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Abstract: Polarization gratings can be realized by polarization holo-
graphic recording in photoanisotropic materials. In this paper, we study
two types of polarization gratings. One is recorded with two orthogonally
circularly (OC) polarized beams and the other one with two orthogonally
linearly (OL) polarized beams. The interference of both cases is explored
beyond the small recording angle regime. A novel method is proposed
to represent the polarization states of the modulation. The diffraction by
polarization gratings is studied with rigorous diffraction theory. Simulations
based on the Finite Element Method are performed for both OC and OL
polarization gratings at small and large recording angles.
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1. Introduction

Photoanisotropic polarization gratings are interesting optical components for many light con-
trolling applications. Such applications include flat panel displays, polarimetry, optical fiber
communications, quantum computing, microscopy etc.. Polarization gratings can be manufac-
tured with polarization holographic recording. Depending on the polarization states of the two
recording beams and the recording angle, periodic modulation of the polarization states or/and
intensity can be achieved. Materials which are sensitive to polarization can be used to record the
interference patterns formed by the two beams. A typical material with linear photoanisotropic
character, which have been experimentally demonstrated, is azo-dye-doped polymer [1–4]. Chi-
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ral dopants are already well known circular birefringent materials. An alternative recording
material is the combination of a liquid crystal (LC) and a photo-alignment film (such as, linear-
photo-polymers or LPP) [5–9]. Circular birefringence can be obtained by mixing light-driven
rotor [10] materials into LCs. In the late 90’s, azo polymers have been studied as recording
media for both non-binary digital optical storage and holographic storage [11, 12]. Many stud-
ies [13–16] on polarization holographic optical data storage have been carried out until nowa-
days.

Much theoretical work has been done on the recording and the reading process of pho-
toanisotropic polarization gratings. Kakichashvili [17, 18] started research in the field and has
built the basic scheme for obtaining the dielectric permittivity changes due to photo-induced
anisotropy. Todorov and Nikolova [2, 19–23] have carried out extensive theoretical and exper-
imental work on the recording and reading processes of polarization gratings. They use the
Jones Matrix method to study the diffraction from polarization gratings. Coupled mode analy-
sis has been applied to study polarization grating by Huang and Wagner [24,25]. Oh and Escuti
have applied the finite-difference time-domain method (FDTD) to characterize the diffraction
of photoanisotropic polarization gratings [26]. Interference of two arbitrary polarizations have
been studied by Van Heesch for small recording angles [27]. Recently Kilosanidze has sum-
marized formulations for the recording of linear and circular photoanisotropy [28]. Many other
publications which are not listed here contain similar theoretical treatments as those mentioned
above. However, in all those papers only paraxial situations are studied, i.e. the recording angle
of the two recording beams is small. In [29] we developed a general framework of how to deal
with large recording angles in polarization gratings.

As has been observed previously [24, 29], when the recording angles are large, the interfer-
ence pattern of two plane waves becomes complicated. The plane of polarization varies over
one modulation period in 3D space and the approximation that the electric field of the two
recording beams are in the same plane does not hold any more [30]. Furthermore, in the small
recording angle regime, all polarization states of the interference between two orthogonally po-
larized beams can be represented in the Poincaré sphere [27]. In contrast, when the recording
angle is large the Poincaré Sphere is not sufficient to represent the modulation of the polar-
ization states of the interference. In this paper we will therefore present a novel method to
represent the polarization modulation.

Though much research has been done on the diffraction by photoanisotropic polarization
gratings, the polarization gratings recorded at large recording angles have not been covered.
The main task of this paper is to apply our in-house numerical code based on the finite element
method (FEM) to study the diffraction of the photoanisotropic polarization gratings rigorously
beyond the small recording angle regime. A brief description of the code is given in Section 3
together with the results and discussions.

2. The polarization states of the interference pattern of two plane waves

2.1. Interference of two plane waves

Photoanisotropic polarization gratings are recorded by using a technique called polarization
holography. The pattern to be recorded is formed by the interference of two plane waves with
orthogonal polarization states. To introduce notations we briefly consider this interference pat-
tern.

