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Summary

Introduction
The Dutch railway network is one of the busiest in Europe, with as many as 147 train per day per route kilometer
in 2019. Under regular conditions, the timetable is adhered to apart from minor variations. But train operations are
still subject to uncertainties that can disturb train services, cause delay to multiple trains, and propagate through the
network. Delay can be dealt with in different stages of the railway transport management. One option is to mitigate
delay already in the timetable design. To provide a high quality of services, buffer times are added to the minimum
difference between the times two successive trains of either direction enter a section.

It is still common practice to design buffer times based on a deterministic value in combination with personal ex-
perience, decreasing operational capacity and requiring large amount of manual checking by planners. Existing ap-
proaches in literature to effectively allocate buffer time in timetables lack flexibility and require an initial timetable,
but agree on the idea that effectively scheduling buffer times should be performed considering the actual size of the
delay. This raises the question how more suitable buffer time planning rules can be designed that can be applied to
the tactical timetable design stage when no initial timetable is present. Therefore, the following research question
was formulated:

How can buffer time planning rules focused on reducing delay propagation be extracted from realisation data?

Methodology
The research question was addressed by applying a combination of methods. First, a literature review of the various
theories and methods on buffer times in railway timetable design was performed. Second, grey literature and inter-
nal documents from ProRail and NS was consulted to gather insight into the practical background regarding buffer
times. It was used to address the current planning norms, timetable design process and design practices. Third,
the main research method was a statistical analysis of observed mean secondary delay and hindrance percentage
in critical conflict points, retrieved from historical railway traffic realisation data. Two stepwise regression analy-
ses were performed aiming to predict the two variables with the use of timetable characteristics related to headway
situations of two succeeding trains. The timetable characteristics included to help predict the two target variables
are (i) direction; (ii) number preceding conflicts; (iii) scheduled buffer; (iv) scheduled headway; (v) technical min-
imum headway; (vi) timetable point; (vii) type headway situation; (viii) type timetable point; (ix) event; (x) carrier;
(xi) driving characteristic; (xii) previous and next timetable point; (xiii) rolling stock type; (xiv) rolling stock amount
carriages; (xv) scheduled running time supplement; (xvi) train series (pattern); and (xvii) type of previous and next
timetable point. The results of the regression analysis are used to determine the amount of scheduled buffer time
that would ensure a certain amount of hindrance percentage given a specific headway situation

Results
The methodology has been applied to a case study of the Dutch railway network, between Haarlem, Leiden Centraal
and Schiphol Airport. The general impression from the cae study is that the delay propagation at different crit-
ical conflicts is quite heterogeneous. The regression models were both able to explain 90.7% of this heterogeneity,
meaning that structural delay propagation patterns can largely be contributed to timetable design and infrastructure
characteristics. In particular, factors related to the route and train series of the trains contributing to the critical con-
flict appeared to be influential in explaining and predicting mean secondary delay and the probability of hindrance.
Still, critical conflicts with the same mean secondary delay and hindrance percentage can have different secondary
delay distributions, caused by among others (i) number of realisations of the conflict; (ii) number dispatching op-
tions; (iii) proactive attitude of traffic controllers; (iv) delay distributions of the first and second train at the previous
timetable point; (v) the variety in scheduled buffer; (vi) the variety in rolling stock; and (vii) time of day.

The planning rules emerging from the regression models can be integrated in timetable design processes as (i) the
size of the wake added in the simulation; or (ii) an indication of when slightly hindered headways are acceptable.
To reduce the workload for planners further, it would be favourable that the needed scheduled buffer for a specific
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0. Summary

conflict is automatically shown in the planning application. To this end, all relevant factors explaining these aspects
of delay propagation ought to be integrated in planning applications. The standardisation could help streamline
data-driven timetable design.

Conclusion
The general conclusion of this paper is that an estimation or prediction of the expected delay propagation between
two trains in a given situation could be done quite accurately (adjusted R-squared of both models equals 0.907) is
essential to determining suitable buffer time planning rules, because it provides insight into where buffer time can
be placed in order to be most effective. This research has operationalised delay propagation as the mean secondary
delay and probability of hindrance a succeeding train encounters caused by a delay of a preceding train. Using the
prediction model, the planning rules can be determined by setting a desired value for these metrics. This value
could possibly be determined by making a trade-off between delay propagation and capacity based on a chosen
objective (e.g. passenger punctuality, infrastructure consumption). Interesting to note is that the mean secondary
delay is not significantly impacted by the scheduled buffer, but the probability of hindrance is. This indicates that
the delay distributions of both trains have a bigger impact on the size of the secondary delay, while the size of the
scheduled buffer determines how often hindrance occurs. With regard to planning buffer time focused on reducing
delay propagation in the Netherlands, improvements can be made concerning design practices and data processing.
In particular, it is favourable that the flexible needed scheduled buffer for a specific conflict is automatically shown
in the planning application, to reduce the workload for planners. This standardisation could help streamline the
data-driven timetable design.
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1
Introduction

This thesis explores the ability to create buffer time planning rules based on realisation data suitable for usage in
an initial timetable. In this chapter, the main problem and contributions addressed in this research are described.
Section 1.1 starts with an introduction of the problem. Next, Section 1.2 states the scope and goal of the research
as well as the research questions. Section 1.3 follows with the scientific and societal contributions of this research.
Finally, in Section 1.4 an overview of the document structure is presented.

1.1. Problem description
This section first discusses the general problem and motivation of this research. Thereafter the problem statement
that follows from the literature research and practical background is presented.

1.1.1. Problem context
The Dutch railway network is one of the busiest in Europe, with as many as 147 trains per day per route kilometer in
2019 (Independent Regulators’ Group - Rail, 2021), and its network usage intensity will become even higher with the
frequency increase of train services under the High-Frequency Rail Transport Programme (Ministerie van Verkeer
en Waterstaat, 2010). The programme aims to realise frequencies that enable timetable-free travel for passengers,
with up to 12 intercity trains and 6 sprinter trains every hour on high-utilised trajectories in the country, as opposed
to a maximum of 8 and 4 trains of each respective category per hour before the start of the program. This increase
in frequency requires more efficient use of the current infrastructure capacity as well as reliable train operations.
Timetabling is performed to serve exactly these functions (Pachl, 2014), and becomes even more important and
complicated with the higher network usage intensity.

Under regular conditions, the timetable is adhered to apart from minor variations in the train services due to
differences in driving behaviour and stochasticity in process times. Despite advanced communication, monitoring,
and control facilities, train operations are still subject to uncertainties that can disturb train services, cause delays
to multiple trains, and propagate through the network. Delays have a negative impact on the performance of the
railway system, such as increased travel time, missed transfers and extended working hours of staff. Thereby, they
lead to higher operational costs and a lower level of service.

Delay can be dealt with in different stages of the railway transport management. In real-time, dispatching decisions
can focus either on reducing the impact of delays, aiming for overall passenger punctuality by accepting some can-
cellations, or on minimising cancellation of delayed trains. In the Netherlands, the first strategy is applied, resulting
in an average cancellation ratio and a high passenger punctuality compared to other train operators in Europe (In-
dependent Regulators’ Group - Rail, 2021; Nederlandse Spoorwegen, 2020).

Another option is to mitigate delay already in the timetable design. To provide a high quality of services, time
allowances are added to the shortest possible running time between scheduled stops (i.e. running time supplement)
and minimum line headway, which corresponds to the minimum difference between the times two successive trains
of either direction enter a section (Pachl, 2014) (i.e. buffer time). The former aims to facilitate a recovery or reduction
of a delay within the timetable of one train, whilst the latter enables prevention and reduction of delay propagation
between trains. Both types of time allowance accommodate variation in driving behaviour and small deviations in
process times (Goverde, 2014). This thesis’ focus is on contributing to the timetable design part with a particular
emphasis on buffer times.

1.1.2. Problem statement and knowledge gaps
It is still common practice to design buffer times based on a deterministic value in combination with personal expe-
rience and tacit knowledge. Although easy to apply, this method (i) often decreases operational capacity in heavily
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utilised networks; and (ii) requires a large amount of manual checking in case of smaller scheduled buffer times.
Both aspects affect the extent to which buffer times are effective in reducing delay propagation. This is supported
by findings from Carey and Kwieciński (1994), Yuan and Hansen (2007), Yuan and Hansen (2008), and Zieger et al.
(2018), showing that the realised headway and the type of buffer time distribution have a significant influence on the
expected knock-on delays and capacity. Therefore, there is a need for buffer time allocation techniques that achieve
a high effectiveness of buffer times.

When creating an initial timetable from scratch, the literature predominantly considers minimum buffer time, or
minimum headway time including an explicit minimum buffer time as a further simplification, as a deterministically
given input value (Cacchiani and Toth, 2012; Caprara et al., 2002; Scheepmaker and Goverde, 2021; Serafini and
Ukovich, 1989). Most works consider this to be a hard constraint, while in practice a smaller buffer is only rejected
when (i) an unplanned stop would occur, or (ii) an arrival delay bigger than 30 seconds would occur (ProRail, 2020).
Thus, the optimisation models in the literature lack flexibility regarding the trade-off between headway time and
running time. One way of introducing flexibility to these type of models is to make the minimum buffer time input
variable. Therefore, an approach that can differentiate buffer time is required.

With regard to allocation of running time supplements and buffer times to reduce delay propagation and to im-
prove timetable robustness, several approaches have been introduced in literature (Hauck and Kliewer, 2019; Huang
et al., 2019; Jin et al., 2019; Jovanović et al., 2017; Khoshniyat and Peterson, 2017; Kroon et al., 2008; Yang et al., 2020).
The main limitation of these approaches is that they are only able to adjust an existing timetable by reallocating the
current running time supplements and buffer times. Thus, a predefined train order is assumed, the total amount of
scheduled buffer remains unchanged and an initial timetable is required. This raises the question how more suitable
buffer time planning rules can be designed that can be applied to the tactical timetable design stage when no initial
timetable and train order is present.

The rising availability of data has enabled analysis of empirical delay distribution, delay propagation and headway
variation (Corman and Kecman, 2018; Dietzenbacher, 2021; Zieger et al., 2018). The findings have been applied to
predict train delays and reallocate buffer times, but do not explicitly specify how buffer times should be allocated
to alleviate delay propagation most effectively. Furthermore, some approaches have explicitly aimed to improve the
effectiveness of running time supplements and dwell time supplements to recover from delays based on historical
data (Huang et al., 2019; Yang et al., 2020). Thus, the proposed methods mainly focus on the reduction of primary
delays and are unable to generalise the findings, such that it can be applied to create initial timetables where no re-
alisation data is available yet. The latter is crucial to cope with delay propagation effects already while constructing
an initial timetable.

Combining the scientific gaps, identified in Chapter 2, and the practical gaps, identified in Chapter 3, this research
addresses the following knowledge gaps:

• It is unknown to what extent specific timetable characteristics (e.g. scheduled buffer time, scheduled running
time supplement, train characteristics, headway situation, location) influence delay propagation.

• The effective allocation of buffer times to alleviate delay propagation based on historical realisation data has
not been widely addressed in the tactical planning stage of railway timetables where an initial timetable is
constructed.

• Planning rules for buffer time based on historical realisation data have not been widely explored in literature.

1.2. Research design
This section describes the design of the research. First the scope of the research is defined. Next, the goal and
research questions are stated. Finally, the methods used to answer the research questions are explained.

1.2.1. Research scope
The scope of this research is defined as follows:

• Focus on buffer times
running time supplements allocation in an initial timetable in relation to improving timetable robustness has
been addressed in Khoshniyat and Peterson (2017) and Scheepmaker and Goverde (2015). In these studies,
running time supplements have proven not only to be beneficial to reduce the delay of one train, but also to
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facilitate energy efficient driving in case of no delays. Moreover, Huang et al. (2019) and Yang et al. (2020) have
presented methods to enhance allocation of running time supplements and dwell time supplements based
on realisation date. Analytical approaches that aim to enhance timetable robustness based on headway have
been developed by Carey and Kwieciński (1994) and Vromans et al. (2006), but they do not explicitly consider
buffer time. There is less knowledge about buffer time allocation in an initial timetable, whilst its distribution
has proven to be of great influence to the built-up of knock-on delays (Zieger et al., 2018). Therefore, this
research only focuses on the differentiation of buffer times.

• Focus on reduction of delay propagation
As mentioned in Section 1.1, buffer time is added to the minimum line headway to provide a high quality of
services by enabling prevention and reduction of delay propagation between trains. Currently, in practice, the
emphasis in scheduling with buffer times is on assuming a certain value and only changing it when tighter
headways are desired in order to gain extra capacity. The focus in this research will be reversed; to investigate
when a greater buffer time is desired in order to reduce delay propagation.

• Focus on planning rules for an initial timetable based on realisation data
The railway traffic system can be divided into the strategic, tactical, and operational phase (Ibarra-Rojas et al.,
2015). Respectively they (i) define desired connections and required performances, (ii) define train services
and timetables, and (iii) monitor train operations and manage disturbances and disruptions. In this research,
realisation data from the operational stage is used to improve the tactical rules and procedures with the goal
to improve the quality of the timetable with regard to delay propagation.

1.2.2. Research objectives and research questions
To fill the knowledge gaps identified in Section 1.1, the aim of this research is twofold. On the one hand, the goal is
to identify timetable characteristics that influence the delay propagation. On the other hand, the aim is to provide
a data-driven approach for determination of buffer time planning rules suitable for usage in an initial timetable.
These planning rules are not necessarily generic, but can depend on the characteristics that have been identified by
achieving the first objective.

To achieve the objectives, this research will answer the following main research question:

How can buffer time planning rules focused on reducing delay propagation be extracted from realisation data?

In order to provide an answer to the main research question, the following sub-questions are composed:

1. What can be learned from previous quantitative, data-driven approaches for scheduling time allowances in
railway timetable design?

2. What is the current state of the practice regarding planning norms for buffer times and regarding data-driven
timetable design approaches in the Netherlands?

3. What data-driven model(s) can be used to determine buffer time planning rules in the tactical timetable design
phase?

4. How are buffer time planning rules determined from the data-driven model(s) and how do they compare to
the current planning norms for buffer times?

5. Which insights do the data-driven model(s) and buffer time planning rules bring that may help practitioners
effectively allocate buffer times in the tactical timetable design phase?

1.2.3. Research approach
The research questions are answered with a combination of desk research, quantitative data analysis and case study.
Below is an explanation of each of the methods.

Desk research
The first part of this research is a desk research, consisting of a review of literature and grey literature. It starts with
a literature review on buffer times in railway timetable design. The review discusses (i) timetable design concepts;
(ii) timetable design methods; (iii) data-driven delay distribution, propagation and recovery models; and (iv) data–
driven buffer time scheduling. Furthermore, it highlights the research gaps addressed in this thesis and it answers

3



1.3. Scientific and societal contributions 1. Introduction

the first sub-question. The discussed literature consists of scientific papers and conference papers found in Scopus
based on a keyword search within the article title, abstract and keywords. Additional articles were found by applying
the forward and backward snowballing principle (Wohlin, 2014).

In addition grey literature and internal documents from ProRail and Nederlandse Spoorwegen are consulted
to gather insight into the practical background regarding buffer times. It is used to address the current planning
norms, timetable design process and design practices. The literature review and practical background are presented
in Chapter 2 and Chapter 3 respectively.

Data analysis
The second method is a quantitative data analysis. The analysed data concerns conflict data from the timetable,
complemented with historical railway traffic realisation data. The conflict data is used to identify what headway
situations are planned tighter than the norms and the realisation data is used to assess how these critical headway
situations turned out in the operation.

Using this information, it is determined how delay has propagated from a preceding train to a succeeding train
on critical conflict locations. Then, regression models are established to describe and predict the delay propagation.
Next, it is investigated which model fits the data the best to extract buffer time planning rules from. This method is
in line with current buffer time allocation approaches and research gaps (Huang et al., 2019; Wen et al., 2019; Yang
et al., 2020). More details on the data analysis are provided in Chapter 4 and Chapter 5.

The data analysis is performed in Jupyter notebook and coded in Python with the use of Pandas (McKinney, 2010),
Matplotlib (Hunter, 2007), Seaborn (Waskom, 2021), Scipy and Scikit-learn (Pedregosa et al., 2011; Virtanen et al.,
2020), and Statsmodels (Seabold and Perktold, 2010).

Case study
According to Gerring (2004), a case study can be best defined as "an intensive study of a single unit for the purpose
of understanding a larger class of (similar) units". This research’s case study focuses on a subsystem of the Dutch
railway network to show how the methodology can be applied to infer buffer time planning rules from railway traffic
realisation data and how its effects can be assessed. The case study is elaborated on in Chapter 5.

1.3. Scientific and societal contributions
The main scientific contribution of this research consists of a new data-driven approach to allocate buffer times in
an initial timetable. The approach is generic and can be applied to a larger scope and to railway networks in other
countries. Additionally insights are generated into what timetable characteristics contribute to delay propagation in
critical conflict points.

The main societal contribution of this research consists of recommendations for designing buffer time planning
rules in a data-driven fashion. This information could support the commissioner, Nederlandse Spoorwegen, in im-
proving their timetable to better avoid delay propagation and in identifying new timetable structures due to more
specific buffer time planning rules. Furthermore, this work adds in gaining a better understanding of the interac-
tions with buffer time. A last contribution is the potential this research demonstrates for timetable design based on
traffic realisation data, by showing that the necessary data are available and that relevant conclusions can be drawn
from the analysis of headways.

1.4. Structure of the thesis
The remainder of the report is structured as follows: Chapter 2 starts with a literature review on timetable design
concepts and methods, data-driven delay models and buffer time scheduling and ends with an overview of the sci-
entific gaps this research fills. Subsequently, Chapter 3 presents the current norms and working practices in the
Netherlands regarding timetable design and buffer time scheduling. Chapter 4 follows to explain the approach of
the research in more detail, including the framework used to determine buffer time planning rules. The case study
and its results are presented in Chapter 5. Finally, a discussion of the results is provided in Chapter 6 and conclusions
are presented in Chapter 7. An overview of the report structure is depicted in Figure 1.1.
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2
Literature review

This chapter provides a literature review of the various theories and methods on buffer times in railway timetable
design in scientific literature. First, Section 2.1 starts with an introduction on timetable design concepts. Section 2.2
presents nominal, robust and multi-level timetable design methods. Section 2.3 discusses previous data-driven
methods on buffer time scheduling and delays. Subsequently, existing research gaps are highlighted in Section 2.4.
Finally, Section 2.5 concludes the chapter and answers sub-question 1.

2.1. Timetable design concepts
This section introduces the basic principles of timetable design. First, the level of detail of the design is discussed
and later time allowances and periodicity in the timetable are addressed.

2.1.1. Level of detail
When designing a timetable, multiple levels of detail can be applied for representing infrastructure and determining
headways. Literature distinguishes the macro and micro level, briefly defined below. For a more elaborate distinction
between macro- and microscopic infrastructure modelling, see Radtke (2014).

Macroscopic timetabling
Macroscopic modelling of infrastructure contains a network with homogeneous sections (i.e. constant values for
speed restrictions and track gradients). Nodes represent timetable points, such as stations or junctions, and links
correspond with tracks. These type of models are mainly useful for long term planning and traffic assignment. The
running time can be based on tables of running times for certain train configurations and for different combinations
of station stops and passing through non-stop. These tables are based on microscopic modelling of infrastructure,
but are generalised to fit macroscopic timetabling. With regard to headway determination, in macroscopic mod-
elling headways are often based on a generic planning norm. The norms differ for different events of the first and
second train. Events considered by ProRail (2020) are arrival, passing, short stop and departure.

Microscopic timetabling
Microscopic models represent the infrastructure in a highly detailed manner. A typical microscopic model contains
all tracks, signals, gradients, sections, block sections and stopping positions on lines, junctions and stations. This
makes it a suitable approach for runtime calculations and simulations. The running time between an arrival and
departure can be calculated based on how the train accelerates, runs and brakes. For this detailed infrastructure
and train data are required, so microscopic modelling is necessary. A microscopic model that enables minimum
headway determination is the blocking time model, explained in detail by Pachl (2014).

This theory is based on the principle that the railway infrastructure is divided into block sections, each with a
signal that indicates whether a train can enter the section. The blocking time refers to the time a block section is
devoted to a specific train and therefore not accessible to other trains, visualised in Figure 2.1a. When computing
the blocking time for multiple blocks for a train, the shape of a staircase emerges. The blocking time staircases of
consecutive trains are stacked as shown in Figure 2.1b to determine the minimum headway when no buffer time is
considered. The minimum headway is influenced most by the speed profile of the train and the critical block section
(i.e. the block section where the blocking time stairways of two successive trains would touch each other without
any tolerance). In the Netherlands the tool ROBERTO was developed to enable generation of large sets of minimum
headway times (Middelkoop, 2010), and recently this functionality was added to the timetable design applications
DONS and Donna, making ROBERTO obsolete.
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(a) Components of the blocking time

(b) Blocking time stairway to determine minimal headway

Figure 2.1: Blocking time model, adopted from Pachl (2014)

2.1.2. Time allowances
To provide a high quality of services, time allowances are added to the shortest possible running time between sched-
uled stops (i.e. running time supplement), minimum dwell time at stations (i.e. dwell time supplement) and min-
imum line headway (i.e. buffer time). The former two types of slack aim to facilitate a recovery or reduction of a
delay within the timetable of one train, whilst the latter enables prevention and reduction of delay propagation be-
tween trains. Moreover, all three time allowances accommodate variation in driving behaviour and small deviations
in process times (Goverde, 2014). Buffer time can be visualised by adding space between the stacked blocking time
stairways in Figure 2.1b, as depicted in Figure 2.2. Then, the buffer time is the smallest slot between the blocking
time stairways of two trains (Pachl, 2014). Running time supplement is added to minimum running time of a train.
Figure 2.2 shows an example where the running time supplement is evenly spread over the train path, but there are
also situations where the running time supplement is concentrated at the end of the run or at large intermediate
stations.

Figure 2.2: Simplified microscopic distance-time graph showing the running time supplement (ts ) and buffer time (tb ),
adjusted from Pachl (2014)

7



2.2. Timetable design methods 2. Literature review

(a) Components of the extended blocking time (b) Extended blocking time stairway

Figure 2.3: Extended blocking time model, adopted from Scheepmaker and Goverde (2021)

In practice, a minimum buffer time is often considered. Therefore, Scheepmaker and Goverde (2021) propose the
notion of extended blocking time, which includes a minimum buffer time, as shown in Figure 2.3a. Stacking the
extended blocking times of two trains results in the extended blocking time stairway depicted in Figure 2.3b. This
concept is also used in practice to gain insight into the robustness of the timetable.

This enables identification of two types of timetable conflicts; route conflicts occur when blocking times of two
trains overlap, and buffer time conflicts occur when the minimum buffer time overlaps with the blocking time of
another train.

2.1.3. Periodicity
A periodic, or cyclic, timetable has a pattern that repeats itself. Usually, a cycle time of one hour is scheduled. The ad-
vantages are convenience for travellers, convenience for the planning, and compact in presentation. Disadvantages
are the lack of flexibility and increased costs. A distinction can be made between non-symmetrical, symmetrical and
integrated timetables, where the latter is focused on aggregating all trains at a connecting station at the same time.

2.2. Timetable design methods
This section reviews literature on timetable design methods, introducing optimisation methods and analytical ap-
proaches for buffer time determination.

2.2.1. Timetable optimisation methods
Given a proposed line plan with desired frequencies and stops, timetabling problems entail determining timetables
for a set of lines, satisfying track capacity constraints with the aim of optimising an objective function (Cacchiani
and Toth, 2012; Lusby et al., 2011). A distinction can be made between nominal and robust versions. The former
has a focus on determining efficient timetables, whilst the latter concerns creating schedules that avoid, in case of
disruptions in the railway network, delay propagation as much as possible.

Nominal methods
Timetabling problems are in literature usually referred to as the Periodic Event Scheduling Problem (PESP) (Serafini
and Ukovich, 1989) or Train Timetabling Problem (TTP) (Caprara et al., 2002). The PESP model is a mathematical
model that periodically schedules events (i.e. arrivals or departures from a given station) and represents a feasibility
problem. Extensions have been made regarding objective functions (e.g. minimising travel time, capacity consump-
tion and maximising passenger satisfaction) and solving methods. The TTP aims at finding a feasible, efficient and
stable non-cyclic timetable for a single one-way corridor. Some works have used TTP as a basis to include real-
world constraints and apply the model to a railway network. For an overview of PESP- and TTP-based research, see
Cacchiani and Toth (2012).

A drawback of nominal methods is that they are purely focused on feasibility of the timetable. Thereby, they do
not consider the distribution of time allowances, but rather assume norms for running time and headway time as an
input. This restricts optimally coping with stochastic variations of process times and disturbances.

8



2.2. Timetable design methods 2. Literature review

Robust methods
In order to create timetables that can absorb delays as much as possible and that can avoid delay propagation,
attention has been given to the robust version of the timetabling problem. Many works have been dedicated to
defining and measuring robustness, but no unanimous formulation has been defined. In the light of this research,
the definition of Goverde and Hansen (2013) is adopted: "Robustness comprises the ability of a timetable to withstand
design errors, parameter variations, and changing operational conditions".

Salido et al. (2008) acknowledge that robustness of a given timetable can be increased by adding time allowances,
decreasing the number of trains and decreasing heterogeneity in types of trains. To this end, buffer time and run-
ning time supplement are reallocated. In timetabling, multiple approaches to achieving robustness have been in-
troduced, such as (i) stochastic programming (Jin et al., 2019; Kroon et al., 2008); (ii) light robustness (Fischetti
and Monaci, 2009); (iii) recoverable robustness (Cicerone et al., 2009; Liebchen et al., 2009); (iv) delay management
(Liebchen et al., 2010); and (v) bi-objective approaches (Schöbel and Kratz, 2009) An overview of robustness-centred
timetable design methods can be found in Cacchiani and Toth (2012) and Lusby et al. (2018).

The main limitation of existing robust timetabling methods is that they require an initial nominal timetable,
which is adjusted to reallocate the current time allowances. Thereby the studies exclude evaluating the total size
of the time allowances and are incapable of changing the order of the trains. Furthermore, in the cases where no
iterative approach is used, the quality of the initial timetable is a high determining factor of the final timetable’s
quality.

Multi-level timetabling
The PESP- and TTP-based models, both in its nominal and robust version, are predominantly modelled at a macro-
scopic level, thereby they neglect timetable feasibility at the microscopic level. Therefore, approaches have been
introduced to better integrate macroscopic models with more detailed models in a multi-stage approach (Bešinović
et al., 2016; Goverde et al., 2016).

These types of models usually contain a macroscopic timetabling part for constructing the timetable, and a mi-
croscopic simulation part for evaluating the performance of the timetable. Bešinović et al. (2016) and Goverde et al.
(2016) propose a timetabling approach that incorporates robustness in a micro-macro framework and enables the
iterative construction of a microscopically conflict-free and stable timetable that is optimised at a macroscopic level.
This type of multi-level scheduling is nowadays the standard approach for most timetabling approaches in literature,
as it enables optimising the schedule whilst ensuring a feasible timetable.

2.2.2. Statistical methods for buffer time scheduling
With regard to distributing time allowances in the timetable, Palmqvist et al. (2017a) identify five strategies from liter-
ature: (i) A uniform allocation of running time supplement percentage (Scheepmaker and Goverde, 2015); (ii) Shift-
ing running time supplement towards the beginning or end of the line (Vromans, 2005); (iii) Place dwell time sup-
plement at or near strategic locations (Vromans, 2005); (iv) Based on where disturbances happen most frequently
(Huang et al., 2019; Yuan and Hansen, 2008); and (v) Place time allowances at critical points (Abid et al., 2017; An-
dersson et al., 2013). Critical points here are defined as locations where two trains follow, cross, or overtake, and are
most sensitive to delays.

To appraise the effect of time allowances on delay propagation, several ex-ante metrics have been introduced.
Vromans (2005) defined WAD as the Weighted Average Distance of running time supplements from the starting point
of the train line. WAD describes how running time supplements are distributed along the journey and attempts to
optimise this process, using both analytical and numerical methods. Carey (1999) and Kroon et al. (2008) introduced
a metric known as the Percentage of Headways equal to or less than the minimum value (PoH), to investigate how
many tight headways exist in the timetable. The strategy of placing margins at critical points was developed by An-
dersson et al. (2013) (Robustness in Critical Points (RCP)) and enhanced by Abid et al. (2017) (Critical Robustness
Measure (CRM)).

