
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Domain-Specific Language Engineering
A Case Study in Agile DSL Development (Mark I)

Eelco Visser

Report TUD-SERG-2007-017

SERG

TUD-SERG-2007-017

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

c© copyright 2007, Software Engineering Research Group, Department of Software Technology, Faculty
of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. All rights
reserved. No part of this series may be reproduced in any form or by any means without prior written
permission of the publisher.

Domain-Specific Language Engineering

A Case Study in Agile DSL Development

Eelco Visser

Software Engineering Research Group
Delft University of Technology

visser@acm.org

Abstract. The goal of domain-specific languages (DSLs) is to increase
the productivity of software engineers by abstracting from low-level boil-
erplate code. Introduction of DSLs in the software development process
requires a smooth workflow for the production of DSLs themselves. This
tutorial gives an overview of all aspects of DSL engineering: domain anal-
ysis, language design, syntax definition, code generation, deployment,
and evolution, discussing research challenges on the way. The concepts
are illustrated with DSLs for web applications built using several DSLs
for DSL engineering: SDF for syntax definition, Stratego/XT for code
generation, and Nix for software deployment.

1 Introduction

In recent years there has been an increasing momentum (some call it hype) for
approaches with names as domain-specific languages, model-driven architecture,
software factories, language workbenches, and intentional programming. While
there are differences between these approaches (mostly of a technological na-
ture?), the common goal is to achieve a higher-level of abstraction in software
development by abstracting from low-level boilerplate code. (Making domain-
specific languages the approach of my choice, I’ll use its terminology from now
on.) The idea of domain-specific languages has been around for a long time,
but what seems to be new in the current wave, is the requirement to use DSL
design and implementation as a standard tool in the software development pro-
cess. The challenge then is to develop a systematic method for designing new
domain-specific languages.

This tutorial describes an experiment in DSL design and implementation.
The experiment is simply to take a new domain (web applications), to develop a
DSL (set of DSLs) for this domain, and observe the process to extract ingredients
for a standard process. The target of the experiment are web applications with
a rich domain model that can serve as content management system editable via
the browser, but also allow querying and aggretation based on the structure of
the data. The tutorial takes one particular combination of technologies. The DSL
will be a textual language. The generator targets Java with a certain collection
of frameworks for implementation of web applications. The DSL is implemented
using Stratego/XT, SDF, and Nix.

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 1

Contributions The contributions of this tutorial are

– an experience report
– an introduction to a particular (meta) technology (Stratego/XT) from an

application perspective
– guidelines; in particular, an emerging method for developing DSLs in a more

systematic way

So this tutorial is not:

– a comparison of techniques and tools for DSL definition
– a comparison of visual vs textual languages
– a comparison of web programming languages

and therefore, does not claim any contributions in those areas.

1.1 Outline

This tutorial discusses the DSL engineering process by following the development
of an actual DSL and discussing the considerations that played a role during the
process. Thus, we follow the iterations in the design and implementation of the
language. The techniques used for the implementation are introduced as we go.

Domain-Specific Language Engineering SERG

2 TUD-SERG-2007-017

2 Capturing Programming Patterns

The first step in the process of designing a DSL is to consider common pro-
gramming patterns in the application domain. We will turn these patterns into
templates, i.e. program fragments with holes. The holes in these templates can
be filled with values to realize different instantiations of the programming pat-
tern. Since the configuration data needed to fill the holes is typically an order
of magnitude smaller than the programming patterns they denote, a radical de-
crease in programming effort is obtained. That is, when exactly these patterns
are needed, of course. With some thought the configuration data can be turned
into a proper domain-specific language. Instead of doing a ’big design up front’
to consider all aspects a DSL for web applications should cover and the language
constructs we would need for that, we develop the DSL in iterations. We start
with relatively large patterns, i.e., complete classes.

As argued before, we take a particular technology stack as basis for our
WebDSL. That is, this technology stack will be the platform on which code gen-
erated from DSL models will run. That way we have a concrete implementation
platform when considering design and implementation issues and it provides a
concrete code base to consider when searching for programming patterns. Hope-
fully, we will arrive at a design with abstractions that transcend this particular
technology.

In this work we are using the EJB3/Seam architecture for web applications.
That is, applications consist of three layers or tiers. The presentation layer is
concerned with producing webpages and interpreting events generated by the
user. For this layer we are using JavaServer Faces (JSF). The persistence layer
is concerned with storing data in the database and retrieval of data from the
database. This layer really consists of two parts. The database proper is a sepa-
rate service implemented by a relational database (I have been using MySQL, but
that is not really relevant). In the implementation of a web application, however,
we approach the database via an object-relational mapping (ORM) framework,
which takes care of the communication with the database and translates rela-
tional data into objects that can be used naturally in an object-oriented setting.
Thus, after defining a proper mapping between objects and database tables, we
need no longer worry about the database side. Finally, to connect the JSF pages
defining the user-interface with the objects obtained from the database we use
EJB3/Seam session beans [8, 10].

While it used to be customary for these types of frameworks to require a
large portion of an application to be implemented in XML configuration files,
this trend has been reversed in the EJB3/Seam architecture. Most of the config-
uration is now expressed as annotations in Java classes building on the concept
of dependency injection. A little XML configuration remains, for instance, to
define where the database is to be found and such. This configuration is mostly
static and will not be a concern in this paper.

In this section, we start with considering the entity classes used with the
Java Persistence API (JPA) [11] or Hibernate [2], and how to build a generator
for such classes, from syntax definition, and abstract syntax to rewrite rules and

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 3

strategies. As such this section serves as an introduction to these techniques. In
the next section we then consider the generation of basic web pages for view and
editing the content of persisted objects.

2.1 Programming Patterns for Persistence

The Java Persistence API (JPA) is a standard proposed by Sun for object-
relational mapping (ORM) for Java. The API is independent of vendor-specific
ORM frameworks such as Hibernate; these frameworks are expected to imple-
ment JPA, which, Hibernate 3 indeed does [2]. While earlier versions of Hibernate
used XML configuration files to define the mapping between database schemas
and Java classes, the JPA approach is to express these mappings using Java 5
annotations in Java classes. Objects to be persisted in a database are represented
using ‘plain old Java objects (POJOs)’. Roughly, classes are mapped to database
tables and properties (fields with getters and setters) are mapped to database
columns. We will now inspect the ingredients of such classes as candidates for
code generation.

Entity Class An entity class is a Java class annotated with the @Entity an-
notation and with an empty constructor, which guarantees that the persistence
framework can always create new objects.

@Entity

public class Publication {

public Publication () { }

// properties

}

An entity class is mapped to a database table with the same name. (If desired
an alternative name for the table can be specified, but we won’t be concerned
with that. In general, we will not necessarily try to cover all the variability in
the target technology, but only use that what is necessary.)

Identity Entities should have an identity as primary key. This identity can be
any value that is a unique property of the object. The annotation @Id is used to
indicate the property that represents the identity. However, the advice is to use
an identity that is not directly linked to the logic of the object, but rather to
use a synthetic idenity, for which the database can generate unique values. This
then takes the following pattern:

@Id @GeneratedValue

private Long id;

public Long getId() {

return id;

}

private void setId(Long id) {

this.id = id;

}

Domain-Specific Language Engineering SERG

4 TUD-SERG-2007-017

Properties The values of an object are represented by properties, class member
fields with getters and setters. Such properties are mapped to columns in the
database table for the enclosing class.

private String title;

public String getTitle() {

return title;

}

public void setTitle(String title) {

this.title = title;

}

Entity Associations No annotations are needed for properties with simple types.
However, properties referring to other entities, or to collections of entities, require
annotations. The following property defines an association to another entity:

@ManyToOne

@JoinColumn(name = "PublicationAuthor")

@Cascade({CascadeType.PERSIST,CascadeType.SAVE_UPDATE,CascadeType.MERGE})

private Person author = new Person();

public Person getAuthor() {

return author;

}

public void setAuthor(Person author) {

this.author = author;

}

The @ManyToOne annotation states that a Person may be used in many pub-
lications as author. The @JoinColumn annotation defines an explicit name for
the auxiliary table that is used to implement the relation between Publication
and Author, by storing the primary keys (identities) of the objects involved. The
@Cascade annotation defines which persistence operations should be propagated
along the association. In this case save operations should be propagated, but
deletion should not; if a publication is deleted, its author should not be deleted
since it may be used in other publications.

2.2 A Domain Model DSL

Entity classes with JPA annotations are conceptually simple enough. However,
there is quite a bit of boilerplate involved. First of all, the setters and getters are
completely redundant, and also the annotations can be become fairly complex.
However, the essence of an entity class is simple, i.e., a class name, and a list of
properties, i.e., (name, type) pairs. This information can be easily defined in a
structure of the form A{ prop* } with A a name (identifier) and prop* a list of
properties of the form x : t, i.e., a pair of an field name x and a type t. For
example, the following entity declarations

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 5

Publication {

title : String

author : Person

year : Int

abstract : String

pdf : String

}

Person {

fullname : String

email : String

homepage : String

}

define the entities Publication and Person, which in Java take up easily 100
lines of code.

2.3 Building a Generator

In the rest of this section we will examine how to build a generator for the sim-
ple domain modeling language sketched above. A generator typically consists of
three main parts, a parser, reads in the model, the code generator proper, which
transforms an abstract syntax representation of the model to a representation
of the target program, and a pretty-printer, which formats the target program
and writes it to a text file. Thus, we’ll need the following ingredients: a defini-
tion of the concrete syntax of the DSL, for which we’ll use the syntax definition
formalism SDF2; a parser that reads model files and produces an abstract rep-
resentation; a definition of that abstract representation; a transformation to the
abstract representation of the Java program to be generated, for which we’ll use
term rewrite rules; and finally, a definition of a pretty-printer.

2.4 Syntax Definition

For syntax definition we use the syntax definition formalism SDF2 [13]. SDF2
integrates the definition of the lexical and context-free syntax. Furthermore, it
is a modular formalism, which makes it easy to divide a language definition
into reusable modules, but more importantly, it makes it possible to combine
definitions for different languages. This is the basis for rewriting with concrete
syntax and language embedding; we’ll see examples of this later on.

