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Abstract-In image restoration, it is nearly always assumed that the 
point-spread function of the degrading system, as well as the variance 
of the observation noise and a model of the original image, are known 
a priori. Since these parameters are unknown for practical images of 
interest, they have to be estimated from the noisy blurred images them- 
selves. This paper presents a maximum likelihood approach to the blur 
identification problem, and proposes to employ the expectation-max- 
imization algorithm to optimize the nonlinear likelihood function in an 
efficient way. In order to improve the performance of the identification 
algorithm, low-order parametric image and blur models are incorpo- 
rated into the identification method. The resulting iterative technique 
simultaneously identifies and restores noisy blurred images. 

I. INTRODUCTION 

ROBABLY the best approach to the restoration of P noisy blurred images would be to prevent the degra- 
dations from occurring at all. Unfortunately, in many 
cases these degradations cannot be avoided, and the data 
must be accepted as it is (e.g., blurred pictures of unique 
events). In other situations, the degradations can be pre- 
vented only at very high cost due to the required quality 
of the imaging system (e.g., in astronomical imaging), or 
by physical requirements which are unacceptable or un- 
realizable (e.g., in medical imaging). For these reasons, 
a variety of image restoration algorithms has been devel- 
oped over the last decades, including Fourier domain [ 11, 
[ 2 ] ,  recursive [3], [41, and iterative [5], 161 filters. How- 
ever, in the use of these restoration methods, it is nearly 
always assumed that all the information that is required 
to restore an image is known a priori. Since this is un- 
common for practical images of interest, one of the most 
challenging questions in image restoration nowadays is 
how to obtain this information. 

If a blurred image is modeled as the output of a two- 
dimensional (2-D) linear system with finite impulse re- 
sponse, and the (unknown) original image as its input, the 
blur identification problem can be specified as the esti- 
mation of the unknown point-spread function (PSF) of this 
system from the observed noisy blurred image. The ear- 
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liest work on blur identification concentrated on PSF’s 
which can parametrically be modeled, and which have a 
regular pattern of zeros on the unit bicircle, such as linear 
motion blur [ l ] .  Both spectral and cepstral techniques 
were used to determine the distance between the zero 
crossings of the transfer function of the blur [7], [8]. By 
virtue of the parametric modeling, this distance immedi- 
ately determines the PSF. Shortcomings of this method 
are that PSF’s which do not satisfy the above mentioned 
conditions cannot be identified in this way, and that the 
presence of noise in the recorded data is not directly taken 
into account. 

In more recent work on blur identification, the original 
image is first modeled as a 2-D autoregressive (AR) pro- 
cess [9]. Next, the identification problem is formulated as 
a maximum likelihood (ML) problem, which involves es- 
timating the PSF, the observation noise variance, and the 
model of the original image. Tekalp et al. [9] showed that 
in a recursive estimation procedure, this ML problem can 
be interpreted as a 2-D autoregressive moving average 
(ARMA) model identification problem, where the AR 
coefficients determine the image model coefficients, and 
where the MA part determines the PSF of the blurring 
system. They were able to employ 2-D recursive estima- 
tion procedures by assuming that the PSF can be decom- 
posed into 4 quarter-plane convolutional factors [9], [ 101. 
Along the same lines, Wagner [ 111 proposed to use a 
dyadic factoring of symmetric noncausal PSF’s in order 
to identify the horizontal and vertical blur components in- 
dependently. Biemond el al. [I21 showed that the 2-D 
ARMA identification can be done in parallel, where each 
of the parallel channels requires the identification of a 
1-D complex ARMA process. In [ 131 and [ 141, Lagendijk 
et al. used gradient-based procedures to optimize the like- 
lihood function: in [13] the gradients are computed ana- 
lytically, and in [14] a 2-D Kalman restoration filter is 
incorporated in order to evaluate the gradients numeri- 
cally. 

In this paper, we present a class of blur identification 
algorithms which is based on the expectation-maximiza- 
tion (EM) algorithm to compute ML parameter estimates 
[ 151. Unlike other blur identification methods [9]-[ 131 
which require that the amount of noise in the observed 
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blurred image is negligible, the presence of noise in the 
observed data is directly taken into account. As a result, 
the proposed methods are particularly well suited for 
identifying blurred images which contain a considerable 
amount of noise. The resulting algorithms constitute it- 
erative procedures which simultaneously identify and re- 
store a noisy blurred image (see also [14], [16], [17]). In 
Section I1 we will start with the basic image and blur 
model development, followed by the formulation of the 
blur identification problem as an ML problem. The basic 
identification scheme will be derived in Section 111. To 
improve the performance of this identification algorithm, 
low-order parametric image and blur models will be in- 
corporated in Section IV. Finally, various identification 
and restoration results using the proposed techniques will 
be given in Section V. 

11. PROBLEM FORMULATION 
A .  Image and Blur Model Development 

In image restoration, it is appropriate to model a dis- 
crete original image f ( i ,  j ) , with size N x N ,  by a 2-D 
autoregressive process of low order [18] 

f ( i , j )  = a ( i , j )  * f ( i , j )  + U ( i , j )  

= c a ( k ,  I ) f ( i  - k ,  j - 1 )  + z , ( i , j ) .  
h , l t S o  

( 1 )  
Here a ( k ,  1 ) are the MSE image model coefficients which 
minimize E (  U ( i ,  j ) 2 ,  , and S ,  is the quarter-plane image 
model support (see Fig. 1) .  The modeling error z, ( i, j ) is 
a zero-mean homogeneous Gaussian distributed noise 
process with covariance Q,,( i ,  j ) = af,6( i, j ) , which is 
independent off  ( i ,  j ) . A more compact notation of (1) 
can be arrived at by lexicographically ordering the image 
data [19], yielding 

