
 
 

Delft University of Technology

Stochastic discrete event simulation of airline network and maintenance operations

Varenna, Sara; Li, Haonan; Ribeiro, Marta; Santos, Bruno F.

DOI
10.1016/j.jairtraman.2025.102789
Publication date
2025
Document Version
Final published version
Published in
Journal of Air Transport Management

Citation (APA)
Varenna, S., Li, H., Ribeiro, M., & Santos, B. F. (2025). Stochastic discrete event simulation of airline
network and maintenance operations. Journal of Air Transport Management, 125, Article 102789.
https://doi.org/10.1016/j.jairtraman.2025.102789

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jairtraman.2025.102789
https://doi.org/10.1016/j.jairtraman.2025.102789


S
o
S
O

A

K
D
S
A
M

1

a
t
e
a
a
H
q
d
t

q
u
s
u
d
s
t
d
t
a

h
R

Journal of Air Transport Management 125 (2025) 102789 

A
0

 

Contents lists available at ScienceDirect

Journal of Air Transport Management

journal homepage: www.elsevier.com/locate/jairtraman  

tochastic discrete event simulation of airline network and maintenance 

perations
ara Varenna, Haonan Li ∗, Marta Ribeiro , Bruno F. Santos
perations & Environment, Faculty of Aerospace Engineering Delft University of Technology, The Netherlands

 R T I C L E  I N F O

eywords:
ecision support
tochastic discrete event simulation
irline operations
aintenance planning

 A B S T R A C T

The complexity of airline operations requires operations planning to be divided into multiple problems solved 
sequentially by the respective departments. This is particularly the case for (1) network planning and (2) 
maintenance planning. Despite the close interaction of these two departments, airlines typically evaluate plans 
from both domains separately. However, an integrated perspective is necessary to develop robust plans and 
effective recovery policies in this intrinsically uncertain environment. This paper presents a new modular, 
stochastic, discrete event simulation model of airline operations named ANEMOS (Airline Network and 
Maintenance Operations Simulation). ANEMOS contains both network and maintenance dynamics, allowing 
the evaluation of plans, policies, and scenarios from both domains. The model is validated using data from a 
major European airline. We show that the simulated results closely resemble the airline’s historical operational 
performance. ANEMOS is tested with a use-case investigating the effects of adding a second reserve aircraft to 
a fleet of fifty wide-body aircraft. The results show that the second reserve is capable of reducing cancellations 
by 55%. However, such does not cover the lost revenue associated with keeping an aircraft non-operational 
for a part of the time.
. Introduction

Airlines try to make the best use of their fleet of aircraft while 
pplying strict maintenance regulations to ensure the airworthiness of 
heir aircraft fleet. The choices about when to schedule maintenance for 
ach aircraft and which aircraft to assign to each flight significantly 
ffect the airlines’ profitability. Ideally, optimizing both maintenance 
nd network operations simultaneously would yield the best outcome. 
owever, due to the complexity of each operation type, varying re-
uirements, decision time frames, and objectives, planning is typically 
ivided into several steps carried out by different departments within 
he airline.
In practice, the maintenance department sets high-level fleet re-

uirements while the network department determines the flight sched-
le. Major aircraft maintenance checks, which can last from a day to 
everal weeks in the hangar, are planned based on this flight sched-
le, influencing aircraft availability to flights. The fleet management 
epartment finalizes the aircraft routes a few days before operations 
tart. Any subsequent changes to these routes, whether due to main-
enance or other needs, must be approved by the fleet management 
epartment or the Operations Control Center (OCC) in the days before 
he operation. Concurrently, the maintenance department defines the 
llocation of aircraft to the maintenance checks and minor inspections, 
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defining the task packages that make up each check or inspection for 
the fleet in the upcoming days. The maintenance department aims to 
ensure the aircraft remains airworthy and healthy for the days ahead 
while considering routine tasks and maintenance needs from reported 
technical issues.

The interconnection between maintenance and network operations 
is also very clear in the uncertain environment of the day-to-day 
operations. Disruptions caused by bad weather conditions, airspace and 
airport congestion, or technical problems can easily spread through 
the network and compromise maintenance plans. Operations must be 
planned robustly so that disruptions can be avoided or mitigated. When 
disruptions occur, the airline must be capable of applying effective 
disruption recovery policies to restore the undisrupted plans efficiently. 
However, these policies are often based only on experience. Given the 
high uncertainty in this environment, it is hard to evaluate how policies 
used in each domain will affect the other domains.

Airlines can greatly benefit from a model capable of investigating 
how decisions made in a domain would affect operations as a whole. 
The literature on this subject, however, is scarce. The proposed works 
tend to focus on either network (Rosenberger et al., 2002) or main-
tenance (Duffuaa and Andijani, 1999; Öhman et al., 2020; Iwata and 
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Mavris, 2013) operations separately, simulating the other domain in a 
simplified manner. As a result, the full picture of airline dynamics is 
not correctly represented.

To overcome this limitation, this paper presents a new modular, 
stochastic discrete event simulation model of airline operations named 
ANEMOS (Airline Network and Maintenance Operations Simulation). 
ANEMOS simulates network and maintenance operations of the in-
tercontinental fleet of a hub-and-spoke carrier. It may be used as a 
framework to test policies, plans, and scenarios involving both network 
and maintenance operations to understand the system’s performance 
as a whole. Its dynamic structure allows the evaluation of plans and 
policies at the strategic, tactical, and operational levels. In addition, 
ANEMOS also allows the evaluation of the effects of multiple external 
factors (e.g. increased hub congestion, (departure) delays, unexpected 
maintenance repairs) on the airline’s performance.

This paper is structured as follows. First, Section 2 presents an 
overview of comparable works found in the literature. The problem 
tackled by this research is detailed in Section 3, with an overview 
of the decisions made at strategic, tactical, and operational levels by 
ANEMOS. Section 4 defines the structure of ANEMOS, explaining each 
module in detail. ANEMOS is applied to a case study with a major 
European airline, as described in Section 5. The results of this case 
study are then presented in Section 6. How ANEMOS translates to other 
case studies, its limitations, and future improvements are discussed in 
Section 7. Finally, Section 8 concludes this work.

2. Literature review

Simulation has been previously used in literature in the field of 
airline maintenance and network operations planning and optimiza-
tion. Most works use a simulation framework only as an instrument 
for testing their models (Barnhart et al., 2002; Aloulou et al., 2010; 
Vos et al., 2015). A few papers focus on the simulation models, with 
the objective of using them to assess scenarios and to support decision-
making (Duffuaa and Andijani, 1999; Iwata and Mavris, 2013; Nisse 
et al., 2023; Xu et al., 2024; Geske et al., 2024; van Schilt et al., 
2024). While some of these works are developed by airlines that are 
interested in evaluating what-if scenarios in their operations (Duffuaa 
and Andijani, 1999; Öhman et al., 2020; Nisse et al., 2023), other 
models are mainly developed for research purposes to allow model 
testing and comparison (Rosenberger et al., 2002; Xu et al., 2024; Geske 
et al., 2024; van Schilt et al., 2024).

Several simulation models for airline operations have been proposed 
in the literature. Among the simulation models presented in the litera-
ture, two noteworthy mentions are made. First, the SimAir (Lee et al., 
2003) academic simulation tool was developed for simulating airline 
operations and recovery strategies. It has been used in a few cases 
(Lan et al., 2006; Ben Ahmed et al., 2017; Rosenberger et al., 2004). 
It includes turnaround and block time, weather, influences from other 
airlines, and crew and passenger flow. However, maintenance is simu-
lated in a simplified manner by only considering regular maintenance 
stops and unscheduled maintenance in between flights with a certain 
probability. Second, the Discrete Event Simulation (DES) framework 
presented in Pohya et al. (2021) is capable of evaluating the effects 
of using specific products, technologies, and policies in the long run 
throughout the life cycle of an aircraft or fleet. It simulates the complete 
lifetime of an aircraft, from its purchase to the flights and maintenance 
executed on it, up until its retirement. The long-term perspective used 
makes this a very useful model for evaluating the effects of high-level, 
strategic policies on the overall life cycle of an aircraft. Due to this 
wide perspective, however, both network and maintenance operations 
are simulated in a simple manner: maintenance slots are not scheduled 
but rather executed at fixed intervals or when pre-defined degradation 
levels of components are reached.

Works (Jacobs et al., 2005; Duffuaa and Andijani, 1999; Öhman 
et al., 2020) make clear that airlines value the insights that operations 
2 
simulation can provide. Jacobs et al. (2005) describes an operations 
simulation by an international airline. The model assesses the schedule 
by simulating disruptions and recovery, allowing aircraft swaps, the 
use of a reserve aircraft, reducing maintenance time, and cancelling 
flights. The goal of Duffuaa and Andijani (1999) is to evaluate the 
impact of different maintenance policies on airline operations. The 
presented framework is modular and includes interactive modules such 
as a planning and scheduling module for maintenance planning. In 
turn, Iwata and Mavris (2013) can be used for assessing maintenance 
policies such as postponing task execution and parts logistics. More 
recently, works have been directed at scheduling maintenance tasks 
under uncertainty. Tseremoglou and Santos (2024) used a reinforce-
ment learning for maintenance planning under uncertainty. Villafranca 
et al. (2025) developed a heuristic model to design a daily aircraft 
maintenance schedule under uncertain task times across bases with 
limited technicians. Both cases show that considering uncertainties 
can reduce maintenance costs. Finally, Zhang et al. (2024) provides 
each maintenance package the appropriate buffer time based on a risk 
assessment thus reducing the impact of flight delays in maintenance 
scheduling.

2.1. Research gap

Overall, current simulation efforts focus on either network or main-
tenance operations while modeling the other aspect in a simplified 
manner. As a consequence, these models are not capable of evaluating 
the integrated performance of airline operations, in which network 
and maintenance plans and policies closely interact with each other. A 
gap exists in the form of a simulation model of airline operations that 
includes the simulation of both network and maintenance operations. 
For airlines, such a model could be used to facilitate the negotiations 
between departments when defining constraints and requirements for 
planning and scheduling, testing the obtained plans, and evaluating 
the effects of disruption scenarios and specific recovery policies. In 
academia, this model would allow testing the effectiveness of pro-
posed optimization models in a stochastic and network-maintenance 
integrated environment.

3. Problem definition

As already introduced, ANEMOS is a modular, stochastic, discrete 
event simulation model of the network and maintenance operations 
of hub-and-spoke carriers. It is developed with a modular structure, 
allowing for changing and adapting the single modules to a simulation’s 
needs. The model simulates the dynamics of each aircraft, including 
flights and maintenance slots. The input to the model comprises a list 
of aircraft with their subtypes, a flight schedule with fleet assignment, 
a list of the maintenance slots available for each aircraft subtype, and 
a list of requirements and deferred defects (DDs) for each subtype. For 
the discrete event simulation, the input must describe a deterministic 
or stochastic measure of each simulated activity. Note that passenger 
connections and crew rosters are not considered.

