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Abstract
One of the problems in continual learning, where
models are trained sequentially on tasks, is a sud-
den drop in performance after switching to a new
task, called stability gap. The presence of stabil-
ity gap likely indicates that training is not done
optimally. In this work we aim to address sta-
bility gap problem by using sharpness-aware op-
timization that biases convergence to flat minima.
While flat minima are known to mitigate forgetting,
their role in ensuring stable learning during task
transitions remains unexplored. Through system-
atic analysis of two Entropy-SGD and C-Flat, we
demonstrate that sharpness-aware optimizers pro-
duce smoother learning trajectories with reduced
instability after task switch. Furthermore, we show
that C-Flat’s second-order curvature approximation
provides additional stabilization, suggesting that
efficient Hessian-aware methods offer advantages
for continual learning. The source code is available
at Stability-Gap-SAM.

1 Introduction
Continual learning (CL) is a machine learning paradigm
where models are trained on a sequence of tasks, with the
goal of maintaining strong performance on all tasks over time.
In this paper, we focus on the offline setting of continual
learning, where data is encountered in discrete, well-defined
tasks (e.g., Task 1, Task 2, etc.), and the model can train
on each task for multiple epochs before transitioning to the
next. Specifically, we consider domain-incremental learning,
where tasks share the same output space (e.g., the same set
of classes) but exhibit shifting input distributions—meaning
old tasks remain relevant in the data while new tasks are in-
crementally introduced. This differs from task-incremental or
class-incremental learning, where task identities or class sets
change over time [van de Ven and Tolias, 2019]. While con-
tinual learning is highly applicable to real-world scenarios, it
faces two key challenges:

1. Catastrophic forgetting: Models tend to abruptly for-
get previously learned information after switching to a
new task [McCloskey and Cohen, 1989].

2. Stability gap: Even when catastrophic forgetting is mit-
igated, models often exhibit temporary but significant
performance drops on prior tasks after learning new
ones. Though performance may eventually recover, this
instability is inefficient and poses risks in safety-critical
applications (e.g., autonomous systems or medical diag-
nostics).

Standard approaches address these through regularization
[Kirkpatrick et al., 2017], architectural modifications, or re-
play mechanisms [Yoo et al., 2024]. While effective, these
methods often treat symptoms rather than underlying causes.
Recent work suggests that optimization geometry plays a cru-
cial role - models converging to flat minima demonstrate im-
proved generalization and forgetting resistance [Chaudhari
et al., 2017].

While these methods have demonstrated effectiveness in find-
ing flat minima, two critical aspects remain underexplored:
(1) the specific impact of sharpness-aware optimization on
reducing the stability gap in continual learning, and (2) the
potential of second-order optimization approaches for more
robust flat minima discovery.
This gap motivates two key hypotheses:

• H1: Sharpness-aware optimization directly contributes
to stability gap reduction in continual learning systems.

• H2: Incorporating second-order information into
sharpness-aware optimizers yields additional improve-
ments in stability gap mitigation.

A tradeoff arises in addressing these issues: many methods
that reduce forgetting or stability gaps inadvertently degrade
the model’s ability to learn new tasks efficiently. Our work
explicitly targets both objectives.

Our work makes the following contributions:

• We analyze how sharpness-aware optimization impacts
training dynamics in CL, specifically after task transi-
tions.

• We provide the first empirical evidence that second-
order curvature information directly reduces stability
gaps.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses flat minima optimization and existing CL ap-
proaches. Section 3 gives more details on how second-order
information can be incorporated in training objective. Sec-
tion 4 details experiments and reports results with their in-
terpretation. At the end, we discuss limitations and possible
future directions of work.

2 Background
We briefly outline why sharpness-aware optimization can
mitigate the stability gap by favoring flat regions of the loss
landscape.

