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Abstract

Data outsourcing has become one of the primary
means for preserving information as it passes the
responsibility of storage management to the ser-
vice provider. However, storing sensitive data re-
motely poses privacy threats for the data own-
ers. Searchable encryption (SE) is a technique that
allows performing search queries over encrypted
data. The majority of SE solutions model the server
as an honest-but-curious entity. If this is not the
case, the results of the queries might not be reli-
able. The issue can be mitigated by implement-
ing SE within blockchain technology. This paper
proposes a searchable encryption scheme that uses
smart contracts in Hyperledger Fabric. For storing
a set of documents securely, the data owner chooses
an identifying keyword for each document. The
identifying keywords and documents ids are stored
in a matrix that facilitates keyword search; conse-
quently, the matrix is appended to the ledger. For
retrieving a document, the data owner builds an en-
crypted query (trapdoor) using the identifying key-
word; the trapdoor is passed to the smart contract.
Thus, the data owner delegates the smart contract to
perform the query on their behalf. The data owner
receives the document id, which can then be used to
retrieve the respective content. The proposed pro-
tocol achieves faster data pre-processing, i.e., ma-
trix computation, when the number of documents
is smaller. The file size does not affect the time ef-
ficiency of the scheme. Nonetheless, the execution
time for pre-processing increases with regard to the
number of documents. As a result, the system is
Input/Output (I/O) Bound.

1 Introduction
Data confidentiality has gained substantial interest due to the
proliferation of information stored in open infrastructures.
Outsourcing data to the cloud is a preferred alternative
compared to preserving it in local storage. In this manner, the
concerns regarding memory management and data retrieval
are circumvented by the user.
As possibly confidential data is stored on remote servers,
there exist risks regarding potential attackers such as admin-
istrators, or hackers having root rights, which can lead to
them having full access to the servers and consequently to
the plaintext (PT) data. Thus, it is important to have the data
stored encrypted on an untrusted server. By encrypting the
PTs into cyphertexts (CTs), it is guaranteed that no attacker
can recover the PT without the necessary decryption keys.
However, it becomes more difficult for trusted parties/data
owner(s) to search the CT data compared to searching the PT
data [1].

Searchable encryption (SE) is a technique that allows
users to search encrypted data in a secure manner. In the
majority of SE schemes, the remote server is modelled as

an honest-but-curious entity that always executes correctly
search queries on behalf of its users. It turns out that this is
not always the case. If the server is malicious, the results of
the request might not be reliable.
Existing protocols, e.g., [2; 3], implement verifiable search-
able encryption schemes in order to check the validity
of search results. Nonetheless, malicious behaviour can
be detected without penalty in most schemes. Thus, a
verifiable searchable encryption scheme that can restrain the
demeanour of all participating parties is required [4].

1.1 State of the Art
One candidate solution for mitigating this problem is
depicted by implementing searchable encryption within
distributed ledger technology (DLT). There have already
been proposed solutions implementing SE within DLT [5; 6;
7]. DLs are distributed databases shared across a network
of peers. Distributed ledgers provide trust, immutability,
transparency and provenance.
An example of DLT is Hyperledger Fabric (HLF) [8]. HLF
is a modular and versatile distributed ledger framework that
supports the collective development of blockchain-based [9]
distributed ledgers. Ledgers hold records of all the state
transitions in the fabric. Records are stored as a chain of
blocks in order to preserve sequencing and immutability.
State transitions are the result of the transactions submitted
by the participating peers. The current state is maintained in
the state database contained in the ledger. The ledgers and
the smart contracts are hosted by the peer nodes.
Transactions (TXs) can create, update or delete the infor-
mation on the ledger. TXs are committed to the ledger as a
collection of assets represented by key-value pairs. Assets
define the structure of the resources shared between the
participating nodes.

