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Reinforcement in a concrete structure is often determined based on linear elastic stresses. 

This paper considers computation of the required reinforcement when these stresses have 

been determined by the finite element method with volume elements. Included are both 

tension reinforcement and compression reinforcement, multiple load combinations and crack 

control in the serviceability limit state. Results are presented of seventeen stress state 

examples. 
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1 Introduction 

Many computer programs for structural analysis have post processing functionality for 

designing reinforcement and performing code compliance checks. For example the 

moments and normal forces computed with shell elements can be used to determine the 

required reinforcement based on the Eurocode design rules [1]. However, for finite 

element models containing volume elements, reinforcement design rules do not exist. 

Software companies that are developing structural analysis programs are in the process of 

extending the program capabilities with volume elements. Consequently, also the 

algorithms for computing reinforcement requirements need to be extended for use with 

volume elements. 

 

Already in 1983, Smirnov [2] pointed out the importance of this problem for design of 

reinforced concrete in hydroelectric power plants. Unfortunately, the design rule that he 

proposed in his paper is incorrect. Following his assumptions he should have arrived at 

Eq. 4 of this paper. Kamezawa et al. [3] proposed five design rules for three-dimensional 
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reinforcement design. Among these is Eq. 4 of this paper while the other four design rules 

used are theoretically incorrect. The design rules were tested on an example structure by 

applying reinforcement according to each rule and performing nonlinear finite element 

analyses up to failure. Their best performing design rule produces the same reinforcement 

as Eqs 13-16 of this paper for their example structure. However, in another structure it can 

significantly overestimate the required amount of reinforcement. Foster et al. [4] derived 

the correct design rules for the interior solution, which are Eqs 13-17 in this paper. 

However, they rely on Mohr’s circle and graphs to determine which of these rules to use. 

This makes their approach not suitable for computer implementation. 

 

In this paper an analytical approach and a numerical approach are followed. The analytical 

approach yields a complete set of design rules for determining tension reinforcement for 

the ultimate limit state. The set includes the rules that have been derived by Foster [4]. It 

also includes the rules that are commonly used for design of reinforced concrete in a plane 

stress state [1].  The numerical approach has the advantage that in addition multiple load 

combinations, compression reinforcement and crack control can be included in the 

computation. 

 

Reinforced concrete often has many small cracks that developed during curing of the 

material as a result of the interaction of the shrinking concrete and the reinforcing bars. 

Therefore, we cannot rely on concrete having tensile strength. The reinforcement needs to 

be computed such that the concrete principal stresses are smaller than zero. This is fulfilled 

when the first concrete principal stress is smaller than zero. 

 

σ ≤1 0c  

 

Also, the concrete compressive stresses need to fulfil a condition. The Mohr-Coulomb yield 

contour is often used as a conservative condition for preventing concrete failure. 

 

σ σ+ ≤
σ σ

3 1 1c c

c t
 

 

In this σc is the uniaxial concrete compressive strength (negative number) and σt is the 

concrete tensile strength. Here, the tensile strength is larger than zero because it is an 
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average value instead of a local value. If the concrete stresses are too large, compression 

reinforcement or confinement reinforcement can be a solution. 

According to the lower bound theorem of plasticity theory [5, 6] any force flow that is in 

equilibrium and fulfils the strength conditions of the materials provides a safe solution for 

the carrying capacity of the structure. Thus, designing reinforcement for the ultimate limit 

state is an optimisation problem: Minimise the amount of reinforcement with the above 

mentioned conditions on the concrete principal stresses. 

 

In addition, the crack width needs to be limited for load combinations related to the 

serviceability limit state.  

 

≤ maxw w  

 

This condition is imposed for aesthetics and to prevent corrosion of the reinforcing steel. 

Often, this condition alone determines the required reinforcement ratios. 

 

In reinforced concrete beam design it is customary to include at least a minimum 

reinforcement. This is to ensure ductile failure and distributed cracking. However, in many 

situations the minimum reinforcement requirements result in much more reinforcement 

than reasonable. Therefore, in this paper it is not considered. Of course, a design engineer 

can decide to apply at least minimum reinforcement according to the governing code of 

practice. 

 

In Appendix 1 a short summary is given of the Theory of Elasticity to explain the notations 

and definitions used in this paper. 

2 Equilibrium of forces 

Figure 1 shows the stresses on a small material cube. The stress values are known since 

they are computed by a finite element program. Figure 2 shows part of this cube with a 

crack and a reinforcing bar. We assume that the reinforcing bars are directed in the x, y and 

z directions. In Figure 2 only the reinforcing bar in the x direction is shown. The 

reinforcement stress yσ in a crack needs to be in equilibrium with the stresses on the cube 

faces. We assume that the normal stresses and shear stresses on the crack face are zero.  
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Figure 1. Stresses on a small material cube Figure 2. Equilibrium of a cracked cube part 

 

The equilibrium equations of the cracked cube part are 

 

cos cos cos cos

cos cos cos cos

cos cos cos cos

y x xx xy xz

y y xy yy yz

y z xz yz zz

A A A A

A A A A

A A A A

σ αρ = σ α + σ β + σ γ

σ βρ = σ α + σ β + σ γ

σ γ ρ = σ α + σ β + σ γ

 (1) 

 

Where ρ ρ ρ, ,x y z are the reinforcement ratios in the x, y and z directions. A is the crack face 

area. α, β And γ are the angles of the crack face normal vector. In the derivation of the 

equations the geometrical relations shown in Figure 3 have been used. 

