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Reinforcement in a concrete structure is often determined based on linear elastic stresses.
This paper considers computation of the required reinforcement when these stresses have
been determined by the finite element method with volume elements. Included are both
tension reinforcement and compression reinforcement, multiple load combinations and crack
control in the serviceability limit state. Results are presented of seventeen stress state

examples.
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1 Introduction

Many computer programs for structural analysis have post processing functionality for
designing reinforcement and performing code compliance checks. For example the
moments and normal forces computed with shell elements can be used to determine the
required reinforcement based on the Eurocode design rules [1]. However, for finite
element models containing volume elements, reinforcement design rules do not exist.
Software companies that are developing structural analysis programs are in the process of
extending the program capabilities with volume elements. Consequently, also the
algorithms for computing reinforcement requirements need to be extended for use with

volume elements.

Already in 1983, Smirnov [2] pointed out the importance of this problem for design of
reinforced concrete in hydroelectric power plants. Unfortunately, the design rule that he
proposed in his paper is incorrect. Following his assumptions he should have arrived at

Eq. 4 of this paper. Kamezawa et al. [3] proposed five design rules for three-dimensional
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reinforcement design. Among these is Eq. 4 of this paper while the other four design rules
used are theoretically incorrect. The design rules were tested on an example structure by
applying reinforcement according to each rule and performing nonlinear finite element
analyses up to failure. Their best performing design rule produces the same reinforcement
as Eqs 13-16 of this paper for their example structure. However, in another structure it can
significantly overestimate the required amount of reinforcement. Foster et al. [4] derived
the correct design rules for the interior solution, which are Eqgs 13-17 in this paper.
However, they rely on Moht’s circle and graphs to determine which of these rules to use.

This makes their approach not suitable for computer implementation.

In this paper an analytical approach and a numerical approach are followed. The analytical
approach yields a complete set of design rules for determining tension reinforcement for
the ultimate limit state. The set includes the rules that have been derived by Foster [4]. It
also includes the rules that are commonly used for design of reinforced concrete in a plane
stress state [1]. The numerical approach has the advantage that in addition multiple load
combinations, compression reinforcement and crack control can be included in the

computation.

Reinforced concrete often has many small cracks that developed during curing of the
material as a result of the interaction of the shrinking concrete and the reinforcing bars.
Therefore, we cannot rely on concrete having tensile strength. The reinforcement needs to
be computed such that the concrete principal stresses are smaller than zero. This is fulfilled

when the first concrete principal stress is smaller than zero.

Gclﬁo

Also, the concrete compressive stresses need to fulfil a condition. The Mohr-Coulomb yield

contour is often used as a conservative condition for preventing concrete failure.

%+&<1

O¢ Ot

In this o, is the uniaxial concrete compressive strength (negative number) and o; is the

concrete tensile strength. Here, the tensile strength is larger than zero because it is an
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average value instead of a local value. If the concrete stresses are too large, compression
reinforcement or confinement reinforcement can be a solution.

According to the lower bound theorem of plasticity theory [5, 6] any force flow that is in
equilibrium and fulfils the strength conditions of the materials provides a safe solution for
the carrying capacity of the structure. Thus, designing reinforcement for the ultimate limit
state is an optimisation problem: Minimise the amount of reinforcement with the above

mentioned conditions on the concrete principal stresses.

In addition, the crack width needs to be limited for load combinations related to the

serviceability limit state.

W < Whax

This condition is imposed for aesthetics and to prevent corrosion of the reinforcing steel.

Often, this condition alone determines the required reinforcement ratios.

In reinforced concrete beam design it is customary to include at least a minimum
reinforcement. This is to ensure ductile failure and distributed cracking. However, in many
situations the minimum reinforcement requirements result in much more reinforcement
than reasonable. Therefore, in this paper it is not considered. Of course, a design engineer
can decide to apply at least minimum reinforcement according to the governing code of

practice.

In Appendix 1 a short summary is given of the Theory of Elasticity to explain the notations

and definitions used in this paper.

Equilibrium of forces

Figure 1 shows the stresses on a small material cube. The stress values are known since
they are computed by a finite element program. Figure 2 shows part of this cube with a
crack and a reinforcing bar. We assume that the reinforcing bars are directed in the x, y and
z directions. In Figure 2 only the reinforcing bar in the x direction is shown. The

reinforcement stress ¢, in a crack needs to be in equilibrium with the stresses on the cube

Y

faces. We assume that the normal stresses and shear stresses on the crack face are zero.
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Figure 1. Stresses on a small material cube Figure 2. Equilibrium of a cracked cube part
The equilibrium equations of the cracked cube part are

Gy AcosOpy =Gy ACOSOL+Gyy AcosB+0,,Acosy
o, AcosPp, =0y, Acoso+0,, Acosp+o,,Acosy 1)

GyAcosyp, =Gy, Acoso+6,,Acosf+0,,Acosy

Where py, p, p, are the reinforcement ratios in the x, y and z directions. A is the crack face

area. 0, B And yare the angles of the crack face normal vector. In the derivation of the

equations the geometrical relations shown in Figure 3 have been used.