Concerning buffer time, always using the same deterministic value as an indicator for the size of the time allowance
is the most simple form of distribution. Carey and Kwieciński (1994) suggest to base the scheduled headway on its
relation with knock-on delays, delays transferred from a train to its successor. They perform a stochastic simulation
to derive an approximate relationship between scheduled headways and knock-on delays. Their approach can be
used to adjust train timetables to better avoid and reduce knock-on delays. Vromans et al. (2006) argue that the
uniform spread of trains over time contributes to larger headways, less delay propagation, and thus more robust
timetables. Therefore, buffer time should be scheduled such that trains are spread evenly over time. To this end, the
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Sum of Shortest Headway Reciprocals (SSHR) and the Sum of Arrival Headway Reciprocals (SAHR) are introduced to
measure the robustness of headways.

These approaches do not explicitly analyse buffer time, but examine headways as a whole. Nowadays more
knowledge on (technical) minimum headway generation has been gathered, enabling more detailed approaches to
reduce delay propagation. Thus, methods to identify the suitable amount of buffer time per situation are desired in
order to achieve more precise specification of headways as a whole.

Jensen et al. (2017) provide a first step in achieving these situation specific buffer times. They define the minimum
buffer time (i.e. critical buffer time) as "the slack deemed necessary by planners to reduce the risk of delay propaga-
tion". Computation of the minimum buffer times is done by simulating the delay propagation of a timetable without
any buffer time with the use of a sample of initial delays. Then, the estimated delay propagation is an indication of
where there should have been added more buffer time in order to resolve the delay propagation.

2.3. Data-driven approaches
Historical realisation data has proven to be beneficial for monitoring operational quality, improving the schedule,
diagnosing operational problems, and evaluating countermeasures in transportation science. In this section, litera-
ture related to data-driven knowledge on delays and buffer times is reviewed. For a more elaborate overview of big
data applications in railway transportation and train dispatching in particular, see Ghofrani et al. (2018) and Wen
et al. (2019) respectively.

2.3.1. Delay distribution, propagation and recovery
Delays have been proven to be most relevant when arriving or departing from stations (Yuan and Hansen, 2007).
Therefore, the probability distributions of arrival and departure delays have been studied in the literature. Wen et al.
(2017b) investigated the main statistics of primary delays, including (i) delay causes, (ii) delay frequencies, (iii) delay
occurrences in time and space, (iv) affected number of trains, and (v) delay recovery patterns. Their study shows
that the frequency of primary delay and the affected number of trains distribution could be fit to respectively a log-
normal distribution and a non-linear regression model. Moreover, they conclude there is a high probability of delay
occurrence whenever there is a high capacity utilisation. Minbashi et al. (2021) address a similar topic, focusing on
individual shunting departure deviations. They aim to find a probability distribution that fits a large spectrum of
departure deviations best, but they find that in particular early departures are difficult to fit.

The fitted probability distributions help better represent delays, but do only consider primary delays. To incorporate
secondary delays, more sophisticated prediction models of delays and delay propagation are needed. Such a delay
prediction approach is introduced by Corman and Kecman (2018). In their study they present a stochastic prediction
of train delays in real-time using Bayesian network. They characterise the effect that the prediction horizon and
incoming information about running trains may have on the probability of the future train delays. Thus, when two
trains use the same part of the infrastructure within short time, a delay of the first train can be used to predict the
delay of the second. Şahin (2017) takes into account the stochasticity of train operations as well by prediction of
train delays and recovery with the use of a Markov chain model. Given the initial state of a train, its future states
can be predicted with probabilistic terms. This approach furthermore provides a novel approach for assessing the
effectiveness of time allowances to maintain punctuality and robustness.

Alongside prediction models for secondary delays, research has focused on the measurement of this aspect of
delay propagation. Weeda and Wiggenraad (2006) introduce a conceptual model to approximate secondary delay
from realisation data, based on the delay of two conflicting trains and the scheduled buffer. They find that the es-
timation approach presents values similar to the delay jump, but depending on the situation could show both and
overestimation as an underestimation. A more accurate and effective metric is introduced by Goverde and Meng
(2011), measuring the time loss associated with a route conflict compared to a reference running time on a block
section of unhindered operations. This requires detailed scheduling and realisation data of signal passages.

W. H. Lee et al. (2016) introduced a supervised decision tree method that estimates the key factors contributing to
knock-on delays. It is found that unscheduled waiting time for meeting or overtaking causes the majority of knock-
on delays. More specifically, Zieger et al. (2018) analysed the effects of different buffer time distributions on the
formation of knock-on delays. It is shown that the choice of distribution has a significant impact on performance
metrics. For example, to achieve the same level of service, the necessary buffer time can differ up to 1 minute buffer
time between trains among various types of buffer time distributions.
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Furthermore, Huang et al. (2019) provide a methodology to determine how and to what extent running time
supplements and dwell time supplements affect delay recovery. They assess the utilisation rate of these two time
allowances based on the fraction of the recovered time (i.e. the delay jump) and the total scheduled time allowances.
It is found that the utilisation rate is much higher in sections than in stations, indicating that running time supple-
ments are more effective in recovering from delay that dwell time supplements. Similarly, Yang et al. (2020) focus
on the effect of running time supplements and dwell time supplements on delay recovery. They identify three situa-
tions: (i) the delay of a train is smaller than the dwell time supplement at a specific station, or (ii) the delay of a train
is bigger than the dwell time supplement at a specific station, but smaller than the dwell time supplement plus the
running time supplement to the next station, thus does not affect the station arrival time, or (iii) the delay is bigger
than the sum of the dwell time supplement and the running time supplements, thus results in a follow-up delay to
the same train at the next station.

From these situations can be derived that the effectiveness of time allowances to facilitate delay recovery is highly
dependent on the size of the delay. Thus, allocation of time allowances should be performed considering the actual
impact of the delay. Combining the findings from these studies enables construction of cause-based predictive mod-
els for delay recovery, such as regression models (Guo et al., 2015; Huang et al., 2019; Wen et al., 2017a).

Existing studies on delay propagation concern delay prediction and delay recovery. In general, models are able to fit
and predict primary delays, but only based on specific lines. Models that can fit multiple lines or a complex network
are currently lacking. Furthermore, studies on delay prediction focus primarily on primary delays, whilst secondary
and knock-on delays can provide more information about the effective distribution of buffer times. Delay recovery
studies do take into account secondary and knock-on delays, enabling assessment of the effectiveness of buffer times
to reduce delays.

2.3.2. Timetable design based on realisation data
Statistical methods
A conceptual framework is introduced by Weeda and Wiggenraad (2006) to acquire a joint design standard for run-
ning times and headway times. With the use of historical realisation data, an empirical relationship between head-
ways and knock-on delays is derived. The first thing that can be concluded is that the need for supplements is
greatest around stops in order to avoid delay propagation, rather than equally distributed along the way. Secondly,
the buffer time proves to reduce knock-on delays, but the benefits decrease with higher values of buffer time, in line
with findings by Yuan and Hansen (2007) and Zieger et al. (2018). It is however, in contrast with the optimal ap-
proach enabling energy-efficient timetabling, where a uniform allocation is preferred (Scheepmaker and Goverde,
2015). Lastly, they find a relationship that enables buffer time and running time supplement to be interchanged
when designing the timetable.

In line with the work of Carey and Kwieciński (1994), a data-driven method of determining minimum headways
for conflicting train movements is proposed by Cerreto and Jonasson (2019). By means of a statistical analysis of
the relationship between planned headways and the delay jump, the section specific minimum feasible headway
between conflicting train movements in a railway system is estimated with a linear regression.

Dietzenbacher (2021) explored the spread and trend of headways within realisation data of train operations.
This information can be used to derive conclusions about buffer times. The study recommends a comparatively
higher buffer for plan situations with a higher standard deviation of headway spread or with few headways below the
minimum headway from the planning stage. These situations were (i) departure of the first train and arrival of the
second train; and (ii) arrival of both trains.

Optimisation methods
One of the most applied techniques to study allocation of time allowances are optimisation methods. Ho et al. (2012)
were one of the first to integrate timetable optimisation with historical data to cope with disturbances. They present
a methodology that establishes a set of operational rules for real-time decision making.

Hauck and Kliewer (2019) enhance existing solution approaches for the train timetabling problem as discussed in
Section 2.2 by considering historical delay information. With the use of a Mixed-Integer Programming (MIP) model,
the difference between the realised running time and the planned running time is minimised. The optimisation is
initiated with a given feasible timetable and adjusted in terms of arrival times, departure times and buffer times to
adapt the timetable to avoid systematic delays.

Huang et al. (2019) address allocation of time allowances in high-speed railway train operations. Based on his-
torical data, a ridge regression model of delay recovery is generated regarding primary delay severity, running time
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supplements and dwell times. Subsequently, an Integer Linear Programming (ILP) model is presented that max-
imises the delay recovery by reallocating running time supplements and dwell times in an initial timetable.

Yang et al. (2020) base their study on the insight that allocation of time allowances should consider the demand
of train delay recovery in order to make full use of the available time allowances and not waste capacity. Therefore,
a timetable design model with weighted average delay expectation as the objective function was constructed and
solved by a mathematical analysis method. The solution is based on a given feasible timetable, whereof the time
allowances have been redistributed.

Time allowances are not only effective to reduce delays and enhance punctuality, but can moreover be inserted to
improve energy efficiency. To reduce energy consumption, running time supplements enable speed reduction by
applying coasting. And in case of delays, the amount of buffer time determines whether the signal aspects become
restrictive, changing the envisioned (energy-optimal) speed profile.

In order to accomplish energy-efficient train operations, Scheepmaker and Goverde (2015) create an energy-
efficient train control model that determines the energy-efficient driving strategy by calculating the optimal cruising
speed and coasting point given a specific timetable. Additionally, they find that energy savings are higher when the
running time supplements are distributed evenly, rather than concentrating it near the main stations. Thus, the
extent to which the train can apply the driving strategy depend on the allocation of the running time supplements
in the timetable. Therefore, energy consumption should already be considered in the timetabling stage.

Goverde et al. (2016) address energy consumption as objective in the timetable construction, but only consider it
after a feasible, stable and robust timetable structure was determined. Scheepmaker and Goverde (2021) optimises
the objective of minimising energy consumption simultaneously with minimising the total running time, capacity
utilisation and maximising the robustness of the timetable by reallocating running time supplements. The optimisa-
tion is performed with a minimum buffer time of 0 seconds, 30 seconds and 60 seconds. The variation in buffer time
is found to impact the total buffer time scheduled, the extended cycle time, frequency and capacity consumption,
but does not show differences in total running time or energy consumption. It turns out that a negative relationship
exists between the distance between stops and the optimal relative running time supplement.

A delay recovery strategy to reduce the delay and increase the energy-efficiency simultaneously was proposed
by Li et al. (2020). They classify delays in historical data of metro systems according to the relationship between
the delay time and the following headway, and present optimised delay recovery strategies for various initial delay
distributions.

The main limitation of these data-driven optimisation methods is that the majority requires an initial timetable,
which is adjusted to reallocate the current time allowances. Thereby, the studies exclude evaluating the total size of
the time allowances and are incapable of changing the order of the trains. The latter is only enabled in the study of
Khoshniyat and Peterson (2017), and they are able to generate larger headways, while having only small reductions
in capacity, heterogeneity and speed. Furthermore, Hauck and Kliewer (2019), Huang et al. (2019), and Yang et al.
(2020) mainly focus on prevention of primary delays by adjusting running time supplements and dwell times. Hence,
the studies do not optimise the schedules to prevent delay propagation with the use of buffer times.

2.4. Scientific gaps
To generate situation specific time allowances, in particular buffer times, (i) optimisation approaches, applying
mathematical models; (ii) simulation approaches, iteratively enhancing a current solution; (iii) statistical approaches,
applying statistics to infer relationships between variables; and (iv) data-driven approaches, indicating recurring
bottlenecks and tightly planned headways with the use of historical data, have been introduced. The works have
been discussed in the sections above and are summarised in Table 2.1.

Reference Goal Time
allowance

Approach Initial
timetable
required

Burggraeve and Vansteenwegen (2017) Passenger robustness BT, RTS, DTS Optimisation, Simulation X
D’Acierno et al. (2018) Energy consumption BT, DTS Statistics
Hauck and Kliewer (2019) Punctuality BT, RTS, DTS Optimisation, data-driven X
Ho et al. (2012) Total operation time RTS, DTS Optimisation, data-driven X
Huang et al. (2019) Delay recovery RTS, DTS Optimisation, data-driven X
Jensen et al. (2017) Capacity consumption BT Simulation, statistics
Jin et al. (2019) Average delay time RTS Optimisation X
Jovanović et al. (2017) Capacity and delay propagation BT Optimisation X
Khoshniyat and Peterson (2017) Timetable reliability BT Optimisation X
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Kroon et al. (2008) Average weighted delay BT, RTS Optimisation, simulation X
Y. Lee et al. (2017) Average delay BT. RTS Simulation X
Li et al. (2020) Cumulative delay time and energy

consumption
RTS, DTS Optimisation, data-driven

Lu et al. (2017) Efficiency and robustness BT Optimisation
Meng et al. (2019) Sum of train delays BT, RTS Optimisation X
Restel et al. (2021) Delay propagation and energy

consumption
RTS Simulation, data-driven X

Scheepmaker and Goverde (2021) Running time, infrastructure
occupation, timetable robustness
and energy efficiency

BT, RTS Optimisation

Weeda and Wiggenraad (2006) Punctuality BT, RTS, DTS Statistics, data-driven
Yang et al. (2020) Delay expectation at stations RTS, DTS Optimisation, data-driven X
Yuan and Hansen (2008) Weighted sum of knock-on delays BT Optimisation

This research Delay propagation BT Statistics, data-driven

Legend: BT = Buffer Time, RTS = Running Time Supplement, DTS = Dwell Time Supplement

Table 2.1: Situation specific time allowances in previous studies

So far, in literature, quite some attention has been given to planning with time allowances in railway timetable de-
sign. Some analytical approaches aim to enhance the robustness of the timetable by deriving relationships regarding
planned headways (Carey and Kwieciński, 1994; Vromans et al., 2006). As these approaches do not explicitly consider
buffer time, their applicability to reduce delay propagation is limited. Cerreto and Jonasson (2019) extend the knowl-
edge by introducing a method for minimum headway determination from historical data. Although, their aim is to
estimate the minimum feasible headway between conflicting train movements, their approach can also be used to
derive actual available buffer time in the realised operations by subtracting the minimum feasible headway from the
headway in the realisation.

When creating an initial timetable from scratch, minimum buffer times, or minimum headways as a further sim-
plification, are predominantly considered as a given input (Cacchiani and Toth, 2012; Caprara et al., 2002; Scheep-
maker and Goverde, 2021; Serafini and Ukovich, 1989). Only in later timetable design stages, buffer times have been
adjusted in order to optimise a wide range of objectives (e.g. energy consumption, delay time, reliability, capacity
consumption, delay propagation). The majority of studies that explicitly consider allocation of buffer times require
an initial timetable, which is adjusted to reallocate the current buffer time and running time supplement (Burggraeve
and Vansteenwegen, 2017; Hauck and Kliewer, 2019; Ho et al., 2012; Huang et al., 2019; Jin et al., 2019; Jovanović et
al., 2017; Khoshniyat and Peterson, 2017; Kroon et al., 2008; Y. Lee et al., 2017; Meng et al., 2019; Restel et al., 2021;
Yang et al., 2020). Thereby, the studies exclude evaluating the total size of the time allowances and are incapable of
changing the order of the trains.

Overall, some studies have aimed to improve the effectiveness of running time supplements and dwell time supple-
ments to reduce delays based on historical data (Huang et al., 2019; Yang et al., 2020). Yet, the proposed methods
mainly focus on primary delays and are unable to generalise the findings, such that it can be applied to create initial
timetables where no realisation data is available. The latter is crucial to cope with delay propagation effects already
while constructing an initial timetable.

Considered all together, this leads to the identification of the following scientific gaps:

• It is unknown to what extent specific timetable characteristics (e.g. scheduled buffer time, scheduled running
time supplement, train characteristics, headway situation, location) influence delay propagation.

• The effective allocation of buffer times to improve delay recovery based on historical realisation data has not
been widely addressed in the tactical planning stage of railway timetables where an initial timetable is con-
structed.

• Planning rules for buffer time based on historical realisation data have not been widely explored in literature.

Concluding, this research differs from existing works regarding generating situation specific buffer times by provid-
ing an approach that (i) does not require an initial timetable; (ii) predicts delay propagation based on factors known
in the timetable design; and (iii) specifies planning rules that can be applied to new situations.

13



2.4. Scientific gaps 2. Literature review

2.5. Chapter conclusion

This chapter started with a general overview of railway timetable design concepts and methods. Indicators
assessing the robustness of a timetable were introduced and approaches aiming to enhance the effective-
ness of time allowances were reviewed. Three scientific gaps were identified from the reviewed literature.
In Chapter 1 the scientific gaps are consolidated with the practical gaps, as identified in Chapter 3. The re-
mainder of this report addresses the consolidated knowledge gaps. Using the information gathered in this
chapter, the first sub-question is answered.

Sub-question 1: What can be learned from previous quantitative, data-driven approaches for
scheduling time allowances in railway timetable design?

Research on scheduling time allowances is strongly related to robustness, aiming to achieve a high effective-
ness and utilisation rate of time allowances such that the timetable can withstand design errors, parameter
variations, and changing operational conditions. Robustness approaches that consider buffer times aim
for example to (i) reduce the total delay; (ii) reduce delay propagation; (iii) diminish the needed real-time
dispatching action; and (iv) enhance punctuality.

Metrics that facilitate comparisons between different timetables in terms of robustness have been in-
troduced. In most cases the metric focuses on one type of time allowance, making it straightforward to
propose timetable improvements. It appears that metrics addressing buffer time predominantly focus on
ex-ante situations and headways as a whole, thus not on buffer times specifically. Two studies were found
where the evaluation is done ex-post in a data-driven fashion, based on how effective running time supple-
ments and dwell time supplements have been in reducing delays. It appears hard to define ex-post metrics
of buffer time effectiveness, since the focus of buffer time is on avoiding and decreasing secondary delays
rather than reducing existing delays. The amount of secondary delay that has been avoided by insertion of
buffer time is challenging to determine. However, measuring propagated delay can provide an indication of
the effectiveness of buffer time.

The reviewed articles suggest that the effectiveness of time allowances to facilitate delay recovery is
highly dependent on the size of the delay. Regarding the data-driven approaches in the reviewed articles,
the focus rarely lies on delay propagation and buffer times.
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3
Practical background

This chapter provides background information on the timetable design process in the Netherlands. To start, Sec-
tion 3.1 states the current norms for running times, headways and dwell times in the Netherlands. Next, Section 3.2
describes the current timetable design process and the tools utilised. The way the planning norms and design pro-
cess interact is explained in Section 3.3. Subsequently, Section 3.4 highlights the existing research gaps. The chapter
ends with a conclusion and an answer to the second sub-question in Section 3.5.

3.1. Current planning norms in the Netherlands
In the Netherlands, the railway timetable planning process is directed by ProRail, the Dutch rail infrastructure man-
ager. Planning norms are created and updated annually, and applied to satisfy a safe and executable plan. Ideally,
location specific planning norms are followed, with a technical minimum time and a time allowance for a specific
process (ProRail, 2020). When technical minimum times of a process are unknown, standardised norms that com-
bine the technical minimum time and time allowance can be used as well.

ProRail (2020) specifies the minimum scheduled running time as the technical minimum running time as cal-
culated by Donna plus 7% running time supplement for passenger trains with a crew (i.e. no automatically closing
doors). The planning norm for minimum scheduled headways is similarly composed of a technical minimum head-
way time and a minimum buffer time. The technical minimum headway time is based on the situation and location
with the use of the blocking time model as explained in Section 2.1. The necessary minimum buffer time is tested
with a deterministic, microscopic simulation during the Medium Term (MLT) phase, which is explained in the next
section. The buffer time needed for robust execution of the timetable is simulated by adding 60 seconds wake be-
hind every train movement (i.e. the section is released 60 seconds later than would be possible according to the
blocking time model). Hence, the wake represents the buffer time between the trains. Then, if this results in hin-
dered operations it could still be acceptable, except when (i) an unplanned stop occurs, or (ii) an arrival delay bigger
than 30 seconds occurs at certain stations. Planning with minor hindrance requires simulation and consideration
of buffer time and running time supplement (Nederlandse Spoorwegen, 2019; ProRail, 2020). Dwell time planning
norms are currently specified based on the rolling stock used and differ as well between trains which are operated
with automatically closing doors and trains with a crew. Location specific dwell times are applied for hub stations,
and take into account connections from different platforms.

3.2. Timetable design process in the Netherlands
Timetable design is a complex procedure where multiple parties and dependencies are present. Moreover, it is a
long-term process as it already starts up to 20 years in advance with infrastructure requirements and capacity studies
(Planting, 2016). The design process is a collaboration between the infrastructure manager and various carriers for
passengers and freight.

In the Netherlands, the timetable design process is composed of multiple steps. From long term planning to real-
time operations the phases are Long Term (LT), Medium Term (MLT), Preliminary Design (VO), Basic Hour (BU, in
literature also referred to as BUP), Basic Day (BD), Basic Day update (BDu), Specific Day (SD), and Traffic Control (VL,
in literature also referred to as VKL). The most recent timetable in each of these planning phases is referred to as the
name of the abbreviation of the phase followed by the word timetable. At the end of the operations, traffic realisation
data is collected to compute and interpret the performance. In this research, this is indicated as the Performance
Analysis (PA) phase. There exists an official feedback loop from realisation data to the various planning stages, where
mistakes and inconsistencies of the timetable are reported. In recurrent meetings that incorporate lessons from the
realisation data in the BU, BD, BDu and SD phases, a vast majority of cases is evaluated manually based on expert
judgement, increasing the risk of subjectivity. An overview of the steps categorised in the strategic, tactical and oper-
ational phase is shown in Figure 3.1. More information on the various phases of timetable design in the Netherlands
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Figure 3.1: Overview of timetable design phases and tools (analysis depicted in orange; planning depicted in blue), adjusted from Planting (2016)

can be found in Planting (2016).

During the timetable design, many different tools are used. For this research, the most important instruments are
software regarding planning and analysis. Concerning the former, Nederlandse Spoorwegen incorporates design
tools based on planning norms and mathematical programming, such as DONS for long term, micro- and macro-
scopic planning and Donna for short term, microscopic planning. The latter comprises the microscopic simula-
tion software FRISO and the registration and visualisation of realisation data in Sherlock and Toon respectively. An
overview of the phase in which the different tools are used in shown in Figure 3.1. More information on the various
tools utilised in the timetable design process can be found in Planting (2016).

3.3. Design practices in the Netherlands
Every year, Nederlandse Spoorwegen creates a cyclic timetable, where frequencies higher than once per hour are
divided into regular intervals (e.g. a train line than runs 4 times per hour is scheduled exactly 15 minutes apart). The
planning norms offer some guidance with respect to the necessary size of the time allowances. Since 2020, the Dutch
timetable is composed with a precision of 6 seconds.

With regard to running time supplement for passenger trains, it is common practice to evenly spread it over
the train path between critical points (Nederlandse Spoorwegen, 2019). Critical points are determined by the design
and consist of important (hub) stations, overtaking locations and crossing points. The advantages of this practice are
that (i) symmetry is guaranteed; (ii) the impact of the running time supplement on the buffer time is limited; (iii) the
method of the distribution is easily traceable and reproducible for planners and train crew; and (iv) the distribution
meets the desire from energy-efficient driving to have an equal amount of driving time available for Sprinters at as
many intermediate stops as possible (Nederlandse Spoorwegen, 2018).

As mentioned in Section 3.1, the necessary minimum buffer time is tested in microscopic simulations with the
use of 60 seconds buffer, where hindrance might be acceptable in some cases. In the Netherlands, the tracks in the
Randstad are so busy that the rule of completely unhindered headways plus an additional 60 seconds buffer are met
only sporadically. In Donna, therefore, the planners work with microscopic headway times plus 30 seconds buffer.
Additionally, by using slightly hindered headways, ’hidden’ capacity becomes available to use. Here slightly hindered
headways refer to headways where there is a small overlap in blocking times, so that a conflict is detected. Slightly
hindered headways are as a rule of thumb accepted when the gain in headway time is bigger than the loss in running
time. A disadvantage of this method is that each slightly hindered headway has to be evaluated on its own, a very
labour intensive process. But they accommodate flexibility in the planning process, being one of the main reasons
why microscopic optimisation models in the planning are used less often; they only consider fully unhindered head-
ways and thus are not flexible. Thus, while microscopic optimisation models with a 60 seconds buffer are too strict
(i.e. some constructions that are possible in practice are rejected or not identified in the microscopic optimisation
model), models without a 60 seconds buffer are too flexible (i.e. not enough time for delay recovery is in place). This
flexibility is added by using 30 seconds buffer in Donna.

As mentioned in Section 3.2, a feedback loop from the realisation stage is increasingly employed to enhance the
timetable design. For example, when, based on practical measurements, the running time appears different than
calculated by Donna, ProRail may rectify the technical minimum runtime after consultation of the affected carrier
(ProRail, 2020). Additionally, if certain headway situations appear not to work in practice, they are reactively adapted
in the Basic Day update phase and in the timetable of the following year. For dwell times, Nederlandse Spoorwegen
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(2019) allows deviation from the planning norms for predetermined stations or train series by taking the 50th per-
centile observed in the realisation. This approach is not used for running times, since for heavy rail spread in the
realisation of running times is caused primarily by the planning (e.g. increasing running time or dwell time to avoid
conflicts) (Nederlandse Spoorwegen, 2018). It is undesired to incorporate the structural hindrance from the previous
timetable into the next timetable. Currently, the focus of the feedback is mainly on individual situations for a specific
year, but the aim is to also incorporate insights from realisation data in planning rules, running time calculations and
conflict detection.

3.4. Practical gaps
Recently, planning norms have been made more location- and situation specific with the integration of the blocking
time model in DONS and Donna. This allows the breakdown of a planned time into technical minimum time and a
time allowance for a specific process. The determination of the size of the running time supplement is dependent
on the runtime, whilst for buffer time always a value of 60 seconds is taken as input. The buffer time value can
vary slightly depending on the extent to which hindrance occurs in a deterministic, microscopic simulation. Slightly
hindered headways are as a rule of thumb accepted when the gain in headway time is bigger than the loss in running
time. Thus, the focus here is to reactively satisfy feasibility, rather than proactively reduce delay propagation.

Additionally, feedback from the realisation to the planning phase is done structurally with the use of meetings
where the interesting observations are shared. However, currently only specific cases are discussed. There is no
feedback loop that considers the large and heterogeneous set of realisation data to improve the timetable design.

What stands out is that, although optimisation models seem very attractive in literature, they are not used that often
in practice. This is due to their inflexibility regarding planning. For example, a slightly hindered headway situation
that has been evaluated and accepted with the use of microscopic simulation, may be rejected or not even consid-
ered in an optimisation model, because it violates the inputted minimum buffer time. Thus, there is a practical need
for understanding how flexible buffers can be created, so that they can be used as input for optimisation models.

Considered all together, this leads to the identification of the following practical gaps:

• The differentiation of buffer times has not been addressed in practice with regard to the improvement of delay
recovery.

• Planning rules for buffer time based on historical realisation data to improve delay recovery have not been
identified and applied in practice.

3.5. Chapter conclusion

This chapter started with a general overview of the current Dutch norms for running times, headways and
dwell times. Next, the process of timetable design and working practices were discussed. Two practical gaps
were identified from the reviewed grey literature. In Chapter 1 the practical gaps are consolidated with the
scientific gaps, as identified in Chapter 2. The remainder of this report addresses the consolidated knowl-
edge gaps. Using the information gathered in this chapter, the second sub-question is answered.

Sub-question 2: What is the current state of the practice regarding planning norms for buffer times and
regarding data-driven timetable design approaches in the Netherlands?

Planning rules for buffer times are imposed by ProRail to ensure safe railway operations. Currently, 60 sec-
onds buffer time between two trains is set as a norm, but in some cases less buffer time is accepted. In
Donna, even, a buffer time of merely 30 seconds is displayed to facilitate flexibility. While slightly hindered
headways are beneficial for capacity reasons, its consequence on delay propagation is less often consid-
ered explicitly. Headway situations are mainly investigated individually and manually, and are both actively
and reactively adapted based on information from realisation data. Although this improves the timetable,
it doesn’t show structural needed changes to headway situations. Thus, a more structural way of analysing
the impact of buffer times on delay propagation is lacking. Overall, realisation data is consulted to iden-
tify places of improvement in the timetable, but much could be gained by formalising and intensifying the
feedback process.
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4
Methodology

This chapter describes the methodology used to derive buffer time planning rules from. First, Section 4.1 introduces
the framework used to determine buffer time planning rules from realisation data. In particular, it addresses what
steps are being taken and how the different steps are related to each other. Subsequently, Section 4.2, Section 4.3,
Section 4.4, Section 4.5 and Section 4.6 address the contents of the conceptual framework by respectively presenting
(i) the target and predictor variables used in the analysis; (ii) the data collection; (iii) the data pre-processing; (iv) the
statistical analysis, consisting of a regression analysis; and (v) the output. The chapter finishes with a conclusion and
an answer to the third sub-question in Section 4.7.