 

Eqs (1) can be rewritten as 

 

0 cos
0 cos
0 cos

xx x y xy xz

xy yy y y yz

xz yz zz z y

⎡ ⎤σ − ρ σ σ σ α⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥= σ σ − ρ σ σ β⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥γσ σ σ − ρ σ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 (2) 

 

This matrix will be referred to as the concrete stress tensor. The concrete principal 

stresses 1cσ , 2cσ and 3cσ are the eigenvalues of this matrix. Non trivial solutions of Eqs (2) 

can be found when the determinant 3cI  of the matrix is zero. 

 

= σ σ σ + σ σ σ − σ σ − σ σ − σ σ =2 2 2
3 2 0c cx cy cz xy xz yz cx yz cy xz cz xyI  (3) 
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Figure 3. Surface areas of the cracked cube part 

 

σ = σ − ρ σcx xx x y  

σ = σ − ρ σcy yy y y  

σ = σ − ρ σcz zz z y . 

 

The problem can be visualised in a graph (Fig. 4). The axis of this graph 

represent xρ , yρ and zρ . The condition 3 0cI = is shown as a surface. We are looking for the 

smallest possible value of x y zρ + ρ + ρ  on this surface. The shape of the surface depends on 

the linear elastic stress tensor and the steel stress yσ . Not only interior solutions but also 

edge and corner solutions are possible (Fig. 4). 

3 Principal reinforcement 

Suppose that we select the following reinforcement 

 

1 1 1, ,x y z
y y y

σ σ σρ = ρ = ρ =
σ σ σ

. (4) 

 

1σ is the largest eigenvalue of the linear elastic stress tensor. Substitution of Eqs (4) in Eqs 

(2) gives 

 

1

1

1

xx xy xz

xy yy yz

xz yz zz

⎡ ⎤σ − σ σ σ
⎢ ⎥

σ σ − σ σ⎢ ⎥
⎢ ⎥

σ σ σ − σ⎢ ⎥⎣ ⎦

. 

A

cosA α

cosA γcosA β

γ

α
β
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Figure 4. Conceptual presentation of the optimisation problem 

 

Its determinant 3cI is zero because this is how the eigenvalue is derived in the first place. It 

can be shown that one of the eigenvalues of the concrete stress tensor is zero and the other 

two eigenvalues are smaller than or equal to zero. Therefore, the reinforcement proposed 

in Eq. (4) is suitable. The crack direction cosα , cosβ and cos γ will be equal to the first 

principal direction of the linear elastic stress tensor. Therefore, the crack direction in the 

ultimate limit state is the same as the crack direction in the serviceability limit state. 

 

An advantage of this reinforcement is that few additional cracks will form in a material 

cube when the load increases towards the ultimate load. This might be beneficial to the 

durability of the structure. However, less reinforcement is required when we accept that 

the cracks in the ultimate limit state will be different from the initial cracks. Often the 

reinforcement can be reduced to almost one third when the reinforcement ratios are 

optimised. 

4 Reinforcement formulas 

Corner solutions  

Assuming reinforcement in one direction only, the following formulas can be derived for 

the required amount of reinforcement ( =3 0cI ). 

 

3
20, 0,

( )x y z
y xx yy xy

Iρ = ρ = ρ =
σ σ σ − σ

 (5) 

3
20, , 0

( )x y z
y xx zz xz

Iρ = ρ = ρ =
σ σ σ − σ

 (6) 

constantx y zρ + ρ + ρ =

3 0cI =

xρ
yρ

zρcorner solution 

edge solution 

interior solution 
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3
2 , 0, 0

( )x y z
y yy zz yz

Iρ = ρ = ρ =
σ σ σ − σ

 (7) 

 

where, 3I is the determinant of the linear elastic stress tensor (Appendix 1). For plane 

stress, 0zz xz yzσ = σ = σ = , Eqs (7) reduces to 

 

2
, 0, 0xyxx

x y z
y y yy

σσρ = − ρ = ρ =
σ σ σ

, (8) 

 

which is commonly used in reinforcement design of concrete walls [1]. 

Also the crack directions can be derived by substitution of the reinforcement ratios in Eqs 

(2). For example, for Eqs (7) the result is 

 

2
cos , cos , cosyy zz yz xz yz zz xy xy yz yy xz

l l l
σ σ − σ σ σ − σ σ σ σ − σ σ

α = β = γ = , 

2 2 2 2( ) ( ) ( )yy zz yz xz yz zz xy xy yz yy xzl = σ σ − σ + σ σ − σ σ + σ σ − σ σ . 

 

Edge solutions 

Assuming reinforcement in two directions only, the following formulas can be derived for 

the smallest amount of reinforcement ( =3 0cI and 
( )

0y z

y

d
d

ρ + ρ
=

ρ
, etc.). 

2 2
0, ( ), ( )yy xy xz xy yz xz xy yzzz xz

x y z
y y xx y xx y y y xx y xx y

σ σ σ σ σ σ σ σσ σρ = ρ = − ± − ρ = − ± −
σ σ σ σ σ σ σ σ σ σ σ σ

 (9) 

2 2
( ), 0, ( )xy yz xy yz yz xyxx xz zz xz

x y z
y y yy y yy y y y yy y yy y

σ σ σ σ σ σσ σ σ σρ = − ± − ρ = ρ = − ± −
σ σ σ σ σ σ σ σ σ σ σ σ

 (10) 

22
( ), ( ), 0xz yz xy yy yz xz yz xyxx xz

x y z
y y zz y zz y y y zz y zz y

σ σ σ σ σ σ σ σσ σρ = − ± − ρ = − ± − ρ =
σ σ σ σ σ σ σ σ σ σ σ σ

 (11) 

 

For plane stress, 0zz xz yzσ = σ = σ = , Eqs (10) reduce to Eqs (8) and Eqs (11) reduce to 

σ σ σ σ
ρ = ρ = ρ =

σ σ

∓ ∓
, , 0xx xy xx xy

x y z
y y

 (12) 
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which is commonly used in reinforcement design of concrete walls too [1]. 

