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A Unifying Theory of Driver Perception and Steering
Control on Straight and Winding Roads

Kasper van der El , Member, IEEE, Daan M. Pool , Member, IEEE, Marinus René M. van
Paassen , Senior Member, IEEE, and Max Mulder , Member, IEEE

Abstract—Novel driver support systems potentially enhance
road safety by cooperating with the human driver. To optimize
the design of emerging steering support systems, a profound un-
derstanding of driver steering behavior is required. This article
proposes a new theory of driver steering, which unifies visual
perception and control models. The theory is derived directly
from measured steering data, without any a priori assumptions on
driver inputs or control dynamics. Results of a human-in-the-loop
simulator experiment are presented, in which drivers tracked the
centerline of straight and winding roads. Multiloop frequency re-
sponse function (FRF) estimates reveal how drivers use visual pre-
view, lateral position feedback, and heading feedback for control.
Classical control theory is used to model all three FRF estimates.
The model has physically interpretable parameters, which indicate
that drivers minimize the bearing angle to an “aim point” (located
0.25–0.75 s ahead) through simple compensatory control, both on
straight and winding roads. The resulting unifying perception and
control theory provides a new tool for rationalizing driver steering
behavior, and for optimizing modern steering support systems.

Index Terms—Driver steering, multiloop control, preview
information, system identification, visual perception.

I. INTRODUCTION

ROAD vehicles are rapidly being equipped with driver
assistance systems and autopilots for temporary automatic

control. Human-like and individualized automatic controllers
may prove key to optimize the cooperation between the driver
and an automation system [1], [2], but designing such systems
requires a profound understanding of human driver behavior.

Considering steering on winding roads, the driver’s primary
task is to keep the vehicle between the two lane edges. Steering
in essence comprises two processes: 1) selection of perceptual
feedbacks (the driver inputs), and 2) processing of the selected
feedbacks into a steering output (the driver control dynamics).
While drivers are known to rely strongly on visual feedback [3]–
[5], over five decades of research has not led to a widely accepted
theory that unifies both driver visual perception and steering
control.
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In fact, two scientific approaches have emerged, each of
which focuses on one of the two steering processes [6], [7].
The information-centered approach predominantly studies the
visual cues used by drivers. Using experimental tools such as
eye-trackers and visual occlusion, evidence has been provided
that drivers rely on patterns of the optical flow [3], [4], [8]–[10],
both “near” and “far” visual regions [10]–[13], and the road’s
curvature or tangent point [14]–[16]. In contrast, the control-
theoretic approach mostly ignores driver perception and focuses
on understanding and modeling the driver’s control dynamics.
Control theory has clarified that drivers combine feedforward
(preview) control to anticipate on the road’s upcoming curves,
with stabilizing feedback control to suppress disturbances such
as wind gusts [17]–[21].

To accurately predict how drivers will interact with novel sup-
port technologies (e.g., in haptic-shared controllers [1], [2]), it
has become clear that a unifying theory is needed that resembles
both driver visual perception and control [6], [7]. For exam-
ple, the currently popular two-point models [22], [23] combine
state-of-the-art manual control theory [24], [25] with feedback
from near and far bearing angles in the driver’s visual field [11].
Unfortunately, such models in general require assumptions on
both the driver inputs and control organization, so they fail to
explain—and are unsuitable for studying—how drivers adapt
their perceptual feedbacks and control dynamics to task vari-
ables and novel technologies.

There is in fact a direct link between the information-centered
and control-theoretic approaches, as visual cues are related to
the vehicle outputs by the perspective geometry [6]. By first
estimating the human’s multiloop control dynamics with system
identification techniques, the perspective geometry has already
revealed which visual cues humans use for control in various
flying and driving tasks [17], [26]–[28]. For example, Weir and
McRuer [17], [26] showed that driver steering on straight roads
resembles a compensatory control strategy, based on the visual
bearing angle to an “aim point” on the road centerline approx-
imately 0.5 s ahead. To similarly estimate the visual cues used
for steering on winding roads, data of the driver’s feedforward,
preview response dynamics are additionally required. While the
preview response dynamics have never been directly measured
in driving tasks, they have recently been measured in laboratory
tracking tasks using frequency-domain system identification
techniques [29], [30]; these techniques may thus also reveal
exactly what parts of the previewed road drivers use for steering
and how.
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This article aims to provide a new unified theory of driver
steering on straight and winding roads, which includes both
perception and control. The theory is derived directly from data
obtained in a human-in-the-loop simulator experiment, without
any a priori assumptions about the driver’s perceptual feedbacks
or control dynamics. To do so, the data are analyzed with
a multiloop, instrumental-variable system identification tech-
nique, yielding frequency response function (FRF) estimates
of three driver responses, based on: 1) heading feedback, 2)
lateral position feedback, and, most crucially, 3) road preview
(feedforward). These estimates facilitate the formulation of a
control-theoretic model that accurately captures the driver’s
multiloop steering behavior. Additionally, using the perspective
geometry, the model reveals the visual cues used by drivers for
control. The obtained model explains driver steering and allows
for predicting effects of different look-ahead times. Preliminary
results of the experiment have previously been presented at the
2018 IEEE SMC conference, see [31] for details.

II. LINKING VISUAL INFORMATION TO CONTROL THEORY:
PERSPECTIVE GEOMETRY

The driver’s control task is illustrated in Fig. 1. The driver
follows a certain target trajectory (e.g., given by the lateral
position of the road centerline yc), by rotating the steering wheel
with angle δ. External disturbances (e.g., wind gusts, yd, andψd)
can perturb the vehicle’s lateral position y and heading ψ.