Chaincode is used for asset manipulation, i.e., asset
definition, modification and other actionable logic. In HLF
the terms smart contract and chaincode are used interchange-
ably. Smart contracts (SCs) [10] are transaction protocols
that are executed in an automated manner in accordance
with some predetermined conditions. These encapsulate the
shared information and procedures in a network. SCs define
the TX logic that alters the lifecycle process of a business
object contained in the world state. The SC is packaged into
chaincode which is then deployed to the network.
Peers interact among each other through channels. Chain-
code invocation can be done through peer connections. Peers
can belong to different organisations which share common
rules for assets manipulation. Smart contracts can be created
in any organisation in order to share the business logic among
the consortium members.
The design of HLF is intended for enterprise use, satisfying a
broad range of industry use cases. It was started in December
2015 by the Linux Foundation [11].

1.2 Searchable Encryption
A traditional searchable encryption scheme allows the
client to delegate a server for conducting the data search



on its behalf. The data owner can identify the documents
D1, D2, D3, ..., DN by selecting a variable number of
identifying keywords wi, wi+1, ... for each document Dj .
For encrypting the PTs, the data owner has to first create
an index table I that maps the keywords to the respective
documents. Then, the content is encrypted and outsourced
to the cloud. For encrypting the documents, the majority
of the implementations use symmetric key encryption [2;
12; 13; 14; 15]. This allows only the key holder to create
searchable CTs and trapdoors. Zhang et al. [16] proposed
a searchable asymmetric encryption method that supports
multiple data owners. Any user can create searchable CTs
under the public key, whereas trapdoors are generated using
the corresponding private key.
For searching the data, the key holder has to build a trapdoor
T = TrapdoorK(w), with K the encryption key and w
the identifying keyword. Trapdoors are encrypted queries
used for search delegation. These allow seeing whether the
encrypted keyword wENCK

is contained in the encrypted file
Di,ENCK

using the index table I . If it is, the identifier of the
document Di is returned and the client can decrypt the index
and search for the document.

This paper studies searchable encryption using smart
contracts in Hyperledger Fabric. Firstly, the necessary
concepts and open issues are discussed more in-depth,
followed by modelling a candidate solution for the problem.
Then, an implementation is provided using a simulation
environment. Lastly, the setup and results of the model are
discussed.
The structure of the paper is as follows. In section 2 the
methodology is presented, followed by the protocol overview
and system model in section 3; section 4 describes the
simulation scenario, along with the results obtained. The
ethical aspects of this study are discussed in section 5.
section 6 reviews the results obtained and discusses any
possible edge cases. section 7 concludes this paper and lays
the foundations for future work.

2 Methodology

For developing greater understanding about searchable en-
cryption and Hyperledger Fabric, the literature available has
been reviewed. After gathering enough information, an initial
design of the protocol was proposed, followed by implement-
ing the actual model and correcting any details. Subsequently,
the performance of the algorithm was assessed. The work was
concluded by logging all the findings and drawing the conclu-
sions that followed.
The implementation was done using as programming lan-
guages Java [17] and Go [18]. For the integrated development
environment (IDE), IntelliJ IDEA and Visual Studio Code
(VS Code) were used. The network can be run either by using
the command line interface, by installing the IBM Blockchain
Platform VS Code plugin [19] or by cloning the application
gateway in Java [20]. The simulation environment can be
reproduced using the test network provided by Hyperledger
Fabric [21].

2.1 Problem Description

Storing data remotely has become one of the most prominent
ways of information preservation. In the most classical
scenario, the user directly uploads their data to the remote
service, leaving the encryption process to the service
provider. This method, however, does not guarantee privacy
and security.
A searchable encryption scheme is considered to be secure
if there is no possibility for an unauthorised entity to learn
the plaintexts based only on the cyphertexts [12]. Privacy is
achieved by encrypting the data locally prior to outsourcing
it. Nonetheless, the difficulty of performing data search
increases significantly.

