarin's mapping domain on e
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Figure 6.2: Effects of the number of points to create the mandarin’s mapping domain on the shape
correction error.

In different numbers of points are chosen to create the mouse’s mapping domain (see
the simulation results in [Appendix D). The effect of the number of points on the total length
error e, in this case, is very similar to that of the mandarin case. The decrease of ¢; is obvious
when the number of points is less than 30 x 30, but it becomes unapparent when the number of
points is more than 30 x 30. For the area length error e,, the values fluctuate when the number
of points is increasing, but the variation is less than 1mm?, which is a low value compared to the
total mapped area (165.69mm?).
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Effects of number of points to create mouse's mapping domain on g,
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(a) Effects of the number of points to create the mouse’s mapping domain on total
length error e;.
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Figure 6.3: Effects of the number of points to create the mouse’s mapping domain on the shape
correction error.

Based on these discussions, it can be said that using 30 x 30 points to create the mapping domain
is the optimal scenario to do the shape correction proposed in this research.
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6.3 Comparison between shape correction method based on
NURBS and surface parameterization

[Table 6.1] and [Table 6.2] show the time consumption, total length difference e; and total area
error e, by using the NURBS-based shape correction method with 50 subintervals and different
numbers of points in the mapping domain, and by using the surface parameterization-based shape
correction method.

In the pattern is a picture file of a string with 572pixel x 192pixel, and in
the pattern is a picture file of inPhocal’s logo with 1200pixel x 200pixel. Both patterns are scaled

in 39mm x 13mm, and mapped onto the mandarin’s surface and the mouse’s surface respectively.
In both cases, the ¢; and ea by using the NURBS-based shape correction method are much lower
than that of the surface parameterization-based shape correction method. In the mandarin case,
when using less than 50 x 50 points in the mapping domain by using the NURBS method, the
time consumption can also be lower than that of the surface parameterization method. However,
in the mouse case, even using 100 x 100 points in the mapping domain, the time consumption is
still lower than that of using the surface parameterization method. It is because there are more
points (1200pixel x 200pixel) that need to be mapped in inPhocal’s logo than the string pattern
(572pixelx 192pixel) used in the mandarin case and the pattern mapping process takes a lot of time
in the surface parameterization method. Hence, the advantage in efficiency of the NURBS-based
shape correction method can be magnified when mapping patterns with high resolution.

Table 6.1: Time consumption, total length difference e; and total area error e, comparison by
using different methods of shape correction in mapping on the mandarin’s surface.

Method time consumption (sec) | e;(mm) | e,(mm?)

10 x 10 mapping domain points NURBS 7.83 3.81 1.05
20 x 20 mapping domain points NURBS 22.97 3.37 1.02
30 x 30 mapping domain points NURBS 48.13 3.29 0.99
40 x 40 mapping domain points NURBS 82.75 3.21 0.99
50 x 50 mapping domain points NURBS 131.35 3.21 1.01
60 x 60 mapping domain points NURBS 183.06 3.21 1.00
70 x 70 mapping domain points NURBS 249.78 3.2 1.00
80 x 80 mapping domain points NURBS 324.53 3.19 1.00
90 x 90 mapping domain points NURBS 438.86 3.19 1.00
100 x 100 mapping domain points NURBS 506.75 3.19 1.00
Surface parameterization 135.23 38.68 41.02

Table 6.2: Time consumption, total length difference e¢; and total area error e, comparison by
using different methods of shape correction in mapping on the mouse’s surface.

Method time consumption (sec) | ¢;(mm) | e,(mm?)
10 x 10 mapping domain points NURBS 23.02 6.32 1.86
20 x 20 mapping domain points NURBS 42.26 5.84 2.4
30 x 30 mapping domain points NURBS 74.55 5.42 2.17
40 x 40 mapping domain points NURBS 117.48 5.51 2.34
50 x 50 mapping domain points NURBS 175.25 5.29 2.18
60 x 60 mapping domain points NURBS 250.654 5.29 2.18
70 x 70 mapping domain points NURBS 342.22 5.4 2.25
80 x 80 mapping domain points NURBS 435.24 5.2 2.12
90 x 90 mapping domain points NURBS 549.85 5.25 2.13
100 x 100 mapping domain points NURBS 665.32 5.29 2.22
Surface parameterization 1273.23 48.29 54.21




Chapter 7

Conclusion

By using the long depth of focus laser marking system developed by inPhocal, fast laser marking
on 3-dimensional surfaces is not impossible anymore. Through the help of the shape correction
method, the patterns will not be distorted after being marked onto the 3-dimensional surfaces.
Therefore, the dominant way to print information onto products in the production line, ink and
stickers, which pollute our planet severely, can now be replaced by laser marking.