Equivalently, drivers minimize the current lateral position
error ye(t) = yc(t)− y(t). However, ye(t) is located directly
below the vehicle, see Fig. 1(c), and is thus not visible from
the driver’s view through the vehicle’s front windscreen. The
driver must instead rely on available visual cues to obtain indirect
information about ye(t). Possible perceptual feedbacks include
static optical features like the bearing and splay angles of the
road edges, and dynamical cues (i.e., the optical flow) such as the
rate of change of these bearing and splay angles [4], [32], [33].
Control-theoretic models typically ignore driver feedback selec-
tion; for example, see Weir and McRuer [17], [26], Donges [18],
and MacAdam [34]. These models directly use the tracking error,
the vehicle states, or the previewed road as inputs, which is
illustrated in Fig. 1(b).

The perspective geometry provides a mathematical relation
between the optical cues and the vehicle states. Fig. 1(a) shows
a single perceptual variable: the bearing angle η to an “aim point”
on the roadTla s ahead of the vehicle. Using Fig. 1(c), the bearing
angle η can be expressed as function of the vehicle and aim-point
lateral positions y and y�c , and the vehicle heading ψ, as follows:

η(t+ Tla) = ψ�c (t+ Tla)− ψ(t)

= arcsin

(
y�c (t+ Tla)− y(t)

D

)
− ψ(t)

≈ y�c (t+ Tla)− y(t)

U0Tla
− ψ(t), for small ψ.

(1)

All symbols are defined in Fig. 1(c). Equation (1) is important,
because it shows that a response to the optical bearing angle is

Fig. 1. Illustration of the driver’s perspective view on a winding road (a), with
the bearing angle η to an “aim point” indicated in white. Schematic of the driver
in a steering task (b), with the scope of typical control-theoretic models in blue,
lumping the perspective geometry and driver blocks and ignoring driver visual
cue selection. The top view on the winding road (c) reveals the geometric relation
between the optical cue η on the one hand, and the vehicle states (y and ψ) and
the aim point (y�c ) on the other hand.

equivalent, from a control-theoretic perspective, to three driver
control responses with respect to y�c (t+ Tla), y(t), and ψ(t).
Moreover, these three control-theoretic responses are not in-
dependent: lateral position and heading feedback are relatively
weighed by a factor 1

U0Tla
that depends on the look-ahead time

Tla, while the same Tla appears as a time shift in the aim point
lateral position y�c (t+ Tla). As will become clear later, this
“match” of Tla is key to this article. Expressions similar to (1)
can be derived for other optical cues (e.g., see [6] for details),
but are not further investigated here, as various researchers have
suggested that the bearing angle is a key perceptual feedback
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Fig. 2. Closed-loop control diagram used for measuring the driver’s multiloop
response properties (lumped together with the perspective geometry). The three
external forcing functions are indicated in red.

that guides driver steering [26], [33]. Possible bearing angle
aim-points are the tangent point, points on the road’s lane edge
or centerline, or points on the future vehicle path [2], [10], [22],
[33], [35].

III. METHOD

This article tests the hypothesis that drivers respond to an aim-
point bearing angle. To do so, experimental human-in-the-loop
data are analyzed with system identification techniques.

A. System Identification Approach

Fig. 2 shows the lumped combination of the perspective
geometry and the driver as a three-channel controller in the
quasi-linear framework [24]. The three linear responses are 1) a
feedback Hoψ to vehicle heading, 2) a feedback Hoy to vehicle
lateral position, and 3) a feedforwardHoyc to the lateral position
of the previewed road centerline. Remaining nonlinearities,
time-varying behavior, and injected noise are accounted for by
the remnant n(t). This three-channel organization provides a
convenient tool for estimating the driver’s multiloop response
properties, and hence for verifying whether or not drivers use an
aim-point bearing angle as perceptual feedback. Nonetheless, it
is not assumed that drivers are organized as the three-channel
controller in Fig. 2, or even close these particular control loops.
All other vehicle states (e.g.,χ,β, ψ̇) and tracking errors (ye,ψe)
are a (linear) combination of the yc, y, andψ inputs, see Fig. 1(c),
so responses to these signals are indirectly also captured by
measuring Hoyc , Hoy , and Hoψ .

1) FRFEstimation: Withaninstrumental-variable, frequency-
domain system identification technique, FRFs of Hoyc , Hoy ,
andHoψ can be estimated without making a priori assumptions
about their dynamics [36]. Three instrumental variables are
required to disentangle the three responses. Therefore, three
external forcing functions are applied in the experiment, see
Fig. 2: the road yc, and two disturbances yd andψd, which appear
to the driver as side-wind gusts that perturb the vehicle lateral
position and heading, respectively. The use of random-appearing
multisine signals, with mutually exclusive sets of input frequen-
cies ωyc , ωψd , and ωyd , guarantees that the forcing functions are
uncorrelated and can serve as instrumental variables [36]. Using
Fig. 2, the Fourier transform of the control output can be written

as:

δ(jω) = Hoyc (jω)Yc(jω)−Hoψ (jω)ψ(jω)

−Hoy (jω)Y (jω) +N(jω). (2)

To solve forHoyc (jω),Hoψ (jω), andHoy (jω), three equations
are required. First, (2) is evaluated only at the target signal input
frequencies ωyc . A second equation is obtained by interpolating
the measured signals (U ,Yc,ψ,Y ) in the frequency domain from
the heading disturbance input frequenciesωψd to these sameωyc
(denoted by Ũ , Ỹc, ψ̃, Ỹ ). A third equation is obtained similarly,
by interpolating from ωyd to ωyc (denoted by Ǔ , Y̌c, ψ̌, Y̌ ). As
the remnant N(jω) is negligibly small compared to the linear
output at the input frequencies [36], the following system of
equations is obtained:⎡

