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Executive Summary

Planet-centred solar sailing is emerging as a relevant concept in astrodynamics, complementing the
historically dominant focus on heliocentric applications. By exploiting solar radiation pressure (SRP),
solar sails can sustain non-Keplerian motion in Earth-centred scenarios, enabling displaced orbits, pole-
sitter missions, orbit precession for persistent coverage, and propellantless station-keeping. These
capabilities highlight the potential of solar sailing to support future Earth observation and communication
missions.

For mission design, particularly in preliminary design phases and global trade-space exploration, ana-
lytical and semi-analytical models may offer compelling computational advantages. They can reduce
the per-evaluation cost of trajectory propagation and steering-law evaluation, enabling larger parame-
ter sweeps and faster optimisation loops compared to brute-force numerical propagation. The Stark
model provides a convenient analytical framework, capturing first-order deviations from Keplerian mo-
tion while admitting closed- or semi-closed-form solutions.

Although the Stark model has been studied in the context of low-thrust propulsion, time-varying per-
turbations, such as J2 and atmospheric drag, and, briefly, for SRP-perturbed orbits, its application to
controlled solar-sail trajectories around Earth remains largely unexplored. The objective of this thesis
is therefore to assess the performance of the Stark model in this context, with particular emphasis on
accuracy and computational efficiency compared to classical numerical integration methods.

The acceleration model incorporates point-mass gravity and SRP under the following simplifying as-
sumptions: constant Sun-sail distance, parallel-rays approximation, neglect of eclipses, and ideal sail
behaviour. For a fixed sail attitude, these assumptions yield a force of constant magnitude and direction,
forming the basis for the integration of the Stark model.

The Stark model is derived through the Hamilton-Jacobi integration of the equations of motion. For
constant control laws, the model enables a direct evaluation of the state at any time. For time-varying
control laws, obtaining the solution requires a discretisation of the trajectory into intervals where the
control is assumed constant, followed by analytical integration of each interval. The analysis focuses
on the bounded solution of the Stark problem, consistent with Earth-centred applications.

The analysis is structured into two main components: (i) the study of the model under constant control
laws and (ii) the study of the model under time-varying control laws, corresponding to analytical for-
mulations for locally optimal raising of individual orbital elements: semi-major axis (SMA), eccentricity,
inclination, right ascension of the ascending node (RAAN), and argument of periapsis. The first compo-
nent evaluates the performance of the model across different sail parameters and orbital regimes, while
the second examines its behaviour under varying control profiles. In the latter case, comparisons are
established against classical numerical integrators by imposing fixed step sizes for analytical propaga-
tion and integration tolerances for the numerical solver. A complementary analysis is also performed
with variable step sizes determined adaptively by the numerical integration scheme.

Performance is assessed in terms of computational time and the maximum position error, ∆rmax, ac-
cumulated over the propagation interval. Velocity errors were also assessed but yielded analogous
trends and are therefore omitted in the thesis. The reference numerical integrator is the Runge-Kutta
45 (RK45) scheme with a tolerance of tol = 10−14. The reference lightness number β corresponds to
the Advanced Composite Solar Sail System (ACS3), with βACS3 = 0.0077, and the nominal reference
orbit is that of ACS3, with a SMA of a = 7346 km. All simulations were carried out over a one-day
propagation.

For constant control laws, the Stark model demonstrated a systematic advantage in computational ef-
ficiency, owing to its capability to directly evaluate the state vector at arbitrary time instants without
requiring sequential propagation. Parametric studies were performed for varying lightness number β
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and cone angle α, revealing that accuracy is strongly correlated with the magnitude of the applied per-
turbation. Specifically, larger perturbations reduced accumulated errors, with position errors spanning
∆rmax ∈ [10−3, 103]m for perturbation magnitudes in the range of ϵ ∈ [10−9, 10−3]m/s2. The primary er-
ror source was traced to intermediate analytical functions, such as elliptic integrals, whose inaccuracies
compound over long propagation intervals and are further amplified by the reciprocal of the perturbation
magnitude, leading to a mismatch in the time at which the solution is evaluated. Sensitivity analyses
with respect to the orbital elements showed that performance degradation was primarily associated
with the SMA a and eccentricity e: smaller a and larger e induce faster orbital dynamics, amplifying time
mismatches and resulting in larger position errors and computational cost.

For time-varying control laws, the relative performance of the Stark model, quantified through an equally
weighted metric combining computational time and positional accuracy, depended critically on the
smoothness of the control profile. In the case of smooth control variations (SMA-, eccentricity-, and
argument of periapsis-raising), the Stark model outperformed numerical propagation within the region
of step sizes of ∆t ∈ [36, 100] s, where numerical methods required tolerances of tol ∈ [10−10, 10−7]
to match the same accuracy. For discontinuous control profiles (inclination- and RAAN-raising), the
region in which the Stark model outperformed numerical propagation narrowed significantly, with effec-
tive ranges limited to ∆t ∈ [90, 100] s and tol ∈ [10−8, 10−7]. Performance also exhibited dependence
on sail lightness number. For inclination- and RAAN-raising laws, outperformance occurred only for
β ≈ 10−1βACS3, whereas for SMA- and eccentricity-raising laws, it extended to β ∈ [10−1, 100]βACS3.
In the case of argument of periapsis-raising, outperformance was maintained across the entire range
β ∈ [10−1, 101]βACS3. Additional analyses performed with variable step sizes showed improved ac-
curacy in capturing the dynamics, with the Stark model outperforming numerical propagation for all
control laws over tolerance ranges of tol ∈

[
10−9, 10−4

]
(slightly varying with the control law). These

findings highlight a key model limitation: the inability to internally adapt step sizes under time-varying
perturbations.

Overall, the findings confirm that the Stark model constitutes a valuable analytical tool for preliminary
planet-centred solar sail trajectory design, particularly in scenarios governed by smooth control laws.
Future work should focus on overcoming the fixed-step limitation to better handle strongly time-varying
perturbations and on extending the dynamical model to incorporate additional effects such as J2, at-
mospheric drag, third-body perturbations, and eclipses. These advancements would enhance both the
accuracy and the applicability of the Stark model in realistic mission design contexts.
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1
Introduction

Solar sailing has gained prominence as a propulsion concept due to its ability to operate without pro-
pellant. The principle is based on solar radiation pressure (SRP), in which solar photons interact with
the reflective surface of the sail, transferring momentum to the spacecraft. Although much of the exist-
ing research has concentrated on heliocentric missions, increasing attention is being directed toward
planet-centred solar sailing. In this setting, SRP can be harnessed to sustain non-Keplerian trajecto-
ries, enabling concepts such as displaced orbits, pole-sitter configurations, and propellantless station-
keeping. These applications complement the more extensively studied heliocentric scenarios.

Within astrodynamics, mission design constitutes a core discipline, concerned with developing trajecto-
ries and control strategies that fulfil mission objectives efficiently. Typically, the process begins with a
global optimisation over a wide design space using simplified dynamical models, thereby allowing the
rapid identification of favourable regions. Candidate solutions are then subjected to refinement through
local optimisation with higher-fidelity models, ultimately producing mission designs that are optimal or
near-optimal and suitable for mission proposals.

For most dynamical models, trajectory propagation is achievable only through numerical integration.
However, in certain cases, analytical or semi-analytical formulations exist, which may offer significant
computational benefits relative to purely numerical approaches, thereby facilitating extensive parame-
ter studies and accelerating optimisation procedures. The classical example is the two-body problem
(TBP), where the Keplerian formulation provides an exact analytical solution at a fraction of the com-
putational effort required by numerical propagation.

Beyond the Keplerian case, an analytical formulation is also available for the Stark problem, defined as
a perturbed TBP subject to a constant perturbation in both magnitude and direction. This framework,
known as the Stark model, affords an analytically manageable representation of first-order deviations
from Keplerian motion while retaining closed- or semi-closed-form expressions for the solution.

Despite its potential, the Stark model has not yet been explored as a tool for preliminary mission design
in the context of planet-centred solar sailing. The central aim of this thesis is to investigate the viability
of employing the Stark model as an alternative to numerical propagation in such scenarios. More
specifically, the work evaluates the accuracy and efficiency of the Stark model in comparison with
standard numerical integration, assessing its suitability as a framework for preliminary design studies.

The thesis structure is as follows. In Chapter 2 an outline of the relevant literature regarding solar sailing
and analytical models for trajectory propagation is provided. Chapter 3 delves into the research gap
found in the literature review and presents the research objective of the thesis. The dynamical model,
including reference systems, acceleration model, and some of the control laws used in the study are
presented in Chapter 4. Then, in Chapter 5, the mathematical derivations to obtain the integrated
equations of the Stark model are detailed. Chapter 6 presents the results of the thesis, supported by
a brief summary of the methodology, in a paper format. Finally, conclusions extracted from the thesis
and recommendations for future work are presented in Chapter 7.

1



2
Literature Review

In this chapter, the most relevant literature will be outlined in order to identify a research gap that will
later be justified and presented as a research objective. Section 2.1 contains the relevant literature on
solar sails. It will start with a brief description of the principle of operation of solar sails, followed by a
presentation of their history, and finally end with a detailed description of the concept of solar radiation
pressure as well as the main force model used to describe the dynamics of solar sails. Section 2.2
focuses on the literature on the use of analytical models in trajectory prediction, describing the main
approaches employed to reach to analytical solutions for various dynamical models as well as the
literature concerning the Stark model.

2.1. Solar-Sailing Technology
This section provides the fundamental background to understand solar-sailing technology. Subsection
2.1.1 introduces the fundamental operating principle of solar sailing. A brief historical overview of so-
lar sailing, including past missions is presented in Subsection 2.1.2. The discussion then proceeds in
Subsection 2.1.3 to a comparative analysis of heliocentric and planet-centred solar-sailing applications.
Subsequently, a detailed derivation of the momentum transfer produced by the SRP is given in Subsec-
tion 2.1.4, serving as basis for the formulation of the force model of the solar sail shown in Subsection
2.1.5.

2.1.1. Operating Principle
As briefly stated in Chapter 1, solar sails are a means of propulsion whose main advantage over other
conventional means of propulsion, such as chemical or ion propulsion, lies in the lack of need for
propellant. This is because the propulsion is generated using the energy carried by the photons of
solar radiation. These photons are reflected by the sail, which produces a momentum transfer that
generates a force along the direction normal to the reflection [1].

Although solar sailing enables propellantless propulsion, each photon carries a relatively small amount
of energy that must be scaled up to provide sufficient acceleration for effective spacecraft control. Con-
sequently, the design of a solar sail must consider both the spacecraft’s mass and the reflective area
of the sail. A commonly used metric that captures the influence of both parameters is the characteris-
tic acceleration, ac. This represents the acceleration due to SRP experienced by the solar sail when
oriented normal to the sunlight at a distance of one astronomical unit (AU) from the Sun [2], which
corresponds to the maximum acceleration the sail can provide the spacecraft with at that distance. For
the case of ACS3, which is the latest solar-sailing demonstration mission launched, the characteristic
acceleration attains a value of ac = 0.0455 mm/s2 [3].

Although solar sails have the advantage of not needing propellant, the accelerations provided by solar
sails are inherently limited. In addition, solar sails present other constraints, the most significant being
their limited directionality. Since the radial component of the acceleration exerted by the solar sail
always points away from the Sun, this significantly restricts the range of achievable thrust directions.

2
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Another limitation is the degradation of the sail itself. Although theoretically conceived as an infinite
means of propulsion, in reality the solar sail undergoes a process of degradation over time due to its
exposure to the space environment. Therefore, the lifetime of a solar-sailing mission is limited by the
lifetime of its film, which refers to the thin reflective membrane that constitutes the sail’s surface. Some
authors have studied the effect that degradation can have on the performance of a solar-sailing mission
by considering simple analytical models and have concluded that ignoring degradation when designing
a mission could lead to overestimating the solar-sail performance [4, 5].

2.1.2. History of Solar Sailing
The first insights on SRP date back to 1610, when Johannes Kepler observed that sunlight causes the
tails of comets to point away from the Sun [6]. Later, in 1873 James Clerk Maxwell published his theory
of electromagnetism, in which he stated that electromagnetic fields do not only carry energy but also
momentum [7]. However, it was not until the twentieth century when Konstantin Tsiolkovsky [8, 9] and
Friedrich Tsander [10] started to theorise about the use of SRP for space propulsion.

The first missions involving the use of this concept were Mariner 10 [11] and Messenger [12], which
used SRP as a secondary means of propulsion. Later, in 2010, the Interplanetary Kite-craft Acceler-
ated by Radiation Of the Sun (IKAROS) mission from the Japan Aerospace eXploration Agency (JAXA)
demonstrated the use of solar sailing as a propulsion alternative to chemical or ion propulsion in inter-
planetary space [13]. This was considered as an incredible milestone for solar sailing and paved the
way for future missions. Later that year, the National Aeronautics and Space Administration (NASA)
launched NanoSail-D2, which in 2011 deployed a 10 m2 sail, becoming the first sail to orbit Earth [14].

Several years later, in 2015 The Planetary Society [15] launched LightSail-1 (or LightSail-A), which,
although it reentered Earth’s atmosphere the same year, successfully proved the in-orbit deployment
of a solar sail from a CubeSat [16]. In 2019, The Planetary Society launched LightSail-2 (or LightSail-
B), which not only operated for 3.5 years, but also proved the use of solar sailing for orbit control [17],
which implied a major advancement in the field.

A more recent mission was launched in 2023 by GAMA, GAMA Alpha, which was its first demonstration
mission, including a 73m2 solar sail on board of a 6UCubeSat [18]. In addition, in 2024 NASA launched
its ACS3 mission, aiming to demonstrate solar-sailing technology for future missions [18]. It consists
of a 12U CubeSat, with an 80 m2 sail that was successfully deployed several months after its launch
[19].

A summary of some of these missions is presented in Table 2.1. It includes the launch year; the mass
of the spacecraft, m; the area of the sail, A; the sail loading, σ, defined as the ratio of spacecraft mass
to sail area; the lightness number, β, which quantifies the ratio between the acceleration induced by
SRP and that due to the Sun’s point-mass gravity; and the characteristic acceleration, ac.

Table 2.1: Solar-sail characteristics of some previous successful solar-sailing missions.

Mission Launch Year m [kg] A [m2] σ [kg/m2] β [−] ac [mm/s2]
ACS3 [3] 2024 16 80 0.2 0.0077 0.0455
LightSail-2 [20] 2019 4.93 32 0.154 0.0099 0.0591
NanoSail-D2 [14] 2010 4 10 0.4 0.0038 0.0227
IKAROS [21] 2010 307 196 1.566 0.0010 0.0058

Table 2.1 shows that recent missions, ACS3 and LightSail-2, exhibit larger values of lightness number
and characteristic acceleration, indicating greater propulsive capabilities due to a lower sail loading.
This trend suggests a progressive improvement in solar-sailing performance over time as technology
matures.

2.1.3. Heliocentric versus Planet-Centred Solar Sailing
Historically, the formulation of solar-sail theory and the associated mission design methodologies have
been predominantly directed toward heliocentric applications. Foundational analyses of non-Keplerian
and Sun-relative trajectories demonstrated that the continuous, propellantless thrust generated by SRP
enables the realization of novel families of orbits and transfer trajectories within the heliocentric regime
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[1, 22]. This theoretical framework subsequently underpinned a wide range of mission concepts in helio-
physics and interplanetary exploration, leveraging the sail’s capability to deliver sustained acceleration
without incurring the mass penalties inherent to propellant-based propulsion systems.