For Eqs (11) the crack directions are 

 

σ σ±σ −σα = β = γ =
σ + σ σ σ + σ σ σ + σ σ2 2 2 2 2 2

cos , cos , cos
2 ( ) 2 ( ) 2 ( )

yz xzzz zz

zz yz xz zz yz xz zz yz xz

∓

∓ ∓ ∓
. 

 

Interior solutions 

For reinforcement in three directions the following formulas can be derived for the 

smallest amount of reinforcement ( =3 0cI and 
( )

0x y z

y

d
d

ρ + ρ + ρ
=

ρ
 and 

( )
0x y z

z

d
d

ρ + ρ + ρ
=

ρ
). 

 

, ,xx xy xz yy xy yz zz xz yz
x y z

y y y

σ + σ + σ σ + σ + σ σ + σ + σ
ρ = ρ = ρ =

σ σ σ
 (13) 

, ,xx xy xz yy xy yz zz xz yz
x y z

y y y

σ + σ − σ σ + σ − σ σ − σ − σ
ρ = ρ = ρ =

σ σ σ
 (14) 

, ,xx xy xz yy xy yz zz xz yz
x y z

y y y

σ − σ − σ σ − σ + σ σ − σ + σ
ρ = ρ = ρ =

σ σ σ
 (15) 

, ,xx xy xz yy xy yz zz xz yz
x y z

y y y

σ − σ + σ σ − σ − σ σ + σ − σ
ρ = ρ = ρ =

σ σ σ
 (16) 

σ σ σ σ σ σ σσ σρ = − ρ = − ρ = −
σ σ σ σ σ σ σ σ σ

, ,xy xz yy xy yz xz yzxx zz
x y z

y y yz y y xz y y xy
 (17) 

 

For Eqs (16) the crack directions are 

 

1 1 1cos , cos , cos
3 3 3

−α = β = γ = . 

 

For Eqs (17) the crack direction is indeterminate but perpendicular to vector 

 

σ σ σ σ σ σ( , , )xy xz xy yz xz yz , 

 

which apparently is the direction of the concrete compressive stress. 

 



 255 

In this section, 11 sets of formulas are presented as potential solutions of the least amount 

of reinforcement. For a particular stress state most of these solutions are invalid. The 

optimal reinforcement is either ρx = ρy = ρz = 0 or the result of one (or more) of the valid 

solutions. It is not attempted to specify the stress ranges for which a particular set provides 

the optimum. This is expected to produce very large and therefore impractical results. In 

Section 5, a method is proposed to test the validity of a potential reinforcement solution for 

a particular stress state. 

 

The formulas consider only one stress state, therefore only one load combination. In 

general, for multiple load combinations, the real minimum is not predicted by any of these 

sets of formulas. In Section 6, a method is proposed to compute the least amount of 

reinforcement for multiple load combinations. 

5 Testing a solution 

The validity of the formulas in the previous section depends on the actual stress state. A 

first check is that the reinforcement ratios need to be larger than or equal to zero. It is 

possible to further test a formula result by computing the concrete principal stresses and 

checking whether these are smaller than or equal to zero. However, the computation time 

for this can be large because computing eigenvalues involves finding the roots of a third 

order polynomial. Moreover, this needs to be repeated for all sets of formulas, for all load 

combinations and all integration points of a finite element model. On the other hand, the 

invariants of the concrete stress tensor can be computed faster. 

 

= σ + σ + σ

= σ σ + σ σ + σ σ − σ − σ − σ

= σ σ σ + σ σ σ − σ σ − σ σ − σ σ

1
2 2 2

2
2 2 2

3 2

c cx cy cz

c cx cy cy cz cz cx xy xz yz

c cx cy cz xy xz yz cx yz cy xz cz xy

I

I

I

 (18) 

 

The condition 1 0cσ ≤  is equivalent (necessary and sufficient) to 

 

1 0cI ≤  (19a) 

2 0cI ≥  (19b) 

3 0cI ≤  (19c) 
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The ”necessary” proof is straight forward by substitution of the principal stresses in Eq. 

(A4).  

The “sufficient” proof follows a reductio ad absurdum. Suppose that one or all of the 

principal stresses is larger than zero. Then from Eq. (33) it follows that >3 0cI which is 

inconsistent with Eq. (19c). Suppose that two principal concrete stresses are larger than 

zero, for example 1 0cσ > and 2 0cσ > . From Eq. (19a) and (19b) it follows 

that 1 2 3 0c c cσ + σ + σ ≤  and 1 2 2 3 3 1 0c c c c c cσ σ + σ σ + σ σ ≥ . So 

σ + σ −σ − σ σ − σσ ≤ −σ − σ = − =
σ + σ σ + σ

2 2 2
1 2 1 1 2 2

3 1 2
1 2 1 2

( ) 2c c c c c c
c c c

c c c c
 and −σ σσ ≥

σ + σ
1 2

3
1 2

c c
c

c c
. The latter 

two conditions are inconsistent too. Q.E.D. 

6 Compression reinforcement 

If σ =1 0c the other principal concrete stresses can be computed by 

 

σ = + −

σ = − −

21 1
2 1 1 22 2

21 1
3 1 1 22 2

( )

( )

c c c c

c c c c

I I I

I I I
 

 

This can be derived by solving σ2 and σ3 from Eqs (33). When the concrete stresses are too 

large (in absolute sense) than compression reinforcement and confinement reinforcement 

can be used. The objective is the same as for tension reinforcement; minimize ρ + ρ + ρx y z .  