Stability Gap

The stability gap, first formalized by Lange et al. [2023],
refers to the transient performance degradation observed after
task transitions in continual learning scenarios. Various mit-
igation strategies have emerged to address this phenomenon,
including soft targets, low-rank adaptation techniques that se-
lectively constrain hidden layer plasticity (e.g., LoRA [Hu
et al., 2021]), and output layer freezing mechanisms [Harun
and Kanan, 2024]. While these approaches demonstrate effi-
cacy in gap reduction, they inherently limit model plasticity
and may consequently impair overall performance. Interest-
ingly, certain replay-based methods like those proposed by
Drusvyatskiy [2017] - though not explicitly evaluated for sta-
bility gap mitigation - show promising stability characteris-
tics in preserving prior knowledge, suggesting their potential
applicability to this challenge.

https://github.com/KseniaSycheva/Stability-Gap-SAM


Figure 1: Local entropy concentrates on wide valleys in the energy
landscape. Image is taken from Chaudhari et al. [2017].

Sharpness-Aware Optimization
The geometry of local minima plays a crucial role in model
generalization. Of particular interest are flat minima - regions
of parameter space where the loss function remains relatively
insensitive to small perturbations. This flatness property can
be formally characterized through the spectral properties of
the Hessian matrix, where flat minima correspond to those
with many small-magnitude eigenvalues [Chaudhari et al.,
2017]. The connection between flat minima and improved
generalization has motivated the development of optimization
methods specifically designed to converge to such regions -
sharpness-aware optimizers. We hypothesize that flat minima
may offer particular advantages in continual learning: when
optimization converges to a flat region during the first task,
the broader basin of low loss is more likely to contain shared
solutions that remain valid after task switches, thereby reduc-
ing stability gap. Below we describe two sharpness-aware
optimizers considered in our work.
Entropy-SGD. Chaudhari et al. [2017] introduced one of the
first sharpness-aware optimization methods by reformulating
the optimization objective using local entropy:

F (θ, γ) = log

∫
θ′∈Rn

exp
(
−f(θ′)− γ

2
∥θ − θ′∥22

)
dθ′ (1)

where f is loss function, θ represents the model weights and
θ′ denotes perturbed weight configurations within a neighbor-
hood of θ.
As illustrated in Figure 1, this formulation induces a
smoothed loss landscape by integrating over a Gaussian-
weighted region centered at θ. The hyperparameter γ governs
the trade-off between local loss minimization and neighbor-
hood flatness. By maximizing this local entropy measure, the
optimizer preferentially converges to broad, flat minima that
demonstrate better generalization properties, while avoid-
ing narrow, sharp minima that typically overfit to training

data. The objective is approximated via stochastic gradient
Langevin dynamics (SGLD) [Welling and Teh, 2011], which
introduces hyperparameters analyzed in Appendix B. This
framework is optimizer-agnostic: we term the SGD-based
implementation Entropy-SGD and the Adam variant Entropy-
Adam, collectively referring to the approach as Entropy-
Regularized Optimization when discussing general princi-
ples.
C-Flat. While Entropy-SGD provides a general approach
for finding flat minima, Bian et al. [2024] developed C-Flat
specifically to address catastrophic forgetting in continual
learning. Their key insight is that improved generalization
at each training stage naturally mitigates forgetting. C-Flat
achieves this by combining zeroth-order and second-order
information approximated using gradient. The size of the
considered neighborhood is controlled by hyperparamters ρ,
while contribution of second-order information is addition-
ally weighted by ϕ. The authors demonstrate that targeted
flatness optimization leads to more stable performance across
sequential tasks while maintaining competitive accuracy on
current tasks.

3 First vs. Second-Order Flatness
Optimization

The main difference between Entropy-regularized optimizers
and C-Flat is that the former uses zero-order information only
to guide optimization towards flat minima, while the latter in
addition to zero-order values utilizes loss gradients. These
gradients enable efficient estimation of second-order geomet-
ric properties, bypassing explicit Hessian computation while
still capturing the curvature information most relevant to sta-
bility gap reduction. This section discusses why gradient-
based curvature approximation is theoretically well-founded
for stability preservation in continual learning.