Symmetric Searchable Encryption (SSE) was first pro-
posed by Song et al. [22]. In this scheme, the user data is
stored remotely in a secure manner. Information retrieval
is done by selecting search segments of the data, while
document decryption is done locally. The data owner is able
to allow access to other users who can perform search queries
using the provided trapdoor.
Su, Zhang and Mu introduce in [23] a search framework for
health systems. The BA-RMKABSE scheme is based on
two smart contracts, one for determining whether the query
trapdoor matches the secure indexes (search smart contract)
and one for checking the correctness of the results returned
and calculating the score of the corresponding files. It
returns the top-k files matching the search criteria. However,
BA-RMKABSE is based on the Ethereum blockchain [24]
and focuses on multi-keyword ranking search.
Tahir and Rajarajan provide in [25] a framework, Permis-
sioned Blockchain-based Searchable Encryption (PBSE),
that facilitates keyword search over encrypted data stored
on the blockchain network. The scheme is based on prob-
abilistic trapdoors, thus it is privacy-preserving. For each
keyword search, probabilistic trapdoors generate different
search tokens. This way, the search pattern remains hidden
and protected against distinguishability or passive attacks.
PBSE comprises of eight polynomial time algorithms for
key generation, signature generation, index construction,
index embedding, trapdoor creation, data appending, search
outcome and data decryption. The scheme proposed in this
study is based on the theoretical concepts presented in the
PBSE framework.

3 Protocol Overview

This section provides an overview of the steps involved in
implementing searchable encryption in Hyperledger Fabric
Smart Contracts. The terms notations and abbreviations used
for describing the protocol are shown in Table 1.

3.1 System Model

The first step of the scheme is key generation. The result of
the function invocation is a symmetric key K generated using
the Advanced Encryption Standard (AES). AES is a variant
of the Rijndael block cipher [26].



K main key
D = {D1, D2, .., Dn} set of documents
D̃ = {D̃1, D̃2, ..., D̃n} set of encrypted documents
w = {w1, w2, ..., wn} set of selected keywords
ENCK(PT ) encryption of PT using key K
DECK(CT ) decryption of CT using key K
HMACH,K(M) HMAC of message M using

hash function H and key K
I index table
λ security parameter
TK(w) trapdoor function on

keyword w using key K

Table 1: Terms Notations and Abbreviations

Data Appendment
Before appending the data to the blockchain, the data owner
(DO) selects an identifying keyword for each document,
followed by constructing the index table I . The index
table shows the presence or absence of a keyword from
a document. For building I , the DO has to provide the
symmetric key K generated in the first step, along with
the documents and their respective keywords. The function
returns a two-dimensional index array, I . The first row of
the matrix contains the modular inverses (with respect to
some big prime number P ) of the hashed keywords, whereas
the first column holds the encrypted document identifiers
{ĩdD1 , ĩdD2

, ..., ĩdDn
}. The rest of the matrix is filled with

values corresponding to the frequency of the keywords for
each file.
Hashing the data is done using HMAC-SHA-X. SHA-X
represents one of the hash functions that have digests (hash
values) equal to 224, 256, 384 or 512 bits: SHA-224, SHA-
256, SHA-384, SHA-512, SHA-512/224 or SHA-512/256.
Hash functions are mathematical algorithms that map data
of variable length to a fixed-size bit array, known as the
hash value or the message digest. These are one-way func-
tions (preimage resistant) which implies that is practically
infeasible to invert or reverse the computation [27]. HMAC
[28] is a keyed-hash message authentication code that uses
a cryptographic hash function, in this instance SHA-X, and
a secret cryptographic key, i.e., K. HMAC can be used to
determine whether a message sent over a channel has been
tampered with, provided that the sender and receiver share a
secret key.
The encryption is done using the AES algorithm in Cipher
Block Chaining (CBC) mode with PKCS#5 Padding. Com-
pared to the Electronic Codebook (ECB) mode, CBC excels
in hiding away patterns in the PT by making the encryption
of each block dependent not just on the key, but also on the
CT of the previous block. This is done by doing XOR oper-
ations between the current block and the ciphertext from the
previous block. For the first block in the text, an initialisation
vector is required for XORing. PKCS#5 Padding is a padding
scheme that pads the PT to be multiples of 8-byte blocks [29].