⎢⎣
U(jωyc)

Ũ(jωyc)

Ǔ(jωyc)

⎤
⎥⎦ =

⎡
⎢⎣
Yc(jωyc) −ψ(jωyc) −Y (jωyc)

Ỹc(jωyc) −ψ̃(jωyc) −Ỹ (jωyc)

Y̌c(jωyc) −ψ̌(jωyc) −Y̌ (jωyc)

⎤
⎥⎦

×

⎡
⎢⎣
Hoyc (jωyc)

Hoψ (jωyc)

Hoy (jωyc)

⎤
⎥⎦ (3)

which can be solved for Hoyc (jωyc), Hoψ (jωyc), and
Hoy (jωyc) at the frequencies ωyc . After interpolating all signals
to ωψd and ωyd , (3) similarly provides FRF estimates at those
frequencies. Examples of this technique’s success in estimat-
ing multiloop human control dynamics can be found, amongst
others, in [29], [30], and [36].

2) Model Fitting: As the estimated FRFs reveal the driver
response dynamics, they directly allow for formulating a control-
theoretic model that captures all three steering responses. After
proposing a model, it is fit to the data by minimizing the
following least-squares criterion:

Θ̂ = argmin
Θ

N∑
i=1

|E(jωi|Θ)|2 (4)

E(jω|Θ) = δ(jω)− δ̂(jω|Θ) (5)

with E(jωi|Θ) the modeling error at a single frequency ωi and
N the total number of input frequencies of the three forcing
functions combined. δ(jω) and δ̂(jω|Θ) are the measured and
modeled steering wheel rotations; the latter depends on the
model parameter vector Θ, and is obtained by substituting the
modeled Hoyc (jω|Θ), Hoy (jω|Θ), and Hoψ (jω|Θ) into (2)
(with remnant N(jω)= 0). The variance accounted for (VAF)
is used as a measure for the model quality-of-fit [29]: VAF
= [1− (σ2

ε /σ
2
δ )]× 100% , with σ2

ε the variance of the modeling
error in (5), and σ2

δ the variance of the measured control output.

B. Driving Experiment

1) Driving Task and Apparatus: The experimental setup is
shown in Fig. 3. An abstract world scenery was presented which
showed only the road centerline, in order to limit variability in
participants’ steering behavior, and no physical motion feed-
back was provided. Participants were instructed to follow the
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Fig. 3. Picture of the experimental setup during the experiment, inside the
SIMONA research simulator (SRS) of TU Delft. This simulator is often used
for aviation research, but was adapted to driving for the current experiment.

road centerline as accurately as possible (a tracking task). The
centerline was 10 cm wide and was viewed from 1 m height.
Visuals were presented on the simulator’s collimated projection
system, which provided a 180× 40 deg field of view. The vehicle
moved at constant forward velocity U0 = 50 km/h. The inner-
(ψ) and outer-loop (y) vehicle dynamics, Gψδ (jω) =

1.33
jω and

Gyψ(jω) =
U0

jω in Fig. 2, were pure integrators, identical as used
by Donges [18] and Land and Horwood [11]. The simulator’s
left-hand side was equipped with a customized, electrically-
driven passenger-car steering wheel. The steering wheel stiffness
was set to 0.087 Nm/deg within 5.7 deg of the neutral position
and to 0.131 Nm/deg otherwise, the damping ratio was 0.007
Nm· s/deg and inertia was 0.2 kg· m2. Steering wheel rotations
were limited to ±45 deg due to hardware limitations.

Participants performed four tasks: driving on straight
(S, yc = 0) or winding roads (W, yc �= 0), each with rotational
visual feedback (tasks 1 and 2) and without (tasks 3 and 4).
This article presents only the results of the natural straight and
winding road driving tasks with rotational feedback; results of
the other two tasks can be found in [31].

2) Road Trajectory and Disturbances: The road centerline
and disturbance signals were designed to be the sum of ten
sinusoids; for example, the centerline trajectory is given by

yc(a) =

10∑
k=1

Ayc [k] sin(ωyc [k]a+ φyc [k]) (6)

with amplitudeAyc [k], frequencyωyc [k], and phaseφyc [k] of the
kth sinusoid, and a the along-track distance [37]. The longitu-
dinal centerline coordinates are xc(a) =

∫
cos(ψc(a))da, with

the road heading given by ψc(a) = arcsin(dycda ). The heading
and lateral position disturbances yd(a) and ψd(a) were defined
identical to (6), and were applied directly in the vehicle body
reference frame. All forcing function parameters can be found
in [31]. To avoid spectral leakage, all frequencies ω[k] were
selected to be integer multiples of the fundamental measurement
frequency ( 2π

1389 = 0.0045 rad/m), with 1389 m the centerline
track length. The total track length driven by participants per
measurement run was 1806 m; the first 278 m (run-in) and
last 139 m (run-out) were not analyzed. The forcing function
amplitudes A[k] were scaled to obtain a realistic driving task,
see Fig. 4(a) for their spectra. An example of measured control

Fig. 4. Power spectra of the three experimental forcing functions (a), and
the measured control-output spectrum of Participant 1, averaged over the five
measurement runs (b).

outputs is shown in Fig. 4(b), to illustrate that participants steered
predominantly at the forcing function input frequencies (the
peaks in the spectrum), and above all at the centerline frequen-
cies ωyc , so the task predominantly involved road following.