Fig.  1 displays the operations levels, and respective actions, cov-
ered by ANEMOS. By utilizing this framework, we can systematically 
evaluate decisions across three distinct levels: strategic, tactical, and 
operational. Strategic decisions, such as fleet planning and network 
development, shape the long-term direction of operations. Tactical 
decisions, including fleet assignment and aircraft rotations, optimize 
resource allocation within the established strategy. Operational deci-
sions, such as line maintenance planning, ensure the smooth execution 
of daily operations. Since these decisions are integrated within differ-
ent modules, the framework provides a comprehensive approach to 
assessing their interactions and overall impact.

The following sections provide more detail on the actions of
ANEMOS at each operational level.
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Fig. 1. The operations levels, and respective actions, covered by ANEMOS.

3.1. Actions at strategic level

At the strategical level, airlines plan their fleet, determining both 
the aircraft type and quantity—based on the origin–destination pairs 
they aim to serve. The combination of these two factors dictates the 
number of flights an airline can operate, shaping its frequency planning. 
During the model construction phase of ANEMOS, fleet planning and 
network development are integrated. By modifying these parameters, 
we can systematically assess the impact of such decisions through 
subsequent simulations.

3.2. Actions at tactical level

At the tactical level, ANEMOS helps airlines carry out network and 
maintenance planning. The former includes fleet and tail assignment. 
ANEMOS simulates the operations of hub-and-spoke carriers with one 
hub. Thus, the assignment of flights to aircraft is done at the rotation 
level, meaning each aircraft follows a sequence of flights that depart 
from and return to the hub. A rotation comprises at least two flights, 
with one or multiple intermediate stops at outstations. ANEMOS takes 
as input a weekly schedule of rotations, including flight departure and 
arrival times as well as assigned fleet types.

Alongside network planning, ANEMOS will schedule maintenance 
taks. The duration of the maintenance slot is calculating by sum-
ming the total labor hours required for the assigned tasks (including 
both routine and non-routine maintenance) and dividing by the avail-
able workforce during the slot. Non-routine maintenance refers to 
unscheduled repairs identified during inspections and can only occur in 
maintenance slots performed in a hangar. The probability of encounter-
ing non-routine maintenance is derived from historical data. At the start 
of each hangar slot, ANEMOS uses historical probabilities to determine 
whether non-routine issues will arise within the assigned work package. 
Notably, ANEMOS assumes that the likelihood of non-routine findings 
is independent of the number, type, or duration of scheduled tasks.

Finally, note that the scope of maintenance slots included in
ANEMOS is limited to slots with a duration comparable to A-checks, 
which for wide-body aircraft is around 24 h. Furthermore, it is assumed 
that all maintenance is carried out at the hub. Requirements that are 
included within letter-checks work packages are also excluded since the 
scope of the simulation is limited to maintenance up to A-checks.
3 
Fig. 2. The four modules of ANEMOS, and the interaction flows between them.

3.3. Actions at operational level

At the operational level, ANEMOS considers two key decisions: 
line maintenance (LM) and disruption management. Line maintenance 
includes all maintenance tasks that can be performed on the aircraft 
while it is on the ground between flights. These tasks ensure continued 
airworthiness and operational readiness without significant downtime.

Regarding disruptions, ANEMOS models two types: Aircraft on 
Ground (AOG) events, and delays. An AOG event occurs when an 
aircraft is deemed unairworthy and requires maintenance before it can 
resume operations. In ANEMOS, AOG events are modeled indepen-
dently for each aircraft . Note that the simulation is limited to AOG 
scenarios occurring at the hub.

A model of aggregated primary delays is present in the ANEMOS. 
This model represents all delays with the exception of propagated 
delays and technical delays, which should emerge from the simulation 
dynamics (e.g., delays caused by factors such as crew availability, 
airport congestion, and weather disruptions). This delay is included 
in the form of an action the aircraft goes through after its scheduled 
departure time, or, in the case of delayed departure due to technical 
disruptions or propagated delay, after the turnaround activities have 
ended.

Two different models of aggregated primary delay are developed, 
one for outstations and one for the hub. While at outstations flights 
often depart hours or days apart, at the hub many flights depart 
within a short period of time. And, given that primary departure delays 
often appear to be linked to airport congestion, the departure delay 
of flights departing in short time window cannot be assumed to be 
independent of one another. To capture this dependency, the disruption 
state of the hub airport is modeled as a discrete-state, discrete-time 
process, and a different distribution for each disruption state is then 
used to determine the primary delay that a departing flight should 
experience. This approach ensures a more accurate representation of 
primary departure delays at congested hub airports.

4. Methodology

Fig.  2 shows the four modules that make up the simulation, along 
with the interaction flows that connect them.

A simulation clock regularly calls the Scheduler (M1), which assigns 
to each aircraft a feasible sequence of maintenance slots and flights to 
be flown. This module has two submodules: the Maintenance Scheduling
Submodule (MSS.SM1), and the Tail Assignment Submodule (MSS.SM2), 
which are called sequentially.Within these two submodules, several 
tactical decisions are implemented, including fleet assignment, air-
craft rotations, and maintenance slot allocation. Additionally, certain 
operational decisions, such as line maintenance planning, are also 
incorporated. The output of the Scheduler is the input to the second 
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module, the Operations Manager (M2), which includes separate discrete 
event processes for each of the simulated aircraft and manages the 
dynamics of the simulation. The Recovery Controller (M3) monitors the 
aircraft processes and intervenes whenever a disruption in the original 
schedule is found. Generally, the Recovery Controller calls the Recovery 
Planner (M4) to find an optimal solution for the disruption at hand. 
However, if the occurring disruption impacts flights falling after the 
end of the recovery window, then the Recovery Controller calls the
Tail Assignment Submodule first to provide a long-term solution. This 
solution is then given as input to the Recovery Planner, which optimally 
solves the disruption within its considered recovery window. Modules 
M2, M3, and M4 primarily focus on exploring operational decisions. 
The MSS receives a list of available maintenance slots for each aircraft 
subtype and a list of tasks for each registration, assigns slots to specific 
aircraft, and schedules the execution of tasks within these slots. The 
scheduling window of the MSS covers a fixed number of weeks. The 
following sections describe each module and submodule in detail.

4.1. Maintenance scheduling submodule (MSS)

The MSS receives a list of available maintenance slots for each 
aircraft subtype and a list of tasks for each registration, assigns slots to 
specific aircraft, and schedules the execution of tasks within these slots. 
The scheduling window of the MSS covers a fixed number of weeks.

4.1.1. Maintenance tasks
Each aircraft has a set of tasks that need to be scheduled and 

executed. Each task is characterized by its arrival date (i.e. the date 
when a DD is found or when the previous instance of a requirement 
is completed), ready date (i.e. the day from which the task can be 
executed), and due date (i.e. the date before which the task must be 
performed). Each task has an estimated duration and labor hours for 
its execution. We assume that a set of tasks can be scheduled within a 
maintenance slot if (1) the duration of each task is shorter than that of 
the maintenance slot and (2) the total number of labor hours associated 
with the set of tasks does not exceed the slot’s maximum allowed labor 
hours. Each slot is characterized by its start and end date, its assigned 
aircraft type, the number of labor hours that can be scheduled within 
it, and the maximum duration and labor hours of each task that can be 
scheduled in it. Finally, the task is characterized by a location where 
it can be executed. Hangar tasks can only be executed in the hangar; 
platform tasks can either be executed within the hangar or on the 
platform.

The tasks to be scheduled may be requirements or DDs, which differ 
in nature. Requirements are routine tasks characterized by an interval 
defined in calendar days. When requirements are characterized by an 
interval expressed in flight hours or flight cycles, this is translated into 
calendar days assuming a fixed number of flight hours and flight cycles 
flown per day. The arrival date of the first instance of a requirement 
is randomized. Note that the simulation does not allow requirements 
due at the beginning of the simulation. A new requirement is generated 
whenever the previous one is executed. The scope of the considered 
requirements is limited based on their interval. Requirements with an 
interval shorter than the time intercurring between two MSS calls are 
excluded since it would be impossible to schedule them before their 
due dates.

In turn, DDs are one-off tasks and not independent of other tasks—
these often occur at the same time. ANEMOS considers a separate task 
inter-arrival process for each simulated aircraft and assumes that DDs 
only arrive at the beginning of each day. A weighted choice is used to 
determine the number of days between DDs’ arrival. A second weighted 
choice is used to determine how many DDs arrive on an arrival day. The 
specific DDs arriving are sampled from historically arrived DDs. With 
each call of the MSS, the DDs arriving before the next call are disclosed.

Note that, in real-life operations, the ready date of a task is generally 
limited by the availability of material. For requirements that are sched-
uled, repetitive tasks, it is assumed that the required material is always 
4 
available, and their ready date coincides with their arrival date. For 
DDs, we consider that the necessary material may not be immediately 
available. If the DD requires material, then the historical date of part 
availability is used to compute its ready date. If not, then the DD can 
be executed from its arrival date. Finally, in real life, when a task 
exceeds its due date, the aircraft is grounded until the task is executed. 
However, the event of a task going due is extremely rare. Thus, given 
the limited flexibility available to the model, a task going due does 
not have direct effects on the simulation dynamics and does not lead 
to the grounding of aircraft. Grounding is modeled independently by 
the Aircraft on Group process, defined in Section 4.3.2. Additionally, 
requirements are always executed at a fixed fraction of the interval of 
the requirement, independently of when the previous requirements task 
was due. 

4.1.2. Scheduled maintenance slots
Three types of scheduled maintenance slots are included in the 

simulation: Line Maintenance (LM) slots, Flexible (Flex) slots, and 
Mandatory Hangar (MH) slots. LM are modeled as weekly ‘bins’ that 
include all the tasks scheduled in line maintenance for the week. An LM 
slot is defined for each aircraft each week, and tasks can be scheduled 
within it if their ready date and due date allow scheduling between its 
start and end date. When a requirement is executed within an LM slot, 
it is assumed to be executed at a fixed fraction of its interval. For DDs, 
the interval is defined as the time between the task’s arrival and the 
due date. When the computed execution date falls out of the start and 
end date of the LM slot, the date is moved to the closest time boundary.

Flex slots are part of the input of the model. They can be defined 
for one or more weeks, and they are repeated over the simulated 
time window. The input must also specify the location in which they 
are executed, i.e. on the platform or in a hangar. These slots are 
not necessarily used, but they are only simulated when the Scheduler 
assigns them to an aircraft, meaning that at least one task is scheduled 
within them. Differently from LM slots, these slots are simulated within 
the aircraft processes of the Operations Manager.

MH slots represent all maintenance slots scheduled to execute a 
set of routine tasks (i.e. A-checks or slots scheduled to execute cabin 
modifications). These are characterized by a nominal duration indepen-
dent of the tasks scheduled within them. It is assumed that a certain 
number of labor hours, defined for each slot, can be executed during 
this time. Additionally, they are mandatory, i.e. they should always be 
assigned to an aircraft, independently of the fact that any additional 
task is scheduled in their work package. The cancellation of MH slots 
by the MSS and Recovery Planner is not prohibited, but it is strongly 
disincentivized.

4.1.3. Mathematical formulation
This mathematical formulation is derived from the work of van 

Kessel et al. (2022). The sets, variables, and parameters are described 
in Table  1. The objective function described in Eq.  (1a) minimizes the 
costs associated with assigning or unassigning a task to a specific slot.