The JAXA IKAROS mission successfully validated the deployment, attitude control, and navigation of a
large-area solar sail within the interplanetary environment [21]. Concurrently, mission concept studies
by NASA and European Space Agency (ESA) proposed the use of solar-sail spacecraft positioned at
displaced Sun-Earth Lagrange points to support early-warning capabilities and heliospheric science
investigations [22, 23]. These configurations exploit the inherent capability of solar sails to sustain
observation points located sunward of L1 or at elevated solar latitudes, regions that are dynamically
inaccessible to spacecraft relying solely on ballistic trajectories.

In contrast to heliocentric applications, planet-centred solar sailing has historically received compar-
atively limited attention, despite presenting distinct dynamical characteristics and a range of poten-
tial mission opportunities. Within the gravitational environment of a planetary system, SRP can be
exploited to maintain displaced equilibrium configurations, provide continuous high-latitude coverage
through so-called “pole-sitter” orbits, or induce controlled orbital precession to support targeted scien-
tific observations. The GeoSail mission concept exemplifies this class of application, demonstrating
that a relatively modest sail area can sustain a precessing orbit within Earth’s magnetotail, thereby
enabling uninterrupted in-situ measurements [24]. Analytical and numerical investigations have further
identified additional use cases, including augmentation of geostationary coverage, provision of high-
latitude communication services, and integration of solar sails within hybrid propulsion architectures
combining SRP with other forms of low-thrust propulsion [25].

Flight heritage increasingly substantiates the technical feasibility of planet-centred solar-sailing appli-
cations. Demonstration missions such as NanoSail-D2 [14] and LightSail-2 [17] have successfully vali-
dated key operational capabilities, including membrane deployment, attitude control, and the detection
of quantifiable SRP-induced perturbations to orbital motion in Earth orbit. More recent efforts, includ-
ing GAMA Alpha [18] and NASA’s ACS3 [3], have further advanced the technology readiness level for
small-satellite platforms, with demonstrated or anticipated applications encompassing propellantless
stationkeeping, controlled end-of-life deorbiting, and manoeuvre execution in Low-Earth Orbit (LEO)
and potentially in higher-altitude or cislunar operational regimes.

In summary, although heliocentric solar-sailing missions have established the theoretical foundation
and demonstrated large-scale operational capability, the planet-centred regime offers a complemen-
tary set of mission opportunities with distinct operational advantages. Potential applications include
persistent observation points for scientific measurements, propellantless stationkeeping in displaced
orbits, augmentation of communications coverage in high-latitude regions, and sustainable end-of-life
disposal strategies. Advancing these capabilities requires systematic investigation of the underlying
dynamical regimes, associated control strategies, and tailored mission architectures, representing a
timely and necessary continuation of the heliocentric research tradition [14, 17, 22, 24, 25].

2.1.4. Solar Radiation Pressure
In Subsection 2.1.1, the underlying operating principle of solar sails was described. There, it was
explained how the energy in solar radiation results in a momentum transfer to the spacecraft via photon
reflection on the sail surface. To quantify the force exerted on the sail, it is first necessary to determine
the radiation pressure acting on it. The derivations carried out in this subsection follow those in [1].
Since pressure is defined as force per unit area, P = F̃

A , and force is defined as the momentum
transported per unit of time, F̃ = dp

dt , pressure can be expressed as:

P =
1

A

dp

dt
(2.1)

To derive the expression of the SRP it is necessary to consider the momentum carried by photons. For
this purpose, one must begin with the energetic properties of photons. In 1900, Max Planck established
that the energy carried by a photon, Ẽ, is proportional to its frequency, ν̃ [26].

Ẽ = hν̃ (2.2)
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Here, h denotes Plank’s constant. Later, Einstein developed his famous energy-mass relation as part
of the theory of special relativity [27].

Ẽ = mc2 (2.3)

In Eq. (2.3), m represents the mass of the body and c denotes the speed of light. Building on this,
Planck introduced the energy-momentum relation, which expresses the total energy of a moving body
as a function of its rest mass m0 and its momentum p [28].

Ẽ2 = m2
0c

4 + p2c2 (2.4)

Given that m0 = 0 for a photon, energy can be expressed only as a function of the momentum of a
photon.

Ẽ = pc (2.5)

Differentiating Eq. (2.5) leads to an expression of the rate of change of momentum with respect to
energy.

dp

dẼ
= c (2.6)

In order to obtain the momentum transported per unit of time, the time rate of change of energy is
needed. According to the definition of flux, this rate of change can be expressed as:

dẼ

dt
= W̃A (2.7)

Here, W̃ denotes the solar energy flux, which is given by:

W̃ =
L⊙

4πr2
(2.8)

Equation (2.8) represents the solar flux at a distance r from the Sun, where L⊙ is the solar luminosity.
Combining Eqs. (2.1), (2.6) and (2.8) leads to an expression for the SRP.

P =
L⊙

4πcr2A
(2.9)

As observed, the SRP depends on the distance to the Sun and the projected area of the body under
consideration perpendicular to the direction of the incident solar radiation.

2.1.5. Force Models
Over the years, several solar-sail force models have been developed. The most important ones have
been detailed by McInnes in [1]. The two most important force models are the optical force model and
the parametric force model. Here, only the optical force model will be described, including a particular
case of this model, the ideal, perfectly reflective sail model.

Optical force model
The optical force model accounts for the optical properties of the sail to characterise the force generated
by SRP. The total force acting on the sail can be decomposed into three force components, each
associated to a distinct optical property of the sail film: absorptance, ã; reflectance, r̃; and emissivity,
ẽ.

f = fã + fr̃ + fẽ (2.10)

Here, ã and r̃ represent the fractions of photons that are absorbed and reflected by the sail surface,
respectively. These coefficients allow to define a relation that describes how the total number of photons
incident on the sail is partitioned among reflection, absorption, and transmission.

ã+ r̃ + τ̃ = 1 (2.11)

Here, τ̃ denotes the fraction of photons that are transmitted through the sail without interacting with it in
terms of momentum transfer. Assuming no transmission (τ̃ = 0), which could occur due to part of the
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film tearing apart or intentionally in more novel approaches to solar-sail technology [29], the absorption
coefficient can be expressed as a function of the reflection coefficient.

ã = 1− r̃ (2.12)

Equation (2.9) showed that the SRP depended on the projected area of the body under consideration,
in this case the solar sail, perpendicular to the direction of the incident sunlight. Therefore, it is clear
that the force generated by the sail depends on its orientation with respect to the direction of solar
radiation. Figure 2.1 depicts a representation of the vectors and angles involved in a two-dimensional
formulation of the solar-sail force model. The unit vectors u and s denote the incident sunlight and its
specular reflection on the sail, respectively. Vectors n and t define the normal and tangential directions
to the sail, whilem represents the direction of the total force due to SRP acting on the sail. The angle α,
referred to as the cone angle, quantifies the orientation of the sail with respect to the incident radiation
as the angle between the incoming sunlight and the sail normal. Finally, angle ϕ̃ defines the direction
of the total SRP force vector m with respect to the sail normal vector n.

u

s

Solar Sail

n

m

t

α

ϕ̃

Figure 2.1: Representation of the vectors and angles involved in a two-dimensional formulation of the solar-sail force model.

Having established the geometric setup, it is now possible to express the incident and reflected direc-
tions in terms of the orientation of the sail.

u = cosαn+ sinαt (2.13)
s = − cosαn+ sinαt (2.14)

To derive the expression of the force exerted on the sail due to SRP, consider the case on which
every photon is absorbed. This results in a unidirectional momentum transfer along the direction of the
incoming radiation.

fã = PA cosαu = PA
(
cos2 αn+ cosα sinαt

)
(2.15)

Equation (2.15) corresponds to the lower bound of solar-sail performance, as it yields the minimum
attainable force due to the lack of reflection. This minimum force depends on the cone angle, α, which
is maximum for a sail orientated perpendicular to the sunlight direction, given for a cone angle of α = 0◦.
Now, consider the case where a fraction r̃ of photons is reflected. Of these, a proportion s undergoes
specular reflection, resulting in a momentum transfer given by:

fr̃s = −r̃sPA cosαs = r̃sPA
(
cos2 αn− cosα sinαt

)
(2.16)

The remaining fraction of reflected photons, s = (1− s), undergoes non-specular reflection, leading to
exerting a force as follows.

fr̃s = Bf r̃ (1− s)PA cosαn (2.17)
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In Eq. (2.17), Bf alludes to the non-Lambertian properties of the front solar-sail surface, which cause
the light not to always reflect specularly, leading to variations in brightness across the surface [30]. The
total force due to reflection results from adding Eqs. (2.16) and (2.17).

fr̃ = fr̃s + fr̃s = PA
[(
r̃s cos2 α+Bf (1− s) r̃ cosα

)
n− r̃s cosα sinαt

]
(2.18)

Finally, the last component of the force to be determined is the force caused by the emission of photons
as thermal radiation from both front and back surfaces of the sail. According to the Stephan-Boltzmann
law, the radiant flux emitted per unit area, M̃ , is a function of the surface temperature, T , and the
material emissivity, ẽ.

M̃ = ẽσ̃T 4 (2.19)

Here, σ̃ refers to the Stephan-Boltzmann constant. Assuming a constant temperature distribution
across the sail and both sail surfaces to be non-Lambertian, the force acting on the sail due to emission
is given by:

fẽ =
M̃fBf − M̃bBb

c
An =

σ̃T 4

c
A (ẽfBf − ẽbBb)n (2.20)

The sub-indices f and b refer to the front and back surfaces, respectively. In Eq. (2.20), the temperature
of the sail, T , is the only unknown variable, thus it needs to be determined. This can be achieved by
applying the condition of thermal equilibrium to the sail. The thermal output, representing the heat
radiated away from the sail, is governed by the thermal emission from both the front and back surfaces
of the sail.

Φout = (ẽf + ẽb) σ̃T
4 (2.21)

Here, Φout represents the thermal output. The thermal input, Φin, can be expressed as a function of
the absorbed solar flux.

Φin = (1− r̃)W cosα = (1− r̃) cP cosα (2.22)

Equations (2.21) and (2.22) allow to determine the temperature of the sail by applying the thermal
equilibrium condition, which requires that the thermal output equals the thermal input.

Φout = Φin ⇒ Teq =

[
(1− r̃) cP cosα

(ẽf + ẽb) σ̃

] 1
4

(2.23)

Substituting the equilibrium temperature in Eq. (2.23) into Eq. (2.20) yields an expression in the format
of those from Eqs. (2.15) and (2.18), with the emissive force formulated as a function of the SRP.

fẽ = PA (1− r̃)
ẽfBf − ẽbBb

ẽf + ẽb
cosαn (2.24)

Equations (2.15), (2.18) and (2.24) allow to determine an expression of the total force acting on the sail
due to SRP, which can be decomposed into its normal and tangential components.

fn = PA

[
(1 + r̃s) cos2 α+Bf (1− s) cosα+ (1− r̃)

ẽfBf − ẽbBb

ẽf + ẽb
cosα

]
n (2.25)

ft = PA (1− r̃s) cosα sinαt (2.26)

Having the normal and tangential components, the total force can be expressed as follows.

f = fn + ft = fm where f =
√

f2
n + f2

t (2.27)

Furthermore, the angle ϕ̃ can be determined.

ϕ̃ = tan

(
ft
fn

)
(2.28)
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Ideal Sail
The concept of an ideal sail is defined by a perfectly reflective sail. In this case, all incident photons
are specularly reflected, implying that the total force acting on the sail due to SRP arises exclusively
from specular reflection. This condition can be expressed by means of the coefficients defined before.

r̃ = 1 ẽf = 0 Bf = 2/3

s = 1 ẽb = 0 Bb = 2/3
(2.29)

Substituting the coefficients in Eq. (2.29) into Eqs. (2.25) and (2.26) yields the expressions for the
force components along the sail normal and tangential directions generated by an ideal sail.

fn = 2PA cos2 αn (2.30)
ft = 0 (2.31)

Given that no photon undergoes non-specular reflection, the total force acting on the sail due to SRP
lies along the sail normal direction.

f = 2PA cos2 αn (2.32)

In Subsections 2.1.1 and 2.1.2, the concepts of characteristic acceleration ac and lightness number β
were introduced as metrics used to characterise the performance of a solar sail. Additionally, the con-
cept of sail loading σ was presented in Subsection 2.1.2. Using Eq. (2.32) as a starting point, the effect
of characteristic acceleration, lightness number, and sail loading on the acceleration experienced by
an ideal solar sail under SRP is examined. For the force model in Eq. (2.32), the resulting acceleration
is given by:

a = 2P
A

m
cos2 αn (2.33)

Defining the sail loading as σ = m
A , Eq. (2.33) can be reformulated in terms of σ.

a = 2P
1

σ
cos2 αn (2.34)

Equation (2.34) shows that lower values of sail loading result in higher accelerations experienced by the
sail, highlighting the importance of minimising the mass-to-area ratio to enhance propulsion efficiency.
The characteristic acceleration is defined as the acceleration experienced by the sail due to SRP when
oriented normal to sunlight at a distance of one AU from the Sun. To compute this value, it is required
to express the acceleration in Eq. (2.34) as a function of the sail heliocentric distance. Substituting the
expression for SRP from Eq. (2.9) into Eq. (2.34) yields the following relation for the acceleration of an
ideal sail:

a =
L⊙

2πc

1

σ

1

r2
cos2 αn (2.35)

Substituting the conditions on sail orientation and sail heliocentric distance given by the definition of
characteristic acceleration on Eq. (2.35) yields an expression for ac.

ac =
L⊙

2πc

1

σ

1

r2E
=

2W̃E

cσ
(2.36)

In Eq. (2.36), rE denotes Earth’s mean heliocentric distance (1 AU) and W̃E represents the solar flux
at this distance, as defined in Eq. (2.8). From Eq. (2.36) it can be deduced that the only sail parameter
influencing the characteristic acceleration is the sail loading, σ.

Finally, to derive the expression for the lightness number, it is necessary to incorporate the Sun’s point-
mass gravitational acceleration into the expression. This can be achieved by multiplying and dividing
Eq. (2.35) by the gravitational parameter of the Sun, Gm⊙, where G is the gravitational constant and
m⊙ denotes the solar mass. This manipulation enables the acceleration due to SRP to be expressed
relative to the Sun’s gravitational acceleration, Gm⊙

r2 .

a = β
Gm⊙

r2
cos2 αn (2.37)
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The value of the lightness number β in Eq. (2.37) is given by:

β =
σ∗

σ
where σ∗ =

L⊙

2πGm⊙c
(2.38)

Here, σ∗ denotes the critical solar-sail loading, which depends solely on solar luminosity and mass.
Once again, the dependency on the sail loading can be observed in Eq. (2.38), following the same
inverse relation shown in Eq. (2.36) for the characteristic acceleration.

2.1.6. Locally Optimal Control Laws
The optimal control problem for a solar-sail trajectory consists of determining the time history of the
sail attitude that maximises (or minimises) a specified performance index, such as time of flight, final
orbital energy, or propellant mass savings in hybrid systems. Fully optimal solutions to such problems,
obtained through direct or indirect optimal control methods, are capable of delivering globally optimal
trajectories but are computationally intensive, particularly when embedded within iterative design pro-
cesses or global search frameworks [1, 31].