When marking the products with simple shapes such as cans (cylindrical surfaces, see7
shape correction can be done by examining and eliminating the distortion of projected patterns,
but the products do not always have such a simple shape. Hence, a more powerful shape cor-
rection method is needed to correct patterns for free-form surfaces. The new shape correction
method proposed in this research gives a fast and precise way to map 2-dimensional patterns onto
3-dimensional surfaces. Compared to the existing shape correction method based on surface pa-
rameterization, this new shape correction method is based on NURBS exempts the pre-processing
of the 2-dimensional patterns and the time-consuming pattern mapping process. Since products
sometimes are not all in the same shape (e.g. fruits), pre-processing the patterns case-by-case is
required when applying the surface parameterization-based method, and it also costs a lot of time.
Such a time-consuming method will slow down the speed of production, so it is more efficient to
use this NURBS-based shape correction method, especially when marking high-resolution patterns
onto surfaces with complicated shapes.

In the production line, if the products all have the same shapes, the corrected pattern can be
generated by the shape correction method beforehand. However, when the products are not in
the same shape, the surface information needs to be captured by a shape-detecting system. Then,
the unique corrected pattern will be generated for each product. In this case, the shape-detecting
system can be placed before the laser marking system at a certain distance, so when it is marking
one product, there is another product can be detected at the same time. This distance can be
calculated by multiplying speed of the production line by the time to complete shape correction.
For example, when a string pattern wants to be mapped onto mandarins as the case in
it will take around 50sec to finish the shape correction process. If speed of the production line is
10cm/second, the shape-detecting system should be placed 5m before the laser marking system,
so when the mandarin arrives at the place of laser marking system, the corrected pattern has just
been generated.
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To apply NURBS, the target surface should be sliced into several slices and the number of sample
points in each slice should be the same. In this research, zero padding is used to make sure the
same number of sample points are in these slices, but it will add additional points in the surface
model, increasing the calculation time. It is better to look for another way to do this in the future.

Besides, the performance evaluation of the corrected pattern is only applied to the simulation
results since there is still a lack of an effective way to measure the pattern on the real object.
Hence, further research on this topic is still required.

In this research, all patterns are marked on the surfaces by pointwise laser marking, but there
is another way to leave patterns by projecting a laser beam onto the target surfaces, which is
known as laser lithography. In this method, a plate with holes that form the pattern that wants
to be marked, which is also known as a mask, is placed between the laser source and the target
surface. When the mask is illuminated by a laser beam, the beam can only pass through the holes,
so a visible mark can be left on the target surface. The corrected pattern created by the shape
correction method can also be used in producing the mask for distortion-free laser lithography.
However, the laser beam might go through some optical components to control the spot size,
making it not a parallel light beam. In this situation, the marked pattern will change size when
putting the mask in different locations between the laser source and the target surface, so more
researches on how the position of the mask will affect the size of marked pattern still need to be
conducted.



Appendix A

Algorithms for NURBS surface

A.1 Data rearrangement algorithm

Algorithm A.1 Data Rearrangement

Input: Q

OUtPUt: Qrearranged
1 Teenter = sum(Q[:,0])/len(Q[:,0]) 5 Yeenter = sum(Q[:, 1])/len(Q][:, 1])
2: Q[:,0] = Q[:,0] — Zeenter ; Q1] = Q5 1] = Yeenter > reposition to the center of mass
3: Qyearranged = PCA fitting(Q) > fit the first/second principal component to x/y axis.