The syntax of the basic domain modeling language sketched above is defined
by the following module DomainModel. The module defines the lexical syntax of
identifiers (Id), integer constants (Int), string constants (String)1, whitespace
and comments (LAYOUT). Next the context-free syntax of models, entities, prop-
erties, and sorts is defined. Note that in SDF productions have the non-terminal
being defined on the right of the -> and the body on the left-hand side.

module DomainModel

exports

sorts Id Int String Definition Entity Property Sort

lexical syntax

[a-zA-Z][a-zA-Z0-9_]* -> Id

1 Integer and string constants are not used in this version of the language.

Domain-Specific Language Engineering SERG

6 TUD-SERG-2007-017

[0-9]+ -> Int

"\"" ~[\"\n]* "\"" -> String

[\ \t\n\r] -> LAYOUT

"//" ~[\n\r]* [\n\r] -> LAYOUT

context-free syntax

Definition* -> Model {cons("Model")}

Entity -> Definition

Id "{" Property* "}" -> Entity {cons("Entity")}

Id ":" Sort -> Property {cons("Property")}

Id -> Sort {cons("SimpleSort")}

Abstract Syntax An SDF syntax definition defines the concrete syntax of strings
in a language. For transformations we want an abstract representation, i.e. the
tree structure underlying the grammar. This structure can be expressed concisely
by means of an algebraic signature, which defines the constructors of abstract
syntax trees. Such a signature can be derived automatically from a syntax defini-
tion (using sdf2rtg and rtg2sig). Each context-free production gives rise to a
constructor definition using the name declared in the cons attribute of the pro-
duction as constructor name, and the non-literal sorts as input arguments. Thus,
for the DomainModel language defined above, the abstract syntax definition is
the following:

signature

constructors

Model : List(Definition) -> Model

: Entity -> Definition

Entity : Id * List(Property) -> Entity

Property : Id * Sort -> Property

SimpleSort : Id -> Sort

: String -> Id

Parsing A parser reads a text representation of a model, checks it against the
syntax definition of the language, and builds an abstract syntax representa-
tion of the underlying structure of the model text. Parse tables for driving
the sglr parser can be generated automatically from a syntax definition (us-
ing sdf2table). The sglr parser produces an abstract syntax representation in
the Annotated Term (ATerm) Format [3], as illustrated by the following parse
of a domain model:

Person {

fullname : String

email : String

homepage : String

}

⇒

Entity("Person",

[Property("fullname", SimpleSort("String"))

, Property("email", SimpleSort("String"))

, Property("homepage", SimpleSort("String"))

]

)

The main ATerm form is c(t1,...,tn), where c is a constructor name and the ti
are ATerms. Other forms are lists of terms ([t1,...,tn]), strings ("..."), and
integer constants.

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 7

2.5 Code Generation by Rewriting

Programs in the target language can also be represented as terms. For example,
the following parse shows the abstract representation of the basic form of an
entity class (as produced by the parse-java tool):

@Entity

public class Publication {

public Publication () { }

}

⇓
ClassDec(

ClassDecHead(

[MarkerAnno(TypeName(Id("Entity"))), Public()]

, Id("Publication")

, None(), None(), None()),

ClassBody(

[ConstrDec(

ConstrDecHead([Public()],None(),Id("Publication"),[],None()),

ConstrBody(None(), []))

])

)

This entails that code generation can be expressed as a term-to-term transfor-
mation. Pretty-printing of the resulting term then produces the program text.
The advantage over the direct generation of text is that (a) the structure can
be checked for syntactic and type consistency, (b) a pretty-printer can ensure a
consistent layout of the generated program text, and (c) further transformations
can be applied to the generated code. For example, in the next section we’ll see
that an interface can be derived from the generated code of a class.

Term rewriting is a formalism for describing term transformations [1]. A rewrite
rule p1 -> p2 defines that a term matching the term pattern p1 can be replaced
with an instantiation of the term pattern p2. A term pattern is a term with
variables. In standard term rewriting, rewrite rules are applied exhaustively until
a normal form is obtained. Term rewriting engines employ a built-in rewriting
strategy to determine the order in which subterms are rewritten.

Stratego [15, 5] is a transformation language based on term rewriting. Rewrite
rules are named and can be conditional, i.e., of the form l : p1 -> p2 where
s, with l the name and s the condition. Stratego extends basic term rewrit-
ing by providing programmable rewriting strategies that allow the developer to
determine the order in which rules are applied.

The following Stratego rewrite rule defines the transformation of an Entity
term in the domain model language to the basic Java class pattern that we saw
above. Note that the rule generalizes over the particular class by using instead of
the name "Publication", a variable x for the class and the constructor. Thus,
the rule generates for an arbitrary Entity x, a class x.

Domain-Specific Language Engineering SERG

8 TUD-SERG-2007-017

entity-to-class :

Entity(x, prop*) ->

ClassDec(

ClassDecHead(

[MarkerAnno(TypeName(Id("Entity"))), Public()]

, Id(x)

, None(), None(), None()),

ClassBody(

[ConstrDec(

ConstrDecHead([Public()],None(),Id(x),[],None()),

ConstrBody(None(), []))

])

)

Concrete Syntax The entity-to-class rewrite rule defines a template for code
generation. However, the term notation, despite its advantages for code genera-
tion as noted above, is not quite as easy to read as the corresponding program
text. Therefore, Stratego supports the definition of rewrite rules using the con-
crete syntax of the subject language [14]. For example, the following rule is the
concrete syntax equivalent of the rule above:

entity-to-class :

Entity(x_Class, prop*) ->

|[

@Entity

public class x_Class {

public x_Class () { }

}

]|

Note that the identifier x_Class is recognized by Stratego (the Stratego parser
in fact) as a meta-variable, i.e. a pattern variable in the rule.

While rewrite rules using concrete syntax have the readability of textual
templates, they have all the properties of term rewrite rules. The code fragment
is parsed using the proper syntax definition for the language concerned (Java in
this case) and thus syntax errors in the fragment are noticed at compile-time (of
the generator). The transformation produces a term and not text; in fact, the
rule is equivalent to the rule using a term above. And thus the advantages of
term rewriting discussed above hold also for rewriting with concrete syntax.

2.6 Pretty-printing

Pretty-printing is the inverse of parsing, i.e. the conversion of an abstract syntax
tree (in term representation) to a, hopefully readable, program text. While this
can be done with any programmatic method that prints strings, it is useful to
abstract from the details of formatting program texts by employing a specialized
library. The GPP library [6] supports formatting through the Box language,
which provides constructs for positioning text blocks. For pretty-printing Java

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 9

and XML the Stratego/XT toolbox provides custom built mappings to Box. For
producing a pretty-printer for a new DSL that is still under development it is
most convenient to use a pretty-printer generator (ppgen), which produces a
pretty-print table with mappings from abstract syntax tree constructors to Box
expressions. The following is a pretty-print table for our DomainModel language:

[

Entity -- V[V is=2[H[_1 KW["{"]] _2] KW["}"]],

Entity.2:iter-star -- _1,

Property -- H[_1 KW[":"] _2],

SimpleSort -- _1

]

Here V stands for vertical composition, H stands for horizontal composition,
and KW stands for keyword. While a pretty-printer generator can produce a cor-
rect pretty-printer (such that parse(pp(parse(prog))) = parse(prog)), it is not
possible to automatically generate pretty-printers that generate a pretty result
(although heuristics may help). So it is usually necessary to tune the pretty print
rules.

2.7 Generating Entity Classes

Now that we’ve seen the techniques to build the components of a generator
we can concentrate on the rules for implementing the DomainModel language.
Basically, the idea is to take the program patterns that we found during the
analysis of the solution domain, and turn them into transformation rules, by
abstracting out the application-specific identifiers. Thus, an entity declaration is
mapped to an entity class as follows:

entity-to-class :

Entity(x_Class, prop*) ->

|[

@Entity public class x_Class {

public x_Class () { }

@Id @GeneratedValue private Long id;

public Long getId() { return id; }

private void setId(Long id) { this.id = id; }

~*cbd*

}

]|

where cbd* := <mapconcat(property-to-gettersetter(|x_Class))> prop*

Since an entity class always has an identity (at least for now), we include it di-
rectly in the generated class. Furthermore, we include, through the antiquotation
~*, a list of class body declarations cbd*, which are obtained by mapping the
properties of the entity declaration. (Here mapconcat is a strategy that applies
its argument strategy to each element of a list, concatenating the lists resulting
from each application.)

Domain-Specific Language Engineering SERG

10 TUD-SERG-2007-017

Value types The mapping for value type properties simply produces a private
field with a public getter and setter. This requires a bit of name mangling, i.e.
from the name of the property, the names of the getter and setter are derived,
here using the property-getter and property-setter strategies.

property-to-member-decs(|x_Class) :

Property(x_prop, s) -> class-body-dec*|[

private t x_prop;

public t x_get() { return title; }

public void x_set(t x) { this.x = x; }

]|

where t := <builtin-java-type> s

; x_get := <property-getter> x_prop

; x_set := <property-setter> x_prop

The fact that the property is for a value type is determined using the strat-
egy builtin-java-type, which defines mapping for the built-in types of the
DomainModel language to types in Java that implement them. For example, for
example, the String type is defined as follows:

builtin-java-type :

SimpleSort("String") -> type|[java.lang.String]|

Reference types Properties with a referency to another type are translated to
a private field with getters and setters with the @ManyToOne and corresponding
annotations as discussed before:

property-to-member-decs(|x_Class) :

Property(x_prop, s) -> class-body-dec* |[

@ManyToOne

@Cascade({

CascadeType.PERSIST,CascadeType.SAVE_UPDATE,CascadeType.MERGE

})

private t x_prop;

public t x_get() { return x_prop; }

public void x_set(t x_prop) { this.x_prop = x_prop; }

]|

where t := <defined-java-type> s

; x_Prop := <capitalize-string> x_prop

; x_get := <property-getter> x_prop

; x_set := <property-setter> x_prop

; columnname := <concat-strings>[x_Class, x_Prop]

Propagating declared entities The previous rule decides that the property is an
association to a reference type using the strategy defined-java-type, which
maps entities declared in the domain model to the Java types that implement
them. Since the collection of these entity types depends on the domain model,
the defined-java-type mapping is defined at run-time during the transfor-
mation as a dynamic rewrite rule [5]. That is, before generating code for the

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 11

entity declarations, the following declare-entity strategy is applied to each
declaration:

declare-entity =

?Entity(x_Class, prop*)

; rules(

defined-java-type :

SimpleSort(x_Class) -> type|[x_Class]|

)

This strategy first matches (?p with p a term pattern) an entity declaration
and then defines a rule defined-java-type, which inherits from the match the
binding to the variable x_Class. Thus, for each declared entity a corresponding
mapping is defined. As a result, the property-to-member-decs rule fails if it is
applied to a property with an association to a non-existing type (and an error
message might be generated to notify the user). In general, dynamic rewrite rules
are used to add new rewrite rules at run-time to the transformation system.
A dynamic rule inherits variable bindings from its definition context, which is
typically used to propagate context-sensitive information.

2.8 Composing a Code Generator

Using the ingredients discussed above, the basic version of the code generator
for WebDSL is defined as the following Stratego strategy:

webdsl-generator =

xtc-io-wrap(webdsl-options,

parse-webdsl

; alltd(declare-entity)

; collect(entity-to-class)

; output-generated-files

)

The strategy invokes xtc-io-wrap, a library strategy for handling command-line
options to control input, output, and other aspects of a transformation tool. The
argument of xtc-io-wrap is a sequence of strategy applications (s1;s2 is the
sequential composition of two strategies). parse-webdsl parses the input model
using a parse table generated from the syntax definition, producing its abstract
syntax representation. The alltd strategy is a generic traversal, which is used
here to find all entity declarations and generate the defined-java-type map-
ping for each. The generic collect strategy is then used to create a set of Java
entity classes, one for each entity declaration. Finally, the output-generated-files
strategy uses a Java pretty-printer to map a class to a program text and write
it to a file with the name of the class and put it in a directory corresponding to
the package of the class.

Domain-Specific Language Engineering SERG

12 TUD-SERG-2007-017

3 Capturing More Programming Patterns: CRUD Pages

The next step towards full fledged web applications is to create pages for view-
ing and editing objects in our DomainModel language. That is, from a domain
model we will generate a basic userinterface for creating, retrieving, updating
and deleting (CRUD) objects. Well, we’ll start with viewing and editing. For
example, consider the following domain model of Persons with Addresses, and
Users.