Approach
Hessian of flat minima has distinct properties. As discussed
in Section 2, flat minima have most of its eigenvalues with
low magnitude. In Entropy-regularized optimization this
property is not taken into account explicitly: training is regu-
larized by averaging loss values in the neighborhood around
current weights. In contrast to this, C-Flat targets this prop-
erty directly by using gradients to regularize training objec-
tive:

ρ ·max{||∇L(θ′)|| : θ′ ∈ B(θ, ρ)} (2)

where B(θ, ρ) is a ball centered at θ with radius ρ.
According to Bian et al. [2024], Equation (2) is not enough to
converge to local minima. Therefore, they propose to use it
in combination with zero-order sharpness. The final objective
is:

max{L(θ′) : θ′ ∈ B(θ, ρ)}
+ϕ · ρ ·max{||∇L(θ′)|| : θ′ ∈ B(θ, ρ)}

(3)

This method is orthogonal to existing continual learning tech-
niques - it can be combined with replay-based, regularization-



based, or architectural approaches without conflict. For im-
plementation details, see Algorithm 1. Below, we formalize
the connection to Hessian properties.

Diagonal Approximation of Hessian
Although second-order methods provide superior conver-
gence properties through exact Hessian information, their
computational and memory requirements scale quadratically
with parameter count. This limitation has driven the devel-
opment of efficient approximations of Hessian, like diagonal
[Becker and Lecun, 1989], or Kronecker-factored methods
[Martens and Grosse, 2020]. As discussed in Elsayed et al.
[2024], high quality of diagonal approximations suggest that
Hessian matrices have dominant diagonal entries. According
to Gershgorin Theorem [Gershgorin, 1931], all eigenvalues
of Hessian must lie close to diagonal entries. Specifically, for
a Hessian matrix H with |Hii| >>

∑
j ̸=i |Hij |, each eigen-

value λ satisfies |λ−Hii| ≤ Ri where Ri (the Gershgorin ra-
dius) is small relative to |Hii|. Thus, diagonal entries closely
approximate the eigenvalues, and consequently, Equation (3)
effectively constrains the spectral properties of the Hessian
through these computationally tractable diagonal approxima-
tions.

Algorithm 1 Second-Order Flat Minima Optimization

Require: Model parameters θ, loss function L, neighbor-
hood radius ρ, second-order penalty weight ϕ

1: Compute L(θ) // Forward pass

2: θ′0 ← θ + ∇L(θ)
||L(θ)||2 // Perturb weights θ to approximate

zero-order flatness term
3: Compute ∇L(θ′0)
4: θ′1 ← θ + ∇||∇L(θ)||2

||∇||L(θ)||2||2 // Perturb weights θ to approximate
second-order flatness term

5: Compute ∇L(θ′1)
6: Aggregate gradients
7: Perform optimization step with base optimizer

4 Experimental Setup and Results
We evaluate all methods on a rotated MNIST benchmark
[Deng, 2012] using three distinct rotation angles (0°, 80°,
160°) in a domain-incremental learning scenario, with
primary results reported for the fixed task order (0°→
160°→ 80°) and additional validation performed using the
reversed order (0°→ 80°→ 160°) to verify consistency (see
Appendix A).

The base architecture consists of a fully-connected neural
network with two hidden layers (400 units each) and ReLU
[Agarap, 2019] activations. In all experiments batch size was
set to 128, and number of training steps for each task to 1000.
We implement two optimization baselines: (1) SGD and
(2) Adam, with their entropy-regularized variants (Entropy-
SGD, Entropy-Adam) and flatness-aware versions (C-Flat).
For main experiments we set number of SGLD iterations to
15, γ to 0.001 in Entropy-SGD/Adam, and ρ = 0.05, ϕ = 2.0
in C-Flat. These values were selected based on preliminary

ablation studies (detailed in Appendix B). To ensure statisti-
cal reliability all experiments are repeated across five random
seeds. Reported metrics represent averages over all runs.