After generating the index table I , the data owner en-
crypts the content of the documents using the algorithm

previously described (AES/CBC/PKCS#5Padding) and
stores the set of encrypted documents D̃ = {D̃1, D̃2, ..., D̃n}
on the ledger. The index table is stored by invoking the smart
contract.

Smart Contract Model
The smart contract defines two assets, one for the docu-
ment and one for the index matrix. For each document, the
document identifier (id), name, corresponding keyword and
document content are stored. For the matrix, the variables
tracked are the identifier of the matrix (id) and the actual two-
dimensional array I . The private fields corresponding to the
two classes are presented in Listing 1.

public class Matrix {
$$@Property ()
private String id;
$$@Property ()
private String [][] I;
}
public class Document {
$$@Property ()
private String id;
$$@Property ()
private String name;
$$@Property ()
private String keyword;
$$@Property ()
private String content;
}

Listing 1 Structure of the Matrix and Document classes

The smart contract provides functions for asset operations
such data creation and data retrieval. Apart from these meth-
ods, the SC implements methods for storing the index matrix
I on the ledger and for searching the data.

Data Search
Once the encrypted documents and the index table I are
recorded in the blockchain network, the data owner can
perform search queries for retrieving the files corresponding
to the keyword searched for. In order to do this, DO has
to first build the trapdoor. This is performed locally. The
trapdoor TK(w) is created by providing the keyword w
to search for, the key K previously used for encrypting
the document Di, along with the initialisation vector and
the hash function H . The resulting TK(w) = (d, c) is
composed of two numbers, one that contains the HMAC
of the encrypted keyword modulo the big prime number
P : d = HMACH,K(ENCK(w) mod P ) and one that
holds the product between the HMAC of the keyword
a = HMACH,K(w) mod P and the encrypted keyword
b = ENCK(w) mod P reduced modulo the prime number
P : c = a · b mod P .
Once TK(w) is generated, the trapdoor holder can delegate
the smart contract to perform search operations. Thus, the
algorithm is run by the smart contract and not locally. The



search method requires as input the trapdoor TK(w) and
returns the encrypted document identifier ĩdDi

that satisfies
the search condition, i.e., Di corresponds to the keyword w
DO was looking for.
After retrieving the respective encrypted document identifier
ĩdDi , the data owner decrypts it locally, DECK(ĩdDi). DO
retrieves the encrypted document contents D̃i by calling
the method contained in the smart contract for document
retrieval. Lastly, the encrypted document D̃i is decrypted
locally Di = DECK(D̃i) and the content of the document
Di can be accessed.

3.2 System Implementation
This subsection provides the implementation details of the
protocol described in subsection 3.1.
The construction of the index table I is shown in algorithm 1.
It takes as input the symmetric key K, a dictionary that maps
the set of documents D to the set of corresponding keywords
w and the index table I . Initially, I is a matrix containing
only zeroes. The function updates the index table and returns
the encrypted documents D̃.

Algorithm 1 buildIndex (K,Dict⟨D,w⟩, I)
for each kw ∈ w do ▷ compute keyword frequency

for each d ∈ D do
for each t ∈ d do ▷ current word in d

if t = kw then
update frequency of kw for d in I

D̃ ← D̃ + ENCK(t)

j ← 1
for each (kw, d) ∈ Map(w,D) do ▷ kwd-doc pair

I[0][j] = HMACH,K(kw) modInverse P
I[j][0] = ENCK(idd)
j ← j + 1

for each i ∈ I do ▷ mask frequency values
// i = elements of I excl. first row and column
i← (i ·R) mod P ▷ choose R ∈ ZP

return D̃

Trapdoor creation is illustrated in algorithm 2. It takes as
input the symmetric key K along with the keyword to search
for and returns the corresponding trapdoor.