Consider two monochromatic plane waves (see Fig. 1) propagating in an (initially) isotropic
medium with real refractive index n, having wave vectors in the y = 0 plane:

k+ = (kx,0,kz), (1)

k− = (−kx,0,kz), (2)
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Fig. 1. Arrangement of the interference between two plane waves, with wave vector and
complex fields k+, E+ and k−, E− respectively.

where kz = (k2
0n2−k2

x)
1/2 > 0 and kx > 0 with k0 the wave number in vacuum. From the figure,

we see that kx = sinθ k0 and kz = cosθ k0. Without restricting generality, the electric vectors of
the two plane waves are written in the form:

E+(r) =

⎡
⎣a+

S

⎛
⎝

0
1
0

⎞
⎠+a+

P
1

k0n

⎛
⎝

kz

0
−kx

⎞
⎠

⎤
⎦eik+·r, (3)

E−(r) =

⎡
⎣a−S

⎛
⎝

0
1
0

⎞
⎠+a−P

1
k0n

⎛
⎝

kz

0
kx

⎞
⎠

⎤
⎦eik−·r, (4)

where a±S and a±P are complex numbers. The electric field vector of each wave is thus decom-
posed into two orthogonal linear polarizations, namely the s- and p-polarization, where ’p’
means that the electric field is parallel to the (x,z)-plane, which is the plane through the wave
vectors, and ’s’ means that the electric field is perpendicular to that plane. The ’+’ sign in-
dicates that the x-component of the wave vector is positive, while the ’−’ sign has analogous
meaning. The total electric field at r is the sum of the two separate fields of the plane waves:

E(r) = E+(r)+E−(r)

=

⎛
⎜⎝

(a−P e−ikxx +a+
P eikxx) kz

k0n

a−S e−ikxx +a+
S eikxx

(a−P e−ikxx −a+
P eikxx) kx

k0n

⎞
⎟⎠eikzz, (5)

and the physical total electric field is thus:

E (r, t) = Re
[
E(r)e−iωt] , (6)

with ω > 0. Note that this expression is for the most general situation, which is not limited to
small recording angles or to certain polarization states.

We shall consider two cases in more details, namely the interference of two orthogonally
circularly polarized beams and that of two orthogonally linearly polarized beams. Suppose first
that the two incident waves are orthogonally circularly polarized with the same amplitude. Then
in Eqs. (3), (4):

a−S = a+
S = aS,

a−P = −iaS,a
+
P = iaS,

}
(7)

with aS real. Substitution into Eq. (5) gives for the total field of the two waves:

E(r) = 2aS

⎛
⎜⎝

−sin(kxx)
kz

k0n
cos(kxx)

−icos(kxx) kx
k0n

⎞
⎟⎠eikzz, (8)
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and

E (r, t) = Re

⎡
⎢⎣

⎛
⎜⎝

−2aS sin(kxx)
kz

k0n
2aS cos(kxx)

−i2aS cos(kxx) kx
k0n

⎞
⎟⎠ei(kzz−ωt)

⎤
⎥⎦ =

⎛
⎜⎝

−2 kz
k0naS sin(kxx)cos(kzz−ωt)

2aS cos(kxx)cos(kzz−ωt)
2 kx

k0naS cos(kxx)sin(kzz−ωt)

⎞
⎟⎠ . (9)

The interference patterns for one modulation period P and for recording angles 2.5◦, 10◦ and
15◦ are shown from top to bottom in Fig. 2. At the left, the polarization ellipses are shown for
a number of equidistant points in one period. At the right, the intensity and the ellipticity are
shown as function of position x.
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Fig. 2. (a) (c) (e) Polarization ellipses of the interference of two orthogonally circularly
polarized plane waves with recording angle 2.5◦, 10◦ and 15◦ respectively; (b) (d) (f) The
ellipticity and total intensity modulation over one period of the pattern in (a), (c) and (e)
respectively.

In the case of θrecord. = 2.5◦, the polarization state [see Fig. 2(a)] seems linear at each point
over one modulation period. The ellipticity curve in Fig. 2(b) shows that in fact the field is
elliptically polarized in most of the points, but that the ellipticity is small: e < 0.05, so that the
polarization can consider to be linear everywhere. In this case, the intensity is almost constant.
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Notice that in Fig. 2(b), 2(d), and 2(f) the scales are the same. Thus it is easy to see that when
the angle of recording becomes bigger, the amplitude of the modulation in both intensity and
polarization gets larger. It can also be seen from Figs. 2(c) and 2(e), that the polarization state is
often elliptic. Furthermore, the plane of polarization rotates over 180◦ around the z-axis when
x varies over one period. This complicates the description of the polarization states as will be
seen below.
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Fig. 3. (a) (c) (e) Polarization ellipses of the interference of two orthogonally linearly po-
larized plane waves with recording angle 2.5◦, 10◦ and 15◦ respectively; (b) (d) (f) The
ellipticity and total intensity modulation over one period of the pattern in (a), (c) and (e)
respectively.

Next we consider the interference of two orthogonally linearly polarized beams. We assume
that one is s- and the other is p-polarized with equal intensities:

a+
S = a, a+

P = 0;
a−S = 0, a−P = a.