Eqgs (1) can be rewritten as

0 Oxx ~PxOy Oy Oxz coso
0= Oy Oy —PyOy Gy cosf )
0 Oxz Gyz Oz~ pzcy cosy

This matrix will be referred to as the concrete stress tensor. The concrete principal

stresses 6.1 , 0.y and O3 are the eigenvalues of this matrix. Non trivial solutions of Eqgs (2)

can be found when the determinant I.3 of the matrix is zero.

2 2 2
I3 =040 0p; + 26xy6xzcyz ~GcxOyz =OcyOxz ~OczOxy = 0 ®)

&y

where
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Acoso
normal vector

Figure 3. Surface areas of the cracked cube part

Ocx = Oxx —PxOy
Ocy = Oyy ~PyOy

Ocz =0z =P;0y -

The problem can be visualised in a graph (Fig. 4). The axis of this graph

representpy, p, and p, . The condition I3 =0 is shown as a surface. We are looking for the
smallest possible value of p, +p,, +p, on this surface. The shape of the surface depends on
the linear elastic stress tensor and the steel stress 6,, . Not only interior solutions but also
edge and corner solutions are possible (Fig. 4).

Principal reinforcement

Suppose that we select the following reinforcement

(o O (o]
pxzilr pyzilr pzzil' (4)

o1 is the largest eigenvalue of the linear elastic stress tensor. Substitution of Eqs (4) in Eqgs

(2) gives
Oxx =01 Oxy Oz
Oy Oy ~%1 Oy
Oz Oyz 02z =01
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corner solution__ Pz

T

interior solution
Px

edge solution

W Px +Py +p, = constant

Figure 4. Conceptual presentation of the optimisation problem

Its determinant I3 is zero because this is how the eigenvalue is derived in the first place. It

can be shown that one of the eigenvalues of the concrete stress tensor is zero and the other
two eigenvalues are smaller than or equal to zero. Therefore, the reinforcement proposed
in Eq. (4) is suitable. The crack direction cos ., cos and cosy will be equal to the first
principal direction of the linear elastic stress tensor. Therefore, the crack direction in the

ultimate limit state is the same as the crack direction in the serviceability limit state.

An advantage of this reinforcement is that few additional cracks will form in a material
cube when the load increases towards the ultimate load. This might be beneficial to the
durability of the structure. However, less reinforcement is required when we accept that
the cracks in the ultimate limit state will be different from the initial cracks. Often the
reinforcement can be reduced to almost one third when the reinforcement ratios are

optimised.

Reinforcement formulas

Corner solutions
Assuming reinforcement in one direction only, the following formulas can be derived for

the required amount of reinforcement (1.3 =0).

I
px=0, py=0, p,=————
Gy (Gxxcyy _ny)

I
px=0, py=—-"—75—, p,=0 ©)
Oy (0xx0zz —Oxz)
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I
Px :—32/ py :OI pZ:O
0y(0yyCzz —Oyz)

where, I3 is the determinant of the linear elastic stress tensor (Appendix 1). For plane

stress, 6, = Oy, =0y, =0, Eqs (7) reduces to

c o2
xy

Px = 2 ’ py_or pz:O/
Gy OyOuy

which is commonly used in reinforcement design of concrete walls [1].

Also the crack directions can be derived by substitution of the reinforcement ratios in Eqs

(2). For example, for Eqs (7) the result is

2
o-yyo-z; —Gyz . cosp= Oxz0y; zczzcxy | cosy= OxyOyz ;nyoxz )

cosol =

2\2 2 2
I= (nyczz - Gyz) + (o-xzoyz - Gzzcxy) + (nycyz - nycxz)

Edge solutions

Assuming reinforcement in two directions only, the following formulas can be derived for

. d(py, +p2)
the smallest amount of reinforcement (.3 =0 and ———=0, etc.).
Py
2 2
ny ny zecxy Gyz (o Oz zecxy Gyz
pr =0, Py = - x - r Pz = - e -
Oy 0,0y OyOyxx Oy Oy OyOxx OyOxx Oy
o2 G,,0 o2 G,,0
Py = Oxx _“xy + yz2xy  Oyz ) py = 0, p,= O "z + yz°xy Oy
Oy SySyy  SyOyy Oy Oy SyOw  OyOy Oy
GXX GJZCZ GXZG]/Z ny ny 652 GXZG]/Z ny
py= o O (MW W VI (W) g
6y ©0,0;; 0,0, Oy 6y ©0,0;; 0,0, Oy

For plane stress, 6,, =6,, =0,, =0, Eqs (10) reduce to Eqs (8) and Egs (11) reduce to

GXJC:FGX GXX:FGX
x = o y/ py: e y/ pZ:0
Y Y

(10)

(11)

(12)
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which is commonly used in reinforcement design of concrete walls too [1].