Fig. I .  Quarter-plane image model support S,, 

tion noise w ( i ,  j ) is assumed to be an additive zero-mean 
homogeneous Gaussian distributed process with covari- 
ance Q,,,( i, j ) = u i ,6 (  i ,  j ) . Then, the noisy blurred im- 
age is given by [I]: 

g ( i , j )  = d ( i , j )  * f ( i , j )  + w ( i , j )  

= C d ( m ,  n ) f ( i  - m ,  j - n )  + w ( i , j )  
m.neS,i  

( 4 )  
Here Sd is the support of the PSF d ( m ,  n ) , which can 
have any shape but is typically noncausal. Again, (4) can 
be written in a more compact matrix-vector notation by 
lexicographically ordering the data: 

g = D f +  w. ( 5 )  
The blur matrix D ,  with size N 2  X N 2 ,  has a block-cir- 
culant structure if a circular convolution is assumed in 
(4). The conditional probability density of g, given the 
original image, follows from the characteristics of the ob- 
servation noise and the blurring system: 

1 
P (  g/f; D, Q,, ) = 

\ J 

where e,,, = aZ,I is the N 2  X N 2  (diagonal) covariance 
matrix of the observation noise, and where we 
that 

f = Af + U .  ( 2 )  
Here A is the image model matrix, which has the size 
N 2  X N ’ .  If a circular convolution is assumed in ( I ) ,  then 
A has a block-circulant structure [19]. The probability 

> 0. 

density function (pdf) offfollows from the characteristics 
of z, and the model (2), and is given by: 

( 3 )  
where Q,, = aS,I is the N 2  x N’ (diagonal) covariance 
matrix of the modeling error with U:, > 0, and where 
( I  - A )  is assumed to be nonsingular. 

The observed image g ( i ,  j ) is modeled as the output of 
a 2-D linear space-invariant system, which is character- 
ized by its point-spread function d (  m ,  n )  . The observa- 

B. Maximum Likelihood Blur Identijication 
TheApurpose of image restoration is to obtain an esti- 

mate f, which is “as close as possible” to the original 
imagef. In order to derive restoration filters, the PSF of 
the blurring system, the variance of the observation noise, 
and the model of the original image need to be available. 
Blur identification focuses on estimating the unknown pa- 
rameters 8 = { d ( m ,  n ) ,  a ( k ,  l ) ,  U:., U : , }  from the ob- 
served noisy blurred image g ( i ,  j ) , assuming that the 
structures of the models (1) and (4) are known a priori. 
The maximum likelihood estimator of 8 is given by 

e,,,, = arg (max q e ) }  = arg (max log p ( g ;  e ) )  (7)  
868 868 

where d: (8 )  denotes the log-likelihood function of 8, 
where 8 specifies the range of the elements of 8, and 
where p (  g ;  0 )  is the pdf of g for a given 8. In order to 
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compute p (  g ;  e ) ,  we combine (2) and (3, yielding 

g = Df+ w = D(Z - A ) p P  + Mi. ( 8 )  

Since z! and w are independent Gaussian processes, 
p (  g; e )  is Gaussian as well with zero mean, and covari- 
ance P given by: 

P = cov ( g ;  e )  
= E { ( D ( Z  - A ) - l u  + w ) ( D ( Z  - A ) - l z ,  + w ) ~ }  

= D(Z - A ) - l Q , . ( Z  - A ) - ‘ D f  + Q,,., ( 9 )  
By substituting this result for p (  g ;  0 )  into (7), the ML 
blur identification problem can be expressed as follows: 

e,,,, = arg max { -log (det /PI) - g r P p ’ g } .  (10) 
860 

Unfortunately, (10) specifies a complicated nonlinear op- 
timization problem in several variables (PSF, image 
model, and covariances), mainly because of the nonquad- 
ratic behavior of log (det I PI ) . In the next section, we 
propose to employ the expectation-maximization algo- 
rithm to avoid the direct optimization in ( I O ) .  

We note here, that in general the blur identification 
problem cannot be solved uniquely by using ( lo) ,  because 
P is independent of the phases of a ( k ,  I ) and d (  m,  n ) . 
We therefore need to have a priori information about 
a ( k ,  I ) and d (  m, n )  . Because the image model (1) should 
be (bibo) stable, its poles should lie within the unit bicir- 
cle. This requirement immediately determines the phase 
of a ( k ,  1 )  in a unique way. Although PSF’s may theo- 
retically have any shape, many PSF’s found in image pro- 
cessing applications are symmetric. Following [9], [ IO], 
[12], the ML estimator of d (  rn, n )  is enforced to be sym- 
metric, i.e., to have zero phase. Furthermore, image for- 
mation systems do normally not absorb or generate en- 
ergy. Hence the solution to ( I O )  should satisfy 

C d ( m ,  r z )  = 1.0. ( 1 1 )  
m , I I  E S,/ 

Finally, the PSF has a finite support in nearly all practical 
applications, i.e., d ( m ,  n )  is nonzero only over a (pre- 
scribed) finite window S d .  Due to the above conditions on 
the PSF, (10) becomes a constrained maximum likelihood 
problem, which is harder to solve than the original un- 
constrained optimization, but typically shows a unique 
optimum. 

111. SIMULTANEOUS IDENTIFICATION A N D  RESTORATION 
ALGORITHM 

In this section, we will first briefly review the general 
theory of the expectation-maximization (EM) algorithm. 
Next, the EM-algorithm will be applied to ML blur iden- 
tification, and the derivation of the various steps in the 
algorithm will be discussed in detail. 

A .  Review of the EM Algorithm 
It has long since been recognized that computing max- 

imum likelihood (ML) parameter estimates can be a highly 

complicated task in many relevant estimation probiems. 
The EM algorithm, presented by Dempster et al. in [ 151, 
is a general iterative method to compute ML estimates if 
the observed data can be regarded as “incomplete.” Since 
the EM algorithm was presented, similar or related algo- 
rithms have appeared in the literature, such as in [20]- 
[23]. It has been shown in various signal processing ap- 
plications that the use of the EM-like algorithms leads to 
computationally efficient estimation algorithms [20], [22], 
[24]-[27]. 