}
(10)

(C) 2010 OSA 29 March 2010 / Vol. 18,  No. 7 / OPTICS EXPRESS  6708
#119008 - $15.00 USD Received 29 Oct 2009; revised 19 Dec 2009; accepted 22 Dec 2009; published 17 Mar 2010



The total field of the two waves is then

E(r) = a

⎛
⎜⎝

kz
k0ne−ikxx

eikxx

kx
k0ne−ikxx

⎞
⎟⎠eikzz. (11)

The interference patterns for recording angles of 2.5◦, 10◦ and 15◦ are shown in Fig. 3. It is seen
that the intensity is constant in all cases. Furthermore, the state of polarization changes from
linear to elliptic to circular and back to linear again (see the ellipticity curves in Fig. 3(b), 3(d),
and 3(f). Figure 3(a), 3(c), and 3(e) show that for small recording angle the plane of polarization
is almost identical to the (x,y)-plane, but that for larger recording angles the plane varies.

2.2. Representations of the states of polarization

In the most general form, the state of polarization of an arbitrary electric field is specified by 5
parameters:

• two angles to fix the direction of the unit normal of the polarization ellipse, chosen such
that its direction corresponds to the sense of rotation of the electric field as a right handed
screw drive.

• a unit vector in the plane of the polarization ellipse to specify the direction of the long
axis of the ellipse;

• ellipticity;

• intensity.

Hence, to describe the modulation of the field over one period, we need to specify these five
parameters as function of x. The conventional representation uses the Poincaré sphere [31].
This method describes the electric field in terms of only 3 parameters, which thus requires that
two of the five parameters are constant for all states. As will be shown, for small angles between
the wave vectors k+ and k−, the Poincaré sphere is adequate [27], but for larger angles this is
not true.

2.2.1. Small recording angles

Suppose that the angle of recording is small, so that kx ≈ 0 and kz ≈ k0n. Then Eq. (5) becomes
approximately:

E(r) = E+(r)+E−(r)

≈
⎛
⎝

(a−P e−ikxx +a+
P eikxx) kz

k0n

a−S e−ikxx +a+
S eikxx

0

⎞
⎠eikzz. (12)

The z-component vanishes then in good approximation, which means that the electric field is
confined to the (x,y)-plane everywhere. The electric field can therefore be written as:

E(x) = Ex(x)x̂+Ey(x)ŷ. (13)

Such a field can be represented by Stokes parameters and its state of polarization can be well
represented on Poincaré sphere.
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2.2.2. Large recording angles

In order to use the Poincaré sphere, all the polarization states have to be defined on the same ba-
sis in the common plane of polarization. When the recording angle is large, the Poincaré sphere
is not applicable, since the plane of polarization rotates in 3D space due to the presence of the
z-component of the electric field. In this case a local orthonormal basis {ê1(x), ê2(x), ê3(x)} is
defined such that ê1(x) and ê2(x) are along the long and short axes, respectively, of the polar-
ization ellipse, and such that the electric field rotates in the direction from ê1(x) to ê2(x) and
finally ê3(x) = ê1(x)× ê2(x). For a detailed derivation of the local basis, see Ref. [29]. This
local basis is different for different points in space. Consider for example the interference of
two elliptically polarized beams with:

a+
S = 1, a+

p = i;
a−S = 1.5, a−P = −2i,

(14)

with recording angle 10◦. The interference pattern formed by these two beams is shown at the

Fig. 4. Single-frame excerpt from Media 1 polarization representation of interference pat-
tern of two elliptically polarized waves (Media 1).

right of Fig. 4 (Media 1). From the plot we can see that over one period, the states of polarization
are elliptic everywhere. The ellipticity is shown in the figure on the upper right together with
the intensity. Besides the ellipticity and the intensity, the other three parameters, namely, two
angles to fix the direction of ê3 and one angle to fix the direction of ê1, are illustrated on the
unit sphere shown in Fig. 4 on the left. For each state of polarization plotted at the right, the ê1,
major axis of the polarization ellipse, is plotted as a unit vector in red color on the Cartesian
basis, and ê3, which is normal to the plane of polarization, is plotted as a blue unit vector. All
of the vectors are on the unit sphere.

The figures show clearly that the major axis of the polarization ellipse rotates 180◦ over one
period of modulation, and that the plane of polarization also rotates. Thus the five parameters
that determine the state of polarization of the vector field are all displayed in the left and upper
right figures.
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3. Characterization of the diffraction efficiencies of photoanisotropic polarization grat-
ings with FEM

The recorded photo-anisotropy in the photoactive medium is described by an x-dependent rela-
tive permittivity tensor. This tensor is on the local basis {ê1(x), ê2(x), ê3(x)} given by [17, 25]:

ε̃(x) =

⎛
⎝

ε i +κ‖|E1(x)|2 +κ⊥|E2(x)|2 −iκc2|E1(x)||E2(x)| 0
iκc2|E1(x)||E2(x)| ε i +κ⊥|E1(x)|2 +κ‖|E2(x)|2 0

0 0 ε i +κ⊥[|E1(x)|2 + |E2(x)|2]