For Eqgs (11) the crack directions are

*0,,

—O0y, Gyz FOxz

cosQL = > > cosP =
\/2622 +(0y; FOyz)

, cosy=

2
\/2022 +(Oyz FOyz)

Interior solutions

For reinforcement in three directions the following formulas can be derived for the

d(p, +py +
d (Px +Py +Pz)
dp,,

d(px +py +pz)
smallest amount of reinforcement (I.3 =0 and % =0 a
Py
Gxx+6xy+6xz ny+6xy+6yz GZZ+GXZ+GyZ
px - 7 y = 4 pZ =
Oy Oy Oy
Oxx + ny —Oxz ny + ny - Gyz 02z =Oxz — Gyz
Px = Py = Pz =
Sy Oy Oy
Oxx ~Oxy ~Oxz Oyy ~Ouxy + Oy G2z =Oxz t+ Oyz
Px = r Py = ;o Pz=
Oy Oy Oy
_ Oxx _ny +Oxz _ ny ny 0-yz _ 02z T Oxz _Gyz
Px = r Py = ;s Pz=
Oy Oy Oy
_Su %O Ow OO Oz OxOp
X~ - - - z -
Gy GyGyz Gy Gnyz Gy Gnyy

Ccoso =

ol

For Egs (17) the crack direction is indeterminate but perpendicular to vector

(OxyOxzs OxyOyzs OxzOyz) s

which apparently is the direction of the concrete compressive stress.
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In this section, 11 sets of formulas are presented as potential solutions of the least amount
of reinforcement. For a particular stress state most of these solutions are invalid. The

optimal reinforcement is either p, =p, =p, = 0 or the result of one (or more) of the valid

solutions. It is not attempted to specify the stress ranges for which a particular set provides
the optimum. This is expected to produce very large and therefore impractical results. In
Section 5, a method is proposed to test the validity of a potential reinforcement solution for

a particular stress state.

The formulas consider only one stress state, therefore only one load combination. In
general, for multiple load combinations, the real minimum is not predicted by any of these
sets of formulas. In Section 6, a method is proposed to compute the least amount of

reinforcement for multiple load combinations.

Testing a solution

The validity of the formulas in the previous section depends on the actual stress state. A
first check is that the reinforcement ratios need to be larger than or equal to zero. It is
possible to further test a formula result by computing the concrete principal stresses and
checking whether these are smaller than or equal to zero. However, the computation time
for this can be large because computing eigenvalues involves finding the roots of a third
order polynomial. Moreover, this needs to be repeated for all sets of formulas, for all load
combinations and all integration points of a finite element model. On the other hand, the
invariants of the concrete stress tensor can be computed faster.

I =04 +0y + 0y

&y
2 2 2
Ip= chccy + chccz +0¢20cx — ny — Oz~ Gyz (18)

2 2 2
Ic3 = o-cxccyccz + 20xy0-xzo-yz - chcyz - chcxz - Gczcxy

The condition 6.1 <0 is equivalent (necessary and sufficient) to

I <0 (19a)
I 20 (19b)
I5<0 (19¢)
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The “necessary” proof is straight forward by substitution of the principal stresses in Eq.
(A4).

The “sufficient” proof follows a reductio ad absurdum. Suppose that one or all of the
principal stresses is larger than zero. Then from Eq. (33) it follows that I 3 > 0 which is
inconsistent with Eq. (19c). Suppose that two principal concrete stresses are larger than

zero, for example 6.1 >0 and 6., >0 . From Eq. (19a) and (19b) it follows

thatc.q +6.9 + 6.3 <0 and 6,10 +06,20.3+06.30,1 =0 .50

2 2 2
G.1+0 —Gg1 —206.10:,0 —C -G.10
( cl c2) — cl c19¢2 c2 and Gu3 2 c19¢2 _The latter

6.3 £ —0¢1 =02 =—
01102 01102 Oc1 102

two conditions are inconsistent too. Q.E.D.

Compression reinforcement

If 6.1 =0 the other principal concrete stresses can be computed by

1 1 2
Gc2—§Icl+ (flcl) —Ie

2
Oc3 = %Icl _V(%Icl) -l

This can be derived by solving 6, and 63 from Eqs (33). When the concrete stresses are too

large (in absolute sense) than compression reinforcement and confinement reinforcement

can be used. The objective is the same as for tension reinforcement; minimize p, +p, +p; .