Person {

fullname : String

email : String

homepage : String

photo : String

address : Address

user : User

}

Address {

street : String

city : String

phone : String

}

User {

username : String

password : String

person : Person

}

For such a domain model we want to generate view and edit pages as displayed in
Figures 1 and 2. Implementing this simple user interface requires an understand-
ing of the target architecture. Figure 3 sketches the architecture of a JSF/Seam
application for the editPerson page in Figure 2. The /editPerson.seam client
view of the page on the far left of Figure 3 is a plain web page implemented in
HTML, possibly with some JavaScript code for effects and cascading stylesheets
for styling. The rendered version of this code is what we see in Figure 2. The
HTML is rendered on the server side from the JavaServer Faces (JSF) com-
ponent model [9] defined in the editPerson.xhtml file. In addition to regular
HTML layout elements, the JSF model has components that interact with a ses-
sion bean. The EditPersonBean session bean retrieves data for the JSF model
from the database (and from session and other contexts). For this purpose the
session bean obtains an EntityManager object through which it approaches the

Fig. 1. viewPerson page Fig. 2. editPerson page

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 13

/editPerson.seam editPerson.xhtml EditPersonBean.java

Eelco Visser

Save h:inputText h:commandButton

h:form

#{p.fullname} Person p;#{save()}

public void save(){...}

EntityManager em;

em

fullname:Eelco Visser

email

...

db

Fig. 3. Sketch of JSF/Seam architecture.

database, with which it synchronizes objects such as Person p. When the input
field at the client side gets a new value and the form is submitted by a push of
the Save button, the value of the input field is assigned to the field pointed at
by the expression of the h:inputText component (by calling the corresponding
setter method). Subsequently, the save() action method of the session bean,
which is specified in the action attribute of the h:commandButton correspond-
ing to the Save button, is called. This method, then invokes the entity manager
to update the database.

Thus, to implement a CRUD interface for domain objects we must generate
for each page a JSF XHTML document that defines the layout of the userinter-
face and the data used in its elements, and a Seam session bean that manages
the objects referred to in the JSF document.

3.1 Generating JSF Pages

Figure 4 illustrates the structure of the JSF XHTML document for the edit
page in Figure 2. Besides common HTML tags, the document uses JSF com-
ponents such as h:form, h:outputText, h:inputText, and h:commandButton.
Such a document can again be generated using rewrite rules transforming entity
declarations to XHTML documents.

entity-to-edit-page :

Entity(x_Class, prop*) ->

%><html ...> ... <body><h:form><table>

<%= rows ::* %>

<tr><td>

<h:commandButton value="Save" action="#{<%=editX%>.save()}"/>

</td><td></td></tr>

</table></h:form><%

where editX := <concat-strings>["edit", x_Class]

; rows := <map(row-in-edit-form(|editX))> props

This rule generates the overall setup of an edit page from an entity declaration.
Just as was the case with generation of Java code, this rule uses the concrete

Domain-Specific Language Engineering SERG

14 TUD-SERG-2007-017

<html ...> ... <body>

<h:form>

<table>

<tr><td> <h:outputText value="Fullname"/> </td>

<td> <h:inputText value="#{editPerson.person.fullname}"/>

</td> </tr>

<tr><td><h:commandButton value="Save" action="#{editPerson.save()}"/>

</td> <td></td></tr>

</table>

</h:form>

</body> </html>

Fig. 4. editPage.xhtml with JSF components.

syntax of XML in the right-hand side of the rule [4]. (The quotation marks %>
and <% were inspired by template engines such as JSP [12]). The XML fragment
is syntactically checked at compile-time of the generator and the rule then uses
the underlying abstract representation of the fragment. (Note that the ellipses
... are not part of the formal syntax, but just indicate that some elements were
left out to save space.)

The entity-to-edit-page rule calls row-in-edit-form to generate for each
property a row in the table.

row-in-edit-form(|editX) :

prop@Property(x_prop, _, _, _) ->

%>

<tr><td><h:outputText value="<%=x_prop%>"/></td>

<td><%= input %></td></tr>

<%

where input := <property-to-edit-component(|editX)> prop

The left column in the table contains the name of the property, and right column
an appropriate input component , which is generated by the property-to-edit-component
rule. In the case of the String type a simple inputText component is generated.

property-to-edit-component(|editX) :

Property(x_prop, SimpleSort("String")) ->

%>

<h:inputText value="#{<%=editX%>.<%=x_prop%>}"/>

<%

Other types may require more complex JSF configurations. For instance, an
entity association (such as the user property of Person) requires a way to enter
references to existing entities. The page in Figure 2 uses a drop-down selection
menu for this purpose.

The generation of a view page is largely similar to the generation of an
edit page, but instead of generating an inputText component, an outputText
component is generated:

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 15

property-to-view-component(|editX) :

Property(x_prop, SimpleSort("String")) ->

%>

<h:outputText value="#{<%=editX%>.<%=x_prop%>}"/>

<%

3.2 Seam Session Beans

As explained above, the JSF components get the data to display from an EJB
session bean. The Seam framework provides an infrastructure for implementing
session beans such that the connections to the environment, such as the appli-
cation logger and the entity manager, are made automatically via dependency
injection [7]. To get an idea, here is the session bean class for the editPerson
page:

@Stateful

@Name("editPerson")

public class EditPersonBean implements EditPersonBeanInterface{

@Logger private Log log;

@PersistenceContext(type = EXTENDED) private EntityManager em;

@In private FacesMessages facesMessages;

@Destroy @Remove public void destroy() { }

// specific fields and methods

}

EJB3 and Seam use Java 5 annotations to provide application configuration in-
formation within Java classes, instead of the more traditional XML configuration
files. The use of annotations is also an alternative to implementing interfaces;
instead of having to implement a number of methods with a fixed name, fields
and methods can be named as is appropriate for the application, and declared
to play a certain role using annotations.

The @Stateful annotation indicates that this is a stateful session bean,
which means that it can keep state between requests. The @Name annotation
specifies the Seam component name. This is the prefix to object and method
references from JSF documents that we saw in Figure 4. Seam scans class files
at deployment time to link component names to implementing classes, such that
it can create the appropriate objects when these components are referenced from
a JSF instance. The destroy method is indicated as the method to be invoked
when the session bean is @Removed or @Destroyed.

The fields log, em, and facesMessages are annotated for dependency in-
jection [7]. That is, instead of creating the references for these objects using a
factory, the application context finds these fields based on their annotations and
injects an object implementing the expected interface. In particular, log and

Domain-Specific Language Engineering SERG

16 TUD-SERG-2007-017

facesMessages are services for sending messages, for system logging, and user
messages respectively. The em field expects a reference to an EntityManager,
which is the JPA database connection service.

All the above was mostly boilerplate that can be found in any session bean
class. The real meat of a session bean is in the fields in methods specific for
the JSF page (or pages) it supports. In the CRUD scenarios we are currently
considering, a view or edit page has a property for the object under consideration.
That is, in the case of the editPerson page, it has a property of type Person:

private Person person;

public void setPerson(Person person) { this.person = person;}

public Person getPerson() { return person; }

Next, a page is called with URL /editPerson.seam?person=x, where x is
the identity of the object being edited. The problem of looking up the value
of the person parameter in the request object, is also solved by dependency
injection in Seam. That is, the following field definition

@RequestParameter("person") private Long personId;

declares that the value of the the @RequestParameter with the name person
should be bound to the field personId, where the string value of the parameter
is automatically converted to a Long.

To access the object corresponding to the identity passed in as parameter,
the following initialize method is defined:

@Create

public void initialize() {

if (personId == null) {

person = new Person();

} else {

person = em.find(Person.class, personId);

}

}

The method is annoted with @Create to indicate that it should be called upon
creation of the bean (and thus the page). The method uses the entity manager em
to find the object with the given identity. The case that the request parameter
is null occurs when no idenity is passed to the requrest. Handling this case
enables, supports the creation of new objects.

Finally, a push of the Save button leads to a call to the following save()
method, which invokes the entity manager to save the changes to the object to
the database:

public String save()

{

em.persist(this.getPerson());

return "/viewPerson.seam?person=" + person.getId();

}

The return value of the method is used to determine the page flow after saving,
which is in this case to go to the view page for the object just saved.

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 17

3.3 Generating Session Beans

Generating the session beans for view and edit pages comes down to taking
the boilerplate code we saw above and generalizing it by taking out the names
related to entity under consideration and replacing it with holes. Thus, following
rule sketches the structure of such a generator rule:

entity-to-session-bean :

Entity(x_Class, prop*) -> |[

@Stateful @Name("~viewX")

public class x_ViewBean implements x_ViewBeanInterface {

...

@Destroy @Remove public void destroy() { }

}

]|

where viewX := ...; x_ViewBean := ...; x_ViewBeanInterface := ...

Such rules are very similar to the generation rules we saw in Section 2.

3.4 Deriving Interfaces

A stateful session bean should implement an interface declaring all the methods
that should be callable from JSF pages. Instead having a separate (set of) rule(s)
that generates the interface from an entity, such an interface can be generated
automatically from the bean class. This is one of the advantages of generating
structured code instead of text. The following rules and strategy define a trans-
formation that turns a Java class into an interface with all the public methods
of the class.

create-local-interface(|x_Interface) :

class -> |[@Local public interface x_Interface { ~*methodsdecs }]|

where methodsdecs := <extract-method-signatures> class

extract-method-signatures =

collect(method-dec-to-abstract-method-dec)

method-dec-to-abstract-method-dec :

MethodDecHead(mods, x , t, x_method, args, y) ->

AbstractMethodDec(mods, x, t, x_method, args, y)

where <fetch(?Public())> mods

4 Refining Programming Patterns

The domain DSL with CRUD generator that we set up in the previous two sec-
tions allows us to generate the data layer of a web application and a simple user
interface for viewing and editing objects. Even for functionality as straightfor-
ward as CRUD operations, the flavour that we introduced so far is very simplis-
tic. Before we consider how to be able to define the user interface more flexibly,
we consider first a couple of refinements to the domain modeling language and
the view/edit page generator.

Domain-Specific Language Engineering SERG

18 TUD-SERG-2007-017

4.1 Strings in Many Flavours

The association types that we saw in the previous sections were either Strings or
references to other defined entities. While strings are useful for storing many (if
not most) values in typical applications, the type name does not provide us with
much information about the nature of those data. By introducing application-
domain specific value types we can generate a lot of functionality ’for free’. For
example, the following domain models for Person and User still use mostly string
valued data, but using alias types:

Person { User {

fullname : String username : String

email : Email password : Secret

homepage : URL person : Person

photo : Image }

address : Address

user : User

}

Thus, the type Email represents email addresses, URL internet addresses, Image
image locations, Text long pieces of text, and Secret passwords. Based on these
types a better tuned user interface can be generated. For example, the following
rules generate different input fields based on the type alias:

property-to-edit-component(|x_component) :

Property(x_prop, SimpleSort("Text")) ->

%><h:inputTextarea value="#{<%=x_component%>.<%=x_prop%>}"/><%

property-to-edit-component(|x_component) :

Property(x_prop, SimpleSort("Secret")) ->

%><h:inputSecret value="#{<%=x_component%>.<%=x_prop%>}"/><%

A textarea is generated for a property of type Text, and a password input field
is generated for a property of type Secret.