⎞
⎠ ,

(15)
where ε i is the initial permittivity constant of the isotropic medium; E1(x) and E2(x) are the
electric field components on the basis along the long and short semi-axes of the polarization
ellipse respectively; and κ‖, κ⊥ and κc (in the unit of m2/V2) characterize the sensitivity of
the photoanisotropic medium. The quantities κ‖ and κ⊥ are called the sensitivities of the linear
photoanisotropy parallel and perpendicular to the principal molecular axis. The quantity κc is
the sensitivity to circular photoanisotropy. The ’tilde’ in ε̃(x) is (and will be) used to emphasize
that the relative permittivity tensor is written on the local basis {ê1(x), ê2(x), ê3(x)}. By apply-
ing a coordinate transformation, the permittivity tensor can be written on the global Cartesian
basis {x̂, ŷ, ẑ}. Let

U(x) = (ê1(x), ê2(x), ê3(x)) , (16)

be the matrix with columns the unit vectors ê j(x), j = 1, 2, 3. Then the permittivity matrix on
the global basis {x̂, ŷ, ẑ} is:

ε(x) = U(x)∗ε̃(x)U(x). (17)

Note that when the material is an active medium, i.e. κc �= 0 and the interference of the record-
ing beams is not purely linear polarized everywhere (S3 �= 0), the permittivity tensor becomes
complex hermitian. We remark here that the discussion and consideration are carried out under
the assumption that the recording process is instantaneous and all the chemical and mechani-
cal changes upon the irradiation of the light are immediate. The mechanism of the recording
process is rather complicated and is beyond the scope of this paper.

To calculate the diffraction efficiency from such a grating rigorously, a numerical approach
becomes necessary. We use the Finite Element Method (FEM) which is sufficiently general so
that also position dependent Hermitian permittivity tensors can be simulated [32, 33].

We remark that the present model differs from the one described in [32, 33] regarding the
numerical method that is used to solve the discretized linear system of equations. In [32,33] an
iterative method was used with approximate minimum fill-in reordering and a preconditioner
from ILUPACK of Yousef Saad and Matthias Bollhoefer (see [34]). This preconditioning re-
quires a lot of memory, in particular for three dimensional problems. In the present version of
the code the sparse linear solver Pardiso [35,36] is used. Due to this not only much less memory
is needed, but also the computation time has been reduced drastically.

There is no strict limitation when the FEM code is applied. It can be used for periodic
and non-periodic structure; 2D and 3D space; different materials including dielectric, metal-
lic, isotropic, and anisotropic (hermitian permittivity tensor). When the material has nonlinear
response, an iteration has to be made such that each time the program is called, a new permit-
tivity tensor is put in the simulation as the material properties change with respect to time due
to the nonlinear reaction. In such a way, the code can be applied to nonlinear materials as well.

3.1. OC polarization gratings

3.1.1. Angular dependence

Consider a grating recorded under the conditions: λrecord. = 351 nm, θrecord. = 2.5◦, κ‖ =
0.2 m2/V2,κ⊥ = κc = 0. Then the matrix ε̃ is diagonal and independent of x. Two of the diag-
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onal elements are identical and therefore the medium is locally uniaxial with local optical axis
along the ê1(x) direction. The local ordinary and extraordinary refractive indices, no = 1.5 and
ne = 1.6925, are independent of position. Although ε̃ is independent of x, the local basis varies
with x and hence ε is also x-dependent. The pitch then is Λ = 4023 nm. The reading beam has
wavelength of 633 nm and is a p-polarized plane wave. In all simulation we take the amplitude
of the incident electric field to be 1 V/m. The values of κ specified are then in m2/V2. If the
incident field amplitude is not unity, the values of κ have to be rescaled in proportion to the
reciprocal square field amplitude to keep the permittivity tensor the same.

For a p-polarized perpendicular incident beam we show in Fig. 5 the efficiencies of the
transmitted diffracted orders. It is seen that most of the transmitted light goes into three orders,
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Fig. 5. Transmitted diffraction efficiencies as function of the grating thickness of an OC
polarization grating recorded at θrecord. = 2.5◦. The reading beam has wavelength 633 nm
and is p-polarized. ’-1T’ in the legend represents the −1st order in the transmitted field.
Analogous conventions apply to 0T and 1T.

namely the 0th and the ±1st orders. Polarization gratings are polarization selective. We observe
that the polarization state of the 0th order is always the same as that of the incident beam,
while the polarization states of the two 1st orders are always circular and orthogonal to each
other. If the incident light is linear or unpolarized, both of the ±1st order propagate. When the
incident polarization is circular, then depending on the handedness of the rotation, one of the
first is absent. From Fig. 5, we see that when the grating has a thickness of 1575 nm, light is
mostly diffracted into the first orders, with a small amount of light being reflected. Therefore
we choose this optimized thickness for a 2.5◦ OC grating in the following discussion of the
angular dependence.