Let 3 denote the observed “incomplete” data which 
possesses the pdf p ( 2; e ) ,  where 0 again is the vector of 
parameters to be estimated. The ML estimator of 8 ,  based 
on the available incomplete data, is given by 

which is assumed to be a complicated problem. The in- 
complete data is related to some complete data, denoted 
by ‘X, through a noninvertible many-to-one transforma- 
tion 3: 

y = 3(‘X).  (13)  
We restrict ourselves here to cases where 3 represents a 
linear projection; for each given ’y there exists a hyper- 
plane 3c ( ’y ) whose elements satisfy (13). The pdf of X, 
which is also indexed by 8, is related to 3 as follows: 

At this point it is assumed that the complete data have 
been chosen in such a way that computing the ML esti- 
mator of 0 from the complete data, i .e.,  solving 

is significantly simpler than solving (12). However, the 
complete data is not available, but only observed via the 
noninvertible relation (13). Starting out with an estimate 
of the parameter vector, called the EM algorithm 
finds the conditional expectation of the log-likelihood of 
complete data, denoted by d: ( 8 ;  given the observed 
incomplete data and 8‘“: 

where p (  X/y; 8 ‘ k J )  is the conditional pdf of the cpm- 
plete data, given the incomplete data and the estimate 
Equation (16) is called the E step of the EM algorithm. 
In the M step, 6: (0 ;  is maximized with respect to 8. 
This leads to a new parameter estimate + I ): 
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By alternating (16) and (17), the iterative EM algorithm 
is obtained, which converges to a stationary point of 
Cy ( 8 )  [ 151. Sufficient convergence conditions are that 
C ( 8 ;  8" ' ) ,  which forms the basis of the EM algorithm, 
is continuous in both 8 and 8") [15], [22], [ 2 8 ] .  At each 
iteration cycle, the maximization in (17) ensures that 
C ,  ( 8 )  increases. This maximization requirement can be 
relaxed somewhat. Namely, the EM algorithm converges 
for as long as 8" + I )  is chosen in such a way that C ,  ( 8 )  
is increased 1151. This variant is called a generalized EM 
(GEM) algorithm. 

It is now observed that 6: (8; 8'") and C ,  ( 8 )  have the 
same dependence on 8 [15], [22], and that where 6 : x ( 8 )  
is defined on the true complete data, 6: ( 8 ;  8")) uses the 
conditional expectafion of the complete data. The max- 
imization of C ( 8 ;  8 ' " )  with respect to 8 is therefore of 
the same complexity as the maximization of Cx ( 8 )  . Be- 
cause of this, the EM algorithm is an attractive alternative 
to the direct evaluation of (12) only if the solution to (15) 
can be computed relatively easily. However, the EM al- 
gorithm does not necessarily converge to the global opti- 
mum of Cy ( e ) ,  but instead it may stabilize at a local 
optimum. In such situations, various starting points 8 " )  
may be needed. 

choices for 3c and y into (16), yields the following E 
step: 

C(8; = E {  log p ( f ,  g ;  B ) / g ;  
m m 

= s, . . * j - m  & P ( f >  g; 8)  

* p ( f / g ;  8'") df(1) * * . d f ( N ' ) .  ( 2 0 )  
We now need to evaluate d: (8; 8"') for the case at hand. 
The joint probability density function p ( f ,  g ;  0 )  is readily 
found from ( 3 )  and (6): 

. exp [-; ( g  - W)'Qll.'(g - o f )  

(21 1 -1 1 
2 

- - f y ~  - A)'Q,?(I - ~ ) f  . 

By combining p ( f ,  g ;  8 )  and p ( g ;  e ) ,  which is Gaussian 
with covariance given by (9), we get the following 
expression for the conditional pdf p ( f/g;  8'"): 

B. EM Algorithm Applied to Blur Identijication 
In image restoration and blur identification problems, 

the noisy blurred image is the only data available, which 
therefore establishes the incomplete data. Here we specify 

images f and g :  - 

p ( f / g ;  8'") 
p ( f ,  g; 8(i)) 

p ( g ;  8 ' 9  
- - 

the complete data as the stacked lexicographically ordered - 1 

d27rN' det I p c x )  1 

' ( f -p) )  . ( 2 2 )  1 
x = [;I. (18) 

The complete and incomplete data are now related via 
r r i  

( I 9 )  

where 0 and I are an N' X N' identity and zero matrix, 

satisfies the requirement that solving (15) should be easy, 

Here f ' k )  and p C k )  denote the conditional mean and co- 
variance off ,  respectively, at the kth iteration (we have 
dropped the index ( k )  off, p, D ,  A ,  Q,,., and Qr, in order 

y = g = [ [ o  I ]  

respectively. The particular choice of this Complete data to keep these equations readable): 

namely : f =  E ( f / g ;  8'") = $D'Q,'g (23) 

The image model coefficients and the related mod- ri = cov ( f / g ;  P ) )  
= [ ( I  - A)'QF1(I  - A )  + D'Q;'D]-'. (24) 

( f / g ;  8 ( k ) )  into 

eling error variance a:, can be obtained immediately by 
the (linear) 2-D Yule-Walker equations, because the au- 
tocorrelation coefficients can be computed directly from 
the original imagef. 

The point-spread function and the related observa- 
tion noise variance at, follow directly from a classical sys- 
tern identification problem, namely determining the im- 1 2 
pulse response of a linear system with known input (the 
original image) and noisy output (the observed image). 