Algorithm 2 buildTrapdoor (K,w)

b← ENCK(w) mod P
a← HMACH,K(w) mod P
c← (a · b) mod P
d← HMACH,K(ENCK(w) mod P )
return TK(w) = (d, c)

In algorithm 3 the search procedure is presented. The
trapdoor TK(w) is passed as input. The algorithm verifies
if the modular inverse of the hashed keyword contained in

the first row of I , i.e. variable i, reduces to one when mul-
tiplied by the variable c of the trapdoor. The HMAC of
the product is stored in h. If the product yields 1, then
h is equal to the HMAC of the of the encrypted keyword,
HMACH,K(ENCK(w) mod P ), thus equal to the trapdoor
variable d.

Algorithm 3 search (TK(w) = (d, c))

j ← 1
while j ≤ I.length do

i← I[0][j]
m← (c · i) mod P
h← HMACH,K(m)
if d = h then

return ĩdDj

j ← j + 1

return

4 Experimental Setup and Results
The first dataset used for evaluating the performance con-
sisted of 50 text files (10 files for each data size of 250 KB,
500 KB, 1 MB, 5 MB, and 25 MB). It was used for Figure 1
and Figure 2. The second dataset contained 10, 20, 30, 40,
and 50 grouped documents, each of size 500 KB. The 5
groups of files were compared in terms of time performance;
these are illustrated in Figure 3. The figures were plotted
in Python [30] using Matplotlib [31]. The algorithms were
run either remotely using the smart contract or locally using
IntelliJ IDEA and Visual Studio Code on a macOS with
2.4GHz quad-core Intel Core i5 processor with 128 MB of
eDRAM and 8GB memory. For evaluating the protocol,
the test network needs to be started using the command
line interface (CLI). The smart contract is developed using
VS Code and deployed from CLI. After the deployment of
the smart contract, the Fabric Gateway client API is used
to connect to the Fabric Gateway. The gateway connection
has three requirements: a gRPC connection, a client iden-
tity and a signing implementation. Once the parameters
are established, the ledger is populated using chaincode in-
vocations. The transactions are executed using the client API.

The proposed protocol works as follows. Firstly, the
data owner has to set up the security parameters. The key
is generated using AES, as specified in subsection 3.1.
Subsequently, DO constructs the dictionary that maps each
document to its corresponding keyword. The dictionary
is passed to the buildIndex (algorithm 1), along with the
generated key and the index matrix that contains zeroes.
The buildIndex method consists of two main subroutines:
the computation of the middle elements, i.e., all elements
except the first row and column, and the computation of the
remaining (border) elements, i.e., the first row and column.
The execution time of the latter subroutine is shorter than
the time to compute the middle elements by more than three
orders of magnitude.
In Figure 1 is illustrated the average time to perform the



buildIndex method. The duration of the subroutines for bor-
der and middle matrix computation are shown as well. The
averages depicted are computed over multiple runs of the al-
gorithm. The y-axis shows the time necessary to finish the
procedure. The difference between the time to compute the
middle matrix and the time to compute the border is so signif-
icant that the latter was not visible in the graph unless zoomed
in. In order to solve this, the logarithmic scale was used for
the time axis (y-axis). The unit of measurement is minutes.
The x-axis illustrates the average size of the files used. The
time required to complete algorithm 1 grows as the size of the
files increases.

Figure 1: Plot of the average time to execute the buildIndex
algorithm and the two subroutines contained in it: build mid-
dle matrix and build border matrix. The average size of the
files is shown on the x-axis, whereas the average time to com-
plete the corresponding method (in units of minutes, logarith-
mically scaled) is on the y-axis.

It can be seen that the total time to execute the buildIndex
method differs from the time to construct the middle matrix
only by a small value. As middle matrix creation is contained
in algorithm 1, the remaining difference in the execution time
of buildIndex is left for the border matrix computation and
for otherO(1) operations. This time complexity is negligible
compared to the complexity of middle matrix computation.
This result was expected, as the middle matrix subroutine
includes the encryption of the documents. It reads the PTs
and ensures that the CTs are saved after encryption. Each
document is encrypted word by word, then the subroutine
updates the frequency of the keywords found for each docu-
ment. In terms of complexities, the middle matrix subroutine
has O(|w| · |D| · C) time complexity, where |A| represents
the cardinality of set A and C is the maximum length of
any document from the set D of documents. The border
matrix computation does not affect the time complexity of
the buildIndex method, thus algorithm 1 is O(|w| · |D| · C).