4.2 Collections

Another ommission so far was that associations had only singular associations.
Often it is useful to have associations with collections of values or entities. Of
course, such collections can be modeled using the basic modeling language. For
example, define

PersonList { hd : Person tl : PersonList }

However, in the first place this is annoying to define for every collection, and
furthermore, misses the opportunity for attaching standard functionality to col-
lections. Thus, we introduce a general notion of generic sorts, borrowing from
Java 5 generics the notation X<Y,Z> for a generic sort X with sort parameters
Y and Z. For the time being this notation is only used to introduce collection

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 19

associations using the generic sorts List and Set. For example, a Publication
with a list of authors and associated to several projects can then be modeled as
follows:

Publication {

title : String

authors : List<Person>

year : Int

abstract : Text

projects : Set<Project>

pdf : URL

}

Many-to-many associations Introduction of collections requires extending the
generation of entity classes. The following rule maps a property with a list type
to a Java property with list type and persistence annotation @ManyToMany, as-
suming that objects in the association can be referred to by many objects from
the parent entity:

property-to-property-code(|x_Class) :

Property(x_prop, GenericSort("List", [y])) -> |[

@ManyToMany

@Cascade({

CascadeType.PERSIST,CascadeType.SAVE_UPDATE,CascadeType.MERGE

})

private List<t> x_prop = new LinkedList<t>();

]|

The @Cascade annotation declares how the entity manager should behave when
persistence operations are applied to the parent object, that is whether these
operations should be propagated (cascaded) to the objects at the other end of
the association. The annotation above states that only operations that save the
parent object should be propagated, but not, for example, deletions.

Collections also requires an extension of the userinterface. This will be dis-
cussed later in the paper.

4.3 Refining Association

Yet another omission in the domain modeling language is with regard to the
nature of associations. In UML terminology, are associations to other entities
compositions or aggregations? In other words, does the referring entity own the
objects at the other end of the association or not? To make this distinction
we refine properties to be either value type (e.g. title :: String), compos-
ite (e.g. address <> Address), or reference (e.g. authors -> List<Person>)
associations. Figure 5 illustrates the use of special value types, collections, and
composite and reference associations

Based on the association type different code can be generated. For example, a
composite collection, i.e. one in which the referrer owns the objects in the collec-
tion, gets a different cascading strategy than the one for (reference) collections

Domain-Specific Language Engineering SERG

20 TUD-SERG-2007-017

Publication {

title :: String

authors -> List<Person>

year :: Int

abstract :: Text

projects -> Set<Project>

pdf :: URL

}

Person {

fullname :: String

email :: Email

homepage :: URL

photo :: Image

address <> Address

user -> User

}

Address {

street :: String

city :: String

phone :: String

}

Fig. 5. Domain model with composite and reference associations.

above, namely one in which the associated objects are deleted with their owner.
Furthermore, collections of value types are treated differently than collections of
entities.

Unfolding Associations One particular decision that can be made based on as-
sociation type is to unfold composite associations in view and edit pages. This
is what is already done in Figures 1 and 2. In Figure 5 entity Person has a
composite association with Address. Thus, an address is owned by a person.
Therefore, when viewing or editing a person object we can just as well view/edit
the address. The following rule achieves this by unfolding an entity reference,
i.e. instead of including an input field for the entity, the edit rows for that entity
are inserted:

row-in-edit-form(|editY) :

|[x_prop <> s]| ->

%>

<tr><td><h:outputText value="<%=x_prop%>"/></td><td></td></tr>

<%= row* ::*%>

<%

where <defined-java-type> s

; prop* := <properties> s

; editYX := <concat-strings>[editY,".",x_prop]

; row* := <map(row-in-edit-form(|editYX))> prop*

As an aside, note how the EL expression passed to the recursive call of
row-in-edit-form is built up using string concatenation (variable editYX). This
rather bad style is an artifact of the XML representation for JSF; the attributes
in which EL expressions are represented are just strings without structure. This
can be solved by defining a proper syntax of JSF XML by embedding a syntax
of EL expressions.

5 Scrap your BoilertemplateTM

Time to take stock. What have seen in the previous sections? We analyzed the
programming patterns for JPA entity classes and for view/edit pages imple-
mented using JSF and Seam. Then we abstracted out the commonality in these

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 21

programming patterns and turned them into code generation rules with as input
a domain modeling language providing some variability in the form of built-in
types and kinds of associations. The boilerplate in the generated code is consid-
erable. For example, for the entity Publication in Figure 5 here is a breakdown
of the source files generated and their size:

file LOC
Publication.java 121
EditPublicationBeanInterface.java 56
EditPublicationBean.java 214
ViewPublicationBeanInterface.java 28
ViewPublicationBean.java 117
editPublication.xhtml 181
viewPublication.xhtml 153
total 870

It should be noted that this includes code for editing entity associations that
has not been discussed yet. The one but last row in Figure 2 gives an example
of the user interface; for a reference to an entity, the user interface provides a
drop-down menu with (names of) all objects of that type. This is responsible for
quite a bit of the code in EditPublicationBean.java.

With 8 lines of model input, the ratio of generated lines of code to source lines
of code is over 100! Now the question is what that buys us. If there was a market
for boring CRUD applications this would be great, but in practice we want a
much richer application with fine tuned view and edit pages. If we would continue
on the path taken here, we could add new sets of generator rules to generate new
types of pages. For example, we might want to have pages for searching objects,
pages list all objects of some type, pages providing selections and summaries,
etc. But then we would hit an interesting barrier: code duplication in the code
generator. The very phenomenon that we were trying to overcome in the first
place, code duplication in application code, shows up again, but now in the form
of target code fragments that appear in more than one rule (in slightly differen
forms), sets of generator rule that are very similar, but generate code for a
different type of page, etc. In other words, this smells like boilerplate templates,
or boilertemplates, for short.

The boilertemplate smell is characterized by similar target coding patterns
used in different templates, only large chunks of target code (a complete page
type) considered as a reusable programming pattern, and limited expressivity,
since adding a slightly different pattern (type of page) already requires extending
the generator.

High time for some generator refactoring. The refactoring we’re going to use
here is called find an intermediate language also known as scrap your boil-
ertemplate2. In order to gain expressivity we need to better cover the variability
in the application domain. While implementing the domain model DSL, we have
2 Google for ’scrap your boilerplate’.

Domain-Specific Language Engineering SERG

22 TUD-SERG-2007-017

explored the capabilities of the target platform, so by now we have a better idea
how to implement variations on the CRUD theme by combining the basics of
JSF and Seam in different ways. What we now need is a language that sits in
between the high-level domain modeling language and the low-level details of
JSF/Seam and allows us to provide more variability to application developers
while still maintaining an advantage over direct programming.

Consider the following domain model for an entity Group:

Group {

acronym :: String (name)

fullname :: String

mission :: Text

logo :: Image

members -> Set<Person>

projects -> Set<ResearchProject>

colloquia -> Set<Colloquium>

news -> List<News>

}

While a standard edit page is sufficient for this model, we want to create custom
presentation pages that highlight different elements. We will use this example
to design a basic language for page flow and presentation. Then we develop a
generator that translates page definitions to JSF pages and supporting Seam
session beans.

5.1 Page Flow

The view/edit pages in Section 3 had URLs of the form

/viewGroup.seam?group=x

where x is the identity of the object to be presented. Thus, a page has a name
and arguments, so an obvious syntax for page definitions is

define page viewGroup(group : Group) {

<presentation>

}

The parameter is a variable local to the page definition. While in the implemen-
tation, the URL to call a page uses object identities, within a page definition
the parameter variable can be treated as referring to the corresponding object.
Of course, a page definition can have any number of parameters, including zero.
Navigation to a page has the following form in HTML:

SERG

The identity of the argument object is passed and a string is used for the an-
chor of the link. In WebDSL we’ll use the following form for specifying page
navigation:

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 23

Fig. 6. View of Group object.

define page viewGroup(group:Group){

section {

header{text(group.fullname)}

section {

header{"Mission"}

outputText(group.mission)

}

section {

header{"Recent Publications"}

list { ... }

}

section {

header{"People"}

list { ... }

}

} }

Fig. 7. Markup for Group view.

navigate(pers.group.acronym, viewGroup(pers.group))

The first argument is a specification of the text for the anchor, which can be
a literal string, or a string value obtained from some data object. The second
argument is a ‘call’ to the appropriate page definition.

5.2 Content Markup and Layout

Next we are concerned with presenting the data of objects on a page. For in-
stance, a starting page for a research group might be presented as in Figure 6.
The layout of such a page is defined using a presentation markup language that
can access the data objects passed as arguments to a page. The elements for com-
position of a presentation are well known from document definition languages
such as LATEX, HTML, and DocBook and don’t require much imagination. We
need things such as sections with headers, paragraphs, lists, tables, text blocks,
etc. Figure 7 shows the top-level markup for the view in Figure 6. There we see
sections with headers, nested sections, lists, and a text block obtained by taking
the Text from group.mission. The intention of these markup constructs is that
they don’t allow any configuration for visual formatting. That is, section does
not have parameters or attribute for declaring the font-size, text color, are text
alignment mode. The markup is purely intended to indicate the structure of the
document. Visual formatting can be done using cascading stylesheets [16].

While the presentation elements above are appropriate for text documents,
web pages often have a more two-dimensional layout. That is, in addition to the

Domain-Specific Language Engineering SERG

24 TUD-SERG-2007-017

Fig. 8. Logos, sidebars, drop-down menus.

body, which is layed out as a text document, a web page often contains elements
such as a toolbar with drop-down menus, a sidebar with (contextual) links, a
logo, etc. Figure 8 illustrates this by an extension of the Group view page of
Figure 6 with a sidebar, menubar with drop-down menus and a main logo.

WebDSL takes a simple view at the problem of two-dimensional layout. A
page can be composed of blocks, which can be nested, and have a name. For
instance, here is the (top-level) markup for the page in Figure 8:

define page viewGroup(group : Group) {

block("outersidebar"){

block("logo"){ ... }

block("sidebar"){ ... }

}

block("outerbody"){

block("menubar"){

block("menu"){ ... }

}

block("body"){

section { header{text(group.fullname)} ... }

}

}

}

This definition states that a page is composed of two main blocks, outersidebar
and outerbody, which form the left and right column in Figure 8. These blocks
are further subdivided into, logo and sidebar, and menubar and body, respec-
tively. By mapping blocks to divs in HTML with the block name as CSS class,

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 25

.outersidebar {

position : absolute;

overflow : hidden;

top : 0px;

left : 10px;

margin-top : 10px;

width : 10em;

}

.logo {

text-align : left;

}

.sidebar {

top : 0px;

margin-top : 20px;

color : darkblue;

border-right : 1px dotted;

}

.outerbody {

position : absolute;

top : 10px;

left : 12.5em;

right : 40px;

}

.menubar {

height : 62px;

border-bottom : 1px dotted;

color : darkblue;

}

.body {

position : relative;

top : 20px;

margin-bottom : 2.5em;

}

Fig. 9. Cascading stylesheet for block layout.

the layout can be determined again using CSS. For instance, the layout of Fig-
ure 8 is obtained using the stylesheet in Figure 9.

Other layout problems can be solved in a similar way using CSS. For example,
the sidebar in Figure 9 is simply structured as a list:

block("sidebar"){

list {

listitem { navigate(group.acronym, viewGroup(group)) }

listitem { navigate("People", groupMembers(group)) }

listitem { navigate("Publications", groupPublications(group)) }

listitem { navigate("Projects", groupProjects(group)) list{ ... } }

}

}

Using CSS the default indented and bulleted listitem layout can be redefined to
the form of Figure 9 (no indentation, block icon for sublists, etc.).