4.1. Conceptual framework for buffer time rules determination
Figure 4.1 summarises the methodology for the determination of buffer time planning rules from realisation data.
The framework is explained below and has been divided into four parts: input, processing, statistical analysis and
output, each of which is discussed in detail in Section 4.3 through Section 4.6.

INPUT PRE-PROCESSING STATISTICAL
ANALYSIS OUTPUT

Timetable 
conflict data

Traffic  
realisation data

Timetable data

Network data
Determine adjacent

timetable points

Calculate target
variables

mean secondary delay and
hindrance percentage

Conduct regression
analyses 

mean secondary delay and
hindrance percentage

Realisations
dataframe

 timetable  
critical conflicts

Prediction  
dataframe

Calculate predictor
variables

Planning rules  
critical  

buffer times

Test statistics 
regression formula and 
 significant predictors

Critical 
conflicts  

dataframe

Train series 
pattern data

Figure 4.1: Framework for buffer time rules determination

Various types of input data are collected for this analysis, consisting of Timetable conflict data, Train series pattern
data, Traffic realisation data, Timetable data, and Network data. Details of the data collection are presented in Ap-
pendix C. The Timetable conflict data is used to identify the route conflicts and buffer time conflicts of the timetable
(i.e. situations where the start of the blocking time of a train on a section is planned within the (extended) blocking
time of a preceding train). From the timetable conflict data, critical conflicts are identified, indicating a timetable
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conflict between two specific train series patterns located in a critical point. The choice to only consider critical con-
flicts is based on the aim of this research to determine precise critical buffer times for tight headway situations. Then,
of these critical conflicts the realisations are found by checking the traffic realisation data. With the realisations of
the critical conflicts, the target and predictor variables can be computed. Subsequently, hindrance distribution and
a prediction dataframe with one row for each conflict are created. Using the prediction dataframe, two regression
analyses were performed aiming to predict the two target variables introduced in Section 4.2. From these two predic-
tion models, test statistics and buffer time planning rules are extracted. Regression was used as a prediction model
due to its transparency and easy interpretation, making it straightforward to determine planning rules from.

4.2. Selection of target variables and predictor variables
Prior to the data analysis, it is decided what variables are investigated to determine buffer time planning rules from.
In Chapter 2 several metrics for the effectiveness of time allowances have been discussed. It is found that metrics
addressing buffer time predominantly focus on ex-ante situations and headways as a whole, thus not on buffer times
specifically. It appears hard to define ex-post metrics of buffer time effectiveness, since the purpose of buffer time
is to avoid and decrease secondary delays rather than reducing existing delays. However, measuring the propagated
delay can provide an indication of the effectiveness of buffer time. To this end, this study investigates the aspects of
delay propagation to gain insights into the effects of buffer time.

4.2.1. Target variables
The target variables in this study are related to the aspects of delay propagation. The literature review has shown few
methods to assess the extent to which delay propagates and the size of secondary delays. Another interesting feature
of delay propagation is the probability that delay propagates given a certain situation.

Weeda and Wiggenraad (2006) study the mechanism of secondary delays and buffer time. As Gibson et al. (2002)
state secondary delay itself is not straightforward to measure. Therefore, Weeda and Wiggenraad (2006) approxi-
mate the secondary delay based on the delays of two succeeding train series patterns and the scheduled buffer on a
conflict location. To do so, a conceptual model is presented in Figure 4.2 that shows for approximately 700 fictional
realisations the delays of both trains of a fictional headway situation with a buffer of 60 seconds. Each dot represents
a fictional realisation of a headway situation between two trains, before the interaction at the conflict point. As long
as the delay of train 1 is smaller than the buffer time, train 2 can proceed its normal operation. The diagonal line
represents the instant when train 1 just leaves the conflict section when train 2 enters the conflict section. Observa-
tions to the right of the line indicate hindrance of train 2 caused by train 1, because train 1 has not left the conflict
section yet. Various categories can be identified: (Ia) train 1 is running on time or has a delay smaller than the buffer
time and train 2 is on time or late and is not perturbed; (Ib) train 2 is running early and is held up, but it does not
matter since it only makes train 2 run on time again; (Ic) train 1 is late, but train 2 is even later and does not suffer an
additional delay. Although train 2 should not run late, there is no hindrance; (II) train 2 reaches the junction before
it is released by train 1. Hindrance occurs: train 1 delays train 2, or in case of an order change train 2 delay train 1;
and (III) train 1 is running that late that the train dispatcher gave priority to train 2.

The conceptual model enables an estimation of the secondary delay (i.e. the increase in delay the hindered train has
as opposed to when it would not be hindered) train 2 suffers because of the delay of train 1. The secondary delay is
defined as the horizontal distance between an observation in category II and the diagonal left border line of category
II (which represents the divide between hindered observations and undisturbed observations) and can be calculated
with Equation 4.1, where r2 is the secondary delay to train 2, di is the initial delay to train i, and b12 is the scheduled
buffer time between both trains. For observations outside category II (i.e. unhindered observations), the secondary
delay equals zero.

r2 = d1 −max(0,d2)−b12 (4.1)

This research utilises the insights from this framework in defining two target variables. Firstly, the observed per-
centage of secondary delayed trains is utilised as an estimation of the probability of hindrance in a given conflict
situation. Thus, this study defines hindrance as an operating situation in which a train will encounter a signal show-
ing a restrictive aspect and will therefore have to modify its speed, due to a conflict with a preceding train, in line with
the definition of disturbed train operation by Pachl (2014). Secondly, the expected amount of hindrance that occurs
in a specific situation is denoted by the mean secondary delay observed in that situation. The hindrance percentage
and the mean secondary delay serve as target variables and are both estimated with its own regression model.
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Figure 4.2: Determining secondary delay from initial delays of train 1 and train 2. Own creature based on Weeda (2005)

Limitations and assumptions
The conceptual model does not represent all aspects of reality. The most important model reductions and assump-
tions of the conceptual model are stated below (Weeda, 2005):

• This simplified calculation of secondary assumes that train 2 stops at the yellow sign and, as soon as the sign
turns green continues with the original speed, depicted in Figure 4.3. On average, this results in a approxima-
tion of secondary delay similar to the true secondary delay. But investigating per conflict, this could lead to
both an overestimation as an underestimation of the secondary delay, because in reality two opposing effects
can occur: (i) the second train has a lower speed or has even stopped when the block section is released, but
(ii) the second train is closer to the entrance of the block section. When the first effect dominates, the true
secondary delay will be bigger than the approximation, while domination of the second effect will reduce the
headway time. Which effect dominates and what impact it has on the secondary delay depends on numerous
factors:

– The configuration of block lengths and speed. With high speeds or heavy trains, the first effect can be
dominant, because the start time loss is huge. On stations, where the maximum speed is lower, being
closer to the entrance of the block section could reduce the headway time.

– Driver behaviour at a yellow sign varies between braking as late as possible, hoping that the following
sign improves, or braking early such that the train still has some speed when passing the next signal is
permitted.

– The visibility of the signal that follows the restrictive signal.

• The delay distributions of both trains should be independent. Therefore the delay of both trains is measured at
a location where they cannot have influenced each other. For crossings of trains that originate from different
tracks, this could be the previous timetable point, but in the case of a succession the trains frequently drive on
the same infrastructure for a long time. In this research, for successions the delay of both trains is also mea-
sured at the previous timetable point, because a measure point further away may not catch the most recent
delay. Fr starting trains without a previous timetable point the most recent known delay is used. Although this
means the delay distributions of both trains are not fully independent, the occurrence of secondary delay at
the previous timetable point is limited, since the conflict is smaller compared to the critical conflict.
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Figure 4.3: Visualisation of uncertainty on true hindrance. Adopted from Weeda (2005)

4.2.2. Predictor variables
The target variables are impacted by a variety of variables that function as predictor variables in the statistical analy-
sis. An overview of the added predictor variables and its computation are provided in Table 4.1. Among the predictor
variables only factors known in the construction of a timetable are considered, because the buffer time planning
rules should be applicable in an early stage of timetable development. Moreover, the reason to include certain pre-
dictor variables is substantiated by a source, or in case of own hypotheses explained below. Not all source-based
predictor variables indicate a relationship to the target variables used in this research, but might be related to delay,
delay propagation or punctuality. It is expected that the same factors may influence the secondary delay, and thus
the variables are considered in this research as well.

The numeric predictor variables are accommodated with a hypothesised sign of the correlation with the target
variable. For the categorical variables a hypothesised sign does not make sense, since the sign of the relation is
expected to differ per category and depends on the reference category used in the coding scheme, discussed in
Section 4.5.

Variable (source) Description Expected
sign
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n Direction (W. H. Lee et al., 2016) Whether the two trains run in the same direction

Number Preceding Conflicts (Gorman, 2009) Number of prior conflicts where the first train was involved in
on the timetable point of the timetable conflict

+

Scheduled Buffer (Palmqvist et al., 2017b; Vromans
et al., 2006)

The buffer time that was scheduled in the timetable -

Scheduled Headway (Gorman, 2009) The headway that was scheduled in the timetable -

Technical Minimum Headway The minimum headway needed to ensure a conflict-free
headway situation

+

timetable point (W. H. Lee et al., 2016) The timetable point the conflict is closest to

Type Headway Situation (W. H. Lee et al., 2016) Whether the conflict relates to a succession or a crossing of the
two trains

Type timetable point (W. H. Lee et al., 2016) The type that the timetable point belongs to. Options include
junction, bridge, station, crossover, shunting yard, and halt
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Event (Dietzenbacher, 2021) The event on the track

Carrier The carrier of the train

Driving Characteristic (W. H. Lee et al., 2016) The type of train

Previous timetable point; Next timetable point The previous / next timetable point the train is scheduled on

Rolling Stock Type The type of rolling stock the train has driven with

21



4.3. Input 4. Methodology

Rolling Stock Amount Carriages The number of carriages the train has driven with +/-

Scheduled Running Time Supplement (Goverde
and Meng, 2011; Palmqvist et al., 2017b)

The percentage of running time supplement that was scheduled
in the timetable, determined from the previous stop to the
timetable point of the headway situation

-

Train Series (W. H. Lee et al., 2016) The train series the train belongs to

Train Series Pattern (W. H. Lee et al., 2016) The train series pattern the train belongs to

Type Previous timetable point; Type Next timetable
point

The type that the timetable point belongs to. Options include
junction, bridge, station, crossover, shunting yard, and halt

Table 4.1: Overview of candidate predictor variables for predicting mean secondary delay and hindrance percentage

The variables Direction and Type headway situation are expected to influence the secondary delay and hindrance
percentage, because in case of the same direction and successions the trains may follow each other for a longer time.
This means there is a longer period in which they are depended on one and another. Therefore, a higher probability
of hindrance could be explainable.

The variable number preceding conflicts indicates how many prior conflicts on a timetable point have occurred
that may directly influence the punctuality of the first train. It is hypothesised that more preceding conflicts in-
fluences the secondary delay and hindrance percentage negatively, due to there being less slack to compensate for
delay of preceding trains.

Currently buffer time norms are specified in absolute values, whilst running time supplements are more often
defined as a percentage. The technical minimum headway is included in the analysis to investigate whether a buffer
time percentage would be more appropriate. When the technical minimum headway appears to impact the target
variables, this could indicate a specification in terms of percentages could be more suitable. A positive relationship
with the target variables is expected, since the buffer of 60 seconds gets smaller with increasing technical minimum
headway, and thus might have less ability to avoid secondary delays.

A difference in secondary delay and hindrance percentage might exist between different carriers. For example,
international trains are more often prioritised than national trains. This relates not only to the driving characteristic
of the train, but also to the power and prestige the various carriers have.

The itinerary of the train is expected to impact the target variables as well as the type of timetable points of the
itinerary. This is operationalised by the previous and next timetable point.

Lastly, the type of rolling stock and the amount of carriages driven with can impact the secondary delay and the
hindrance percentage. Due to the different characteristics of various rolling stock, differences in punctuality and
sensitivity to delay are expected.

4.3. Input
This section introduces the datasets that were used as an input for the framework. Consecutively, traffic realisation
data, train series pattern data, timetable conflict data, timetable data and network data are discussed. The way in
which the data is obtained is described in Appendix C.

4.3.1. Traffic realisation data
The first type of input data is railway traffic realisation data, containing information of trains passing timetable
points in the Dutch railway network. The dataset has a long format, meaning that each row contains one observation
(i.e. one train event) and each column corresponds with one variable. The predefined variables in this dataset are
presented in Table C.1.

Variable Column name Description

Date SL_VERKEERSDATUM The date of the event
Train number SL_TREINNR The train number of the train
Train series SL_TREINSERIE The train series of the train number. Usually equal to the train number in hundreds
Driving characteristic SL_RIJKARAKTERISTIEK The type of train
Carrier SL_VERVOERDER The carrier of the train
Timetable Point SL_DRGLPT The timetable point of the event
Event SL_ACT_SRT The event on the track
Scheduled time SL_BASIC_PLANTIJD The most recent plan time of the train
Realised time SL_BASIC_UITVTIJD The most accurate available realised time of the train
Rolling stock SL_MATSOORT_TYPE The type of rolling stock the train has driven with
Carriages SL_MATSOORT_BAKKEN The number of carriages the train has driven with
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Table 4.2: Overview of traffic realisation dataset

The exact realisation time of a train event is generally unknown, and is therefore approximated using the most accu-
rate source available. Missing data may occur due to physical infrastructure, cancelled trains, renumbering of trains
or software malfunctions. In the data pre-processing the the missing data will be addressed.

4.3.2. Train series pattern data
The second type of input data is train series pattern data, specifying to what series pattern each train number cor-
responds. Domestic passenger trains in the Netherlands usually run as part of a train series, a collection of services
following the same route and stopping pattern. Such a train series has a format of xxx00, where xxx denotes the
different series. To indicate the direction of the train, the train realisation data uses E for Even and O for Odd train
numbers, whereas in the timetable conflict data the trains with different directions are distinct by an additional let-
ter in front of the train series. The additional letter in the timetable is used to create multiple alternatives for a train
series (e.g. a slightly different pattern may be used for peak hours and off-peak hours).

For example, the 2400 series represents the intercity trains between Dordrecht (Drd) and Lelystad Centrum (Lls).
In the traffic realisation dataset all trains headed towards Dordrecht are identified as train series 2400 with direction
O, while the timetable conflict data categorises these trains as part of either the B2400 or D2400 train series pat-
tern, depending on the time of the hour they depart from Lelystad Centrum. Thus, in order to connect the traffic
realisation data with the timetable conflict data, it must be known what train series pattern corresponds with what
direction. Therefore, with the use of this dataset, the train series in the traffic realisation data are updated with a
letter in front, based on the train number. This process is shown in Table 4.3, where on the left a part of the two
initial datasets is presented and on the right the updated version of the traffic realisation data is depicted.

Realisation data Train series pattern data Updated realisation data
Series Train

Number
Direction Weekday Series

pattern
Train
Number

Weekday Series Train
Number

Direction Weekday

2400 2430 E (Lls) 1 (Monday) A2400 2430 1 (Monday) A2400 2430 E (Lls) 1 (Monday)
2400 2477 O (Drd) 1 (Monday) B2400 2477 1 (Monday) B2400 2477 O (Drd) 1 (Monday)
... ... ... ... ... ... ... ... ... ... ...

Table 4.3: Conversion of train series pattern column

4.3.3. Timetable conflict data
The third type of input data is timetable conflict data, presenting both the route conflicts and buffer time conflicts
of the timetable (i.e. situations where the start of the blocking time of a train on a section is planned within the
(extended) blocking time of a preceding train), based on a minimum buffer of 60 seconds and 120 seconds. The
choice to only consider headway situations with timetable conflicts is substantiated by the higher probability of
secondary delay emerging in these situations.

The data was exported from DONS and shows all the route conflicts and buffer time conflicts of a BU timetable.
Each row in the dataset represents an overlap in (extended) blocking time between two train series on a timetable
point and on one or multiple sections. The dataset is used to identify the critical conflicts, their scheduled buffer
times, and their realised events by coupling this dataset with the traffic realisation dataset. The used dataset is
presented in Table 4.4 and consists of predefined variables extracted from microscopic conflict detection based on
blocking time in DONS (first five in the table) (Nederlandse Spoorwegen, 2019) and manually constructed variables
(last three in the table).

Variable Column name Description

Timetable Point Gebied The timetable point the conflict is closest to
Train Series Pattern 1 Trein1 The series pattern of the first train of the conflicting headway situation
Train Series Pattern 2 Trein2 The series pattern of the second train of the conflicting headway situation
Overlap Overlap The amount of seconds that the extended blocking times of both trains overlap
Sections Secties The sections on which the conflict occurs
Headway situation Opvolgsituatie The event pair of the trains contributing to the conflict
Direction Zelfde richting Whether the train contributing to the conflict are driving in the same direction
Type headway situation Type opvolging Whether the conflict relates to a succession or a crossing of the two trains
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Table 4.4: Overview of timetable conflict dataset

4.3.4. Timetable data
The fourth type of input data is timetable data, specifying the planned events in terms of departure, passage and
arrival times of trains at timetable points. The data was exported from DONS and shows all the planned events
in a BU timetable of NS on timetable points and tracks. Each row in the dataset corresponds with an event of a
train series pattern on a specific location. The dataset is used to identify the amount of scheduled running time
supplement from the previous stop to the timetable point of the timetable conflict. The used predefined variables in
this dataset are presented in Table 4.5.

Variable Column
name

Description

Train Series Pattern Serie The series pattern of the train
Timetable Point Drp The timetable point of the scheduled event
Track Spoor The track of the scheduled event
Stops Stopt Whether the train is scheduled to stop on the timetable point or not
Technical Minimum Running Time RtKaal The technical minimum running time of the train from the previous timetable point
Scheduled Running Time RtPlan The scheduled running time of the train from the previous timetable point
Scheduled Arrival Time BU Aankomst The scheduled arrival time in the BU timetable
Scheduled Departure Time BU Vertrek The scheduled departure time in the BU timetable

Table 4.5: Overview of timetable dataset

4.3.5. Network data
The fifth type of input data is network data, specifying how each timetable point is connected to its neighbour(s) in
the network. The text file that was retrieved for this purpose is an infrastructure file from Infra Atlas, which normally
serves as input for Donna. Infra Atlas is one of the applications that ProRail uses and maintains with information
about the railway infrastructure in the Netherlands. Each row in the file corresponds with a connection to a neigh-
bouring timetable point by a single track. By looping through the rows, an adjacency list was created that specifies
the neighbour(s) of each timetable point, and a dictionary was created that specifies for each timetable point what
type it belongs to. The adjacency list enables identification of the previous and next timetable point as well as the
scheduled and realised times at these point.

4.4. Pre-processing
This section describes the pre-processing steps taken to acquire the final dataset used for the statistical analysis. In
particular, it addresses the identification of critical conflicts and its realisations and the operationalisation of the
predictor variables.

4.4.1. Critical conflicts
From the timetable conflict data, critical conflicts are identified, indicating a timetable conflict between two specific
train series patterns located in a critical point. Although in literature a critical point is predominantly determined
on block level, the timetable conflict data used in this research aggregates the timetable conflicts of multiple sections
based on the closest timetable point. Therefore, this research uses the notion of critical timetable point rather than
critical block section. The choice to only consider critical conflicts is based on the aim of this research to determine
precise critical buffer times for tight headway situations. For instance, with a headway of ten minutes and a technical
minimum of two minutes, it matters little what the minimum headway buffer would be.

4.4.2. Realisations of timetable critical conflicts
First the critical conflicts are filtered to show only (buffer time) conflicts where (i) the train series patterns of the
conflict do not belong to the same pattern; (ii) the scheduled headway is smaller than a set threshold; and (iii) the
timetable point of the conflict is within the chosen geographical scope.

Secondly, the traffic realisation data for the first and second train is coupled to the timetable conflict data by
using Pandas’ merge function. Based on the train series pattern, timetable point and event, the realisation data of
the first train is inner merged (i.e. only the rows are kept of which the keys train series pattern and timetable point
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are in both datasets). This results in a dataset with all realisations of the first train of all critical conflicts within the
selected scope. Next, the realisation data of the second train is added in the same manner, also taking into account
the date.

Lastly, only the rows are kept where (i) the scheduled headway is at most 15 minutes (based on a frequency of
two times per hour); and (ii) the scheduled headway is positive, such that the scheduled order of the trains in the
most recent plan is equal to the order in the BU timetable.

4.4.3. Operationalisation of predictor variables
The candidate predictor variables have been identified in Section 4.2. This section presents the computation method
of the various predictors. An overview of the candidate predictor variables and its computation are provided in
Table 4.6. For some of the computed predictor variables additional details on the calculation are provided in Ap-
pendix D.

Variable Computation method
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n Direction Appended from timetable conflict data

Number Preceding Conflicts Iterative algorithm that determines the number of prior timetable conflicts on a
timetable point in which train 1 has acted as train 2 plus the number of preceding
conflicts of each of these prior conflicts. See Appendix D for detailed explanation

Scheduled Buffer Subtract technical minimum headway from scheduled headway

Scheduled Headway From traffic realisation data, subtract scheduled time of train 1 from scheduled
time of train 2

Technical Minimum Headway Scheduled headway minus the planning norm for buffer time plus the duration of
the buffer time conflict. See Appendix D for detailed explanation

Timetable Point Appended from timetable conflict data

Type Headway Situation Appended from timetable conflict data

Type Timetable Point Appended from dictionary created with the network data based on timetable
point column
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Event Appended from traffic realisation data

Carrier Appended from traffic realisation data

Driving Characteristic Appended from traffic realisation data

Previous Timetable Point; Next Timetable Point Minimum gap between scheduled times at adjacent timetable points, known
from the adjacency created with the network data. See Appendix D for detailed
explanation

Rolling Stock Type Appended from traffic realisation data

Rolling Stock Amount Carriages Appended from traffic realisation data

Scheduled Running Time Supplement Calculated from the previous stop to the timetable point of the timetable conflict,
with the use of timetable data. See Appendix D for detailed explanation

Train Series Appended from traffic realisation data

Train Series Pattern Appended from traffic realisation data

Type Previous Timetable Point; Type Next
Timetable Point

Appended from dictionary created with the network data based on Previous /
Next timetable point

Table 4.6: Operationalisation of candidate predictor variables

4.5. Statistical analysis
This section introduces the statistical models created and analyses performed to derive buffer time planning rules
from.

4.5.1. Regression analysis
To predict a target variable based on a wide variety of predictor variables, while maintaining easy interpretability,
a regression analysis can be performed. With a regression analysis it could be determined whether the mean sec-
ondary delay and hindrance percentage can be inferred from the values of the candidate predictor variables. The
intensity of the effects the predictor variables have on the target variables are represented by parameters (i.e. betas)
in a regression function. More specifically, the betas indicate the change in the prediction of the target variable for a
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one unit increase in the predictor variables (Allison, 1999). In the context of this research, a larger value for the tar-
get variables indicates a bigger effect on delay propagation. The parameters are estimated by ordinary-least squares,
which minimises the sum of the squares of the deviation between the target variables’ observed and predicted values
(Berry and Feldman, 1985).

This study estimates the linear relationship between the target variable and the predictor variables. The basic
formula for such a linear regression is defined in Equation 4.2, where Y represents the target variable (i.e. either
secondary delay or hindrance percentage), β0 refers to the estimated constant, β1 ... βn are estimated coefficients
for the scores of the target variable, X1 ... Xn are observed scores for the predictors variables, and ε represents the
estimated residual, capturing the variance of the target variable not explained by the predictors in the regression
model. The additive model assumes that the effect of a change in a predictor variable on the target variable is not
affected by the level of other predictor variables. This implies that the effect can be described without stating the
level of other predictors variables.

Y =β0 +β1X1 +β2X2 + ...+βn Xn +ε (4.2)

In order to perform a linear regression, the following assumptions must be met (Aljandali, 2017):

• Linearity - there exists a linear relationship between each predictor variable and the response variable.

• Absence of multicollinearity - none of the predictor variables are highly correlated with each other.

• Homoscedasticity of residual errors - the residuals have constant variance at every point in the linear model.

• Independence of residual errors - the observations are independent.

• Multivariate normality - the residuals of the model are normally distributed.

In case the linearity assumption is violated, one can either choose to transform the data to a linear form (e.g. by
taking the logarithm or square root) or resort to nonlinear regression analysis (e.g. polynomial regression, ridge
regression, add interaction effects). When multicollinearity is present, one can remove the predictor variable that
causes multicollinearity from the model. Heteroscedasticity can be fixed by either (i) transforming the target vari-
able, (ii) redefine the target variable, or (iii) use weighted regression. Regarding the last two assumptions, the Gauss-
Markov theorem states that they do not have to be met as long as the errors are uncorrelated and have a mean
expected value of zero (Theil, 1971).

4.5.2. Dummy coding
Since regression analysis is based on correlation between the target variable and predictors, all variables in the model
are required to be numeric (Alkharusi, 2012). However, some of the predictor variables are categorical variables. By
applying dummy coding to all non-numerical predictor variables, the categorical variables can be included in the
regression analysis. Dummy coding transforms a categorical variable with k categories to k-1 dummy variables that
each represent one category and have numerical values of zero and one. A one is assigned when a observation
belongs to the category the dummy variable represents, otherwise a zero is assigned.

The category that is not represented by a dummy variable is called the reference level. The regression coefficients
(β) of the included dummies indicate the difference between the category the dummy represents and the reference
level. In this research, the reference category is the level that belongs to the conflict whose target variable is closest
to the population mean.

4.5.3. Model estimation procedure
In case multiple candidate predictor variables have been identified, a regression model including all candidate pre-
dictors is often hard to interpret, not parsimonious and suffers from multicollinearity. To avoid this, only the most
important candidate predictors are incorporated in the model (Galvão et al., 2008; Ghani and Ahmad, 2010). To this
end, there are three common variable selection methods for multiple linear regression in literature: (i) backward
elimination, (ii) forward selection, and (iii) stepwise.

This research adopts a variable selection strategy that compares best to the stepwise method, a combination of
backward elimination and forward selection. A stepwise model estimation procedure, starts with no predictors in
the model. Then, the effects of adding a predictor to the model is evaluated for each candidate predictor individually.
If adding any predictor to the model appears significant (i.e. the p-value of the predictor is below a certain thresh-
old), then the candidate predictor that yields the lowest p-value is added to the model. This process continues until
adding a candidate predictor does no longer result in a significant p-value or when all candidate predictors have
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been added to or excluded from the model. Simultaneously, already included predictors have to maintain signifi-
cance. When the p-value of an already included predictor rises above a certain threshold, the predictor is removed
from the model.

The model estimation procedure in this research, shown in Figure 4.4, differs from the above-mentioned stepwise
method in four ways. Firstly, the adding criterion becomes the candidate predictor that results in the highest increase
in the adjusted R-squared value. The adjusted R-squared value represents the proportion of the variance of the
target variable that is explained by the predictor variables. This statistic ranges from 0, meaning the model explains
no variance, to 1, meaning the model explains the full variance of the target variable. Unlike the regular R-squared
value, the adjusted R-squared value accounts for the number of predictor variables included in the regression model,
and thus leads to a more parsimonious model.

Secondly, the elimination criterion of already included variables differs. This research keeps either the previous
version of the model (i.e. without inclusion of the candidate predictor) or the version with the candidate predictor
excluding the predictors that have become insignificant, depending on which model has the highest adjusted R-
squared value.

Thirdly, an extra stopping condition is added. If the candidate predictor that causes the highest increase in the
adjusted R-squared value is below a certain threshold, the model development is stopped and the last model is
considered the model. This has one major advantage: only the most important predictors are incorporated into
the model, resulting in a more parsimonious model. This results in a model that is interpretable and has a high
accuracy at the same time. What is the most appropriate value for the threshold, is experimented in the next chapter
by evaluating the adjusted R-squared value as well as the number of significant variables in the model for a variety
of thresholds.

Finally, the estimation procedure eliminates multicollinearity. Multicollinearity implies that at least two predic-
tors variables correlate both with each other and with the target variable (Akinwande et al., 2015). As a result, the
estimated coefficients as well as the p-values might be unstable and incorrect, leading to potential false inferences
about relationships (Midi et al., 2010). To avoid this phenomenon, the Variance Inflation Factor (VIF) are inspected
before adding the candidate predictor to the model. The VIF measures the structural independence of each term
from all other terms in the model and is calculated by Equation 4.3, where R2

i is the proportion of the variance ex-
plained by other predictor variables in the model. In this study, an arbitrary value of VIF > 10 is used as an indication
of multicollinearity. A disadvantage of preventing multicollinearity is that it ignores the unique contribution of the
excluded variable and thereby can result in a loss of the explanatory power (Graham, 2003).