The Mohr-Coulomb constraint to fulfil is σ σ+ ≤
σ σ

3 1 1c c

c t
.  The equilibrium equations are 

 

⎡ ⎤σ − ρ σ − σ σ σ α⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥= σ σ − ρ σ − σ σ β⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥γσ σ σ − ρ σ − σ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

0 cos
0 cos
0 cos

xx x sx ci xy xz i

xy yy y sy ci yz i

ixz yz zz z sz ci

    i = 1, 2, 3 (20) 

 

Each of the steel stresses σsx , σsy , σsz can be negative or positive. The problem is too 

complicated for analytical solution. A numerical implementation is shown in Appendix 2. 
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For very large reinforcement ratios the concrete true stresses are significantly larger than 

the average concrete stresses in Eq. 2 and Eq. 20. The following adjustments can be 

considered to obtain the concrete true stress tensor. However, in this paper, small 

reinforcement ratios are assumed and Eq. 20 is used. 

 

⎡ ⎤σ − ρ σ σ + σ +⎢ ⎥− ρ − ρ − ρ − ρ − ρ⎢ ⎥
⎢ ⎥σ − ρ σ⎢ ⎥σ + σ +
⎢ ⎥− ρ − ρ − ρ − ρ − ρ
⎢ ⎥
⎢ σ − ρ σ ⎥σ + σ +⎢ ⎥− ρ − ρ − ρ − ρ − ρ⎢ ⎥⎣ ⎦

1 1
2 2

1 1
2 2

1 1
2 2

1 1 1 1( ) ( )
1 1 1 1 1

1 1 1 1( ) ( )
1 1 1 1 1

1 1 1 1( ) ( )
1 1 1 1 1

xx x sx
xy xz

x x y x z

yy y sy
xy yz

x y y y z

zz z sz
xz yz

x z y z z

 (21) 

7 Crack control 

Crack width is important for load combinations related to the serviceability limit state. The 

crack occurs perpendicular to the first principal direction and sometimes also 

perpendicular to the second and third principal directions. When the load increases the 

crack can grow in a different direction.  This is often referred to as crack rotation. Crack 

rotation can already be significant in the serviceability limit state. 

 

The linear elastic strains computed by a finite element analysis could be used for 

determining the crack width. However, these strains would not be very accurate because 

they strongly depend on Young’s modulus of cracked reinforced concrete which can only 

be estimated. On the other hand, the stresses do not depend on Young’s modulus1. 

Therefore, the computation of crack widths starts from the stresses. In essence, the adopted 

equations are part of the Modified Compression Field Theory [7] simplified for the 

serviceability limit state and extended for three dimensional analysis.  

 

Eq. (20) can be rewritten to. 

 

                                                                    
1 Except for temperature loading and foundation settlements in statically indetermined 

structures. For these cases an accurate estimate of Young’s modulus of cracked reinforced 

concrete needs be used in the linear elastic analysis. 
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⎡ ⎤σ σ σ ⎡ ⎤σ ρ σ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥σ σ σ = σ + ρ σ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥σσ σ σ ρ σ⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦

1
-1

2

3

0 0
0 0
0 0

xx xy xz c x sx

xy yy yz c y sy

cxz yz zz z sz

P P  (22) 

 

where σ 1c , σ 2c , σ 3c are the concrete principal stresses and 

 

α α α⎡ ⎤
⎢ ⎥= β β β⎢ ⎥
⎢ ⎥γ γ γ⎣ ⎦

1 2 3

1 2 3

1 2 3

cos cos cos
cos cos cos
cos cos cos

P . (23) 

 

The columns in P are the vectors of the concrete principal directions. Note that in general 

these principal directions are not the same as the linear elastic principal directions. The 

principal direction vectors are perpendicular, therefore =-1 TP P . This can be proved by 

showing that = =T TP P PP I . 

Since yielding is supposed not to occur in the serviceability limit state, the constitutive 

relations for the reinforcing bars are linear elastic. The constitutive relation for compressed 

concrete is approximated as linear elastic in the principal directions. Poisson’s ratio is set to 

zero. The constitutive relation for tensioned concrete is 

 

σσ =
+ ε1 500

t
ci

i
           i = 1, 2, 3 (24) 

 

where σt is the concrete mean tensile strength [7]. It is assumed that aggregate interlock 

can carry any shear stress in the crack. It is assumed that the concrete principal stresses and 

the principal strains have the same direction. 

 

The principal strains ε1 , ε2 and ε3 are the eigenvalues of the strain tensor.  

 

−

⎡ ⎤ε γ γ ε⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥γ ε γ = ε⎢ ⎥⎢ ⎥
⎢ ⎥ε⎢ ⎥ ⎣ ⎦γ γ ε⎣ ⎦

1 1
2 2 1

11 1
22 2

1 1 3
2 2

0 0
0 0
0 0

xx xy xz

xy yy yz

xz yz zz

P P . (25) 
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From Eqs (22) to (25) the strain tensor can be solved numerically by the Newton-Raphson 

method. 