A.2 Data selection algorithm

Algorithm A.2 Data Selection

IanIt: Qrearranged’ n
OUtPUt: Qselecteda m
P Ws = (maX(Qrearranged[:? O]) - min(Qrearranged[:ﬂ 0]))/” > width of slices
proj,plcmes = [min(Qrearranged[:’ 0])]
fori=1-n+1do

projfplanes-append(min(Qrearranged[:’ O]) + (Z - 05) * wS)
end for
proj-planes.append(max(Q,..,rangeal0])) > creating projection planes
slice =[] ; min_num = inf
for ppl =1 — len(proj_planes) — 1 do

pts_in_slice = [p for p in Q,.o,rangea if P[O] > proj_planes[ppl] — ws/2 and

p[0] < proj_planes|ppl] + ws/2]

10: pts_in_slice = [:,0] = proj_planes|[ppl]

11: if len(pts_in_slice) < min_num then

12: min_num = len(pts_in_slice)

13: end if

14: pts_in_slice = pts_in_slice[argsort(pts_in_slice.T, axis=1).T[:,1]]
15: for pt in pts_in_slice do

16: slice.append([pt[0], pt[1], pt[2]])

17: end for

18: end for

ol
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19: Qselected = []7 m = min_num

20: for ppl =1 — len(projection planes) — 1 do

21: pts_selected = [p for p in slice if p[0] == proj_planes[ppl]]
22: Qselected'append(ptsfseleCted[o])

23: fori=1->m-1do

24: Q.ciccteq-append(pts_selected[int ((len(pts_selected) — 2)[(m - 2) * i)])
25: end for

26: Q..iecteq-append (pts_selected[-1])

27: end for

A.3 Chord length parameterization algorithm

Algorithm A.3 Chord Length Parameterization

Input: Qselected7 m

Output: «
1: u= []
2: for 1 =0 - len(Q,.jecteq) do
3: u; =0
4: fori=1->m+1do
5: Uy =up + ||Qselected|:l:|[i] - Qselected[l][i - 1]“
6: end for
7 Uy = [] ;U =0
8: u.append(u,)
9: forp=1-m+1do
10: Up = Up + ||Qselected[l][i] - Qselected [l][l - 1]”/“1
11: u.append(u,)
12: end for
13: u.append(u;)
14: end for

A.4 Finding knot vector algorithm

Algorithm A.4 Get Knot Vector

Input: u, m, p

Output: U
1: U= []
2: for i =0 - len(u) do
3: U, = []
4 foru=0-p+1do
5: U,.append(0)
6: end for
7 fori=0->m-p+1do
8: ujp=sum(afi:i+p])/p
9: U;.append(u; ;)
10: end for
11: foru=0—-p+1do
12: U;.append(1)
13: end for

14: U.append(U;)
15: end for
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16: projection planes.append(maz(Q[:,0]))

A.5 Control points algorithm

Algorithm A.5 Get Control Points

IHPUt: Qselected7
Output: ctripts

1: ctripts =[]
2: for [ =0~ len(u) do

ﬂ’ U’ m’ p

3: R =zeros([m+1,m +1])

4 for i =0 — len(a[l]) do

5 N; , = BasisFunction(u[!][:], U[l], len(U[l]), p) >
6: rational_function = N; p/sum(N; ,)
7: RJ[i,:] = rational _function[0,m + 1]
8 end for

9 ctrl = R .dot(Q[1])

10: for ¢ =0 in ctrl do

11: ctripts.append (i)

12: end for

13: end for

A.6 Basis function algorithm

Algorithm A.6 Basis Function
Input: u, U, num, p
Output: N,

1: N =zeros([num,p+1])

2: for pp=0->p+1do

3: fori=0->num-pp-1do
4: if pp == 0 then
5: if u>U[i] and u<U[i+1] then
6: N[i][pp] =1
7 else
8: N[i][pp] =0
9: end if
10: else
11: if N[i][pp-1]==0 then
12: a=0
13: else
14: a=((u-Ul[:])/(U[i+pp] - Uld])) » N[i][pp - 1]
15: end if
16: if N[i+1][pp-1]==0 then
17: b=0
18: else
19: b=((Uli+pp+1]-u)/(Uli+pp+1]-Uli+1])) * N[i + 1][pp - 1]
20: end if
21: N[i][pp]=a+b
22: end if
23: end for

24: end for
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25: N;p = N[:,-1]