V I Fi = 1

1−R2
i

(4.3)

4.5.4. Limitations of the regression analysis
Wiegand (2010) find that regression model created with variable selection methods tend to find the correct model
more often in situations with numerical candidate predictors as compared to binary predictors. They explain this
by the amount of information both types of variables contain. Numerical predictors contain more variation than
dichotomous predictors and thus more information. Predictors with less information may more closely overlap in-
formation with other (binary) predictors and be more prone to multicollinearity. In particular this can raise problems
for selecting the categorical variables that have been coded into dummy variables.

4.6. Output
The output of the statistical analysis is threefold; (i) hindrance distributions; (ii) regression statistics, that state how
well the models can predict and what predictor variables have the most impact; and (iii) buffer time planning rules,
given an arbitrary value for acceptable amount of secondary delay and hindrance percentage.

The linear regression as presented in Equation 4.2 can be rewritten in the format of Equation 4.4, which can be
used to determine the amount of scheduled buffer that would ensure a certain amount of hindrance percentage or
mean secondary delay. As the acceptable amount of secondary delay is an arbitrary choice, a sensitivity analysis is
performed to gain insights into the effects of various acceptable thresholds.

Xscheduled buffer =
Y −β0 −β1X1 −β2X2 − ...−βn−1Xn−1 +ε

βscheduled buffer
(4.4)

27



4.6. Output 4. Methodology

Include predictor with highest
correlation with target variable in

the model

Does candidate
predictor cause
multicollinearity  

(VIF > 10)?

Determine next candidate
predictor that is not yet included

in the model and that would
result in the highest adjusted R^2

when added to the model

No

Include candidate predictor  
in the model

Are all  
predictors in  
the model still

significant?

Exclude insignificant predictors
from the model

Yes

No

Update lists:
included_variables 
excluded_variables 

Adjusted R^2 previous model

Input
y (target variable)

x_candidates (predictor variables)
included_variables
excluded_variables
R^2 previous model

Exclude candidate predictor  
from the model

Yes

Any candidate
predictors left?

Yes

No

Output
included_variables 
excluded_variables
regression model

Which model  
has the highest
adjusted R^2?

The model with  
the candidate  
predictor and  
without the  
insignificant  
predictors

Exclude last candidate predictor
from the model

The previous  
version of the  
model before  

inclusion of the  
last candidate  

predictor

Adjusted R^2  
increase > threshold?

Yes

No

Output
included_variables 
excluded_variables
regression model

Figure 4.4: Conceptual model of multiple regression model
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4.7. Chapter conclusion

This chapter started with the introduction of the framework used to determine buffer time planning rules
from realisation data, followed by the selection of target and predictor variables for the statistical analysis
and a description of the input data, pre-processing procedure, statistical analysis, and output. Using the
information gathered in this chapter, the third sub-question is answered.

Sub-question 3: What data-driven model(s) can be used to determine buffer time planning rules in the
tactical timetable design phase?

Buffer times are implemented to avoid or reduce delay propagation effects. Therefore, the development of
the buffer time planning rules should consider the expected delay propagation, which can be represented
by the mean secondary delay and probability of hindrance a succeeding train encounters caused by a delay
of a preceding train. The observed mean secondary delay and the observed hindrance percentage occurring
in a specific critical conflict situation can be appraised from realisation data. In this research the conceptual
model of Weeda and Wiggenraad (2006) is utilised to determine these target variables. With the use of a pre-
diction model on both target variables and setting an acceptable threshold for expected delay propagation,
buffer time planning rules can be generated. The prediction model is based on the relation the target vari-
ables have with various timetable characteristics that function as predictor variables. Although literature
identifies various other categories of variables to influence delay propagation, this research only considers
timetable characteristics as predictor variables, because these are decision factors in the tactical planning
stage of railway timetables where an initial timetable is constructed.

Due to the need for interpretability of the prediction model, a multiple linear regression model is suit-
able. To automate the data-driven regression model, a model estimation procedure resembling a stepwise
variable selection method was introduced. The model estimation procedure in this research differs from
commonly used stepwise variable selection methods in (i) adding condition; (ii) elimination condition;
(iii) stopping condition; and (iv) a check on multicollinearity.
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5
Case study and results

This chapter presents the case study and its results based on the conceptual framework for determination of buffer
time planning rules. Section 5.1 introduces the case study’s geographical and temporal scope. On top of the general
pre-processing steps, some case specific pre-processing steps have been performed, listed in Section 5.2. Some of
the results are presented for specific conflicts, to provide the reader with a more intuitive feel on how the results are
to be interpreted. Which conflicts are highlighted in the results is explained in Section 5.3. Results were obtained
by performing a exploratory data analysis in Section 5.4 and a regression analysis in Section 5.5. Next, Section 5.6
combines all the presented results to create buffer time planning rules. Section 5.7 summarises the chapter and
provides the answer to sub-question four.

5.1. Case description and scope
The conceptual framework for buffer time rules determination was applied in a case study on a part of the Dutch
railway network. A case study is performed, for it is too laborious for a master thesis research to evaluate planning
standards for the entire rail network. A case study provides an idea of the state of affairs and the usefulness of such
research. This section addresses the geographical and temporal demarcation.

5.1.1. Geographical scope

Ledn

Nspl

Spbr

Hlm

Zspl

Hg

Had

Hil

Lis

Nwh

Vh

Shl

Hfd

Hfdm

Hfdo

Nvp

Rvbr

Ssh

Hlmkr

Vkbr

Asra 

Gwt

Station
Halt
Junction

Legend

Bridge
Crossover
Shunting yard

Timetable point
within scope

Timetable point
outside scope

Hshfdo

Figure 5.1: Schematic overview of geographical scope. Own creation based on ProRail (2022)

The study area consists of the
corridor between Schiphol Airport
and Leiden Centraal and the cor-
ridor between Haarlem and Lei-
den Centraal. The four main rea-
sons for choosing this demarca-
tion are (i) the combination of a
busy and less busy corridor en-
ables analysing the impact of ca-
pacity consumption on mean sec-
ondary delay and hindrance per-
centage; (ii) the (expected) short-
age of capacity on the station
Schiphol Airport and the corri-
dor Schiphol Airport - Leiden Cen-
traal (Planting, 2016); (iii) a va-
riety of train types make use of
the infrastructure and a variety of
timetable point types are present
in the scope; and (iv) relatively low
amount of interaction with freight
trains and trains of other carriers
of which no data was available.

A schematic overview of the geographical scope is depicted in Figure 5.1, where the names of the timetable points
are abbreviated. An overview of the name that belongs to an abbreviation in presented in Appendix E in Table E.1.
Excluding the timetable points right outside the timetable point (depicted in italics in Figure 5.1), in total the study
area contains 16 timetable points, of which four stations, five halts, one junction, one bridge, three crossovers and
two shunting yards.
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Line plan
The train series operating within the case study area are shown in Figure 5.2 and Table 5.1. Moreover, conflicts
including a train not driving through the case study can occur at timetable points at the border of the geographical
demarcation. Therefore, Table 5.2 includes an overview of all additional train series operating on a timetable point
at the border of the geographical scope (e.g. Haarlem, Leiden Centraal & Schiphol Airport).

Figure 5.2: Line plan of the 2020 timetable within the case study area

Train
Series

Trajectory Trajectory in case study area Driving
charac-
teristic

Frequency per
direction

Start/end
in case
study
area

700 Groningen - Den Haag Centraal Schiphol Airport - Leiden Centraal IC 1/h
1800 Leeuwarden - Den Haag Centraal Schiphol Airport - Leiden Centraal IC 1/h
2100 Amsterdam Centraal - Den Haag Centraal Haarlem - Leiden Centraal IC 2/h
2200 Amsterdam Centraal - Vlissingen Haarlem - Leiden IC 2/h
2400 Lelystad Centrum - Dordrecht Schiphol Airport - Leiden Centraal IC 2/h
3300 Hoorn Kersenboogerd - Leiden Centraal Schiphol Airport - Leiden Centraal SPR 2/h x
3700 Venlo - Dordrecht Schiphol Airport - Leiden Centraal IC 2/h, ** only in

super off-peak
hours

4300 Almere Oostvaarders - Hoofddorp Schiphol Airport - Hoofddorp SPR 2/h x
(1)4600 Zwolle / Amsterdam Centraal - Den Haag

Centraal
Schiphol Airport - Leiden Centraal SPR 2/h

5700 Utrecht Centraal - Hoofddorp Schiphol Airport - Hoofddorp SPR 2/h x
(1)5800 Amersfoort Vatforst / Amsterdam Centraal

- Hoofddorp
Schiphol Airport - Hoofddorp SPR 2/h x

6300 Haarlem - Den Haag Centraal Haarlem - Leiden Centraal SPR 2/h x

Table 5.1: Line plan of the 2020 timetable within the case study area

Train Series Timetable Point in case study Driving
characteristic

Frequency per direction Start/end in
case study area

900 Schiphol Airport IC Direct 2/h
1000 Schiphol Airport IC Direct 2/h
14400 Haarlem SPR 2/h, only during summer x
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15400 Haarlem SPR 2/h, only during summer x
(1)1600 Schiphol Airport IC 2/h x
3100 Schiphol Airport IC 2/h x
3400 Haarlem IC 2/h x
3500 Schiphol Airport IC 2/h x
4800 Haarlem SPR 2/h
5400 Haarlem SPR 2/h
8800 Leiden Centraal IC 2/h x
8900 Leiden Centraal SPR 2/h x
9100 Schiphol Airport, passage only ES 1/h
9200 Schiphol Airport IC Direct 1/h
9300 / 9900 Schiphol Airport THA 1/h

Table 5.2: Line plan of the 2020 timetable touching the case study area

5.1.2. Temporal scope
The study period is limited to December 15th 2019, until March 15th 2020, because it is the last period before the
COVID-19 pandemic and the first timetable to be communicated to drivers in tenths of minutes (as opposed to
minutes formerly). This timetable is considered as the benchmark for returning to the regular timetable now that
COVID-19 restrictions are lifted. Realisation data from March 15th 2020 onwards is less representative, because
there is less (secondary) delay due to (i) less passengers, thus shorter dwell times; (ii) less operating trains, thus less
conflicts.

5.2. Data pre-processing
On top of the general pre-processing steps described in Section 4.4, some case specific pre-processing steps have
been performed:

• Delays longer than ten minutes and early arrivals of more than four minutes are not taken into account, be-
cause in these cases rescheduling is often applied. In this study the focus is on secondary delays due to normal
operation where only smaller initial delays occur, and thus no dispatching is considered. This approach is
coherent with Jensen et al. (2017) and Kroon et al. (2008).

• Order changes in realisation are excluded from the analysis. The reason for this is that the scheduled first train
can no longer affect the delay of the scheduled second train. Although the scheduled first train should not run
this late, the effect on the scheduled train is limited because of the order change.

• This study does not distinguish between short stops (event = K_A and K_V) and regular stops (event = A and V),
because in the realisation short stops can become regular stops according to choices made in later planning
stages. When seeing them as different events, the merging of the dataset could exclude some realisations, as
the events in the BU timetable are not the same as the one in the realisation.

• This study only considers passenger trains, so no shunting movements are analysed.

Both regressions are based on a subset of the dataset, complying with the four points mentioned above. As the mean
secondary delay and hindrance percentage are aggregated values per conflict situation, the regression is performed
on observations that are aggregated per conflict. To this end, for numerical predictor variables the mean of all reali-
sations of that conflict was taken, whilst for categorical predictor variables the mode is taken.

5.3. Example conflicts
In the remainder of the analysis, four conflicts will serve as an example to gain tangible results. These four conflicts
have been selected, because they represent a large variety of situations. An overview of the main characteristics
of the example conflicts is presented in Table 5.3 and train traffic diagrams are shown in Figure 5.3. More detailed
figures of the scheduled routes that cause the conflicts are presented in Appendix E.

Train Series
Pattern
Train 1

Train Series
Pattern
Train 2

Timetable
Point

Event pair Driving
Characteristics

Type Headway
Situation

Number of
realisations

Hindrance Order
Change

B700 A900 Shl Arrival -
Arrival

IC - IC Direct Succession 1295 7
(0.54%)

44
(3.40%)
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B2200 B6300 Had Departure -
Arrival

IC - SPR Succession 893 342
(38.30%)

2
(0.22%)

B4800 D2100 Hlm Departure -
Arrival

SPR - IC Succession 1181 217
(18.37%)

0
(0.00%)

A2200 C3300 Ledn Departure -
Departure

IC - SPR Crossing 831 359
(43.20%)

32
(3.85%)

Table 5.3: Overview of example conflicts

(a) Schiphol (b) Heemstede-Aerdenhout (c) Haarlem (d) Leiden

Figure 5.3: Train traffic diagram with the critical conflict in red

5.4. Exploratory data analysis
This section presents the results of an exploratory data analysis. First, descriptive statistics and distributions of the
target variables are discussed. Then, some relations of predictor variables with the target variables are explored to
form hypotheses on which variables will have a significant impact on the target variables. Here it is also observed that
secondary is not expected to adequately represent relationships with the predictor variables. Hence, it is explained
that another target variable will be used in the remainder of the analysis.

5.4.1. Descriptive statistics
This section presents descriptive statistics of the target variables to provide some insights to which extent and where
hindrance occurs before performing the main analysis. A brief overview of the main statistics by timetable point is
presented in Table 5.4. It shows the number of (realisations of) timetable (critical) conflicts, hindrance percentage
and mean secondary delay per timetable point, ordered according to their geographical location of the infrastruc-
ture. Per column it is indicated with darker colours where the higher values are located.

Although timetable conflicts take place on more than half of the timetable points within the scope, critical
timetable conflicts occur predominantly on stop locations of trains (i.e. stations and halts). The highest number
of critical conflicts can be found at Schiphol, indicating that this is a highly utilised timetable point. Interesting to
see is that the hindrance percentage and mean secondary delay do not necessarily correlate with the number of re-
alisations of critical conflicts on a timetable point. Hindrance percentage and mean secondary delay do align on the
insights, as a higher hindrance percentage on a timetable point is paired with a higher mean secondary delay.

A more detailed overview of the descriptive statistics of the target and predictor variables can be found in Appendix F.

Timetable Point Abbreviation Timetable
conflicts [#]

Timetable
critical

conflicts [#]

Realisations of
timetable

critical
conflicts [#]

Hindrance
percentage [%]

Mean
secondary

delay [s]

Haarlem Hlm 57 51 16243 12,78 13,99
Haarlem Zuidelijke Splitsing Zspl 0 0 0
Haarlem Goederenstation Hg 4 0 0
Heemstede-Aerdenhout Had 8 8 4551 31,84 24,98
Hillegom Hil 4 0 0
Lisse Lis 0 0 0
Noordwijkerhout Nwh 0 0 0
Voorhout Vh 0 0 0
Leiden Ledn 54 54 21443 10 22,08
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Sassenheim Ssh 0 0 0
Ringvaartbrug (brug o/d - bij
Sassenheim)

Rvbr 0 0 0

Nieuw Vennep Nvp 2 0 0
Hoofddorp Opstelterrein Hfdo 0 0 0
Hoofddorp Middenspoor Hfdm 22 4 0
Hoofddorp Hfd 94 13 2214 31,17 40,16
Schiphol Shl 134 127 36740 12,92 23,35

Table 5.4: Statistics per timetable point

5.4.2. Distributions of target variables
Figure 5.4 shows the realisations of the four example critical conflicts in the format of the conceptual model dis-
cussed in Chapter 4. The four critical conflicts differ in the number of realisations, hindrance percentage and order
change percentage. It can be observed that the extent to which hindrance and order changes occur varies greatly
among the critical conflicts that here serve as an example. This implies that hindrance, indeed, can be (partly) con-
tributed to the timetable and network design. One striking observation is that the share of order changes at Schiphol
appears considerably larger than at the other example conflicts. This could be caused by the choice that secondary
delays at this timetable point are less accepted by traffic control due to the location specific infrastructure (e.g. tun-
nel).

The magnitude of the hindrance is less obvious from this figure, because the scheduled buffer can vary among
the observations of a conflict, due to changes in BDu or SD timetable design phases (see Figure 5.5). But in general,
observations further to the bottom right have a higher secondary delay, except when both trains have changed order,
then the secondary delay as defined in this study is unknown. That is also the reason why observations with order
changes are excluded from the remainder of the analysis.

(a) Delay distribution B700 - A900 - Shl (b) Delay distribution B2200 - B6300 - Had

(c) Delay distribution B4800 - D2100 - Hlm (d) Delay distribution A2200 - C3300 - Ledn

Figure 5.4: Delay distributions
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Figure 5.5: Distribution of scheduled buffer per conflict

The distributions of the target variables over all critical conflicts within the scope are presented in Figure 5.6, where
the values of the four example critical conflicts are highlighted. The graph of the secondary delay follows a right-
skewed curve, so the majority of the secondary delay has a small value. This is confirmed by the mean of 7.32 and
the median of 0.00 over all observations. The conflicts with a wider distribution indicate both more variance in
secondary delay and a higher hindrance percentage.

The graph of the aggregated conflicts shows that the hindrance percentage of the conflicts is mostly between 0%
and 20%, and there are a few critical conflicts with up to 46.27% of realisations experiencing hindrance. The mean
and median over all conflicts are respectively 13.32 and 9.58. The kernel density function has a drop at 0%, because
there are almost no conflicts where hindrance does never occur in the realisation. For each of the conflicts that serve
as an example it is indicated to what bin of the histogram they belong.

(a) Secondary delay distribution (b) Hindrance percentage distribution

Figure 5.6: Distributions of target variables

5.4.3. Relationships with target variables
To explore the relationships between the target variables and its candidate predictors, some figures are presented.
For numerical predictors a scatter plot is drawn, so that it can be assessed whether a significant relationship is ex-
pected. A scatter plot plots all individual observations as dots, based on its values for a specified y-axis and x-axis. In
case of a high amount of observations, the points in the plot can overlap, making it unclear where the most obser-
vations are positioned. To overcome this problem, a kernal density function is drawn behind the points, indicating
where the observations are concentrated. Darker parts contain more observations than lighter parts.

For categorical predictors scatter plots are an inconvenient way of presenting the relationship with the target
variable, because all observations of one category would lie on the same line, making it unclear where the most
observations are positioned. Since a kernal density function cannot be applied to categorical variables, another
visualisation technique is chosen. The relationships of categorical variables with the predictor variables are depicted
with the use of violin plots, which are a combination of a boxplot and a kernal density function. From the violin plots
the percentage of observations in each category can be deducted by inspecting the size of each violin plot. Moreover,
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the 25%, 50% and 75% interval of all observation within each category are shown with lines in the plot.
Figure 5.7 shows the relationships between mean secondary delay per conflict and some of the candidate predictor
variables. As expected, the scheduled buffer seems to have a negative relationship with the mean secondary delay
(Figure 5.7a). Longer preceding trains, tends to increase the mean secondary delay, which is explained by the longer
occupation time of the section. Also, clear differences can be observed within the categories of the type previous
timetable point of train 1 (Figure 5.7e) and type headway situation (Figure 5.7h). Therefore, these variables are
expected to prove significant impact in the regression analysis.

Figure 5.8 shows the relationships between the hindrance percentage per conflict and some of the candidate
predictor variables. Similar to Figure 5.7 this figure depicts more clear relationships than Figure F.1. Principally,
the relationships observed are similar to Figure 5.7, with a few exceptions. For the driving characteristic of train 1
(Figure 5.8f), the HSN category seems to have some higher values compared to the other two categories. Additionally,
timetable point Ledn (Figure 5.8g) shows a lower hindrance percentage compared to the other timetable points,
which was not expected based on Figure 5.7g. Finally, the difference in type headway situation (Figure 5.8h) seems
bigger for the target variables hindrance percentage than for mean secondary delay (Figure 5.7h).

(a) Scheduled Buffer (b) Scheduled Headway (c) Number Preceding Conflicts (d) Rolling Stock Carriages Train 1

(e) Type Previous Timetable Point Train 1 (f) Driving Characteristic Train 1 (g) Timetable Point
(h) Type Headway Situation

Figure 5.7: Relationships with mean secondary delay

(a) Scheduled Buffer (b) Scheduled Headway (c) Number Preceding Conflicts (d) Rolling Stock Carriages Train 1

(e) Type Previous Timetable Point Train 1
(f) Driving Characteristic Train 1 (g) Timetable Point

(h) Type Headway Situation

Figure 5.8: Relationships with hindrance percentage

36



5.5. Regression results 5. Case study and results

5.5. Regression results
This section presents the results of the regression analyses. It starts with an exploration of a suitable threshold for
adjusted R-squared value increase to be used in the model estimation procedure. Next, it is checked whether the
assumptions of linear regression analyses are violated, and if so, how this is handled. Subsequently, final regression
models are presented and interpreted.

5.5.1. Explore threshold for adjusted R-squared increase
In the model estimation procedure two contrasting objectives are discovered. On the one hand, the adjusted R-
squared value should be as high as possible, to explain as much variance of the target variable. Adding predictors
to the model by definition increases the adjusted R-squared value of the model. On the other hand, for good inter-
pretability of the results, as little significant predictor variables as possible is desired.

The threshold for adjusted R-squared value increase to pursue or end the model estimation procedure deter-
mines the trade-off of the model to add another predictor against its increase in adjusted R-squared value. To de-
termine an appropriate value for the threshold, some experiments are done with varying values. Figure 5.9 presents
the results of these experiments on adjusted R-squared value and the number of significant predictors in the final
model. From the figure can be observed that the adjusted R-squared value for both target variables steadily decreases
with larger values for the threshold. The number of significant variables in the model for both target variables takes
a big drop first and then stabilises. The big drop in significant predictor variables together with a steady decrease
of adjusted R-squared value indicates that the interpretability of the model is improved remarkably without com-
promising too much on model accuracy. For that reason, the remainder of the analysis will be performed with a
threshold of 0.005, the point in the figure where both these aspects can be observed the best.

Figure 5.9: Effect of the threshold for adjusted R-squared increase on the regression output. Bar plot refers to the adjusted R-squared of the final
model (left y-axis), line plot refers to the number of significant variables in the model (right y-axis)

5.5.2. Check on assumptions
The five assumptions of multivariate linear regression models have been discussed in Chapter 4. To recap, (i) the
relationship between each predictor variable and the target variable should be linear (Linearity); (ii) none of the
predictor variables can be highly correlated with each other (Absence of multicollinearity); (iii) the standardised
residuals of the model should have constant variance at every point in the linear model (Homoscedasticity); (iv) the
observations should be independent (Independence); and (v) the standardised residuals of the model should be nor-
mally distributed (Multivariate normality). The linearity assumption is checked during the preliminary data analysis
in Section 5.4 and the multicollinearity assumption is ensured by the model estimation procedure as described in
Chapter 4. The other three assumptions are evaluated below for each estimated linear model.

Homoscedasticity is checked with a plot of the model’s standardised residuals versus the predicted values. In case
the point in the scatter plot follow a pattern, then heteroscedasticity is present. Oftentimes, the pattern that in-
dicates heteroscedasticity resembles a ’cone’ shape, where the standardised residuals become more spread out as
the predicted values get larger. The most common approaches to fix heteroscedasticity are (i) applying a nonlin-
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ear transformation to the response variable (Osborne, 2002); (ii) redefining the response variable; and (iii) using
weighted regression.

Independence of observations is checked by performing a Durbin-Watson test, which is a formal statistical test
that states whether the standardised residuals of the model exhibit autocorrelation. Generally, when the test statistic,
denoted by d, is between 1.5 and 2.5 autocorrelation is unlikely to be present. The most common approaches to fix
dependence of observations are (i) adding lags of the target and predictor variables to the model; (ii) checking that
none of the variables in the model is overdifferenced; and (iii) adding seasonal variables to the model.

Multivariate normality can be checked in two ways; (i) visually using Q-Q plots; and (ii) using a formal statistical
test like Shapiro-Wilk. Since, this statistical test is sensitive to large sample sizes, which are used in this research, this
study uses Q-Q plots to assess the multivariate normality. The most common fixes when the normality assumption is
violated are (i) verifying that there are no extreme outliers present in the data; (ii) if there are extreme outliers, resort
to robust regression techniques or remove the outliers from the models; and (iii) applying a nonlinear transformation
to the response variable (Osborne, 2002).

Regarding the last two assumptions, the Gauss-Markov theorem states that they do not have to be met as long as
the errors are uncorrelated and have a mean expected value of zero (Theil, 1971).

Mean secondary delay
Before the choice was made to resort to mean secondary delay as a target variable, the assumptions of a regression
model on secondary delay were also evaluated. Four out of five (with the exception of multicollinearity) were violated
(see Appendix F for the detailed results of the tests). This is in line with the observations discussed in Section 5.4 and
therefore presents yet another argument to analyse the mean secondary delay as target variable.

The figures used to check the assumptions are presented in Figure 5.10. Figure 5.10a shows that no heteroscedasticity
is present, because the standardised residuals do not seem to become spread out as the predicted values get larger.
Figure 5.10b and Figure 5.10c show that the standardised residuals mostly follow a normal distribution. Moreover,
the mean of the standardised residuals equals -7.31e-13, which is very close to zero, and with a d-statistic of 2.30
the Durbin-Watson test concludes that the observations are dependent. Therefore, it is concluded that all regression
assumptions are met.

(a) Plot to investigate homoscedasticity
(b) Histogram showing the distribution of the

standardised residuals (c) Q-Q plot to investigate multivariate normality

Figure 5.10: Plots to check regression assumptions of the model on mean secondary delay (n = 112)

Hindrance Percentage
The figures used to check the assumptions are presented in Figure 5.11. Figure 5.11a shows that no heteroscedasticity
is present, because the standardised residuals do not seem to become more spread out as the predicted values get
larger. As for multivariate normality, Figure 5.11b and Figure 5.11c show that the standardised residuals mostly follow
a normal distribution. Moreover, the mean of the standardised residuals equals 6.29e-14, which is very close to zero,
and with a d-statistic of 2.32 the Durbin-Watson test concludes that the observations are independent. Therefore, it
is concluded that all regression assumptions are met.
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(a) Plot to investigate homoscedasticity
(b) Histogram showing the distribution of the

standardised residuals
(c) Q-Q plot to investigate multivariate normality

Figure 5.11: Plots to check regression assumptions of the model on hindrance percentage (n = 139)

5.5.3. Regression statistics
In total two regression models for two target variables are created; mean secondary delay and hindrance percentage.
The example conflict at Haarlem is taken as reference conflict, because the mean secondary delay and hindrance
percentage of this conflict best resemble the statistics of the entire population as presented in Figure 5.6. This means
that for the categorical variables, the level assigned to this conflict is taken as the reference level, see Table F.2 in
Appendix F for an overview. As explained in Chapter 4, the coefficients of the dummy variables included in the
model indicate the difference between the category the dummy represents and the reference level.

The unstandardised coefficients ought to be interpreted as the change in the value of the target variable when
the predictor variable is increased with one unit, while controlling for all other predictors. Standardised predictors
indicate the change in the standard deviation of the target value when the predictor variable increases with one
standard deviation, while controlling for all other predictors.

Mean secondary delay
The first model aims to predict the mean secondary delay per conflict and is able to explain 90.7% of the variance
within this variable (adjusted R-squared value = 0.907). Table 5.5 presents the coefficients of the included variables,
which have a significant impact on the secondary delay. What stands out is that the scheduled buffer, nor the sched-
uled headway is found to have a significant effect on the mean secondary delay. Yet, interesting to see is that the
technical minimum headway does have an impact on the secondary delay, suggesting that it might be effective to
identify buffer time in percentages of the technical minimum headway rather than absolute values. This furthermore
is in line with the way running time supplements are defined.

To conclude, it is stated that the model can sufficiently predict the mean secondary delay and therefore can be
used to extract buffer time planning rules from. Although the scheduled buffer has no significant influence and re-
alisations deviate from the mean, the model provides insights into how variables compare to the reference conflict
in Haarlem and into the unit that buffer time could be scheduled with.

Unstandardised coefficients Standardised
coefficients

Variable Category Beta Standard
error

Beta t Sig.