Locally optimal control laws (LOCLs) provide an attractive alternative by prescribing the instantaneous
sail orientation that optimises a local performance metric, typically the rate of change of a chosen orbital
element or energy function, without regard for the entire future trajectory [1, 32]. These laws are derived
by maximising (or minimising) the instantaneous variation of a selected quantity under the constraints
of the sail dynamics, often using the Gaussian form of variational equations or other formulations for
the rate of the orbital elements. Because they only require the current state vector and a small number
of analytical expressions, LOCLs are extremely efficient to evaluate.

LOCLs have been developed for a variety of solar-sail mission scenarios. In the heliocentric case,
classic examples include control laws for rapid changes in orbital angular momentum or inclination,
constant cone-angle spirals, and time-optimal transfers under simplified SRP models [1]. In the planet-
centred context, Macdonald and McInnes [31] derived analytical steering laws for geocentric solar
sailing, enabling station-keeping, secular changes in argument of perigee, and other mission types
without requiring numerical optimisation. More recently, Carzana et al. [32] extended LOCLs concepts
to fully three-dimensional transfers and included atmospheric drag in the acceleration model.

This computational efficiency comes at the expense of global optimality: the trajectories produced by
LOCLs are generally inferior to those obtained from full optimal control for the same problem definition.
Nevertheless, the reduction in computational effort can be substantial, making them particularly well
suited for applications where numerous candidate trajectories must be evaluated rapidly. As such,
LOCLs have clear relevance for preliminary mission design and early-phase trade-space exploration.

2.2. Analytical Trajectory Prediction
This section examines the applicability of analytical models for trajectory prediction and demonstrates
how such models can be employed for analytical planet-centred solar-sail trajectory prediction. Subsec-
tion 2.2.1 introduces the dynamical framework of a general perturbed TBP, highlighting the necessity of
integrating the equations of motion. In Subsection 2.2.2 numerical integration methods are introduced.
A distinction between the approaches to equation integration in preliminary and detailed mission design
phases is outlined in Subsection 2.2.3, where potential applications of analytical trajectory prediction
are also discussed. Finally, Subsection 2.2.4 presents various analytical formulations found in the
literature, with particular emphasis on those tailored to solar-sailing missions.

2.2.1. Dynamical Model of the Perturbed Two-Body Problem
This subsection introduces the dynamical model of a generic perturbed TBP, defined as a TBP that is
subjected to external perturbative acceleration. These perturbations may arise from sources such as
the oblateness of the central body, third-body gravitational effects, or SRP. The nature and magnitude
of the perturbation generally depends on both the perturbing source and the dynamical state of the
orbiting body. The equations of motion governing a generic perturbed TBP are given by:

ṙ = v

v̇ = − µ

r3
r+ ap (r,v, p̃)

(2.39)
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In Eq. (2.39), r and v denote the position and velocity vector of the orbiting body, respectively, µ cor-
responds to the standard gravitational parameter of the central body, and ap represents the perturbing
acceleration, which depends on the state of the orbiting body and a series of parameters p̃ associated
with the specific perturbation. For instance, in the case of a solar sail subjected to SRP, the vector
p̃ includes the solar luminosity, the position of the Sun relative to the orbiting body, and sail-specific
properties such as the sail loading and orientation.

The equations of motion presented in Eq. (2.39) are, in general, non-integrable. Only three classical
problems in celestial mechanics are known to admit closed-form analytical solutions: the Kepler prob-
lem [33], the two-fixed centres problem [34], and the Stark problem [35]. For all other cases, including
perturbed systems, obtaining a solution requires the application of numerical integration techniques.

2.2.2. Numerical Integration Methods
This subsection introduces the concept of numerical integration and provides an overview of the various
types of numerical methods available. It also discusses the trade-offs involved in selecting integration
parameters, which must balance accuracy, computational efficiency and stability.

Numerical integration refers to the collection of algorithms used to approximate the solution of ordinary
differential equations (ODEs), such as the perturbed two-body equations in Eq. (2.39), when a closed-
form solution is not available. At its core, a numerical integrator steps the system forward in time by
generating successive estimates of the state vector x̃ = [r,v] based on the governing ODE and the
chosen discretization strategy [36, 37].

Methods for numerical integration can be classified according to various characteristics that govern
their behaviour. One of the most fundamental distinctions is between fixed-step and variable-step
schemes. Fixed-step integrators use a constant step size ∆t throughout the propagation. They are
simple to implement and predictable in terms of computational workload, but may suffer from significant
cumulative error if ∆t is too large, or inefficiency if ∆t must be chosen very small to capture rapid
dynamics accurately [38, 39]. In contrast, variable-step integrators dynamically adapt the size of the
step ∆t by estimating the local truncation error at each step, adjusting ∆t to maintain the error within
the user-defined tolerances [36, 40]. This adaptivity enables greater efficiency in regions where the
solution evolves slowly, permitting larger step sizes, and high accuracy when rapid changes occur,
requiring smaller steps. However, variable-step methods introduce computational overhead due to
error estimation and step-size control logic.

Numerical integrators may also be classified as explicit or implicit. Explicit methods, such as the classi-
cal Euler or Runge-Kutta schemes, compute the next state using only previously available information.
They are straightforward to implement and computationally inexpensive per step, but can become un-
stable or require prohibitively small step sizes ∆t when applied to stiff problems [37, 38]. Implicit meth-
ods, on the other hand, involve solving one or more non-linear equations at each step, typically using
root finding algorithms. While this increases the computational cost per step, it significantly improves
stability and permits the use of larger ∆t in stiff regimes [36, 40].

Any choice of integrator entails a trade-off between accuracy and computational cost. Higher-order
methods, such as high-order Runge-Kutta or Dormand-Prince schemes, achieve a given accuracy
with larger step sizes, thereby reducing the total number of integration steps. However, each step
incurs a higher computational cost due to additional function evaluations [36, 38]. In contrast, low-order
methods, such as Euler or midpoint schemes, offer low per-step cost but require many more steps to
reach comparable accuracy, which can result in longer total runtimes when high precision is needed
[37]. Variable-step integrators can mitigate this trade-off by allocating computational effort adaptively,
though the associated overhead must be justified by the complexity of the problem dynamics.

To conclude this subsection, the Euler method is illustrated as an example. The Euler scheme adapts
the state of the system at each step as:

x̃k+1 = x̃k +∆t ˙̃xk (2.40)

Here, ˙̃x denotes the state derivative vector. Applied to the perturbed TBP in Eq. (2.39), the state
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updates are given by:
rk+1 = rk +∆tvk

vk+1 = vk +∆t

[
− µ

r3k
rk + ap (rk,vk, p̃k)

] (2.41)

While trivial to implement and computationally inexpensive, the forward Euler method is only first-order
accurate and exhibits substantial energy drift when applied to orbital problems, unless an extremely
small time step ∆t is used [36, 38]. For long-term orbital propagation, higher-order methods, such as
the fourth-order Runge-Kutta scheme, are typically preferred for accuracy and long-term stability.

2.2.3. Integration Strategies in Preliminary and Detailed Mission Design
This subsection examines integration strategies across the two major phases of space mission design:
preliminary mission design and detailed mission design. Preliminary design aims to explore a broad
design space to identify feasible mission architectures, trajectories, and system parameters that satisfy
high-level requirements. This phase typically employs global search techniques, such as grid searches,
genetic algorithms, and other heuristic optimisers, to investigate a wide variety of trajectory options and
operational scenarios [41, 42]. Once promising candidate solutions are identified, the design process
transitions into the detailed phase, where the focus shifts to refining and validating the selected concept
through high-fidelity modelling, local optimisation and rigorous enforcement of constraints [42].

From a computational perspective, this distinction has direct implications for integrating the equations
of motion. In detailed mission design, the objective is to obtain accurate, physically consistent solutions
suitable for implementation and mission operations. This requires high-fidelity dynamical models, in-
cluding relevant perturbations such as non-spherical gravity, third-body effects, and SRP, and the use
of high-order numerical integration schemes with tight error tolerances [36, 41]. Runge-Kutta methods
of high order or implicit integrators for stiff systems are often employed to ensure that local truncation
errors remain negligible over long propagation intervals. Such accuracy is essential for manoeuvre
optimisation, navigation filter tuning, and long-term stability analysis, as even small integration errors
can accumulate to significant trajectory deviations or incorrect performance estimates [43].

In contrast, preliminary mission design aims to efficiently evaluate a large number of candidate solu-
tions during the global search. Since each trajectory evaluation may require hundreds to thousands
of integrations over the mission timeline, computational cost is a critical factor [42]. To reduce the run-
time, preliminary analysis often employs lower-fidelity dynamical models, looser numerical tolerances,
or simplified analytical approximations. Examples include Keplerian motion with impulsive manoeu-
vres, averaged equations of motion, or low-order numerical integration schemes [41, 43]. While such
approximations introduce modelling and integration errors, they are acceptable at this stage because
the objective is to identify promising regions of the design space for further refinement rather than
produce final, flight-ready trajectories.

2.2.4. Analytical Models for Trajectory Prediction
Analytical trajectory-prediction models approximate the solution of the equations of motion through
closed-form expressions or low-cost semi-analytical procedures; their principal appeal in the context of
mission design is that they generally attain a very low per-evaluation cost compared with high-fidelity
numerical propagation. In preliminary mission design, where global searches and optimisation loops
evaluate very large numbers of candidate trajectories, this reduction in per-evaluation computational
time can substantially increase both the breadth and resolution of the explored design space and thus
improve the likelihood of finding high-quality initial guesses for later refinement [41, 42]. This sub-
section studies the state-of-the-art regarding analytical models for trajectory prediction, with particular
emphasis on literature concerning solar sailing.

In astrodynamics, a common method employed to construct analytical approximations is through the
use of perturbation methods. Perturbation methods develop the solution of the perturbed problem as
a series expansion around the TBP solution; when the perturbation magnitude ϵ is small, ϵ ≪ 1, the
expansion converges rapidly and yields accurate approximations with only a few terms [44, 45]. These
approaches give rise to closed-form or semi-analytical propagators for a range of perturbations and are
therefore natural candidates for use in rapid analyses in the preliminary design phase.
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The literature provides mature analytical treatments for several important perturbation classes. The
J2 problem has been extensively treated for both single-satellite [46, 47, 48, 49, 50, 51] and relative
motion problems [52, 53, 54]. Atmospheric drag and third-body perturbations have likewise received
analytical and semi-analytical attention in contexts where these effects are dominant [55, 56, 57, 58,
59].

When it comes to solar-sail dynamics, they have been mainly studied in the heliocentric context. The
simplest formulation considers purely radial acceleration, which can be modelled as a modification
of the solar gravitational parameter, yielding exact conic-trajectory solutions [1]. Several works have
applied linear perturbation methods around the two-body problem, treating the SRP acceleration as a
small perturbation to derive analytical approximations of heliocentric solar-sailing trajectories [60, 61].
An alternative line of research employs shape-based approaches, most commonly assuming spiral
trajectories. Within this framework, exact solutions have been obtained for the purely radial case [62],
while other studies have introduced approximations to generalise the motion to constant, non-radial
pitch angles [1, 63], and even to fully three-dimensional configurations [64, 65].

By contrast, planet-centred solar-sailing trajectories pose distinct analytical challenges and remain com-
paratively underrepresented in the literature. The first analytical treatment of a planet-bound satellite
subjected to SRP was provided by Isayev [66], who employed analytical mechanics under the simplify-
ing assumptions of constant perturbing force magnitude and fixed direction. In the solar-sailing context,
these assumptions correspond to maintaining a constant cone angle and neglecting variations in the
Sun-satellite distance over the bounded planetary orbit.

The general problem of a two-body system perturbed by a constant-magnitude, constant-direction
force, known as the Stark problem, was originally studied by Lagrange [67] and later identified as a
feasible framework for modelling planet-centred solar sailing by McInnes [1]. Kirchgraber [68] first
considered the application of the Stark model to astrodynamics, after which Rufer [69] investigated
its use in low-thrust trajectory optimisation. Subsequent work by Lantoine and Russell [35] advanced
this line of research, culminating in the derivation of complete closed-form solutions for both two- and
three-dimensional cases [70]. Later, Hatten et al. [71] extended the Stark model to incorporate time-
varying perturbations, specifically J2 and atmospheric drag, and compared its performance to classical
numerical integration methods. They concluded that within certain regions of the accuracy-efficiency
trade-off space, the Stark model demonstrated superior performance relative to conventional numerical
integrators.

Alternative formulations of the Stark problem have also been developed, including the Weierstrass
formalism [72] and the F & G Taylor series approach [73]. A comparative assessment of these meth-
ods (see Table 2.2) is presented by Hatten et al. [74], with [73] exhibiting superior computational
performance due to the avoidance of Jacobi [35] or Weierstrass [72] elliptic function evaluations, which
otherwise yield semi-analytical solutions. In the case of Jacobi elliptic functions, which have been the
most extensively applied in this context, several computation strategies exist [75], with the arithmetic-
geometric mean method generally preferred [76]. Nevertheless, expansion-based acceleration tech-
niques have been proposed [77, 78], offering potential reductions in computational effort for analytical
propagation schemes.



2.2. Analytical Trajectory Prediction 13

Table 2.2: Summary of Stark problem solution techniques [74].

Jacobi elliptic Weierstrass elliptic F & G Taylor series
Relative execution
speed

Medium Slow Medium to fast, de-
pending on number of
terms used

Relative code file
size

Medium Small Large

Required capabili-
ties

Elliptic integrals of the
first, second, and third
kinds; Jacobi elliptic
functions

Weierstrass elliptic
functions; complex
arithmetic

Initial use of symbolic
manipulator to derive
coefficients

Primary sources of
inaccuracy

Calculation of Jacobi
elliptic functions and
other transcendental
functions; inversion of
Stark equation

Calculation of Weier-
strass elliptic func-
tions and other tran-
scendental functions;
inversion of Stark
equation

Truncation error due
to large step sizes



3
Research Objective

This chapter motivates the research objective by synthesising the literature surveyed in Chapter 2 and
identifying a specific gap concerning the application of the Stark model to planet-centred solar-sail
trajectories.

While historically the focus has been on heliocentric solar sailing, planet-centred solar sailing is an
increasingly relevant concept due to the exploitation of SRP for sustained non-Keplerian behaviour in
Earth-centred applications. These include displaced orbits, pole-sitter concepts, orbit precession for
persistent coverage, and propellantless station-keeping, which complement the more widely studied
heliocentric use cases [1, 24, 25].

For mission design, particularly in preliminary design phases and global trade-space exploration, ana-
lytical and semi-analytical models may offer compelling computational advantages. They can reduce
the per-evaluation cost of trajectory propagation and steering-law evaluation, enabling larger parameter
sweeps and faster optimisation loops compared to brute-force numerical propagation [41, 42, 44]. The
Stark model provides a convenient analytical framework, capturing first-order deviations from Keplerian
motion while admitting closed- or semi-closed-form solutions [35, 72, 73].

Early analytical work applied constant-acceleration models to SRP in a planet-centred context: Isayev
derived analytical expressions for a constant-force, constant-direction perturbation and presented a
numerical example within the SRP framework [66]. Subsequent developments of the Stark formalism
have focused on mathematical formulation and computational strategies [35, 72, 73], predominantly
treating it as a canonical dynamical problem. Later, Hatten et al. studied the application of the Stark
model to time-varying perturbations and concluded that, in certain regions of the accuracy-efficiency
trade-off space, the Stark model could outperform classical numerical integration methods [71].