Even drop-down menus can be defined using CSS. The menus in Figure 9
are again structured as lists, that is, each menu is a list with a single list item,
which has a sublist declaring the menu entries:

block("menu") {

list { listitem { "People" list { ... } } }

list { listitem { "Projects" list { ... } } }

...

}

Using the :hover element, such lists can be specified to be visible only when the
mouse is over the menu.

Domain-Specific Language Engineering SERG

26 TUD-SERG-2007-017

Thus, using simple structural markup elements without any visual configura-
tion, we can achieve a good separation of the definition of the structure of a page
and its visual layout using cascading stylesheets. This approach can be easily
extended to more fancy userinterface elements by targetting AJAX in addition
to pure HTML. There again the aim should be to keep WebDSL specifications
free of visual layout.

5.3 Language Constructs

We have now developed a basic idea for a page presentation language with
concepts such as sections, lists, and blocks. The next question is how to define
a language in which we can write these structures. The approach that novice
language designers tend to take is to define a syntactic production for each
markup element. Experience shows that such language definitions become rather
unwieldy and make the language difficult to extend. To add a new markup
construct, the syntax needs to be extended, and thus all operations that operate
on the abstract syntax tree. Lets be clear that a rich syntax is a good idea, but
only where it concerns constructs that are really different. Thus, rather than
introducing a syntactic language construct for each markup element we saw
above, WebDSL has a single generic syntactic structure, the template call (why
it is called template call will become clear later).

Template Call In general, a template call has the following form:

f(e1,...,em) {elem1 ... elemn}

That is, a template call has a name f, a list of expressions e and a list of template
elements elem. The abstract syntax for the construct is

TemplateCall(f, [e1,...,em], [elem1, ..., elemn])

Both the expression and element argument lists are optional. The name of the
call determines the type of markup and is mapped by the back-end to some
appropriate implementation in a target markup language.

The element arguments of a call are nested presentation elements. For exam-
ple, a section has as arguments, among others, headers and paragraphs

section{ header{ ... } par{ ... } par{ ... } }

a list has as elements listitems

list { listitem { ... } ... }

and a table has rows

table { row{ ... } row{ ... } }

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 27

The expression arguments of a call can be simple strings, such as the name
of a block:

block("menu") { list { ... } }

However, mostly expressions provide the mechanism to access data from entity
objects. For example, the text element takes a reference to a string value and
displays it:

text(group.name)

Similarly, the navigate element takes a string value to be used as the anchor,
and a method call expression that is interpreted as a call to a page.

navigate(pub.name, viewPublication(pub))

Iteration While the template call element is fairly versatile, it is not sufficient
for everything we need to express. In particular, we need a mechanism for it-
erating over collections of objects or values. This is the role of the for iterator
element, which has the following concrete syntax:

for(x : sort in e) { elem* }

The reason that this construct cannot be expressed using the syntax of a tem-
plate call is the variable which is bound locally in the body of the iterator. The
abstract syntax of the for element is

For(x, sort, e, elem*)

The iterator is typically used to list objects in a collection. For example, the
following fragment of a page involving a group of type Group, which has a
collection of projects,

list {

for(p : ResearchProject in group.projects) {

listitem {

navigate(p.acronym, viewResearchProject(p))

}

}

}

5.4 Mapping Pages to JSF+Seam

In Section 3 we saw how to generate a web application for viewing and editing
objects in a domain model using a row-based interface targetting the JSF and
Seam frameworks. We can now use the knowledge of that implementation ap-
proach to define a mapping from the new fine grained presentation elements to
JSF+Seam. Figure 10 illustrates the mapping for tiny page definition. The map-
ping from a page definition to JSF involves creating an XML JSF document with

Domain-Specific Language Engineering SERG

28 TUD-SERG-2007-017

User { name :: String }

page viewUser(user : User) {

text(user.name)

}

⇒

⇓

<html ...> ...

<body>

<h:outputText

value="#{viewUser.user.name}"/>

</body>

</html>

@Stateful @Name("viewUser")

class viewUserBean {

@PersistenceContext

EntityManager em;

@RequestParameter("user")

private Long userId;

property User user;

@Begin @Create

public void initialize() {

user =

em.find(User.class,userId)

}

}

Fig. 10. Mapping from page definition (upper left) to session bean (right) and JSF
(lower left).

as body the body of the page definition, mapping presentation elements to JSF
components and HTML, and object access expressions to JSF EL expressions.
The mapping from a page definition to a Seam session bean involves creating
the usual boilerplate, @RequestParameters with corresponding properties, and
appropriate statements in the initialization method. In the rest of section we
consider some of the translation rules.

Generating JSF The mapping from page elements to JSF is a fairly straight-
forward set of recursive rules that translate individual elements to corresponding
JSF components. Note that while the syntax of template calls is generic, the
mapping is not generic. First, while the syntax allows to use arbitrary identifiers
as template names, only a (small) subset is actually supported. Second, there
are separate generation rules to define the semantics of different template calls.
The essence of the domain-specific language is in these code generation rules.
They store the knowledge about the target domain that we reuse by writing DSL
models. We consider some representative examples of the mapping to JSF.

Text The rule for text is a base case of the mapping. A text(e) element displays
the string value of the e expression using the outputText JSF component.

elem-to-xhtml :

|[text(e)]| -> %> <h:outputText value="<%=el%>"/> <%

where el := <arg-to-value-string> e

The arg-to-value-string rules translate an expression to a JSF EL expression.

Block The rule for block is an example of a recursive rule definition. Note the
application of the rule elems-to-xhtml in the antiquotation.

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 29

elem-to-xhtml :

|[block(str){elem*}]| ->

%>

<div class="<%= str %>">

<%= <elems-to-xhtml> elem* ::*%>

</div>

<%

The auxiliary elems-to-xhtml strategy is a map over the elements in a list:

elems-to-xhtml = map(elem-to-xhtml)

Iteration While iteration might seem one of the complicated constructs of WebDSL,
its implementation turns out the be very simple. An iteration such as the fol-
lowing

list{ for (project : ResearchProject) {

listitem { text(viewGroup.project.acronym) }

}}

is translated to the JSF ui:repeat component, which iterates over the elements
of the collection that is produced by the expression in the value attribute, using
the variable named in the var attribute as index in the collection.

 <ui:repeat var="project"

value="#{viewGroup.group.projectsList}">

 <h:outputText value=\"#{viewGroup.project.acronym}\"

</ui:repeat>

This mapping is defined in the following rule:

elem-to-xhtml :

|[for(x : s in e) { elem1* }]| ->

%>

<ui:repeat var="<%= x %>" value="<%= el %>">

<%= elem2* ::*%>

</ui:repeat>

<%

where el := <arg-to-value-string> e

; elem2* := <elems-to-xhtml> elem1*

Navigation The translation of a navigation element is slightly more complicated,
since it involves context-sensitive information. As example, consider the following
navigate element:

navigate(viewPerson(p)){text(p.name)}

It is a variation over the form before. Here the text of the anchor is defined in
the list of argument elements. Such a navigation should be translated to the
following JSF code:

Domain-Specific Language Engineering SERG

30 TUD-SERG-2007-017

<s:link view="/viewPerson.xhtml">

<f:param name="person" value="#{p.id}" />

<h:outputText value="#{p.name}" />

</s:link>

While most of this is straightforward, the complication comes from the parame-
ter. The f:param component defines for a URL parameter the name and value.
However, the name of the parameter (person in the example) is not provided in
the call (viewPerson). The following rule solves this by means of the dynamic
rule TemplateArguments:

elem-to-xhtml :

|[navigate(p(e*)){elem1*}]|

%> <s:link view = "/<%= p %>.xhtml"><%=

<conc>(param*,elem2*) ::*

%></s:link> <%

where <IsPage> p

; farg* := <TemplateArguments> p

; param* := <zip(bind-param)> (farg*, args)

; elem2* := <elems-to-xhtml> elem1*

In a similar way as declare-entity in Section 2 declares the mapping of de-
clared entities to Java types, for each page definition dynamic rules are defined
that (1) record the fact that a page with name p is defined (IsPage), and (2) map
the page name to the list of formal parameters of the page (TemplateArguments).
Then, creating the list of f:params is just a matter of zipping together the list of
formal parameters and actual parameters using the following bind-param rule:

bind-param :

(|[x : $X]|, e) ->

%><f:param name="<%= x %>" value="<%= el %>" /><%

where <defined-java-type> $X

; el := <arg-to-value-string> |[e.id]|

The rule combines a formal parameter x and an actual parameter expression e
into a f:param element with as name the name of the formal parameter, and as
value the EL expression corresponding to e.

Sections A final example is that of nested sections. Contrary to the custom of
using fixed section header levels, WebDSL assigns header levels according to the
section nesting level. Thus, a fragment such as

section { header{"Foo"} ... section { header{"Bar"} ... } }

should be mapped to HTML as follows:

<h1>Foo</h1> ... <h2>Bar</h2> ...

This is again an example of context-sensitive information, which is solved using
a dynamic rule. The rules for sections just maps its argument elements. But
before making the recursive call, the SectionDepth counter is increased.

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 31

elem-to-xhtml :

|[section() { elem1* }]| -> |[elem2*]|

where {| SectionDepth

: rules(SectionDepth := <(SectionDepth <+ !0); inc>)

; elem2* := <elems-to-xhtml> elem1*

|}

The dynamic rule scope {| SectionDepth : ... |} ensures that the variable
is restored to its original value after translating all elements of the section.

The rule for the header element uses the SectionDepth variable to generate
a HTML header with the right level.

elem-to-xhtml :

|[header(){ elem* }]| ->

%>

<~n:tag><%= <elems-to-xhtml> elems ::*%></~n:tag>

<%

where n := <SectionDepth <+ !1>

; tag := <concat-strings>["h", <int-to-string> n]

Interesting about this example is that the dynamic rules mechanism makes it
possible to propagate values during translation without the need to store these
values in parameters of the translation rules and strategies.

5.5 Generating Seam Session Beans

The mapping from page definitions to Seam is less exciting than the mapping
to JSF. At this point there are only to aspects to the mapping. First a page
definition gives rise to a compilation unit defining a stateful session bean with
as Seam component name the name of the page, and the usual boilerplate for
session beans.

page-to-java :

def@|[define page x_page(farg*) { elem1* }]| ->

compilation-unit|[

@Stateful @Name("~x_page")

public class x_PageBean implements x_PageBeanInterface {

@PersistenceContext private EntityManager em;

@Create @Begin public void initialize() { bstm* }

@Destroy @Remove public void destroy() {}

~*cbd*

}

]|)

where x_Page := <capitalize-string> x_page

; x_PageBean := <concat-strings> [x_Page, "Bean"]

; cbd* := <collect(page-elem-to-method)> def

; bstm* := <collect(page-elem-to-init)> def

Secondly, for each argument of the page, a @RequestParameter with correspond-
ing property is generated as discussed in Section 3.