Constant -4.356 0.876 -4.970 0.000
Previous Timetable Point Train 2 (ref = Spbr) Hfdm 16.854 1.361 2.250 12.379 0.000

Vkbr -15.127 1.250 -2.019 -12.098 0.000
Rolling Stock Type Train 1 (ref = SGMM3
SGMM3)

SNG3
SNG4

-5.128 1.400 -0.685 -3.664 0.000

SNG4 2.587 0.897 0.345 2.885 0.005
Rolling Stock Type Train 2 (ref = VIRM6) SNG3

SNG3
6.069 1.421 0.810 4.272 0.000

Scheduled Running Time Supplement Train 1 0.167 0.046 0.126 3.644 0.000
Technical Minimum Headway 0.036 0.004 0.318 9.266 0.000
Train Series Pattern Train 1 (ref = B4800) B1800 -2.652 1.209 -0.354 -2.194 0.031

D3700 7.985 1.682 1.066 4.749 0.000
D5800 7.703 2.068 1.028 3.724 0.000
D6300 6.617 2.047 0.883 3.233 0.002

Train Series Pattern Train 2 (ref = D2100) B3700 11.724 2.430 1.565 4.825 0.000
E3300 -6.582 1.805 -0.879 -3647 0.000
E4800 5.652 1.889 0.769 2.992 0.004
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G4800 5.991 1.696 0.800 3.532 0.001
Train Series Train 1 (ref = 4800) 3400 4.876 1.257 0.651 3.881 0.000
Train Series Train 2 (ref = 2100) 2400 9.914 1.077 1.323 9.204 0.000
Type Next Timetable Point Train 2 (ref =
Crossover)

Halt 19.801 0.886 2.643 22.349 0.000

Table 5.5: Regression results of mean secondary delay

To show how the regression output can be used to predict the mean secondary delay, the formula for the example
conflict at Heemstede-Aerdenhout is presented in Equation 5.1. Note that this equation has been simplified by
omitting components of βi Xi resulting in 0 (i.e. the train series of train 1 is 4800, thus the coefficient belonging
to train series of train 1 when the category is 6300 is omitted). Figure 5.12 supports the conclusion that the model
can sufficiently predict the mean secondary delay, by showing that for all four example conflicts the predicted value
is close to the observed value and that both under- and over-estimations occur. A complete overview of the full
regression formula in the format of Equation 4.2 is presented in Appendix F.

Predicted mean secondary delay =−4.356+0.167∗5.8+0.036∗204+19.801∗1 = 23.757 (5.1)

Figure 5.12: Prediction deviation mean secondary delay

Hindrance Percentage
The second model aims to predict the hindrance percentage per conflict and is able to explain 90.7% of the variance
within this variable (adjusted R-squared value = 907). Table 5.6 presents the coefficients of the included variables,
which have a significant impact on the secondary delay. For the significant categorical variables it is indicated what
the reference level is.

When preceding trains are of the type IC Direct (abbreviation: HSN), the chance on hindrance increases with
13.822% as compared to a sprinter being the preceding train. Moreover, the second train being a starting train at
the location of the conflict instead of coming from a bridge results in 23.708% more chance to be hindered. On the
brighter side, crossings lead to 9.530% less chance on hindrance as compared to successions, which is explained by
the fact the the time both trains are dependent on each other is smaller in case of crossings.

As expected, the scheduled buffer reduces the change on hindrance. Unexpectedly, the percentage of scheduled
running time supplement the preceding train has, increases the hindrance percentage. Longer succeeding trains
appear to experience less hindrance which might be because they gain a higher priority as more passengers are
transported.

To conclude, it is stated that the model can sufficiently predict the hindrance percentage and therefore can be
used to extract buffer time planning rules from.

Unstandardised coefficients Standardised
coefficients

Variable Category Beta Standard
error

Beta t Sig.

Constant 12.773 1.280 9.978 0.000
Driving Characteristic Train 1 (ref = SPR) HSN 13.822 1.458 1.107 9.479 0.000
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Next Timetable Point Train 1 (ref = Nspl) Shl 25.769 1.828 2.063 14.099 0.000
Vh 9.939 1.986 0.796 5.004 0.000
Zspl 24.633 1.994 1.972 12.355 0.000

Previous Timetable Point Train 1 (ref = Spbr) Hg 31.161 2.064 2.495 15.095 0.000
Previous Timetable Point Train 2 (ref = Spbr) None 23.708 2.988 1.898 7.934 0.000
Rolling Stock Type Train 2 (ref = VIRM6) SLT6 5.192 1.517 0.416 3.421 0.001
Scheduled Buffer -0.119 0.015 -0.249 -7.647 0.000
Scheduled Running Time Supplement Train 1 0.337 0.081 0.139 4.144 0.000
Train Series Pattern Train 1 (ref = B4800) A3300 -6.699 1.695 -0.536 -3.952 0.000

B2400 12.643 2.841 1.012 4.450 0.000
C3300 -6.963 2.313 -0.557 -3.010 0.003
D3700 24.019 2.829 1.923 8.490 0.000
D6300 11.241 3.197 0.900 3.516 0.001

Train Series Pattern Train 2 (ref = D2100) B3700 17.067 4.030 1.366 4.235 0.000
C1000 4.001 1.409 0.320 2.841 0.005

Train Series Train 1 (ref = 4800) 4600 8.352 1.799 0.669 4.644 0.000
Train Series Train 2 (ref = 2100) 2400 13.322 1.601 1.067 8.323 0.000
Type Headway Situation (ref = succession) Crossing -9.530 0.911 -0.763 -10.461 0.000

Table 5.6: Regression results of hindrance percentage

To show how the regression output can be used to predict the hindrance percentage, the formula for the example
conflict at Heemstede-Aerdenhout is presented in Equation 5.2. Note that this equation has been simplified by
omitting components of βi Xi resulting in 0 (i.e. the train series of train 1 is 4800, thus the coefficient belonging
to train series of train 1 when the category is 4600 is omitted). Figure 5.13 supports the conclusion that the model
can sufficiently predict the hindrance percentage, by showing that for all four example conflicts the predicted value
is close to the observed value. A complete overview of the full regression formula in the format of Equation 4.2 is
presented in Appendix F.

Predicted hindrance percentage = 12.773+31.161∗1−0.119∗31.90+0.337∗5.79 = 42.09 (5.2)

Figure 5.13: Prediction deviation hindrance percentage

5.5.4. Interpretation of regression analyses
The previous section has discussed two regression models, both being identified to be accurate enough to be used as
prediction models. The models on mean secondary delay and hindrance percentage are both able to explain 90.7%
of the variance on the target variable.

Limited overlap is observed in the significant variables of both regression models. This implies that hindrance itself
and the extend to which hindrance occurs (i.e. hindrance percentage and mean secondary delay) are not likely to
be influenced by the same factors. Only the following variables are present as significant predictor variables in both
regression models: (i) Scheduled Running Time Supplement Train 1 (ii) Train Series Pattern Train 1 - D3700 & D6300;
(iii) Train Series Pattern Train 2 - B3700; and (iv) Train Series Train 2 - 2400. As both target variables are affected by
other factors, influencing both of them by changing the value of only one factor can only be achieved by changing the
listed factors. But, since changing the name of a train series (pattern) is an arbitrary choice, the only real option to
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change is the scheduled running time supplement of train 1. Then, optimisations to both target variables separately
can be done by changing their unique significant variables.

One striking observation is that the candidate predictor variables timetable point, Number Preceding Conflicts,
Same Direction, Event and Carrier do not appear to have a significant impact on any of the target variables. The same
is concluded for interaction effects between the scheduled buffer and (i) timetable point; (ii) Type timetable point;
(iii) Type Headway Situation; (iv) Driving Characteristic; and (v) Direction. The latter implies that the effect of a unit
of scheduled buffer is the same among all types of conflicts characterised by the listed predictor variables.

Interesting to see is that the scheduled buffer has a significant impact on hindrance percentage, whilst mean
secondary delay is influenced by technical minimum headway. This indicates that it might be effective to identify
buffer time in percentage of the technical minimum headway rather than absolute value.

Using the standardised coefficients it can be determined what factors influence the target variables the most. The
biggest influential factors on mean secondary delay are (i) Previous timetable point of train 2 being Hfdm (β = 2.250)
or Vkbr (β = -2.019); and (ii) Type next timetable point of train 1 being a halt (β = 2.643). The biggest influential factors
on hindrance percentage are (i) Next timetable point of train 1 being Shl (β = 2.063) or Zspl (β = 1.972); (ii) Previous
timetable point of train 1 being Hg (β = 2.495); and (iii) Train 2 being a starting train (β = 1.898).

5.6. Determination of case-specific buffer time planning rules
The linear regression as presented in Equation 4.2 can be rewritten in the format of Equation 4.4, which can be used
to determine the amount of buffer that would ensure a certain amount of hindrance percentage. As the scheduled
buffer is not a significant predictor for the mean secondary delay, this method can not be applied to determine the
amount of buffer that would ensure a certain amount of mean secondary delay.

Figure 5.14 shows that the amount of needed scheduled buffer to achieve a certain amount of hindrance per-
centage differs per conflict. Due to the linear nature of the regression model the distributions in Figure 5.14a are the
same for all hindrance percentages, but are shifted on the x-axis and the lines in Figure 5.14b are linear. As the effect
of one unit buffer does not differ among various conflicts the lines in Figure 5.14b are parallel.

Compared to the currently mean scheduled buffer per conflict (standard deviation = 26) the spread in the pre-
dicted values for the needed scheduled buffer per conflict is significantly higher (standard deviation = 93), leading to
an increase of 257%. This increase in spread of buffer can also be observed in Table 5.7, where the range (i.e. differ-
ence in minimum and maximum value) of the currently mean scheduled buffer per conflict is 119 seconds, though
for the predicted values for the needed scheduled the range equals 343 seconds. This corresponds with an increase
of 188%.

(a) Distribution of needed scheduled buffer for critical conflicts in the geographical scope
for different acceptable hindrance percentages

(b) Needed scheduled buffer for the example conflicts for different
acceptable hindrance percentages

Figure 5.14: Plots to show variance in needed scheduled buffer

Needed scheduled buffer [s] at hindrance percentage [%]
Currently
scheduled
buffer [s]

0 5 10 15 20 25 30 35 40 45 50

Std 26 93 93 93 93 93 93 93 93 93 93 93
Mean 55 167 125 83 41 -1 -43 -85 -127 -169 -211 -254
Min -6 44 2 -39 -81 -124 -166 -208 -250 -292 -335 -377
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25%-quartile 40 107 74 42 9 -23 -55 -88 -121 -153 -186 -219
Median 56 146 104 62 20 -22 -64 -106 -148 -190 -232 -274
75%-quartile 73 186 153 120 88 55 22 -9 -42 -75 -107 -140
Max 113 387 345 302 260 218 176 134 91 49 7 -34
Sum 7716 23339 17473 11607 5741 -124 -5990 -11856 -17722 -23588 -29454 -35320

Table 5.7: Regression results of hindrance percentage

For example, using Equation 4.4, when one aims for a hindrance percentage of 15% at the example conflict of
Heemstede-Aerdenhout, the amount of buffer that would ensure this can be calculated with the use of Equation 5.3,
and results in 261 seconds. Note that this equation has been simplified by omitting components of βi Xi resulting in
0. The resulting needed buffer of 2611 seconds is much bigger than the buffer of 31.9 seconds that is currently sched-
uled at this conflict. This large deviation is explained by the fact that the hindrance percentage of the realisations is
38.29%, which is quite high. Thus to lower this, the scheduled buffer should be much bigger.

Needed scheduled buffer = 15−12.773−31.161∗1−0.337∗5.79

−0.119
= 261 (5.3)

5.6.1. Practical buffer time planning rules
Ideally, Equation 4.4 is integrated into the planning applications, so that the needed amount of buffer to achieve a
certain hindrance percentage for a given conflict is identified automatically. To achieve this, still many steps have to
be taken, which are described in Chapter 7. Until then, a manual approach is still required, and although Equa-
tion 4.4 resembles an accurate prediction of the needed scheduled buffer time for a given conflict, it is a time-
consuming task to perform manually. To ease the direct utilisation of the planning rules, a more simplified, gen-
eralised and therefore practical approach is developed.

To this end, a base value for the needed scheduled buffer is presented for a range of hindrance percentages in
Table 5.8a, based on (i) Equation 4.4; (ii) the constant of the regression formula; and (iii) the coefficient for sched-
uled buffer reported in Table 5.6. Essentially, the base value corresponds with a regression model where only the
scheduled buffer is incorporated as predictor variable, which has an adjusted R-squared value of 0.161. Depending
on the specific conflict, additional buffer time should be added to or deducted from this value. For each significant
categorical predictor variable, it is stated in Table 5.8b what amount of scheduled buffer should be added to the base
value when this category is present in the conflict, based on (i) Equation 4.4; (ii) the coefficient of the significant cat-
egorical predictor variable; and (iii) the coefficient for scheduled buffer as reported in Table 5.6. For each percentage
of running time supplement scheduled to train 1, the predicted increase this gives to hindrance percentage can be
cancelled out by a 2.83 seconds increase in scheduled buffer.

Still, to consider all variables listed in Table 5.8b can be an extensive job. Therefore, the column Cumulative predic-
tion accuracy is added to represent the adjusted R-squared value of the prediction model when a variable, and all
variables placed above that one are included in the model. The abverb Cumulative hence refers to the fact that the
variables placed above the one looked up have to be in the model to achieve the prediction accuracy mentioned. The
variables are ordered from highest to lowest increase in prediction accuracy, so that the most influential variables are
included into the model first. This could help practitioners make a trade-off between model accuracy and workload
in scheduling buffer time. Given the steep increase in cumulative prediction accuracy in Table 5.8b, Table 5.8a is
likely to be used only in combination with the supplement.

For example, given a crossing conflict of train series patterns A2200 and B2400, a prediction accuracy of 73.5% is
achieved when considering the Next Timetable Point of Train 1 being Vh and the Train Series of Train 2 being 2400.
Whereas, also adding the variable Type Headway Situation being a crossing lifts the prediction accuracy to 88.2%.
Hence the prediction accuracy can be read from the last line above the first excluded variable that is part of the
conflict.

5.6.2. Reflection on buffer time planning rules
Chapter 3 discussed the current planning norms with regard to scheduling headway times. Essentially, the scheduled
headways are composed of a technical minimum headway and a minimum buffer time of 60 seconds. As a rule of
thumb, smaller buffer times are acceptable when the gain in headway time is bigger than the loss in running time,
which is evaluated for each situation individually.

The planning rules presented in this chapter identify the minimum buffer time case-specifically, while evaluating
the percentage of realisations that would be hindered. The planning rules provide more flexibility compared to the
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Acceptable
hindrance
percent-
age[%]

Predicted
sched-
uled
buffer
[s]

5 65
10 23
15 -18
20 -60
25 -102
30 -144
35 -186
40 -228
45 -270
50 -312

(a) Base values for predicted scheduled buffer

Variable Category Predicted
scheduled
buffer supple-
ment [s]

Cumulative
predic-
tion
accuracy
[%]

Previous Timetable Point Train 1 Hg 262 26.9
Next Timetable Point Train 1 Shl 217 38.7
Driving Characteristic Train 1 HSN 116 47.7
Next Timetable Point Train 1 Vh 84 55.6
Next Timetable Point Train 1 Zspl 207 62.5
Train Series Pattern Train 1 D3700 202 67.1
Train Series Train 2 2400 112 71.8
Previous Timetable Point Train 2 None 199 73.5
Type Headway Situation Crossing -80 83.6
Train Series Train 1 4600 70 84.7
Train Series Pattern Train 2 B3700 94 85.7
Train Series Pattern Train 1 A3300 -56 86.6
Train Series Pattern Train 1 D6300 94 87.4
Train Series Pattern Train 1 B2400 106 88.2
Scheduled Running Time Supplement Train 1 2.83* 88.8
Rolling Stock Type Train 2 SLT6 44 89.5
Train Series Pattern Train 1 C3300 -59 90.2
Train Series Pattern Train 2 C1000 34 90.7

* For each percentage of scheduled running time supplement of the first train, an
additional 2.83 seconds of buffer should be scheduled.

(b) Supplements per category for predicted scheduled buffer

Table 5.8: Practical buffer time planning rules

current norms, because the size of the minimum needed buffer depends on the preferred hindrance percentage.
Large differences in terms of predicted scheduled buffer are registered between the various conflicts in the case

study. To obtain the same hindrance percentage the difference in predicted scheduled buffer between conflicts
reaches up to 342 seconds. Thus, compared to the mean observed scheduled buffer per conflict (standard deviation
= 26 seconds), the spread in the predicted values for the predicted scheduled buffer per conflict is significantly higher
(standard deviation = 93), corresponding with an increase of 257%.

When the observed mean hindrance percentage of the realised conflicts (=13.32%) is taken as acceptable hindrance
percentage for all conflicts in the prediction, the hindrance distribution across all conflicts becomes uniform and
the sum of all predicted scheduled buffers equals the total observed scheduled buffer, namely 7716 seconds. For
every percentage increase in hindrance percentage, the sum of predicted scheduled buffers drops with 1173 seconds.
Additionally, the mean of all observed scheduled buffers equals the mean of predicted scheduled buffer across all
conflicts. For every percentage increase in hindrance percentage, the mean of predicted scheduled buffers drops
with 8 seconds. Yet, as shown in Table 5.9 the allocation of the scheduled buffers across the timetable points changes.
In particular buffer times currently scheduled at Leiden are moved to Heemstede-Aerdenhout and Haarlem.

Timetable Point Sum of observed
scheduled buffer [s]

Share of observed
scheduled buffer

Share of predicted
scheduled buffer

Heemstede-Aerdenhout 211 2.74% 11.30 %
Hoofddorp 440 5.70 % 12.45%
Haarlem 1648 21.36 % 23.58 %
Leiden 1815 23.53% 8.30%
Schiphol 3600 46.67 % 44.37%

Table 5.9: Comparison of total scheduled buffer per timetable point (observed vs. predicted)
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5.7. Chapter conclusion

This chapter presented a case study and its results based on the conceptual framework for determination
of buffer time planning rules presented in Chapter 4. The case study’s scope was introduced and case spe-
cific pre-processing steps were discussed. Next results in terms of exploratory data analysis and regression
statistics were presented for all critical conflicts in the case study as well as for four example conflicts in
more detail. Lastly, it was shown how to extract buffer time planning rules from the regression statistics.
Using the information gathered in this chapter, the fourth sub-question is answered.

Sub-question 4: How are buffer time planning rules determined from the data-driven model(s) and how
do they compare to the current planning norms for buffer times?

Two regression models were estimated, one on mean secondary delay and one on hindrance percentage.
Both models appeared to have the same prediction accuracy of 90.7%. The model on mean secondary delay
did not contain the scheduled buffer as a significant predictor variable and thus cannot be used to derive
buffer time planning rules from. The model on hindrance percentage did contain the scheduled buffer as a
significant predictor variable and thus can be used to derive buffer time planning rules from. The predicted
needed scheduled buffer can be calculated with the use of Equation 5.4, where Y refers to the acceptable
hindrance percentage chosen by the planner,β0 corresponds with the constant; andβ1...βn−1 and X1...Xn−1

represent the coefficients and values of the other significant predictor values.

Xscheduled buffer =
Y −β0 −β1X1 −β2X2 − ...−βn−1Xn−1 +ε

βscheduled buffer
(5.4)

Compared to the current planning norms for buffer times, the planning rules presented in this chapter pro-
vide more flexibility, because the size of the needed scheduled buffer depends on the preferred hindrance
percentage. The planning rules presented in this chapter however, do not indicate how the scheduled buffer
compares to the mean secondary delay that can be expected. To gain the same mean hindrance percentage
as the realisation data, the total amount and mean value of needed scheduled buffer remains unchanged.
Yet, the variation in buffer sizes increases from a standard deviation of 26 seconds to a standard deviation of
93 seconds, meaning a 257% rise. Thus, the spread in scheduled buffer time is increased, and moreover the
allocation of the scheduled buffer time changes geographically.
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6
Discussion

This chapter further elaborates on the results from the regression analyses, discussing the quantitative but also qual-
itative aspects of secondary delay and hindrance percentage. Understanding these aspects helps create insights into
how to prevent, anticipate and mitigate delay propagation effects.

6.1. General remarks
The general impression from the results in Chapter 5 is that the delay propagation at different critical conflicts is
quite heterogeneous. The regression models were both able to explain 90.7% of this heterogeneity when using ag-
gregated values for conflict situations, being mean secondary delay and hindrance percentage, meaning that struc-
tural delay propagation patterns can largely be contributed to timetable design and infrastructure characteristics.
Still, critical conflicts with the same mean secondary delay and hindrance percentage can have different secondary
delay distributions, caused by among others (i) number of realisations of the conflict; (ii) number dispatching op-
tions; (iii) proactive attitude of traffic controllers; (iv) delay distributions of the first and second train at the previous
timetable point; (v) the variety in scheduled buffer; (vi) the variety in rolling stock; and (vii) time of day.

Integration of practical buffer time planning rules in the Dutch timetable design process
Currently, the necessary minimum buffer time is tested with a deterministic, microscopic simulation during the
MLT phase. The buffer time needed for robust execution of the timetable is simulation by adding 60 seconds wake
behind every train movement. Then, if this results in hindered operations it could still be acceptable, except when
(i) an unplanned stop occurs, or (ii) an arrival delay bigger than 30 seconds occurs at certain stations. In reality,
slightly hindered headways enables ’hidden’ capacity to come available, and are as a rule of thumb accepted when
the gain in headway time is bigger than the loss in running time.

The planning rules could be used to define the size of the wake added in the simulation, or can be used as an
indication of when slightly hindered headways are acceptable. The former resonates best on the verge of the strategic
and tactical planning stage, where microscopic simulations are used. The latter is more suitable on the interface
between the tactical and operational design phase where conflicts are evaluated and approved.

6.2. Research limitations
Given the scope of this thesis and the followed methodology, there are some limitations to this research which are
addressed here. As a result, there are still plenty of opportunities for future research which are discussed in the next
chapter.

6.2.1. Methodological limitations
The analysis performed in this study can be made more accurate by addressing some simplifications and limitations
of the methodology. In particular the accuracy of the analysis is limited by the following aspects:

• The chosen methodology only takes into account delay propagation between two trains, but does not contain
information about the propagation of delay within a network. This makes it impossible to infer insights on
vulnerabilities and bottlenecks to be used in the network design.

• In this research, a linear regression model was created, assuming a linear relationship with the target variables
and buffer time. While literature agrees that buffer time limits secondary delay, it also shows the benefits
decrease with increasing buffer time. More precisely, multiple studies demonstrated the presence of a negative
exponential relationship between secondary delay and buffer time (Weeda, 2005; Yuan and Hansen, 2007;
Zieger et al., 2018). Assuming a linear relation limits the accuracy of the model and may overestimate the
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effects of adding extra units of buffer time to reduce delay propagation.Moreover, due to the nature of the
linear additive regression model, hindrance percentages below 0% and higher than 100% could be predicted,
whilst this is not possible in reality.

• The target variable mean secondary delay is an aggregated value of multiple realisations of one critical conflict
situation. So information on the spread of mean secondary delay within the conflict is lost, whilst this could
be useful information in assessing the sensitivity of secondary delay with regard to the scheduled buffer time.
A large spread could furthermore indicate that the specific values are caused by incidental causes, whereas a
minimal spread in secondary delay may suggest more structural relationships with the timetable design.

• In this research, critical conflicts have been identified, indicating a timetable conflict between two specific
train series patterns located in a critical point. It is assumed that each pair of train series patterns in the
timetable conflict data has exactly one critical conflict. However, theoretically, multiple unrelated critical con-
flicts could exist between two train series patterns when they occur far enough from one another such that
they do not influence each other. All independent critical conflicts could be captured by for example (i) having
a maximum of one critical conflict per pre-specified area; or (ii) defining a minimum distance that the critical
conflicts should be separated from each other; or (iii) accepting multiple critical conflicts if there is at least one
timetable point in between where no timetable conflict is scheduled.

• The choice to use a case study limits the range of some predictor variables. For example, when the buffer time
rules are developed based on location or train series it is impossible to integrate all possible categories into the
case study. This research aimed to overcome this limitation by choosing a geographical scope that includes
a large variety of type timetable points and driving characteristics. Moreover, quite specific variables where
used, such as the train series (pattern) and location, making the approach less straightforward to generalise.
This implies that the conclusions can only be drawn with regard to the investigated scope of the case study. To
generate a more general model one could (i) append the model with a classification model that creates groups
of the various categories (based on e.g. demand per timetable point, size of timetable point); or (ii) only include
general variables in the model (exclude e.g. timetable point, train series (pattern)).

• Due to the limited scope of the case study, there is a risk of overfitting while creating the model with the used
model estimation procedure. This could be resolved by splitting the dataset in a training dataset and test
dataset. To this end, the model estimation procedure should be performed on the training set and expanded
with an extra stop condition addressing the adjusted R-squared value improvement of the test set.

6.2.2. Data limitations
The analysis performed in this study can be made more accurate and scalable by using more sophisticated data. In
particular the data of the following variables can be improved:

• Secondary delay - This research used an approximation method introduced by Weeda and Wiggenraad (2006).
Although on average this estimation of secondary delay seems to resemble the true secondary delay, the es-
timation is particularly unsuitable for conflicts including starting trains and successions. This is because the
method computes the target variable secondary delay at a conflict point based on the delay of two trains, be-
fore they have interacted with each other. In case of starting trains, no data of the previous pathing of the train
was present in the dataset, therefore no previous delay was known. For this reason, in this study the latest
known delay was taken. More detailed data could aid in determining the previous pathing of the rolling stock
the train is operated with. In case of a succession, the trains could have been following each other for quite
some time before the critical conflict, meaning that the location before the first interaction is ambiguous. In
this study the timetable point before the conflict was used to determine the previous delay, but here the delays
of both trains are not necessarily independent.

Both problems can be solved by using another target variable, that is measured instead of approximated. One
possible metric could be the time loss directly related to a route conflict (Daamen et al., 2009; Goverde and
Meng, 2011). As time losses are determined locally at the signal of occurrence, more detailed data on signal
passages and reference running times of unhindered operations have to be collected to enable this approach.

• Number preceding conflicts - This variable is computed based on a conflict tree of realisations. As the data col-
lected in this study only entails realisations of train operated by NS passengers and NS international, conflicts
including trains of other carriers are excluded. This results in an underestimation of the number of consec-
utive conflicts, and can therefore influence the significance of this variable. To accurately assess the impact
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this variable has on the secondary delay and hindrance percentage, the paths of other carriers’ trains should
be known. Since this is known in the timetable design, one can opt to base this variable on the conflicts in
the timetable, rather than the conflicts in the realisation. However, in case of cancelled trains, order changes,
or big delays, the timetable does not provide an accurate representation of reality. Therefore, it is preferred to
determine this variable based on realisation data of all carriers.

• Type headway situation - This variable was manually constructed for this analysis. To make the analysis more
scalable, it is preferable to extract this data from one of the planning applications. To determine what type
of headway situation constitutes the conflict, it should be known from what tracks the trains originate and to
which track the train is headed and whether the directions of both trains are the same. A succession takes
place when two train movements successively take place in the same direction, and both trains have the same
entry or exit track. A conflict is called a crossing if two train movements to or from a timetable point travel on
routes that share partially common infrastructure and do not have the same entry or exit track. A crossing can
take place in the same or opposite direction. The data collected in this study only contained the track of the
train movement at the timetable point, but not the entry or exit track.

• Direction - This variable was manually constructed for this analysis. To make the analysis more scalable, it is
preferable to extract this data from one of the planning applications. Although, this variable did not appear
to be a significant predictor, it could turn out to be when analysing a larger variety of headway situations.
To determine whether the two trains are moving in the same direction, it should be assessed what adjacent
timetable points of the location of the conflict are located at the same side of the timetable point. Then if
either the previous or next timetable point of both trains are in the same direction, it can be concluded that
the trains are heading in the same direction. This still requires some manual construction of a set of adjacent
timetable points that are at the same side of the timetable point.

Another option would be to analyse the time-distance diagrams of the timetable. When the lines of two con-
flicting trains are somewhat parallel, one can conclude that they run in the same direction.

• Event pair of the conflict - The event of both trains contributing to the conflict was manually constructed for
this analysis. To make the analysis more scalable, it is preferable to extract this data from one of the planning
applications. It could be assumed that the events of both trains that are scheduled the tightest are responsible
for the conflict.

• Technical minimum headway - This variable is determined based on the scheduled times of both trains, the
planning norm for buffer time and the overlap in extended blocking times in the timetable. This approach
does not take into account the length of the train, since this is determined in a later planning stage. However,
the length of the train does very much influence the section occupation time, and therefore the release time of
the block. Thus, trains with different lengths have different blocking times and thus a different buffer.

6.3. Contributions to theory
The results from this thesis contribute to the theoretical understanding of delay propagation in railways.The contri-
butions are summarised by reflecting on the identified knowledge gaps.

Research gap 1: It is unknown to what extent specific timetable characteristics (e.g. scheduled buffer time,
scheduled running time supplement, train characteristics, headway situation, location) influence delay

propagation.