X
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Fig. 6. The coordinate system and the definition of angles.

Let the plane of incidence first be the (x,z)-plane so that φ i = 0◦ (see Fig. 6 for the definition
of the angles). The polar incident angle θ i varies from 0◦ to 85◦. For a 633 nm p-polarized
incident field, the computed diffraction efficiencies for the transmitted and the reflected fields
are shown in Fig. 7(a). In Fig. 7(b) the analogous results are shown for a s-polarized incident
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Fig. 7. Diffraction efficiency for OC polarization grating recorded at 2.5◦ as function of the
incident angle. The reading beam is 633 nm, with (a) and (b) incident angles φ i = 0◦ and
(c) and (d) φ i = 90◦. For both incidence mounts, θ i varies from 0◦ to 85◦. For (a) and (c),
the incident wave is p-polarized and for (b) and (d), it is s-polarized.

wave. Comparing the two figures, we see that the diffraction efficiency is slightly different for
the two linear polarizations. When θ i increases, some light goes into the 2nd orders in trans-
mission which is not shown in the plots. When θ i ≤ 20◦, more than 90% of the incident light
goes into the first orders. As θ i rises to 40◦ the OC grating still gives rather high performance
for both polarizations, where diffraction efficiency in the first orders is as high as 80%.

Next the plane of incidence is taken to be the (y,z)-plane, i.e. φ i = 90◦. For varying θ i, the
diffraction efficiencies are again computed for both s- and p-polarization and the results are
shown in Fig. 7(c) and 7(d), respectively. It is seen that the diffraction efficiency of the first
orders for θ i = 90◦ is higher than for θ i = 0◦. For p-polarization, up to θ i = 65◦, the intensity
in the first order remains higher than 90%. For both polarizations the transmitted 0th order is
quite low compared to the previous case (φ i = 0◦).

For both linear polarizations, at large θ i, more light goes into the 0th order in both transmis-
sion and reflection than for small θ i. Furthermore, for s-polarized incident wave, the 0th order
reflection is for large θ i larger than for the p-polarized incident wave. This can be understood
using Brewster angle:

θB = arctan
n2

n1
, (18)

by substituting n1 = 1 and setting n2 equal to the average refractive index of the polarization
gratings, which is between 1.5 and 1.7. This gives an estimated range for the Brewster angle
between 56◦ and 60◦, which agrees with Fig. 7(a) and 7(c).

To summarize, when the angle of incidence θ i is smaller than 30◦, the diffraction from a OC
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polarization grating is hardly sensitive to the angle of incidence. In this region, more than 90%
light is diffracted into the 1st orders. As θ i gets larger, light gradually goes into the reflected
and transmitted 0th orders. At the same time, a small fraction of light leaks into the transmitted
2nd orders. The insensitivity to the angle of incidence of the OC grating makes it suitable
for applications that require large conical angle tolerance, such as in backlights for flat panel
display systems.

3.1.2. Influence of the local linear birefringence

In the above case, the local linear birefringence Δn = ne − no is approximately 0.2. Material
exhibiting such high birefringence is rare, except for LC. Therefore, we explore the influence
of the local linear birefringence of the OC grating on its diffraction efficiencies.

Suppose that the grating has pitch of 4023 nm. The recorded local ordinary and extraordinary
refractive indices are: no = 1.5 and ne = 1.6. Thus the local linear birefringence is 0.1. For
a perpendicular incident p-polarized plane wave with wavelength of 633 nm, the thickness
dependence diffraction efficiency of the grating is shown in Fig. 8. It is shown clearly that the
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Fig. 8. Transmitted diffraction efficiencies as function of the grating thickness of an OC po-
larization grating with pitch of 4023 nm with local linear birefringence of 0.1. The reading
beam has wavelength 633 nm and is p-polarized.

smaller local linear birefringence results in a much thicker grating to obtain the maximum first
order transmission. With local linear birefringence of 0.1, the optimum thickness is 3150 nm,
which is double of the previous case.

Analogously, the angular dependence of the grating is shown in Fig. 9. When φ i = 0◦,
diffraction efficiency in the first orders for both s- and p-polarizations decline faster than that
of the previous case with larger local linear birefringence. As contrast, when φ i = 90◦, the
diffraction efficiencies with respect to the incident angle are almost the same as in the previous
case and the influence of the reduction in the local birefringence is negligible. This can be
further confirmed in the grating with even smaller local birefringence of 0.05.