Finally, substitution of 
(20) yields (see Appendix A): 

( f ,  g ;  8 ) and 

(e; = - N 2  log (a:,af,) + log det 1 I - A I ' 

t r  { ~ & j : ' )  - 7 g ' g  + 
0 111 (7 I,' 

It is pointed out that it is not necessary to include the 
noise processes U and w into the definition of the complete 
data, because these do not provide any additional useful 
information for the ML identification. Other choices for 
X and y are considered in [29]. Substituting the above 

1 

(7 1, 

+ -7 tr {D&~,"D' )  

- 7 tr ( ( I  - A )  &$'(I  - A)'] 
1 

(25)  
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where C is an additive constant term, tr { A  } denotes the 
trace of the matrix A ,  and where the conditional autocor- 
relation matrix &#) and cross-correlation matrix are 
defined by 

(26) 

(27) 

&$) = E ( f S ' / g ;  ,$I(") = p(k) + p ( k ) f ( k ) '  

&$;) = E (  fg'lg; 8'") = pg'. 
Under the conditions that g i  > 0, U:  > 0, and that 
( I  - A )  is nonsingular, 6: ( 8 ;  8")) is continuous in 8 and 
8"), and the EM algorithm (20), (17) will converge. Note 
that these conditions were already assumed in the devel- 
opment of (3) and (6), and thus do not impose additional 
constraints. 

C. The E Step of the Algorithm 
Equation (25) depends on e'," only through the condi- 

tional autocorrelation matrix &#' and cross-correlation 
matrix &$I. Because of this, the E step of the algorithm 
consists of the mere evaluation of (23) and (24), and the 
computation of the conditional correlation matrices. Ob- 
serve that this requires solving linear equations only. 

Since A and D have block-circulant structures, (23) and 
(24) can be implemented efficiently by using 2-D discrete 
Fourier transforms [19]. As a consequence, &$) and 
a):) represent correlation matrices of weakly jointly sta- 
tionary processes, and have block-circulant structures as 
well. We therefore replace (26) and (27) by 

l N  

f ( k )  ( i  - p ,  j - q )  

?k"'(p, q )  = P y p ,  q )  + 7 c p ( i , j )  
N I , J  = I 

(28) 
. N  

I )  Image Model Identification: By substituting (25) 
into (17), and by dropping all constant terms that are im- 
age model independent we arrive at the following opti- 
mization problem: 

{ r i ( k ,  I ) ,  i$) + max 3 ( ~ ,  a f )  
a ( k . 1 ) .  CT: 

- - log det I I - A I 2  - N 2  log of 

1 1 
- - tr { ( I  - A )  &$I ( I  - A ) ' }  . (30) 

If we assume that the image model boundary effects 
are negligible, ( I  - A )  is a lower triangular matrix 
(because the image model support S, is causal), and 
det 1 I - A 1 = 1. Therefore, (30) becomes quadratic in 
the image model coefficients a ( k ,  I ) , and Its solution is 
given by the 2-D Yule-Walker equations: 

U f 

?$) (p ,  q )  = B ( k ,  1 )  ?;'I ( p  - k ,  q - f ) ,  
I / E S ' ,  

V ( P >  4 )  E S a  (31) 

a:, = ?$' (0, 0) - c B ( k ,  I )  ?$' ( k ,  1 ) .  
k , leSo  

(32)  
2)  Blur Model Identification: The PSF coefficients and 

the observation noise variance are computed by maximiz- 
ing (25) with respect to d ( m ,  n )  and a i .  Substituting (25) 
into (1 7) ,  and dropping all blur model independent terms, 
yields 

where ? f )  ( p ,  q! and ?;:' { p ,  q )  are the defining bise- 
quences [19] of @$' and a;;), respectively, and where 
P ( k )  ( p ,  q )  is the defining bisequence of P(!'). 

It should be noted that in image restoration (23) is 
known as a (constrained) least-squares filter, but may also 
be regarded as the (conditional) Bayesian estimator of the 
original image if 8 is known completely 111. Hence, in the 
process of identifying the image and blur parameters 0, a 
restoration result of the blurred image is obtained simul- 
taneously in each E step of the iterations. This can be 
considered one of the advantages of the EM algorithm 
based approach towards blur identification, since the 
quality of a restoration result using the current parameter 
estimates can be evaluated at each iteration step, and the 
iterative process can be truncated when a (visually) sta- 
tionary or acceptable solution has been reached. 

D. The M Step of the Algorithm 
is maximized with respect to 

the parameters 8, yielding a new estimate e'!' + ' ). As can 
be seen directly from (25), the optimizations with respect 
to the image model coefficients and PSF coefficients are 
independent problems, and can be considered separately. 

In the M step, 6: (8; 

(33)  
In order to obtain a unique solution to (33), the PSF is 
enforced to be symmetric (cf. Section 11-B): 

v ( m ,  n )  E sa. (34) d ( m ,  n )  = d(  -m,  - n > ,  

To satisfy ( I  l ) ,  we choose d ( 0 ,  0 )  as: 

A(o ,  0) = 1.0 - 2 C d ( m ,  n ) .  (35) 
m,neS:  

Here Sa is that subset of Sd which contains the unique, 
PSF defining coefficients d ( m ,  n )  (e.g., S-, is a nonsym- 
metric half-plane). All other PSF coefficients can be de- 
rived from these defining coefficients via (34) and (35). 
Even with the above (linear) constraints, 3 ( D ,  at,) is 
quadratic in d (  m ,  n )  . Solving (33) is tedious but straight- 
forward, and leads to the following set of linear equa- 
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tions: 

$ ( p ,  4 )  + ?$)( - p ,  - 4 )  - 2F$’(O, 0) 

- 2?$’ ( p ,  q )  + 2$’ (0 ,  0) 

- 2?$’ ( p ,  4 )  + 2 q  (0, O ) } ,  v(p, q )  E Sa  

(37)  

We note here that other relevant linear constraints, such 
as additional symmetry properties of the PSF, can be in- 
corporated into (33) as well, without significantly increas- 
ing the computational complexity of the blur model iden- 
tification. It is also straightforward to incorporate the 
decomposition of PSF’s into 4 quarter-plane convolu- 
tional factors as proposed in [9], [lo], or the dyadic fac- 
toring of PSF’s as in [ 1 11. 