Metrics
To evaluate sharpness-aware optimizers against the baseline,
we compute several metrics, which are described below.

Maximum drop (MD) measures the maximum accuracy de-
cline between the point immediately before a task switch and
the point before the next switch, quantifying forgetting sever-
ity during transitions.
Recovery steps (RS) counts the iterations needed to recover
from the worst forgetting event, identified by first locating
the iteration with maximum stability gap depth (lowest accu-
racy), then measuring number of steps until accuracy returns
to or exceeds its last pre-drop level, ensuring measurement
from the lowest point with sustained improvement.
Accuracy on all tasks evaluates final model performance
across all tasks after training completion, verifying that sta-
bility improvements don’t compromise overall task perfor-
mance.
All metrics are first computed per random seed, then averaged
across seeds (N=5) with standard errors noted. Pseudocode
for stability gap metrics is provided in Appendix C.

Results
We report results on different optimizers with fixed hyperpa-
rameters on five seeds. In addition to quantitative results, we
provide qualitative analysis of the performance of different
optimizers.

Quantitative Results
In experiments with both optimizers (SGD and Adam), we
can see that training dynamics is affected by incorporating
sharpness-aware regularization.

SGD-based optimizers optimizers demonstrate consistent
improvements in stability while maintaining task perfor-
mance compared to SGD baseline. As visible in Figure 2,
both Entropy-SGD and C-Flat (SGD) significantly reduce
post-switch accuracy drops compared to vanilla SGD across
both task transitions (see Table 3). Entropy-SGD shows
particularly strong recovery properties, achieving 16% (first
switch) and 36% (second switch) smaller accuracy drop on
average. While C-Flat (SGD) exhibits slightly slower initial
recovery after the first transition, it outperforms vanilla SGD
by 8% in recovery speed after the second transition, and has
the smallest accuracy drop after first task switch. Final task
accuracies remain competitive, with Entropy-SGD matching
baseline SGD performance and C-Flat (SGD) showing only
marginal degradation (0.75 percentage points across tasks),
as shown in Table 1.
Adam-based optimizers exhibit distinct stability patterns
(see Figure 3) compared to their SGD counterparts (Ta-
ble 4). While all variants maintain competitive final accu-
racies (within 0.29 percentage points of baseline, see Ta-
ble 2), C-Flat (Adam) demonstrates consistent stability im-
provements: recovery times decrease by 36% (first switch:



101.2 vs 157.2 iterations) and 82% (second switch: 59.2 vs
330.2 iterations), while accuracy drops reduce by 23% (first
switch: 12.18 vs 15.81 points) and 14% (second switch: 3.87
vs 4.48 points) compared to vanilla Adam. This strong perfor-
mance contrasts sharply with Entropy-Adam, which increases
instability (23.26 vs 15.81 drop) - reversing Entropy-SGD’s
effects. The dramatic instability increase with Entropy-Adam
reveals an incompatibility between entropy regularization and
adaptive gradients, whereas C-Flat’s second-order flatness
minimization remains robust in Adam-based optimization.

Optimizer Task 1 Task 2 Task 3

SGD 95.42± 0.44 95.19± 0.48 94.18± 0.55
Entropy-SGD 96.05± 0.31 96.04± 0.30 94.94± 0.16
C-Flat (SGD) 95.04± 0.44 94.89± 0.49 93.43± 0.26

Table 1: Comparison of test accuracy (%) for SGD-based optimiz-
ers. Entropy-SGD achieves the highest performance on Tasks 2 and
3, while SGD performs best on Task 1. C-Flat (SGD) lags slightly
behind in all tasks. n all experiments base optimizer learning rate
was set to 0.1. Bold and underlined values denote the top two re-
sults per task.