Domain-Specific Language Engineering SERG

32 TUD-SERG-2007-017

argument-to-bean-property :

|[x : x_Class]| ->

|[

@RequestParameter("~x") private Long x_Id;

private x_Class x;

public void x_set(x_Class x) { this.x = x; }

public x_Class x_get() { return x; }

]|

where x_Id := <concat-strings>[x, "Id"]

; x_get := <property-getter> x

; x_set := <property-setter> x

Furthermore, code is generated for initializing the property by loading the object
corresponding to the identity when the session bean is created.

argument-to-initialization :

|[x : x_Class]| ->

|[

if (x_Id == null) { x = new x_Class(); }

else { x = em.find(x_Class.class, x_Id); }

]|

where x_Id := <concat-strings>[x, "Id"]

5.6 Boilertemplate Scrapped

This concludes the generator refactoring ’scrap your boilertemplate’. We have
introduced a language that provides a much better coverage of the user interface
domain; we can now create presentations by arranging the set of templates in
different ways. The resulting mapping now looks much more like a compiler; the
language constructs do one thing and the translation rules are fairly small. Next
we consider several extensions of the language.

6 Extensions

In the core language developed in the previous section some aspects were, con-
ciously, ignored to keep the presentation simple. In this section we consider
several necessary extensions.

6.1 Typechecking

Java is a statically typed language, which ensures that many common program-
ming errors are caught at compile-time. Surprisingly, however, this does not
mean that web applications developed with frameworks such as JSF and Seam
are free of ‘type’ errors after compilation.

JSF pages are ‘compiled’ at run-time, which means that many causes of errors
are unchecked. Typical examples are missing or non-supported tags, references

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 33

to non-existing properties, and references to non-existing components. Some of
these errors cause run-time exceptions, but others are silently ignored.

While this is typical of template-like data, it is interesting to observe that
a framework such as Seam, which relies on annotations in Java programs for
configuration, has similar problems. The main cause is that Seam component
annotations are scanned and linked at deployment-time, and not checked at
compile-time for consistency. Thus, uses of components (e.g. in JSF pages) are
not checked. Injection and outjection of data enables loose coupling between
components/classes, which is good, but as a result, the compiler can no longer
check data flow properties, such as guaranteeing that a variable is always ini-
tialized before it is used. Another symptom of interacting frameworks is the fact
that a method that is not declared in the @Local interface of a session bean, is
silently ignored when invoked in JSF.

Finally, JPA and Hibernate queries are composed using string concatenation.
Therefore, syntactic and type errors (e.g. non-existing column) become manifest
only at run-time. Most of these types of errors will show up during testing, but
vulnerabilities to injection attacks in queries only manifest themselves when the
system is attacked, unless they are tested for.

Typechecking WebDSL To avoid the kind of problems mentioned above, WebDSL
programs are statically typechecked to find such errors early. The types of ex-
pressions in template calls are checked against the types of definition parameters
and properties of entity definitions to avoid use of non-existing properties or ill-
typed expressions. The existence of pages that are navigated to is checked. For
example, for the following WebDSL program

User { name :: String }

define page viewUser(user : User) {

text(user.fullname)

text(us.name)

}

the typechecker finds the following errors:

$ dsl-to-seam -i test.app

[error] definition viewUser/text/:

expression ’user.fullname’ has type error

[error] definition viewUser/text/:

variable ’us’ has no declared type

Yes, the error messages could be more informative.

Typechecking Rules The typechecker is a transformation on WebDSL programs,
which checks the type correctness of expressions and annotates expressions with
their type. These annotations will turn out very useful later on when considering
higher-level abstractions. The following typecking rule for the iterator construct,
illustrates some aspects of the implementation of the typechecker.

Domain-Specific Language Engineering SERG

34 TUD-SERG-2007-017

typecheck-iterator :

|[for(x : srt in e1){elem1*}]| -> |[for(x : s in e2){elem2*}]|

where in-tc-context(id

; e2 := <typecheck-expression> e1

; <should-have-list-type> e2

; {| TypeOf

: if not(<java-type> s) then

typecheck-error(|["index ", x, " has invalid type ", srt])

else

rules(TypeOf : x -> srt)

end

; elems2 := <typecheck-page-elements> elems1

|}

| ["iterator ", x, "/"])

First, the typechecker is a transformation, that is, rather than just checking, con-
structs are transformed by adding annotations. Thus, in this rule, the iterator
expression and elements in the body are replaced by the result of typecheck-
ing them. Next, constraints on the construct are checked and errors reported
with typecheck-error. The in-tc-context wrapper strategy is responsible for
building up a context string for use in error messages. Finally, the local iterator
variable x is bound to its type in the TypeOf dynamic rule. The dynamic rule
scope {| TypeOf : ... |} ensures that the binding is only visible while type-
checking the body of the iterator. The binding is used to annotate variables with
their type, as expressed in the typecheck-variable rule:

typecheck-variable :

Var(x) -> Var(x){Type(t)}

where if not(t := <TypeOf> x) then

typecheck-error(|["variable ", x, " has no declared type"])

; t := "Error"

end

6.2 Data Input and Actions

The core language of the previous section only dealt with presentation of data.
Data input is of course an essential requirement for web applications. To make
edit pages we need constructs to create input components that bind data to ob-
ject fields, forms, and buttons and actions to save the data. Figure 11 shows
a WebDSL page definition for a simple edit page with a single input field
and a Save button, as well as the mapping to JSF and Java/Seam. The lan-
guage constructs are straightforward. The form element builds a form, the
inputString)e) element creates an input field bound to the contents of the
field point at by e, and the action element creates a button, which executes a
call to a defined action when pushed. The mapping to JSF is straightforward as
well. The action definition is mapped to a method of the session bean.

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 35

User { name :: String }

page editUser(user : User) {

form{

inputString(user.name)

action("Save", save())

action save() {

user.save();

return viewUser(user);

}

}

}

⇒

@Stateful @Name("editUser")

class viewUserBean {

property User user;

@End public String save()

{

em.persist(this.getUser());

return "/viewUser.seam"

+ "?user=" + user.getId();

}

}

⇓
<h:form>

<h:inputText value="#{editUser.user.username}"/>

<h:commandButton type="submit" value="Save"

action="#{editUser.save()}"/>

</h:form>

Fig. 11. Mapping form, input field, and action to JSF and Java/Seam.

Action Language The statement language that can be used in action definitions
is a simple imperative language with the usual constructs. Assignment such as
person.blog := Blog{ title := name}; bind a value to a variable or field.
Method calls publication.authors.remove(author); invoke an operation on
an object. Currently the language only supports a fixed set of methods, such
as some standard operations on collections, and persistence operations such as
save. The latter can be applied directly to entity objects, hiding the interaction
with an entity manager from the WebDSL developer. The return statement is
somewhat unusual, as it is interpreted as a page-flow directive, that is, a state-
ment return viewUser(u); is interpreted as a page redirect with appropriate
parameters. Conditional execution is achieved using the usual control-flow con-
structs.

Expressions consist of variables, constant values (e.g. strings, integers), field
access, and object creation. Rather than having to assign values to fields after
creating an object, this can be done with the creation expression. Thus, object
creation has the form Person{ name := e ... }, where fields can be directly
given a value. There is also special syntax for creating sets ({ e1, e2, ... })
and lists [e1, e2, ...].

Java Embedding The current design of the action language is a little ad hoc and
should be generalized. A conventional crititique of domain-specific languages is
that they require the redesign of such things as statements and expressions, which
is hard to get right and complete. An alternative would be to directly embed the
syntax of Java (statements and expressions), importing the full expressivity of
that language. Indeed this is what is done with the Hibernate Query Language
later in this section. However, I’m somewhat hesitant to do this for Java. While

Domain-Specific Language Engineering SERG

36 TUD-SERG-2007-017

User { name :: String }

page createUser() {

var user : User := User{};

form{

inputString(user.name)

action("Save", save())

action save() {

user.save();

return viewUser(user);

}

}

}

⇒

@Stateful @Name("editUser")

class createUserBean {

property User user;

@Create @Begin

public void initialize() {

user = new User();

}

@End public String save() {

em.persist(this.getUser());

return "/viewUser.seam"

+ "?user=" + user.getId();

}

}

⇓
<h:form>

<h:inputText value="#{createUser.user.username}"/>

<h:commandButton type="submit" value="Save"

action="#{createUser.save()}"/>

</h:form>

Fig. 12. Page local variables.

the embedding would provide a language with solid syntax and semantics, it
would also mean a loss off control over the expressivity of the language, and over
its portability to other platforms. A more viable direction seems to be to keep
the action language simple, but provide foreign method interface, which gives
access to functionality implemented in external libraries to be linked with the
application.

6.3 Page Local Variables

So far we have considered pages that operated on objects passed as parameters.
Sometimes it is necessary for a page to have local variables. For example, a
page for creating a new object cannot operate on an existing object and needs
to create a fresh object. Page local variables support this scenario. Figure 12
illustrates the use of a local variable in the definition of a page for creating
new User objects, which is mostly similar as the edit page, except for the local
variable.

6.4 Queries

The presentation language supports the access of data via (chained) field ac-
cesses. Thus, if we have an object, we can access all objects to which it has
(indirect) associations. Sometimes, we may want to access objects that are not
available through associations. For example, in the domain model in Figure 5,
a Publication has a list of authors of type Person, but a Person has no (in-
verse) association to the publications he is author of. In these situations we need

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 37

User{ name :: String } Publication{ authors -> List<User> }

page viewUser(user : User) {

var pubs : List<Publication> :=

select pub from Publication as pub, User as u

where (u.id = ~user.id) and (u member of pub.authors)

order by pub.year descending;

for(p : Publication in pubs) { ... }

}

⇓

class viewUserBean {

property List<Publication> pubs;

@Factory("pubs") public void initPubs() {

pubs = em.createQuery(

"select pub from Publication as pub, User as u" +

" where (u.id = :param1) and (u member of pub.authors)" +

" order by pub.year descending"

).setParameter("param1", this.getUser().getId())

.getResultList();

}

}

Fig. 13. Mapping embedded HQL queries to string-based query construction in Java.

a query mechanism to reconstruct the implicit association. In general, queries
allow filtering of data.

There is no need to invent a DSL for querying. The Hibernate Query Lan-
guage (HQL), an adaptation of the relational query language SQL to ORM,
provides an excellent query language[2]. To make HQL available in WebDSL we
follow the language embedding pattern described in [14]. Figure 13 illustrates
the embedding and its implementation. The query retrieves the publications for
which the user is an author. A HQL query is added to the WebDSL syntax as an
expression. For now we assume the result of a query is assigned to a local page
variable, which can then be accessed anywhere on the page. Queries can refer to
values of page objects by means of the antiquotation . In Figure 13, this is used
to find the user with same identity as the user object of the page. The query is
translated to a @Factory method, which uses the entity manager to create the
query using string composition. Antiquoted expressions become parameters of
the query.

While the use of HQL in WebDSL does not provide a dramatic decrease in
code size, there are some other advantages over the use of HQL in Java. In Java
programs, Hibernate queries are composed as strings and parsed at run-time.
This means that syntax errors in queries are only caught at run-time, which is
hopefully during testing, but maybe during production is testing is thorough.
The getParameter mechanism of HQL appears to do a job when it comes to

Domain-Specific Language Engineering SERG

38 TUD-SERG-2007-017

escaping special characters. However, when developers ignore this mechanism
and splice values directly into the query string, the risks of injection attacks
are high. In WebDSL are not composed as strings, but integrated in the syntax
of the language. Thus, syntactic errors are caught at compile-time and it is not
possible to splice in strings originating from user input without escaping. Another
advantage is that the WebDSL typechecker can check the consistency of queries
against the domain model and local variable declarations. The consistency of
HQL queries in Java programs is only checked at run-time.