 

The Model Code 90 is applied for computing crack widths [8]. The mean crack spacings s 

for uniaxial tension in the reinforcement directions are 

 

=
ρ

2
3 3.6

x
x

x

ds                =
ρ

2
3 3.6

y
y

y

d
s                =

ρ
2
3 3.6

z
z

z

ds , (26) 

 

where xd , yd , zd are the diameters of the reinforcing bars in the x, y, z direction. The crack 

spacing s in principal direction i is computed from 

 

α β γ
= + +

cos cos cos1 i i i

i x y zs s s s
             i = 1, 2, 3. (27) 

 

The mean crack width in the principal direction i is 

 

= ε − ε − ε( )i i i c sw s                i = 1, 2, 3 (28) 

 

where εc is the concrete strain and εs is the concrete shrinkage. The value of εc is positive 

and the value of εs is negative. For simplicity, in this paper is assumed that they cancel 

each other out. The crack width is limited to a maximum value. 

 

≤ maxiw w                i = 1, 2, 3. (29) 

 

which puts a constraint on the reinforcement ratios ρx , ρy , ρz . It is noted that the 

formulation is suitable for any consistent set of units, for example newtons and millimeters 

or pounds and inches. A numerical implementation for computing the crack width is 

shown in Appendix 3. The optimisation problem is too complicated for analytical solution.  
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8 Overview 

The complete optimisation problem for reinforcement design is summarised in this section. 

 

Minimise the total reinforcement ratio ρ + ρ + ρx y z fulfilling six constraints. 

The constraints are 2 

ρ ≥ ρ ≥ ρ ≥0, 0, 0x y z , 

σ ≤1 0c   for all load combinations related to the ultimate limit state, 

σ σ+ ≤
σ σ

3 1 1c c

c t
 for all load combinations related to the ultimate limit state, 

≤ maxw w   for all load combinations related to the serviceability limit state. 

 

The largest concrete principal stress σ 1c and the smallest concrete principal stress σ 3c are a 

function of the stress state σxx , σyy , σzz , σxy σxz , σyz , of the reinforcement 

ratios ρx , ρy , ρz  and of the yield stress of the reinforcing bars σy , which can be larger or 

smaller than zero. 

The crack width w is a function of the stress state σxx , σyy , σzz , σxy σxz , σyz , of the 

reinforcement ratios ρx , ρy , ρz , of Young’s moduli of steel sE and concrete cE , of the 

tensile strength of concrete σt and of the reinforcing bar diameters xd , yd , zd . The stress 

states differ for each load combination. 

9 Examples 

Table 1 shows results of the proposed optimisation problem. The rows contain 

computation examples. The reinforcement yield stress is yσ = 500 N/mm² for each 

example. The concrete tensile strength is σt = 3 N/mm². The concrete uniaxial compressive 

strength is σc = – 40 N/mm². The maximum mean crack width is maxw = 0.2 mm. The bar 

diameters are xd = yd = zd  = 16 mm. Young’s moduli of steel and compressed concrete 

are sE = 210000 N/mm² and cE = 30000 N/mm². 

                                                                    
2 In the first three constraints a minimum reinforcement ratio can be included. 
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Column 1 contains the example numbers. Columns 2 to 7 contain the input stress states. 

All stresses in the table have the unit N/mm². Column 8 shows whether a stress state 

belongs to the ultimate or serviceability limit state. Column 9 to 11 contain the linear elastic 

principal stresses. Column 13 to 15 contain the output reinforcement ratios in %. Column 

16 to 18 contain the principal concrete stresses. Column 19 shows the numbers of the 

equations in Section 4 that give the same result. It is noted that sometimes different 

equations in Section 4 produce the same optimal result. Column 20 shows which load 

combinations influence the computed reinforcement ratios. 

 

Example 1 and 2 have also been studied by Foster et al. [4]. In example 1 the same results 

have been found. In example 2, Foster found ρx = 0.75%, ρy = 0, ρz = 0.75%. Table 2 shows 

that the optimal reinforcement differs considerably. However, the total reinforcement is 

almost the same (Foster; 0.75 + 0.00 + 0.75 = 1.50%, Table 2; 0.89 + 0.00 + 0.57 = 1.46%). 

Example 3 to 5 show that edge solutions and corner solutions can provide the optimal 

reinforcement. Comparison of example 6 and 7 shows that double stress requires twice the 

amount of reinforcement. Apparently, the amount of reinforcement is linear in the load 

factor; Example 8 and 9 show that interior solutions can provide the optimal reinforcement 

solution. 

 

Example 12 consists of two load combinations. The volume reinforcement ratio is 

ρ + ρ + ρx y z = 3.00 + 0.33 + 0.00 = 3.33%. Alternatively, we could have selected the envelope 

of the reinforcement requirements for the individual load combinations, which are 

examples 10 and 11. The volume reinforcement ratio applying the envelope method is 

max(3.00, 1.00) + max(0.00, 1.00) = 4.00%. Consequently, the envelope method gives a safe 

approximation but it overestimates the required reinforcement substantially. 

 

Example 13 shows an uniaxial compressive force that is larger than the concrete 

compressive strength. The algorithm computes that the minimum reinforcement solution 

is 0.75% confinement reinforcement in both lateral directions. For compression 

reinforcement would be needed (90 – 40)/500 = 10.00% which is much larger than 0.75 +  

0.75 = 1.50%. Example 14 shows that for large isotropic compression no reinforcement is 

needed. Example 15 considers the double amount of elastic stress of example 7. It shows 

that the required reinforcement is more than double because confinement reinforcement is 

needed. This high reinforcement ratio can be required in columns. 
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Table 1. Computation examples 

 xxσ  yyσ  zzσ  xyσ  xzσ  yzσ   σ1  σ2  σ3   

1 2 3 4 5 6 7 8 9 10 11  

1 2 -2 5 6 -4 2 ULS 8.28 4.32 -7.60  

2 -3 -7 . 6 -4 2 ULS 3.28 -0.68 -12.60  

3 -1 -7 10 . . 5 ULS 11.36 -1.00 -8.36  

4 3 . 10 . 5 . ULS 12.60 0.40 .  