A.7 Rational function algorithm

Algorithm A.7 Rational Function

Input: N, ,, N;,, num,, num,, w=1

Output: R
1: tensor = tensordot(N; ,[0: num, + 1], N;,[0: num, +1], azes =0)
2: tensor = tensor.reshape((num,, + 1) * (num,, + 1))
3: R = tensor[sum(tensor)

A.8 Get knot vector algorithm

Algorithm A.8 New Knot Vector

Input: u, v, U, V, m, n
Output: U, Vi

1: if u==1 and v ==1 then

2: Uy = U[—l]

3: Vi =V[-1]

4: else if v ==1 then

5: U = U[—l]

6: Vige = int(u * m)

7 Vi = V[0idz] * ((Vige + 1)/m—u) * m+ V[vge + 1] * (0 — vgz/m) * m
8: else if u ==1 then

9: Vi =V[-1]
10: Uige = int(v * n)
11: Uy = Ulwige ] * ((wige + 1) /mn=v) * n+ Uluige + 1] * (v — wige/n) *n
12: else
13: Vige = int(u * m)
14: Uige = int(v * n)
15: Vi = V[vige ] * (Vige + 1) /m —u) * m+ V[vge + 1] * (4 = vjg/m) *m
16: Uy = Ulwige | * ((wige + 1) /mn=v) * n+ Uluige + 1] * (v — wige/n) *n
17: end if

A.9 First fundamental form

Algorithm A.9 First Fundamental Form

Input: S(u,v), u, v, dudt, dvdt

Output: ~v

s dodu = S(u,v)y ; dodv = S(u,v),

E = dodu.dot(dodu)

F = dodu.dot(dodv)

G = dodv.dot(dodv)

v =sqrt(E  dudt? + 2 * F * dudt * dvdt + G * dvdt?)
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A.10 Line length on NURBS algorithm

Algorithm A.10 Line Length

InplﬂSt S(va), Ustarty Uend, Ustarts Vend, T, T, Ua Va S

Output: [
1: ¢c= [4, 2]
2: dudt = Uend — Ustart ; dvdt = Vend = Vstart
3: | = FirstFundForm (S (Ustart; Ustart ) s Ustart s Ustart, dudt, dvdt) >
4: for i=1- s do
5: Uk = Ugstart + 1 * dudt]s ; Vg = Vspare +1 * dvdt]s
6: I =1+ c[i%2] * FirstFundForm (S (ug, vk ), uk, v, dudt, dvdt)
7: end for
8: | = FirstFundForm(S(tend, Vend)s Uends Vend, dudt, dvdt)
9: 1=1/(3#s)*1




Appendix B

BeamConstruct software

The software used to control the laser marking system (rotation of galvanometric scanners, laser

beam’s power, laser beam’s pulse frequency, marking speed, etc) is called BeamConstruct.

Before doing laser marking, the scanning area should be defined first. Since the laser beam is
directed by rotating the two galvanometric scanners, whose rotational axes are perpendicular to
each other, the sides of scanning area can be obtained by multiplying the distance between the
scanners and the target object by the maximum angle the scanners can rotate. In the BeamCon-
struct software, this value needs to be entered in the settings of ”working area”. For example,
if the scanning area is a 100mm x 100mm square, the ”Field left Position” should be filled in by
—50mm, the ”Field upper position” should be filled in by 50mm, and both the ”Field width” and

the ”"Field height” should be filled in by 100mm (see [Figure B.1]).
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Additional power output none
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Stand-by length 20 usflield height 100,000
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oK Cancel
Cancel

Figure B.1: "Working area” settings in the BeamConstruct software.
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Cancel
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Then, the ”Editing area” in the software should be fitted in the size of the working area to fully
exploit the scanning area. See the first two values of "Editing area upper left” would
be —50mm and 50mm and the third value should be zero. For the ”Editing area size”, both the

o6
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first two values would be 100mm and the default value given by the software of the third one can
remain the same.

User interface |Scanner Multihead Motion axes Other hardware Misc  Custom dot
i 5 — -
T T T e e 16 GRo=W mA> &l

O Snap To Grid

Cul-H
cul-p

ctr-s
ctri-A

meters

NP VB B SRk T TE »

[ ok ] Concel

Figure B.2: "Editing area” settings in the BeamConstruct software.

After that, the pattern that wants to be marked can be imported into the software (see|[Figure B.3|
noted that the pattern should be a vector-type file such as a dxf file, and the information in this
vector-type file would be the signal to control the galvanometric scanner).