3) Participants and Procedures: Eight motivated volunteers
participated in the experiment, all students or staff from TU
Delft. Participants signed for informed consent prior to the
experiment. First, a single run of each condition was performed
to familiarize participants with the steering wheel, the vehicle
dynamics, and the display. Then, the four experimental con-
ditions were performed in an order randomized over sets of
four participants according to a balanced Latin-square design.
A condition was performed at least until tracking performance
(rms(ye)) and control activity (rms(δ)) were approximately con-
stant in five consecutive runs, which were then used for analysis.
The applied steering wheel rotations δ(t) and the vehicle lateral
position y(t) and heading ψ(t) were recorded at 100 Hz.

4) Data Analysis: The collected data were interpolated of-
fline to constant along-track distance intervals Δa = 0.1389 m,
to facilitate the frequency-domain analysis without leakage. All
signals were averaged over the five measurement runs in the
frequency domain to reduce effects of remnant noise on the
FRF and model parameter estimates. Final results are presented
as function of the temporal frequency (i.e., in rad/s), which is
obtained by multiplying the spatial, along-track distance fre-
quency (in rad/s) with the forward velocity U0. This facilitates
comparisons with manual control data in the literature (e.g., [17],
[26], and [29]), and is a good approximation, as participants
completed the 1389 m measurement part of the track always well
within 0.5% of the nominal time (100.05 s, the time required to
exactly follow the centerline).

IV. IDENTIFICATION AND MODELING RESULTS

A. Multiloop FRF Estimates

Fig. 5 shows Bode plots of estimated driver heading, lateral
position, and preview response dynamics. No preview response
dynamics were estimated in straight road tasks, as yc = 0. The
cross markers in Fig. 5 indicate the FRF estimates.

1) Heading Response Dynamics: Fig. 5(a) shows that the
Hoψ (jω) FRF estimates approximate gain dynamics at low
frequencies and differentiator dynamics at higher frequencies,
both in straight and winding road tasks. This can be interpreted
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Fig. 5. Bode plots of the estimated multiloop response dynamics for participant 1; FRF estimates with standard errors and model fits. (a) Heading, magnitude.
(b) Lateral position, magnitude. (c) Target, magnitude. (d) Heading, phase. (e) Lateral position, phase. (f) Target, phase.

as responses proportional to the vehicle’s heading angle and
rate. Furthermore, notable phase lag is visible in Fig. 5(d),
with a characteristic roll-off at higher frequencies that reflects
the driver’s response time delay. No evidence of the driver’s
neuromuscular system dynamics is visible in Fig. 5(a) and (d),
suggesting that the neuromuscular bandwidth was higher than
the highest forcing function input frequency (11.5 rad/s).

At low frequencies, the gain Hoψ (jω) dynamics equalize the

vehicle yaw dynamics Gψδ (jω) =
1.33
jω to integrator open-loop

dynamics Hoψ (jω)G
ψ
δ (jω), in agreement with the crossover-

model theory [24]. Consequently, the driver’s heading response
dynamics can be modeled as a compensatory control response,
identical to McRuer’s simplified precision model [24]

Hoψ (jω) = Hcmp
o (jω) = Ke�(1 + TL,e�jω)e

−τe� jω (7)

with gain Ke� , lead time-constant TL,e� , and time delay τe� .
2) Lateral Position Response Dynamics: Fig. 5(b) and (e)

shows that the Hoy (jω) FRF estimates have a shape that is
identical to Hoψ (jω), approximating gain and differentiator
dynamics at low and high frequencies, respectively. However,
the magnitude of Hoy (jω) is substantially lower than that of
Hoψ (jω), so the following model is proposed:

Hoy (jω) = Kψ
y H

cmp
o (jω) (8)

with Hcmp
o (jω) defined by (7) and Kψ

y the driver’s weighing
of heading and lateral position feedback. The observed lateral
position and heading feedback dynamics combined, modeled
by (7) and (8), are consistent with general theories of multiloop
manual control [24], [38]: humans close the inner loop (heading)

with dynamics that equalize the open-loop dynamics to an
integrator, such that the outer loop (lateral position) can be closed
with straightforward proportional control (gain Kψ

y ).
3) Preview Response Dynamics: In winding road tasks,

drivers additionally mechanize the feedforward preview
response Hoyc (jω). The magnitude of the Hoyc (jω) FRF es-
timates in Fig. 5(c) approximates gain dynamics at low fre-
quencies, while the reduced magnitude at higher frequencies
points to integrator dynamics. This suggests that drivers adopt
responses proportional to the centerline lateral position and
smoothed lateral position. Note that the FRF estimates at the
highest frequencies are unreliable, because the measured control
output disappears in the noise, see Fig. 4(b). The phase of the
preview response in Fig. 5(f) reveals phase lead, which increases
towards higher frequencies. This behavior resembles a negative
time delay and can be interpreted as a response to the previewed
centerline ahead.

Comparable preview response dynamics have been measured
in single-loop preview tracking tasks (e.g., see [29] and [30]),
and were modeled with a target prefilter Hof (jω)

Hoyc (jω) = Hof (jω)Hoy (jω). (9)

The reason for including the lateral position response model
(Hoy ) in the preview response dynamics, is that their FRF
estimates are near-identical at the lowest frequencies [compare
Fig. 5(b) with (c), and (e) with (f)], which suggests that identical
(inner-loop) dynamics are visible in both estimates. The follow-
ing prefilter dynamics are consistent with the estimated FRFs in
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Fig. 5, and are identical to the preview model of [29], [30]:

Hof (jω) = Kf
1

1 + Tl,f jω
eτf jω (10)

with Kf the scaling gain, Tl,f the low-pass (smoothing) filter
time-constant,1 and τf the look-ahead time.