Upon completion of the buildIndex method, the result-
ing matrix and the encrypted documents are stored by
invoking the smart contract and executing the required trans-
actions. Consequently, the data owner can perform search
queries. The search procedure is presented as pseudocode in
algorithm 3. It uses the output of algorithm 2: Tk(w), the

trapdoor for keyword w using key K. By invoking the search
procedure, the smart contract performs the query on behalf
of the DO. The time complexity of algorithm 3 depends
on the size of of the index matrix I and is O(|w| · |D|).
The procedure starts by iterating through the first row of I
and once it finds the respective keyword, it looks for the
documents that are mapped to it. The average execution
time of the buildIndex and search methods are depicted in
Figure 2. One important thing to note is that algorithm 1
is run locally by DO, as specified in section 3. The search
routine consists of iterating through the index matrix I . This
is done by the smart contract, thus the procedure is executed
remotely.

Figure 2: Plot of the average execution time of algorithm 1
and algorithm 3. The x-axis shows the average size of the
files. The average time to perform the methods is depicted on
the y-axis in units of minutes.

As observed in Figure 2, the search method is significantly
faster than buildIndex. The time required for trapdoor cre-
ation, which is done locally, is in the order of nanoseconds,
therefore it was not included in the performance analysis.
The time t of algorithm 1 grows proportionally to the
inputted file size: from 500 KB to 1 MB, t1MB

t500KB
≈ 2 and

from 1 MB to 5 MB, t5MB

t1MB
≈ 5.

According to [32], the normal distribution for file sizes of
work-related documents has mean 1473 KB (1.47 MB) and
median 8 KB, whereas for personal-use documents, the mean
is 2284 KB (2.28 MB) and the median 7 KB. However,
IT-related files are smaller, their distribution having mean
1165 KB (1.17 MB) and median 2 KB. 346 participants
contributed to the study. The size distribution for all the
category of documents, i.e., operating system files, personal,
work and study related, has file size median 5 KB and mean
1528 KB (1.53 MB). Thus, as observed in Figure 2, the
average time required to compute the index matrix for 10
files of 1.5 MB is around 5 minutes. However, the duration
of the method execution is dependent on the machine that
runs the implementation.

Thus, it can be seen from both, Figure 1 and Figure 2
that the time increases proportionally to the file size. Having
compared the time efficiency when operating with files hav-



ing different sizes, the next analysis focuses on comparing
varying number of files having similar size. In Figure 3
the execution time is evaluated for a dataset having files of
similar size (≈ 500KB), divided into groups of 10 to 50 files.

Figure 3: Plot of the average execution time of algorithm 1
and algorithm 3. On the x-axis the number of files is depicted.
The time to perform the methods is shown on the y-axis in
units of seconds. For the y-axis, the logarithmic scale was
used.

As the values in the time distribution for executing al-
gorithm 1 are significantly larger compared to those for
algorithm 3, the logarithmic scale was applied. The time
necessary to compute the index matrix for 10 documents, as
illustrated in Figure 3, is 47 seconds (without the logarithmic
scale). It increases then to 185, 433, 694 and 1160 seconds
for 20, 30, 40 and 50 documents, respectively. For the latter
case, when 50 documents are used, it takes 1160 sec ≈ 20
min to compute the matrix (scenario I). The total data size is
approximately 50 docs · 500 KB ≈ 25 MB.
In the scenario depicted in Figure 2, for 10 files of 5 MB
each, it takes 11 minutes to build the matrix. The total data
size for the 5 MB files is 10 docs · 5 MB = 50 MB. As 11
minutes are required to build the index using 50 MB of data
(in the scenario with 10 files of 5 MB each), it should take
approximately 6 minutes to finish the execution for a set of
documents having 25 MB in total (scenario II).
When using a 25 MB documents set, scenario I (SI) takes
20 minutes to complete, whereas scenario II (SII) takes
approximately 6 minutes. In the first scenario, there are 50
documents (each of 500 KB); in the second scenario, there
are 10 documents (each of 5 MB). As tSI