The Mohr-Coulomb constraint to fulfil is 23+ 91 <1 The equilibrium equations are

6. O
0 Oxx ~PxOsx ~Oci ny Oxz COs 0;
0= Oy Oyy —PyOsy — Oci Oyz cosP; | i=1,23 (20)
0 Oxz Oy Oz =P;0sz — O |LCOSYi

Each of the steel stresses 6, , 65, , O, can be negative or positive. The problem is too

complicated for analytical solution. A numerical implementation is shown in Appendix 2.
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For very large reinforcement ratios the concrete true stresses are significantly larger than
the average concrete stresses in Eq. 2 and Eq. 20. The following adjustments can be
considered to obtain the concrete true stress tensor. However, in this paper, small

reinforcement ratios are assumed and Eq. 20 is used.

S Pa g Lttt o bt
1_px 1_px 1_py 1_px 1_pz
O,y —PyO.
oyt—t—) L gt @
1_px 1_py 1_py 1_py 1_pz
o-xz%(i‘*'#) Gyz%( 1 + 1 ) Ozz ~P20sz
B 1_px 1_pz 1_py 1_pz 1_pz
Crack control

Crack width is important for load combinations related to the serviceability limit state. The
crack occurs perpendicular to the first principal direction and sometimes also
perpendicular to the second and third principal directions. When the load increases the
crack can grow in a different direction. This is often referred to as crack rotation. Crack

rotation can already be significant in the serviceability limit state.

The linear elastic strains computed by a finite element analysis could be used for
determining the crack width. However, these strains would not be very accurate because
they strongly depend on Young’'s modulus of cracked reinforced concrete which can only
be estimated. On the other hand, the stresses do not depend on Young’s modulus!.
Therefore, the computation of crack widths starts from the stresses. In essence, the adopted
equations are part of the Modified Compression Field Theory [7] simplified for the

serviceability limit state and extended for three dimensional analysis.

Eq. (20) can be rewritten to.

1 Except for temperature loading and foundation settlements in statically indetermined
structures. For these cases an accurate estimate of Young’s modulus of cracked reinforced

concrete needs be used in the linear elastic analysis.
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Oxx ny Oxz G.1 0 0 PxOsy

-1
Oxy Oyy Oy =P| 0 o, 0 |P+ PyOsy (22)

Oxz Oy Oy 0 0 o Pz0sz
where 61,0, 0.3 are the concrete principal stresses and

COSOl; COSOly COSOi3
P=|cosP; cosP, cosPs |. (23)
COSYy COSYp COSY3

The columns in P are the vectors of the concrete principal directions. Note that in general
these principal directions are not the same as the linear elastic principal directions. The
principal direction vectors are perpendicular, therefore P! = PT . This can be proved by
showing that plp=ppT=1.

Since yielding is supposed not to occur in the serviceability limit state, the constitutive
relations for the reinforcing bars are linear elastic. The constitutive relation for compressed
concrete is approximated as linear elastic in the principal directions. Poisson’s ratio is set to

zero. The constitutive relation for tensioned concrete is

Ot

.= %
“ 1+.,/500¢;

i=1,2,3 (24)

where 6 is the concrete mean tensile strength [7]. It is assumed that aggregate interlock

can carry any shear stress in the crack. It is assumed that the concrete principal stresses and

the principal strains have the same direction.

The principal strains €1, €, and g3 are the eigenvalues of the strain tensor.

Exx %ny %sz gg 0 0
-1
e &y TV |=P|0 & 0P (25)
0 0 €3

1 1
2 Txz 2 sz €22
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From Eqs (22) to (25) the strain tensor can be solved numerically by the Newton-Raphson
method.

The Model Code 90 is applied for computing crack widths [8]. The mean crack spacings s

for uniaxial tension in the reinforcement directions are

_u
=
=
<

d
2 2 z
S, =% S, =% , 26
3.6p, Y 336p 2 336p, @9

<

whered, , dy , d, are the diameters of the reinforcing bars in the x, y, z direction. The crack

spacing s in principal direction i is computed from

1_ |cos oy . |cos By . |cos ;|

i=1,2,3. @7)

S; Sy Sy S,

The mean crack width in the principal direction i is

w; =s;(&; — €. —€s) i=1,2,3 (28)

where € is the concrete strain and g, is the concrete shrinkage. The value of €, is positive
and the value of g, is negative. For simplicity, in this paper is assumed that they cancel

each other out. The crack width is limited to a maximum value.

Wi < Winax i=1,2,3. (9)

which puts a constraint on the reinforcement ratios py., py, , p, - It is noted that the

formulation is suitable for any consistent set of units, for example newtons and millimeters
or pounds and inches. A numerical implementation for computing the crack width is

shown in Appendix 3. The optimisation problem is too complicated for analytical solution.
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Overview

The complete optimisation problem for reinforcement design is summarised in this section.