This research has identified the impact timetable characteristics have on secondary delay and hindrance percentage.
A general finding is that secondary delay is a multidimensional construct, as many factors were identified that affect
the amount of secondary delay and the chance of hindrance a succeeding train experiences from a preceding train.
It could be stated that secondary delay is not an intrinsic property related to just the conflict, but rather, it is an
emergent property of the headway situation as a whole, including train and route characteristics. Consequently,
various conflicts show a range of different behaviours, some of which are more prone to hindrance than others. This
confirms the idea that buffer times should be tailored to the specific headway situation in order to reduce secondary
delay.

In contrast with the existing body of research, the prediction model was based solely on known factors or deci-
sion variables in the timetable design. This eases the applicability to timetable design in practice.
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Research gap 2: The effective allocation of buffer times to alleviate delay propagation based on historical
realisation data has not been widely addressed in the tactical planning stage of railway timetables where an

initial timetable is constructed.

The effective allocation of buffer times in the tactical planning stage has been addressed in several studies in the
form of ex-ante robustness measures (Abid et al., 2017; Andersson et al., 2013; Carey and Kwieciński, 1994; Kroon
et al., 2008; Şahin, 2017; Vromans et al., 2006). The effective allocation of buffer times based on historical data to be
used in the tactical planning stage is less studied in literature. Weeda (2005) introduces a joint design standard for
running times, dwell time and headway times based on historical data, however it can only be applied to headway
situations of which realisations are known. To the best of the author’s knowledge, this thesis marks the first time that
buffer times were effectively allocated to a large and heterogeneous set of headway conflicts for situations where not
all combinations of timetable characteristics are determined yet.

Research gap 3: Planning rules for buffer time based on historical realisation data have not been widely explored
in literature.

Despite the unique characteristics of each conflict, it is shown that the regression models on mean secondary delay
and hindrance percentage can provide clues about where to focus effort and resources to reduce these aspects of
delay propagation. Information from the realisation data should be complemented with timetable data to enable
the comparison between scheduled and reported operations. Doing so enables generation of planning rules that are
more flexible than current norms for buffer times.

6.4. Chapter conclusion

This chapter provided a reflection of the research, highlighting the limitations as well as the contributions
to railway delay propagation theory by reflecting on the identified knowledge gaps. Using the information
presented in this chapter, the fifth sub-question is answered.

Sub-question 5: Which insights do the data-driven model(s) and buffer time planning rules bring that
may help practitioners effectively allocate buffer times in the tactical timetable design phase?

The results showed that the structural delay propagation between two trains at different critical conflicts is
quite heterogeneous. This confirms the vision that planning rules for buffer time should be generated based
on the specific characteristics of the headway situation. With the use of regression models, the factors that
influence structural delay propagation aspects can be exposed quite accurately. In particular, factors related
to the route and train series of the trains contributing to the critical conflict appeared to be influential in
explaining and predicting mean secondary delay and the probability of hindrance.

The planning rules emerging from the regression models can be integrated in the timetable design pro-
cess of Nederlandse Spoorwegen as (i) the size of the wake added in the simulation; or (ii) an indication of
when slightly hindered headways are acceptable. To reduce the workload for planners further, it would be
favourable that the needed scheduled buffer for a specific conflict is automatically shown in the planning
application. The standardisation could help streamline data-driven timetable design.
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7
Conclusions

Based on the findings from the literature review, practical background and statistical analysis, this chapter presents
the conclusions, practical recommendations and future research directions of this research. Section 7.1 presents the
conclusions by recapitulating the answers to the sub-questions and answering the main research question. Next,
Section 7.2 presents recommendations with regard to design practices and data processing at NS. Finally, future
scientific research directions are identified in Section 7.3.

7.1. Conclusions on research questions
The answers to the five sub-questions defined in Chapter 1 were already provided in the last section of each chapter
from Chapter 2 onwards. This section briefly restates the answers to sub-questions after which a general answer to
the main research question is given.

Sub-question 1: What can be learned from previous quantitative, data-driven approaches for scheduling time
allowances in railway timetable design?

Research on scheduling time allowances is strongly related to robustness, aiming to achieve a high effectiveness and
utilisation rate of time allowances such that the timetable can withstand design errors, parameter variations, and
changing operational conditions. Robustness approaches that consider buffer times aim for example to (i) reduce
the total delay; (ii) reduce delay propagation; (iii) diminish the needed real-time dispatching action; and (iv) enhance
punctuality.

Metrics that facilitate comparisons between different timetables in terms of robustness have been introduced.
In most cases the metric focuses on one type of time allowance, making it straightforward to propose timetable im-
provements. It appears that metrics addressing buffer time predominantly focus on ex-ante situations and headways
as a whole, thus not on buffer times specifically. Two studies were found where the evaluation is done ex-post in a
data-driven fashion, based on how effective running time supplements and dwell time supplements have been in
reducing delays. It appears hard to define ex-post metrics of buffer time effectiveness, since the focus of buffer time
is on avoiding and decreasing secondary delays rather than reducing existing delays. The amount of secondary delay
that has been avoided by insertion of buffer time is challenging to determine. However, measuring propagated delay
can provide an indication of the effectiveness of buffer time.

The reviewed articles suggest that the effectiveness of time allowances to facilitate delay recovery is highly de-
pendent on the size of the delay. Regarding the data-driven approaches in the reviewed articles, the focus rarely lies
on delay propagation and buffer times.

Sub-question 2: What is the current state of the practice regarding planning norms for buffer times and regarding
data-driven timetable design approaches in the Netherlands?

Planning rules for buffer times are imposed by ProRail to ensure safe railway operations. Currently, 60 seconds buffer
time between two trains is set as a norm, but in some cases less buffer time is accepted. In Donna, even, a buffer
time of merely 30 seconds is displayed to facilitate flexibility. While slightly hindered headways are beneficial for
capacity reasons, its consequence on delay propagation is less often considered explicitly. Headway situations are
mainly investigated individually and manually, and are both actively and reactively adapted based on information
from realisation data. Although this improves the timetable, it doesn’t show structural needed changes to headway
situations. Thus, a more structural way of analysing the impact of buffer times on delay propagation is lacking.
Overall, realisation data is consulted to identify places of improvement in the timetable, but much could be gained
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by formalising and intensifying the feedback process.

Sub-question 3: What data-driven model(s) can be used to determine buffer time planning rules in the tactical
timetable design phase?

buffer times are implemented to avoid or reduce delay propagation effects. Therefore, the development of the buffer
time planning rules should consider the expected delay propagation, which can be represented by the mean sec-
ondary delay and probability of hindrance a succeeding train encounters caused by a delay of a preceding train.
The observed mean secondary delay and the observed hindrance percentage occurring in a specific critical conflict
situation can be appraised from realisation data. In this research the conceptual model of Weeda and Wiggenraad
(2006) is utilised to determine these target variables. With the use of a prediction model on both target variables
and setting an acceptable threshold for expected delay propagation, buffer time planning rules can be generated.
The prediction model is based on the relation the target variables have with various timetable characteristics that
function as predictor variables. Although literature identifies various other categories of variables to influence delay
propagation, this research only considers timetable characteristics as predictor variables, because these are decision
factors in the tactical planning stage of railway timetables where an initial timetable is constructed.

Due to the need for interpretability of the prediction model, a multiple linear regression model is suitable. To
automate the data-driven regression model, a model estimation procedure resembling a stepwise variable selection
method was introduced. The model estimation procedure in this research differs from commonly used stepwise
variable selection methods in (i) adding condition; (ii) elimination condition; (iii) stopping condition; and (iv) a
check on multicollinearity.

Sub-question 4: How are buffer time planning rules determined from the data-driven model(s) and how do they
compare to the current planning norms for buffer times?

Two regression models were estimated, one on mean secondary delay and one on hindrance percentage. Both mod-
els appeared to have the same prediction accuracy of 90.7%. The model on mean secondary delay did not contain
the scheduled buffer as a significant predictor variable and thus cannot be used to derive buffer time planning rules
from. The model on hindrance percentage did contain the scheduled buffer as a significant predictor variable and
thus can be used to derive buffer time planning rules from. The predicted needed scheduled buffer can be calculated
with the use of Equation 7.1, where Y refers to the acceptable hindrance percentage chosen by the planner, β0 corre-
sponds with the constant; and β1...βn−1 and X1...Xn−1 represent the coefficients and values of the other significant
predictor values.

Xscheduled buffer =
Y −β0 −β1X1 −β2X2 − ...−βn−1Xn−1 +ε

βscheduled buffer
(7.1)

Compared to the current planning norms for buffer times, the planning rules presented in this chapter provide more
flexibility, because the size of the needed scheduled buffer depends on the preferred hindrance percentage. The
planning rules presented in this chapter however, do not indicate how the scheduled buffer compares to the mean
secondary delay that can be expected. To gain the same mean hindrance percentage as the realisation data, the total
amount and mean value of needed scheduled buffer remains unchanged. Yet, the variation in buffer sizes increases
from a standard deviation of 26 seconds to a standard deviation of 93 seconds, meaning a 257% rise. Thus, the spread
in scheduled buffer time is increased, and moreover the allocation of the scheduled buffer time changes geographi-
cally.

Sub-question 5: Which insights do the data-driven model(s) and buffer time planning rules bring that may help
practitioners effectively allocate buffer times in the tactical timetable design phase?

The results showed that the structural delay propagation between two trains at different critical conflicts is quite
heterogeneous. This confirms the vision that planning rules for buffer time should be generated based on the specific
characteristics of the headway situation. With the use of regression models, the factors that influence structural delay
propagation aspects can be exposed quite accurately. In particular, factors related to the route and train series of the
trains contributing to the critical conflict appeared to be influential in explaining and predicting mean secondary
delay and the probability of hindrance.
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The planning rules emerging from the regression models can be integrated in the timetable design process of
Nederlandse Spoorwegen as (i) the size of the wake added in the simulation; or (ii) an indication of when slightly
hindered headways are acceptable. To reduce the workload for planners further, it would be favourable that the
needed scheduled buffer for a specific conflict is automatically shown in the planning application. The standardisa-
tion could help streamline data-driven timetable design.

Answer to main research question

How can buffer time planning rules focused on reducing delay propagation be extracted from realisation
data?

As an answer to the main research question, the general conclusion from this thesis is that an estimation or
prediction of the expected delay propagation between two trains in a given situation could be done quite
accurately (adjusted R-squared value of both models equals 0.907) and is essential to determining suitable
buffer time planning rules, because it provides insight into where buffer time can be placed in order to
be most effective. This research has operationalised delay propagation as the mean secondary delay and
probability of hindrance a succeeding train encounters caused by a delay of a preceding train. Using the
prediction model, the planning rules can be determined by setting a desired value for these metrics. This
value could possibly be determined by making a trade-off between delay propagation and capacity based on
a chosen objective (e.g. passenger punctuality, infrastructure consumption). Interesting to note is that the
mean secondary delay is not significantly impacted by the scheduled buffer, but the probability of hindrance
is. This indicates that the delay distributions of both trains have a bigger impact on the size of the secondary
delay, while the size of the scheduled buffer determines how often hindrance occurs.

Another explored approach in this study was to ex-post appraise the effectiveness of scheduled buffer
times, and to aim to maximise the effectiveness. But it appeared hard to define ex-post metrics of buffer
time effectiveness, since the focus of this time allowance is on avoiding and decreasing secondary delays
rather than reducing existing delays. The amount of secondary delay that has been avoided by insertion of
buffer time is challenging to determine.

7.2. Recommendations for practice
Building on the findings from this thesis research, recommendations are made with regard to design practices and
data processing at NS. The recommendations are formulated as incremental steps that can be performed to mature
the timetable design process with regard to planning buffer times focused on reducing delay propagation. Identify-
ing intermediate steps to the most ideal usage of the outcomes of this data-driven research is in line with the way
data-driven organisations are formed and evaluated according to literature on maturity models (Berndtsson and
Svahn, 2020; Davenport, 2018). The provided order is a suggestion that currently seems suitable and feasible, but
naturally extra steps can be added or superfluous steps may be skipped.

1. Use case study conclusions - Based on the regression model on mean secondary delay (i) Previous timetable
point of train 2 being Hfdm or Vkbr; and (ii) Type next timetable point of train 1 being a halt were found to be
the most influential factors. The biggest influential factors on hindrance percentage were found to be (i) Next
timetable point of train 1 being Shl or Zspl; (ii) Previous timetable point of train 1 being Hg; and (iii) Train
2 being a starting train. As these factors have a large impact on the all-encompassing delay propagation, it
would be worthwhile to explicitly consider the predicted scheduled buffer supplements for these categories
when scheduling conflicts that contain one of these categories.

2. Analyse expected delay propagation of scheduled situations - Based on the found regression formulas in the
case study, the expected mean secondary delay and expected hindrance percentage can be appraised for all
critical conflicts scheduled in a concept timetable. This can provide an indication to planners what situations
require more buffer time and what situations could suffice with less buffer. For example, an ordered list of all
critical conflicts can be made based on the expected mean secondary delay or expected hindrance percentage.
The planner can do another check on either (i) a predefined number of critical conflicts with the highest values;
or (ii) the critical conflicts with values higher than an acceptable threshold.
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3. Setting an acceptable threshold - Determine an acceptable threshold for mean secondary delay and hin-
drance percentage per critical conflict, so that the needed buffer to suffice this can be determined. This can
differ per conflict, but it is advised to determine an overall maximum acceptable value. The value per conflict
can be decided upon by making a trade-off with the available capacity at a certain conflict location. Another
more straightforward approach might be to take 30 seconds as the maximum acceptable value for mean sec-
ondary delay, since this is currently the norm for acceptable arrival delays at certain stations due to hindered
operations caused by small buffer times as discussed in Chapter 3.

4. Integrate relevant factors in planning applications - To gain better insights into all factors of the scheduled
conflict it is advised to enhance the planning applications with conflict specific details. For instance, for a
conflict situation it could be added what the scheduled buffer, direction of the trains and event pair of the
conflict are. When this approach has become common practice, it is favourable that the needed scheduled
buffer for a specific conflict is automatically shown in the planning application, to reduce the workload for
planners. This standardisation could help streamline the data-driven timetable design.

5. Automatically update regression models with more (new) realisation data - Regularly updating the regres-
sion models results in more accurate parameters of the significant predictors, as the most recent realisation
data is based on the most recent timetable (design process). Moreover, basing the analysing on data based
on multiple timetables can provide a more holistic perspective on the effects of various ranges of scheduled
buffer times.

7.3. Future research directions
With regard to the methodology, the limitations mentioned in Chapter 6 indicate that prediction methods other than
linear regression may be more suitable to describe secondary delay. It could be worthwhile to extend the current
models with (i) interaction effects (Aguinis and Gottfredson, 2010); (ii) polynomial effects (Ostertagová, 2012); or
(iii) robust versions (Huber, 1981). The models themselves may also be extended by adding more predictor variables
to reduce the unexplained variance in mean secondary delay and hindrance percentage.

Furthermore, it could be investigated how to determine the critical conflicts, such that multiple critical conflicts
can be identified between two trains, in case multiple groups of succeeding conflicts exist which are unrelated to
each other.

The last methodological research direction relates to the scope of the analysis. The analysis can be expanded by
including freight trains, shunting movements, and trains of other carriers. For freight trains, in particular, other co-
efficients are expected, because they are often heavier and longer than passenger trains. This implies that they have
a slower acceleration and longer braking and thus an unplanned stop has more impact. Although Pachl (2014) argue
that a so-called buffer path after a certain number of trains might be more appropriate for such trains as they often
run out of their schedule. Moreover, it might be useful to gain insights into what factors may cause order changes
and to add factors that can explain temporal variation.

With respect to scientific research into planning rules for buffer times, various contributions can still be made. For
starters, future research may include concrete simulations of different timetables with varying buffer times, to obtain
a better estimate of the effect of tweaking these planning norms on robustness and capacity utilisation. An important
question for applying such more specific planning rules in practice, is which timetable structures would be made
possible or impossible, and whether the capacity on busy lines will be increased, stay equal, or be decreased.

Secondly, assessing the marginal utility and costs of adding an extra unit of buffer time could probably be ex-
plored in a simulation context. Based on this, the maximum performance of the headway situation could be deter-
mined based on the economical theory that marginal utility equals marginal costs. Marginal utility of an extra unit
of buffer time has been explored by Jovanović et al. (2017).

Lastly, among practitioners implicit and tacit knowledge exists about when scheduling tighter buffer times than
the planning rules does not result in (too much) secondary delay. This implicit knowledge could potentially be
caught in a decision model, where the trade-offs of scheduling buffer times become concrete.

53



Bibliography
Abid, M. M., Khan, M. B., & Jiang, X. (2017). Ex-ante robustness measures for single track train timetables. Tehnicki

Vjesnik, 24(5), 1533–1542. https://doi.org/10.17559/TV-20150623101554
Aguinis, H., & Gottfredson, R. K. (2010). Best-practice recommendations for estimating interaction effects using

moderated multiple regression. Journal of Organizational Behaviour, 31, 776–786. https : / / doi . org / 10 .
1002/job.686

Akinwande, M. O., Dikko, H. G., & Samson, A. (2015). Variance Inflation Factor: As a Condition for the Inclusion of
Suppressor Variable(s) in Regression Analysis. Open Journal of Statistics, 05(07), 754–767. https://doi.org/
10.4236/ojs.2015.57075

Aljandali, A. (2017). Multivariate Methods and Forecasting with IBM® SPSS® Statistics. Springer. https://doi.org/10.
1007/978-3-319-56481-4

Alkharusi, H. (2012). Categorical Variables in Regression Analysis: A Comparison of Dummy and Effect Coding. In-
ternational Journal of Education, 4(2), 202. https://doi.org/10.5296/ije.v4i2.1962

Allison, P. D. (1999). Multiple Regression: A Primer. Pine Forge Press.
Andersson, E. V., Peterson, A., & Törnquist Krasemann, J. (2013). Quantifying railway timetable robustness in critical

points. Journal of Rail Transport Planning and Management, 3(3), 95–110. https://doi.org/10.1016/j.jrtpm.
2013.12.002

Berndtsson, M., & Svahn, T. (2020). Strategies for Scaling Analytics: A Nontechnical Perspective. Business Intelligence
Journal, 25(1), 53. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-18504

Berry, W., & Feldman, S. (1985). Multiple Regression in Practice. Sage. https://doi.org/10.4135/9781412985208
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A B S T R A C T
Despite advanced communication, monitoring, and control facilities, train operations are still
subject to uncertainties that can disturb train services, cause delay to multiple trains, and
propagate through the network. One option is to mitigate delay propagation in the timetable
design by adding buffer time to the minimum difference between the time two successive train
of either direction enter a section. It is still common practice to design buffer times based on
a deterministic value, decreasing operational capacity and requiring large amount of manual
checking by planners. Existing approaches to effectively allocate buffer time in timetables lack
flexibility and require an initial timetable. In this paper, a data-driven approach for determination
of buffer time planning rules suitable for usage in an initial timetable is presented. These planning
rules are not necessarily generic, but rather depend on timetable characteristic. Two metrics that
describe delay propagation, mean secondary delay and hindrance percentage, are extracted from
literature and predicted in a regression analysis with the use of timetable characteristics related
to headway situations of two succeeding trains. The results of the regression analysis on a case
study of the Dutch railway network between Haarlem, Leiden Centraal and Schiphol Airport
are used to determine the amount of scheduled buffer time that would ensure a certain amount
of hindrance percentage given a specific headway situation. The results show that the mean
secondary delay and hindrance percentage for various headway situations can both be predicted
with an accuracy of 90.7% based on timetable characteristics and is quite heterogeneous. Mean
secondary delay appeared not significantly impacted by the scheduled buffer time, contrary to
hindrance percentage which is significantly influenced by the scheduled buffer time.

1. Introduction
The Dutch railway network is one of the busiest in Europe, with as many as 147 trains per day per route kilometer

in 2019 (Independent Regulators’ Group - Rail, 2021), and its network usage intensity will become even higher with
the frequency increase of train services under the High-Frequency Rail Transport Programme (Ministerie van Verkeer
en Waterstaat, 2010). This increase in frequency requires more efficient use of the current infrastructure as well as
reliable train operations. Under regular conditions, the timetable is adhered to apart from minor variations in the train
services due to differences in driving behaviour and stochasticity in process times. Despite advanced communication,
monitoring, and control facilities, train operations are still subject to uncertainties that can disturb train services, cause
delay to multiple trains, and propagate through the network.

Delay can be dealt with in different stages of the railway transport management. One option is to mitigate delay
already in the timetable design. To provide a high quality of services, time allowances are added to the shortest possible
running time between scheduled stops (i.e. running time supplement) and minimum line headway, which corresponds
to the minimum difference between the times two successive trains of either direction enter a section (Pachl, 2014).
The former aims to facilitate a recovery or reduction of a delay within the timetable of one trains, whilst the latter
enables prevention and reduction of delay propagation between trains.

It is still common practice to design buffer times based on a deterministic value in combination with personal
experience and tacit knowledge. Although easy to apply, this method (i) often decreases operational capacity in heavily
utilised networks; and (ii) requires a large amount of manual checking in case of smaller scheduled buffer times. Both
aspects affect the extent to which buffer times are effective in reducing delay propagation. This is supported by findings
from Zieger et al. (2018); Carey and Kwieciński (1994); Yuan and Hansen (2007, 2008), which show that the realised
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Differentiating buffer times

headway and the buffer time distribution have a significant influence on the expected knock-on delays and capacity.
Therefore, there is a need for buffer time allocation techniques that achieve a high effectiveness of buffer times.

When creating an initial timetable from scratch, the literature predominantly considers minimum buffer time, or
minimum headway time including an explicit minimum buffer time as a further simplification, as a deterministically
given input value (Cacchiani and Toth, 2012; Caprara et al., 2002; Scheepmaker and Goverde, 2021; Serafini and
Ukovich, 1989). Most works consider this to be a hard constraint, while in practice a smaller buffer is only rejected
when (i) an unplanned stop would occur, or (ii) an arrival delay bigger than 30 seconds would occur (ProRail, 2020).
Thus, the optimisation models in the literature lack flexibility regarding the trade-off between headway time and running
time. One way of introducing flexibility to these type of models is to make the minimum buffer time input variable.
Therefore, an approach that can differentiate buffer time is required.

With regard to allocation of running time supplements and buffer times to reduce delay propagation and to improve
timetable robustness, several approaches have been introduced in literature (Hauck and Kliewer, 2019; Huang et al.,
2019; Jin et al., 2019; Khoshniyat and Peterson, 2017; Kroon et al., 2008; Yang et al., 2020; Jovanović et al., 2017). The
main limitation of these approaches is that they are only able to adjust an existing timetable by reallocating the current
running time supplements and buffer times. Thus, a predefined train order is assumed, the total amount of scheduled
buffer remains unchanged and an initial timetable is required. This raises the question how more suitable buffer time
rules can be designed that can be applied to the tactical timetable design stage when no initial timetable and train order
is present.

The rising availability of data has enabled analysis of empirical delay distribution, delay propagation and headway
variation (Corman and Kecman, 2018; Zieger et al., 2018; Dietzenbacher, 2021). The findings have been applied to
predict train delays and reallocate buffer times, but do not explicitly specify how buffer times should be allocated
to alleviate delay propagation most effectively. Furthermore, some approaches have explicitly aimed to improve the
effectiveness of running time supplements and dwell time supplements to recover from delays based on historical data
(Huang et al., 2019; Yang et al., 2020). Thus, the proposed methods mainly focus on the reduction of primary delays and
are unable to generalise the findings, such that it can be applied to create initial timetables where no realisation data is
available yet. The latter is crucial to cope with delay propagation effects already while constructing an initial timetable.

In this paper, a data-driven approach for determination of buffer time planning rules suitable for usage in an initial
timetable is presented. These planning rules are not necessarily generic, but depend on timetable characteristics that
have been found by means of a stepwise multiple regression model to influence delay propagation. Two metrics that
describe delay propagation are extracted from literature and explained in regression analysis with the use of timetable
characteristics related to headway situations of two succeeding trains. The results of the regression analysis are used
to determine the amount of scheduled buffer time that would ensure a certain amount of hindrance percentage given a
specific headway situation. The proposed approach is data-driven, as it uses historical traffic realisation data, combined
with tightly scheduled headway situations in the timetable. This research differs from existing works regarding
generating situation specific buffer times by providing an approach that (i) does not require an initial timetable;
(ii) predicts delay propagation based on factors known in the timetable design; and (iii) specifies planning rules that
can be applied to new situations.

This study contributes to the field of railway timetable design from the following perspectives. First of all, a new
data-driven approach to allocate buffer times in an initial timetable is presented. The approach is generic and can be
applied to a larger scope and to railway networks in other countries. Additionally, insights are generated into what
timetable characteristics contribute to delay propagation in tightly scheduled headway situations.

The remainder of this paper is structured as follows: Section 2 starts with a literature review on timetable design
concepts and methods, data-driven delay models and buffer time scheduling and ends with an overview of the scientific
gaps this research fills. Section 3 follows to explain the approach of the research in more detail, including the framework
used to determine buffer time planning rules. The case study and its results are presented in Section 4. Finally, a
discussion of the results is provided in Section 5 and conclusions are presented in Section 6.

2. Literature review
This section provides a literature review of the various theories and methods on buffer times in railway timetable

design in scientific literature. Subsection 2.1 presents nominal, robust and multi-level timetable design methods.
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Subsection 2.2 discusses previous data-driven methods on buffer time scheduling and delays. Finally, existing research
gaps are highlighted in Subsection 2.3.
2.1. Timetable design methods

This section reviews literature on timetable design methods, introducing optimisation methods and analytical
approaches for buffer time determination.
2.1.1. Timetable optimisation methods

Given a proposed line plan with desired frequencies and stops, timetabling problems entail determining timetables
for a set of lines, satisfying track capacity constraints with the aim of optimising an objective function (Cacchiani and
Toth, 2012; Lusby et al., 2011). A distinction can be made between nominal and robust versions. The former has a focus
on determining efficient timetables, whilst the latter concerns creating schedules that avoid, in case of disruptions in
the railway network, delay propagation as much as possible. Timetabling problems are in literature usually referred to
as the Periodic Event Scheduling Problem (PESP) (Serafini and Ukovich, 1989) or Train Timetabling Problem (TTP)
(Caprara et al., 2002), optimising various objectives. For an overview of PESP- and TTP-based research, see Cacchiani
and Toth (2012).

Multiple approaches to achieving robustness in timetable design have been introduced, such as (i) stochastic
programming (Kroon et al., 2008; Jin et al., 2019); (ii) light robustness (Fischetti and Monaci, 2009); (iii) recoverable
robustness (Cicerone et al., 2009; Liebchen et al., 2009); (iv) delay management (Liebchen et al., 2010); and
(v) bi-objective approaches (Schöbel and Kratz, 2009) An overview of robustness-centred timetable design methods
can be found in Cacchiani and Toth (2012); Lusby et al. (2018).
2.1.2. Statistical methods for buffer time scheduling

With regard to distributing time allowances in the timetable, Palmqvist et al. (2017a) identify five strategies
from literature: (i) A uniform allocation of running time supplements percentage (Scheepmaker and Goverde, 2015);
(ii) Shifting running time supplement towards the beginning or end of the line (Vromans, 2005); (iii) Place dwell time
supplement at or near strategic locations (Vromans, 2005); (iv) Based on where disturbances happen most frequently
(Yuan and Hansen, 2008; Huang et al., 2019); and (v) Place time allowances at critical points (Andersson et al., 2013;
Abid et al., 2017). Critical points here are defined as locations where two trains follow, cross, or overtake, and are most
sensitive to delays. Concerning buffer time, always using the same deterministic value as an indicator for the size of
the time allowance is the most simple form of distribution. Carey and Kwieciński (1994) suggest to base the scheduled
headway on its relation with knock-on delays, delays transferred from a train to its successor. They perform a stochastic
simulation to derive an approximate relationship between scheduled headways and knock-on delays.
2.2. Data-driven approaches

Historical realisation data has proven to be beneficial for monitoring operational quality, improving the schedule,
diagnosing operational problems, and evaluating countermeasures in transportation science. In this section, literature
related to data-driven knowledge on delays and buffer times is reviewed. For a more elaborate overview of big data
applications in railway transportation and train dispatching in particular, see Ghofrani et al. (2018); Wen et al. (2019)
respectively.
2.2.1. Delay distribution, propagation and recovery

Delays have been proven to be most relevant when arriving or departing from stations (Yuan and Hansen, 2007).
Therefore, the probability distributions of arrival and departure delays have been studied in the literature. Wen et al.
(2017) investigated the main statistics of primary delays, including (i) delay causes, (ii) delay frequencies, (iii) delay
occurrences in time and space, (iv) affected number of trains, and (v) delay recovery patterns. To incorporate secondary
delays, more sophisticated prediction models of delays and delay propagation are needed. To this end, Corman and
Kecman (2018) present a stochastic prediction of train delays in real-time using Bayesian network. When two trains
use the same part of the infrastructure within short time, a delay of the first train can be used to predict the delay of the
second.