Optimizer Task 1 Task 2 Task 3

Adam 96.36± 0.35 95.95± 0.40 95.47± 0.26
Entropy-Adam 97.24± 0.34 97.24± 0.15 96.33± 0.14
C-Flat (Adam) 96.69± 0.33 96.14± 0.37 95.18± 0.50

Table 2: Comparison of test accuracy (%) for Adam-based optimiz-
ers. Both Entropy-Adam and C-Flat with Adam as base optimizer
outperform Adam on the first two tasks. In these experiments learn-
ing rate of base optimizer was set to 0.01.

Qualitative Results
Additionally, we conduct several experiments with C-Flat
by varying ϕ values, which control the effect of second-
order information on optimization. We experiments with
ϕ ∈ {0, 1.0, 2.0} and use SGD as base optimizer. The rest
of the setup is the same as described above. As shown in Fig-
ure 4, increasing ϕ leads to smaller MD without noticeable
drop in accuracy. This relationship between ϕ and stability
gap provide empirical evidence that second-order curvature
offers precise control over transient stability gaps, beyond
what pure zero-order optimization can achieve.

5 Discussion and Future Work
Analysis. Our study demonstrates that sharpness-aware
optimization significantly stabilizes training dynamics in
continual learning. We evaluate two existing sharpness-aware
techniques: Entropy-Regularized optimization and C-Flat.
Both methods applied to SGD outperform vanilla SGD.
Notably, while C-Flat maintains comparable performance
when applied to Adam, Entropy-Adam exhibits an interesting
tradeoff: it reduces recovery steps but increases gap depth.
These results reveal that flat minima convergence provides a
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Figure 2: Task 1 accuracy trajectories demonstrating stability gap
characteristics of SGD-based optimizers during incremental train-
ing (shaded regions indicate ±1 standard error across runs). Both
Entropy-SGD and C-Flat exhibit faster recovery from post-switch
accuracy drops and better stability preservation compared to vanilla
SGD, while simultaneously maintaining competitive downstream
task performance.

principled approach to stability gap reduction, with second-
order curvature information playing a particularly crucial
role. This observation aligns with results obtained by Bian
et al. [2024] for catastrophic forgetting.

Limitations. Our work has several limitations. The most sig-
nificant limitation is the high standard error in recovery step
(RS) measurements, suggesting the need for more robust sta-
bility metrics. In addition to that, all experiments were con-
ducted on MNIST in a domain-incremental setup, which pro-
vides initial validation but may not fully represent challenges
in more complex scenarios like CIFAR [Krizhevsky, 2012]
or ImageNet [Deng et al., 2009]. The study also focuses ex-
clusively on three-task sequences, while scalability to longer
task streams was not tested. While the current implemen-
tation uses efficient small-scale models, scaling to larger ar-
chitectures may reveal additional computational constraints -
particularly since sharpness-aware optimizers introduce com-
putational overhead that could become significant at scale.

Future work. This study suggests several promising research
directions. First, addressing the current limitations through
evaluation on more complex benchmarks (e.g., CIFAR, Ima-
geNet) and longer task sequences would strengthen the find-
ings. Second, investigating other sharpness-aware optimizers
could provide deeper insights into how different loss land-
scape properties affect stability gaps. Most importantly, while
our empirical results demonstrate the value of second-order
information for stability gap mitigation, formal theoretical
analysis of this relationship remains unstudied.



First Task Switch Second Task Switch

Optimizer MD ↓ RS ↓ Optimizer MD ↓ RS ↓
SGD 6.29± 1.0 361.8± 68.96 SGD 4.21± 0.62 384.4± 89.43
Entropy-SGD 5.25± 0.33 339.6± 60.01 Entropy-SGD 2.78± 0.39 252.4± 149.36
C-Flat (SGD) 4.61± 0.57 408.2± 82.35 C-Flat (SGD) 3.08± 0.32 355.4± 134.59

Table 3: Stability gap analysis across task transitions for SGD-based optimizers, measuring both accuracy drop (percentage points) and
recovery time (iterations). Entropy-SGD shows the fastest recovery after the first transition, while both modified optimizers (Entropy-SGD
and C-Flat) achieve significantly smaller accuracy drops than vanilla SGD at both transitions.