5 10 7 -3 3 1 -2 ULS 11.86 5.71 -3.57  

6 4 -7 3 7 . -5 ULS 8.48 3.31 -11.79  

7 8 -14 6 14 . -10 ULS 16.97 6.62 -23.59  

8 1 . 3 10 -8 7 ULS 10.90 8.66 -15.56  

9 . . . 10 8 7 ULS 16.37 -6.62 -10.11  

10 15 . . .  . . ULS 15.00 . .  

11 . . . 5  . . ULS 5.00 . -5.00  

12 15 . . .  . . ULS 15.00 . .  

 . . . 5  . . ULS 5.00 . -5.00  

13 -90 . . . . . ULS . . -90.00  

14 -90 -90 -90 . . . ULS -90.00 -90.00 -90.00  

15 16 -28 12 28 . -20 ULS 33.94 13.23 -47.17  

16 10 7 -3 3 1 -2 SLS 11.86 5.71 -3.57  

17 2 -2 5 6 -4 2 ULS 8.28 4.32 -7.60  

 -2 1 3 . 3 5 ULS 7.68 -0.97 -4.71  

 2 1 3 4 2 . ULS 6.26 2.58 -2.85  

 1 -1 3 3 -2 1 SLS 4.39 2.36 -3.76  

 -1 1 2 . 2 3 SLS 4.95 -0.22 -2.73  

The dots (.) represent zeros (0) in order to improve readability of the table. 

 

 Table 2. Strains of the SLS examples  

 

 εxx  εyy  εzz  γxy  γxz  γyz  

16 0.001572 0.001357 -0.000033 0.003243 -0.000592 -0.000754 

17, 4 0.000939 0.000278 0.000707 0.001387 -0.001827 -0.000934 

17, 5 0.000294 0.000710 0.000956 0.001056 0.001351 0.001992 
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 xρ  yρ  zρ  σ 1c  2cσ  3cσ  Eq. decisive 

12 13 14 15 16 17 18 19 20 

1 2.40 0.40 1.40 . -0.79 -15.21 14 yes 

2 0.89 . 0.57 . -2.53 -14.77 10+ yes 

3 . . 2.71 . -1.00 -10.57 5 yes 

4 1.60 . 3.00 . . -10.00 10–, 13, 16 yes 

5 2.53 2.13 . . -2.02 -7.31 11– yes 

6 2.20 1.00 1.60 . -5.76 -18.24 14 yes 

7 4.40 2.00 3.20 . -11.51 -36.49 14 yes 

8 2.49 1.75 1.72 . . -25.78 17 yes 

9 3.60 3.40 3.00 . -22.35 -27.65 13 yes 

10 3.00 . . . . . 7, 10– 17 yes 

11 1.00 1.00 . . . -10.00 11–, 13 ,14 yes 

12 3.00 0.33 . . . -1.67  yes 

 3.00 0.33 . . . -16.67  yes  

13 . 0.75 0.75 -3.76 -3.76 -90  yes 

14 . . . -90 -90 -90  no 

15 9.57 4.01 7.20 -2.58 -26.91 -74.41  yes 

16 3.42 3.26 . -2.41 -5.04 -11.94  yes 

17 1.51 2.01 2.15 -0.59 -5.82 -16.94  no 

 1.51 2.01 2.15 -2.59 -9.42 -14.35  no 

 1.51 2.01 2.15 -2.40 -7.98 -11.97  no 

 1.51 2.01 2.15 -4.43 -7.75 -13.17  yes 

 1.51 2.01 2.15 -5.21 -8.70 -12.44  yes 

 

Example 16 considers one serviceability limit state for which the reinforcement is only 

constrained by the crack width requirement. Example 17 considers linear elastic stress 

states due to five load combinations. Three of these are related to the ultimate limit state 

and two are related to the serviceability limit state. In this example the serviceability load 

combinations determine the computed reinforcement.³ 

 

Table 2 presents the strains of the SLS stress states in order to facilitate checking of the 

crack width computations. 
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10 Conclusions 

A simple and safe formula for choosing reinforcement ratios ρ in the x, y and z direction is 

 

1
x y z

y

σρ = ρ = ρ =
σ

.3 

 

where, 1σ is the largest principal stress as computed by the linear elastic finite element 

method and yσ is the yield stress of the reinforcing bars.4 An advantage of this 

reinforcement is that few extra cracks are formed when the load increases towards the 

ultimate load. However, this formula will overestimate the required reinforcement almost 

always considerably. 

  

In case the structure is loaded by one load combination the optimal reinforcement can be 

computed as the valid best of eleven analytical solutions. Formulas for these solutions and 

a validity check have been derived and are presented in this paper. However, few 

structures are loaded by just one load combination. 

 

For multiple load combinations the optimal reinforcement solution cannot be derived as 

simple closed form formulas. As a solution, it would be possible to compute the envelope 

of requirements of the individual load combinations. A similar envelope method is being 

used in many commercially available programs for designing plate reinforcement. In this 

paper it is shown that the envelope method used on three-dimensional reinforcement can 

result in a considerable overestimation of the required reinforcement. 

 

                                                                    
3 The authors experienced that temperature stresses and imposed displacements, such as 

foundation settlements, need to be ignored in reinforcement design for the ultimate limit state. 

These load cases need to be included only in load combinations for the serviceability limit state.  

For these load cases it is important to accurately estimate the cracked stiffness that is used in the 

linear elastic finite element analysis. 