Alongside prediction models for secondary delays, research has focused on the measurement of this aspect of
delay propagation. Weeda and Wiggenraad (2006) introduce a conceptual model to approximate secondary delay from
realisation data, based on the delay of two conflicting trains and the scheduled buffer. A more accurate and effective
metric is introduced by Goverde and Meng (2011), measuring the time loss associated with a route conflict compared to
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a reference running time on a block section of unhindered operations. This requires detailed scheduling and realisation
data of signal passages.

Lee et al. (2016) introduced a supervised decision tree method that estimates the key factors contributing to
knock-on delays. It is found that unscheduled waiting time for meeting or overtaking causes the majority of knock-
on delays. More specifically, Zieger et al. (2018) analysed the effects of different buffer time distributions on the
formation of knock-on delays. It is shown that the choice of distribution has a significant impact on performance
metrics. Furthermore, Huang et al. (2019) provide a methodology to determine how and to what extent running time
supplements and dwell time supplements affect delay recovery. They assess the utilisation rate of these two time
allowances based on the fraction of the recovered time and the total scheduled time allowances. Similarly, Yang et al.
(2020) focus on the effect of running time supplements and dwell time supplements on delay recovery and find that
the effectiveness of time allowances to facilitate delay recovery is highly dependent on the size of the delay. Thus,
allocation of time allowances should be performed considering the actual impact of the delay.
2.2.2. Timetable design based on realisation data

A conceptual framework is introduced by Weeda and Wiggenraad (2006) to acquire a joint design standard for
running times and headway times. With the use of historical realisation data, an empirical relationship between
headways and knock-on delays is derived. The buffer time proves to reduce knock-on delays, but the benefits decrease
with higher values of buffer time, in line with findings by Yuan and Hansen (2007); Zieger et al. (2018). In line with
the work of Carey and Kwieciński (1994), a data-driven method of determining minimum headways for conflicting
train movements is proposed by Cerreto and Jonasson (2019). By means of a statistical analysis of the relationship
between planned headways and the delay jump, the section specific minimum feasible headway between conflicting
train movements in a railway system is estimated with a linear regression.

Hauck and Kliewer (2019) enhance existing solution approaches for the train timetabling problem as discussed
in Subsection 2.1 by considering historical delay information. With the use of a Mixed Integer Programming (MIP)
model, the difference between the realised running time and the planned running time is minimised. The optimisation
is initiated with a given feasible timetable and adjusted in terms of arrival times, departure times and buffer times to
adapt the timetable to avoid systematic delays. Huang et al. (2019) address allocation of time allowances in high-speed
railway train operations. Based on historical data, a ridge regression model of delay recovery is generated regarding
primary delay severity, running time supplements and dwell times. Subsequently, an Integer Linear Programming (ILP)
model is presented that maximises the delay recovery by reallocating running time supplements and dwell times in an
initial timetable.
2.3. Scientific gaps

To generate situation specific time allowances, in particular buffer times, (i) optimisation approaches, which
apply mathematical models; (ii) simulation approaches, which iteratively enhance a current solution; (iii) statistical
approaches, which apply statistics to infer relationships between variables; and (iv) data-driven approaches, which
indicate recurring bottlenecks and tightly planned headways with the use of historical data, have been introduced. The
works have been discussed in the sections above and are summarised in Table 1.

Reference Goal Time
allowance

Approach Initial
timetable
required

Burggraeve and Vansteenwegen (2017) Passenger robustness BT, RTS, DTS Optimisation, Simulation X
Hauck and Kliewer (2019) Punctuality BT, RTS, DTS Optimisation, data-driven X
Huang et al. (2019) Delay recovery RTS, DTS Optimisation, data-driven X
Jensen et al. (2017) Capacity consumption BT Simulation, statistics
Jin et al. (2019) Average delay time RTS Optimisation X
Jovanović et al. (2017) Capacity and delay propagation BT Optimisation X
Khoshniyat and Peterson (2017) Timetable reliability BT Optimisation X
Kroon et al. (2008) Average weighted delay BT, RTS Optimisation, simulation X
Lee et al. (2017) Average delay BT. RTS Simulation X
Li et al. (2020) Cumulative delay time and energy

consumption
RTS, DTS Optimisation, data-driven

Lu et al. (2017) Efficiency and robustness BT Optimisation
Meng et al. (2019) Sum of train delays BT, RTS Optimisation X
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Restel et al. (2021) Delay propagation and energy
consumption

RTS Simulation, data-driven X
Weeda and Wiggenraad (2006) Punctuality BT, RTS, DTS Statistics, data-driven
Yang et al. (2020) Delay expectation at stations RTS, DTS Optimisation, data-driven X
Yuan and Hansen (2008) Weighted sum of knock-on delays BT Optimisation
This research Delay propagation BT Statistics, data-driven
Legend: BT = Buffer Time, RTS = Running Time Supplement, DTS = Dwell Time Supplement

Table 1: Situation specific time allowances in previous studies

Previous data-driven studies on generating situation specific buffer times have left various scientific gaps. First, it is
unknown to what extent specific timetable characteristics influence delay propagation. The reviewed studies primarily
addressed primary delays. Second, the effective allocation of buffer times to alleviate delay propagation based on
historical realisation data has not been widely addressed in the tactical planning stage of railway timetables where
an initial timetable is constructed. The majority of reviewed research utilises an initial timetable to reallocate buffer
time to optimise a chosen objective, but thereby they exclude evaluating the total size of the time allowances and are
incapable to change the order of the trains. Third, planning rules for buffer time based on historical realisation data
have not been widely explored in literature, even though they are very commonly used in practice.

3. Methodology
Figure 1 summarises the methodology for the determination of buffer time planning rules from realisation data. The

framework is explained below and has been divided into four parts: input, processing, statistical analysis and output.

INPUT PRE-PROCESSING STATISTICAL
ANALYSIS OUTPUT

Timetable 
conflict data

Traffic  
realisation data

Timetable data

Network data
Determine adjacent

timetable points

Calculate target
variables

mean secondary delay and
hindrance percentage

Conduct regression
analyses 

mean secondary delay and
hindrance percentage

Realisations
dataframe

 timetable  
critical conflicts

Prediction  
dataframe

Calculate predictor
variables

Planning rules  
critical  

buffer times

Test statistics 
regression formula and 
 significant predictors

Critical 
conflicts  

dataframe

Train series 
pattern data

Figure 1: Framework for buffer time rules determination

Various types of input data are collected for this analysis, consisting of Timetable conflict data, Traffic realisation
data, Timetable data, and Network data. Timetable conflict data specifies the tightly scheduled headways in the
timetable, where the extended blocking times of two trains paths overlap. Traffic realisation data should include at
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least the train series, location, scheduled time and realised time of an event. Network data indicates how each timetable
point in the network is connected to neighbouring timetable points. From the timetable conflict data, critical conflicts
are identified, which indicate a timetable conflict between two specific train series patterns located in a critical point
(i.e. the location where the overlap in blocking times is the biggest). The choice to only consider critical conflicts
is based on the aim of this research to determine precise critical buffer times for tight headway situations. Then, of
these critical conflicts the realisations are found by checking the traffic realisation data. With the realisations of the
critical conflicts, the target and predictor variables are computed. Subsequently, hindrance distribution and a prediction
dataframe with one row for each conflict are created. The dataset is reduced such that (i) delays longer than ten minutes
and early arrivals of more than four minutes; (ii) order changes; (iii) shunting movements are excluded from the
analysis. Using the prediction dataframe, two regression analyses were performed aiming to predict the two target
variables introduced in Subsection 3.1. From these two prediction models, test statistics and buffer time planning rules
are extracted. Regression was used as a prediction model due to its transparency and easy interpretation, which makes it
straightforward to determine planning rules from. The process blocks in the framework are explained in the remainder
of this section. Subsection 3.1 introduces the target an predictor variables and Subsection 3.2 describes the statistical
methods applied.
3.1. Selection of target variables and predictor variables
3.1.1. Target variables

The target variables in this study are related to the aspects of delay propagation. Weeda and Wiggenraad (2006)
study the mechanism of secondary delays and buffer time by approximating the secondary delay based on the delays
of two succeeding train series patterns and the scheduled buffer on a conflict location. To do so, a conceptual model
is presented in Figure 2 that shows for approximately 700 fictional realisations the delays of both trains of a fictional
headway situation with a buffer of 60 seconds. Each dot represents a fictional realisation of a headway situation between
two trains, before the interaction at the conflict point, and falls within a certain category. As long as the delay of train
1 is smaller than the buffer time, train 2 can proceed its normal operation. The diagonal line represents the instant
when train 1 just leaves the conflict section when train 2 enters the conflict section. Observations to the right of the
line indicate hindrance of train 2 caused by train 1, because train 1 has not left the conflict section yet.

Figure 2: Determining secondary delay from initial delays of train 1 and train 2. Own creature based on Weeda (2005)

The conceptual model enables an estimation of the secondary delay train 2 suffers because of the delay of train 1.
The secondary delay is defined as the horizontal distance between an observation in category II and the diagonal left
border line of category II and can be calculated with Equation 1, where 𝑟2 is the secondary delay to train 2, 𝑑𝑖 is the
initial delay to train i, and 𝑏12 is the scheduled buffer time between both trains. For observations outside category II
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(i.e. unhindered observations), the secondary delay equals zero.
𝑟2 = 𝑑1 − max(0, 𝑑2) − 𝑏12 (1)

This research utilises the insights from this framework in defining two target variables. Firstly, the observed
percentage of secondary delayed trains is utilised as an estimation of the probability of hindrance in a given conflict
situation. Secondly, the expected amount of hindrance that occurs in a specific situation is denoted by the mean
secondary delay observed in that situation. The hindrance percentage and the mean secondary delay serve as target
variables and are both estimated with its own regression model.
3.1.2. Predictor variables

The target variables are impacted by a variety of variables that function as predictor variables in the statistical
analysis. An overview of the added predictor variables and its computation are provided in Table 2. Among the predictor
variables only factors known in the construction of a timetable are considered, because the buffer time planning rules
should be applicable in an early stage of timetable development. Moreover, the reason to include certain predictor
variables is substantiated by a source, or in case of own hypotheses explained below.

The numeric predictor variables are accommodated with a hypothesised sign of the correlation with the target
variable. For the categorical variables a hypothesised sign does not make sense, since the sign of the relation is expected
to differ per category and depends on the reference category used in a dummy coding scheme.

Variable (source) Description Expected
sign

Fo
rt

he
he

ad
wa

ys
itu

at
ion Direction (Lee et al., 2016) Whether the two trains run in the same direction

Number Preceding Conflicts (Gorman, 2009) Number of prior conflicts where the first train was involved in on
the timetable point of the conflict

+

Scheduled Buffer (Palmqvist et al., 2017b; Vromans
et al., 2006)

The buffer time that was scheduled in the timetable -

Scheduled Headway (Gorman, 2009) The headway that was scheduled in the timetable -
Technical Minimum Headway The minimum headway needed to ensure a conflict-free headway

situation
+

Timetable Point (Lee et al., 2016) The timetable point the conflict is closest to
Type Headway Situation (Lee et al., 2016) Whether the conflict relates to a succession or a crossing of the

two trains
Type Timetable Point (Lee et al., 2016) The type that the timetsble point belongs to

Fo
rb

ot
h

tra
in

s

Event (Dietzenbacher, 2021) The event on the track
Carrier The carrier of the train
Driving Characteristic (Lee et al., 2016) The type of train
Previous Timetable Point; Next Timetable Point The previous / next timetable point the train is scheduled on
Rolling Stock Type The type of rolling stock the train has driven with
Rolling Stock Amount Carriages The number of carriages the train has driven with +/-
Scheduled Running Time Supplement (Palmqvist
et al., 2017b; Goverde and Meng, 2011)

The percentage of running time supplement that was scheduled in
the timetable, determined from the previous stop to the timetable
point of the headway situation

-

Train Series (Lee et al., 2016) The train series the train belongs to
Train Series Pattern (Lee et al., 2016) The train series pattern the train belongs to
Type Previous Timetable Point; Type Next Timetable
Point

The type that the timetable point belongs to

Table 2: Overview of candidate predictor variables for predicting mean secondary delay and hindrance percentage
3.2. Statistical analysis

To predict a target variable based on a wide variety of predictor variables, while maintaining easy interpretability,
a regression analysis can be performed. With a regression analysis it could be determined whether the mean secondary
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delay and hindrance percentage can be inferred from the values of the candidate predictor variables. The intensity of
the effects the predictor variables have on the target variables are represented by parameters (i.e. betas) in a regression
function. More specifically, the betas indicate the change in the prediction of the target variable for a one unit increase
in the predictor variables (Allison, 1999). The parameters are estimated by ordinary-least squares, which minimises the
sum of the squares of the deviation between the target variables’ observed and predicted values (Berry and Feldman,
1985). This study estimates the linear relationship between the target variable and the predictor variables. The basic
formula for such a linear regression is defined in Equation 2, where 𝑌 represents the target variable, 𝛽0 refers to the
estimated constant, 𝛽1 ... 𝛽𝑛 are estimated coefficients for the scores of the target variable, 𝑋1 ... 𝑋𝑛 are observed scores
for the predictors variables, and 𝜖 represents the estimated residual, which captures the variance of the target variable
not explained by the predictors in the regression model.

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ... + 𝛽𝑛𝑋𝑛 + 𝜖 (2)
In case multiple candidate predictor variables have been identified, a regression model including all candidate

predictors is often hard to interpret, not parsimonious and suffers from multicollinearity. To avoid this, only the
most important candidate predictors are incorporated in the model (Galvão et al., 2008; Ghani and Ahmad, 2010).
To this end, this research adopts a variable selection strategy that compares best to the stepwise method.The model
estimation procedure, starts with no predictors in the model. Then, the effects of adding a predictor to the model
is evaluated for each candidate predictor individually. If adding any predictor to the model appears significant and
increases the adjusted R-squared value, then the candidate predictor that yields the highest increase in adjusted R-
squared is added to the model. This process continues until adding a candidate predictor does no longer result in a
certain minimum increase in adjusted R-squared or when all candidate predictors have been added to or excluded from
the model. Simultaneously, already included predictors have to maintain significance and candidate predictors causing
multicollinearity are excluded from the model.

The linear regression as presented in Equation 2 can be rewritten in the format of Equation 3, which can be used
to determine the amount of scheduled buffer that would ensure a certain amount of hindrance percentage or mean
secondary delay. As the acceptable amount of secondary delay is an arbitrary choice, a sensitivity analysis is performed
to gain insights into the effects of various acceptable thresholds.

𝑋scheduled buffer =
𝑌 − 𝛽0 − 𝛽1𝑋1 − 𝛽2𝑋2 − ... − 𝛽𝑛−1𝑋𝑛−1 + 𝜖

𝛽scheduled buffer
(3)

4. Case study and results
The methodology is applied to a case study in the Dutch railway network. Subsection 4.1 introduces the case study’s

geographical and temporal scope. Results were obtained by performing a exploratory data analysis in Subsection 4.2
and a regression analysis in Subsection 4.3. Next, Subsection 4.4 combines all the presented results to create buffer
time planning rules.
4.1. Case description

The study area consists of the corridor between Schiphol Airport and Leiden Centraal and the corridor between
Haarlem and Leiden Centraal. The four main reasons for choosing this demarcation are (i) the combination of a busy
and less busy corridor enables analysing the impact of capacity consumption on mean secondary delay and hindrance
percentage; (ii) the (expected) shortage of capacity on the station Schiphol Airport and the corridor Schiphol Airport -
Leiden Centraal (Planting, 2016); (iii) a variety of train types make use of the infrastructure and a variety of timetable
point types are present in the scope; and (iv) relatively low amount of interaction with freight trains and trains of other
carriers of which no data was available. A schematic overview of the geographical scope is depicted in Figure 3, where
the names of the timetable points are abbreviated.

The study period is limited to December 15th 2019, until March 15th 2020, because it is the last period before the
COVID-19 pandemic and the first timetable to be communicated to drivers in tenths of minutes (as opposed to minutes
formerly). This timetable is considered as the benchmark for returning to the regular timetable now that COVID-19
restrictions are lifted.
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Figure 3: Schematic overview of geographical scope. Own creation based on ProRail (2022)

Some of the results are presented for specific conflicts, to provide the reader with a more intuitive feel on how the
results are to be interpreted. These four conflicts have been selected, because they represent a large variety of situations.
An overview of the main characteristics of the example conflicts is presented in Table 3 and train traffic diagrams of
the conflict are shown in Figure 4.

Train Series
Pattern
Train 1

Train Series
Pattern
Train 2

Timetable
Point

Event pair Driving
Characteristics

Type Headway
Situation

Number of
realisations

Hindrance Order
Change

B700 A900 Shl Arrival -
Arrival

IC - IC Direct Succession 1295 7
(0.54%)

44
(3.40%)

B2200 B6300 Had Departure -
Arrival

IC - SPR Succession 893 342
(38.30%)

2
(0.22%)

B4800 D2100 Hlm Departure -
Arrival

SPR - IC Succession 1181 217
(18.37%)

0
(0.00%)

A2200 C3300 Ledn Departure -
Departure

IC - SPR Crossing 831 359
(43.20%)

32
(3.85%)

Table 3: Overview of example conflicts

(a) Schiphol (b) Heemstede-Aerdenhout (c) Haarlem (d) Leiden
Figure 4: Train traffic diagram with the critical conflict in red
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4.2. Exploratory data analysis
Figure 5 shows the realisations of the four example critical conflicts in the format of the conceptual model discussed

in Section 3. The four critical conflicts differ in the number of realisations, hindrance percentage and order change
percentage. It can be observed that the extent to which hindrance and order changes occur varies greatly among the
critical conflicts that here serve as an example. This implies that hindrance, indeed, can be (partly) contributed to
the timetable and network design. One striking observation is that the share of order changes at Schiphol appears
considerably larger than at the other example conflicts. This could be caused by the choice that secondary delays at this
timetable point are less accepted by traffic control due to the location specific infrastructure (e.g. tunnel). The magnitude
of the hindrance is less obvious from this figure, because the scheduled buffer can vary among the observations of a
conflict, due to changes in BDu or SD timetable design phases. But in general, observations further to the bottom right
have a higher secondary delay, except when both trains have changed order, then the secondary delay as defined in this
study is unknown. That is also the reason why observations with order changes are excluded from the remainder of the
analysis.

(a) Delay distribution B700 -
A900 - Shl

(b) Delay distribution B2200 -
B6300 - Had

(c) Delay distribution B4800 -
D2100 - Hlm

(d) Delay distribution A2200 -
C3300 - Ledn

Figure 5: Delay distributions

The distributions of the target variables over all critical conflicts within the scope are presented in Figure 6, where
the values of the four example critical conflicts are highlighted. The graph of the secondary delay follows a right-skewed
curve, so the majority of the secondary delay has a small value. This is confirmed by the mean of 7.32 and the median
of 0.00 over all observations. The conflicts with a wider distribution indicate both more variance in secondary delay
and a higher hindrance percentage. The graph of the hindrance percentage of the conflicts show values predominantly
located between 0% and 20%, and there are a few critical conflicts with up to 46.27% of realisations experiencing
hindrance. The mean and median over all critical conflicts are respectively 13.32 and 9.58.

(a) Secondary delay distribution (b) Hindrance percentage distribution
Figure 6: Distributions of target variables
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4.3. Regression results
This section presents the results of the regression analyses on mean secondary delay and hindrance percentage.

The results have been obtained by following the model estimation procedure explained in Section 3, with a stopping
condition of 0.005 as the minimum needed increase in adjusted R-squared.
4.3.1. Mean secondary Delay

The first model aims to predict the mean secondary delay per conflict and is able to explain 90.7% of the variance
within this variable (adjusted R-squared = 0.907). Table 4 presents the coefficients of the included variables, which
have a significant impact on the secondary delay. What stands out is that the scheduled buffer, nor the scheduled
headway is found to have a significant effect on the mean secondary delay. Yet, interesting to see is that the technical
minimum headway does have an impact on the secondary delay, suggesting that it might be effective to identify buffer
time in percentages of the technical minimum headway rather than absolute values. This furthermore is in line with
the way running time supplements are defined.

To conclude, it is stated that the model can sufficiently predict the mean secondary delay and therefore can be used
to extract buffer time planning rules from. Although the scheduled buffer has no significant influence and realisations
deviate from the mean, the model provides insights into how variables compare to the reference conflict in Haarlem
and into the unit that buffer time could be scheduled with.

Unstandardised coefficients Standardised
coefficients

Variable Category Beta Standard
error

Beta t Sig.

Constant -4.356 0.876 -4.970 0.000
Previous Timetable Point Train 2 (ref = Spbr) Hfdm 16.854 1.361 2.250 12.379 0.000

Vkbr -15.127 1.250 -2.019 -12.098 0.000
Rolling Stock Type Train 1 (ref = SGMM3
SGMM3)

SNG3
SNG4

-5.128 1.400 -0.685 -3.664 0.000
SNG4 2.587 0.897 0.345 2.885 0.005

Rolling Stock Type Train 2 (ref = VIRM6) SNG3
SNG3

6.069 1.421 0.810 4.272 0.000
Scheduled Running Time Supplement Train 1 0.167 0.046 0.126 3.644 0.000
Technical Minimum Headway 0.036 0.004 0.318 9.266 0.000
Train Series Pattern Train 1 (ref = B4800) B1800 -2.652 1.209 -0.354 -2.194 0.031

D3700 7.985 1.682 1.066 4.749 0.000
D5800 7.703 2.068 1.028 3.724 0.000
D6300 6.617 2.047 0.883 3.233 0.002

Train Series Pattern Train 2 (ref = D2100) B3700 11.724 2.430 1.565 4.825 0.000
E3300 -6.582 1.805 -0.879 -3647 0.000
E4800 5.652 1.889 0.769 2.992 0.004
G4800 5.991 1.696 0.800 3.532 0.001

Train Series Train 1 (ref = 4800) 3400 4.876 1.257 0.651 3.881 0.000
Train Series Train 2 (ref = 2100) 2400 9.914 1.077 1.323 9.204 0.000
Type Next Timetable Point Train 2 (ref =
Crossover)

Halt 19.801 0.886 2.643 22.349 0.000

Table 4: Regression results of mean secondary delay

4.3.2. Hindrance Percentage
The second model aims to predict the hindrance percentage per conflict and is able to explain 90.7% of the variance

within this variable (adjusted R-squared = 907). Table 5 presents the coefficients of the included variables, which have
a significant impact on the secondary delay. For the significant categorical variables it is indicated what the reference
level is.

When preceding trains are of the type IC Direct (abbreviation: HSN), the chance on hindrance increases with
13.822% as compared to a sprinter being the preceding train. Moreover, the second train being a starting train at the
location of the conflict instead of coming from a bridge results in 23.708% more chance to be hindered. On the brighter
side, crossings lead to 9.530% less chance on hindrance as compared to successions, which is explained by the fact the
the time both trains are dependent on each other is smaller in case of crossings.
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As expected, the scheduled buffer reduces the change on hindrance. Unexpectedly, the percentage of scheduled
running time supplement the preceding train has, increases the hindrance percentage. Longer succeeding trains appear
to experience less hindrance which might be because they gain a higher priority as more passengers are transported.

To conclude, it is stated that the model can sufficiently predict the hindrance percentage and therefore can be used
to extract buffer time planning rules from.

Unstandardised coefficients Standardised
coefficients

Variable Category Beta Standard
error

Beta t Sig.

Constant 12.773 1.280 9.978 0.000
Driving Characteristic Train 1 (ref = SPR) HSN 13.822 1.458 1.107 9.479 0.000
Next Timetable Point Train 1 (ref = Nspl) Shl 25.769 1.828 2.063 14.099 0.000

Vh 9.939 1.986 0.796 5.004 0.000
Zspl 24.633 1.994 1.972 12.355 0.000

Previous Timetable Point Train 1 (ref = Spbr) Hg 31.161 2.064 2.495 15.095 0.000
Previous Timetable Point Train 2 (ref = Spbr) None 23.708 2.988 1.898 7.934 0.000
Rolling Stock Type Train 2 (ref = VIRM6) SLT6 5.192 1.517 0.416 3.421 0.001
Scheduled Buffer -0.119 0.015 -0.249 -7.647 0.000
Scheduled Running Time Supplement Train 1 0.337 0.081 0.139 4.144 0.000
Train Series Pattern Train 1 (ref = B4800) A3300 -6.699 1.695 -0.536 -3.952 0.000

B2400 12.643 2.841 1.012 4.450 0.000
C3300 -6.963 2.313 -0.557 -3.010 0.003
D3700 24.019 2.829 1.923 8.490 0.000
D6300 11.241 3.197 0.900 3.516 0.001

Train Series Pattern Train 2 (ref = D2100) B3700 17.067 4.030 1.366 4.235 0.000
C1000 4.001 1.409 0.320 2.841 0.005

Train Series Train 1 (ref = 4800) 4600 8.352 1.799 0.669 4.644 0.000
Train Series Train 2 (ref = 2100) 2400 13.322 1.601 1.067 8.323 0.000
Type Headway Situation (ref = succession) Crossing -9.530 0.911 -0.763 -10.461 0.000

Table 5: Regression results of hindrance percentage

4.4. Determination of case-specific buffer time planning rules
The linear regression as presented in Equation 2 can be rewritten in the format of Equation 3, which can be used to

determine the amount of buffer that would ensure a certain amount of hindrance percentage. As the scheduled buffer
is not a significant predictor for the mean secondary delay, this method can not be applied to determine the amount of
buffer that would ensure a certain amount of mean secondary delay.

Figure 7 shows that the amount of needed scheduled buffer to achieve a certain amount of hindrance percentage
differs per conflict. Due to the linear nature of the regression model the distributions in Figure 7a are the same for all
hindrance percentages, but are shifted on the x-axis and the lines in Figure 7b are linear. As the effect of one unit buffer
does not differ among various conflicts the lines in Figure 7b are parallel.

Compared to the currently mean scheduled buffer per conflict (standard deviation = 26) the spread in the predicted
values for the needed scheduled buffer per conflict is significantly higher (standard deviation = 93), leading to an
increase of 257%.

Essentially, in practice the scheduled headways are composed of a technical minimum headway and a minimum
buffer time of 60 seconds. As a rule of thumb, smaller buffer times are acceptable when the gain in headway time is
bigger than the loss in running time, which is evaluated for each situation individually. The planning rules presented
in this section identify the minimum buffer time case-specifically, while evaluating the percentage of realisations that
would be hindered. The planning rules provide more flexibility compared to the current norms, because the size of the
minimum needed buffer depends on the preferred hindrance percentage.

Large differences in terms of predicted scheduled buffer are registered between the various conflicts in the case
study. To obtain the same hindrance percentage the difference in predicted scheduled buffer between conflicts reaches
up to 342 seconds. Thus, compared to the mean observed scheduled buffer per conflict (standard deviation = 26
seconds), the spread in the predicted values for the predicted scheduled buffer per conflict is significantly higher
(standard deviation = 93), corresponding with an increase of 257%.
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(a) Distribution of needed scheduled buffer for critical conflicts in the
geographical scope for different acceptable hindrance percentages

(b) Needed scheduled buffer for the example conflicts for
different acceptable hindrance percentages

Figure 7: Plots to show variance in needed scheduled buffer

When the observed mean hindrance percentage of the realised conflicts (=13.32%) is taken as acceptable hindrance
percentage for all critical conflicts in the prediction, the hindrance distribution across all conflicts becomes uniform
and the sum of all predicted scheduled buffers equals the total observed scheduled buffer, namely 7716 seconds. For
every percentage increase in hindrance percentage, the sum of predicted scheduled buffers drops with 1173 seconds.
Additionally, the mean of all observed scheduled buffers equals the mean of predicted scheduled buffer across all
conflicts. For every percentage increase in hindrance percentage, the mean of predicted scheduled buffers drops with
8 seconds.

5. Discussion
The general impression from the case study in Section 4 is that the delay propagation at different critical

conflicts is quite heterogeneous. The regression models were both able to explain 90.7% of this heterogeneity when
using aggregated values for conflict situations, being mean secondary delay and hindrance percentage, meaning that
structural delay propagation patterns can largely be contributed to timetable design and infrastructure characteristics.
In particular, factors related to the route and train series of the trains contributing to the critical conflict appeared to be
influential in explaining and predicting mean secondary delay and the probability of hindrance. Still, critical conflicts
with the same mean secondary delay and hindrance percentage can have different secondary delay distributions, caused
by among others (i) number of realisations of the conflict; (ii) number dispatching options; (iii) proactive attitude of
traffic controllers; (iv) delay distributions of the first and second train at the previous timetable point; (v) the variety in
scheduled buffer; (vi) the variety in rolling stock; and (vii) time of day.