In the preceding sections, we have established an ex- 
pectation-maximization blur identification algorithm. 
Whereas the original ML blur identification formulation 
required solving a highly complex optimization problem, 
the proposed iterative procedure involves solving linear 
equations only (see Fig. 2) .  In addition, a restoration re- 
sult of the noisy blurred image is obtained simultaneously 
in each cycle of the algorithm. Examples of the proposed 
technique will be given in Section V. Experiments have 
shown, however, that if 0 contains a large number of un- 
known parameters, for example due to a large blur, these 
cannot be identified satisfactorily. In the next section, we 
will look at how to reduce the dimension of 8 in such 
situations. 

IV. PARAMETRIC MODELING 
A. Initial Conditions 

Point-spread functions of degradations encountered in 
practice may have a support Sd of considerable extent. 
Without additional knowledge about the relations be- 
tween the PSF coefficients, this requires the estimation of 
a large number of independent parameters. The blur iden- 
tification method described in the previous section turns 
out to be less suitable for the “larger” types of blur for 
the following reasons. 

In the first place, the log-likelihood function 6: ( e )  be- 
comes insensitive to variations in 8 if the PSF and the 
image model contain more than a few free coefficients, 
or, in other words, the extrema in 6: ( e )  become less pro- 
nounced. Since the EM algorithm is basically a hill- 
climbing algorithm, inaccuracies in solving (30) and (33) 
will prohibit convergence to the correct ML estimator. 
Furthermore, the convergence speed drops dramatically 
because of this behavior of 6: ( e ) .  It is worthwhile notic- 

~ 

1 I85 

. l k l  . j k )  
‘If 3 ‘I# 

-_I e101 ,&*+I1 

E-step M-step 

Solve (23), (24) 

Evaluate (28), (29) 
Solve (31), (36) 

Evaluate (32). (37) 

Fig. 2 .  Structure of the entirely linear expectation-maximization blur iden- 
tification algorithm. 

ing that this problem will occur in any maximum likeli- 
hood-based blur identification algorithm. 

Second, in the development of the EM algorithm, the 
extent of the supports S, and S,, have been assumed to be 
known a priori, cf. (31), (36). This is, however, hardly 
ever true for the support of the PSF. It is therefore usually 
suggested to overestimate S d  initially, and to remove small 
coefficients from the PSF after a preliminary identifica- 
tion, thus reducing S,. This strategy increases, however, 
the number of parameters enormously, which again leads 
to the accuracy problems mentioned previously. 

In the third place, the EM algorithm may converge only 
to a local optimum of 6: ( e ) .  For an increasing number 
of unknowns the number of suboptimal solutions, and 
hence the number of initial guesses 8‘’’ required, may 
grow unrealistically or unacceptably large. 

Finally, it should be kept in mind that, in general, a 
blur identification process obtains useful information only 
from “edgy” areas in an image, because in the more 
gradual regions blur cannot be detected. Since edges ap- 
pear only infrequently or, in other words, images contain 
relatively few high-frequency components, the total num- 
ber of relevant data points is very limited. Increasing the 
support of the PSF will reduce the ratio between the num- 
ber of relevant data and the number of unknown param- 
eters even further, which leads inevitably to less reliable 
identification results. 

We may circumvent some of the mentioned problems 
by initializing the EM algorithm with reasonable initial 
conditions 0‘”. It is well known that the order of mag- 
nitude of the noise variance at.  can satisfactorily be esti- 
mated from a smooth image region. Based on the number 
of pixels involved in this estimation, confidence intervals 
on ai,  can be obtained as well, which may be enforced 
during the identification process. 

Since pixels in images are usually highly correlated, 
initial conditions for the image model coefficients are eas- 
ily obtained, for example, by using an image model com- 
puted from a representative image. The log-variance of 
the modeling error, log a:,, is normally in the order of 1.5 
to 2.5. It should be noted here that the image restoration 
result f i n  (23) depends only upon the ratio CY = a i . /a ; , ,  
and is not very sensitive to the actual values of CY and the 
image model coefficients. 

The above reasoning cannot be applied to the initial 
conditions for d ( m ,  n ) ,  because, in the first place, f is 
very sensitive to variations in the PSF, and second, be- 
cause the number of coefficients to be initialized (which 
may be very large) is unknown a priori (i.e., Sa is 
unknown). A solution to this dilemma might be to 
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perform an exhaustive search on the PSF coefficients, 
that is. to evaluate 6: ( e )  on a “rough” grid for fixed 
{ U : ,  U;,. a ( k ,  I ) } and varying d (  rn, n )  , Although this 

Since 3 ( p l , ,  p I l )  is a quadratic expression in p I ,  for a fixed 
value of ph,  and vice versa, the following partial gradients 
based iteration is an efficient way to maximize (40): 

f i l l ’  = i ( 1 , O )  - f i p { i ( l ,  I )  + i ( 1 ,  - l ) }  + ;b‘-”*i( l ,  0) 

i ( 0 , O )  - 2 f i p i ( O ,  1)  + fib‘-1)2P(o, 0 )  

approach works well for a relatively small number of PSF 
coefficients, it becomes unrealistic for an increasing num- 
ber of unknowns due to the required amount of compu- 
tation. 

Motivated by the preceding discussion, we propose to 
reduce the number of unknown parameters in e by assum- 
ing that we have some knowledge about the structure of 
the PSF and the image model. This U priori information 
is available in many cases of interest, simply because it 
is the key to concluding that an image is blurred indeed. 
In the following two sections, we will describe various 
parametric image and blur -models, which can be incor- 
porated directly into d= ( 8 ;  8 ( k ) ) .  The E step of the algo- 
rithm is not influenced by using these parametric models; 
a modified M step will be given for each of the parametric 
models suggested. 