For grating with local refractive indices: no = 1.5 and ne = 1.55, the optimum thickness of
the grating for the maximum first order transmission is 6300 nm which is observed with the
FEM simulations. The figure is omitted here. The angular dependent diffraction efficiencies are
shown in Fig. 10 for only p-polarization which should be effective to demonstrate the case. It
is clear to see that, for such small local birefringence, the angular dependence of the diffraction
efficiency is much stronger, and the high diffraction efficiencies in the first orders only exist for
a small range of angles of incidence around the normal.
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Fig. 9. Angular dependence diffraction efficiency for OC polarization grating with pitch of
4023 nm and with local linear birefringence of 0.1. The reading beam is 633 nm, with (a)
and (b) incident angles φ i = 0◦ and (c) and (d) φ i = 90◦. For both incidence mounts, θ i

varies from 0◦ to 85◦. For (a) and (c), the incident wave is p-polarized and for (b) and (d),
it is s-polarized.
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Fig. 10. Angular dependence diffraction efficiency for OC polarization grating with pitch
of 4023 nm and with local linear birefringence of 0.05. The reading beam is 633 nm and
p-polarized, and is incident at (a) φ i = 0◦ and (b) φ i = 90◦.
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3.1.3. Beyond small recording angles

When larger recording angles are used, a grating with smaller pitch can be made. For a UV
beam of 351 nm, the pitches obtained by using a number of recording angles are listed in
Table 1.

Table 1. A few specific recording angles and the corresponding obtained pitches.

θrecord. Λ (nm)
2.5◦ 4023
10◦ 1011
15◦ 678
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Fig. 11. Comparison of the transmitted diffraction efficiency for a OC polarization gratings
recorded at angles θrecord. = 2.5◦ (blue), 10◦ (green) and 15◦ (red). In (a) the diffraction
efficiencies of the 0th orders of the transmitted field, and in (b) shows the efficiencies of the
transmitted 1st orders are shown.

We consider OC polarization gratings recorded in a material with the photosensitivity as
follows, κ‖ = 0.2 m2/V2,κ⊥ = κc = 0. The reading light has a wavelength of 633 nm and
is a p-polarized perpendicular incident plane wave (θ i = 0◦,φ i = 0◦). The efficiencies of the
transmitted 0th and 1st orders are shown in Fig. 11 as function of the thickness of the grating
for three recording angles, namely 2.5◦ (blue), 10◦ (green) and 15◦ (red). The curves for 2.5◦
are reproduced from Fig. 5 for comparison.

From Fig. 11, we can see that, although the shape of the curves are similar, for smaller pitch,
the diffraction efficiencies of the 1st orders drop considerably and more light goes into the 0th

transmitted order. At the optimum thickness for the diffraction efficiencies of the transmitted
1st order is maximum, the 1st order efficiency is for 10◦ 30% smaller and for 15◦ even 70%
smaller than the maximum efficiency at 2.5◦. This drop in diffraction efficiency is due to the
increase of the ratio between the reading wavelength and the pitch of the grating. By using a
shorter reading wavelength, the diffraction efficiency can be improved. In Fig. 12 the diffraction
efficiencies of the grating recorded at 10◦ are shown for two reading beams at perpendicular
incidence with wavelength of 532 nm and 450 nm. The results for a wavelength of 633 nm are
reproduced for comparison. The pitch of this grating is approximately 1 μm (see Table 1). For
smaller reading wavelengths (see Fig. 12), the diffraction efficiency of the 1st orders is much
higher. For 450 nm light, 90% light goes into the 1st orders. It can be inferred from the figure
that to optimize the performance of the grating for shorter wavelength, the grating has to be
made thiner. When liquid crystals would be used, the manufacture would be challenging.
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Fig. 12. Wavelength dependence of the diffraction efficiency of an OC polarization grating
recorded at 10◦. In the figure, blue, green, and red lines indicate 450 nm, 532 nm and 633
nm respectively. The incident wave is p-polarized and at perpendicular incidence, i.e. with
θ i = 0◦,φ i = 0◦. Panel (a) shows relative intensity for the 0th order in transmission and (b)
for the 1st transmitted orders.

3.2. OL polarization gratings

3.2.1. Thickness Dependence

For the OC gratings, we assumed that there is no circular anisotropy in the material, i.e. κc = 0.
Therefore the dielectric permittivity was a real symmetric tensor of rank 2. This assumption
was made because of the small ellipticity of the polarization states of the interference pattern of
the two orthogonally circularly polarized beams. In the making of OL grating, two orthogonally
linearly polarized beams are used. The states of polarization over one period of the interference
in this case changes from linear through elliptic to circular and the ellipticity varies from 0
to 1. In this case, the modulation in ellipticity is significant. To record it, the material need
to have circular photosensitivity, i.e. κc �= 0. In previous work [29], we have shown that for
small recording angles, and when κc = κ‖/2, the obtained grating yields only three propagating
transmitted orders, namely the 0th and the ±1st orders. This specific case is considered as the
perfect condition for OL gratings. For an OL grating, the dielectric permittivity is complex
hermitian.