B. Control-Theoretic Model

1) Model Synthesis: In contrast with the parallel multiloop
organization in Fig. 2, the FRF estimates suggest that drivers are
organized as series multiloop controller. The heading response
is the innermost loop, because its dynamics (Hcmp

o ) also appear
in the lateral position and preview responses, and can thus be
moved to the right of the summation point in Fig. 2. Similarly,
it follows that lateral position feedback constitutes the middle
loop, and preview feedforward the outer loop. Substituting (7)–
(9) in (2) yields for the full model

δ(jω) = Hcmp
o (jω)E�(jω) +N(jω) (11)

E�(jω) = Kψ
y

[
Hof (jω)Yc(jω)− Y (jω)

]− ψ(jω). (12)

The parameter vector, Θ = [Ke� TL,e� τe� K
ψ
y Kf τf Tl,f ]

T ,
has seven parameters. In straight road driving (yc = 0), Kf , τf ,
and Tl,f are redundant, yielding a four-parameter model.

2) Model Fits: The dynamics of the fitted model are shown
in the Bode plots in Fig. 5, together with the FRF estimates.
The FRF estimates of the driver’s lateral position, heading, and
preview response dynamics are all captured well by the model,
both in straight and winding road driving tasks. This result
is not trivial, given that the model was fit by minimizing the
error in steering output, see (4), and not in each of the esti-
mated multiloop response dynamics separately. There is a small
discrepancy between the model and the FRF estimates at the
very lowest and highest input frequencies, because, here, several
FRF components are poorly estimated (which is clear from the
large errorbars in Fig. 5) and possibly also because the driver’s
neuromuscular system dynamics were not explicitly modeled.
The model also closely matches participants’ steering output,
with VAFs that are well above 90% for all eight participants
(see Tables I and II).

3) Parameters Estimates: Estimated model parameters,
given in Tables I and II, are comparable to values found in
other manual control experiments. For example, the response
time delay τe� is between 0.3 and 0.4 s for all participants,
while values between 0.25 and 0.6 s are typically reported in
the literature [18], [26]. The farthest point of the previewed
centerline trajectory that is used for control in winding road
tasks, characterized by τf , is on average positioned around 0.9 s
ahead, comparable to preview tracking tasks [30], and almost
identical to the position of the “far point” (0.93 s) measured

1Alternatively, the observed high-frequency smoothing behavior can be mod-
eled by taking the (weighed) average of two viewpoints, much like in recent
two-point driver models [2], [22]. However, here, a low-pass filter is chosen
because this captures the centerline smoothing behavior with a single parameter
(Tl,f ) and because the shape of the FRF phase in Fig. 5(f) reflects the behavior
of a single negative time delay.

TABLE I
MODEL VAFS AND ESTIMATED PARAMETERS, STRAIGHT ROAD

TABLE II
MODEL VAFS AND ESTIMATED PARAMETERS, WINDING ROAD

by Land and Horwood [11] in their visual occlusion driving
experiment.

Tables I and II show that participants generated more lead
(higher TL,e� ), and relied relatively less on heading feedback
(lower Ke� , higher Kψ

y ) in straight road tasks, as compared to
winding road tasks. Table II further shows that the estimate ofKf

equals exactly one for all eight participants, so this parameter can
be dropped from the model. Consequently, only six parameters
are required to capture all characteristic dynamics of driver
steering on winding road.

C. From Control Theory to Visual Cues

1) Physical Interpretation of Modeled Behavior: The de-
rived model, given by (11) and (12), suggests that drivers mini-
mize a certain error variable e� through compensatory control;
the key question then is which error. In Section II, it was
explained that the perspective geometry connects control theory
to visual cues. Comparison of (12), the modeled error e�, with
the Fourier transform of the aim-point bearing angle η in (1),
reveals that e� = η when

feedforward: Hof (jω)Yc(jω) = Y �c (jω)e
Tlajω (13)

feedback: Kψ
y =

1

U0Tla
. (14)

The first equality, (13), essentially states that the preview
prefilter Hof (jω) should output a single aim-point Tla s ahead.
Evaluating the modeled prefilter in the time domain, as done in
Fig. 6, yields the convolution of the prefilter’s impulse response
with the previewed trajectory ahead (up to τf ), which output
can indeed be considered as a single aim point. The position
of the aim point ahead can be approximated by τf − Tl,f , as
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Fig. 6. Modeled centerline filter Hof can be interpreted as the driver’s
mapping of the previewed centerline yc into an aim point y�c . Illustrated is the
time-domain convolution of the impulse response of Hof with the centerline
up to τf s ahead, which can be interpreted as a particular preview weighting by
the driver (also see [39]). The position of the resulting aim point ahead can be
approximated by τf − Tl,f , because the phase lag effects of 1

1+Tl,f jω
equal

those of a pure delay at low frequencies.

explained in Fig. 6, such that the equality in (13) simplifies to
τf − Tl,f = Tla.

The second equality, (14), reflects that the control-theoretic
model gainKψ

y , the driver’s relative weighing of lateral position
and heading feedback, can also be interpreted as a look-ahead
time. “Looking” closer ahead (lower Tla) corresponds to a
stronger reliance on lateral position feedback (higher Kψ

y ), and
vice versa.