In addition, Hatten et al. [74] conducted a comparison of the main solution techniques for the Stark
problem (see Table 2.2). Among these, the F & G Taylor series approach [73] exhibited superior per-
formance due to the avoidance of semi-analytical elliptic function evaluations, but its series-expansion
formulation requires small step sizes to limit truncation errors. In contrast, closed-form solutions de-
rived from analytical mechanics capture the dynamics exactly and are therefore more appropriate as a
first step in assessing the Stark model for solar-sailing applications. Between the closed-form options,
Hatten et al. [74] found that the Jacobi elliptic solution [35] consistently outperformed the Weierstrass
elliptic solution [72]. For this reason, the Jacobi elliptic formulation is adopted in this thesis.

The research gap is therefore twofold and specific. First, although Isayev demonstrated the applica-
bility of constant-acceleration models to SRP, the analysis remains limited and largely illustrative [66].
Second, while Hatten et al. extended the Stark model to time-varying perturbations, its application
to planet-centred solar sailing remains unexplored [71]. Consequently, the literature lacks a compre-
hensive study that evaluates the performance of the Stark model relative to conventional numerical
integration methods under different solar-sail control laws. Furthermore, no sensitivity analysis exists
that explores how the model behaves across relevant ranges of sail and orbital parameters. To the
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best of the author’s knowledge, no study quantifies the trade-off between model accuracy and compu-
tational efficiency as a function of control law type, lightness number, and orbital regime in the context
of planet-centred solar sailing.

Based on this identified gap, the research objective and research question are presented below.

Research Objective

Investigate the performance, in terms of accuracy and computational cost, of the Stark model in
the context of a controlled solar sail orbiting around Earth, under the effect of point-mass gravity
and solar radiation pressure, for different simulation scenarios.

Research Question

Can the Stark model serve as a reliable alternative to numerical integration methods for prelimi-
nary design of controlled solar-sail trajectories around Earth under the effect of point-mass gravity
and solar radiation pressure?

1. How does the performance of the Stark model compare to numerical integration methods
when simulating solar-sail trajectories governed by a constant control law?

2. How does the performance of the Stark model compare to numerical integration methods
when simulating solar-sail trajectories governed by time-varying locally optimal control laws?

3. How does the solar-sail lightness number affect the performance of the Stark model?
4. How do orbit parameters affect the performance of the Stark model?



4
Dynamical Model

This chapter presents the dynamical model adopted for the study. Section 4.1 introduces the reference
frames employed. Section 4.2 describes the acceleration model together with the assumptions made.
Finally, the planet-centred solar-sail LOCLs for the increase of the orbital elements are detailed in
Section 4.3.

4.1. Reference Frames
This section describes the reference frames used in the analysis. Specifically, the Earth Centred Inertial
(ECI) frame in Subsection 4.1.1, the Stark Earth Centred Inertial (SECI) frame in Subsection 4.1.2, and
the Radial-AlongTrack-CrossTrack (RSW) frame in Subsection 4.1.3.

4.1.1. Earth Centred Inertial
The ECI reference frame, Oxyz, is defined with its origin O located at the centre of mass of the Earth
and three non-rotating axes x̂, ŷ, and ẑ (see Fig. 4.1). The x̂-axis is oriented along the Sun-Earth
direction, pointing away from the Sun. The ŷ-axis lies in the Ecliptic Plane, perpendicular to x̂ and
oriented in the prograde direction. The ẑ-axis is defined as the cross product of x̂ and ŷ, completing a
right-handed trihedron.

Sun

Earth

O
x̂

ŷ

ẑ

Figure 4.1: ECI reference frame.

4.1.2. Stark Earth Centred Inertial
The SECI reference frame, Oxsyszs , is an inertial reference frame with origin O at the centre of mass
of the Earth and three non-rotating axes x̂s, ŷs and ẑs (see Fig. 4.2). This reference frame is required
to perform the transformation between the coordinates employed in the Stark model and those of the
ECI reference frame. The x̂s-axis is aligned with the normal vector of the sail n. The ẑs-axis is defined
as the normalised cross product between the ECI x̂-axis and x̂s, ẑs = x̂×x̂s

||x̂×x̂s|| . Finally, the ŷs-axis is
defined as orthogonal to both x̂s and ẑs, completing a right-handed orthogonal trihedron.

In Fig. 4.2, angles α and δ correspond to the cone and clock angles of a 3D solar-sail acceleration
model, respectively. Using these angles, the rotation between the ECI and SECI reference frames can
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Earth

x̂

ŷ

ẑ

O

x̂s ∥ n

x̂s

x̂s

δ

α

Figure 4.2: SECI reference frame.

be expressed as

x̂s = RECI
SECI x̂ where RECI

SECI =

 cosα sinα sin δ sinα cos δ
− sinα cosα sin δ cosα cos δ

0 − cos δ sin δ

 (4.1)

where RECI
SECI denotes the rotation matrix from ECI to SECI. This transformation consists of a rotation

by δ about the x̂-axis, followed by a rotation by α about the ẑs-axis.

It must be noted that the angle α in this formulation does not exactly correspond to the geometric cone
angle of the solar sail. The discrepancy arises because the cone angle is defined with respect to the
Sun-satellite direction, rather than the Sun-Earth direction. Figure 4.3 illustrates a two-dimensional
scheme of this relationship, where the angle between the sail normal n and the x̂-axis is denoted by
α′, while the angle between the Sun-Earth line and the Sun-satellite line is denoted by ∆α.

Sun
Earth

Solar Sail n

∆α

∆α

α α′

x̂

Figure 4.3: 2D scheme of the solar-sail cone angle.

In Fig. 4.3, the following relation holds:
α′ = α+∆α (4.2)

Since ∆α varies along the orbit, the magnitude of ∆α must be bounded. For a circular orbit, the
maximum value is given by:

∆α = arctan
( r

AU

)
(4.3)
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For instance, ∆α = 1◦ would require r ≈ 2600000 km ≈ 8.5rMoon. Therefore, it is reasonable to
assume that for Earth-centred orbits, and particularly within the LEO environment, the value of ∆α is
negligible.

∆α ≪ 1 ⇒ α′ ≈ α (4.4)

This derivation justifies the common assumption that all incoming solar rays are parallel to the x-axis.
Consequently, angles α′ and α will be treated interchangeably in the remainder of the work.

4.1.3. Radial-AlongTrack-CrossTrack
The RSW reference frame, BRSW , is a body-fixed frame with origin B located at the centre of mass
of the solar sail and three moving axes ˆ̂

R, Ŝ and Ŵ. The R̂-axis is aligned with the radial direction,
pointing outward from the Earth:

R̂ =
r

r
(4.5)

The Ŵ-axis is defined perpendicular to the orbital plane, oriented along the specific angular momentum
vector:

Ŵ =
r× v

||r× v||
(4.6)

Finally, the Ŝ-axis completes the right-handed trihedron:

Ŝ = Ŵ × R̂ (4.7)

The RSW frame is particularly convenient for describing perturbing accelerations and control laws in
orbital dynamics, as it is directly tied to the instantaneous orbital geometry.

4.2. Acceleration Model
This section introduces the acceleration model adopted for this study. The model is deliberately chosen
as the simplest solar-sail acceleration formulation to enable a clear comparison between the Stark
model and numerical propagation, while avoiding additional dynamical complexities. Accordingly, only
Earth point-mass gravity and SRP accelerations are included. Additionally, some assumptions are
considered:

• The Sun-sail distance is constant and equal to the mean Sun-Earth distance.
• The solar flux is modelled under the parallel-rays approximation.
• Orbital eclipses are neglected.
• The solar sail is considered ideal.

Under these assumptions, the SRP acceleration reduces to the expression in Eq. (2.37), where the
Sun-sail distance r is assumed constant and equal to one AU, r = 1 AU. Consequently, the magnitude
of the SRP acceleration depends only on the sail lightness number, β, and on the sail orientation,
defined by its cone angle α. The direction of the SRP acceleration is aligned with the sail normal n,
whose orientation in a three-dimensional sail acceleration model is parameterized by the cone and
clock angles, as defined in Subsection 4.1.2. Accordingly, the sail normal vector in the ECI frame is
expressed as:

n = cosαx̂+ sinα sin δŷ + sinα cos δẑ (4.8)

Substituting Eq. (4.8) into Eq. (2.37) yields the explicit expression for the SRP acceleration in the ECI
frame. When combined with the Earth point-mass gravitational acceleration, the complete acceleration
model in ECI coordinates is given by:

ẍ = −µ
x

r3
+ aSRP cosα

ÿ = −µ
y

r3
+ aSRP sinα sin δ

z̈ = −µ
z

r3
+ aSRP sinα cos δ

(4.9)
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In Eq. (4.9), aSRP denotes the magnitude of the SRP acceleration. Using the rotation matrix defined
in Eq. (4.1), the equations of motion can be transformed into the SECI frame.

ẍs = −µ
xs

r3
+ aSRP

ÿs = −µ
ys
r3

z̈s = −µ
zs
r3

(4.10)

This formulation is identical in structure to the classical Stark problem, as will be shown later. In the
SECI frame, for a given cone angle, the SRP perturbation is not only constant in magnitude but also
fixed in direction, which are precisely the premises that allow the analytical integration of the model.

4.3. Planet-Centred Solar-Sail Locally Optimal Control Laws
This section describes the LOCLs introduced in Subsection 2.1.6. Consider the Lagrange variational
equation for the rate of change of an orbital element k, which can be expressed as:

dk

dt
= f · λλλk (4.11)

In Eq. (4.11), f represents the perturbing force due to SRP and λλλk a vector of functions of the orbital
elements of the sail. The rate of change of k is maximised when the projection f · λλλk is maximised.
Dropping the subscript k for simplicity, λλλ can be defined as a function of its own cone and clock angles,
α̃ and δ̃.

λλλ = cos α̃x̂+ sin α̃ sin δ̃ŷ + sin α̃ cos δ̃ẑ (4.12)

With the vector λλλ defined for a given state, the corresponding angles α̃ and δ̃ can be determined.

α̃ = arccosλx

δ̃ = arctan

(
λy

λz

) (4.13)

To determine the actual cone and clock angles of the sail, the projection of the force onto the vector λλλ
must be defined. Starting from Eq. (2.32), the projection fλ = f · λλλ is given by:

fλ = 2PA cos2 αn · λλλ (4.14)

Substituting Eqs. (4.8) and (4.12) into Eq. (4.14) yields the expression of the projection fλ as a function
of the cone and clock angles from n and λλλ.

fλ = 2PA cos2 α
[
cosα cos α̃+ sinα sin α̃ cos

(
δ − δ̃

)]
(4.15)

From Eq. (4.15) it follows that the projection fλ is maximised when δ = δ̃. Under this condition, the
optimal value of α is obtained from ∂fλ

∂α = 0. After some algebraic manipulations, the optimal cone and
clock angles are given by:

δ∗ = δ̃

α∗ = arctan

(
−3 cos α̃+

√
9 cos2 α̃+ 8 sin2 α̃

4 sin α̃

)
(4.16)

These analytical expressions depend solely on α̃ and δ̃, which in turn are functions of the spacecraft
state at a given epoch and the selected orbital element, k. Table 4.1 lists the components of the vectorλλλ
in the RSW frame, obtained from the variational equations in [1], for each orbital element: semi-major
axis (SMA), a; eccentricity, e; inclination, i; right ascension of the ascending node (RAAN), Ω; and
argument of periapsis, ω. To determine the corresponding cone and clock angles of λλλ, the components
must be transformed from the RSW frame to the ECI frame before applying Eq. (4.13).
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Table 4.1: Components of the vector λλλ in the RSW frame for the control laws corresponding to different orbital elements,
derived from the variational equations in [1]. Here, θ denotes the true anomaly.

Orbital Element λR λS λW

a (SMA) e sin θ 1 + e cos θ 0
e (Eccentricity) sin θ cos θ + e+cos θ

1+e cos θ 0

i (Inclination) 0 0 cos (ω + θ)

Ω (RAAN) 0 0 sin(ω+θ)
sin i

ω (Argument of periapsis) − cos θ
(
1 + 1

1+e cos θ

)
sin θ − e sin(ω+θ) tan i

1+e cos θ



5
Stark Model

In this chapter, the three-dimensional formulation of the Stark model is derived using the Hamilton-
Jacobi formalism, following the methodology presented in [70]. Section 5.1 introduces the Stark prob-
lem, including its governing equations of motion. The variable transformations required to render the
system integrable are described in Section 5.2. Building on these transformations, Hamilton’s principal
function is formulated in Section 5.3, which forms the basis for obtaining closed-form solutions. Sec-
tion 5.4 details the integration of the resulting equations of motion, while Section 5.5 summarises the
different sets of solutions.

5.1. Stark Problem
The Stark problem is a specific instance of the perturbed TBP, as introduced in Eq. (2.39), in which
the perturbing acceleration is constant in both magnitude and direction. Accordingly, the acceleration
model of the Stark problem is formulated as the classical TBP augmented by a uniform acceleration, ϵ,
applied along a single coordinate axis:

ẍ = −µ
x

r3

ÿ = −µ
y

r3

z̈ = −µ
z

r3
+ ϵ

(5.1)

Although Eq. (5.1) specifies the acceleration along the z-axis, any constant acceleration vector in R3

can be transformed into this canonical form by an appropriate rotation of the reference frame. This prop-
erty underpins the generality of the Stark problem formulation and allows it to accommodate arbitrary
constant perturbations within a unified analytical framework.

5.2. Variable Changes
This section introduces the transformations of variables required to enable the integration of the equa-
tions of motion in the Stark model. The formulation relies on two fundamental changes of variables.
First, Subsection 5.2.1 presents the transformation of the state from Cartesian to parabolic coordinates,
which provides a more natural framework for exploiting the structure of the Stark problem. Subse-
quently, Subsection 5.2.2 details the transformation of the independent variable, which is required to
regularize the system and facilitate the integration of the resulting equations of motion.

5.2.1. State Variable Change
The state transformation employed in the Stark model relies on a change of variables from Cartesian
to parabolic coordinates. This nonlinear transformation is particularly well suited to the problem due
to the symmetry introduced by the constant perturbing acceleration. The forward transformation, from
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parabolic coordinates to Cartesian coordinates, is defined as follows:

x = ξη cosϕ

y = ξη sinϕ

z =
1

2

(
ξ2 − η2

) ⇒

ẋ =
(
ξ̇η + ξη̇

)
cosϕ− ξηϕ̇ sinϕ

ẏ =
(
ξ̇η + ξη̇

)
sinϕ+ ξηϕ̇ cosϕ

ż = ξξ̇ − ηη̇

(5.2)

Equation (5.2) establishes the position and velocity components in Cartesian coordinates, x̃xyz =

[x, y, z, ẋ, ẏ, ż], as explicit functions of the parabolic state vector, x̃ξηϕ =
[
ξ, η, ϕ, ξ̇, η̇, ϕ̇

]
. The inverse

transformation, which expresses the parabolic coordinates as a function of the Cartesian state, is given
by:

ξ =
√
r + z

η =
√
r − z

ϕ = arctan

(
x

y

) ⇒

ξ̇ =
ṙ + ż

2
√
r + z

η̇ =
ṙ − ż

2
√
r − z

ϕ̇ =
xẏ − ẋy

x2 + y2

(5.3)

This transformation establishes the analytical foundation for reformulating the equations of motion of the
Stark problem in parabolic coordinates, a step that is essential to obtaining an integrable representation
through the Hamilton-Jacobi formalism.