Suppose that the OL polarization grating is recorded under the following conditions: the
polarization states of the recording beams are s and p; the two beams have equal ampli-
tude; the recording angle is 2.5◦. Let the photoanisotropy sensitivity of the material be
κ‖ = 0.2 m2/V2, κ⊥ = 0 and κc = 0.1 m2/V2. The two real refractive indices on the basis
of the eigenvectors are n1 = 1.6955, n2 = 1.5, assuming again that the amplitude of electric
writing field is 1 V/m. To be clear, those parameters are not directly related to a real material.
We comment here that circular photosensitivity is of higher order and can occur only in chi-
ral materials. Here we calculated this ideal case to gain insight. The influence of the circular
photosensitivity will be studied further in a later section.

For a perpendicular incident s-polarized reading beam with wavelength 633 nm, the diffrac-
tion efficiencies are shown as function of the thickness of the grating in Fig. 13. It is seen that
only the 0th and the −1st orders propagate, while the +1st order is absent. This asymmetry
is caused by the polarization selectivity of the polarization gratings, which we have discussed
in [27]. When the incidence field is s-polarized, the transmitted first order is p-polarized, and
vice versa. In contrast, the polarization of the 0th order is always the same as that of the in-
cidence. If the incident beam is circular polarized, the transmitted field has three propagating
orders, namely the 0th order with the same circular polarization as the incidence and the ±1st
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Fig. 13. Diffraction efficiency of an OL polarization grating recorded at θrecord. = 2.5◦ as
function of the thickness of the grating. The reading beam has wavelength of 633 nm and
is an s-polarized perpendicular incident plane wave. ’-1T’ in the legend represents the −1st

order in the transmitted field. Analogous conventions apply to 0T and 1T.

orders with orthogonal linear polarization states.
At the thickness of 1575 nm, the efficiency of the transmitted 1st order is maximum and

that of the 0th order vanishes. We will consider this thickness in the following study of the
diffraction at oblique incidence.

3.2.2. Angular dependence

Analogous to the plots in Section 3.1.1 the simulations for OL at oblique incidence are per-
formed for both s- and p-polarized reading beams. The results are shown in Fig. 14. The total
intensity of the plotted orders is almost equal to 1 for the entire range of incident angles. At
large incident angles, the 2nd transmitted order increases. The intensities of the reflected 1st

orders vanish, which means that the reflected light only excited the 0th order. The insensitivity
to angle of incidence for θ i ≤ 30◦ is observed.

For plane of incidence of which φ i = 0◦, the polarization state of the reading beam is switched
from p to s from Fig. 14(a) to Fig. 14(b). It is seen that an OL polarization grating acts as a
linear polarization converter, and depending on the direction of the incident linear polarization
state, only one of the ±1st transmitted orders propagates.

For plane of incidence such that φ i = 90◦, and for an s-polarized incident beam the +1st

order is present instead of the −1st as when φ i = 0◦. This can be explained by examining the
electric vector of the reading beam. For φ i = 0◦, the electric field vector of s-polarization has
components Ex = 0,Ey = 1,Ez = 0, hence the incident electric field is parallel to the y-axis.
When φ i = 90◦, however, the electric field vector of s-polarization is then rotated over 90◦. The
same argument applies to p-polarization.

3.2.3. Beyond small recording angles

OL polarization gratings recorded at large angles 10◦ and 15◦ are studied. For a perpendicularly
incident s-polarized plane wave, of 633 nm the efficiencies of the transmitted diffracted order
are shown in Fig. 15 as function of the thickness. The small angle case of 2.5◦ is reproduced for
comparison. It is clear from the figures, that larger recording angles lead to lower diffraction
efficiencies. This result is similar to what we observed for OC polarization gratings in Sec-
tion 3.1.3. Analogous to that case, the diffraction efficiency can be improved by using reading
beam with shorter wavelength.
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Fig. 14. Diffraction efficiency of an OL polarization grating recorded at 2.5◦ as function of
the incident angle. The reading beam is 633 nm, with (a) and (b) incident angles φ i = 0◦
and (c) and (d) φ i = 90◦. For both incidence mounts, θ i varies from 0◦ to 85◦. For (a) and
(c), the incident wave is p-polarized and for (b) and (d), it is s-polarized. -1T in the legend
represents the −1st order in the transmitted field. Analogous conventions apply to 0T and
1T. R represents the reflected field.

3.2.4. Imperfect OL polarization gratings – influence of κc

A critical requirement for a perfect OL polarization grating is that the photoanisotropic material
must be sensitive to circular polarization (κc �= 0) and that the circular anisotropy sensitivity κc

must be half the linear anisotropy sensitivity κc =
κ‖+κ⊥

2 . However, circular photosensitivity is
of higher order and is often much smaller than the linear photosensitivity of the material. The
’perfect’ recording condition is rather difficult to fulfill. Therefore the influence of the circular
photosensitivity of the material on the diffraction efficiencies of the grating is studied. For this
case, we only consider OL gratings recorded at small recording angle 2.5◦ .