The cost of assigning a task to a specific maintenance slot varies 
per task type and slot. Requirements should be scheduled as close as 
possible to their due date in order to minimize the wasted interval, 
i.e. the fraction of the required interval that is lost due to the antici-
pation of its execution. On the other hand, DDs should be executed as 
soon as possible. Regardless, all tasks should be executed with some 
anticipation with respect to their due date, in order to add a buffer 
for maintenance postponement in case of disruptions. The weight of 
assigning a task to a maintenance slot follows the function displayed 
in Fig.  3, where the cost of assigning a requirement to a slot generally 
decreases for later slots, while the cost of assigning a DD increases for 
slots starting later in time. After the preferred anticipation is reached, 
the cost of the assignment for all tasks then increases at a higher rate. 
Not having a task assigned to a slot is penalized if the task is due within 
a week after the end of the scheduling window.
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Fig. 3. Cost of assigning a task to a slot, based on task type and slot date.

The second term of the objective represents the cost of activating 
a maintenance slot with the exception of LM slots, which are not 
penalized as LM tasks can always be executed in this context. This cost 
assumes different values for different types of slots. Mandatory Hangar 
(MH) slots should, in theory, be mandatory. However, in order to avoid 
infeasible situations, the use of MH slots is strongly incentivized by 
giving a high negative value to their activation weight. Flex slots should 
only be used when necessary, and the use of shorter slots should be 
preferred. Therefore, the cost of assigning a Flex slot to an aircraft is 
made up of two components: a fixed value connected to the activation 
of a slot dependent on its location, and a value proportional to the 
duration of the slot.

The fixed scheduling window is defined as the time from the begin-
ning of the scheduling window to the next scheduled call of the MSS. 
When MH slots and Flex slots fall within this time window and they are 
assigned to an aircraft different from the one they were assigned to in 
the previous call of the MSS, they should receive an additional penalty. 
The purpose is twofold: first, in real life, rescheduling maintenance slots 
close to their start date can cause a waste of resources. Second, the MSS 
works in a close relationship with the TAS, which, in previous calls 
of the Scheduler, had found a tail assignment solution based on the 
previous input of the MSS. Changing the assignment of maintenance 
slots within the fixed scheduling window could cause incompatibility 
with the previous plans of the TAS, leading to unnecessary flight 
cancellations.

Constraints (1b) impose that all tasks are scheduled within a slot or 
unassigned. Constraints (1c) ensure that only one aircraft is assigned 
to a slot. Constraints (1d) allow a task to be assigned to a slot only 
if the slot is assigned to the task’s aircraft. Constraints (1e) impose 
that a slot can be activated only if at least one task is assigned to it. 
This set of constraints does not apply to MH slots since they should 
always be assigned. Constraints (1f) restrict the assignment of a slot 
to an aircraft to one per week. Constraints (1g) limits the total labor 
scheduled within a slot’s work package to the slot’s maximum allowed 
labor. This set of constraints, along with Constraints (1b) are the only 
two sets of constraints that interest LM slots in addition to Flex and MH 
slots. This is because each aircraft has a pre-assigned weekly LM slot 
which does not require activation. Eqs. (1h)–(1j) describe the decision 
variables’ domain.

A maintenance slot can be assigned to an aircraft if their subtype 
matches. A task can be assigned to a maintenance slot when its duration 
is shorter than the maximum allowed duration of a slot, when it is 
within the maximum labor hours that a slot allows per task, when their 
location matches, when the slot falls between the task’s ready and due 
date, and when the task’s aircraft is compatible with the slot in terms 
5 
Table 1
Mathematical formulation of the MSS.
 Sets and subsets
 𝐴 Aircraft  
 𝑇 Tasks  
 𝑆 Flex slots and MH Slots  
 𝐿 Line maintenance slots  
 𝐶 Weeks included within the 

scheduling window
 

 𝐴𝑠 ⊆ 𝐴 Aircraft that can be 
assigned to slot 𝑠

 

 𝑆F ⊆ 𝑆 Flex slots  
 𝑆 𝑡 ⊆ 𝑆 Slots in which task 𝑡 can 

be executed
 

 𝑆𝑐 ⊆ 𝑆 Slots in week 𝑐  
 𝐿𝑡 ⊆ 𝐿 Line Maintenance slots in 

which task 𝑡 can be 
executed

 

 𝑇 𝑎 ⊆ 𝑇 Tasks of aircraft 𝑎  
 𝑇 𝑠 ⊆ 𝑇 Tasks that can be executed 

in slot 𝑠
 

 Decision variables
 𝛿𝐴𝑎𝑠

∈ {0, 1} 1 if slot 𝑠 is assigned to 
aircraft 𝑎, 0 otherwise

 

 𝛿𝑇𝑡𝑠 ∈ {0, 1} 1 if task 𝑡 is scheduled in 
slot 𝑠, 0 otherwise

 

 𝛿𝑈𝑡
∈ {0, 1} 1 if task 𝑡 is not scheduled 

in any slot, 0 otherwise
 

 Parameters
 𝑊𝑆𝑠𝑎

Cost of assigning slot 𝑠 to aircraft 𝑎  
 𝑊𝑇𝑡𝑠 Cost of scheduling task 𝑡 in slot 𝑠  
 𝑊𝑈𝑡

Cost of leaving task 𝑡 unscheduled   
 𝑃TL𝑡 Labor hours required to execute task 𝑡   
 𝑃SL𝑠 Maximum labor hours that can be assigned 

to slot 𝑠
  

 𝑀 Large constant   

of subtype. These constraints are imposed through the use of subsets. 
Minimize:

∑

𝑡∈𝑇

(

∑

𝑠∈𝑆𝑡∪𝐿𝑡
𝑊𝑇𝑡𝑠𝛿𝑇𝑡𝑠 +𝑊𝑈𝑡

𝛿𝑈𝑡

)

+
∑

𝑠∈𝑆

∑

𝑎∈𝐴𝑆

𝑊𝑆𝑠𝑎
𝛿𝐴𝑎𝑠

(1a)

Subject to:
∑

𝑠∈𝑆𝑡∪𝐿𝑡
𝛿𝑇𝑡𝑠 + 𝛿𝑈𝑡

= 1 ∀𝑡 ∈ 𝑇 (1b)

∑

𝑎∈𝐴𝑠
𝛿𝐴𝑎𝑠

≤ 1 ∀𝑠 ∈ 𝑆 (1c)

∑

𝑡∈𝑇 𝑎∩𝑇 𝑠
𝛿𝑇𝑡𝑠 ≤ 𝑀𝛿𝐴𝑎𝑠

∀𝑠 ∈ 𝑆,∀𝑎 ∈ 𝐴𝑆 (1d)

∑

𝑎∈𝐴𝑠
𝛿𝐴𝑎𝑠

≤
∑

𝑡∈𝑇 𝑠
𝛿𝑇𝑡𝑠 ∀𝑠 ∈ 𝑆F (1e)

∑

𝑠∈𝑆𝑐
𝛿𝐴𝑎𝑠

≤ 1 ∀𝑐 ∈ 𝐶∀𝑎 ∈ 𝐴𝑠 (1f)

∑

𝑡∈𝑡𝑠
𝑃TL𝑡𝛿𝑇𝑡𝑠 ≤ 𝑃SL𝑠 ∀𝑠 ∈ 𝑆 ∪ 𝐿 (1g)

𝛿𝐴𝑎𝑠
∈ {0, 1} ∀𝑠 ∈ 𝑆,∀𝑎 ∈ 𝐴𝑠 (1h)

𝛿𝑇𝑡𝑠 ∈ {0, 1} ∀𝑡 ∈ 𝑇 ,∀𝑠 ∈ 𝑆𝑡 (1i)

𝛿 ∈ {0, 1} ∀𝑡 ∈ 𝑇 (1j)
𝑈𝑡
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Table 2
Mathematical formulation of the TAS.
 Sets and subsets
 𝑅 Rotations and reserve slots 

(segments)
 

 𝐴 Aircraft  
 𝐴𝑟 ⊆ 𝐴 Aircraft that can be assigned 

rotation or reserve slot 𝑟
 

 OV Set of unordered sets 
(𝑟, 𝑡), 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑅 where 𝑟 and 𝑡
overlap in time

 

 Decision variables
 𝛿𝑅𝑟𝑎

∈ {0, 1} 1 if rotation or reserve slot 𝑟 is 
assigned to aircraft 𝑎, 0 otherwise

 

 𝛿𝑈𝑟
∈ {0, 1} 1 if rotation or reserve slot 𝑟

remains unassigned, 0 otherwise
 

 Parameters
 𝑊𝑅𝑟𝑎

Cost of assigning rotation or 
reserve slot 𝑟 to aircraft 𝑎

 

 𝑊𝑈𝑟
Cost of leaving rotation or 
reserve slot 𝑟 unassigned

 

4.2. The Tail Assignment Submodule (TAS)

The TAS takes the output of the MSS as input and assigns a feasible 
sequence of flights to each aircraft, considering the pre-assigned main-
tenance slots. In addition to flights, the TAS is also capable of assigning 
a certain number of reserve slots, i.e. time slots during which an aircraft 
is scheduled to act as a reserve aircraft. Similarly to the MSS, the TAS 
considers a scheduling window that goes from the end of the recovery 
window for the Recovery Planner to a fixed number of weeks after the 
call day. The TAS also assigns reserve slots to aircraft, identifying the 
aircraft that are acting as reserves so that specific recovery policies 
involving the reserve aircraft can be implemented by the Recovery 
Planner. The number of daily reserve slots and their start and end times 
are inputs of the model.

4.2.1. Mathematical formulation
Since rotations and reserve slots are modeled in the same way, the 

term segment will be used to refer to either one of these entities. Eq. 
(2a) minimizes the costs of assigning a segment to a specific aircraft 
and leaving segments unassigned. In particular, the cost of unassigning 
segments is the highest since cancelling rotations and reserving slots 
should always be avoided.

The cost of assigning a segment to an aircraft depends on the nature 
of the segment. While the cost of assigning a reserve slot is constant, 
the cost of assigning a rotation to an aircraft is dependent on the 
aircraft type. Categories of preferred subtypes are defined, so that if 
a feasible assignment cannot be done within the originally assigned 
subtype, then a rotation can be assigned to other subtypes according 
to the preference.