@OA N LU A4 AMXOON,/  OCHMEIEE o= B\ > &lF

None Geometry Element Layer Motion & uncorected_patt

—

‘/L\Q\ D\‘ ( ‘
A DL

S HHPHR VE B SR TEH »

M

Position: 54.203 x -57.773 x 0.000 mm

Figure B.3: The pattern that wants to be marked is imported to the BeamConstruct software.

By specifying the laser’s configuration (e.g. power, frequency, marking speed, etc., see [Figure B.4}
the optimal configuration is the other project of inPhocal [19].), the pattern can be marked onto
the target surface.
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Figure B.4: Laser configuration settings in the BeamConstruct software.



Appendix C

Simulation results of effects of
subintervals number in Simpson’s
Rule on correction error

shows the effects of subintervals number in Simpson’s Rule on the time consumption

and correction error.

Table C.1: Time consumption, total length difference e; and total area error e, by using different
subintervals in Simpson’s rule when applying the NURBS- based shape correction method on the
mandarin’s surface.

Number of subintervals | time consumption (sec) | e;(mm) | e,(mm?)
10 5.05 11.58 10.25
20 6.49 6.49 4.12
30 4.93 4.93 2.31
40 4.21 4.21 1.48
50 3.81 3.81 1.05
60 3.57 3.57 0.83
70 3.41 3.41 0.7
80 3.31 3.31 0.483
90 3.24 3.24 0.48
100 3.21 3.21 0.48

From [Figure C.1]to [Figure C.10] the simulation of the mapping pattern onto the mandarin with
10 x 10 points to create the mapping domain and different numbers of subintervals in Simpson’s
rule are shown.
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(a) Visualization of the length difference with 10x  (b) Visualization of the area difference with 10x 10
10 points to create mapping domain and 10 subin-  points to create mapping domain and 10 subinter-

tervals in Simpson’s rule, ¢; = 11.58mm. vals in Simpson’s rule, e, = 10.25mm?.

Figure C.1: Simulation of mapping pattern onto the mandarin’s with 10 x 10 points to create
mapping domain and 10 subintervals in Simpson’s rule.
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(a) Visualization of the length difference with 10x  (b) Visualization of the area difference with 10x 10
10 points to create mapping domain and 20 subin-  points to create mapping domain and 20 subinter-

tervals in Simpson’s rule, e¢; = 6.49mm. vals in Simpson’s rule, e, = 4.12mm?>.

Figure C.2: Simulation of mapping pattern onto the mandarin’s with 10 x 10 points to create
mapping domain and 20 subintervals in Simpson’s rule.
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(a) Visualization of the length difference with 10x  (b) Visualization of the area difference with 10x 10
10 points to create mapping domain and 30 subin-  points to create mapping domain and 30 subinter-
tervals in Simpson’s rule, ¢; = 4.93mm. vals in Simpson’s rule, e, = 2.31mm?.

Figure C.3: Simulation of mapping pattern onto the mandarin’s with 10 x 10 points to create
mapping domain and 30 subintervals in Simpson’s rule.
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(a) Visualization of the length difference with 10x  (b) Visualization of the area difference with 10x 10
10 points to create mapping domain and 40 subin-  points to create mapping domain and 40 subinter-
tervals in Simpson’s rule, ¢; = 4.21mm. vals in Simpson’s rule, e, = 1.48mm?>.

Figure C.4: Simulation of mapping pattern onto the mandarin’s with 10 x 10 points to create
mapping domain and 40 subintervals in Simpson’s rule.
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(b) Visualization of the area difference with 10x 10
points to create mapping domain and 50 subinter-
vals in Simpson’s rule, e, = 1.05mm?.

Figure C.5: Simulation of mapping pattern onto the mandarin’s with 10 x 10 points to create
mapping domain and 50 subintervals in Simpson’s rule.
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(a) Visualization of the length difference with 10 x
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(b) Visualization of the area difference with 10x 10
points to create mapping domain and 60 subinter-
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Figure C.6: Simulation of mapping pattern onto the mandarin’s with 10 x 10 points to create
mapping domain and 60 subintervals in Simpson’s rule.
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(a) Visualization of the length difference with 10x  (b) Visualization of the area difference with 10x 10
10 points to create mapping domain and 70 subin-  points to create mapping domain and 70 subinter-
tervals in Simpson’s rule, ¢; = 3.41mm. vals in Simpson’s rule, e, = 0.7mm?.