First Task Switch Second Task Switch

Optimizer MD ↓ RS ↓ Optimizer MD ↓ RS ↓
Adam 15.81± 1.58 157.2± 97.94 Adam 4.48± 0.69 330.2± 345.56
Entropy-Adam 23.26± 0.98 82.6± 29.80 Entropy-Adam 6.68± 0.90 87.8± 40.91
C-Flat (Adam) 12.18± 1.82 101.2± 21.90 C-Flat (Adam) 3.87± 1.02 59.2± 28.02

Table 4: Stability gap analysis for Adam-based optimizers reveals distinct behaviors: C-Flat achieves both the smallest accuracy drops and
fastest recovery times across transitions, while Entropy-Adam underperforms with larger accuracy drops.
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Figure 3: Task 1 accuracy trajectories for Adam-based optimiz-
ers, revealing distinct stability gap behaviors. While C-Flat demon-
strates faster recovery from task switches, Entropy-Adam shows no-
tably degraded performance compared to both its SGD counterpart
and baseline Adam, suggesting the entropy regularization approach
may be less suitable in continual learning setting.

6 Conclusions
In this work we investigated the effect of sharpness-aware op-
timization on stability gap in continual learning setting. Such
optimizers are biased towards flat minima. We hypothesize
that flat minima reduce stability gaps by increasing the likeli-
hood of shared optimal solutions across tasks—their broad
basins maintain low loss even when the input distribution
shifts. In particular, we examined two methods—Entropy-
regularized optimization and C-Flat—with the latter ex-
plicitly incorporating second-order curvature information to
study its distinct impact on stability gap reduction.
Our results demonstrate that sharpness-aware optimization
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Figure 4: Task 1 accuracy trajectories of C-Flat (SGD) optimizers
with different ϕ values during incremental training with different.
Larger ϕ values reduce MD more without sacrificing performance
significantly.

effectively reduces stability gaps, with second-order methods
delivering more consistent improvements, without affecting
negatively model’s performance on other tasks. Our experi-
ments show that choice of hyperparameters that control effect
of the neighborhood points should be done properly, a critical
consideration when implementing this approach.

7 Responsible Research
This work adheres to ethical research practices in machine
learning. All experiments were conducted using the publicly
available MNIST dataset, which contains anonymized hand-
written digits and poses no privacy concerns. The model was
implemented using the open-source PyTorch framework, en-
suring transparency and reproducibility.
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Figure 5: Task 1 accuracy trajectories for Adam-based optimizers
on task sequence 0°→ 80°→ 160°. The behavior observed on this
task sequence is similar to the one on 0°→ 160°→ 80°, used in main
experiments.

To minimize environmental impact, experiments were per-
formed on a single NVIDIA RTX A2000 GPU, optimizing
computational efficiency. The full code will be open-sourced
upon publication to facilitate reproducibility and further re-
search in continual learning.
Since this study uses benchmark data without human-subject
risks, formal ethics approval was not required. However, we
acknowledge the broader responsibility in deploying contin-
ual learning systems and encourage future work to assess fair-
ness and bias when adapting to real-world streaming data.

Appendix
A Permuted Order
To ensure that results are not dependent on specific task order,
we repeated experiments with Adam using another permuta-
tion of tasks: 0°→ 80°→ 160°. The rest of the setup coincides
with the one described in Section 4. From Figure 5 it is visi-
ble that the overall trend is similar to the one observed before.
Numerical results in Table 5 confirm that the relative perfor-
mance of methods is not altered. Interestingly, the absolute
values of MD are different from values reported in Table 4:
in Table 4 drop after first switch is much larger than drop after
second switch, while in Table 5 these values are similar in all
experiments. This suggests that order of tasks has significant
effect on model’s training dynamics.