B. Image Model 
The structure of an original image is often such that its 

autocorrelation function resembles a 2-D separable ex- 
ponentially decaying function [ 181: 

Here ,of, and ,oh denote the vertical and horizontal corre- 
lation coefficients, respectively. Since in image restora- 
tion, image models are merely used to stabilize the inver- 
sion of PSF’s, it is not necessary to have the exact MSE 
coefficients a ( k ,  1 ) as obtained by (31). In order to reduce 
the number of unknown parameters, and to enforce an im- 
age model structure prior to the identification process, we 
assume that the image model coefficients fit the above au- 
tocorrelation function exactly. For the image model with 
quarter-plane support this leads to [ 181 

U (  1, 0) = P I , ,  U ( 0 ,  1 )  = ph, and U(1, 1) = -P,.Ph. 

( 3 9 )  
Substitution of these values into (30) yields (we have 
dropped the subscripts and superscripts of ( p ,  q )  for 
simplicity): 

3 ( P / . ?  P h )  = -?(O, 0)  + 2P,,i( 1 ,  0) + 2P,i(O, 1) 

- 2P,Ph{P(11 1 )  + i ( l ,  - 1 ) )  

- p ; , i ( o ,  0) - p i P ( 0 ,  0 )  

+ 2P;’,Phi(O, 1)  + 2P, ,P : ,P(1 ,  0 )  

- p? ,& i (O ,  0 ) .  (40) 

These iterations must be run in each M step, and converge 
usually within a few iteration steps. Observe that if 
3 (  p l , ,  p h )  is optimized only approximately, the EM al- 
gorithm turns into a GEM algorithm. 

To reduce the number of image model parameters even 
more, we may choose p = pI ,  = ,oh. By substitution of this 
condition into (40), optimizing 3 ( p , , ,  ,oh) becomes solv- 
ing a third-order polynomial equation, which can be done 
analytically. 

Causal image models have the obvious advantage that 
the determinant of the matrix ( I  - A )  is independent of 
the coefficients a ( k ,  1 ) , hence optimizing $ ( A ,  a:,) is 
always easy. However, this type of models may introduce 
artifacts in restored images which are characteristic for 
the causality definition used (e.g., smearing of edges in 
one specific direction). If, in a certain situation, these ef- 
fects become dominant, the M step can easily be modified 
to account for noncausal image models which do not have 
any preference for a certain orientation. Parametric 
models, which are based on pl ,  and P h ,  may again be em- 
ployed to reduce the number of image model coefficients 
1181. 

C.  Blur Model 
Besides the previously mentioned problems in identi- 

fying the PSF of the degrading system, it is in general not 
very realistic to model a PSF as a set of independent coef- 
ficients d ( m ,  n )  considering the constraints enforced 
(e.g., (34) and (35)), and the fact that only a restricted 
subset of all possible d(rn, n )  combinations will be ac- 
cepted as representing realistic PSF’s (e.g., d ( m ,  n )  
should represent a low-pass filtering action, should be 
“smooth,” and d ( m ,  n )  2 0 . 0 ) .  For these reasons it is 
appropriate to consider a class of continuous parametric 
functions 9 ( x ,  y ;  I)), which model realistic point-spread 
functions, and are indexed by #. Here I) denotes the vec- 
tor consisting of a few parameters which characterize the 
PSF. Relevant PSF’s which can be modeled by such low- 
order parametric functions, are, for example: 

Linear motion blur over L pixels under an angle of 
radians : 

Q ( x ,  y; L,  4) 
1 L 
, i fdx ’  + y 2  5 - and = tan 4 

2 X 

= [E elsewhere. 
(43) 
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Uniform out-of-focus blur with a radius of R pixels: 

- 

0, elsewhere. 

i fdx ’  + y’ I R 
a>(x, y ;  R )  = [k? (44) 

Blur due to atmospheric turbulence, Gaussian out-of- 
focus blur: 

Blur due to X-ray scatter [30]: 

(46)  
c 

( p ’  + (x’ + y2))3’2’  
D(4 y ;  P )  = 

The constants C are chosen in such a way that the con- 
dition in (1 1 )  is satisfied, and some of the above PSF’s 
have to be truncated properly to get a support of finite 
extent. Observe that spectral or cepstral techniques may 
be used as well to identify the linear motion and uniform 
out-of-focus blurs, but that this does not hold for the other 
blur models. 

In order to compute the discrete PSF coefficients 
d ( m ,  n )  from a continuous PSF D(x,  y ;  $) ,  the discre- 
tization process has to be modeled. Assuming a simple 
square sensor array, we have 

d ( m ,  n )  = (47) 
0 ( 111. I 1  ) 

It is pointed out that since d: ( 0 ;  e ‘ ” )  has to be continuous 
in 0 in order to guarantee convergence of the EM algo- 
rithm, each d ( m ,  n )  needs to be continuously dependent 
of $. This condition restricts the possible set of para- 
metric functions D ( x ,  y; $) ,  and asks for an accurate 
(numerical) evaluation of (47). 

By first substituting the selected parametric blur model 
into (47), and next substituting (47) into 3 (D,  U;?, ) , (33) 
becomes a nonlinear optimization problem in $. to which 
an explicit solution can rarely be found. In general, (33) 
must be solved by numerical methods, which can be done 
efficiently since $ is of low dimensionality. We have em- 
ployed a straightforward steepest descent iteration to min- 
imize d (D, af ) , where the gradients were computed nu- 
merically. Convergence of these iterations is normally 
achieved within 5 to 10 iteration steps. Again, as in the 
case with the image model coefficients, exact minimiza- 
tion of 3 (D, u t  ) is not required as long as $ is chosen in 
such a way that the likelihood function d: ( 0 )  is increased 
in each M step (GEM algorithm). 