Figure C.7: Simulation of mapping pattern onto the mandarin’s with 10 x 10 points to create
mapping domain and 70 subintervals in Simpson’s rule.
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(a) Visualization of the length difference with 10x  (b) Visualization of the area difference with 10x 10
10 points to create mapping domain and 80 subin-  points to create mapping domain and 80 subinter-
tervals in Simpson’s rule, e¢; = 3.31mm. vals in Simpson’s rule, e, = 0.483mm?.

Figure C.8: Simulation of mapping pattern onto the mandarin’s with 10 x 10 points to create
mapping domain and 80 subintervals in Simpson’s rule.



64

£
£ 0.030
N

0.025

0.020

mm

0.015

(WA

0.010

0.005

0.000

50 60

0 0 40
X(mm)
(a) Visualization of the length difference with 10 x
10 points to create mapping domain and 90 subin-

tervals in Simpson’s rule, e¢; = 3.24mm.

0
0—\
€
0 £
N 0.0025
0
0.0020
0.0015
e
£
=
3 0.0010
3
0.0005
+ t t 0.0000
20 30 40 50 60
X(mm)

(b) Visualization of the area difference with 10x 10
points to create mapping domain and 90 subinter-
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Figure C.9: Simulation of mapping pattern onto the mandarin’s with 10 x 10 points to create
mapping domain and 90 subintervals in Simpson’s rule.
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Figure C.10: Simulation of mapping pattern onto the mandarin’s with 10 x 10 points to create
mapping domain and 100 subintervals in Simpson’s rule.



Appendix D

Simulation results of effects of
mapping domain points number
on correction error

[Figure D.1| to |[Figure D.10| show the effects of number of points to create the mapping domain

on the time consumption and correction error.

The pattern is a picture file of a string with

572pixel x 192pixe. This pattern is scaled into 39mm x 13mm and mapped onto the mandarin’s

surface.
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(b) Visualization of the length difference with 50
subintervals in Simpson’s rule and 10 x 10 points to
create mapping domain and, e, = 1.05mm?.

Figure D.1: Simulation of mapping pattern onto the mandarin’s with 50 subintervals in Simpson’s
rule and 10 x 10 points to create mapping domain.
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(b) Visualization of the length difference with 50
subintervals in Simpson’s rule and 20 x 20 points to
create mapping domain and, e, = 1.02mm?.

Figure D.2: Simulation of mapping pattern onto the mandarin’s with 50 subintervals in Simpson’s
rule and 20 x 20 points to create mapping domain.
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(a) Visualization of the length difference with 50
subintervals in Simpson’s rule and 30 x 30 points to
create mapping domain and, e; = 3.29mm.
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(b) Visualization of the length difference with 50
subintervals in Simpson’s rule and 30 x 30 points to
create mapping domain and, e, = 0.99mm?.

Figure D.3: Simulation of mapping pattern onto the mandarin’s with 50 subintervals in Simpson’s
rule and 30 x 30 points to create mapping domain.
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(a) Visualization of the length difference with 50
subintervals in Simpson’s rule and 40 x40 points to
create mapping domain and, e; = 3.21mm.

(b) Visualization of the length difference with 50
subintervals in Simpson’s rule and 40 x 40 points to
create mapping domain and, e, = 0.99mm?.

Figure D.4: Simulation of mapping pattern onto the mandarin’s with 50 subintervals in Simpson’s
rule and 40 x 40 points to create mapping domain.
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Figure D.5: Simulation of mapping pattern onto the mandarin’s with 50 subintervals in Simpson’s
rule and 50 x 50 points to create mapping domain.
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(a) Visualization of the length difference with 50
subintervals in Simpson’s rule and 60 x 60 points to
create mapping domain and, e; = 3.21mm.
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(b) Visualization of the length difference with 50
subintervals in Simpson’s rule and 60 x 60 points to
create mapping domain and, e, = 1.00mm?.