The planning rules emerging from the regression models can be integrated in timetable design processes as (i) the
size of the wake added in the simulation; or (ii) an indication of when slightly hindered headways are acceptable. To
reduce the workload for planners further, it would be favourable that the needed scheduled buffer for a specific conflict
is automatically shown in the planning application. To this end, all relevant factors explaining these aspects of delay
propagation ought to be integrated in planning applications. The standardisation could help streamline data-driven
timetable design.

6. Conclusion
In this paper, a data-driven approach for determination of buffer time planning rules suitable for usage in an initial

timetable is proposed. The approach involves collecting traffic realisation data of tightly scheduled headway situations
in the timetable and constructing two metrics representing delay propagation that occurred in these situations. A case
study of the Dutch railway network was conducted to create planning rules regarding buffer time. These planning
rules are not necessarily generic, but depend on timetable characteristics that have been found by means of a stepwise
multiple regression model to significantly influence delay propagation.

The general conclusion of this paper is that an estimation or prediction of the expected delay propagation between
two trains in a given situation could be done quite accurately (adjusted R-squared of both models equals 0.907) is
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essential to determining suitable buffer time planning rules, because it provides insight into where buffer time can be
placed in order to be most effective. This research has operationalised delay propagation as the mean secondary delay
and probability of hindrance a succeeding train encounters caused by a delay of a preceding train. Using the prediction
model, the planning rules can be determined by setting a desired value for these metrics. This value could possibly be
determined by making a trade-off between delay propagation and capacity based on a chosen objective (e.g. passenger
punctuality, infrastructure consumption). Interesting to note is that the mean secondary delay is not significantly
impacted by the scheduled buffer, but the probability of hindrance is. This indicates that the delay distributions of
both trains have a bigger impact on the size of the secondary delay, while the size of the scheduled buffer determines
how often hindrance occurs.

The proposed approach in this paper has some limitations. Most importantly, this research used an approximation
method for secondary delay introduced by Weeda and Wiggenraad (2006). Although on average this estimation of
secondary delay seems to resemble the true secondary delay, the estimation is particularly unsuitable for conflicts
including starting trains and successions. A more accurate metric could be the time loss directly related to a route
conflict (Goverde and Meng, 2011; Daamen et al., 2009). As time losses are determined locally at the signal of
occurrence, more detailed data on signal passages and reference running times of unhindered operations have to be
collected to enable this approach. Furthermore, the target variable mean secondary delay is an aggregated value of
multiple realisations of one critical conflict situation. So information on the spread of mean secondary delay within
the conflict is lost, whilst this could be useful information in assessing the sensitivity of secondary delay with regard
to the scheduled buffer time.

One methodological research direction relates to the scope of the analysis. The analysis can be expanded by
including freight trains, shunting movements, and trains of other carriers. For freight trains, in particular, other
coefficients are expected, because they are often heavier and longer than passenger trains. This implies that they have a
slower acceleration and longer braking and thus an unplanned stop has more impact. Moreover, it might be useful to gain
insights into what factors may cause order changes and to add factors that can explain temporal variation. Moreover,
future research may include concrete simulations of different timetables with varying buffer times, to obtain a better
estimate of the effect of tweaking these planning norms on robustness and capacity utilisation. An important question
for applying such more specific planning rules in practice, is which timetable structures would be made possible or
impossible, and whether the capacity on busy lines will be increased, stay equal, or be decreased. Third, assessing the
marginal utility and costs of adding an extra unit of buffer time could probably be explored in a simulation context.
Based on this, the maximum performance of the headway situation could be determined based on the economical
theory that marginal utility equals marginal costs. Marginal utility of an extra unit of buffer time has been explored by
Jovanović et al. (2017). Lastly, among practitioners implicit and tacit knowledge exists about when scheduling tighter
buffer times than the planning rules does not result in (too much) secondary delay. This implicit knowledge could
potentially be caught in a decision model, where the trade-offs of scheduling buffer times become concrete.
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Gestoeld op de bevinden van dit afstudeeronderzoek, worden aanbevelingen gedaan betreft ontwerpmethodieken
en data processing binnen NS. De aanbevelingen zijn geformuleerd als incrementele stappen, welke kunnen worden
uitgevoerd om het dienstregeling ontwerpproces met betrekking tot buffer tijden gefocust op vervolgvertraging door
te ontwikkelen. Het identificeren van tussenstappen tot het meest ideale eindbeeld van dit datagedreven onder-
zoek komt overeen met de wijze waarop datagedreven organisaties gevormd en geëvalueerd worden in the literatuur
(Berndtsson and Svahn, 2020; Davenport, 2018). De genoemde volgorde is een suggestie die momenteel passend
en haalbaar lijkt, maar uiteraard kunnen extra stappen worden toegevoegd en overbodige stappen mogen worden
overgeslagen.

1. Gebruik de conclusies uit de case study - Gebaseerd op het regressie model van gemiddelde vervolgvertraging
(i) Vorig dienstregelpunt van trein 2 zijnde Hfdm of Vkbr; en (ii) Type next dienstregelpunt van trein 1 zijnde
een halte bleken de factoren met de grootste invloed. De meest invloedrijke factoren op het hinder percentage
bleken (i) Volgend dienstregelpunt van trein 1 zijnde Shl of Zspl; (ii) Vorig dienstregelpunt van trein 1 zijnde Hg;
en (iii) Trein 2 zijnde een startende trein. Gegeven dat deze factoren een grote invloed hebben op gemiddelde
vervolgvertraging en hinder percentage, is het kansrijk om juist wanneer deze factoren zich voordoen in een
opvolgsituatie, de geassocieerde voorspelde geplande buffer supplemententen te raadplegen.

2. Analyseer de verwachte vervolgvertraging van geplande opvolgsituaties - Gebaseerd op de gevonden re-
gressieformules in the case study, kunnen de verwachte gemiddelde vervolgvertraging en verwachte hinder
percentage worden voorspeld voor alle geplande maatgevende conflicten in de concept dienstregeling. Dit
kan planners een indicatie geven welke situaties meer buffer tijd behoeven en waar minder buffer tijd to-
ereikend genoeg is. Bijvoorbeeld, een gesorteerde lijst van alle maatgevende conflicten kan worden gecreeërd
gebaseerd op de verwachte gemiddelde vervolgvertraging of verwachte hinder percentage. De planner kan
tevens een andere controle uitvoeren op (i) een vooraf gekozen aantal maatgevende conflicten met de hoogste
waarden; danwel (ii) op de maatgevende conflicten met een waarde hoger dan een vooraf gekozen acceptabele
randwaarde.

3. Een acceptabele randwaarde vaststellen - Bepaal een acceptabele randwaarde voor gemiddelde vervolgver-
traging en hinder percentage per maatgevend conflict, zodat de buffer tijd die hiervoor nodig is bepaald kan
worden. Deze waarde kan verschillen per maatgevend conflict, maar het wordt geadviseerd om een alom-
vattende maximale acceptabele randwaarde vast te stellen. De waarde per conflict kan worden bepaald door
een afweging te maken met de beschikbare capaciteit op de locatie van het maatgevende conflict. Een meer
straightforward aanpak kan zijn om 30 seconden als maximale acceptabele randwaarde te nemen voor gemid-
delde vervolgvertraging, omdat dit de huidige norm is voor acceptabele aankomstvertraging op grote stations
veroorzaakt door gehinderde opvolgingen door kleine buffer tijden zoals besproken in Chapter 3.

4. Integreer alle relevante factoren in planningapplicaties - Om betere inzichten te krijgen in alle factoren van
de geplande opvolgsituatie is het aangeraden om planningapplicaties uit te breiden met details van conflict
situaties. Bijvoorbeeld, de geplande buffer tijd, richting van de treinen, en activiteitenpaar van de treinen bij-
dragend aan het conflict kunnen worden getoond. Wanneer deze werkwijze is ingesleten, is het wenselijk dat
de benodigde buffer tijd voor een specifiek conflict automatisch getoond wordt in de planningapplicatie, zodat
de werkdruk op planners wordt verlaagd. Deze standaardisatie kan bovendien helpen met het stroomlijnen
van datagedreven dienstregeling ontwerp.

5. Automatisch updaten van regressiemodellen met meer (nieuwe) realisatie data - Het regelmatig updaten
van de regressiemodellen resulteert in meer accurate parameters van de significante predictoren, aangezien
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B. Recommendations (in Dutch)

de meest recente realisatie data gebaseerd is op het meest recente dienstregeling ontwerpproces. Bovendien,
leidt het analyseren van data gebaseerd op verschillende dienstregelingen tot een holistischer perspectief van
de effecten van de verschillende ranges van buffer tijden.
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C
Data collection

This appendix provides detailed information about the data collection.

Realisation data

Description Traffic realisation data
File name WORK_2019tmjun; WORK_2019TMDEC; WORK_2020TMDEC; WORK_2020TMJUN
File size 3.09 GB; 2.80 GB; 2.37 GB; 2.45 GB
Data format CSV
Retrieval date 30-11-2021
Retrieval method Request by e-mail
Contact person Jorik van Onna
Retrieved columns SL_VERKEERSDATUM; SL_TREINNR; SL_TREINSERIE; SL_RICHTING;

SL_RIJKARAKTERISTIEK; SL_VERVOERDER; SL_DRGLPT; SL_ACT_SRT; SL_SPOOR;
SL_BASIC_PLANTIJD; SL_BASIC_UITVTIJD; SL_MATSOORT_TYPE; SL_MATSOORT_BAKKEN;
SL_ROUTE_SEINEN; SL_ROUTE_SEINBEELDEN

Used columns SL_VERKEERSDATUM; SL_TREINNR; SL_TREINSERIE; SL_RIJKARAKTERISTIEK;
SL_VERVOERDER; SL_DRGLPT; SL_ACT_SRT; SL_BASIC_PLANTIJD; SL_BASIC_UITVTIJD;
SL_MATSOORT_TYPE; SL_MATSOORT_BAKKEN

Time period 01-01-2019 until 31-12-2020

Table C.1: Realisation data

Conflict data

Description Conflicts in DONS
File name Conflicten DONS drp meerdere secties v2
File size 1,522 kB
Data format Excel
Retrieval date 12-01-2022
Retrieval method Request by e-mail
Contact person Patrick Looij & Jantine Buren
Retrieved columns Gebied; Trein1; Trein2; Begin; Einde; Duur; Overlap; Secties
Manually
constructed
columns

Opvolgsituatie; Zelfde richting; Type opvolging; Opmerking

Used columns Gebied; Trein1; Trein2; Overlap; Secties; Opvolgsituatie; Zelfde richting; Type opvolging;
Opmerking

Time period 15-12-2019 until 15-12-2020

Table C.2: Conflict data

Train series and train numbers
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C. Data collection

Description Matching train numbers to their corresponding series
File name Treinnrs en patronen dec 2019
File size 924 kB
Data format Excel
Retrieval date 03-01-2022
Retrieval method Request by e-mail
Contact person Jantine Buren
Retrieved columns treinnr; act_plandag; patrooncode
Used columns treinnr; patrooncode

Table C.3: Train series and numbers data

Timetable data

Description BU timetable in DONS
File name dienstregeling BD 2020 348
File size 3,292 kB
Data format Excel
Retrieval date 24-02-2022
Retrieval method Request by e-mail
Contact person Patrick Looij & Jantine Buren
Retrieved columns Serie; Trein-nr; Actief; Treintype; Vervoerder; Bedrijfsurencode; Regelnummer; Materieel; Drp;

Spoor; Lengte; Stopt; R; Stat; SD; VAdvies; RtKaal; RtReal; RtSpeling; TBerCum; StatPlan; DeltaRt;
RtPlan; TPlanCum; SpelingPlan; Aankomst; Vertrek; Opmerking

Used columns Serie; Drp; Spoor; Lengte; RtKaal; RtPlan; Stopt; Aankomst; Vertrek

Table C.4: Conflict data

Network data

Description Connection of each timetable point to adjacent timetable points
File name DONNA_78605_VER_1_IAUF_DRGLPT_VERBINDING
File size 211 kB
Data format Text
Retrieval date 01-02-2022
Retrieval method Access through NS sharepoint (NO en V&B > NO > Ontwerpen > IPO > Infrastructuur >

IA-bestanden (origineel) > _Donna-20191215-BD-20190726.zip
Retrieved columns
Used columns

Table C.5: Network data
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D
Computation of predictor variables

This appendix provides more details on the operationalisation of some predictor variables.

D.1. Scheduled Buffer
The scheduled buffer time is composed by the difference in scheduled headway time and technical minimum head-
way time (Pachl, 2014) (Equation D.1), and can deviate slightly from the buffer time planning norms. The technical
minimum headway is defined as the minimum interval between scheduled activities of two trains, respecting the
requested speed profile of both trains. As explained in Chapter 2, this corresponds to the difference in scheduled
times when the blocking times of the two trains touch. In case of extended blocking times the minimum buffer time
needs to be subtracted from this value to identify the technical minimum headway. When there is a conflict (i.e.
overlap in blocking times), the duration of the conflict indicates the amount of time that is left out of the calculation.
To compensate for this symptom, the duration of the conflict should be added to the technical minimum headway
calculation.

Thus, from extended blocking time stairways can be extracted that the technical minimum headway time can be
calculated by Equation D.2, where h refers to the headway time, b represents buffer time between a pair of trains,
and t is the time in seconds. A conflict situation in Leiden (Ledn) for which the technical minimum headway time
is calculated in such a way is depicted in Figure D.1 for the train paths in red. Note that there can be a difference
between the scheduled headway in the BU phase and the VL phase, because of day specific adaptations. Hence, the
difference in scheduled headways in Equation D.1 and Equation D.2.

bschedul ed = hschedul edV L −hmi n (D.1)

hmi n = hschedul edBU −bplanning norm + tblocking time overlap (D.2)

D.2. Number Preceding Conflicts
This variable represents the dependence of a timetable conflict on prior conflicts on that location. Figure D.2a shows
that the conflict between train G3200|1 and C4300|2 at Schiphol is preceded by 1 conflict. This variable is based on the

Figure D.1: Visualisation of technical minimum headway and scheduled buffer in a train traffic diagram
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D.2. Number Preceding Conflicts D. Computation of predictor variables

concept of a conflict tree (Goverde and Meng, 2011). A conflict tree represents complex conflict propagations made
up of various conflict chains, which is defined by Goverde and Meng (2011) as "a linked list of trains that successively
hinder one another". Adversely, a reversed conflict tree indicates for some train what preceding train(s) have caused
hindrance to it. For example, Figure D.2b shows the reversed conflict tree of some train A. The tree implies that train
A is hindered by train B, which in its turn is hindered by trains D and E. Train D, moreover, is hindered by train F. This
concept can be applied to determine the number of preceding critical trains.

An iterative algorithm was created that checks whether the first train has acted as a second train in one or more
prior conflicts on the same timetable point. Accordingly, the number of preceding conflicts equals the number of
previous conflicts to which this applies plus the number of preceding conflicts of each previous conflict. If no prior
conflicts exist, a value of 0 is given. This concept is visually depicted in Figure D.2b and the implemented code is
explained with algorithm 1.

(a) Train traffic diagram showing preceding conflicts, with conflict between G3200|1
(green) and C4300|2 (blue) (circled in red) that has one preceding conflict
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Critical headway,
with p the number
of preceding critical
trains

(b) Reversed conflict tree of some train A

Figure D.2: Conceptual model of number preceding conflicts

Algorithm 1: Number Preceding Critical Trains

Data: Conflict k; List of all conflicts; List of already visited train numbers
Result: The number of preceding critical trains of conflict k

1 Number of preceding critical trains[Conflict k] ← 0;
2 Number of previous conflicts ← 0;
3 for i ∈ All conflicts do
4 if Date[Conflict k] == Date[i] and
5 Timetable point[Conflict k] == Timetable point[i] and
6 Train number 2[Conflict k] == Train number 1[i] and
7 Scheduled buffer[Conflict k] < 61 and
8 Train number 1[i] is not in Visited train numbers then

9 Number of previous conflicts
+← 1

10 Previous conflicts
+← i

11 if Number of previous conflicts ≥ 1 then
12 for n ∈ Previous conflicts do

13 Visited train numbers
+← Train number 1[n];

14 Number of preceding critical trains
+← Number of preceding critical trains of conflict n (algorithm 1)
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D.4. Scheduled Running Time Supplement D. Computation of predictor variables

D.3. Consecutive timetable points
Based on the created adjacency list from the network data, the prior and following timetable points of each train
contributing to the conflict are identified. These variables can be deduced by the sequence in which the scheduled
times at each adjacent timetable point of the timetable point of the conflict occur. Hence, to find the prior timetable
point of a train, the adjacent timetable point with the smallest positive gap in scheduled time compared to the
conflict is selected. Similarly, the following timetable point is found by selecting the row with the smallest negative
gap in scheduled time compared to the conflict. Then, the prior and following timetable point, its scheduled times
and its realised times are added to the dataset. This corresponds with the light blue cells in Table D.1. With the use of
these variables and the dictionary created with the network data, the type of the prior and following timetable point
are appended to the dataset as well.

When a train starts or ends its journey there is no prior or following timetable point respectively. In this case the
prior and following (type) timetable points are set to "None" and all time related columns are set to 0. This process
is done for both trains in the headway situation.

Type timetable point Train Number 1 Timetable Point Activity 1 Date Scheduled Time 1 Realised Time 1

Timetable point of
the conflict

725 Shl V 2019-09-01 08:04:00 08:06:08

725 Hfd D 2019-09-01 07:58:42 08:00:17
Previous timetable
point train 1

725 Shl A 2019-09-01 08:02:00 08:03:51

Next timetable point
train 1

725 Asra D 2019-09-01 08:08:00 08:09:42

Table D.1: Determine consecutive timetable point

D.4. Scheduled Running Time Supplement
The scheduled running time supplement is defined as the percentage of running time supplement that was sched-
uled in the timetable, determined from the previous stop of a train to the timetable point of the conflict. For every
observation, the previous stop was determined by iterating over the dataframe. If the observation was of a starting
train, "None" was taken as value.

In the timetable data, the scheduled running time and technical minimum running time are known between two
timetable points. Then, the scheduled running time supplement between two timetable points is the difference in
scheduled running time and technical minimum running time, which is converted to a percentage by dividing by
the technical minimum running time. To achieve the percentage of scheduled running time supplement from the
previous stop, the fraction is summed for all prior timetable points in the range between the previous stop and the
timetable point of the conflict, excluding the previous stop itself. This process is operationalised by Equation D.3,
where i corresponds with a timetable point, and SRTi and MRTi are respectively the scheduled and technical min-
imum running time between timetable point i and its previous timetable point, and m and n refer to the timetable
point of the conflict and the previous stop respectively as depicted in Figure D.3.

SRT Si =
m∑

i=n+1

SRTi −MRTi

MRTi
∗100% (D.3)

Previous stop Intermediate timetable points (no stops) Critical timetable point

m m + 1m - 1n + 1n - 1 n

i
Distance

Legend

Figure D.3: Summation range of scheduled running time supplement
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E
Case Study details

This appendix provides more details on the the case study infrastructure.

E.1. Infrastructure
Figure E.1 shows the infrastructure of the case study area, and Table E.1 presents all timetable points in the case study
area with its abbreviation and type. In this table, two categories are distinguished by a line. The top category contains
the timetable points within the scope, whilst the bottom category states which timetable points are adjacent to the
scope.

Timetable point Abbreviation Type timetable point
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ea

Haarlem Hlm Station
Haarlem Goederenstation Hg Shunting yard
Haarlem Zuidelijke Splitsing Zspl Crossover
Heemstede-Aerdenhout Had Halt
Hillegom Hil Halt
Hoofddorp Hfd Station
Hoofddorp Opstelterrein Hfdo Shunting yard
Hoofddorp Middenspoor Hfdm Crossover
Leiden Centraal Ledn Station
Lisse Lis Crossover
Nieuw Vennep Nvp Halt
Noordwijkerhout Nwh Junction
Ringvaartbrug (brug o/d - bij Sassenheim) Rvbr Bridge
Sassenheim Ssh Halt
Schiphol Airport Shl Station
Voorhout Vh Halt

T
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Amsterdam Riekerpolder Aansluiting Asra Junction
Galgewater (brug o/h - bij Leiden) Gwt Bridge
Haarlem Noordelijke Splitsing Nspl Crossover
Haarlemkruis Hlmkr Crossover
HSL - Hoofddorp Overloop Hshfdo Junction
Spaarne (brug o/h - bij Haarlem) Spbr Bridge
Vinkbrug (o/d Rijn bij Leiden) Vkbr Bridge

Table E.1: Timetable points within the case study area
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Figure E.1: Track layout of the case study area. Retrieved on SporenplanOnline (2022)
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E.2. Track diagrams of example conflicts E. Case Study details

E.2. Track diagrams of example conflicts

(a) Schiphol

(b) Heemstede-Aerdenhout

(c) Haarlem

(d) Leiden

Figure E.2: Track diagram with the critical conflict section in blue
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F
Results

This appendix provides more details on the results of the case study.

F.1. Descriptive statistics of target and predictor variables

Variable name Number of
observations

Mean Median Standard
devia-

tion

Minimum Maximum

Secondary Delay 61753 7.32 0.00 27.45 0.00 657.00
Hindrance Percentage 72047 13.81 10.66 11.79 0.00 46.27
Number Preceding Critical Trains 72047 0.38 0.00 0.69 0.00 3.00
Scheduled Buffer 72047 57.79 56.00 42.16 -250.00 658.00
Scheduled Headway 72047 246.65 240.00 83.35 36.00 840.00
Technical Minimum Headway 72047 188.86 175.00 70.72 -3.00 358.00
Rolling Stock Carriages Train 1 72019 6.64 6.00 2.42 2.00 12.00

Train 2 72012 6.39 6.00 2.45 2.00 12.00
Scheduled Running Time Supplement Train 1 72047 7.03 6.12 4.83 -0.83 20.92

Train 2 72047 9.37 6.27 8.98 -0.83 35.14

Variable name Number of
observations

Mode Frequency Number of unique categories

Same Direction 72047 Yes 65620 2
Type Headway Situation 72047 Succession 55746 2
Type Timetable Point 72047 Station 67805 2
Event Train 1 72047 Arrival 42722 2

Train 2 72047 Arrival 65208 2
Carrier Train 1 72047 NSR 64470 2

Train 2 72047 NSR 63725 2
Driving Characteristic Train 1 72047 IC 32988 3

Train 2 72047 SPR 39783 3
Previous Timetable Point Train 1 72047 Hfd 16393 11

Train 2 72047 Hfd 18190 13
Next Timetable Point Train 1 72047 Asra 17847 12

Train 2 72047 Asra 18032 12
Rolling Stock Type Train 1 72019 VIRM6 8629 62

Train 2 72012 SW7-25KV2+7 6862 62
Timetable point 72047 Shl 32148 5
Train Series Train 1 72047 2200 10010 17

Train 2 72047 6300 10200 18
Train Series Pattern Train 1 72047 B1800 3986 69

Train 2 72047 B5800 2819 68
Type Previous Timetable Point Train 1 72047 Station 16393 7

Train 2 72047 Station 18190 7
Type Next Timetable Point Train 1 72047 Junction 17847 7

Train 2 72047 Junction 18032 7

Table F.1: Overall statistics

F.2. Relationships with secondary delay
Figure F.1 shows the relationships between secondary delay and some of the candidate predictor variables. A quick
glance at the figures does not immediately show an evident relation. One explanation for this observation is that the
secondary delay is influenced by other factors, not included in this research, such as weather information, passenger
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F.3. Results of check on assumptions for secondary delay F. Results

loads or technical malfunctions. There could simply be too much randomness in the variable secondary delay for the
candidate predictors to show a clear relationship. Therefore, an approach similar to one for hindrance percentage
is taken where for each conflict, one aggregated value for secondary delay is computed; the mean. It is expected
that this leads to a metric that reveals the more structural relationships between secondary delay and its candidate
predictors.

(a) Scheduled Buffer (b) Scheduled Headway (c) Number Preceding Conflicts (d) Rolling Stock Carriages Train 1

(e) Type Previous Timetable Point Train 1 (f) Driving Characteristic Train 1 (g) Timetable Point
(h) Type Headway Situation

Figure F.1: Relationships with secondary delay

F.3. Results of check on assumptions for secondary delay
Figure F.2a shows that heteroscedasticity is present, since the standardised residuals become more spread out as the
predicted values get larger. As for the multivariate normality, Figure F.2b and Figure F.2c show that the standardised
residuals do not completely follow a normal distribution. However, the mean of the standardised residuals equals
2.35e-13, which is very close to zero, and with a d-statistic of 1.83 the Durbin-Watson test concludes that the obser-
vations are independent. Therefore, it is acceptable that the assumption of multivariate normality is not met.

Thus, only the assumption of homoscedasticity is not met. Transforming the target variable - taking the square
root, natural logarithm, logarithm with base ten and quadratic were tried - has not solved the problem. For that
reason it is decided to create one value for secondary delay per conflict; the mean. From Figure 5.10 and a d-statistic
of 2.00 it can be concluded that this data reduction does not violate any of the assumptions.

(a) Plot to investigate homoscedasticity
(b) Histogram showing the distribution of the

standardised residuals (c) Q-Q plot to investigate multivariate normality

Figure F.2: Plots to check regression assumptions of the model on secondary delay (n = 9166)

F.4. Reference category
The reference levels of all categorical variables as used in the multiple regression analyses is presented in Table F.2.

Categorical predictor variable Reference level

Same Direction Yes
Type Headway Situation Succession
Type Timetable Point Station
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F.5. Full regression formulas F. Results

Event Train 1 Departure
Event Train 2 Arrival
Carrier Train 1 NSR
Carrier Train 2 NSR
Driving Characteristic Train 1 SPR
Driving Characteristic Train 2 IC
Previous Timetable Point Train 1 Spbr
Previous Timetable Point Train 2 Spbr
Next Timetable Point Train 1 Nspl
Next Timetable Point Train 2 Zspl
Rolling Stock Type Train 1 SGMM3 SGMM3
Rolling Stock Type Train 2 VIRM6
Timetable Point Hlm
Train Series Train 1 4800
Train Series Train 2 2100
Train Series Pattern Train 1 B4800
Train Series Pattern Train 2 D2100
Type Previous Timetable Point Train 1 Bridge
Type Previous Timetable Point Train 2 Bridge
Type Next Timetable Point Train 1 Crossover
Type Next Timetable Point Train 2 Crossover

Table F.2: Reference levels of all categorical variables

F.5. Full regression formulas
This section present the full regression formulas based on the output presented in Chapter 5.

Mean secondary delay =−4.356+16.854∗Previous Timetable Point Train 2H f dm

−15.127∗Previous Timetable Point Train 2V kbr

−5.128∗Rolling Stock Type Train 1SNG3

+2.587∗Rolling Stock Type Train 1SNG4 SNG4

+6.069∗Rolling Stock Type Train 2SNG3 SNG3

+0.167∗Scheduled Running Time Supplement Train 1

+0.036∗Technical Minimum Headway

−2.652∗Train Series Pattern Train 1B1800

+7.985∗Train Series Pattern Train 1D3700

+7.703∗Train Series Pattern Train 1D5800

+6.617∗Train Series Pattern Train 1D6300

+11.724∗Train Series Pattern Train 2B3700

−6.582∗Train Series Pattern Train 2E3300

+5.652∗Train Series Pattern Train 2E4800

+5.991∗Train Series Pattern Train 2G4800

+4.876∗Train Series Train 13400

+9.914∗Train Series Train 22400

+19.801∗Type Next Timetable Point Train 2H al t +ε

(F.1)
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F.5. Full regression formulas F. Results

Hindrance Percentage = 12.773+13.822∗Driving Characteristic Train 1HSN

+25.769∗Next Timetable Point Train 1Shl

+9.939∗Next Timetable Point Train 1V h

+24.633∗Next Timetable Point Train 1Z spl

+31.161∗Previous Timetable Point Train 1H g

+23.708∗Previous Timetable Point Train 2None

+5.192∗Rolling Stock Type Train 2SLT 6

−0.119∗Scheduled Buffer

+0.337∗Scheduled Running Time Supplement Train 1

−6.699∗Train Series Pattern Train 1A3300

+12.643∗Train Series Pattern Train 1B2400

−6.963∗Train Series Pattern Train 1C 3300

+24.019∗Train Series Pattern Train 1D3700

+11.241∗Train Series Pattern Train 1D6300

+17.067∗Train Series Pattern Train 2B3700

+4.001∗Train Series Pattern Train 2C 1000

+8.352∗Train Series Train 14600

+13.322∗Train Series Train 22400

−9.530∗Type Headway SituationCr ossi ng +ε

(F.2)
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