V. EXPERIMENTAL RESULTS 
A .  Nonparametric Ident$cation 

In this first example we repeat the experiments of [ 101. 
Whereas the results in [ lo]  are based on noise-free data, 

Fig. 3. Original cameraman image. 

we added also observation noise to the blurred data. A 
“cameraman” image of size 256 x 256 pixels (Fig. 3), 
was synthetically blurred by two different types of out-of- 
focus blur, namely a truncated 3 x 3 Gaussian PSF and 
a 3 x 3 uniform PSF. Noise was added with U’,. = 3.6 ,  
yielding an SNR of 30 dB: 

] dB. 
variance of d ( i , j )  * f ( i , j )  

variance of w(i ,  j )  

(49)  
[ SNR = 10 IOg,o  

The true and identified parameters using the nonpara- 
metric M step procedures in Section 111-D, are summa- 
rized in Tables I and I1 for the two different cases consid- 
ered. Convergence of the iterations was achieved within 
50 EM iterations. It is observed that these identification 
results obtained from noisy blurred images are compara- 
ble to the ones given in [lo] for noiseless data. 

In these experiments, Sa contains 4 free coefficients (the 
extent of the PSF was assumed to be known in computing 
the above identification results); the total number of free 
parameters in 0 is therefore equal to 9. Various other ex- 
periments indicate that blurs with larger support size (i.e., 
with more free PSF coefficients), cannot satisfactorily be 
identified without using additional knowledge about the 
structure of the PSF. 

B. Parametric 2-0 Gaussian Blurs 
The image in Fig. 3 was synthetically blurred by 

Gaussian out-of-focus blurs with various standard devia- 
tions aG. The experiment included PSF’s with supports 
ranging from very small ( aG = 0.30 yields a PSF support 
of 3 x 3 pixels), to very large ( a c  = 2.00 yields a PSF 
with a support of 13 X 13 pixels). Noise was added up to 
the SNR level of 30 dB ( a i .  2: 3 . 5 ) .  

The parametric EM identification algorithm was run on 
each of the cases tested with the following initial condi- 
tions: 6G = 0.0 (i.e., no blur), 6:c = 1.0, ,iiZ, = 6,, = 0.8, 
and = 200.0. Convergence was achieved within 50 
(small blurs) to 250 (large blurs) iterations. Table 111 lists 
the identification results. In this experiment it is ob- 
viously not necessary to fix the extent of the PSF a priori. 
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TABLE 1 

PSF AT SNR = 30 dB 
T R U E  A N D  IDENTIFIED PARAMETERS FOR A TRUNCATED 3 X 3 GAUSSIAN 

1 0.076 0.110 0.090 

0.090 0.110 0.076 

6; = 3.34 

0.075 0.124 0.075 

0.075 0.124 0.075 

U: = 3.60 

0.759 0.792 

a: = 237.10 6: = 206.11 

TABLE 11 

SNR = 3 0 d B  
T R U ~  A N D  IDtNTll-IED PARAMETERS FOR A 3 X 3 UNIFORM PSF AT 

1 0.102 0.113 0.114 

0.114 0.113 0.102 

6: = 3.71 

0.111 0.111 0.111 

0.111 0.111 0.111 

U; = 3.50 

a; = 237.10 6; = 186.56 

TABLE 111 

SNR = 30 dB 
IDENTlFlFD PARAMETERS FOR GAUSSIAN OUT-OF-FOCUS BLURS A I  

UG S d  I 6C 6; 8” d h  6: I ’Isnr 
0.300 3x3 I 0.365 20.30 I 0.768 0.825 247.3 I 0.42 
H-SII %% 1 0.530 5.08 1 0.768 0.817 232.2 1 5.66 

0.774 3.71 0.782 0.829 219.6 4.45 
0978 3.46 0.829 0.827 168.3 3.14 

1.500 11x11 1475 3.34 0.873 0.837 133.3 2.32 
2.000 13x13 1.988 3.20 0.898 0.843 112.7 2.08 

The indicated size of S,, was directly derived from the 
identified value of uG by truncation of the PSF at coeffi- 
cients smaller than approximately 0.1 % of d ( 0 ,  0 ) .  From 
the original image we identified p,, = 0.759, ph = 0.796, 
and U:, = 243.3. The performance measure vcnr denotes 
the improvement in signal-to-noise ratio as follows: 

N 

It was observed that the SNR improvement of the resto- 
ration results using the identified parameters was in the 
same range as the SNR improvement of the restoration 
results using the true parameters. 

It is worthwhile noticing that for small values of uG, the 
estimates 3G become unreliable, and so does the estima- 
tion of ut.. This is due to the fact that small blurs do not 
degrade the image spectrum enough to allow their iden- 
tification, which is known as the “identifiability prob- 
lem.” On the other hand, for large values of uG the esti- 
mations of the correlation coefficients and the modeling 
error becomes more inaccurate due to the severe loss of 

Fig. 4. Blurred cameraman image 

Fig. 5. Restoration of Fig. 4 using the identified parameters 

high image frequencies. Figs. 4 and 5 show the blurred 
image with uG = 1.000, and the restored image with BG 
= 0.978, respectively. 

In order to show the robustness of the blur identification 
procedure with respect to the image model coefficients, 
we selected the following fixed image model: 

1 -0.72 0.85 

0.85 
a ( k ,  I )  = 

and a fixed modeling error variance uf = 200.0. Table 
IV lists the identification results using this fixed image 
model. Fig. 6 shows the restoration result of the blurred 
image in Fig. 4 using the fixed image model and the iden- 
tified uG and U:.. Observe that, in general, the estimates 
uG are less accurate and that the signal-to-noise-ratio im- 
provements are smaller than the corresponding entries in 
Table 111. 

Finally we consider the breakdown of the identification 
procedure for decreasing signal-to-noise ratio. The orig- 
inal cameraman image was blurred with uG = 1.00, and 
noise was added up to the levels of 50, 40, 30, 20, 10, 
and 3 dB. Table V lists the identification results for this 
experiment. From these results and from a variety of other 

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 03:39 from IEEE Xplore.  Restrictions apply.