7 Not all Abstraction can be Generative

In the previous two sections we have extended the domain modelling language
with a language for page presentation, data input, and page flow. The resulting
language provides the required flexibility such that we can easily create different
types of pages without having to extend or change the generator. The generator
now encapsulates a lot of knowledge about basic implementation patterns.

The thesis of this section is that

Fig. 14. Instance of viewBlog page.

not all abstraction can be generative.
That is, beyond the abstractions pro-
vided by the DSL, the application
programmer needs mechanisms to cre-
ate new abstractions. In order to avoid
code duplication, it should be pos-
sible to name reusable fragments of
code. Such a mechanism is vital for
building a library. In this section we
will introduce two simple abstraction
mechanisms. Templates are named pieces
of code with parameters and hooks.
Modules are named collections of def-
initions defined in a separate file, which
can be imported into other modules.
Modules are essential for organizing a code base and to form a library of reusable
code.

To motivate the need for templates and modules consider the viewBlog page
in Figure 14. The page displays entries of a blog, which are instances of the do-
main model defined in Figure 15, a menu with references to people and projects,
and a sidebar with references relating to the author of the blog. Figure 16 gives
metrics about the sizes of the WebDSL code involved in defining this page and
the code generated from it. The entity classes generated from the domain model
have a ratio of 12.5 lines of generated Java code to one line of source code. How-
ever, the mapping from viewBlog.app definition gives a ratio of only 3.6 lines
of generated code to one line of source code. This is much less of a gain than in
the case of entity classes.

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 39

Blog {

title :: String (name)

author -> Person

entries <> List<BlogEntry>

categories -> List<Category>

}

BlogEntry {

blog -> Blog

title :: String (name)

created :: Date

category -> Category

intro :: Text

body :: Text

comments <> List<BlogComment>

}

Fig. 15. Domain model for blogs and blog entries.

Now compare this to the metrics in Figure 17, which are for (a snapshot
of) the SERG application (used to test WebDSL), which consists of some 30
entities, including the one for the blog. Here we see that the ratio of generated
code to source code is 39! The difference in the ratios between Figure 16 and
Figure 17 of almost a factor 10, is explained by template expansion. The size of
viewBlog measured in Figure 16 is the all the WebDSL code needed to build
that page. However, many elements of the page are used in other pages of the
SERG application as well. The overall composition of the page is the same on all
pages, as well as the menu. The sidebar is used on all pages related to Persons.
By reusing such common elements between pages, the ratio of source code to
generated code can be raised from 3.6 to 39. This depends on an intermediate
step of template expansion and model-to-model transformations (next section).

7.1 Reusing Page Fragments with Templates

Template definitions provide a mechanism for giving a name to frequently used
page fragments. A template definition has the form define f(farg*){elem*},
with farg* a list of formal parameters and elem* a list of template elements.
The use of a defined template in a template call, which were introduced before,
leads to the replacement of the call by the body of the definition. For example,

file name LOC

Blog + BlogEntry 16

BlogEntry.java 116
Blog.java 85

generated : source 201 : 16 = 12.5

viewBlog.app 91

viewBlog.xhtml 164

ViewBlogBeanInterface.java 32
ViewBlogBean.java 131

generated : source 327 : 91 = 3.6

Fig. 16. Size metrics for viewBlog.

file name LOC

serg.app 983

serg-full.app 9165
generated : source 9.3

generated total 38834

generated : source 4.2

Fig. 17. Metrics for serg.app

Domain-Specific Language Engineering SERG

40 TUD-SERG-2007-017

the following parameterless template definitions define literal fragments logo,
footer, and menu:

define logo() { navigate(home()){image("/img/serg-logo.png")} }

define footer() {

"generated with "

navigate("Stratego/XT", url("http://www.strategoxt.org"))

}

define menu() {

list{ listitem { "People" ... } } ...

}

Such fragments can be reused in many pages, as in the following page definition:

define page home() {

block("menubar"){ logo() menu() }

section{ ... }

footer()

}

Literal template definitions are of limited use. To support reuse of partial
fragments, which have holes that should be filled in by the reuse context, tem-
plates can have hooks in the form of template calls that can be locally (re)defined.
For example, the following main template calls templates logo, sidebar, menu,
body, and footer.

define main() {

block("outersidebar") { logo() sidebar() }

block("outerbody") {

block("menubar") { menu() }

body()

footer()

}

}

Some of these templates may have a global definition, such as the ones above,
but others may (only) be defined locally in the context where main is called.
For example, the following page definition calls the main template and defines
sidebar and body (overriding any top-level definitions), thus instantiating the
calls to these templates in the definition of main:

define page viewBlog(blog : Blog) {

main()

define sidebar(){ blogSidebar(blog) }

define body() {

section{ header{ text(blog.title) }

for(entry : BlogEntry in blog.entries) { ... }

}

}

}

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 41

Finally, templates may need to access objects. Therefore, templates can have
parameters. For example, the following definitions for a sidebar, defines links
specific to a particular Person object p.

define personSidebar(p : Person) {

list {

listitem { navigate(p.name, viewPerson(p)) }

listitem { navigate("Publications", personPublications(p)) }

listitem { navigate("Blog", viewBlog(p.blog)) blogEntries() }

listitem { "Projects" listProjectAcronyms(p) }

}

}

This allows templates to be reused in different contexts. For example, the tem-
plate above, can be used to create the sidebar for the view page for a Person,
as well as for the publications page of that person.

define page viewPerson(person : Person) {

main()

define sidebar() { personSidebar(person) } ...

}

define page personPublications(person : Person) {

main()

define sidebar() { personSidebar(person) } ...

}

Template Expansion Template expansion is a context-sensitive transforma-
tion, whic again relies on dynamic rules for its implementation. For each tem-
plate definition a dynamic rule TemplateDef is defined that maps the name of
the template to its complete definition.

declare-template-definition =

?def@|[define mod* x(farg*){elem*}]|

; rules(TemplateDef : x -> def)

The dynamic rule is used to retrieve the definition when encountering a temlate
call. Subsequently, all bound variables in the definition are renamed to avoid
capture of free variables.

expand-template-call :

|[x(e*){elem1*}]| -> |[block(str){elem2*}]|

where <TemplateDef; rename> x => |[define mod* x(farg*){elem3*}]|

; {| Subst

: <zip(bind-variable)> (farg*, <alltd(Subst)> e*)

; elem2* := <map(expand-element)> elem3*

; str := x

|}

The formal parameters of the template are bound to the actual parameters of
the call in the dynamic rule Subst:

bind-variable = ?(Arg(x, s), e); rules(Subst : Var(x) -> e)

Domain-Specific Language Engineering SERG

42 TUD-SERG-2007-017

A Trail of Blocks Note that the right-hand side of the rule for expansion of a
template call creates a block around the expanded body. For example, the page
definition

define page viewBlog(blog : Blog) {

main()

define sidebar(){ ... }

define body() { ... }

}

expands to

define page viewBlog(blog : Blog) {

block("main"){

block("outersidebar") {

block("logo"){ ... } block("sidebar"){ ... }

}

block("outerbody") {

block("menubar") { block("menu") { ... } }

block("body") { ... } block("footer") { }

}

}

}

The trail of blocks can be used in stylesheets.

7.2 Modules

A module system allows an application definition to be divided into separate
files. This is useful to keep overview of the parts of an application, and is nec-
essary for building up a library. Module systems come in different measures of
complexity. Module systems supporting separate compilation can become quite
complex, especially if the units of compilation in the DSL don’t match the units
of compilation of the target platform. For this version of WebDSL a very simple
module system has been chosen that supports distributing functionality over
files, without separate compilation. A module is a collection of domain model
and template definitions and can be imported into other modules as illustrated
in Figures 18 and 19. The generator first reads in all imported modules be-
fore applying other transformations. The implementation of import chasing is
extremely easy:

import-modules = topdown(try(already-imported <+ import-module))

already-imported : Imports(name) -> Section(name, [])

where <Imported> name

import-module : Imports(name) -> mod

where mod := <xtc-parse-webdsl-module>FILE(<concat-strings>[name, ".app"])

; rules(Imported : name)

The dynamic rule Imported is used to prevent re-importing the same module.

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 43

module publications

section domain definition.

Publication {

title :: String (name)

subtitle :: String

year :: Int

pdf :: URL

authors -> List<Person>

abstract :: Text

projects -> Set<ResearchProject>

}

section presenting publications.

define showPublication(pub : Publication) {

for(author : Person in pub.authors){

navigate(author.name, viewPerson(author)) ", " }

navigate(pub.name, viewPublication(pub)) ", "

text(pub.year) "."

}

Fig. 18. Module definition.

application org.webdsl.serg

description

This application organizes information relevant for a

research group, including people, publications, students,

projects, colloquia, etc.

end

imports app/templates

imports app/people

imports app/access

imports app/blog

imports app/colloquium

imports app/publications

imports app/projects

imports app/groups

imports app/news

imports app/issues

Fig. 19. Application importing modules.

8 More Sugar, Please!

With the core language introduced in Sections 5 and 6 we have obtained expres-
sivity to define a wide range of presentations. With the templates and modules

Domain-Specific Language Engineering SERG

44 TUD-SERG-2007-017

from the previous section we have obtained a mechanism for avoiding code du-
plication. However, there are more generic patterns that are tedious to encode
for which templates are not sufficient. Even if a language provides basic ex-
pressivity, it may not provide the right-level of abstraction. So if we encounter
reocurring programming patterns in our DSL, the next step is to design higher-
level abstractions that capture these patterns. Since the basic expressivity is
present we can express these abstractions by means of transformations from
the extended DSL to the core DSL. Such transformations are known as model-
to-model transformations or desugarings, since the high-level abstractions are
known as syntactic sugar. In the section we discuss three abstractions and their
corresponding desugarings.

8.1 Output Entity Links

Creating a link to the view page for an object is done similar to the following
WebDSL fragment:

navigate(viewPublication(pub)){text(pub.name)}

While not a lot of code to write, it becomes tedious, especially if we consider
that the code can be derived from the type of the variable. Thus, we can replace
this pattern by the simple element

output(pub)

This abstraction is implemented by the following desugaring rule, which uses
the type of the expression to determine that the expression points to an entity
object:

DeriveOutputSimpleRefAssociation :

|[output(e){}]| -> |[navigate($viewY(e)){text(e.name)}]|

where |[$Y]| := <type-of> e

; <defined-java-type> |[$Y]|

; $viewY := <concat-strings>["view", $Y]

This desugaring is enabled by the type annotations on expressions, which are
put there by the typechecker. Similar desugaring rules can be defined for other
types. For example,

DeriveOutputText :

|[output(e){}]| -> |[navigate(url(e)){text(e)}]|

where |[URL]| := <type-of> e

DeriveOutputText :

|[output(e){}]| -> |[image(e){}]|

where |[Image]| := <type-of> e

As a consequence of this abstraction, it is sufficient to write output(e) to pro-
duce the presentation of the object indicated by the expression e.

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 45

Fig. 20. Editing collection association.