Constraints (2b) is the cover constraints that impose that each 
segment is either assigned to one aircraft or unassigned. An unassigned 
rotation from the TAS solution is deemed cancelled in the simulation 
only if it falls before the next scheduled call of the maintenance 
scheduler, as changes in the slots assignment can lead to changes in the 
rotations assignments and to cancellations. Constraints (2c) prevent two 
overlapping segments from being assigned to the same aircraft - a buffer 
is considered before and after each rotation. The feasible assignment of 
a segment to an aircraft while considering the aircraft’s pre-assigned 
maintenance slots is achieved by reducing the feasible subsets 𝐴𝑟. 
Reductions of these subsets can also be used to reduce the feasibility of 
aircraft-route assignments. Constraints (2d) and Constraints (2e) define 
the domain of the decision variables (see Table  2).
6 
Minimize∶
∑

𝑟∈𝑅
𝑎∈𝐴𝑟

𝑊𝑅𝑟𝑎
𝛿𝑅𝑟𝑎

+
∑

𝑟∈𝑅
𝑊𝑈𝑟

𝛿𝑈𝑟
(2a)

Subject to:
∑

𝑎∈𝐴𝑟
𝛿𝑅𝑟𝑎

+ 𝛿𝑈𝑟
= 1 ∀𝑟 ∈ 𝑅 (2b)

𝛿𝑅𝑟𝑎
+ 𝛿𝑅𝑡𝑎

≤ 1 ∀(𝑟, 𝑡) ∈ OV,∀𝑎 ∈ 𝐴𝑟 ∩ 𝐴𝑡 (2c)

𝛿𝑅𝑟𝑎
∈ {0, 1} ∀𝑟 ∈ 𝑅,∀𝑎 ∈ 𝐴𝑟 (2d)

𝛿𝑈𝑟
∈ {0, 1} ∀𝑟 ∈ 𝑅 (2e)

4.3. The operations manager

The Operations Manager in Fig.  4 is responsible for the discrete 
event simulation dynamics. It includes three types of discrete event 
processes: the aircraft process, the Aircraft On the Ground (AOG) 
process, and the hub disruption process.

4.3.1. The aircraft process
One aircraft process is built for each of the simulated aircraft, 

describing the sequence of activities that the aircraft goes through. At 
the beginning of the simulation, all aircraft are located at the hub, ready 
to execute the next assigned rotation or maintenance slot, which will 
be generally defined as duty (Block AP1 in Fig.  4). If the next duty 
scheduled for the aircraft (AP2) is a rotation, then the aircraft waits 
for its scheduled departure time. Once this is reached (AP3), the rota-
tion becomes the aircraft’s current duty and its assignment cannot be 
changed anymore. At this point, the aircraft can experience a primary 
departure delay, which is summed to the propagated delay the aircraft 
is experiencing from previously executed duties. This delay represents 
a combination of all delays that are not technical or propagated delays, 
including delays related to crew, weather, and congestion, to cite some. 
When the delay time has passed, the aircraft takes off (AP4), and it 
reaches its destination after flying for a certain amount of time (AP5).

The aircraft undergoes the turnaround activities at an outer station 
(AP7) and then waits for the scheduled departure time of the next 
flight in the rotation (AP3). The flight activities are then repeated 
until the aircraft lands back in the hub (AP5) after executing the last 
flight in the rotation (AP6). At this point, or during the duration of 
its ground time at the hub, the aircraft can experience a grounding 
(AP8), as determined by the Aircraft On Ground (AOG) process of 
the corresponding aircraft (AP9, AP10). The aircraft then undergoes 
turnaround activities at the hub, and it is again ready for the next duty 
(AP1).

If the next duty of the aircraft (AP2) is a maintenance slot, the 
aircraft must wait for the scheduled start time. In particular, if it is a 
hangar maintenance slot the aircraft must wait for the scheduled start 
of towing (AP11), after which it is towed to the hangar, while if it is a 
platform slot, then the aircraft simply waits for the scheduled start time 
of the slot (AP12). In the slot, both scheduled tasks and non-routines 
are executed, and when the slot ends (AP13), the aircraft is towed back 
to the platform, if not already there. Once on the platform (AP14), 
the aircraft must wait for the turnaround time to elapse before it can 
start flying again (AP1). Before the next duty starts, the aircraft can be 
grounded, in accordance with the AOG process (AP9, AP10).

The duration of all cited activities, i.e. the time elapsed between two 
subsequent events, can assume a stochastic or deterministic value based 
on the simulation’s needs. The arrows in Fig.  4 define an activity as 
deterministic or stochastic as implemented in the case study proposed 
in Section 5.
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Fig. 4. Expansion of Fig.  2 that details the Operations Manager and its discrete event processes: the aircraft processes, i.e. the sequences of activities and events each aircraft goes 
through within the discrete event simulation, the AOG processes, which manage the grounding of the aircraft, and the hub disruption process, which keeps track of the disruption 
state at the hub.
4.3.2. The aircraft on the ground (AOG) process
AOG situations are modeled as an independent process, so that AOG 

situations happen with exponentially distributed inter-arrival time, and 
have a duration that follows a log-normal distribution. Given that the 
recovery module is rotation based, as opposed to flight based, the 
AOGs are assumed only to happen when the aircraft is located at 
the hub. When an AOG arrives during the execution of a rotation, 
it is postponed to when the aircraft reaches the hub. In some cases 
AOGs can require days to be solved. It can happen that an AOG slot 
overlaps with a scheduled maintenance slot and, in these cases, a call 
to the recovery module would generally lead to the cancellation of 
the maintenance slot. However, AOGs are opportunities in which the 
aircraft is on the ground available for receiving maintenance, and there 
is therefore no reason why a work package should not be executed 
as scheduled. Therefore, it is assumed that maintenance slots whose 
duration is shorter than that of the AOG by a certain multiplicative 
factor can be executed within the AOG slot. If this condition does not 
apply, then the maintenance slot is postponed to after the AOG time 
has elapsed.

An AOG process is defined for each aircraft, and it interacts with 
the corresponding aircraft process as shown in Fig.  4. When an AOG 
arrives for an aircraft(AOG1), i.e. when there is a finding that requires 
the grounding of the aircraft, the aircraft should stop executing duties. 
If the aircraft is on the ground at the hub at the time of the arrival, 
then the AOG starts right away. However, if the aircraft is currently 
executing a rotation or a maintenance slot, then the start of the AOG is 
postponed until the end of the execution of the aircraft’s current duty. 
This is necessary to avoid having big disruptions within a rotation while 
both the Scheduler and the Recovery Planner are rotation-based rather 
than flight-based. Once the aircraft reaches the hub or it is back on the 
7 
platform after undergoing scheduled maintenance, the AOG can start 
(AOG2), and end (AOG3) after a stochastically determined duration.

During the duration of the AOG, the aircraft cannot execute any 
duty. Once an AOG ends, a new one arrives after a certain time named 
the AOG inter-arrival time has elapsed.

Finally, AOGs can require days to be solved. AOGs are opportunities 
in which the aircraft is on the ground available for receiving mainte-
nance, and there is, therefore, no reason why a work package should 
not be executed as scheduled during a grounding. Therefore, it can be 
assumed that maintenance slots whose duration is shorter than that of 
the AOG by a certain multiplicative factor can be executed within the 
AOG slot. If this condition does not apply, then the maintenance slot is 
postponed to after the AOG time has elapsed.

4.3.3. The hub disruption state process
Given that primary departure delays often appear to be linked to 

airport congestion, the departure delays of flights departing in a short 
time window cannot be assumed to be independent of one another. 
In order to account for this, the disruption state of the hub airport 
is modeled as a discrete-state, discrete-time process, and the primary 
delay of the departing flights is expressed as a function of the current 
disruption state.

To describe this process, two parameters must be set: the number 
of categorical disruption states considered, and the time steps, or time 
brackets that should be used to discretize time. The disruption state of 
the hub is initialized at the lowest level at the beginning of the day 
of operations. Then, the sojourn time in this state, i.e. the number of 
brackets during which the disruption state at the hub remains unvaried, 
is determined by sampling from an exponential distribution and by 
rounding the obtained value to the nearest integer. After the sojourn 
time has elapsed, the new state is determined by means of a transition 
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Fig. 5. Evolution of the hub disruption state over three hours, for three disruption 
states, and 20 min long brackets.

probability matrix, which describes the probability of transitioning 
from each state to each of the other considered states. The new sojourn 
time can now be computed, and so on. The process continues until it 
is initialized again at the beginning of the next morning, where a daily 
initialization is necessary because it is uncommon for an airport to be 
congested at night or at the early hours of the morning.

Fig.  5 shows the evolution of the hub disruption state over three 
hours, when three disruption states are considered and time is dis-
cretized in 20-min brackets. The disruption state is initialized at the 
minimum disruption level (DS0) at 6:00. The state changes after two-
time brackets and transitions to disruption level DS2, where it remains 
until 7:00. After that, there is a transition to disruption level DS1, 
followed by a sojourn time of two-time brackets, and so on.

This stochastic process can be easily translated into a discrete event 
process with one recurring event of state change (HDP1), separated by 
an activity of duration corresponding to the sojourn time. This makes 
the process easily integrable within the Operations Manager in the form 
of the hub disruption process.

4.4. The recovery controller

The Recovery Controller supervises the aircraft processes of the 
Operations Manager to detect when disruptions occur, and when this 
happens, it requests a recovery action. The Recovery Controller inter-
acts with each aircraft process in correspondence with three events: 
when a flight takes off (AP4 in Fig.  4), when a maintenance slot starts 
(AP12), and when an AOG arrives (AP8). At these points in time, 
it estimates the time at which the aircraft will be ready to start its 
next scheduled duty, given the current state. For a flight, this estimate 
is done by summing average turnaround times and flight duration, 
while the duration of maintenance slots and AOGs is assumed to be
known.

This estimate of the next ready time of the aircraft is then com-
pared to the currently expected departure time of the next duty: if 
the estimated ready time falls after the expected departure time by a 
minimum defined value, then a recovery action is deemed necessary. 
Notice that the expected, instead of the scheduled departure time of 
a duty, is considered due to the fact that both maintenance slots and 
rotations can be delayed by the Recovery Planner. If previous recovery 
calls have already delayed a duty, and it is expected that that delay will 
not be increased, then there is no need to call the Recovery Planner
again.

When the Recovery Controller detects that a recovery action is 
needed, the procedure involves calling the Recovery Planner to find 
a solution within a relatively short recovery window, lasting for a time 
that is in the order of days. However, in some cases, disruption can be 
so severe that it affects duties not included within the recovery window 
of the Recovery Planner. These disruptions generally occur due to the 
arrival of AOGs that last for days. In these cases, it is necessary to 
call the TAS to define a long-term solution over the TAS’ scheduling 
window, before the Recovery Planner can be called. Note that a call 
to the MSS is not necessary, because if any maintenance slot overlaps 
with such long AOGs, it is automatically included within them.
8 
4.5. The recovery planner

The Recovery Planner is called whenever a disruption occurs, to 
find a short-term feasible solution. The model acts on a recovery 
window with a duration in the order of days, and it must produce 
a solution that is compatible with the assignment of rotations and 
slots that do not fall within the recovery window. The implemented 
Recovery Planner models one parallel time-space network for each 
aircraft in the considered fleet, as defined in Vink et al. (2020). Since 
the Recovery Planner proposed for ANEMOS is rotation-based, the time-
space network is collapsed into a timeline, where the only airport from 
which arcs generate and terminate is the hub. The allowed recovery 
options include delaying or cancelling a rotation or a maintenance 
slot, changing the appointed aircraft to fly a rotation, using a reserve 
aircraft, swapping maintenance slots, or postponing maintenance slots 
to a future opportunity.