First, suppose that the recording medium is not active, i.e. κc = 0. All the other parameters
are kept the same as in the thickness dependence study. As function of the thickness of the
grating, the efficiencies of each propagating order is plotted in Fig. 16. Because many orders
propagate in the transmitted field, we plot the total intensity of the transmitted field and the 0th

order in Fig. 16(a), and the other higher diffracted orders in Fig. 16(b). The total intensity is not
1, because a small amount of light is reflected into the 0th order. In the transmitted field, there
are nine nonzero propagating orders. When the grating is thicker, more diffracted orders emerge
out of the grating in transmission. Instead of having only the −1st order as in the ’perfect’ case,
now the ±1st orders have almost equal intensity. Furthermore, for every pair of ±2nd , ±3ed and
even ±4th orders, light is almost equally distributed. The polarization states of all orders are
elliptical.

(C) 2010 OSA 29 March 2010 / Vol. 18,  No. 7 / OPTICS EXPRESS  6719
#119008 - $15.00 USD Received 29 Oct 2009; revised 19 Dec 2009; accepted 22 Dec 2009; published 17 Mar 2010



0 500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d (nm)

R
el

at
iv

e 
in

te
ns

ity

Orthogonal linear; s−polarization; 633 nm

 

 

0T (2.5°)

0T (10°)

0T (15°)

0 500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d (nm)

R
el

at
iv

e 
in

te
ns

ity

Orthogonal linear; s−polarization; 633 nm

 

 

−1T (2.5°)

−1T (10°)

−1T (15°)

(a) (b)

Fig. 15. Comparison of diffraction efficiency of OL polarization gratings recorded at angles
θrecord. = 2.5◦ (blue), 10◦ (green) and 15◦ (red). Subfigure (a) shows the diffraction effi-
ciency of the 0th transmitted order, and subfigure (b) shows the efficiency of the transmitted
1st orders.
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Fig. 16. OL polarization grating with κc = 0. Panel (a) displays the relative intensity for 0th

order and total intensity in transmission; (b) displays higher diffracted orders in transmis-
sion.
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Fig. 17. OL polarization grating with κc = 0.05. Panel (a) displays the relative intensity
for the 0th order and total intensity in transmission; (b) displays higher diffracted orders in
transmission.
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Next suppose that the medium has weak circular sensitivity: κc = 0.05 m2/V2 (which is
half of the optimum value). The results in Fig. 17 show that the diffraction efficiencies are in
between those for the perfect OL grating and the one with κc = 0. For κc = 0.05 m2/V2 the
−1st transmitted order dominates the transmitted field with a maximum efficiency of 80%. The
thickness of the grating for which the diffraction of the −1st order is maximum is 2000 nm.
This is thicker than for the ’perfect’ case (1575 nm).

We then conclude that the performance of the OL polarization grating is very sensitive to the
value of κc. A small variation of it affects both the diffraction efficiency and optimal thickness
of the grating. In practice, this complicates the manufacture of an OL grating considerably.

4. Conclusions

In this paper, we studied the photoanisotropic polarization gratings using rigorous diffraction
calculation. We explained first that when the recording angle between the two beams is large,
the conventional Poincaré sphere is not suitable to describe all polarization states that occur
over a period. In fact, when the recording angle between the two recording beams is large, the
interference pattern of two orthogonally polarized beams consists of periodic modulations of
polarization states and intensity with the electric field not remaining in one plane. The plane of
the polarization ellipse of the interference pattern rotates in 3D space. By introducing a local
coordinate basis such that two of the basis vectors span the local plane to which the polarization
ellipse is parallel, we described the modulation of the electric field using five parameters.

The diffraction efficiencies of both OC and OL polarization gratings are characterized by
simulations. The results show that with polarization gratings very high diffraction efficiencies
can be achieved, higher than 95% for appropriate thicknesses for only three diffraction orders
in the transmitted field, namely the ±1st and 0th orders. The dependence of the diffraction ef-
ficiencies on the incident angle of the reading beam is rather weak. For materials with relative
large photosensitivity, within a range of 20◦ of incident angles, the diffraction efficiencies re-
main higher than 90% for both OC and OL polarization gratings. For OC grating with smaller
local linear birefringence, the diffraction efficiencies have a much stronger dependence on the
angle of incidence. Larger recording angles result in smaller pitches at the cost of lower diffrac-
tion efficiencies for the same wavelength of the reading beam. For OL polarization gratings, it
is found that the value of the circular polarization sensitivity of the recording material is critical
for a high diffraction efficiency.
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