tSII
= 20

6 ≈ 3, it
follows that the buildIndex algorithm takes longer when there
are more files. Despite the fact that the files have larger sizes
in scenario II, scenario I takes longer. Thus, the bottleneck
of algorithm 1 is in the input/output processing (reading
the PTs and writing the CTs). In the event that the second
scenario took longer, one possible reason could have been
the complexity of the middle matrix computation. However,
this is not the case.

For the search procedure (algorithm 3), when querying

over a set that consists of a varying number of files (each
having 500 KB), the duration of execution is 0.047, 0.048,
0.068, 0.125, and 0.154 seconds or 10, 20, 30, 40 and 50
documents, respectively. This result was expected, as the size
of the index matrix increases proportionally to the number of
documents (and keywords), thus it takes more time to iterate
over a matrix that has more rows (and columns).

5 Responsible Research
The purpose of this study is to develop secure data search
via searchable encryption using Hyperledger Fabric smart
contracts. The contributors of this research are not affiliated
with any distributed ledger, smart contract or searchable
encryption technology that could result in a conflict of
interest. For conducting the study, no personal information
was used. All the resources that were utilised are referenced
and cited in the respective excerpts of this paper.

This research focuses on secure data search using searchable
encryption. The searchable encryption scheme provided is
built upon the Permissioned Blockchain-based Searchable
Encryption protocol provided in [25], as previously specified
in subsection 2.1. The main methods used for implementing
SE are illustrated in subsection 3.2 as pseudocode. These can
be modified and integrated into other searchable encryption
frameworks or extended to provide supplementary function-
alities within HLF. Additionally, the proposed protocol can
be used to create secure indexes for searchable encryption
outside the Hyperledger Fabric Environment, e.g., for storing
data using a remote storage provider. Furthermore, the smart
contract can be enhanced to store more complex data types.
This matter is discussed more in-depth in section 7.
The experiments discussed in this paper can be reproduced
using the smart contract implementation [33] described in
section 3.1 and the Fabric Gateway Client Application [34].
The latest version (v2.4) of Hyperledger Fabric was used.
When starting the test network, multiple Docker containers
are created. The containers are used for running peer nodes,
orderers, certificate authorities and other necessary Fabric
images.

With regard to the security of the proposed searchable
encryption protocol, only the authorised users can query the
encrypted documents and retrieve the relevant document
identifier. The trapdoor creation requires as input parameter
the key used by the data owner for building the index matrix.
Thus, if DO does not share the key, no other user can
perform read operations. Additionally, the chaincode used
for manipulating the index matrix can be executed only if the
participating peer is a member of the channel on which the
smart contract is implemented. As Hyperledger Fabric is a
private blockchain network, it supports memberships based
on permission. All the participating nodes must have known
identities, leading to an additional level of security.
HLF uses the Raft consensus algorithm which reaches
general agreement through leader election. In comparison,
the blockchain for the Bitcoin network uses Proof of Work
(PoW). The PoW mechanism requires a vast amount of com-



puting power, leading to significant amounts of energy being
consumed by the miners for solving blocks. Each miner
succeeds with a probability proportional to the computational
effort expended, making the protocol energy inefficient. In
the Raft algorithm, every node has an equal probability of
becoming a leader, thus it is not dependent on the specific
hardware. Additionally, it is much faster than PoW, but
limited in terms of scalability due to its architecture. Thus,
in terms of energy efficiency and environmental ethics,
Hyperledger is the preferred alternative.

6 Discussion
As this research focuses on secure data search using dis-
tributed ledger technology, various factors need to be taken
into account when developing the protocol.