5.2.2. Time Variable Change
The rationale for introducing a time variable transformation can be illustrated by considering the ex-
pression for the velocity, v, in parabolic coordinates. Using the transformation defined in Eq. (5.2), the
squared velocity is given by:

v2 = ẋ2 + ẏ2 + ż2 =
(
ξ2 + η2

) (
ξ̇2 + η̇2

)
+ ξ2η2ϕ̇2 (5.4)

From Eq. (5.4), it is apparent that the contributions of the ξ and η coordinates to the kinetic energy
scale with

(
ξ2 + η2

)
, whereas the contribution associated with the ϕ coordinate scales with ξ2η2. This

observation motivates the introduction of the following time reparametrisations:

dτ1 =
1

ξ2 + η2
dt (5.5)

dτ2 =
1

ξ2η2
dt (5.6)

Here, τ1 and τ2 represent the radial and azimuthal fictitious times, respectively. Transformations in Eqs.
(5.5) and (5.6) regularise the equations of motion and simplify their subsequent integration, as will be
detailed in Section 5.4.

5.3. Hamilton-Jacobi Formalism
This section approaches the integration of the equations of motion of the Stark problem, introduced in
Eq. (5.1), within the framework of the Hamilton-Jacobi formalism. The objective is to construct Hamil-
ton’s principal function in a form that admits separation of variables, thereby enabling the integration
of the equations of motion. In this formulation, the principal function can be expressed as the sum
of component functions, each depending solely on a single coordinate. Derivations and statements
regarding analytical mechanics concerns follow [79].

The starting point is the Hamilton-Jacobi equation, which establishes the relation between Hamilton’s
principal function, S, and the Hamiltonian, H, of the system:

H

(
q,p =

∂S

∂q
, t

)
+

∂S

∂t
= 0 where S = S (q,ρ, t) (5.7)
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In Eq. (5.7), q denotes the vector of generalised coordinates, p the vector of associated canonical
momenta, and ρ a vector of constants of motion. To solve the Hamilton-Jacobi equation, it is first
necessary to formulate the Hamiltonian, which is obtained from the Lagrangian of the system through:

H =
∑

piq̇i (p,q, t)− L (q, q̇ (p,q, t) , t) (5.8)

Here, L denotes the Lagrangian of the system. Since the Lagrangian is defined as the difference
between the kinetic K̃ and potential U energies, the first step is to express these quantities in parabolic
coordinates. For the system governed by Eq. (5.1), they take the form:

K̃ =
1

2

(
ẋ2 + ẏ2 + ż2

)
=

1

2

[(
ξ2 + η2

) (
ξ̇2 + η̇2

)
+ ξ2η2ϕ̇2

]
(5.9)

U = −µ

r
− ϵz = − 2µ

ξ2 + η2
− 1

2
ϵ
(
ξ2 − η2

)
(5.10)

From these expressions, the Lagrangian is written as:

L = K̃ − U =
1

2

[(
ξ2 + η2

) (
ξ̇2 + η̇2

)
+ ξ2η2ϕ̇2

]
+

2µ

ξ2 + η2
+

1

2
ϵ
(
ξ2 − η2

)
(5.11)

The canonical momenta are obtained as the partial derivatives of the Lagrangian with respect to the
generalised coordinates:

pξ =
∂L

∂ξ
=
(
ξ2 + η2

)
ξ̇ (5.12)

pη =
∂L

∂η
=
(
ξ2 + η2

)
η̇ (5.13)

pϕ =
∂L

∂ϕ
= ξ2η2ϕ̇ (5.14)

Equations (5.12), (5.13) and (5.14) highlight once more the motivation behind the time reparametrisa-
tion introduced in Subsection 5.2.2, as it simplifies the dependence of the momenta on the coordinates.

Finally, substituting the Lagrangian in Eq. (5.11) and the canonical momenta in Eqs. (5.12), (5.13)
and (5.14) into Eq. (5.8), the Hamiltonian of the system can be expressed in terms of the generalised
coordinates and their conjugate momenta as:

H =
1

2

p2ξ + p2η
ξ2 + η2

+
1

2

p2ϕ
ξ2η2

− 2µ

ξ2 + η2
− 1

2
ϵ
(
ξ2 − η2

)
(5.15)

With the Hamiltonian expressed in this form, the Hamilton-Jacobi equation can now be solved by ap-
plying the separation of variables technique to determine Hamilton’s principal function.

Separation of variables on t
The Hamiltonian in Eq. (5.15) does not exhibit explicit dependence on the time variable t. Consequently,
Hamilton’s principal function can be separated into temporal and spatial components:

∂H

∂t
= 0 ⇒ S (q,ρ, t) = S′ (t,ρ) +W (q,ρ) (5.16)

In Eq. (5.16), the function S′ corresponds to the temporal contribution, whereas W denotes the spatial
part of Hamilton’s principal function. Since the Hamiltonian is independent of time, it follows that the
Hamiltonian is a constant of motion.

H = constant (5.17)

Moreover, from Eq. (5.16), one finds ∂S
∂t = ∂S′

∂t . Substitution into the Hamilton-Jacobi equation and
subsequent integration leads to the following explicit form of the temporal contribution:

S′ (t,ρ) = −H (t− t0) (5.18)

Here, t0 corresponds to the initial condition of the time variable.
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Separation of variables on ϕ
An analogous approach applies to the azimuthal variable ϕ. Since the Hamiltonian in Eq. (5.15) is
independent of ϕ, the spatial contribution W can be further decomposed as:

∂H

∂ϕ
= 0 ⇒ W (p,ρ) = W ′ (ξ, η,ρ) +Wϕ (ϕ,ρ) (5.19)

Here, W ′ and Wϕ correspond to the radial and azimuthal contributions of Hamilton’s principal function,
respectively. The absence of ϕ in the Hamiltonian identifies it as a cyclic variable, implying that the
corresponding canonical momentum is conserved.

pϕ = constant (5.20)

Recalling the definition pϕ = ∂S
∂ϕ and using ∂S

∂ϕ =
∂Wϕ

∂ϕ , the azimuthal part of the characteristic function
is expressed as

Wϕ (ϕ,ρ) = pϕ (ϕ− ϕ0) (5.21)
Here, ϕ0 corresponds to the initial condition for ϕ at t0.

Separation of variables on ξ and η
To obtain the separation of variables of ξ and η the process is different from the variables t and ϕ.
Expanding the Hamiltonian from Eq. (5.15) in the Hamilton-Jacobi equation, substituting p = ∂S

∂q , gives
the following:

1

2

1

ξ2 + η2

[(
∂S

∂ξ

)2

+

(
∂S

∂η

)2
]
+

1

2

1

ξ2η2

(
∂S

∂ϕ

)2

− 2µ

ξ2 + η2
− 1

2
ϵ
(
ξ2 − η2

)
+

∂S

∂t
= 0 (5.22)

Substituting Eqs. (5.18) and (5.21) into Eq. (5.22) and applying the derivatives allows to rewrite the
Hamilton-Jacobi equation as:

1

2

1

ξ2 + η2

[(
∂W ′

∂ξ

)2

+

(
∂W ′

∂η

)2
]
+

1

2

1

ξ2η2
p2ϕ − 2µ

ξ2 + η2
− 1

2
ϵ
(
ξ2 − η2

)
−H = 0 (5.23)

Multiplying both sides of Eq. (5.23) by 2
(
ξ2 + η2

)
and performing some algebraic manipulation allows

to reach the following:(
∂W ′

∂ξ

)2

+
p2ϕ
ξ2

− 2µ− ϵξ4 − 2Hξ2 = −
(
∂W ′

∂η

)2

−
p2ϕ
η2

+ 2µ− ϵη4 + 2Hη2 (5.24)

Here, the left side of the equation depends only on ξ, while the right side depends only on η. Because
of this, the only possible solution for Eq. (5.24) is that both sides are equal and constant. Therefore, not
only a third constant of motion is identified, but also W ′ can be separated into two different functions.

g1 (ξ,ρ) = g2 (η,ρ) = κ = constant ⇒ W ′ (ξ, η,ρ) = Wξ (ξ,ρ) +Wη (η,ρ) (5.25)

In Eq. (5.25), the expressions of g1 (ξ) and g2 (η) are given by:

g1 (ξ,ρ) =

(
∂Wξ

∂ξ

)2

+
p2ϕ
ξ2

− 2µ− ϵξ4 − 2Hξ2

g2 (η,ρ) = −
(
∂Wη

∂η

)2

−
p2ϕ
η2

+ 2µ− ϵη4 + 2Hη2
(5.26)

From Eq. (5.26), functions Wξ and Wη can be integrated independently.

Wξ (ξ,ρ) =

∫
ξ

ξ0

δ̄ξ

√
ϵξ4 + 2Hξ2 + (2µ+ κ)−

p2ϕ
ξ2

dξ (5.27)

Wη (η,ρ) =

∫
η

η0

δ̄η

√
−ϵη4 + 2Hη2 + (2µ− κ)−

p2ϕ
η2

dη (5.28)
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Here, δ̄ξ and δ̄η denote the undetermined signs of the square roots. These signs must be determined
at a later stage, based on the initial conditions of the trajectory. Furthermore, ξ0 and η0 represent the
initial conditions for ξ and η at t0, respectively. Since the subsequent derivation of the equations of
motion requires differentiating the expressions in Eqs. (5.27) and (5.28), it is sufficient to retain these
expressions in their integral form at this stage.

Hamilton's principal function
The complete expression for Hamilton’s principal function is given by a combination of functions, each
depending solely on one variable.

S (q,ρ, t) = S′ (t,ρ) +Wξ (ξ,ρ) +Wη (η,ρ) +Wϕ (ϕ,ρ) (5.29)

Expressions for S′, Wξ, Wη, and Wϕ are given by Eqs. (5.18), (5.27), (5.28), and (5.21), respectively.
Additionally, the vector of constants of motion ρ remains defined as:

ρ = [H, pϕ, κ] (5.30)

5.4. Integration
This section is devoted to the integration of the equations of motion of the Stark problem. The proce-
dure follows from the Hamilton-Jacobi formalism developed in Section 5.3, where Hamilton’s principal
function was obtained in separable form. Subsection 5.4.1 addresses the integration of the azimuthal
coordinate ϕ. Subsection 5.4.2 focuses on the integration of the radial parabolic coordinates ξ and
η. Subsequently, Subsection 5.4.3 concerns the integration of the azimuthal fictitious time variable τ2,
establishing its relation to the radial fictitious time τ1. Finally, Subsection 5.4.4 performs the integration
of τ1, yielding its connection with the physical time t.

5.4.1. Integration of ϕ
The equations of motion for the state variables and, therefore, for coordinate ϕ, follow from the funda-
mental relation between the canonical momenta and Hamilton’s principal function.

p =
∂L

∂q
=

∂S

∂q
(5.31)

In the case of ϕ, this relation can be expressed by combining the canonical momentum defined in
Eq. (5.14) with the function Wϕ in Eq. (5.21), which represents the component of Hamilton’s principal
function S associated with the variable ϕ. This leads to the following equation of motion in terms of the
physical time t.

ξ2η2
dϕ

dt
= pϕ (5.32)

To facilitate the integration, the fictitious time variable τ2 is introduced as a substitute for the physical
time t. Making use of the transformation between τ2 and t provided in Eq. (5.6), Eq. (5.32) can be
rewritten as:

dϕ

dτ2
= pϕ (5.33)

Since pϕ is a constant of motion, the integration of Eq. (5.33) is trivial, yielding a closed-form expression
for the evolution of ϕ as a function of τ2.

ϕ = ϕ0 + pϕτ2 (5.34)

5.4.2. Integration of ξ and η
By combining the canonical momenta associated with ξ and η, given in Eqs. (5.12) and (5.13), with
the corresponding functions Wξ and Wη defined in Eqs. (5.27) and (5.28), the general relation in Eq.
(5.31) yields the equations of motion for ξ and η in terms of the physical time t.

(
ξ2 + η2

) dξ
dt

= δ̄ξ

√
ϵξ4 + 2Hξ2 + (2µ+ κ)−

p2ϕ
ξ2

(5.35)

(
ξ2 + η2

) dη
dt

= δ̄η

√
−ϵη4 + 2Hη2 + (2µ− κ)−

p2ϕ
η2

(5.36)



5.4. Integration 26

Analogous to the case of ϕ, these expressions are simplified by introducing the fictitious time transfor-
mation between τ1 and t defined in Eq. (5.5). This substitution eliminates the common factor ξ2 + η2,
leading to the following equations of motion:

dξ

dτ1
= δ̄ξ

√
ϵξ4 + 2Hξ2 + (2µ+ κ)−

p2ϕ
ξ2

(5.37)

dη

dτ1
= δ̄η

√
−ϵη4 + 2Hη2 + (2µ− κ)−

p2ϕ
η2

(5.38)

Rearranging these differential equations into a form suitable for quadrature gives:

dτ1 = δ̄ξ
ξdξ√

ϵξ6 + 2Hξ4 + (2µ+ κ) ξ2 − p2ϕ

(5.39)

dτ1 = δ̄η
ηdη√

−ϵη6 + 2Hη4 + (2µ− κ) η2 − p2ϕ

(5.40)

The integration of Eqs. (5.39) and (5.40) is not trivial, as the resulting expressions involve sixth-order
polynomials under the square root. These integrals require intermediate transformations to reduce
them into standard forms suitable for resolution through elliptic functions. Since Eqs. (5.39) and (5.40)
share the same mathematical structure, it is convenient to instead consider a generic form of the equa-
tion:

dτ1 = δ̄
XdX√
P1 (X)

where P1 (X) = a1X
6 + a2X

4 + a3X
2 + a4 (5.41)

In Eq. (5.41),X represents the generic variable (either ξ or η), P1 denotes the sixth-degree polynomial,
and a1, a2, a3, and a4 are its non-zero coefficients. Since P1 is an even polynomial, its order can be
reduced by introducing the transformation:

X2 = Y ⇒ 2XdX = dY (5.42)

Substituting Eq. (5.42) into Eq. (5.41) yields the following:

dτ1 = δ̄
dY

2
√
P1 (Y )

where P1 (Y ) = a1Y
3 + a2Y

2 + a3Y + a4 (5.43)

Since P1 (Y ) is a cubic polynomial, it is ensured that at least one of its roots, Y ∗, is real. Therefore, P1

can be factorised as:
P1 (Y ) = a1 (Y − Y ∗)P2 (Y ) (5.44)

Here, P2 (Y ) is a quadratic polynomial whose roots can be real or complex. To simplify Eq. (5.43), an
additional transformation is introduced:

Y − Y ∗ = sign (a1)Z
2 ⇒ dY = sign (a1) 2ZdZ (5.45)

Transformation in Eq. (5.45) allows to rewrite the polynomial in Eq. (5.44) as a function of Z.