Eq.  (3a) describes the objective of the ILP, which is a cost-
minimization of all considered recovery options. The cost of assigning 
a rotation to an aircraft is dependent on the aircraft type and, in 
particular, on aircraft subtype preference groups, similar to what is 
done in the TAS.  Delayed rotations are modeled as copies of the 
original rotations, departing and arriving at later nodes, in an approach 
that was initially proposed by Levin (1971). For this reason, a rotation 
can only be delayed by pre-defined discrete amounts of time. The cost 
of delaying a rotation and assigning it to an aircraft depends both on the 
aircraft subtype and on the duration of the delay. The latter component 
is assumed to vary linearly with the delay duration. In addition to the 
base cost of the assignment, the weight should be increased whenever 
the assignment does not correspond to the original assignment of the 
rotation in order to favor keeping the plan as it is.

Similarly to rotations, slots can be executed as originally planned, 
delayed, or cancelled. However, differently from rotations, slots cannot 
be freely reassigned, but they can only follow simple swap patterns. 
This means that if three aircraft A, B, and C are respectively assigned 
maintenance slots a, b, and c, it is possible to do a swap such as 𝐴 →
𝑏, 𝐵 → 𝑎, but not a swap such as 𝐴 → 𝑏, 𝐵 → 𝑐, 𝐶 → 𝑎. Furthermore, 
cancelling a slot should, in principle, not be allowed. This is because 
leaving some tasks un-executed would lead to the grounding of the 
aircraft. However, in order to avoid infeasible situations, cancelling a 
slot is allowed, at a very high cost. Another recovery option included in 
the model is the possibility of postponing maintenance slots to flexible 
maintenance arcs, which are arcs generated any time an aircraft is on 
the ground at the hub for a time that allows fitting a maintenance slot. 
Note that, especially for what concerns hangar slots, the assumption 
of always having the available resources to provide maintenance to 
an aircraft is a strong assumption, that does not necessarily represent 
actual operations. However, this option can be used to investigate 
scenarios of maximum maintenance flexibility. In general, ground arcs 
can be assigned a cost of zero, unless particular conditions require 
otherwise.

Finally, a binary slack variable is used to avoid unnecessary involve-
ment of an aircraft in the recovery strategy. If any of the rotations 
previously assigned to an aircraft is reassigned to a different one, then 
the slack variable is activated and a penalty applies. This term acts 
in parallel with respect to the additional weight incurred by each re-
assigned rotation, and it allows for a reduction of the number of aircraft 
involved in the recovery solution.

Constraints (3b) ensure that a rotation is executed as scheduled, 
delayed, or cancelled. Constraints (3c) impose that a slot is either 
executed as planned, delayed, cancelled, swapped, or postponed to a 
flexible maintenance arc. Constraints (3d) ensures the balance of the 
network. For each aircraft, the origin and termination nodes are defined 
based on their assigned rotations and slots before any recovery action 
is taken. In particular, the origin node corresponds to the time at which 
their current (or last) duty is expected to end, or, if an AOG has arrived, 
it corresponds to the expected end time of the AOG. The termination 
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node is imposed on the time when the first duty not included within 
the recovery window is scheduled to start. All central nodes are put in 
correspondence with duties arriving or departing, always considering 
a possible buffer before and after the duty for either turnaround or 
towing operations. At each node, the sum of entering and exiting arcs 
must be equal to the balance of the node, i.e. 1 for origin nodes, −1 for 
termination nodes, and 0 for central nodes. Constraints (3e) activate 
the slack variables that avoid the re-assignment of rotations for each 
aircraft. Constraints (3f) is required given the formulation of the slot 
swaps. In fact, the decision variables associated with slot swaps refer to 
ordered pairs of slots (s,t) that can be swapped. This constraint imposes 
that if slot s is swapped with slot t, then slot t is also swapped with 
slot s. Finally, Constraints (3g)–(3p) define the domain for the included 
decision variables.

The assignment of a rotation or of a delayed rotation to an aircraft 
is not permitted when the rotation falls out of the aircraft’s origin and 
termination nodes. Also, the re-assignment of a rotation or of a delayed 
rotation to a different aircraft is not permitted when a minimum 
anticipation, i.e. the time intercurring between the current time and 
the time when the rotation is expected to depart, is not guaranteed. 
The reduction of subsets can also be used to limit the types of aircraft 
that can fly specific routes (see Table  3).

Two Flex slots can be swapped when their scheduled work package 
would fit in the destination slot in terms of duration and scheduled 
labor, and when no task in either work package would go due before 
the new assigned slot’s scheduled start. Also, there should be a match in 
aircraft subtype, slot location, and slot type for the swap to be possible. 
Flexible maintenance arcs are specifically generated for each mainte-
nance slot assigned to each aircraft so that the expected duration of 
the slot fits within the maintenance arc. Finally, the objective function 
weights and the reduced subsets can easily be used to impose airline-
specific policies. For example, the assignment of a rotation to an aircraft 
when the latter has a reserved slot scheduled can be disincentivized 
by assigning a higher cost of the specific rotation-aircraft assignment 
weight. If an airline policy requires a reserve aircraft to be available at 
the beginning of each day of operations, even at the cost of cancelling 
rotations scheduled in the coming days, the subset 𝐴𝑟 can be reduced to 
prevent the assignment of rotations to aircraft when this would cause 
the overlap with reserve slots scheduled on the coming days.
Minimize:
∑

𝑟∈𝑅

∑

𝑎∈𝐴𝑟
𝑊𝑅𝑟𝑎

𝛿𝑅𝑟𝑎
+
∑

𝑟∈𝑅
𝑊𝐶𝑅𝑟

𝛿𝐶𝑅𝑟

+
∑

(𝑟,𝑎)∈𝐷𝑅

∑

𝑎∈𝐴𝑟𝑑

+𝑊𝐷𝑅𝑟𝑑𝑎
𝛿𝐷𝑅𝑟𝑑𝑎

+
∑

𝑠∈𝑆
𝑊𝑆𝑠

𝛿𝑆𝑠

+
∑

𝑠∈𝑆
𝑊𝐶𝑆𝑠

𝛿𝐶𝑆𝑠
+

∑

(𝑠,𝑑)∈𝑆𝐷
𝑊𝐷𝑆𝑠𝑑

𝛿𝐷𝑆𝑠𝑑

+
∑

(𝑠,𝑡)∈𝑆𝑊

1
2
𝑊𝑆𝑊𝑠𝑡

𝛿𝑆𝑊𝑠𝑡
+

∑

(𝑠,𝑚)∈𝑀
𝑊𝑀𝑠𝑚

𝛿𝑀𝑠𝑚

+
∑

𝑔∈𝐺𝑎

∑

𝑎∈𝐴
𝑊𝐺𝑔𝑎

𝛿𝐺𝑔𝑎
+
∑

𝑎∈𝐴
𝑊𝛤𝑎𝑧𝛤𝑎

(3a)

Subject to:
∑

𝑎∈𝐴𝑟
𝛿𝑅𝑟𝑎

+
∑

𝑎∈𝐴𝑟𝑑

∑

(𝑟,𝑑)
∈𝐷𝑅𝑟

𝛿𝐷𝑅𝑟𝑑𝑎
+ 𝛿𝐶𝑅𝑟

= 1∀𝑟 ∈ 𝑅
(3b)

𝛿𝑆𝑠
+

∑

(𝑠,𝑑)
∈𝐷𝑆𝑠

𝛿𝐷𝑆𝑠𝑑
+ 𝛿𝐶𝑆𝑠

+
∑

(𝑠,𝑚)
∈𝑀𝑠

𝛿𝑀𝑠𝑚

+
∑

(𝑠,𝑡)

𝛿𝑆𝑊𝑠𝑡
= 1 ∀𝑠 ∈ 𝑆

(3c)
∈𝑆𝑊 𝑠
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∑

𝑟∈
𝑅∩𝑂𝑅𝑛𝑎

𝛿𝑅𝑟𝑎
−

∑

𝑟∈
𝑅∩𝑇𝐸𝑛𝑎

𝛿𝑅𝑟𝑎
+

∑

(𝑟,𝑑)∈
𝐷𝑅∩𝑂𝑅𝑛𝑎

𝛿𝐷𝑅𝑟𝑑𝑎

−
∑

(𝑟,𝑑)∈
𝐷𝑅∩𝑇𝐸𝑛𝑎

𝛿𝐷𝑅𝑟𝑑𝑎
+

∑

𝑠∈
𝑆∩𝑂𝑅𝑛𝑎

𝛿𝑆𝑠
−

∑

𝑠∈
𝑆∩𝑇𝐸𝑛𝑎

𝛿𝑆𝑠

+
∑

(𝑠,𝑑)∈
𝐷𝑆∩𝑂𝑅𝑛𝑎

𝛿𝐷𝑆𝑠𝑑
−

∑

(𝑠,𝑑)∈
𝐷𝑆∩𝑇𝐸𝑛𝑎

𝛿𝐷𝑆𝑠𝑑
+

∑

(𝑠,𝑚)∈
𝑀∩𝑂𝑅𝑛𝑎

𝛿𝑀𝑠𝑚

−
∑

(𝑠,𝑚)∈
𝑀∩𝑇𝐸𝑛𝑎

𝛿𝑀𝑠𝑚
+

∑

𝑠∈𝑆𝑎

∑

(𝑠,𝑡)∈𝑆𝑊 𝑠
𝑡∈𝑂𝑅𝑛𝑎

𝛿𝑆𝑊𝑠𝑡

−
∑

𝑠∈𝑆𝑎

∑

(𝑠,𝑡)∈𝑆𝑊 𝑠
𝑡∈𝑇𝐸𝑛𝑎

𝛿𝑆𝑊𝑠𝑡
+

∑

𝑔∈
𝐺∩𝑂𝑅𝑛𝑎

𝛿𝐺𝑔𝑎
−

∑

𝑔∈
𝐺∩𝑇𝐸𝑛𝑎

𝛿𝐺𝑔𝑎

= 𝑃𝐵𝑛𝑎 ∀𝑎 ∈ 𝐴,∀𝑛 ∈ 𝑁𝑎

(3d)

∑

𝑟∈𝑅𝑎
orig 

(

𝛿𝑅𝑟𝑎
+ 𝛿𝐶𝑅𝑟

)

+
∑

(𝑟,𝑑)
∈𝐷𝑅𝑟

𝛿𝐷𝑅𝑟𝑑
≥ |

|

|

𝑅𝑎
orig

|

|

|

(

1 − 𝑧𝛤𝑎
)

∀𝑎 ∈ 𝐴

(3e)

𝛿𝑆𝑊𝑠𝑡
= 𝛿𝑆𝑊𝑡𝑠

∀(𝑠, 𝑡) ∈ 𝑆𝑊 (3f)

𝛿𝑅𝑟𝑎
∈ {0, 1} ∀𝑟 ∈ 𝑅,∀𝐴 ∈ 𝐴𝑟 (3g)

𝛿𝐷𝑅𝑟𝑑𝑎
∈ {0, 1} ∀(𝑟, 𝑑) ∈ 𝐷𝑅,∀𝐴 ∈ 𝐴𝑑𝑟 (3h)

𝛿𝐶𝑅𝑟
∈ {0, 1} ∀𝑟 ∈ 𝑅 (3i)

𝛿𝑆𝑠
∈ {0, 1} ∀𝑠 ∈ 𝑆 (3j)

𝛿𝐷𝑆𝑠𝑑
∈ {0, 1} ∀(𝑠, 𝑑) ∈ 𝐷𝑆 (3k)

𝛿𝐶𝑆𝑠
∈ {0, 1} ∀𝑠 ∈ 𝑆 (3l)

𝛿𝑆𝑊𝑠𝑡
∈ {0, 1} ∀(𝑠, 𝑡) ∈ 𝑆𝑊 (3m)

𝛿𝐺𝑔𝑎
∈ {0, 1} ∀𝑎 ∈ 𝐴,∀𝑔 ∈ 𝐺𝑎 (3n)

𝛿𝑀𝑠𝑚
∈ {0, 1} ∀(𝑠, 𝑚) ∈ 𝑀 (3o)

𝑧𝛤𝑎 ∈ {0, 1} ∀𝑎 ∈ 𝐴 (3p)

5. Case study

An implementation of ANEMOS was developed in collaboration 
with a major European airline, which provided the historical data 
necessary to define all input parameters and distributions described in 
this section. The proposed case study investigates the effects of adding a 
reserve aircraft to the partner airline’s fleet in different operational dis-
ruption scenarios. The fleets considered in the implementation include 
4 different aircraft models.