First of all, the proposed scheme has to be secure and
have no privacy breach. The algorithm is based on trusted
atomic primitives such as encryption and hashing. Due to the
architecture of the system, the scheme is suitable for data out-
sourcing, i.e., single-writer/single-reader. In order to extend
the implementation to support multi-writer, the encryption
should be done using a public key encryption (PKE) scheme.
In this scenario, the decryption of a document is performed
with the private key corresponding to the public key used for
encrypting the respective document. Thus, multi-user writing
is supported by using the public key. However, multi-user
reading cannot be performed as only the key holder can
execute the searches. For supporting multiple readers, public
key encryption with keyword search (PEKS) should be
used. Besides PKE and PEKS, there exist other techniques
used for implementing SE, i.e., predicate encryption (PE),
inner product encryption (IPE), anonymous identity-based
encryption (AIBE) and hidden-vector encryption (HVE).
For speeding up the search procedure, a common tool used
is indexing. By introducing indexing, the search complexity
is significantly reduced, leading to more efficient scheme.
However, the increased performance comes with the cost
of introducing a pre-processing step: computing the indices
(algorithm 1). The index can be either forward (one index per
document) or inverted (one index per keyword). Sublinear
time complexity can be achieved using inverted indexing.
The current implementation uses a dictionary that maps
documents to their respective keywords; the dictionary is
stored as a Java map structure, having the index as key
and the corresponding document as the value. This implies
having one index per keyword, thus the scheme uses the
inverted index model.

7 Conclusions and Future Work
This study provides a secure searchable encryption protocol
using smart contracts within Hyperledger Fabric. The
scheme consists of two phases: index matrix creation and
keyword search. The first phase happens locally, thus the
time required for completion is dependent on the machine
that runs the algorithm, whereas the second phase takes
place remotely. The protocol achieves O(|w| · |D| · C) time
complexity for the index computation phase andO(|w| · |D|)

for searching.

As observed in section 4, the most expensive operation
with regard to the time analysis is computing the middle
elements of the matrix. More specifically, it was found that
the bottleneck of the system lays in the processing of the
plaintexts and ciphertexts. The algorithm is more efficient
when the number of files is smaller. Thus, the completion
time of algorithm 1 is affected more by the number of docu-
ments than it is affected by the file sizes. When performing
the buildIndex procedure for two datasets, SI and SII, having
the same total size (25 MB), the algorithm was 3 times
faster for the dataset that contained a smaller number of
documents (SII, |DSII | = 10). The search algorithm was
slower for the dataset that had a greater number of document
(SI, |DSI | = 50), despite the fact that documents in SI had a
smaller file size (sizeSI = 500KB, sizeSII = 5MB).
For decreasing the duration of the buildIndex phase, one
possible solution would be altering the middle matrix
computation method. A different encryption algorithm can
be used such that it avoids processing the document word by
word. However, this might lead to another impediment: not
being able to keep track of the keyword frequency in each
document.
The search phase has polynomial time complexity in the
worst case scenario due to the pre-processing step, i.e.,
algorithm 1. However, the current implementation uses
symmetric key, therefore it does not support multiple users,
as specified in section 6. Another key encryption scheme
can be used in order to achieve the multi-writer/multi-reader
architecture.

The protocol proposed in this study can be easily extended
to include additional features. As specified in section 6, the
inverted index structure is used for storing the index-keyword
dictionary. However, it currently supports one document
for each keyword. In order to support multiple-keyword
documents, the implementation can be modified to map each
keyword to multiple documents.
The main use case of the the protocol is to provide searchable
indexes over an encrypted set of documents. Nonetheless,
this scenario can be modified to support encryption over
other data types. This can be done by modifying the asset
definition provided in the smart contract section 3.1. For
instance, the content of the document can be sent to a file
storage system, e.g., The InterPlanetary File System (IPFS).
Then, the content field of the Document class can be replaced
by the address at which the document is stored in IPFS. The
matrix class can be modified as well in order to provide addi-
tional functionality. One suggestion would be to use a more
efficient data structure instead of the two-dimensional index
array I . For decreasing the search duration furthermore, the
location of the hashed keywords in the matrix can be tracked
in order to avoid looping over the matrix.
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