P1 (Z) = |a1|Z2P2 (Z) (5.46)

Furthermore, applying the transformation in Eq. (5.45) to Eq. (5.43) leads to:

dτ1 = δ̄
sign (a1) dZ√
|a1|P2 (Z)

(5.47)

The integration of Eq. (5.47) requires the explicit determination of the polynomial P2 (Z), which in turn
depends on the factorisation of P1 (Y ) and the location of its real root Y ∗. Integration of Eq. (5.47)
gives a solution for Z. Applying the inverse of the transformations introduced in Eqs. (5.45) and (5.42),
gives the solution for X as:

X =
√
Y ∗ + sign (a1)Z2 (5.48)
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Depending on the coefficients a1, a2, a3, and a4, different cases emerge for the solutions of the cubic
equation P1 (Y ) = 0. These cases are classified according to the discriminant D, defined in Eq. (C.8),
of the cubic equation. Appendix C provides the detailed derivation of the cubic root structure, from
which the generic solution can be written as:

Y1 = − a2
3a1

+ (Y ′′
1 + Y ′′

2 )

Y2 = − a2
3a1

− 1

2
(Y ′′

1 + Y ′′
2 ) + i

√
3

2
(Y ′′

1 − Y ′′
2 )

Y3 = − a2
3a1

− 1

2
(Y ′′

1 + Y ′′
2 )− i

√
3

2
(Y ′′

1 − Y ′′
2 )

(5.49)

Here, Y ′′
1 and Y ′′

2 are intermediate parameters defined in Eqs. (C.9) and (C.10), and depend on the
coefficients of P1 (Y ).

Solutions for D < 0
The caseD < 0 corresponds to three real and distinct roots. Since Y ′′

1 and Y ′′
2 are complex parameters,

it is convenient to express them in exponential form. Taking the square root of D as
√
D = i

√
−D, the

parameters Y ′′
1 and Y ′′

2 can be written as:

Y ′′
1 =

3
√
r̄eiθ̄ = r̄

1
3 ei

θ̄
3

Y ′′
2 =

3
√
r̄e−iθ̄ = r̄

1
3 e−i θ̄

3

where
r̄ =

√
−Q3

θ̄ = arctan

(√
−D

R

) (5.50)

Here, r̄ and θ̄ represent the modulus and argument of the complex variable, respectively. The inter-
mediate parameters R and P2 are defined in Eq. (C.7). Since r̄

1
3 =

√
−Q, it follows that Y ′′

1 + Y ′′
2 and

Y ′′
1 − Y ′′

2 can be expressed as:

Y ′′
1 + Y ′′

2 = 2
√

−Q cos

(
θ̄

3

)
Y ′′
1 − Y ′′

2 = i2
√
−Q sin

(
θ̄

3

) (5.51)

Substituting these expressions into the roots given in Eq. (5.49), one obtains the three real roots
corresponding to case D < 0:

Y1 = − a2
3a1

+ 2
√
−Q cos

(
θ̄

3

)
Y2 = − a2

3a1
−
√
−Q cos

(
θ̄

3

)
−
√
3
√

−Q sin

(
θ̄

3

)
Y3 = − a2

3a1
−
√
−Q cos

(
θ̄

3

)
+
√
3
√

−Q sin

(
θ̄

3

) (5.52)

To select the appropriate root Y ∗, the three roots in Eq. (5.52) must be ordered. This requires bounding
the value of θ̄. √

−D > 0 ⇒ sin θ̄ > 0 ⇒ θ̄ ∈ (0, π] (5.53)
Given that

√
−Q > 0, one can establish the relationships among the roots as:

Y1 − Y2 = 3
√

−Q cos

(
θ̄

3

)
+
√
3
√
−Q sin

(
θ

3

)
> 0

Y1 − Y3 = 3
√

−Q cos

(
θ̄

3

)
−
√
3
√
−Q sin

(
θ̄

3

)
> 0

Y2 − Y3 = −
√
3
√
−Q sin

(
θ̄

3

)
< 0

(5.54)

From these relations, the absolute order of the roots follows as:

Y1 > Y3 > Y2 (5.55)
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Equation (5.43) requires that P1 (Y ) > 0. Depending on the sign of a1, different valid solution intervals
arise:

ξ : a1 > 0 ⇒ P1 (Y ) > 0 ⇔ Y > Y1 > Y3 > Y2 || Y1 > Y3 > Y > Y2

η : a1 < 0 ⇒ P1 (Y ) > 0 ⇔ Y1 > Y3 > Y2 > Y || Y1 > Y > Y3 > Y2

(5.56)

Although two different intervals satisfy P1 (Y ) > 0, for the case of η with a1 < 0, Eq. (5.48) imposes the
restriction that Z2 must remain bounded. Therefore, the interval Y1 > Y3 > Y2 > Y is not feasible.

Since Z must be a real quantity, the condition Z2 > 0 must be satisfied. The transformation in Eq.
(5.45) then defines the value of Y ∗ according to the sign of a:

ξ : a1 > 0 ⇒ Z2 = +(Y − Y ∗) ⇒ Y ∗ = Y2

η : a1 < 0 ⇒ Z2 = −(Y − Y ∗) ⇒ Y ∗ = Y1

(5.57)

With the roots defined in Eq. (5.52), the feasible solution intervals from Eq. (5.56), and the selection of
Y ∗ in Eq. (5.57), the equation of motion in Eq. (5.47) can now be integrated. The goal is to manipulate
the integral into the form of the elliptic integral of the first kind F , defined in [80] as:

F [u,K] =

∫ u

0

dω̄√
(1− ω̄2) (1−K2ω̄2)

where − 1 ≤ u ≤ 1 & 0 ≤ K ≤ 1 (5.58)

Here, u andK denote the argument and modulus of the elliptic function. The elliptic integral of the first
kind can also be expressed in terms of the inverse of the Jacobi elliptic sine function, sn, as shown in
[75].

F [u,K] = arcsn [u,K] (5.59)

Here, arcsn represents the inverse of the Jacobian elliptic sine.

The conditions on u and K in Eq. (5.58) determine the transformations needed to rewrite the integral
in Eq. (5.47) in the required form.

For the variable ξ, the roots of the polynomial P2 (Z) are given by:

Z2
1,ξ = (Y1 − Y2) > 0

Z2
3,ξ = (Y3 − Y2) > 0

(5.60)

In Eq. (5.60), Zi,ξ denotes the root of P2 (Z) associated with the i-th root of P1 (Y ). Substituting into
Eq. (5.47), the equation of motion becomes:

dτ1 = δ̄ξ
dZ

√
a1

√(
Z2 − Z2

1,ξ

)(
Z2 − Z2

3,ξ

) (5.61)

For the interval Y1 > Y3 > Y > Y2, the order of the roots of P2 (Z) is as:

Z2
1,ξ > Z2

3,ξ > Z2
ξ,I (5.62)

Here, Zξ,I denotes the solution for case I of the variable ξ. To match the form of Eq. (5.58), the
following transformation is applied:

ω̄ =
Zξ,I

Z3,ξ
⇒ dω̄ =

1

Z3,ξ
dZ (5.63)

From Eq. (5.62), it follows that |ω̄| < 1, fulfilling the condition from Eq. (5.58). After algebraic manipu-
lation, Eq. (5.61) becomes:

dτ1 = δ̄ξ,I
dω̄

√
a1Z1,ξ

√
(1− ω̄2)

(
1−K2

ξ,I ω̄
2
) where Kξ,I =

Z3,ξ

Z1,ξ
< 1 (5.64)
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Using Eqs. (5.58), (5.59), and (5.63), the integral can be solved to yield the solution for Zξ,I .

Zξ,I = Z3,ξsn [uξ,I ,Kξ,I ] where uξ,I =
√
a1Z1,ξ

(
δ̄ξ,Iτ1 − τ1,ξ,0,I

)
(5.65)

Equation (5.65) describes the evolution of Z with respect to the fictitious time τ1 for case I. The initial
condition τ1,ξ,0,I is determined from Eq. (5.64) as:

τ1,ξ,0,I = − 1
√
a1Z1,ξ

F

[
Zξ,I,0

Z3,ξ
,Kξ,I

]
(5.66)

Here, Zξ,0,I is the initial value of Zξ,I , which is related to ξ0 through Eq. (5.48). In Eq. (5.65), the
sign δ̄ξ,I remains undetermined. To define it, the initial velocity is used. Differentiating Eq. (5.48) with
respect to τ1 gives the following:

ξ
dξ

dτ1
= Z

dZ

dτ1
(5.67)

In Eq. (5.67), the derivative of Z with respect to τ1 can be obtained using the derivatives for the Jacobi
elliptic functions given in [75], yielding the following:

dZξ,I

dτ1
= Z3,ξ

√
a1Z1,ξ δ̄ξ,Icn [uξ,I ,Kξ,I ] dn [uξ,I ,Kξ,I ] (5.68)

Here, cn and dn denote Jacobi elliptic cosine and delta functions, respectively. Given that ξ, η > 0, Eq.
(5.5) results in sign( dξ

dτ1
) = sign(ξ̇). Therefore, substituting Eqs. (5.65) and (5.68) into Eq. (5.67) and

evaluating the expression at τ1 = 0 yields the relation between the sign of δ̄ξ,I and the initial velocity
ξ̇0,I .

δ̄ξ,I = sign

(
ξ0,I ξ̇0,I

Z3
3,ξ

√
a1Z1,ξsn [uξ,0,I ,Kξ,I ] cn [uξ,0,I ,Kξ,I ] dn [uξ,0,I ,Kξ,I ]

)
(5.69)

Here, uξ,0,I corresponds to the value of the argument uξ,I when τ1 = 0, given by:

uξ,0,I = −
√
a1Z1,ξτ1,ξ,0,I (5.70)

Since only the sign of each factor in Eq. (5.69) is relevant, positive constants can be omitted, yielding
a simplified expression.

δ̄ξ,I = sign
(
ξ̇0,Isn [uξ,0,I ,Kξ,I ] cn [uξ,0,I ,Kξ,I ]

)
(5.71)

For the interval Y > Y1 > Y3 > Y2, the same approach is employed to integrate the equation of motion.
For this case, the order of the roots of P2 (Z) is as:

Z2
ξ,III > Z2

1,ξ > Z2
3,ξ (5.72)

Note that in Eq. (5.72), the case has been identified as III, skipping case II. Case II is reserved
for a later configuration, and the numbering has been chosen deliberately to preserve analogy with the
Kepler problem solutions. To match the form of Eq. (5.58), the following transformation is applied:

ω̄ =
Z1,ξ

Zξ,III
⇒ dω̄ = − Z1,ξ

Z2
ξ,III

dZ (5.73)

From Eq. (5.72), it follows that |ω̄| < 1, fulfilling the condition from Eq. (5.58). After algebraic manipu-
lation, the equation of motion becomes:

dτ1 = −δ̄ξ,III
dω̄

√
a1Z1,ξ

√
(1− ω̄2)

(
1−K2

ξ,III ω̄
2
) where Kξ,III =

Z3,ξ

Z1,ξ
< 1 (5.74)

Using Eqs. (5.58), (5.59), and (5.73), the integral can be solved to yield the solution for Zξ,III :

Zξ,III =
Z1,ξ

sn [uξ,III ,Kξ,III ]
where uξ,III = −

√
a1Z1,ξ

(
δ̄ξ,IIIτ1 − τ1,ξ,0,III

)
(5.75)
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The initial condition τ1,ξ,0,III is obtained from Eq. (5.74) as:

τ1,ξ,0,III =
1

√
a1Z1,ξ

F

[
Z1,ξ

Zξ,III,0
,Kξ,III

]
(5.76)

Following the same procedure as before, the relation between δ̄ξ,III and ξ̇0,III is given by:

δ̄ξ,III = sign
(
ξ̇0,IIIsn [uξ,0,III ,Kξ,III ] cn [uξ,0,III ,Kξ,III ]

)
(5.77)

Here, uξ,0,III corresponds to the value of the argument uξ,III when τ1 = 0, given by:

uξ,0,III =
√
a1Z1,ξτ1,ξ,0,III (5.78)

Equations (5.65) and (5.75) give the solutions for the variable ξ whenD < 0 for cases I and III, which
depend on the initial conditions of ξ, ξ0.

In the case of the variable η, to integrate the equation of motion, the same procedure as for ξ is followed.
For the variable η, the roots of the polynomial P2 (Z) are given by:

Z2
2,η = − (Y2 − Y1) > 0

Z2
3,η = − (Y3 − Y1) > 0

(5.79)

Substituting these roots into Eq. (5.47), the equation of motion becomes:

dτ1 = −δ̄η
dZ

√
−a1

√(
Z2 − Z2

2,η

) (
Z2 − Z2

3,η

) (5.80)

As stated before, only the interval Y1 > Y > Y3 > Y2 is valid as a solution for η. For this case, the order
of the roots of P2 (Z) is:

Z2
2,η > Z2

3,η > Z2
η,I (5.81)

Here, Zη,I denotes the solution for case I of the variable η. To match the form of Eq. (5.58), the
following transformation is applied:

ω̄ =
Zη,I

Z3,η
⇒ dω̄ =

1

Z3,η
dZ (5.82)

From Eq. (5.81), it follows that |ω̄| < 1, fulfilling the condition from Eq. (5.58). After algebraic manipu-
lation, the equation of motion becomes:

dτ1 = −δ̄η
dω̄

√
−a1Z2,η

√
(1− ω̄2)

(
1−K2

η,I ω̄
2
) where Kη,I =

Z3,η

Z2,η
< 1 (5.83)

Using Eqs. (5.58), (5.59), and (5.82), the integral can be solved to yield the solution for Zη,I :

Zη,I = Z3,ηsn [uη,I ,Kη,I ] where uη,I = −
√
−a1Z2,η

(
δ̄η,Iτ1 − τ1,η,0,I

)
(5.84)

The initial condition τ1,η,0,I is obtained from Eq. (5.83) as:

τ1,η,0,I =
1√

−a1Z2,η
F

[
Zη,0,I

Z3,η
,Kη,I

]
(5.85)

Following the same procedure as before, the relation between δ̄η,I and η̇0,I is given by:

δ̄η,I = sign (η̇0,Isn [uη,0,I ,Kη,I ] cn [uη,0,I ,Kη,I ]) where uη,0,I =
√
−a1Z1,ητ1,η,0,I (5.86)

Here, uη,0,I corresponds to the value of the argument uη,I when τ1 = 0, given by:

uη,0,I =
√
−a1Z1,ητ1,η,0,I (5.87)
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Solutions for D = 0
The case D = 0 corresponds to the degenerate configuration in which the cubic equation possesses
three real roots, with two of them being equal. From Eqs. (C.9) and (C.10), the parameters Y ′′

1 and Y ′′
1

reduce to:
Y ′′
1 = Y ′′

2 =
3
√
R (5.88)

Substituting Eq. (5.88) into Eq. (5.49) yields the three real roots associated with the case D = 0:

Y1 = − a2
3a1

+ 2
3
√
R

Y2 = − a2
3a1

− 3
√
R

Y3 = − a2
3a1

− 3
√
R

(5.89)

As in the case D < 0, the relative ordering of the roots can be established from:

Y1 − Y2 = Y1 − Y3 = 3
3
√
R

{
> 0 If R > 0

< 0 If R < 0
(5.90)

Although the ordering is informative, it is not essential for the subsequent integration, since the pres-
ence of a double root considerably simplifies the structure of the integral. Nonetheless, the admissible
intervals for P1 (Y ) > 0 still depend on the sign of a1:

ξ : a1 > 0 ⇒ P1 (Y ) > 0 ⇔ Y > Yi ∀i ∈ [1, 3]

η : a1 < 0 ⇒ P1 (Y ) > 0 ⇔ Yi > Y ∀i ∈ [1, 3]
(5.91)

Analogous to the case D < 0, the solution for η requires Z2 to be bounded. The admissible interval
in Eq. (5.91) for a1 < 0 does not satisfy this boundedness condition, which implies that no physically
valid solution for η exists when D = 0. Consequently, the case D = 0 is only relevant for the variable
ξ.