B Hyperparameters
We experiment with hyperparameters specific for sharpness-
aware optimizers discussed in the paper. Here we provide
a more detailed description of these hyperparameters to
motivate choice of their values in the main experiments.

For Entropy-SGD we consider two hyperparameters: num-
ber of SGLD steps L and scale γ. SGLD [Welling and

Teh, 2011] is a Markov chain Monte-Carlo (MCMC) algo-
rithm designed to draw samples from a Bayesian posterior.
In Entropy-SGD number of SGLD steps L determines the
precision of approximation of the objective in Equation (1).
We experimented with L ∈ {5, 15, 25}, keeping γ = 0.001.
As demonstrated in Figure 6a, increasing L leads to higher
accuracies across all tasks and reduced stability gap. Since
training time grows with L, for main experiments we choose
L = 15 to balance between time and performance. In con-
trast to L, Entropy-SGD does not show sensitivity to scope γ,
providing consistent results for a wide range of γ, as shown
in Figure 6b.
C-Flat has two hyperparameters: ρ that defines the width of
the considered neighborhood, and ϕ that controls contribution
of second-order curvature. Results of experiments with ϕ are
analyzed in Section 4. Here we additionally present results
for ρ ∈ {0.0, 0.05, 0.1} with fixed ϕ = 2.0. From results in
Figure 7 we can see that larger values of ρ lead to decrease
in stability gap width. However, changing this values results
additionally in decrease in accuracy.

C Stability Gap Metrics
Our evaluation quantifies continual learning stability through
two metrics computed from the accuracy trajectory A(t). As
formalized in Algorithm 2 and Algorithm 3, both measures
operate at the iteration level, requiring: (1) task switch points
ti, and (2) per-iteration accuracy values. The metrics capture
complementary aspects of transient instability—magnitude
and duration.
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First Task Switch Second Task Switch

Optimizer MD ↓ RS ↓ Optimizer MD ↓ RS ↓
Adam 11.26± 1.09 174.0± 181.04 Adam 11.58± 0.85 176.0± 71.89
Entropy-Adam 17.30± 1.53 74.20± 17.42 Entropy-Adam 17.01± 1.84 83.0± 25.01
C-Flat (Adam) 9.02± 2.04 114.4± 54.35 C-Flat (Adam) 9.47± 2.02 225.8± 176.50

Table 5: Robustness analysis with permuted task order (Tasks 2 & 3 swapped). While absolute metric values vary between switches, C-Flat
(Adam) consistently achieves the lowest maximum drops (MD) across both transitions (9.02 vs 11.26 and 9.47 vs 11.58 pp), confirming its
task-order invariance.
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(a) Varying SGLD steps (L)
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Figure 6: Task 1 accuracy trajectories for Entropy-SGD under different hyperparameter configurations. (a) Larger SGLD steps (L) improve
both final accuracy and reduce post-switch drops. (b) In contrast, the stability gap shows minimal sensitivity to the scope parameter (γ),
suggesting that local entropy range has limited impact on transient stability.
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Figure 7: Task 1 accuracy trajectories for C-Flat with varying ρ. Our
results show that stability gap decreases with larger ρ values, while
introducing slight decrease in accuracy.
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Algorithm 2 Stability Gap Magnitude (∆Amax)

Require: Task switch ti, accuracy A(t)
1: Apre ← A(ti − 1)
2: ∆A← Apre −mint∈[ti,ti+1] A(t)
3: return ∆A

Algorithm 3 Recovery Time (Trec)

Require: Task switch ti, accuracy A(t)
1: Apre ← A(ti − 1)
2: tmin ← argmint∈[ti,ti+1] A(t) // Get index of last such

value
3: T ← min{t > tmin|A(t) ≥ Apre}
4: return T

Figure 8: Algorithms for computing stability gap metrics: a) maximum accuracy drop b) time to recover. ti is the number of iteration when
i-th task switch happened; A(t) is a function that returns accuracy for a given iteration. In all experiments, evaluation was run after every
training iteration.
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