Figure D.6: Simulation of mapping pattern onto the mandarin’s with 50 subintervals in Simpson’s
rule and 60 x 60 points to create mapping domain.
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(a) Visualization of the length difference with 50

subintervals in Simpson’s rule and 70 x 70 points to
create mapping domain and, e; = 3.2mm.
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(b) Visualization of the length difference with 50
subintervals in Simpson’s rule and 70 x 70 points to
create mapping domain and, e, = 1.00mm?.

Figure D.7: Simulation of mapping pattern onto the mandarin’s with 50 subintervals in Simpson’s
rule and 70 x 70 points to create mapping domain.
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(a) Visualization of the length difference with 50
subintervals in Simpson’s rule and 80 x 80 points to
create mapping domain and, e; = 3.19mm.

(b) Visualization of the length difference with 50
subintervals in Simpson’s rule and 80 x 80 points to
create mapping domain and, e, = 1.00mm?.

Figure D.8: Simulation of mapping pattern onto the mandarin’s with 50 subintervals in Simpson’s
rule and 80 x 80 points to create mapping domain.
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(a) Visualization of the length difference with 50
subintervals in Simpson’s rule and 90 x 90 points to
create mapping domain and, e; = 3.19mm.

0.0025

0.0020

0.0015

t + t 0.0000

20 30 40 50 60
X(mm)

(b) Visualization of the length difference with 50
subintervals in Simpson’s rule and 90 x 90 points to
create mapping domain and, e, = 1.00mm?.

Figure D.9: Simulation of mapping pattern onto the mandarin’s with 50 subintervals in Simpson’s
rule and 90 x 90 points to create mapping domain.
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(a) Visualization of the length difference with 50
subintervals in Simpson’s rule and 100 x 100 points
to create mapping domain and, e; = 3.19mm.
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(b) Visualization of the length difference with 50
subintervals in Simpson’s rule and 100 x 100 points
to create mapping domain and, e, = 1.00mm?.

Figure D.10: Simulation of mapping pattern onto the mandarin’s with 50 subintervals in Simpson’s
rule and 100 x 100 points to create mapping domain.

[Figure D.1| to [Figure D.10| show the effects of number of points to create the mapping domain
on the time consumption and correction error. The pattern is a picture file of nPhocal’s logo
with 1200pixel x 200pixe. This pattern is scaled into 39mm x 13mm and mapped onto the mouse’s

surface.
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(a) Visualization of the length difference with 50
subintervals in Simpson’s rule and 10 x 10 points to
create mapping domain and, e; = 6.32mm.
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(b) Visualization of the length difference with 50
subintervals in Simpson’s rule and 10 x 10 points to
create mapping domain and, e, = 1.86mm?.

Figure D.11: Simulation of mapping pattern onto the mouse’s with 50 subintervals in Simpson’s
rule and 10 x 10 points to create mapping domain.
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(a) Visualization of the length difference with 50
subintervals in Simpson’s rule and 20 x 20 points to
create mapping domain and, ¢; = 5.84mm.
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(b) Visualization of the length difference with 50
subintervals in Simpson’s rule and 20 x 20 points to

create mapping domain and, e, = 2.4mm?.

Figure D.12: Simulation of mapping pattern onto the mouse’s with 50 subintervals in Simpson’s
rule and 20 x 20 points to create mapping domain.
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(a) Visualization of the length difference with 50
subintervals in Simpson’s rule and 30 x 30 points to
create mapping domain and, e; = 5.42mm.
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(b) Visualization of the length difference with 50
subintervals in Simpson’s rule and 30 x 30 points to
create mapping domain and, e, = 2.17mm?.

Figure D.13: Simulation of mapping pattern onto the mouse’s with 50 subintervals in Simpson’s
rule and 30 x 30 points to create mapping domain.
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(a) Visualization of the length difference with 50

subintervals in Simpson’s rule and 40 x 40 points to
create mapping domain and, ¢; = 5.51mm.
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(b) Visualization of the length difference with 50
subintervals in Simpson’s rule and 40 x40 points to

create mapping domain and, e, = 2.34mm?.

Figure D.14: Simulation of mapping pattern onto the mouse’s with 50 subintervals in Simpson’s
rule and 40 x 40 points to create mapping domain.
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(a) Visualization of the length difference with 50
subintervals in Simpson’s rule and 50 x 50 points to
create mapping domain and, e; = 5.29mm.
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(b) Visualization of the length difference with 50

subintervals in Simpson’s rule and 50 x 50 points to
create mapping domain and, e, = 2.18mm?.