Minimise the total reinforcement ratio p,, + Py +P; fulfilling six constraints.

The constraints are 2

Py 20, pyZO, p, 20,

6,1 <0 for all load combinations related to the ultimate limit state,

G.3 . O L . -

28 2 <1 for all load combinations related to the ultimate limit state,

O¢ Ot

W < Winax for all load combinations related to the serviceability limit state.

The largest concrete principal stress 6.1 and the smallest concrete principal stress 6.3 are a
function of the stress state Gy, Gy , 0z, , Oxy Oz, Oy, of the reinforcement
ratios py, Py, , P, and of the yield stress of the reinforcing bars 6, , which can be larger or

smaller than zero.

The crack width w is a function of the stress state 6y, G,y , G , Oy Oxz, Oy, Of the
reinforcement ratios p,, Py Pz of Young's moduli of steel E; and concrete E,. , of the
tensile strength of concrete 6; and of the reinforcing bar diameters d,, d, , d, . The stress

states differ for each load combination.

Examples

Table 1 shows results of the proposed optimisation problem. The rows contain

computation examples. The reinforcement yield stress is 6,, = 500 N/ mm? for each
example. The concrete tensile strength is 6; =3 N/mm?. The concrete uniaxial compressive
strength is 6. = - 40 N/mm?. The maximum mean crack width is w,,, = 0.2 mm. The bar
diameters are dy, =d, =d, =16 mm. Young’s moduli of steel and compressed concrete

are E; = 210000 N/mm? and E, = 30000 N/ mm?2.

2 In the first three constraints a minimum reinforcement ratio can be included.
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Column 1 contains the example numbers. Columns 2 to 7 contain the input stress states.
All stresses in the table have the unit N/mm?2. Column 8 shows whether a stress state
belongs to the ultimate or serviceability limit state. Column 9 to 11 contain the linear elastic
principal stresses. Column 13 to 15 contain the output reinforcement ratios in %. Column
16 to 18 contain the principal concrete stresses. Column 19 shows the numbers of the
equations in Section 4 that give the same result. It is noted that sometimes different
equations in Section 4 produce the same optimal result. Column 20 shows which load

combinations influence the computed reinforcement ratios.

Example 1 and 2 have also been studied by Foster et al. [4]. In example 1 the same results

have been found. In example 2, Foster found p, = 0.75%, py = 0,p, =0.75%. Table 2 shows

that the optimal reinforcement differs considerably. However, the total reinforcement is
almost the same (Foster; 0.75 + 0.00 + 0.75 = 1.50%, Table 2; 0.89 + 0.00 + 0.57 = 1.46%).
Example 3 to 5 show that edge solutions and corner solutions can provide the optimal
reinforcement. Comparison of example 6 and 7 shows that double stress requires twice the
amount of reinforcement. Apparently, the amount of reinforcement is linear in the load
factor; Example 8 and 9 show that interior solutions can provide the optimal reinforcement

solution.

Example 12 consists of two load combinations. The volume reinforcement ratio is

px+py +p,=3.00+ 033 +0.00 =3.33%. Alternatively, we could have selected the envelope

of the reinforcement requirements for the individual load combinations, which are
examples 10 and 11. The volume reinforcement ratio applying the envelope method is
max(3.00, 1.00) + max(0.00, 1.00) = 4.00%. Consequently, the envelope method gives a safe

approximation but it overestimates the required reinforcement substantially.

Example 13 shows an uniaxial compressive force that is larger than the concrete
compressive strength. The algorithm computes that the minimum reinforcement solution
is 0.75% confinement reinforcement in both lateral directions. For compression
reinforcement would be needed (90 - 40)/500 = 10.00% which is much larger than 0.75 +
0.75 =1.50%. Example 14 shows that for large isotropic compression no reinforcement is
needed. Example 15 considers the double amount of elastic stress of example 7. It shows
that the required reinforcement is more than double because confinement reinforcement is

needed. This high reinforcement ratio can be required in columns.
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Table 1. Computation examples