5.1. Maintenance scheduling submodule (MSS)

The MSS is called once a week, and its scheduling window goes from 
3 days to three weeks after its call day. The weights of the parameters 
of the MSS are determined following the logic in Section 4.1. The values 
to be given to each parameter of the objective function are determined 
using a hierarchical logic (van Kessel et al., 2022), which involves 
defining a hierarchy of importance associated with each scheduling 
decision. The hierarchy is defined as follows, from highest to lowest 
importance: (1) assignment of MH slots, (2) assignment of maintenance 
tasks, (3) maintaining the assignment of slots in the fixed scheduling 
window unchanged, (4) reducing the use of ground time, i.e. avoiding 
the unnecessary activation of maintenance slots, (5) scheduling tasks 
with the preferred anticipation (see Table  4).

Requirements are limited to those having an interval between 15 
days and three months, as this is the interval of A-checks for the 
considered fleets. The simulation of the arrival of DDs requires the 
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Table 3
Mathematical formulation of the recovery planner.
 Sets and subsets
 𝐴 Aircraft  
 𝑅 Rotations  
 𝐷𝑅 Delayed rotations. Pair (r,d) 

denotes rotation 𝑟 being delayed 
by 𝑑 time units

 

 𝑆 Maintenance slots (Flex & MH 
slots)

 

 𝐷𝑆 Delayed slots. Pair (s,d) denotes 
maintenance slot 𝑠 being delayed 
by 𝑑 time units

 

 𝑆𝑊 Aircraft swap. Ordered pair (s,t) 
denotes the feasible swap of 
maintenance slots 𝑠 and 𝑡

 

 𝑀 Free maintenance arcs. Pair (s,m) 
denotes the postponement of slot 
𝑠 to free maintenance arc 𝑚

 

 𝐺 Ground arcs  
 𝑁 Nodes  
 𝑂𝑅𝑛𝑎 Arcs originating in node 𝑛 that 

interest aircraft 𝑎
 

 𝑇𝐸𝑛𝑎 Arcs terminating in node 𝑛 that 
interest aircraft 𝑎

 

 𝐴𝑟 ⊆ 𝐴 Aircraft 𝑎 that can be assigned 
rotation 𝑟

 

 𝐴𝑟𝑑 ⊆ 𝐴 Aircraft 𝑎 can be assigned 
delayed rotation (𝑟, 𝑑)

 

 𝐷𝑅𝑟 ⊆ 𝐷𝑅 Delayed rotation derived from 
rotation 𝑟

 

 𝑅𝑎
𝑜𝑟𝑖𝑔 ⊆ 𝑅 Rotations currently assigned to 

aircraft 𝑎
 

 𝑆𝑎 ⊆ 𝑆 Maintenance slots of aircraft 𝑎  
 𝐷𝑆𝑠 ⊆ 𝐷𝑆 Delayed maintenance slots 

derived from slot 𝑠
 

 𝑆𝑊 𝑠 ⊆ 𝑆𝑊 Ordered pairs of maintenance 
slots that can be swapped where 
the first slot is 𝑠

 

 𝑀𝑠 ⊆ 𝑀 Free maintenance arcs may be 
used for postponing slot 𝑠

 

 𝐺𝑎 ⊆ 𝐺 Ground arcs tmay used by 
aircraft 𝑎

 

 𝑁𝑎 ⊆ 𝑁 Nodes that interest aircraft 𝑎  
 Decision variables
 𝛿𝑅𝑟𝑎

∈ {0, 1} 1 if rotation 𝑟 is assigned to 
aircraft 𝑎, 0 otherwise

 

 𝛿𝐷𝑅𝑟𝑑𝑎
∈ {0, 1} 1 if delayed rotation (𝑟, 𝑑) is 

assigned to aircraft 𝑎, 0 otherwise
 

 𝛿𝐶𝑅𝑟
∈ {0, 1} 1 if rotation 𝑟 is cancelled, 0 

otherwise
 

 𝛿𝑆𝑠
∈ {0, 1} 1 if slot 𝑠 is kept active, 0 

otherwise
 

 𝛿𝐷𝑆𝑠𝑑
∈ {0, 1} 1 if delayed slot (𝑠, 𝑑), 0 

otherwise
 

 𝛿𝐶𝑆𝑠
∈ {0, 1} 1 if slot 𝑠 is cancelled, 0 

otherwise
 

 𝛿𝑆𝑊𝑠𝑡
∈ {0, 1} 1 if slot s and t are swapped, 0 

otherwise
 

 𝛿𝐺𝑔𝑎
∈ {0, 1} 1 if aircraft 𝑎 uses ground arc 𝑔, 

0 otherwise
 

 (continued on next page)

definition of the limits of two weighted choices. In the case at hand, 
the value of some objective function weights can be defined by one 
component, such as the cost of leaving a task unassigned (𝑊 ). In 
𝑈𝑡
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Table 3 (continued).
 𝛿𝑀𝑠𝑚

∈ {0, 1} 1 if slot 𝑠 is moved to flexible 
maintenance arc 𝑚, 0 otherwise

 

 𝑧𝛤𝑎
∈ {0, 1} 1 if any rotation initially assigned 

to aircraft 𝑎 is reassigned, 0 
otherwise

 Parameters
 𝑊𝑅𝑟𝑎

Cost of assigning rotation 𝑟 to aircraft 𝑎  
 𝑊𝐷𝑅𝑟𝑑𝑎

Cost of delaying rotation 𝑟 by 𝑑 time units and assigning 
it to aircraft 𝑎

 

 𝑊𝐶𝑅𝑟
Cost of cancelling rotation 𝑟  

 𝑊𝑆𝑠
Cost of keeping slot 𝑠 active  

 𝑊𝐷𝑆𝑠𝑑
Cost of delaying slot 𝑠 by 𝑑 time units  

 𝑊𝐶𝑆𝑠
Cost of cancelling slot 𝑠  

 𝑊𝑆𝑊𝑠𝑡
Cost of swapping slot 𝑠 and 𝑡  

 𝑊𝑀𝑠𝑚
Cost of postponing slot 𝑠 to flex maintenance arc 𝑚  

 𝑊𝐺𝑔𝑎
Cost of aircraft 𝑎 using ground arc 𝑔  

 𝑊𝛤𝑎
Cost of changing rotation assignment of aircraft 𝑎  

 𝑃𝐵𝑛𝑎
Node balance at node 𝑛 of aircraft 𝑎. Equal to 1 if 𝑛 is an 
origin node, to −1 if 𝑛 is a termination node, and to 0 if 
𝑛 is a central node.

 

Table 4
Decision variables for the MSS.
Decision variables

 𝐶𝑀𝐻 −5 × 1012 Activating an MH slot.  
 𝑊𝑈𝑡

5 × 107 Unassigning task 𝑡, if 𝑡 is a dd  
 107 Unassigning task 𝑡, if 𝑡 is a requirement  
 𝐶𝑓𝑖𝑥𝑠 106 Changing the assignment of a slot 𝑠 in the 

fixed scheduling window. 0 if 𝑠 is not in 
the fixed window.

 

 𝐶𝑆𝑠
105 Activating flex slot 𝑠, if 𝑠 is a hangar slot  

 104 Activating flex slot 𝑠, if 𝑠 is a platform slot  
 𝐶𝑠𝑑 103 Additional cost per hour of slot duration, 

when a slot is activated
 

 𝐶𝑎𝑛𝑡𝑡 102 Anticipating the execution of requirement 𝑡
with respect to its due date by one day

 

 −4 × 101 Anticipating the execution of dd 𝑡 by one 
day

 

other cases, the value of these weights derives from the combination of 
multiple cost components, such as in the case of the weight of assigning 
a slot to an aircraft, which depends both on slot duration and location. 
For the latter cases, some bridging costs (𝐶) are defined in the hierarchy 
and later assembled into the final objective function weights (𝑊 ). The 
hierarchy is translated as follows:

The cost 𝑊𝑈𝑡
 is higher for DDs, since the scheduling of requirements 

is less critical. The remainder of the weights, which are compound 
weights, can now be defined. 𝑊𝑆𝑠𝑎

 can be defined as: 

𝑊𝑆𝑠𝑎
=

{

𝐶𝑀𝐻 + 𝐶𝑓𝑖𝑥𝑠 , if 𝑠 is a MH slot
𝐶𝑆𝑠

+ 𝐶𝑠𝑑 ⋅ 𝑑𝑠 + 𝐶𝑓𝑖𝑥𝑠 , if 𝑠 is a flex slot, (4)

where 𝑑𝑠 is the duration of slot 𝑠. The cost of scheduling a task 𝑡 in 
maintenance slot 𝑠, 𝑊𝑇𝑡𝑠 , depends on the number of anticipation days 
with which the task would be executed. Calling this anticipation, 𝑎𝑡𝑠, 
the parameter can be determined as: 
𝑊𝑇𝑡𝑠 = 𝐶𝑎𝑛𝑡𝑡 ⋅ 𝑎𝑡𝑠 (5)

5.2. Tail assignment submodule (TAS)

The recovery window of the TAS goes from three days to two weeks 
after the call of the TAS. Its parameters are determined using the same 
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Table 5
Decision variables for the TAS.
 𝑊𝑈𝑟

105 Unassigning segment 𝑟, if 𝑟 is a reserve slot  
 104 Unassigning segment 𝑟, if 𝑟 is a rotation  
 𝑊𝑅𝑟𝑎

102 Assigning rotation 𝑟 to aircraft 𝑎, if 𝑟 is a 
rotation and 𝑎 is not of its originally 
assigned subtype. 0 if 𝑟 s a reserve slot or 𝑎
is of the preferred subtype.