Figure D.15: Simulation of mapping pattern onto the mouse’s with 50 subintervals in Simpson’s
rule and 50 x 50 points to create mapping domain.
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(a) Visualization of the length difference with 50
subintervals in Simpson’s rule and 60 x 60 points to
create mapping domain and, ¢; = 5.29mm.
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(b) Visualization of the length difference with 50
subintervals in Simpson’s rule and 60 x 60 points to

create mapping domain and, e, = 2.18mm?.

Figure D.16: Simulation of mapping pattern onto the mouse’s with 50 subintervals in Simpson’s
rule and 60 x 60 points to create mapping domain.
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(a) Visualization of the length difference with 50
subintervals in Simpson’s rule and 70 x 70 points to
create mapping domain and, e; = 5.4mm.
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(b) Visualization of the length difference with 50
subintervals in Simpson’s rule and 70 x 70 points to
create mapping domain and, e, = 2.25mm?.

Figure D.17: Simulation of mapping pattern onto the mouse’s with 50 subintervals in Simpson’s
rule and 70 x 70 points to create mapping domain.
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(a) Visualization of the length difference with 50
subintervals in Simpson’s rule and 80 x 80 points to
create mapping domain and, ¢; = 5.2mm.
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(b) Visualization of the length difference with 50
subintervals in Simpson’s rule and 80 x 80 points to
create mapping domain and, e, = 2.12mm?.

Figure D.18: Simulation of mapping pattern onto the mouse’s with 50 subintervals in Simpson’s
rule and 80 x 80 points to create mapping domain.
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(a) Visualization of the length difference with 50
subintervals in Simpson’s rule and 90 x 90 points to
create mapping domain and, e; = 5.25mm.
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(b) Visualization of the length difference with 50

subintervals in Simpson’s rule and 90 x 90 points to
create mapping domain and, e, = 2.13mm?.

Figure D.19: Simulation of mapping pattern onto the mouse’s with 50 subintervals in Simpson’s
rule and 90 x 90 points to create mapping domain.
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(a) Visualization of the length difference with 50 (b) Visualization of the length difference with 50
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to create mapping domain and, e; = 5.29mm. to create mapping domain and, e, = 2.22mm?.

Figure D.20: Simulation of mapping pattern onto the mouse’s with 50 subintervals in Simpson’s
rule and 100 x 100 points to create mapping domain.



Appendix E

Inspecting shift of the same point
on original and orthogonally
projected pattern

The process of a straightforward method to do shape correction is shown in Since this
method uses curvature of the curved surfaces directly to specify the workspace and correct the
pattern, the correction error could be zero. Due to the same reason, however, it can only be used
on surfaces with simple shapes.

Point out
bounding box

Specify a
workspace with
same size on

workpiece

Orthogonally
projecting
workspace
onto x-y plane

20 a0 60 a0 100 120 140 160 180

Compensate o —
the deformatiojn T T

Figure E.1: Process flow of inspecting shift of the same point on original and orthogonally projected
pattern

it
treet
Tt

shows the simulation result of shape correction by inspecting the shift of the same
point on the original and orthogonally projected pattern. In[Figure E.2D|it can be found that the
widths of the two sides of character A’ are not the same in the uncorrected pattern (the upper
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APPENDIX E. INSPECTING SHIFT OF THE SAME POINT ON ORIGINAL AND
ORTHOGONALLY PROJECTED PATTERN 7

left one) because of the curvature of the cylindrical surface, but they are the same in the corrected
pattern (the bottom right one).

15 - ) \
| \ N
| ’ } :'.f

) B

] §El . J

T T T T
—20 =10 ) 10

(a) Corrected pattern obtained from inspecting shift of the same point on the original and the orthogonally
projected pattern, the corrected pattern is shown in green dots and the uncorrected pattern is shown in
red dots.

(b) Simulation result of mapping corrected (the bottom right one) and uncorrected (the upper left one)
pattern on a cylindrical surface.

Figure E.2: Simulation of shape correction through inspecting shift of the same point on original
and orthogonally projected pattern
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