For ξ, the simplification is achieved by setting Y ∗ = Y1 in the transformation in Eq. (5.45), which leads
to the roots of P2 (Z):

Z2
2,ξ = Z2

3,ξ = (Y2 − Y1) = (Y3 − Y1) (5.92)
The polynomial P2 (Z) then reduces to:

P2 (Z) =
(
Z2 − Z2

2,ξ

)2
=
(
Z2 − Z2

2,ξ

)2 (5.93)

Since Z2 > Zi ∀i ∈ 1, 2, 3, the equation of motion in Eq. (5.47) becomes:

dτ1 = δ̄ξ
dZ

√
a1 (Z2 − Z2

2 )
(5.94)

Introducing the variable substitution:

ω̄ =
Zξ,II

Z2,ξ
⇒ dω̄ =

1

Z2,ξ
dZ (5.95)

Here, Zξ,II denotes the solution for the case II of ξ. Eq. (5.94) transforms into:

dτ1 = δ̄ξ,II
dω̄

√
a1Z2,ξ (ω̄2 − 1)

(5.96)

This integral is straightforward, yielding the solution for Zξ,II :

Zξ,II = Z2,ξ tanh [uξ,II ] where uξ,II = −
√
a1Z2,ξ

(
δ̄ξ,IIτ1 − τ1,ξ,0,II

)
(5.97)

Here, tanh denotes the hyperbolic tangent, which arises as the limiting case of the Jacobi elliptic sine
sn when K = 1. The initial condition τ1,ξ,0,II is determined from (5.96) as:

τ1,ξ,0,II = − 1
√
a1Z2,ξ

arctanh

(
Z2
ξ,0,II

Z2
2,ξ

− 1

)
(5.98)
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Moreover, the relation between the sign δ̄ξ,II and the initial velocity ξ̇0,II follows as:

δ̄ξ,II = sign
(
ξ̇0,IIZ2,ξ tanh [uξ,0,II ]

)
(5.99)

Here, uξ,0,II corresponds with the value of uξ,II at τ1 = 0:

uξ,0,II =
√
a1Z2,ξτ1,ξ,0,II (5.100)

Equation (5.97) thus provides the closed-form solution for Zξ in the degenerate case D = 0. It must be
emphasized, however, that this case is of theoretical interest only. In practice, achieving the precise
boundary condition between D < 0 and D > 0 is infeasible, and even more so from a numerical
standpoint.

Solutions for D > 0
The case D > 0 corresponds to a scenario in which the cubic polynomial P1 (Y ) admits a single real
root and a pair of complex conjugate roots. The real root, denoted by Y ∗, corresponds to Y1 in Eq.
(5.49), where Y ′′

1 and Y ′′
2 are defined in Eqs. (C.9) and (C.10), respectively.

Given that P2 (Y ) = (Y − Y2) (Y − Y3) and the roots Y2, Y3 are complex conjugates, it follows that
P2 (Y ) never intersects the real axis. Therefore, P2 (Y ) > 0 ∀Y ∈ R. To ensure P1 (Y ) > 0, the
condition a1 (Y − Y1) > 0 must hold. This requirement leads to the following admissible intervals of
solution:

ξ : a1 > 0 ⇒ P1 (Y ) > 0 ⇔ Y > Y1

η : a1 < 0 ⇒ P1 (Y ) > 0 ⇔ Y1 > Y
(5.101)

Since the solution for η requires boundedness of Z2, this case is not physically admissible whenD > 0.
Consequently, only the ξ branch is relevant.

Applying the transformation in Eq. (5.48), the corresponding roots of P2 (Z) are obtained as:

Z2
2,IV = (Y2 − Y1) =

(
−3

2
(Y ′′

1 + Y ′′
2 ) + i

√
3

2
(Y ′′

1 − Y ′′
2 )

)

Z2
3,IV = (Y3 − Y1) =

(
−3

2
(Y ′′

1 + Y ′′
2 )− i

√
3

2
(Y ′′

1 − Y ′′
2 )

) (5.102)

These roots are complex conjugates. The goal is to reformulate P2 (Z) such that the integral of motion
in Eq. (5.47) reduces to the elliptic integral of the first kind in Eq. (5.58). The polynomial P2 (Z) can be
expressed as:

P2 (Z) =
(
Z2 − Z2

2,IV

) (
Z2 − Z2

3,IV

)
= (Z − Z2,IV ) (Z + Z2,IV ) (Z − Z3,IV ) (Z + Z3,IV ) (5.103)

Algebraic manipulation of Eq. (5.103) leads to:

P2 (Z) =
[
Z2 − (Z2,IV + Z3,IV )Z + Z2,IV Z3,IV

] [
Z2 + (Z2,IV + Z3,IV )Z + Z2,IV Z3,IV

]
(5.104)

From [81], the square root of a complex number is given by:

√
ā+ ib̄ =

√
ā+

√
ā2 + b̄2

2
+ isign

(
b̄
)√−ā+

√
ā2 + b̄2

2
(5.105)

Taking into account the relation in Eq. (5.105), it follows after manipulation that:

Z2,IV + Z3,IV = 2Ā

Z2,IV Z3,IV = Ā2 + B̄2
(5.106)

Here, Ā and B̄ are real quantities defined by:

Ā =
1√
2

√
−3

2
(Y ′′

1 + Y ′′
2 ) +

√
9

4
(Y ′′

1 + Y ′′
2 )

2
+

3

4
(Y ′′

1 − Y ′′
2 )

2 (5.107)

B̄ =
1√
2

√
+
3

2
(Y ′′

1 + Y ′′
2 ) +

√
9

4
(Y ′′

1 + Y ′′
2 )

2
+

3

4
(Y ′′

1 − Y ′′
2 )

2 (5.108)
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Substitution of Eq. (5.106) into Eq. (5.103) yields:

P2 (Z) =
[
Z2 − 2ĀZ +

(
Ā2 + B̄2

)] [
Z2 + 2ĀZ +

(
Ā2 + B̄2

)]
= P2,1 (Z)P2,2 (Z) (5.109)

In Eq. (5.109), P2,1 (Z) and P2,2 (Z) possess only real coefficients. To simplify these polynomials,
Cayley’s reduction method [82] is applied through the transformation:

Z =
λφ+ ν

φ+ 1
⇒ dZ =

λ− ν

(φ+ 1)
2 dφ (5.110)

Here, φ is the new variable and λ, ν are constants that will later be selected to eliminate first-order
terms. By substituting the transformation given in Eq. (5.110) into Eq. (5.109), one obtains the following
representations of the polynomials P2,1 (Z) and P2,2 (Z) in terms of φ as:

P2,1 (φ) =
(λφ+ ν)

2 − 2Ā (λφ+ ν) (φ+ 1) +
(
Ā2 + B̄2

)
(φ+ 1)

2

(φ+ 1)
2

P2,2 (φ) =
(λφ+ ν)

2
+ 2Ā (λφ+ ν) (φ+ 1) +

(
Ā2 + B̄2

)
(φ+ 1)

2

(φ+ 1)
2

(5.111)

Expanding the numerators of Eq. (5.111) and collecting terms according to the powers of φ leads to a
more explicit quadratic representation for both polynomials:

P2,1 (φ) =

[
λ2 − 2Āλ+

(
Ā2 + B̄2

)]
φ2 + 2

[
λν − Ā (λ+ ν) +

(
Ā2 + B̄2

)]
φ+

[
ν2 − 2Āν +

(
Ā2 + B̄2

)]
(φ+ 1)

2

P2,2 (φ) =

[
λ2 + 2Āλ+

(
Ā2 + B̄2

)]
φ2 + 2

[
λν + Ā (λ+ ν) +

(
Ā2 + B̄2

)]
φ+

[
ν2 + 2Āν +

(
Ā2 + B̄2

)]
(φ+ 1)

2

(5.112)
The idea is to choose λ and ν such that the coefficients corresponding to the first order of φ become
null. Therefore, the values for λ and ν can be found as:

λν − Ā (λ+ ν) +
(
Ā2 + B̄2

)
= 0

λν + Ā (λ+ ν) +
(
Ā2 + B̄2

)
= 0

⇒

{
λ = +

√
Ā2 + B̄2

ν = −
√
Ā2 + B̄2

(5.113)

By fixing ν = −λ, Eq. (5.112) simplifies to the compact quadratic form:

P2,1 (φ) =
2λ
(
λ− Ā

)
φ2 + 2λ

(
λ+ Ā

)
(φ+ 1)

2

P2,2 (φ) =
2λ
(
λ+ Ā

)
φ2 + 2λ

(
λ− Ā

)
(φ+ 1)

2

(5.114)

Further rearrangement of these polynomials yields:

P2,1 (φ) =
J̄2

(φ+ 1)
2

(
φ2 + N̄2

)
P2,2 (φ) =

M̄2

(φ+ 1)
2

(
φ2 +

1

N̄2

) (5.115)

Here, J̄ , M̄ and N̄ are given by:
J̄2 = 2λ

(
λ− Ā

)
M̄2 = 2λ

(
λ+ Ā

)
N̄2 =

M̄2

J̄2

(5.116)

By applying the transformation defined in Eq. (5.110) to the generic equation of motion in Eq. (5.47),
and substituting the polynomial expressions from Eq. (5.115), the differential form of the equation of
motion can be expressed as:

dτ1 = δ̄ξ,IV
2λdφ

√
a1J̄M̄

√
φ2 + N̄2

√
φ2 + 1

N̄2

(5.117)
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In order to reduce Eq. (5.117) to the canonical form of an elliptic integral of the first kind in Eq. (5.58),
the following change of variable is introduced.

φ =
1

N̄

ζ√
1− ζ2

⇒ dφ =
1

N̄

1

(1− ζ2)
3
2

dζ (5.118)

With this substitution, Eq. (5.117) becomes:

dτ1 = δ̄ξ,IV
2λdζ

√
a1M̄2

√
1− ζ2

√
1−K2

ξ,IV ζ
2

⇒ where K2
ξ,IV =

(
1− 1

N̄4

)
(5.119)

Integration of Eq. (5.119) yields the solution for ζ as:

ζ = sn [uξ,IV ,Kξ,IV ] where uξ,IV =
√
a1

M̄2

2λ

(
δ̄ξ,IV τ1 − τ1,ξ,0,IV

)
(5.120)

Applying the transformation introduced in Eq. (5.118) to the solution in Eq. (5.120) provides the explicit
expression for φ as:

φ =
1

N̄

sn [uξ,IV ,Kξ,IV ]

cn [uξ,IV ,Kξ,IV ]
(5.121)

In this derivation, the fundamental identity sn2 [u,K] + cn2 [u,K] = 1 has been used simplifying the
resulting expression. Finally, by substituting Eq. (5.121) into the Cayley transformation in Eq. (5.110),
one obtains the closed-form expression for the solution Zξ,IV :

Zξ,IV = λ
sn [uξ,IV ,Kξ,IV ]− N̄cn [uξ,IV ,Kξ,IV ]

sn [uξ,IV ,Kξ,IV ] + N̄cn [uξ,IV ,Kξ,IV ]
(5.122)

The initial condition τ1,ξ,0,IV is determined from Eq. (5.119) as:

τ1,ξ,0,IV =
2λ

√
a1M̄2

F

 N̄
λ+Zξ,0,IV

λ−Zξ,0,IV√
1 + N̄2

(
λ+Zξ,0,IV

λ−Zξ,0,IV

)2 ,Kξ,IV

 (5.123)

Here, the variable ζ has been transformed back to the original variable Z using the successive trans-
formations in Eqs. (5.118) and (5.110). To fully define solution in Eq. (5.122), the relation between the
sign δ̄ξ,IV and the initial velocity ξ̇0,IV is determined as:

δ̄ξ,IV = sign
(
ξ̇0,IV N̄

(
sn2 [uξ,0,IV ,Kξ,IV ]− N̄2cn2 [uξ,0,IV ,Kξ,IV ]

))
(5.124)

Here, uξ,0,IV denotes the value of uξ,IV at τ1 = 0:

uξ,0,IV = −
√
a1

M̄2

2λ
τ1,ξ,0,IV (5.125)

Therefore, Eq. (5.122) provides the closed-form solution for Zξ in the case D > 0.

5.4.3. Integration of τ2
Subsection 5.4.1 provides the evolution of the variable ϕ with respect to the fictitious time τ2, while
Subsection 5.4.2 describes the evolution of the variables ξ and η with respect to the fictitious time τ1.
However, the problem cannot be fully integrated unless a relationship between τ1 and τ2 is established,
due to the presence of two independent fictitious times. This subsection determines the relation linking
τ1 and τ2.

From Eqs. (5.5) and (5.6), the differential connection between the fictitious times is expressed as:

dτ2 =

(
1

ξ2
+

1

η2

)
dτ1 (5.126)
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Since the terms on the right-hand side depend on distinct variables, ξ and η, the integration of each
term can be performed independently. Accordingly, the evolution of τ2 as a function of τ1 can be written
as:

τ2 = τ2,ξ (τ1) + τ2,η (τ1) (5.127)
Here, τ2,ξ and τ2,η, functions of τ1, are given by:

τ2,ξ =

∫
τ1

0

1

ξ2
dτ1 (5.128)

τ2,η =

∫
τ1

0

1

η2
dτ1 (5.129)

The explicit forms of τ2,ξ and τ2,η depend on the case defined by the discriminant D of the underlying
cubic equation. Nevertheless, since the integrations are separable, the solutions for τ2,ξ and τ2,η can
be obtained independently for each variable.

Integration of τ2,ξ
For the variable ξ, the integration of τ2,ξ depends on the specific solution of the associated cubic equa-
tion. Employing the solutions for Z derived in Subsection 5.4.2 together with the transformation defined
in Eq. (5.48), the evolution of ξ can be explicitly determined for each of the four distinct cases corre-
sponding to the different roots of the cubic equation.

For Case I, the solution for Z given in Eq. (5.65) directly leads to the corresponding expression for ξ:

ξI =
√
Y ∗
ξ,I + Z2

3,ξsn
2 [uξ,I ,Kξ,I ] (5.130)

Here, Y ∗
ξ,I corresponds to the Y ∗ defined for the case I for variable ξ. Substituting Eq. (5.130) into Eq.

(5.128) gives the integral form of τ2,ξ,I :

τ2,ξ,I =

∫
τ1

0

dτ1
Y ∗
ξ,I + Z2

3,ξsn
2 [uξ,I ,Kξ,I ]

(5.131)

The objective is to manipulate the integral in Eq. (5.131) into the standard form of an elliptic integral of
the third kind, Π, as defined in [83]:

Π [n, u,K] =

∫
u

0

dω̄

1− nsn2 [ω̄,K]
where 0 ≤ K ≤ 1 & n ̸= 1 (5.132)

Introducing the change of variable:

ω̄ = uξ,I ⇒ dω̄ =
√
a1Z1,ξ δ̄ξ,Idτ1 (5.133)

Algebraic manipulation of Eq. (5.131) allows to rewrite the integral as:

τ2,ξ,I =
1

Y ∗
ξ,I

√
a1Z1,ξ δ̄ξ,I

∫
uξ,I

uξ,0,I

dω̄

1− nξ,Isn [uξ,I ,Kξ,I ]
where nξ,I = −

Z2
3,ξ

Y ∗
ξ,I

(5.134)

Equation (5.134) now takes the canonical form of an elliptic integral of the third kind. Consequently, its
evaluation yields the closed-form solution for τ2,ξ,I :

τ2,ξ,I =
Π [nξ,I , uξ,I ,Kξ,I ]−Π [nξ,I , uξ,0,I ,Kξ,I ]

Y ∗
ξ,I

√
a1Z1,ξ δ̄ξ,I

(5.135)

Equation (5.135) thus provides the explicit evolution of τ2,ξ,I as a function of τ1 for Case I.