2) Evidence of Bearing Angle Control on Winding Roads:
The crucial point of (13) and (14) is that together, they allow for
testing whether drivers use the aim-point bearing angle as per-
ceptual feedback in winding road driving tasks. This is the case
when τf − Tl,f = 1

Kψ
y U0

, that is, when the estimated feedback

and feedforward responses correspond to the same look-ahead
time. Fig. 7 shows that, indeed, all eight participants tuned their
feedback and feedforward control dynamics to correspond to
the same look-ahead time. To better appreciate this striking
equality, note that from a control-theoretical perspective, the two
look-ahead times emerge from two fully independent processes.

1) The driver’s relative weighing of heading and lateral
position feedback (Kψ

y ) manifests as the difference in
magnitude between the FRF estimates in Fig. 5(a)
and (b).

2) The driver’s feedforward, the processing of the previewed
trajectory (Hof ) into an aim point shifted τf − Tl,f s
ahead, manifests as the characteristic increase in phase
towards higher frequencies of the preview response FRF
estimates, in Fig. 5(f).

This confirms the main hypothesis of this article: drivers use
the aim-point bearing angle η as perceptual feedback for steer-
ing, as illustrated in Fig. 1(a). Estimated aim-point look-ahead
times are between 0.5 and 0.75 s for all participants, as illustrated
in Fig. 7(b). Substituting Tla for both τf − Tl,f and 1

Kψ
y U0

in the

model means that only five parameters are required to capture
the driver’s control output, control dynamics, and selection of
visual feedbacks in winding road tasks. A control diagram of
the final model is given in Fig. 8 .

3) Bearing Angle Control on Straight Roads: It is impossible
to validate the equality of (13) and (14) in straight road tasks,
where drivers lack a preview response. As has been explained

Fig. 7. Correlation between the look-ahead times Tla in the control-theoretic
feedforward and feedback response channels in the winding road task (a), based
on parameters estimates in Table II, and the estimated look-ahead times (Tla =

1

K
ψ
y U0

) for winding (b), and straight road tasks plotted in perspective (c).

in the literature (e.g., [38] and [33]), the driver’s weighing of
heading and lateral position feedback on straight roads can
equally be the result of separate responses to the road’s vanishing
point (heading information) and splay angle (lateral position
information), as by a single aim-point bearing angle response.
Nonetheless, assuming that drivers use comparable perception
and control strategies on straight and winding roads, it follows
that the aim-point bearing angle is also the driver’s main per-
ceptual feedback on straight roads. Using (14) to estimate the
aim-point look-ahead times in straight road tasks yields values
between 0.25 and 0.55 s for the eight participants, see Fig. 7(c).
Note that for straight road driving, the exact same aim-point
model was previously proposed by Weir and McRuer [17], [26].

V. MODEL ANALYSIS

With the main hypothesis of this article confirmed, the new
unified perception and control model will be used to rationalize
and predict (adaptations of) driver steering behavior.

A. Feedforward Control: Preview Prefilter

First, it is investigated why equalizing the feedback ( 1

U0K
ψ
y

)

and feedforward (τf − Tl,f ) look-ahead times is a particularly
“good” control strategy, not only because it is perceptually
convenient, but also from a performance perspective. To do so,
the originally proposed seven-parameter model is used.

1) Perfect Target-Tracking Dynamics: Drivers follow a road
centerline perfectly when ye(t) = 0, or equivalently, when
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Fig. 8. Driver steering model, which combines visual feedback selection and control, and driving on straight (yc = y�c = 0) and winding roads (full model).
The model is consistent with the estimated driver multiloop FRFs in Fig. 5.

Fig. 9. Bode plots of the preview prefilter dynamicsHof (a), (b), based on the estimated model parameters in Table II. The time constants 1

K
ψ
y U0

and 1

Ke�K
ψ
G

follow from (16). The feedforward look-ahead time τf markedly affects the standard deviation of the lateral position errors σye (c).

y(t) = yc(t). From Fig. 2, it follows that the closed-loop dy-
namics due to yc (neglecting yd, ψd, and n) are given by

Y (jω)

Yc(jω)
=

Gyδ (jω)Hoyc (jω)

Gyδ (jω)Hoy (jω) +Gψδ (jω)Hoψ (jω) + 1
. (15)

After substituting Y (jω) = Yc(jω), together with the modeled
driver control dynamics from (7)–(9) and the vehicle dynam-
ics, the following expression can be obtained for the “perfect”
prefilter dynamics that yield ye(t) = 0:

HP
of
(jω) = 1

︸︷︷︸
low freq.

+
1

Kψ
y U0

jω

︸ ︷︷ ︸
middle freq.

+
1

Kψ
GU0K

ψ
y H

cmp
o

(jω)2

︸ ︷︷ ︸
high freq.

.

(16)
This equation shows that perfect centerline tracking requires a
direct unfiltered response to the centerline’s lateral position yc at
low frequencies, and responses to the derivative (heading) and
second derivative (curvature) at increasingly higher frequencies.
Example HP

of
(jω) dynamics are shown in Bode plots in Fig. 9.

The strict separation between frequency regions suggested by
(16) is not visible in practice, because the three terms partially
cancel each other due to phase differences. Fig. 9 reveals that
drivers who adopt prefilter dynamics that approximate a gain in
magnitude, and a negative delay in phase, can attain near-perfect
centerline tracking up to approximately 7 rad/s.