Oxx Oyy Oz Oxy Oy Oy 01 G2 63
1 2 3 4 5 6 7 8 9 10 11
1 2 -2 5 6 -4 2 ULS 8.28 4.32 -7.60
2 -3 -7 . 6 -4 2 ULS 3.28 -0.68  -12.60
3 -1 -7 10 5 ULS 11.36 -1.00 -8.36
4 3 . 10 . 5 . ULS 12.60 0.40
5 10 7 -3 3 1 -2 ULS 11.86 5.71 -3.57
6 4 -7 3 7 . -5 ULS 8.48 331 -11.79
7 8 -14 6 14 . -10  ULS 16.97 6.62 -23.59
8 1 . 3 10 -8 7 ULS 10.90 8.66  -15.56
9 10 8 7 ULS 16.37 -6.62  -10.11
10 15 . . . . . ULS 15.00
11 5 ULS 5.00 . -5.00
12 15 . . . . . ULS 15.00
5 . . ULS 5.00 . -5.00
13 -90 . . . . . ULS . . -90.00
14 -90 -90 -90 . . . ULS | -90.00 -90.00 -90.00
15 16 -28 12 28 . 20 ULS 33.94 13.23 4717
16 10 7 -3 3 1 -2 SLS 11.86 5.71 -3.57
17 2 -2 5 6 -4 2 ULS 8.28 4.32 -7.60
-2 1 3 3 5 ULS 7.68 -0.97 -4.71
2 1 3 4 2 . ULS 6.26 2.58 -2.85
1 -1 3 3 -2 1 SLS 4.39 2.36 -3.76
-1 1 2 . 2 3 SLS 4.95 -0.22 -2.73

The dots (.) represent zeros (0) in order to improve readability of the table.

Table 2. Strains of the SLS examples

Exx Eyy €2z Yxy Yxz Yyz

16 0.001572 0.001357 -0.000033 0.003243 -0.000592 -0.000754
17,4 0.000939 0.000278 0.000707 0.001387 -0.001827  -0.000934
17,5 0.000294 0.000710 0.000956 0.001056 0.001351 0.001992
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Py Py Py o0 o) 0.3 Eq.  decisive

12 13 14 15 16 17 18 19 20
1| 240 040 140 -0.79  -15.21 14 yes
2| 089 0.57 -253  -14.77 10+ yes
3 271 -1.00  -10.57 5 yes
41 1.60 3.00 -10.00  10-,13,16 yes
5] 253 213 202  -7.31 11- yes
6 220 1.00 1.60 -5.76  -18.24 14 yes
7| 440 200 320 -11.51  -36.49 14 yes
8| 249 175 172 -25.78 17 yes
9| 360 340 3.00 -22.35  -27.65 13 yes
10 | 3.00 7,10-17 yes
11| 1.00 1.00 -10.00  11-,13,14 yes
12| 3.00 0.33 -1.67 yes
3.00 033 -16.67 yes

13 075 075 -376 -3.76 -90 yes
14 -90 -90 -90 no
15| 957 4.01 720 -258 -2691 -74.41 yes
16 | 342 3.26 -241 504 -11.94 yes
17 | 151 201 215 -059 -582 -16.94 no
151 201 215 -259 942 -1435 no

151 201 215 -240 -798 -11.97 no

151 201 215 -443 -7.75 -13.17 yes

151 201 215 -521 -870 -1244 yes

Example 16 considers one serviceability limit state for which the reinforcement is only

constrained by the crack width requirement. Example 17 considers linear elastic stress

states due to five load combinations. Three of these are related to the ultimate limit state

and two are related to the serviceability limit state. In this example the serviceability load

combinations determine the computed reinforcement.?

Table 2 presents the strains of the SLS stress states in order to facilitate checking of the

crack width computations.
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10

Conclusions

A simple and safe formula for choosing reinforcement ratios p in the x, y and z direction is

01
Px =Py =Pz=—"-
Sy

where, 07 is the largest principal stress as computed by the linear elastic finite element

method and 6,, is the yield stress of the reinforcing bars.* An advantage of this

reinforcement is that few extra cracks are formed when the load increases towards the
ultimate load. However, this formula will overestimate the required reinforcement almost

always considerably.

In case the structure is loaded by one load combination the optimal reinforcement can be
computed as the valid best of eleven analytical solutions. Formulas for these solutions and
a validity check have been derived and are presented in this paper. However, few

structures are loaded by just one load combination.

For multiple load combinations the optimal reinforcement solution cannot be derived as

simple closed form formulas. As a solution, it would be possible to compute the envelope
of requirements of the individual load combinations. A similar envelope method is being
used in many commercially available programs for designing plate reinforcement. In this
paper it is shown that the envelope method used on three-dimensional reinforcement can

result in a considerable overestimation of the required reinforcement.

3 The authors experienced that temperature stresses and imposed displacements, such as
foundation settlements, need to be ignored in reinforcement design for the ultimate limit state.
These load cases need to be included only in load combinations for the serviceability limit state.
For these load cases it is important to accurately estimate the cracked stiffness that is used in the

linear elastic finite element analysis.