8.2 Editing Entity Collection Associations

Editing a collection of entities Figure 20 is not as simple as editing a string
or text property. Instead of typing in the value we’d like to select an existing
object from some kind of menu. Consider the edit page for a publication in
Figure 20. Editing the authors association requires the following ingredients: a
list of names of entities already in collection; a link [X] to remove the entity from
the collection; a select menu to add a new (existing) entity to the collection.‘
This is implemented by the following WebDSL pattern:

list { for(person : Person in publication.authors) {

listitem{ text(person.name) " "

actionLink("[X]", removePerson(person)) }

} }

select(person : Person, addPerson(person))

action removePerson(person : Person) {

publication.authors.remove(person);

}

action addPerson(person : Person) {

publication.authors.add(person);

}

Creating this pattern can be done automatically by considering the type and
name of the association, which is done by the following desugaring rule:

Domain-Specific Language Engineering SERG

46 TUD-SERG-2007-017

DeriveInputAssociationList :

elem|[input(e){}]| ->

elem|[

block("inputAssociationList"){

list { for(x : $X in e){ listitem {

text(x.name) " "

actionLink("[X]", $removeX(x))

action $removeX(x : $X) { e.remove(x); }

}} }

select(x1 : $X, $addX(x1))

action $addX(x : $X) { e.add(x); }

}

]|

where |[List<$X>]| := <type-of> e

; x := <decapitalize-string; newname> $X

; x1 := <decapitalize-string; newname> $X

; $viewX := <concat-strings>["view", $X]

; $removeX := <concat-strings; newname>["remove", $X]

; $addX := <concat-strings; newname>["add", $X]

Thus, an input(pub.authors) is now sufficient for producing the implementa-
tion of an association editor. Similar rules can be defined for other types:

DeriveInputText :

|[input(e){}]| -> |[inputText(e){}]|

where SimpleSort("Text") := <type-of> e

DeriveInputSecret :

|[input(e){}]| -> |[inputSecret(e){}]|

where SimpleSort("Secret") := <type-of> e

As a consequence, the input(e) call is now sufficient for producing the appro-
priate input interface.

8.3 Edit Page

The presentation layer language allows us to define our own very flexible user
interface. It is now also possible to reformulate the generation of standard CRUD
interface as a model to model transformation (Figure 21). That is, rather than
directly generating Java and JSF code, we can generate a presentation model
from an entity declaration. Then the general presentation generator will generate
the implementation. The ingredients are an input box for each property of an
entity organized in a table, and save and cancel buttons. The pattern for the
(body of) an edit page is:

form {

table {

row{ "Blog" input(entry.blog) }

row{ "Title" input(entry.title) }

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 47

Fig. 21. Edit BlogEntry

row{ "Created" input(entry.created) }

row{ "Category" input(entry.category) }

row{ "Intro" input(entry.intro) }

row{ "Body" input(entry.body) }

}

action("Save", save()) action("Cancel", cancel())

action cancel() { return viewBlogEntry(entry); }

action save() { entry.save(); return viewBlogEntry(entry); }

}

This pattern is captured in the following desugaring rule:

entity-to-edit-form :

|[$X : $Y { prop* }]| ->

|[

form {

table { elem* }

action("Save", save())

action("Cancel", cancel())

}

action cancel() { return $viewX(x); }

action save() { x.save(); return $viewX(x); }

]|

where $viewX := <concat-strings>["view", $X]

; x := <decapitalize-string> $X

; str := $X

; elem* := <map(property-to-edit-row(|x))> prop*

property-to-edit-row(|x) :

Domain-Specific Language Engineering SERG

48 TUD-SERG-2007-017

|[y k s (anno*)]| -> |[row { str input(x.y) }]|

where str := <capitalize-string> y

9 Unfinished Business

The WebDSL developed in this paper is just a first prototype. There are many
loose ends and larger research and engineering questions. This section contains
a list of these issues. Even the list itself requires more work!

9.1 Modeling Web Applications

With the current WebDSL, implementation of (simple) webapplications is no
longer an obstacle. Just write a domain model and start experimenting with
presentations. Yet there is much room for experimenting with domain model-
ing, and evaluating the impact on the persistence mapping and the interaction
patterns.

9.2 Completeness of WebDSL

– Loose ends

• Pagination of query results
• Collections of value types
• Punctuation in generated output (commas, delimiters, ...)
• Better URLs

– More default interaction patterns

• Identify styles of interaction and generate good defaults
• In particular associations

– Rich(er) userinterface

• Integration of iteration with UI components
• Using AJAX JSF components
• Single page user interface (e.g. using Echo2) (Jonathan Joubert)

– Input validation and conversion
– Security

• authentication and access control (Danny Groenewegen)
• Preventing injection attacks (seems to be covered well by base frame-

works?)

– Workflow: business process modeling
– and of course: business logic

• what is needed? (what is business logic, by the way?)

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 49

9.3 DSL Design and Implementation

Implementation of WebDSL

– Pretty-printed error messages (instead of dumping terms)
– Templates that abstract over template element (not only via hooks)
– Fully typechecking HQL expressions
– Easier name mangling with guaranteed consistency (?)
– Optimization of database queries

General Concerns

– DSL interaction and separate compilation (Sander Mak)

• modular typechecking, template expansion, ...
• generate modular code (depends on target platform)

– Reusable framework for DSL implementation

• parameterized with syntax definition
• organizes main generator pipeline
• generation of multiple files
• import chasing

9.4 Programming Environment

IDEs for DSLs

– New DSL not supported by IDE (Eclipse)
– Generate Eclipse plugin from language definition

• syntax highlighting
• syntax checking
• typechecking
• refactoring
• ...

– Integrate Stratego/XT with Eclipse (Safari, EMF)

Visualization

– Visual views

• class diagrams
• page flow diagrams

– Editing via visual views?

Domain-Specific Language Engineering SERG

50 TUD-SERG-2007-017

9.5 Deployment

Current Status

– Generation of JSF and Java source files
– Skeleton of application source tree generated by seam-gen
– Manual build steps

• .app to code (make)
• code to .war/.ear (ant)
• activation of database & webserver

Future

– Generate complete source tree
– Integrate building of the source tree (build .war file)
– Automatic deployment and activation of the webserver
– WebDSL virtual machine

• drop foo.app and activate
• server takes care of code generation, deployment, activation
• using Nix deployment system

9.6 Evolution

Data conversion

– Adapting entity declarations leads to new database scheme
– Convert data in old database to new one
– Define relation mapping old entities to new ones
– Generate scripts for existing tools?

Model migration

– Changing DSL definition requires adapting existing models

Abstraction evolution

– Model sweetening: apply new sugar to old models

Harvesting from legacy code

– Transform legacy EJB applications to WebDSL?
– JSF to page definitions
– Entity classes to entity declarations
– Session beans to actions

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 51

10 Related Work

This work was partly inspired by Jos Warmer’s Software Factory for web appli-
cations developed at Ordina [17]. Otherwise I have conciously not studied other
domain-specific / web programming languages, nor approaches for developing
domain-specific languages. The idea of the experiment was to consider the tech-
nology available for the domain and based on that develop a DSL. For the final
version of this paper a comparison with web programming languages and other
DSL building approaches will be included.

11 Discussion

Summary: Properties of a good DSL

– Core language that covers needed domain expressivity
– Syntactic extensions that allow concise expression
– Facilities to build a library

• Modules for organization of code base
• Parametric abstraction over DSL fragments

Summary: How to develop a DSL?

– Choose high-level technology
• DSL should not readdress problems already solved by technology

– Start with large chunks of programs
• Understand the technology
• Recognize common patterns

– Setup a basic generator early on
• makes it easy to experiment with alternative implementation strategies

– Don’t try to find core language from the start
• result may be too close to target
• e.g., modeling language that covers all EJB concepts

– Don’t over specialize syntax
• template call vs header, section, ... as constructs

– Don’t over generalize syntax (XML)

Future

– Extend WebDSL (see ideas before)
– Apply to industrial case studies
– Abstractions for application (business) domains?

• finance, insurance, ...
– Repeat exercise for other domains
– Develop systematic method for building new modeling languages

Domain-Specific Language Engineering SERG

52 TUD-SERG-2007-017

Acknowledgements

First of all I would like to thank Ralf Lämmel and Joost Visser for inviting me to
give a tutorial at GTTSE’07 in August 2006. This invitation provided a perfect
target and outlet for the rather uncertain sabbatical project that I had conceived
to build a domain-specific language for web applications. Along the way I had
many inspiring discussions about various aspects of this enterprise. I would like
to thank the following people for their input: Jos Warmer, Sander Mak, William
Cook, Anneke Kleppe, Jonathan Joubert, Martin Bravenboer, Rob Schellhoorn,
Danny Groenewegen.

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

2. C. Bauer and G. King. Java Persistence with Hibernate. Manning, Greenwhich,
NY, USA, 2007.

3. M. G. J. van den Brand, H. de Jong, P. Klint, and P. Olivier. Efficient annotated
terms. Software, Practice & Experience, 30(3):259–291, 2000.

4. M. Bravenboer. Connecting XML processing and term rewriting with tree gram-
mars. Master’s thesis, Utrecht University, Utrecht, The Netherlands, November
2003.

5. M. Bravenboer, A. van Dam, K. Olmos, and E. Visser. Program transformation
with scoped dynamic rewrite rules. Fundamenta Informaticae, 69(1–2):123–178,
2006.

6. M. de Jonge. A pretty-printer for every occasion. In I. Ferguson, J. Gray, and
L. Scott, editors, Proceedings of the 2nd International Symposium on Constructing
Software Engineering Tools (CoSET2000). University of Wollongong, Australia,
2000.

7. M. Fowler. Inversion of control containers and the dependency injection pattern.
http://www.martinfowler.com/articles/injection.html, January 2004.

8. JBoss Seam. Seam - Contextual Components. A Framework for Java EE 5, 1.2.1.ga
edition, 2007. http://www.jboss.com/products/seam.

9. K. D. Mann. JavaServer Faces in Action. Manning, Greenwhich, NY, USA, 2005.
10. J. F. Nusairat. Beginning JBoss Seam. Apress, New York, USA, 2007.
11. Sun Microsystems. JSR 220: Enterprise JavaBeansTM , Version 3.0. Java Persis-

tence API, May 2 2006.
12. J. van Wijngaarden. Code generation from a domain specific language. design-

ing and implementing complex program transformations. Master’s thesis, Utrecht
University, Utrecht, The Netherlands, July 2003. INF/SCR-03-29.

13. E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University of
Amsterdam, September 1997.

14. E. Visser. Meta-programming with concrete object syntax. In D. Batory, C. Con-
sel, and W. Taha, editors, Generative Programming and Component Engineering
(GPCE’02), volume 2487 of Lecture Notes in Computer Science, pages 299–315,
Pittsburgh, PA, USA, October 2002. Springer-Verlag.

15. E. Visser, Z.-e.-A. Benaissa, and A. Tolmach. Building program optimizers with
rewriting strategies. In Proceedings of the third ACM SIGPLAN International Con-
ference on Functional Programming (ICFP’98), pages 13–26. ACM Press, Septem-
ber 1998.

SERG Domain-Specific Language Engineering

TUD-SERG-2007-017 53

16. W3C. Cascading Style Sheets, level 2. CSS2 Specification, May 1998.
http://www.w3.org/TR/REC-CSS2/.

17. J. Warmer. A model driven software factory using domain specific languages. In
Model Driven Architecture - Foundations and Applications proceedings of the Third
European Conference (ECMDA-FA 2007), Haifa, Israel, June 2007.

Domain-Specific Language Engineering SERG

54 TUD-SERG-2007-017

TUD-SERG-2007-017
ISSN 1872-5392 SERG