 
4 For practical use, all formulas and algorithms in this paper need to be complemented with 

suitable partial safety factors. 
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A formulation is proposed for computing the optimal reinforcement for multiple load 

combinations. Included are compression reinforcement, confinement reinforcement and 

crack control for the serviceability limit state. The optimal reinforcement results of 17 stress 

states are presented. The results correctly show that confinement reinforcement is much 

more effective than compression reinforcement. 
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Notations 
 

xd , yd , zd …………………………….. reinforcing bar diameter in the x, y and z direction 

cE , sE …………………………………. Young’s modulus of concrete and steel 

1I , 2I , 3I ……………………………... invariants of the linear elastic stress tensor 

1cI , 2cI , 3cI  ………………………….. invariants of the concrete stress tensor 

P ………………………………………. rotation matrix 

1s , 2s , 3s ……………………………... mean crack spacing in the principal directions 

xs , ys , zs ……………………………… mean crack spacing in the x, y and z direction 

w  ……………………………………… mean crack width 

maxw  ………………………………… allowable crack width 

α , β, γ ………………………………… angles of a vector with the x, y and z direction 

ε1 , ε2 , ε3 …………………………….. principal strains 

εxx , εyy , εzz , γxy , γxz , γyz ………….. average strains 

εc , εs …………………………………. concrete strain and concrete shrinkage 

ρx , ρy , ρz ……………………………. reinforcement ratios in x, y and z direction 

σ1 , σ2 , σ3 …………………………… linear elastic principal stresses 

σc ……………………………………… concrete compressive strength (negative value) 

σ 1c , σ 2c , σ 3c ………………………… concrete principal stresses 

σcx , σcy , σcz …………………………. concrete normal stresses 

σsx , σsy , σsz ……………………….… reinforcing steel normal stresses 

σt ……………………………………… concrete tensile strength 

xxσ , yyσ , zzσ , xyσ , xzσ , yzσ ……….. linear elastic stresses 

σy ……………………………………... steel yield stress 
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Appendix 1. Stress theory 
 

The stress in a material point can be represented by a stress tensor. 

 

⎡ ⎤σ σ σ
⎢ ⎥
σ σ σ⎢ ⎥
⎢ ⎥
σ σ σ⎢ ⎥⎣ ⎦

xx xy xz

xy yy yz

xz yz zz

 (30) 

 

The principal values of a stress state are the eigenvalues of the stress tensor. In this paper 

they are ordered, 1σ being the largest principal stress. 

 

σ ≥ σ ≥ σ1 2 3  (31) 

 

The invariants of the stress tensor are 

 

= σ + σ + σ

= σ σ + σ σ + σ σ − σ − σ − σ

= σ σ σ + σ σ σ − σ σ − σ σ − σ σ

1
2 2 2

2
2 2 2

3 2

xx yy zz

xx yy yy zz zz xx xy xz yz

xx yy zz xy xz yz xx yz yy xz zz xy

I

I

I

 (32) 

 

In fact, 3I is the determinant of the stress tensor. The invariants can be expressed in the 

principal stresses. 

 

= σ + σ + σ
= σ σ + σ σ + σ σ
= σ σ σ

1 1 2 3

2 1 2 2 3 3 1

3 1 2 3

I
I
I

 (33) 

 

The principal stresses and the invariants have the property that they are independent of 

the selected reference system x, y, z. 
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Appendix 2. Source code ULS 
 

This appendix contains the Pascal source code for computing whether constraint 4 and 5 in 

Section 8 are fulfilled. The program uses a procedure “Jacobi” that computes eigen values 

and eigen vectors applying the Jacobi algorithm. 

 

  function CheckULS(sxx,syy,szz,sxy,sxz,syz,rx,ry,rz,sy,sc,st: double): boolean; 

  function PS(rx,ry,rz: double): boolean; 

  var 

    a,v:         matrix;  // stress tensor, matrix with principal direction vectors 

    sc1,sc2,sc3,          // concrete principal stresses 

    t:           double; 

  begin 

    a[1,1]:=sxx-rx*sy; a[1,2]:=sxy;       a[1,3]:=sxz; 

    a[2,1]:=sxy;       a[2,2]:=syy-ry*sy; a[2,3]:=syz; 

    a[3,1]:=sxz;       a[3,2]:=syz;       a[3,3]:=szz-rz*sy; 

    Jacobi(a,v, 0.001); 

    sc1:=a[1,1]; sc2:=a[2,2]; sc3:=a[3,3]; 

    if sc3>sc1 then begin t:=sc3; sc3:=sc1; sc1:=t end; 

    if sc3>sc2 then begin t:=sc3; sc3:=sc2; sc2:=t end; 

    if sc2>sc1 then begin t:=sc2; sc2:=sc1; sc1:=t end; 

    if (sc1<0) and (sc3/sc+sc1/st<1) then PS:=true else PS:=false 

  end; // of PS 

  begin 

    CheckULS:=false; 

    if PS( rx, ry, rz) then CheckULS:=true; 

    if PS(-rx, ry, rz) then CheckULS:=true; 

    if PS( rx,-ry, rz) then CheckULS:=true; 

    if PS( rx, ry,-rz) then CheckULS:=true; 

    if PS(-rx,-ry, rz) then CheckULS:=true; 

    if PS(-rx, ry,-rz) then CheckULS:=true; 

    if PS( rx,-ry,-rz) then CheckULS:=true; 

    if PS(-rx,-ry,-rz) then CheckULS:=true 

  end; // of CheckULS 
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Appendix 3. Source code SLS 
 

This appendix contains the Pascal source code for computing whether constraint 6 in 