4 For practical use, all formulas and algorithms in this paper need to be complemented with

suitable partial safety factors.
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A formulation is proposed for computing the optimal reinforcement for multiple load
combinations. Included are compression reinforcement, confinement reinforcement and
crack control for the serviceability limit state. The optimal reinforcement results of 17 stress
states are presented. The results correctly show that confinement reinforcement is much

more effective than compression reinforcement.
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Notations

dy, dy Sy e reinforcing bar diameter in the x, y and z direction
Eo Eq oo Young’s modulus of concrete and steel

I, I, I5 e invariants of the linear elastic stress tensor

Te1 10, 1o ceeiiiiiii invariants of the concrete stress tensor
P rotation matrix

51152 183 cevnninniiniiiie e mean crack spacing in the principal directions
Sx 1Sy 1Sz worrenen e mean crack spacing in the x, y and z direction
Wi mean crack width

W ax ««eeeerremmemneeneneene e neeeans allowable crack width

O, B Y e angles of a vector with the x, y and z direction
€1,€0 /€ tevniniiei i principal strains

Exx r €yy s €2z Yy 1 Yaz 1 Yyz vvveeeeeeenns average strains

€0 s € eutne et concrete strain and concrete shrinkage

Pa s Py Pz v reinforcement ratios in x, y and z direction

1 /00,08 cevninienaiiiiieieeeeeenn linear elastic principal stresses

O et concrete compressive strength (negative value)
O] 100D 7 003 cevnenenneieiaieieiieieia, concrete principal stresses

Ocx 1 Ocy r Oz wevvvrenmneseeenminnnneeeienn: concrete normal stresses

O 1 Oy 7 Oz wvvermvennnnsninsiinicn, reinforcing steel normal stresses

L concrete tensile strength

OuxxsOyy 102z s Oxy s Oxz s Oz wvvenvnns linear elastic stresses

O ot steel yield stress
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Appendix 1. Stress theory

The stress in a material point can be represented by a stress tensor.

Oxx Oxy Oux

vz (30)
Oxz Oyz Oz

Ox Oy O

vy

The principal values of a stress state are the eigenvalues of the stress tensor. In this paper

they are ordered, o, being the largest principal stress.

01 > () > O3 (31)
The invariants of the stress tensor are

1 =06, +0,, +0,,

vy

— 2 2 2
Iy = Gxxcyy + nyczz +02,0xx ~ ny —Oxz— Gyz (32)

2 2 2
I3 = GxxnyGzz + zcxycxzcyz - Gxxcyz - nycxz - Gzzcxy

In fact, I3 is the determinant of the stress tensor. The invariants can be expressed in the

principal stresses.

I1=01+05+03
I, =610, +0703 + 0307 (33)
I3 = 010703

The principal stresses and the invariants have the property that they are independent of

the selected reference system x, y, z.
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Appendix 2. Source code ULS

This appendix contains the Pascal source code for computing whether constraint 4 and 5 in

Section 8 are fulfilled. The program uses a procedure “Jacobi” that computes eigen values

and eigen vectors applying the Jacobi algorithm.

function CheckULS (sxx,syy,Szz, SXy,SXz,sSyz,rX,ry,rz,sy,sc,st: double): boolean;

function PS(rx,ry,rz: double) :

var
a,v
scl
t:

begin

: matrix;

,sc2,sc3,

// concrete principal stresses

double;

al[l,1] :=sxx-rx*sy; all,2]:=sxy;

al2
al3
Jac

scl

if sc3>scl then begin t:=sc3;
if sc3>sc2 then begin t:=sc3;

if sc2>scl then begin t:=sc2;

if
end;
begin
Che
if
if
if
if
if
if
if
if

end;

;1] i=sxy;
, 1] :=sxz;

obi(a,v, 0.001)

al2,2] :=syy-ry*sy;

al3,2] :=syz;

:=a[l,1]; sc2:=a[2,2]; sc3:=a

(scl<0) and (sc3/sc+scl/st<l

// of PS

ckULS:=false;

PS( rx, ry, rz)
PS(-rx, ry, rz)
PS( rx,-ry, rz)
PS( rx, ry,-rz)
PS(-rx,-ry, rz)
PS(-rx, ry,-rz)
PS( rx,-ry,-rz)
PS(-rx,-ry,-rz)

// of CheckULS

then
then
then
then
then
then
then

then

CheckULS
CheckULS
CheckULS
CheckULS
CheckULS
CheckULS
CheckULS
CheckULS

boolean;

all,3]:=sxz;

al2,3]:=syz;

// stress tensor, matrix with principal direction vectors

al[3,3] :=szz-rz*sy;

[3,31;

sc3:=scl;
sc3:=sC2;
sc2:=scl;

then PS:=true

:=true;
:=true;
:=true;
:=true;
:=true;
:=true;
:=true;

:=true

end;
end;
end;

else

PS:=false

269



Appendix 3. Source code SLS

This appendix contains the Pascal source code for computing whether constraint 6 in

Section 8 is fulfilled. The program uses a procedure “Jacobi” that computes eigen values

and eigen vectors applying the Jacobi algorithm.