2) Analysis of Measured Prefilter Dynamics: Measured
driver prefilter dynamics Hof (jω) match the phase required

for perfect target-tracking well, see Fig. 9(b). However, the
magnitude of the measured Hof (jω) dynamics reveals explicit
lag behavior (centerline smoothing) at higher frequencies, as op-
posed to the lead dynamics required for perfect target-tracking,
see Fig. 9(a). Together, this indicates that drivers synchronize
the vehicle’s lateral position movements well with the changes
in centerline lateral position, while cutting corners at high
frequencies.2 For the data in Fig. 9, the standard deviation
of the vehicle’s lateral position deviation from the centerline
σye ≈ 0.1 m, which is sufficiently low for safe lane keeping
on most roads; measured deviations on real roads are typically
higher [10], because the current model analysis lacks external
disturbances (yd, ψd) and human remnant (n).

3) Optimal Feedforward Look-Ahead Time: The measured
driver preview prefiltering dynamics are suboptimal, as σye >
0 m. However, Fig. 9(b) clearly shows that the effective feed-
forward look-ahead time (τf − Tl,f ) is optimal, and that ye
increases sharply when, for example, only τf is changed [see
Fig. 9(c)]. A τf that is just 0.3 s away from the optimum yields
a striking ten-fold increase in the lateral deviations.

2In preview tracking tasks, human controllers occasionally adopt a high-
frequency, open-loop response in parallel to the control response observed
here. The additional, fast open-loop response allows for matching HP

of
also at

high frequencies and leads to improved target tracking. However, such a high-
frequency response comes at the cost of substantial control effort, and appears
to be mechanized only by experienced controllers in tasks with high-frequency
target signals and first-order (or lower) vehicle dynamics [40], [41].
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Fig. 10. Bode magnitude plot of the inner- (heading, Gψ
δ

) and outer-loop
(lateral position,Gy

δ
) vehicle dynamics, and the aim-point bearing angle dynam-

ics Gη
δ
(jω, Tla) for three look-ahead times Tla (a). Measured bearing angle

open-loop crossover frequencies ωηc (b), as a function of the measured 1/Tla,
the break frequency of Gη

δ
(jω, Tla).

From the perfect target-tracking dynamics in (16), an expres-
sion can be derived for the optimal feedforward look-ahead time.
The best match with the phase ofHP

of
(jω) at low and middle fre-

quencies is obtained when the effective feedforward look-ahead
time τf − Tl,f of the driver’s prefilter Hof approximates the
highest time constant in (16), which, remarkably, is 1

Kψ
y U0

. This

is the exact same equality that indicated a response to the aim-
point bearing angle, and was shown to be perfectly satisfied by
all eight participants, see Fig. 7. The severe performance penalty
for poorly tuned look-ahead times explains why bearing angle
control is not only perceptually feasible, but also desirable for
performance. It explains the near-perfect statistical correlation
between τf − Tl,f and 1

Kψ
y U0

in Fig. 7.

B. Aim-Point Dynamics and Look-Ahead Time

After droppingKf and substitution of Tla, the model in Fig. 8
was obtained, which reflects that drivers adopt a compensatory
control strategy, with the aim-point bearing angle η as error-
feedback variable. The driver’s selection of an aim-point and
the driver’s response dynamics therefore together determine the
attained driving performance and stability.

1) Aim-Point Dynamics: As drivers do not respond directly
to the vehicle outputs (e.g., y, ψ), but to the selected visual
feedbacks, the apparent control task as perceived by the driver
is defined by the visual cue dynamics, and not the vehicle dy-
namics [6], [27]. Visual cue dynamics are the combination of the
vehicle dynamics and the perspective geometry, and characterize
the movement of the considered visual cue within the driver’s
visual field due to steering inputs. The dynamics of the aim-point
bearing angle η are obtained by dividing the Fourier transform
of (1) by δ(jω), yielding

Gηδ (jω, Tla) =
η(jω)

δ(jω)
=

−Gyδ (jω)
U0Tla

−Gψδ (jω). (17)

The aim-point dynamics thus depend explicitly on the look-
ahead time Tla selected by the driver. Fig. 10(a) shows a Bode
magnitude plot of the aim-point dynamics for various look-
ahead times.Gηδ (jω, Tla) resembles the vehicle’s lateral position
dynamics (here, a double integrator) at low frequencies, and the

Fig. 11. Simulated effects of the look-ahead timeTla on tracking performance
σye (a) and control activityσδ̇ (b). Other model parameters are fixed at the values
shown in Fig. 9. The vertical gray line indicates the average experimental Tla
estimate (the average experimental Ke� ≈ 2 rad/rad).

vehicle’s heading dynamics (here, a single integrator) at high
frequencies. By substituting the vehicle dynamics into (17), it
follows that the break frequency is 1/Tla rad/s.

Selecting an aim point close ahead thus predominantly yields
a double integrator control task, and requires explicit lead equal-
ization from the driver inHcmp

o (jω), according to the crossover
model [24]. An aim point far ahead, on the contrary, effectively
yields a single integrator control task, in which proportional
compensatory control suffices. For the performed experiment,
Fig. 10(b) shows that the measured crossover frequencies ωηc of
the open-loop dynamics Gηδ (jω, Tla)H

cmp
o (jω) are in general

higher than 1/Tla rad/s. This indicates that crossover occurs
at a frequency where the bearing angle open-loop resembles
integrator dynamics.

2) Aim-Point Look-Ahead Time: The effects of varying the
aim-point look-ahead time Tla are also investigated in closed-
loop model simulations, identical to those for τf variations in
Fig. 9. Here, however, the final five-parameter bearing-angle
model is used, and the experimental disturbances yd and ψd are
additionally included. All model parameters (except Tla) are
fixed at the values listed in Fig. 9(b).