LAGENDIJK er a l . :  IDENTIFICATION AND RESTORATION OF NOISY BLURRED IMAGES I I89 

TABLE IV 
IDENTIFIED P ~ R A M E T E R S  FOR GAUSSIAN OUT-OF-FOCL~S BLURS A r 

SNR = 30 dB L 
~ - 

,JG 
0.300 
0.500 
0.750 
1.000 
1.500 
2.000 - 

ING A F I X E  

bG et  
0.280 21.7 
0.467 5.55 
0.732 3.80 
0.958 3.50 
1.493 3.34 
2.041 3.20 

I M A G E  Mont1 
~ - 
'lanr 

-1.31 
5.01 
4.38 
2.98 
2.35 
2.11 

- 

__ 

Fig. 6. Restoration of Fig. 4 using a fixed image model and identified blur 
parameters 

TABLE V 

uG = I .OO AT V A R I O U S  SNR's  
~DENTlFlED PARAMETERS FOR GAUSSIAN OGT-OF-FOCUS BLUR WITH 

SNR I bc b i  I P ,  Ph b: 
3 I 1.251 1759 10.907 0.861 1167  

experiments it turns out that the identification performs 
well even for relatively low SNR's, particularly with re- 
spect to the identified PSF. However, for a decreasing 
SNR the identified image model parameters become in- 
accurate, indicating that the proposed method may be too 
restrictive if the amount of noise exceeds the value of ap- 
proximately 20 dB. 

C. 1-D Linear Motion Blur 
The last experiment deals with the photographically 

blurred train image' in Fig. 7. Because the blur is space 
variant in this case, only the blurred section of this image 
was used for identification and restoration purposes. A 
parametric model for horizontal linear motion blur  was 
used, yielding an estimated length of motion L = 8.31 
pixels, 6:, = 0.40, jt, = 0.784, j,, = 0.767, and i3(, = 
59.16. This result for the length of motion confirms the 
result of i = 8 or = 9 pixels reported in the literature 

2 

'Courtesy of Eastman Kodak Company, Rochester, NY 

Fig. 7. Blur introduced by real motion 

Fig. 8. Blurred section of Fig. 7,  and its restoration results using identified 
parameters. 

(for example [6]) using a cepstral technique of [8]. The 
restoration result of the blurred section of the image using 
the identified parameters is shown in Fig. 8.  

VI. DISCUSSION 
In this paper, we have proposed the application of the 

EM algorithm to maximum likelihood blur identification. 
As opposed to earlier work in blur identification, the pres- 
ence of noise in the observed blurred image is directly 
incorporated into the identification technique. As a result, 
the proposed method is not restricted to data in which the 
amount of noise is negligible, but performs well even in 
noisy data. A practical bound for the amount of noise the 
method is still able to handle, seems to be an SNR of 
approximately 20 dB. Low-order parametric image and 
blur models were incorporated into the identification 
scheme in order to make the identification algorithm ap- 
plicable to more realistic blurs and to improve the iden- 
tification results. An additional advantage of these para- 
metric models is that they can be initialized more easily 
than the nonparametric ones. It can be considered to be 
one of the major advantages of the EM algorithm that the 
use of parametric models affects the M step only, without 
changing the E step. Furthermore, within the M step, the 
blur and image model identification remain independent 
problems. 

In some situations of practical interest, such as the im- 
age in Fig. 7, the observation model (4) cannot be used 
because the PSF of the blur varies over the image. This 
requires space-variant blur identification, which can be 
done with the proposed algorithm only in a sliding-win- 
dow approach. This is one of the subjects of current re- 
search in image identification and restoration. 
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APPENDIX A &j.) = E (  fg‘lg; 8‘“) 
DERIVATION OF EQUATION (25) W W 

First, (21) is substituted into (20), yielding = J-, * - + J fg‘p(f/g;8‘”)df( 1) * * . d f ( N 2 )  
--m 

$ ( e ;  = E {  log p(f, g;  e ) / g ;  e(@} = E(  fig; 8‘”) g‘ =f‘Qg‘.  ( 5 5 )  

= --log 1 ( 2 ~ ~ ~ ~ )  - - 1 log det IQn.Q,,I 
2 2 

1 2 

2 
+ - log det I I - A 1 

1 1 
2 2 

= C - - N 2  log (U’,.;,) + - log det I I - A I 

. Q i l ( g  - Df)/g; 8 ( k ) )  

- - 2 E { f‘(I - A ) ‘ Q i l ( I  - A ) f / g ;  e ( k ) ) .  1 

(51)  

If we have a closer look at the fourth term of (51), we 
find 

E {  ( g  - Df)‘Q,’ (s  - Df)/g;.h‘“’} 
= E {  g‘Q,Ig/g; - 2E{ f‘D‘Q,lg/g; 

+ E {  f‘D‘Qi’Df/g; 

1 2 

0 n, 0 n’ 
= 7 g‘g - 7 tr {D E ( f g ‘ / g ;  

(52 1 1 

0u 
+ 7 tr { D E (  f / g ;  8‘“) D‘} 

where tr ( A )  denotes the trace of the matrix A. A similar 
derivation holds for the last term of (51): 

E{f‘ (I  - A)‘Q,’(I - A ) f / g ;  

1 
= - tr { ( I  - A )  E ( f / g ;  ( I  - A ) ‘ } .  (53) 

Now, we define!he N 2  X N 2  conditional correlation ma- 
trices &#’ and &$’ as follows: 

0: 

&$) = E (  fS‘lg; 8‘”) 
W W 

= Jpm * * . J - W  fS‘P(f/g;8‘k’)df( 1) * * d f ( N 2 )  

= cov ( f/g; e(”) + E(  f/g; 8‘”) E(  f/g; 8‘”)‘ 
= p k )  + f ( k ) f ( k ) ‘  (54) 

and P ( k )  are, respectively, the conditional mean 
and covariance off, given the observed image g and the 
estimate of 0 at the kth iteration. By first substituting 
&$) and &ji) into (52) and (53) ,  next substituting (52) 
and (53) into (51), and finally multiplying the result by a 
factor 2 for simplicity, we arrive at (25). 
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