Section 8 is fulfilled. The program uses a procedure “Jacobi” that computes eigen values 

and eigen vectors applying the Jacobi algorithm. 

 
  function CheckSLS(sxx,syy,szz,sxy,sxz,syz,rx,ry,rz,st,Es,Ec,dx,dy,dz,wmax: double): boolean; 

  var 

    i:        integer; 

    a,                             // strain tensor 

    v:        matrix;              // matrix with principal direction vectors 

    e1,e2,e3,                      // concrete principal strains 

    a1,a2,a3, b1,b2,b3, c1,c2,c3,  // concrete principal directions 

    ecr,                           // concrete cracking strain 

    sc1,sc2,sc3,                   // concrete principal stresses 

    ssx,ssy,ssz,                   // steel stresses 

    exx,eyy,ezz,gxy,gxz,gyz,       // strains 

    sxxt,syyt,szzt,sxyt,sxzt,syzt, // temporary stresses 

    dsxx,dsyy,dszz,dsxy,dsxz,dsyz, // residual stresses 

    d,                             // residual stress error 

    h,                             // largest possible crack spacing 

    sx,sy,sz,                      // crack spacings in the x, y and z direcion 

    s1,s2,s3,                      // crack spacings in the principal directions 

    w1,w2,w3,                      // crack widths in the principal directions 

    w:         double;             // largest crack width 

  begin 

    // Concrete strains 

    exx:=sxx/Ec; 

    eyy:=syy/Ec; 

    ezz:=szz/Ec; 

    gxy:=sxy/Ec*2.0; 

    gxz:=sxz/Ec*2.0; 

    gyz:=syz/Ec*2.0; 

    i:=0; 

    repeat 

      i:=i+1; 

      // concrete principal strains and directions 

      a[1,1]:=exx;   a[1,2]:=gxy/2; a[1,3]:=gxz/2; 

      a[2,1]:=gxy/2; a[2,2]:=eyy;   a[2,3]:=gyz/2; 

      a[3,1]:=gxz/2; a[3,2]:=gyz/2; a[3,3]:=ezz; 

      Jacobi(a,v,0.000001); 

      e1:=a[1,1]; e2:=a[2,2]; e3:=a[3,3]; 

      a1:=v[1,1]; a2:=v[1,2]; a3:=v[1,3]; 

      b1:=v[2,1]; b2:=v[2,2]; b3:=v[2,3]; 

      c1:=v[3,1]; c2:=v[3,2]; c3:=v[3,3]; 

      // material stresses 

      ecr:=st/Ec; 

      if e1<ecr then sc1:=Ec*e1 else sc1:=st/(1+sqrt(500*e1)); 

      if e2<ecr then sc2:=Ec*e2 else sc2:=st/(1+sqrt(500*e2)); 

      if e3<ecr then sc3:=Ec*e3 else sc3:=st/(1+sqrt(500*e3)); 
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      ssx:=Es*exx; 

      ssy:=Es*eyy; 

      ssz:=Es*ezz; 

      // total stresses 

      sxxt:=a1*a1*sc1 +a2*a2*sc2 +a3*a3*sc3 +ssx*rx; 

      syyt:=b1*b1*sc1 +b2*b2*sc2 +b3*b3*sc3 +ssy*ry; 

      szzt:=c1*c1*sc1 +c2*c2*sc2 +c3*c3*sc3 +ssz*rz; 

      sxyt:=a1*b1*sc1 +a2*b2*sc2 +a3*b3*sc3; 

      sxzt:=a1*c1*sc1 +a2*c2*sc2 +a3*c3*sc3; 

      syzt:=b1*c1*sc1 +b2*c2*sc2 +b3*c3*sc3; 

      dsxx:=sxx-sxxt; 

      dsyy:=syy-syyt; 

      dszz:=szz-szzt; 

      dsxy:=sxy-sxyt; 

      dsxz:=sxz-sxzt; 

      dsyz:=syz-syzt; 

      d:=abs(dsxx) +abs(dsyy) + abs(dszz) +abs(dsxy) +abs(dsxz) +abs(dsyz); 

      exx:=exx+ dsxx/Ec; 

      eyy:=eyy+ dsyy/Ec; 

      ezz:=ezz+ dszz/Ec; 

      gxy:=gxy+ dsxy/Ec*2.0; 

      gxz:=gxz+ dsxz/Ec*2.0; 

      gyz:=gyz+ dsyz/Ec*2.0; 

    until d<0.01; 

    // Crack width 

    h:=5000; 

    if rx>0.00001 then sx:=0.1852*dx/rx else sx:=h; if sx>h then sx:=h; if sx<1.0 then sx:=1.0; 

    if ry>0.00001 then sy:=0.1852*dy/ry else sy:=h; if sy>h then sy:=h; if sy<1.0 then sy:=1.0; 

    if rz>0.00001 then sz:=0.1852*dz/rz else sz:=h; if sz>h then sz:=h; if sz<1.0 then sz:=1.0; 

    s1:=1.0/( abs(a1)/sx +abs(b1)/sy +abs(c1)/sz ); 

    s2:=1.0/( abs(a2)/sx +abs(b2)/sy +abs(c2)/sz ); 

    s3:=1.0/( abs(a3)/sx +abs(b3)/sy +abs(c3)/sz ); 

    w1:=s1*e1; 

    w2:=s2*e2; 

    w3:=s3*e3; 

    w:=0; if w1>w then w:=w1; if w2>w then w:=w2; if w3>w then w:=w3; 

    if w<wmax then CheckSLS:=true else CheckSLS:=false 

  end; // of CheckSLS 
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