Fig. 11 shows that the driver-vehicle system becomes unstable
when the look-ahead timeTla is reduced to below approximately
0.3 s, which is a direct consequence of the bearing angle dynam-
ics that converge to a double integrator and become less stable
[see Fig. 10(a)]. Increasing the look-ahead time Tla beyond the
optimal value (0.5–1 s ahead) in general leads to larger deviations
from the centerline [σye , Fig. 11(a)]. A larger look-ahead time
further yields smoother control outputs [lower σδ̇, Fig. 11(b)],
while more aggressive steering corrections are predicted for
smaller look-ahead times. These model predictions correspond
to the behavioral trends measured by Land and Horwood [11]
for different look-ahead times in their visual occlusion driving
experiment.

Fig. 11 also illustrates the interaction between the driver’s
two key processes (feedback selection and control). When a
compensatory control strategy with a lower response gain Ke�

is adopted (dotted lines in Fig. 11), a higher look-ahead time Tla
is required to achieve optimal performance, as the minimum in
σye in Fig. 11(a) moves to the right. Equivalently, drivers that
select an aim point farther ahead (higher Tla) should in general
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minimize the bearing angle with a lower response gain Ke� to
achieve optimal performance.

VI. DISCUSSION

This article presented a new, unifying theory of driver percep-
tion and steering control through an empirical, data-driven ap-
proach. Based on steering data, collected in a human-in-the-loop
simulator experiment with three uncorrelated forcing functions,
multiloop FRF measurements of drivers’ steering dynamics were
obtained. These FRF estimates, in particular of the driver’s
preview, feedforward response in winding road tasks, provided
strong evidence that the visual bearing angle between the vehicle
heading and an aim point ahead is the main perceptual feedback
that guides steering. Moreover, the FRF estimates showed that
the bearing angle is minimized through straight and simple
compensatory control.

The resulting unifying theory of driver perception and control
applies to steering on both straight and winding roads. Drivers
select an aim point on the centerline ahead on straight roads [17],
[26], while the aim point on winding roads is obtained by
smoothing a portion of the centerline ahead. Because the result-
ing bearing-angle error is minimized through a compensatory
control strategy, a unifying framework emerges for manual
control behavior that spans tasks as different as compensatory
display tracking and steering on winding roads. The derived
driver model directly extends the widely-accepted crossover
model theory [24] for compensatory tracking, and shows that
the key difference is which error is being minimized by the
human controller.

The driver’s main, low-frequency control response can be
characterized by only two processes: first, selection of an aim
point in the visual scene at a look-ahead time Tla ahead of
the vehicle, and second, minimization of the visual bearing
angle between the vehicle heading and the aim point through
proportional control (gain Ke� ) with a response time delay τe� .
Such compensatory control based on a future target point is also
known as prospective control [7], [42]. Additional research is
required to establish the range of driving velocities, vehicle
dynamics, road widths, and geometries, for which a simple
bearing-angle minimization strategy is adequate. Driver lead
generation (TL,e� ) and centerline smoothing (Tl,f ) are auxiliary
high-frequency behaviors, at least for the task performed here,
and help to improve on performance, stability, and control effort
objectives.

In theory, the baseline, low-frequency control strategy re-
quires visibility of only an aim point. This is consistent with
the seminal experiment of Land and Horwood [11], in which
drivers could follow a road adequately at low driving velocities
(i.e., low-frequency control) when only a single one-deg vertical
portion of the visual field was available. For accurate steering
at higher velocities (comparable to the driving task performed
here, with higher frequencies in the forcing functions), Land
and Horwood [11] showed that multiple portions of the visual
field are required (i.e., “near” and “far” points). Indeed, for the
measured high-frequency lead behavior (TL,e� ), drivers may
need feedback of the global optical flow to obtain heading rate

information [8], [38]. Moreover, for smoothing the centerline’s
higher frequency oscillations, visual preview of a substantial
portion of that centerline seems essential [30]. To truly connect
the steering behavior measured here with the literature, results
of a visual occlusion experiment (e.g., Land and Horwood [11])
should be analyzed with the system identification techniques
from this article.

The proposed unified perception and control theory provides
a potentially crucial new analytic tool for researchers and engi-
neers. For the first time, it is possible to quantitatively predict
the effects of different perceptual feedback selection strategies,
which determine closed-loop performance and stability together
with the driver’s control dynamics. The model furthermore
allows for predicting exactly how much preview drivers need
(model parameter τf or Tla + Tl,f ), and how this depends on
the given driving task, such as the driving velocity, vehicle
dynamics, and road width and curvature. With proper extensions,
the model may be used in future work for quantifying effects of
other sensory feedbacks, to assess the fidelity of physical motion
feedback provided in driving simulators, or the effects of novel
steering support systems with haptic interfaces [1], [2].

VII. CONCLUSION

This article studied driver steering behavior by measuring
and modeling the driver’s multiloop response properties. FRF
estimates revealed how drivers use visual preview of the road
ahead for control, and facilitated the formulation of the first data-
driven classical control model that unifies driver perception and
control. Perspective geometrical relations suggest that drivers
are organized as series controllers. Both on straight and winding
roads, drivers minimize the bearing angle to an “aim point”
(located 0.25–0.75 s ahead) through compensatory control. Such
bearing angle control yields adequate, yet suboptimal centerline-
tracking performance, as well as corner-cutting behavior. Ex-
tending previous models such as the seminal crossover model, a
single framework is now available for analyzing manual control
behavior in tasks that range from single-loop compensatory
tracking to driver steering on straight and winding roads. The
proposed model provides a tool for predicting adaptations in
driver control dynamics and, for the first time, also in driver vi-
sual feedback selection. The model can thereby be instrumental
for rationalizing between-driver variability and for optimizing
the design of human-like or individualized steering support
systems in modern road vehicles.
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