 

hierarchical logic used for the MSS. The hierarchy is defined as follows: 
(1) assignment of segments, (2) assignment of rotations to the preferred 
aircraft type. Subtype preference groups are introduced to determine 
which aircraft subtype should be used in the case of the unavailability 
of the originally assigned subtype. The following groups are defined:

• Group 1 (lower passenger capacity, range): Types I, II
• Group 2 (higher passenger capacity, range): Types III, IV
Rotations assignment is not allowed outside of the preference group, 

meaning that for example a rotation originally scheduled for a Type I 
cannot be assigned to a Type IV. This is done by reducing the model 
subsets. The hierarchy is translated into the following weights:

5.3. Operations manager

This model assumes flight time to be fixed for each route. Primary 
delays are assumed to be positive, meaning that a flight cannot depart 
before its scheduled departure time. These delays can be described by 
a simple probability of experiencing a delay, and by an analytical dis-
tribution limited at values greater than zero describing the duration of 
the delay. These delays are assumed to be independent of the fleet type, 
but dependent on the station at which they occur. The same simple 
probability and analytical distribution are used for all outstations due 
to limited data availability. Four other sets of parameters are used for 
the hub, one for each of the considered hub disruption states (see Table 
5).

It is a challenge to isolate the duration of a turnaround in historical 
data. In order to make a distinction, only flights that departed with a 
delay due to IATA delay code 93, i.e. propagated delay, are considered 
in the analysis. For these flights, it is assumed that the time needed 
for turnaround operations corresponds to the ground time between 
arrival and departure of the limiting flights. Turnaround activities 
are assumed to be independent of the aircraft type. Three empirical 
distributions are obtained: one for turnaround time at the hub, and 
two for turnaround time at outstations. Two separate turnaround time 
distributions are used for outstations because, at certain airports, only 
shorter technical turnaround activities are executed, as suggested by 
the bimodal empirical probability density function of the full dataset. 
Outstations are categorized into short or regular turnaround stations 
based on the mean registered turnaround time.

The towing time is only considered when an aircraft needs to 
undergo maintenance in the hangar. Towing time to and from the 
hangar is fixed to one hour.

The duration of a maintenance slot depends on its work package and 
on the NR labor originating from findings happening during the slot. 
It is assumed that NRs can only happen within slots executed in the 
hangar. The probability of NRs coming up in a hangar work package 
is determined from historical data. The total NR labor hours executed 
within the historical maintenance slots are also computed and used to 
fit an analytical curve for each aircraft subtype. At the beginning of 
each hangar slot, the historical probability of experiencing non-routines 
is used to determine whether there will be some findings in the work 
package or not. If there should be some findings, the total required NR 
labor is sampled from the reference distribution and added to the work 
package. Once the NR labor hours are sampled, the duration of the 
maintenance slot can be computed as the maximum of the following 
two values:
11 
• The maximum duration of the tasks included in the slot’s work 
package.

• The sum of the labor hours associated with the tasks included in 
the work package (including non-routine labor) is divided by the 
available workforce in the maintenance slot.

The AOG inter-arrival time and duration are defined by stochastic 
distributions fitted on historical data by minimization of the RSS. 
Different distributions are obtained for each aircraft type.

The hub disruption process is characterized by four disruption 
states, and time is discretized in 20-min brackets. The process is ini-
tialized every day at 6:00 UTC. Both the exponential distribution 
describing the sojourn time in a state and the transition probability 
matrix are derived from historical data. To determine the duration of 
the disruption state, historical flights are grouped in twenty-minute 
brackets based on their actual departure time. Each bracket is then 
characterized by a disruption state based on the mean departure delay 
observed within that bracket. To do so, arbitrarily defined minimum 
and maximum mean delays are defined for each state. Adjacent brack-
ets characterized by the same state are then counted, and this mea-
sure of sojourn time is used to determine the best-fitting exponential 
distribution by RSS minimization. The transition probability matrix 
can easily be determined by computing the empirical probability of 
transitioning from one state to another.

5.4. Recovery controller

The recovery controller requires a recovery action when it computes 
that the next duty of an aircraft will experience an increase in expected 
delay of at least ten minutes.

5.5. Recovery planner

The Recovery Planner works on a recovery window that covers 
three and a half days. At the end of the recovery window operations 
must be resumed as originally scheduled, and for this reason, duties 
are included in the recovery space if their arrival time falls within the 
recovery window. In order to better resemble our partner airline’s op-
erations, the possibility of postponing maintenance to free maintenance 
arcs is excluded from the solution of the Recovery Planner. Also, with 
the objective of reducing passenger disruption on the day of operation, 
it is imposed that the designated reserve aircraft should always be 
available at the start of each day. As a consequence, the Recovery 
Planner cannot assign a rotation to an aircraft if this overlaps with 
a reserve slot assigned to the aircraft over the coming days. Finally, 
rotations are allowed to be reassigned to aircraft of any subtype, and 
the preference group logic described for the TAS applies (see Table  6).

The parameters of the Recovery Planner are defined based on a hier-
archy, this time formulated in terms of avoidance preference, from the 
recovery action that should be avoided the most, to the recovery action 
that is considered most acceptable. The following order is defined: (1) 
cancelling maintenance slots, (2) cancelling rotations (3) changing the 
aircraft subtype assignment of a rotation (4) swapping maintenance 
slots, (5) changing the aircraft assignment of a rotation, (6) delaying 
the start time of a maintenance slot, and (7) delaying the start time of 
a rotation. The following costs are derived from the hierarchy:

The cost of assigning a rotation to an aircraft can be defined as 
follows: 
𝑊𝑅𝑟𝑎

= 𝐶type𝑟𝑎 + 𝐶𝛥𝑟𝑎 (6)

Concerning delaying duties, copies of the original rotation arcs are 
generated with a delay of 5, 10, 20, 40, 60, 120, 180, and 240 min. 
For maintenance slots, copies are created with a delay of 5, 10, 20, 40, 
60, 120, and 180 min. The chosen values are denser for shorter delays 
because these values are more commonly observed, and because they 
allow the avoidance of more drastic recovery interventions that are 
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Table 6
Decision variables for the recovery planner.
 𝑊𝐶𝑆𝑠

3 × 106 Cancelling slot 𝑠, if 𝑠 if an MH slot  
 106 Cancelling slot 𝑠, if 𝑠 if a flex slot  
 𝑊𝐶𝑅𝑟

105 Cancelling a rotation  
 𝐶type𝑟𝑎 2 × 104 Assigning rotation 𝑟 to aircraft 𝑎, if aircraft 

𝑎’s subtype is not included in 𝑟’s preference 
group

 

 104 Assigning rotation 𝑟 to aircraft 𝑎, if aircraft 
𝑎’s subtype is within to rotation 𝑟’s 
preference group. 0 if 𝑎 is of the originally 
assigned subtype

 

 𝑊𝑆𝑊𝑠𝑡
103 Swapping two maintenance slots  

 𝑊𝛤𝑎
2 × 102 Involving aircraft 𝑎 in the recovery solution  

 𝐶𝛥𝑟𝑎
102 Assigning rotation 𝑟 to aircraft 𝑎, if the 

assignment is different from what was 
previously planned

 

 𝐶𝐷𝑆 2.5 × 101 Delaying a slot by one minute  
 𝐶𝐷𝑅 2 × 101 Delaying a rotation by one minute  

often required for significant delays that are in the range of the hours. 
Also, the maximum delay allowed for a maintenance slot is shorter 
than that allowed for a rotation given the lower resource flexibility 
associated with a maintenance slot in terms of, for instance, manpower 
and hangar space. For the same reason, delaying a maintenance slot is 
more expensive than delaying a rotation. Calling 𝑑𝑑 the delay imposed 
on a slot or rotation, the weights of assigning delayed duty arcs are 
defined as: 
𝑊𝐷𝑆𝑠𝑑

= 𝐶𝐷𝑆 ⋅ 𝑑𝑑
𝑊𝐷𝑅𝑟𝑑𝑎

= 𝑊𝑅𝑟𝑎
+ 𝐶𝐷𝑅 ⋅ 𝑑𝑑

(7)

The costs of using a maintenance slot as planned (𝑊𝑆𝑠
) and of using 

a ground arc (𝑊𝐺𝑔𝑎
) are set to zero.

5.6. Scenarios generation

Scenarios consider a fleet of 50 aircraft (or 51 when a reserve is 
added) including the already cited four aircraft subtypes. The simulated 
schedule is a weekly schedule that includes 263 rotations. The simu-
lated maintenance slots are the slots that were historically available 
during that week. Each scenario is simulated a hundred times over 
180 days. Two variables model this case study: the number of reserve 
aircraft available (i.e. one or two) and the distribution describing the 
duration of AOGs. In order to generate different scenarios to evaluate, 
different distributions describing AOG duration must be chosen. In the 
baseline scenario, AOGs for all aircraft types are modeled as having 
a duration described by a lognormal distribution. Using the generally 
accepted parametrization of the lognormal distribution in 𝜇 and 𝜎, the 
expected value is as follows: 

𝐸[𝑋] = 𝑒𝜇+
1
2 𝜎

2
(8)

Given this property, new scenarios are generated by multiplying 
the scale parameter 𝑒𝜇 by a constant, so that the new distributions are 
characterized by an expected value that is equal to the original expected 
value multiplied by the same constant. The multiplicative constant, 
which will be called the AOG duration factor, is set to 1, 1.2, 1.4, 1.6, 
1.8, and 2.

6. Results

Here, we present the results of ANEMOS applied to the case study 
described in Section 5. The results are validated in Section 6.1. Ad-
ditionally, Section 6.2 xplores a special case involving the inclusion 
of reserve aircraft, demonstrating how ANEMOS can be utilized to 
evaluate different operational policies.
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Fig. 6. Empirical CDFs of the departure delays of simulated and historical flights 
departing from the hub 6(a) and from outstations 6(b). Two historical curves are shown. 
The 2017–2019 curve corresponds to data used for building the delay model, while 
the 2022 curve refers to flights included in the simulated schedule, corresponding to 
a specific week of operations.

6.1. Model validation

The model is validated by comparing the results obtained for the 
baseline case of the case study (AOG duration factor of 1, 1 reserve 
aircraft), with historically operational performance comprises data on 
flights flown between 2017 and 2019. However, the proposed case 
study refers to a schedule and maintenance plan implemented in 2022. 
For this reason, the simulated delays are compared to historical data of 
two sets of flights: the flights flown between 2017 and 2019, and the 
flights flown during the week of the simulated schedule in 2022.

Figs.  6(a) and 6(b) show the empirical cumulative distribution 
functions (CDF) of the departure delay of flights departing from the 
hub and from outstations, respectively. The curve of the simulated 
data closely follows the 2017–2019 curve for departure delays from 
the hub, with the sole difference that there are no departures before 
the scheduled departure time since they are not allowed by the model. 
When considering departure delays from outstation, a similar trend is 
observed between simulated and 2017–2019 flights, although simu-
lated departure delays tend to be higher than 2017–2019 ones. This 
is due to the assumption of fixed flight leg duration, which in some 
routes leads to a systematic accumulation of delay that propagates to 
the following flight legs.

A comparison of the simulated delays and delays from 2022 shows 
a significant underestimation of delays in the simulated results. This 
can be explained by the widespread ground personnel shortages in 
the historical period from 2022, leading to strong disruptions in nu-
merous airports worldwide. This result, however, does not invalidate 
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the proposed case study, since the case study focuses more on flight 
cancellations rather than delays, and historical data of our partner 
airline show that no cancellation was caused by delay propagation in 
2022.