function CheckSLS (sxx,syy,szz,SXy,sXz,syz,rx,ry,rz,st,Es,Ec,dx,dy,dz,wnax: double) :
var
i: integer;
a, // strain tensor
v matrix; // matrix with principal direction vectors
el,e2,e3, // concrete principal strains
al,a2,a3, bl,b2,b3, cl,c2,c3, // concrete principal directions
ecr, // concrete cracking strain
scl,sc2,sc3, // concrete principal stresses
ssx,ssy, ssz, // steel stresses
exx,eyy,ezz,dgxy,dxz,dyz, // strains
sxxt, syyt,szzt, sxyt, sxzt,syzt, // temporary stresses
dsxx,dsyy,dszz,dsxy,dsxz,dsyz, // residual stresses
d, // residual stress error
h, // largest possible crack spacing
sx,sY,sz, // crack spacings in the x, y and z direcion
sl,s2,s3, // crack spacings in the principal directions
wl,w2,w3, // crack widths in the principal directions
w: double; // largest crack width
begin

// Concrete strains

exx:=sxx/Ec;

eyy:=syy/Ec;

ezz:=szz/Ec;

gxy:=sxy/Ec*2.0;

gxz:=sxz/Ec*2.0;

gyz:=syz/Ec*2.0;

i:=0;

repeat
i:=1+1;
// concrete principal strains and directions
all,1] :=exx; al1l,2]:=gxy/2; all,3]:=gxz/2;
al2,1] :=gxy/2; al2,2]:=eyy; al2,3]:=gyz/2;
al[3,1]:=gxz/2; al3,2]:=gyz/2; al3,3]:=ezz;
Jacobi (a,v,0.000001) ;
el:=a[l,1]; e2:=a[2,2]; e3:=a[3,3];
al:=v[1,1]; a2:=v[1,2]; a3:=v[1,3];
bl:=v[2,1]; b2:=v[2,2]; b3:=v[2,3];
cl:=v[3,1]; c2:=v[3,2]; c3:=v[3,3];
// material stresses
ecr:=st/Ec;
if el<ecr then scl:=Ec*el else scl:=st/(l+sqrt(500%el));
if e2<ecr then sc2:=Ec*e2 else sc2:=st/(l+sqgrt(500%e2));

if e3<ecr then sc3:=Ec*e3 else sc3:=st/(l+sqgrt(500%e3));
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until

ssx:=Es*exx;

ssy:=Es*eyy;

ssz:=Es*ezz;

// total stresses

sxxt:=al*al*scl +al2*a2*sc2 +a3*al3*sc3 +ssx*rx;

syyt:=bl*bl*scl +b2*b2*sc2 +b3*b3*sc3 +ssy*ry;

szzt:=cl*cl*scl +c2*c2*sc2 +c3*c3*sc3 +ssz*rz;

sxyt:=al*bl*scl +a2*b2*sc2 +a3*b3*sc3;

sxzt:=al*cl*scl +a2*c2*sc2 +a3*c3*sc3;

syzt:=bl*cl*scl +b2*c2*sc2 +b3*c3*sc3;

dsxX:=SXxX-sSxXt;

dsyy:=syy-syyt;

dszz:=s822-

szzt;

dsxy:=sxy-sxyt;

dsxz:=sXz-

dsyz:=syz-

sxzt;

syzt;

d:=abs (dsxx) +abs(dsyy) + abs(dszz) +abs(dsxy) +abs(dsxz) +abs(dsyz);

exXX:=exXxX+
eyy:=eyy+
ezz:=ezz+
gxy:=gxy+
gXz:=gXz+

gyz:=gyz+

dsxx/Ec;
dsyy/Ec;
dszz/Ec;
dsxy/Ec*2.0;
dsxz/Ec*2.0;
dsyz/Ec*2.0;

d<0.01;

// Crack width

h:

=5000;

if rx>0.00001 then sx:=0.1852*dx/rx else sx:=h; if sx>h then sx:=h;

if
if

sl:

s2

s3:
wl:
w2

w3:

w:
if

end;

ry>0.00001 then sy:=0.1852*dy/ry else sy:=h; if sy>h then sy:=h;

rz>0.00001 then sz:=0.1852*dz/rz else sz:=h; if sz>h then sz:=
=1.0/( abs(al)/sx +abs(bl) /sy +abs(cl)/sz );

h

i

:=1.0/( abs(a2)/sx +abs(b2) /sy +abs(c2)/sz );

=sl*el;
=s2%e2;

=83*e3;

=1.0/( abs(a3)/sx +abs(b3) /sy +abs(c3)/sz );

; if wl>w then w:=wl; if w2>w then w:=w2; if w3>w then w:=w3;

w<wmax then CheckSLS:=true else CheckSLS:=false
// of CheckSLS

if sx<1.0 then sx:=1.0;
if sy<1.0 then sy:=1.0;

if sz<1.0 then sz:=1.0;
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