The second validated performance measure regards cancellations, 
for which the historical value to be used as a validating comparison 
should be discussed. As already mentioned, delay propagation does 
not cause any cancellations thanks to the buffer time scheduled at the 
hub for intercontinental operations — only historical cancellations of 
full rotations are considered. Several reasons for this underestimation 
of cancellations can be given. First, the model generally has more 
flexibility in recovery than it is available in reality. Second, simulated 
A-checks have more operational flexibility than in reality. Third, the 
scope of maintenance limited to A-checks excludes heavy maintenance 
which is more likely to exceed the scheduled time, causing disruptions.

The model is capable of executing between 99.3% and 99.5% of 
tasks for all aircraft subtypes apart from the Type II, for which an exe-
cution rate of 96.1% is simulated. The tasks that the model is incapable 
of scheduling are generally tasks that are longer than the available 
maintenance slots, or tasks for which a maintenance opportunity cannot 
be made available due to the short time between the task’s ready date 
and due date. In the case of Type II, the reduced execution rate is due to 
the inclusion of recurring tasks that, in real-life operations, are executed 
in specifically designated maintenance slots that are longer than the 
ones included in the scope of the simulation.

The scheduling logic used by the simulator is validated by consid-
ering the tasks’ relative anticipation, defined as the ratio between the 
number of days intercurring between a task execution date and due 
date and the number of days intercurring between the task arrival 
date and due date. Fig.  7 shows the empirical CDF of the relative 
task anticipation of the simulated and historical tasks. The simulated 
requirements in Fig.  7(a) follow the trend of historical requirements, 
as they tend to be executed close to their due date to minimize the 
requirements’ lost interval. However, they are generally executed closer 
to their due date than in reality, which can be explained by setting the 
preferred anticipation for requirements execution of the MSS to zero.

Fig.  7(b) shows that DDs follow the correct trend of being exe-
cuted early after their finding. When compared to the full dataset of 
historical DDs, a general postponement of simulated task execution is 
observed. This is because historically, many DDs are generated from 
crew complaints registered within the Aircraft Maintenance Log (AML), 
i.e., a book located on board each aircraft that can be used to report 
any Minimum Equipment List (MEL) problem detected on the aircraft 
during operations. When an aircraft undergoes maintenance, the AML 
is checked and the included tasks are often executed on the same day on 
which they are found, without needing to be scheduled. If these tasks 
are excluded from the historical dataset, the second historical curve 
shown in Fig.  7(b) is obtained (historically reduced), which closely 
resembles the curve of simulated tasks.

6.2. Adding reserve aircraft

Four indicators are used for the evaluation of the results of this case: 
(1) the cancellation factor (CF), i.e. the percentage of rotations that are 
cancelled, (2) the arrival delays, (3) the costs of disruptions, and (4) the 
avoided disruption costs when a second reserve is used.

The results for the cancellation factor for all scenarios are shown 
in Fig.  8 along with the 95% confidence interval computed using the 
bootstrap technique. The increase in the AOG average duration causes a 
significant increase in the CF, with the number of cancellations almost 
doubling for an AOG duration factor of 1.4 and becoming more than 
triple for an AOG duration factor of 2. Adding a second reserve aircraft, 
on the other hand, allows for a reduction of the expected cancellations. 
At the baseline, the second reserve halves the number of cancellations, 
bringing the CF from 0.11% to 0.05%. As the value of the AOG duration 
factor increases, the impact in terms of the number of cancellations 
13 
Fig. 7. Empirical CDFs of the relative task anticipation of simulated and historical 
requirements 7(a) and deferred defects 7(b). For DDs, a third curve showing the relative 
anticipation of historical tasks not found and executed on the same day is shown.

Fig. 8. Cancellation factor for different AOG duration factor and reserve aircraft 
scenarios.

that the reserve can avoid increases, and then it stabilizes at around
0.10%.

Fig.  9(a) shows the empirical exceedance probability curve of de-
parture delays, which describes the probability of observing a delay 
greater than a specified value. The results shown are obtained with an 
AOG duration factor of 1, but other scenarios show a similar impact 
on the second reserve aircraft. A detail of delays between one and four 
hours is shown in Fig.  9(b). The use of a second reserve aircraft reduces 
the probability of observing a delay longer than one hour by 0.4% (from 
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Fig. 9. Exceedance probability curve of departure delays, for an AOG duration factor 
of 1: full plot 9(a) and detail 9(b).

3.3% to 2.9%) and the probability of observing a delay longer than two 
hours by 0.1% (from 0.8% to 0.7%).

The economic impact is computed considering the costs of cancella-
tions and delays, including costs associated with European regulations 
on passenger compensation and soft costs related to passenger satisfac-
tion. The computation of delay costs disregards the cost of passengers’ 
lost connections. Fig.  10 displays the disruption costs. The two columns 
on the right show the cost components, and the column on the left 
shows the total costs obtained from their summation. The effects of an 
increased AOG duration factor are significant, with a cost increase of 
+30% for an AOG duration factor of 2. The primary contributors to this 
cost increase are cancellation costs. This can be explained by the high 
costs associated with the cancellation of a flight, rather than with its 
delay, especially considering that cancellation costs, differently from 
delay costs, account for passenger misconnections. 

Fig.  11 shows the avoided disruption costs, i.e. the difference be-
tween the costs incurred with one and two reserves, are computed. For 
low values of AOG duration factors, the impact of the second reserve 
aircraft is comparable for delay and cancellation costs. For higher 
values of the AOG duration factor, the avoided costs of delay remain 
stable, while the avoided cancellation costs increase significantly. This 
can be explained by the fact that as AOGs become longer, the prob-
ability of experiencing disruptions that could lead to both delays and 
cancellations increases, but it is more cost-efficient to use the reserve 
aircraft to avoid cancellations, rather than delays. Furthermore, the 
much higher costs associated with cancellations with respect to delays, 
lead to a higher impact on cancellation costs, rather than delay costs, 
when a comparable number of disruptions of the two types are avoided.
14 
This result shows how using a reserve aircraft is an expensive 
measure, which turns out to be not economically advantageous, despite 
the benefits obtained in terms of operational performance.

7. Discussion

The integration of airline network and maintenance planning
presents a significant challenge due to the inherent complexities and 
operational constraints faced by different departments. Traditional air-
line operations often suffer from inefficiencies stemming from a lack of 
coordination between network planning and maintenance scheduling, 
leading to suboptimal performance and increased operational disrup-
tions. The proposed framework, ANEMOS, seeks to address these issues 
by providing an integrated approach to airline operations, enabling in-
terdepartmental coordination to improve overall system performance. 
However, there are still limitations that must be addressed towards a 
large acceptance of ANEMOS by both industry and academy. The fol-
lowing sections explore these limitations in greater detail. Section 7.1 
discusses how ANEMOS can mitigate challenges and practical con-
straints faced by airlines. The current assumptions made in the model 
and their implications are outlined in Section 7.2. Finally, Section 7.3 
explores potential directions for future research.

7.1. Practical implementation

ANEMOS implements a combined optimization approach that inte-
grates network and maintenance planning. Such differs from current 
airline operations, where these decisions are typically managed by 
separate departments. The adoption of ANEMOS would therefore re-
quire closer interdepartmental collaboration, posing a challenge to its 
acceptance within the industry.

Designed as a decision-support tool, ANEMOS provides valuable 
insights by allowing users to adjust key input elements, such as fleet 
planning and maintenance requirements, and analyze different solu-
tions while accounting for uncertainties. This capability offers sig-
nificant benefits, even when network and maintenance planning are 
handled by different departments. The OCC, responsible for network 
planning, may use ANEMOS to better assign flights to specific aircraft 
while incorporating real-time information from the maintenance de-
partment regarding available maintenance slots and outstanding main-
tenance requirements. In turn, the maintenance department, can lever-
age ANEMOS both to get insights on optimal maintenance planning 
to decrease wasted interval, and to evaluate the effects of non-routine 
labor on the overall maintenance scheduling.

Ultimately, ANEMOS showcases the potential for optimization
through a holistic approach to network and maintenance planning. 
In practice, implementing such an approach may be challenging due 
to the complexity of human resource coordination across operations. 
However, ANEMOS can facilitate negotiations between network plan-
ning and maintenance departments by providing a shared simulation 
platform, it enables the comparison of various constraints, decisions, 
and uncertainties within a unified model.

7.2. Assumptions

For simplification, ANEMOS assumes that several events are inde-
pendent. First, non-routine findings are considered independent of the 
number, type, or duration of scheduled maintenance tasks. Recent work 
by Li et al. (2024) has shown that this is not the case. In maintenance 
planning, ANEMOS also assumes that materials are always available 
and that future labor man-hours are known and constant. Additionally, 
ANEMOS does not account for reactionary delays. However, recent 
data indicates that reactionary delay is the major contributor to the 
average departure delay per flight (Walker, 2022). Finally, turnaround 
activities are estimated based on the average of previous historical 
values. Nevertheless, studies have showed that the turnaround times 
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Fig. 10. Delay, cancellation, and total costs of disruptions for different AOG duration factors and reserve aircraft scenarios.
Fig. 11. Disruption costs are avoided through the use of a second reserve aircraft for 
different AOG duration factors.

vary significantly, particularly at larger airports, during peak hours, 
and when aircraft operate a high number of flights (Malighetti et al., 
2023).

All these assumptions may limit the viability of the solutions pre-
sented by ANEMOS. However, accurately forecasting these factors re-
mains challenging due to limited historical data and the large number 
of causal variables involved. In the future, integrating ANEMOS with 
predictive models could enhance its solutions by providing more reli-
able estimates for these elements. These external models could serve 
as valuable inputs, offering improved predictions for non-routine labor 
time, potential delays, and minimum turnaround times.

7.3. Future work

While the case study demonstrated the feasibility of the frame-
work, it did not fully establish the extent to which ANEMOS can 
enhance interdepartmental coordination. Future studies should include 
empirical validation by analyzing real-world airline operations and 
assessing the improvements in decision-making effectiveness. Addition-
ally, incorporating passenger and crew flows into the simulation would 
further enhance its applicability by providing a more comprehensive 
evaluation of operational performance. Finally, expanding the scope 
of the model to include multiple hubs and point-to-point carriers, 
allowing broader application across different airline operational struc-
tures. By addressing these aspects, ANEMOS can serve as a robust 
decision-support tool that enhances airline efficiency, improves interde-
partmental collaboration, and mitigates the operational challenges that 
airlines frequently encounter. 
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8. Conclusions

This paper presented a stochastic discrete event simulation model of 
airline operations named ANEMOS (Airline Network and Maintenance 
Operations Simulation). This is the first approach in industry and 
research to combine network planning and maintenance in one single 
approach, considering several sources of uncertainty that airlines face 
in their operations. The capabilities of ANEMOS were validated through 
a case study developed in collaboration with a major European carrier, 
investigating the effects of using a second reserve aircraft for the 
simulated fleet. Direct comparison with historical data shows that the 
model closely resembles historically observed operational performance.

For future development, the model will be extended to allow the 
simulation of multiple hubs and point-to-point carriers. Secondly, con-
sidering passenger and crew flows would allow for testing a wider 
range of plans such as crew rosters, leading to a better quantification 
of airline performance in terms of passenger misconnections. Finally, 
widening the scope of the simulated maintenance slots to include 
maintenance heavier than A-checks would allow a better evaluation of 
maintenance-flights operations interaction.
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