For Case II, the solution for Z provided in Eq. (5.97) allows one to express ξ as:

ξII =
√
Y ∗
ξ,II + Z2

2,ξ tanh
2 [uξ,II ] (5.136)
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Substituting Eq. (5.136) into Eq. (5.128) yields the integral form:

τ2,ξ,II =

∫
τ1

0

dτ1

Y ∗
ξ,II + Z2

2,ξ tanh
2 [uξ,II ]

(5.137)

Although this integral is non-trivial, it can be evaluated symbolically to give a closed-form expression
for τ2,ξ,II :

τ2,ξ,I = − Ī [uξ,I ]− Ī [uξ,0,I ]

Y ∗
ξ,I

√
a1Z2,ξ δ̄ξ,II

(5.138)

Here, Ī denotes the indefinite integral corresponding to Eq. (5.137), given explicitly by:

Ī [u] =


u+

√
nξ,II arctan(√nξ,IIu)

1+nξ,II
If nξ,II > 0

u−
√

−nξ,IIarctanh(
√

−nξ,IIu)
1+nξ,II

If nξ,II < 0
where nξ,II =

Z2
2,ξ

Y ∗
ξ,II

(5.139)

Equation (5.138) therefore provides the explicit evolution of τ2,ξ,II as a function of τ1 for Case II.

For Case III, the solution for Z given in Eq. (5.75) allows one to express ξ as:

ξIII =

√
Y ∗
ξ,III +

Z2
1,ξ

sn2 [uξ,III ,Kξ,III ]
(5.140)

Substituting Eq. (5.140) into Eq. (5.128) leads to:

τ2,ξ,III =

∫
τ1

0

dτ1

Y ∗
ξ,III +

Z2
1,ξ

sn2[uξ,III ,Kξ,III ]

(5.141)

Introducing the change of variable:

ω̄ = uξ,III ⇒ dω̄ = −
√
a1Z1,ξ δ̄ξ,IIIdτ1 (5.142)

Equation (5.141) can be rewritten in the form:

τ2,ξ,III = − 1
√
a1Z3

1,ξ δ̄ξ,III

∫
uξ,III

uξ,0,III

sn2 [ω̄,Kξ,III ] dω̄

1− nξ,IIIsn2 [ω̄,Kξ,III ]
where nξ,III = −

Y ∗
ξ,III

Z2
1,ξ

(5.143)

According to [83], the solution of the integral in Eq. (5.143) is given by:∫
u

0

sn2 [ω̄,K] dω̄

1− nsn2 [ω̄,K]
=

1

n
[Π [n, u,K]− F [u,K]] (5.144)

Consequently, applying Eq. (5.144), the evolution of τ2,ξ,III as a function of τ1 is as:

τ2,ξ,III = −Π [nξ,III , uξ,III ,Kξ,III ]− F [uξ,III ,Kξ,III ]−Π [nξ,III , uξ,0,III ,Kξ,III ] + F [uξ,0,III ,Kξ,III ]√
a1Z3

1,ξ δ̄ξ,IIInξ,III

(5.145)
Equation (5.145) thus provides the explicit evolution of τ2,ξ,III with respect to τ1 for Case III.

For Case IV , the solution for Z given in Eq. (5.122) allows one to express ξ as:

ξIV =

√
Y ∗
ξ,IV + λ2

(
sn [uξ,IV ,Kξ,IV ]−Ncn [uξ,IV ,Kξ,IV ]

sn [uξ,IV ,Kξ,IV ] +Ncn [uξ,IV ,Kξ,IV ]

)2

(5.146)

Substituting Eq. (5.146) into Eq. (5.128) yields:

τ2,ξ,IV =

∫
τ1

0

dτ1

Y ∗
ξ,IV + λ2

(
sn[uξ,IV ,Kξ,IV ]−N̄cn[uξ,IV ,Kξ,IV ]

sn[uξ,IV ,Kξ,IV ]+N̄cn[uξ,IV ,Kξ,IV ]

)2 (5.147)

The integral in Eq. (5.147) defines the evolution of τ2,ξ,IV with respect to τ1. However, due to the
complexity of the integrand, closed-form analytical could not be obtained, and the expression is left in
this integral form for subsequent derivations.
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Integration of τ2,η
For the variable η, only Case I is physically admissible. In this scenario, the solution for Z given in Eq.
(5.84) allows the variable η to be expressed as:

ηI =
√
Y ∗
η,I − Z2

3,ηsn
2 [uη,I ,Kη,I ] (5.148)

Here, Y ∗
η,I denotes the Y ∗ constant associated with Case I for the variable η. Substituting Eq. (5.148)

into Eq. (5.129) yields:

τ2,η,I =

∫
τ1

0

dτ1
Y ∗
η,I − Z2

3,ηsn
2 [uη,I ,Kη,I ]

(5.149)

Introducing the change of variable:

ω̄ = uη,I ⇒ dω̄ = −
√
−a1Z2,η δ̄η,Idτ1 (5.150)

Equation (5.149) can be rewritten in the form:

τ2,η,I = − 1

Y ∗
η,I

√
−a1Z2,η δ̄η,I

∫
uη,I

uη,0,I

dω̄

1− nη,Isn [uη,I ,Kη,I ]
where nη,I =

Z2
3,η

Y ∗
η,I

(5.151)

The integral in Eq. (5.151) corresponds to an elliptic integral of the third kind, as defined in Eq. (5.132).
Therefore, the solution for τ2,η,I can be expressed as:

τ2,η,I = −Π [nη,I , uη,I ,Kη,I ]−Π [nη,I , uη,0,I ,Kη,I ]

Y ∗
η,I

√
−a1Z2,η δ̄η,I

(5.152)

Equation (5.152) provides the evolution of τ2,η,I as a function of the fictitious time τ1.

5.4.4. Integration of τ1
Subsection 5.4.3 established the relation between the fictitious time variables τ1 and τ2, enabling the
integration of the equations of motion with respect to τ1 as the independent variable. However, the
connection between τ1 and the physical time t remains to be determined. This subsection addresses
the derivation of this relation, thereby permitting integration using the physical time t as the independent
variable.

Equation (5.5) provides the differential relation between τ1 and t. In general, the direct integration of
this equation does not admit a closed-form solution. Accordingly, the inverse differential relation is
considered:

dt =
(
ξ2 + η2

)
dτ1 (5.153)

Analogous to the procedure employed for the integration of τ2, the variables ξ and η appear in sepa-
rate terms on the right-hand side of Eq. (5.153). This separation allows each term to be integrated
independently, yielding:

t = tξ (τ1) + tη (τ1) (5.154)
Equation (5.154) is referred to as the Stark Equation. This equation provides an implicit relation be-
tween the fictitious time τ1 and the physical time t. For a given value of t, the corresponding τ1 must
be determined via an iterative procedure.

The Stark equation serves as the analogue of the Kepler equation in the classical Kepler problem, with
the key distinction that it involves the evaluation of elliptic integrals rather than simple transcendental
functions. Consequently, its computational cost is higher than that of the Kepler equation.

In Eq. (5.154), the functions tξ and tη are defined as:

tξ =

∫ τ1

0

ξ2dτ1 (5.155)

tη =

∫ τ1

0

η2dτ1 (5.156)

As in the case of τ2, the integration can be performed independently for ξ and η. Different forms of tξ
and tη arise depending on the value of the determinant D of the associated cubic equation, reflecting
the distinct solution regimes for the motion.
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Integration of tξ
For the variable ξ, the four cases depending on the value of the discriminantD and the initial conditions
must be integrated.

For Case I, substituting the solution for ξ from Eq. (5.130) into Eq. (5.155) yields:

tξ,I =

∫ τ1

0

(
Y ∗
ξ,I + Z2

3,ξsn
2 [uξ,I ,Kξ,I ]

)
dτ1 (5.157)

The term involving the constant Y ∗
ξ,I integrates trivially. The second term, containing the squared Jacobi

elliptic sine, can be integrated using the standard result in [83]:∫ u

0

sn2 [ω̄,K] dω̄ =
1

K2
[u− E [u,K]] (5.158)

Here, E denotes the elliptic integral of the second kind. Applying the solution for the integral in Eq.
(5.158), the solution for tξ,I is obtained as:

tξ,I = Y ∗
ξ,Iτ1 +

Z2
3,ξ√

a1Z1,ξ δ̄ξ,IK2
ξ,I

[uξ,I − E [uξ,I ,Kξ,I ]− uξ,0,I + E [uξ,0,I ,Kξ,I ]] (5.159)

Equation (5.159) gives the evolution of tξ,I with τ1.

For Case II, substituting the solution for ξ from Eq. (5.136) into Eq. (5.155) yields:

tξ,II =

∫ τ1

0

(
Y ∗
ξ,II + Z2

2,ξ tanh
2 [uξ,II ]

)
dτ1 (5.160)

Integral in Eq. (5.160) only involves transcendental functions. Therefore, the integration is immediate
and is given by:

tξ,II = Y ∗
ξ,IIτ1 −

Z2,ξ√
a1δ̄ξ,II

[uξ,II − tanh [uξ,II ]− uξ,0,II + tanh [uξ,0,II ]] (5.161)

Equation (5.161) provides the evolution of tξ,II as a function of the fictitious time τ1.

For Case III, substituting the solution for ξ from Eq. (5.140) into Eq. (5.155) gives:

tξ,III =

∫
τ1

0

(
Y ∗
ξ,III +

Z2
1,ξ

sn2 [uξ,III ,Kξ,III ]

)
dτ1 (5.162)

In Eq. (5.162), since Y ∗
ξ,III is constant, its integration is immediate. The second term involves the

reciprocal of a squared Jacobi elliptic sine function. According to [83], its integral is given by:∫ u

0

dω̄

sn2 [u,K]
= u− E [u,K]− dn [u,K] cn [u,K]

sn [u,K]
(5.163)

Applying the solution for the integral in Eq. (5.163), the solution for tξ,III is obtained as:

tξ,III = Y ∗
ξ,IIIτ1 −

Z1,ξ√
a1δξ,III

[
uξ,III − E [uξ,III ,Kξ,III ]−

dn [uξ,III ,Kξ,III ] cn [uξ,III ,Kξ,III ]

sn [uξ,III ,Kξ,III ]

− uξ,0,III + E [uξ,0,III ,Kξ,III ] +
dn [uξ,0,III ,Kξ,III ] cn [uξ,0,III ,Kξ,III ]

sn [uξ,0,III ,Kξ,III ]

] (5.164)

Equation (5.164) describes the evolution of tξ,III as a function of the fictitious time τ1.

For Case IV , substituting the solution for ξ from Eq. (5.146) into Eq. (5.155) yields:

tξ,IV =

∫
τ1

0

(
Y ∗
ξ,IV + λ2

(
sn [uξ,IV ,Kξ,IV ]− N̄cn [uξ,IV ,Kξ,IV ]

sn [uξ,IV ,Kξ,IV ] + N̄cn [uξ,IV ,Kξ,IV ]

)2
)
dτ1 (5.165)
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In Eq. (5.165), the integral of the constant term Y ∗
ξ,IV is immediate. The remaining term involves a

non-trivial combination of Jacobi elliptic functions. Although its structure suggests that an analytical
solution may exist, no closed-form expression has been identified in the present work. Therefore, the
integral is retained in its unevaluated form to preserve the exactness of the representation.

Equation (5.165) provides an implicit relation for the evolution of tξ,IV as a function of the fictitious time
τ1.

Integration of tη
For the variable η, only Case I is physically admissible. Substituting the solution for η from Eq. (5.148)
into Eq. (5.156) yields:

tη,I =

∫ τ1

0

(
Y ∗
η,I − Z2

3,ηsn
2 [uη,I ,Kη,I ]

)
dτ1 (5.166)

The integral in Eq. (5.166) has the same form as that for tξ,I in Eq. (5.157). Utilizing the standard
result for the integral of the squared Jacobi elliptic sine in Eq. (5.158), the solution can be written as:

tη,I = Y ∗
η,Iτ1 +

Z2
3,η√

−a1Z2,ηδη,IK2
η,I

[uη,I − E [uη,I ,Kη,I ]− uη,0,I + E [uη,0,I ,Kη,I ]] (5.167)

Equation (5.167) provides the evolution of tη,I as a function of the fictitious time τ1, thereby completing
the integration for the η coordinate.

5.5. Summary of Solutions
In Section 5.4, the integration of the equations of motion for the Stark problem was performed. The
solutions obtained exhibit distinct behaviors depending on the initial conditions and the magnitude of
the perturbing acceleration. This section consolidates the results, presenting all necessary expres-
sions to propagate each case, and provides a concise discussion of the physical and mathematical
characteristics of the solutions.

5.5.1. Case I
The evolution of the state variables for Case I is described by the set (ξI , ηI , ϕ) and their corresponding
time derivatives:

ξI =
√
Y ∗
ξ,I + Z2

3,ξsn
2 [uξ,I ,Kξ,I ]

ηI =
√
Y ∗
η,I − Z2

3,ηsn
2 [uη,I ,Kη,I ]

ϕ = ϕ0 + pϕτ2,I

ξ̇I =

√
ϵZ1,ξZ

2
3,ξ δ̄ξ,Isn [uξ,I ,Kξ,I ] cn [uξ,I ,Kξ,I ] dn [uξ,I ,Kξ,I ]

ξI (ξ2I + η2I )

η̇I =

√
ϵZ2,ηZ

2
3,η δ̄η,Isn [uη,I ,Kη,I ] cn [uη,I ,Kη,I ] dn [uη,I ,Kη,I ]

ηI (ξ2I + η2I )

ϕ̇ =
pϕ
ξ2Iη

2
I

(5.168)

In Eq. (5.168), the leading coefficient of the cubic polynomial, a1, has been substituted by its relationship
with ϵ. To propagate Eq. (5.168), the relations between the fictitious times and the physical time are
required:

τ2,I =
Π [nξ,I , uξ,I ,Kξ,I ]−Π [nξ,I , uξ,0,I ,Kξ,I ]

Y ∗
ξ,I

√
ϵZ1,ξ δ̄ξ,I

− Π [nη,I , uη,I ,Kη,I ]−Π [nη,I , uη,0,I ,Kη,I ]

Y ∗
η,I

√
ϵZ2,η δ̄η,I

tI =
(
Y ∗
ξ,I + Y ∗

η,I

)
τ1 +

Z2
3,ξ√

ϵZ1,ξδξ,IK2
ξ,I

[uξ,I − E [uξ,I ,Kξ,I ]− uξ,0,I + E [uξ,0,I ,Kξ,I ]]

+
Z2
3,η√

ϵZ2,ηδη,IK2
η,I

[uη,I − E [uη,I ,Kη,I ]− uη,0,I + E [uη,0,I ,Kη,I ]]

(5.169)
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Equations (5.168) and (5.169) are functions of the following parameters:

Kξ,I =
Z3,ξ

Z1,ξ

Kη,I =
Z3,η

Z2,η

nξ,I = −
Z2
3,ξ

Y ∗
ξ,I

nη,I =
Z2
3,η

Y ∗
η,I

uξ,I =
√
ϵZ1,ξ

(
δ̄ξ,Iτ1 − τ1,ξ,0,I

)
uη,I = −

√
ϵZ2,η

(
δ̄η,Iτ1 − τ1,η,0,I

)
uξ,0,I = −

√
ϵZ1,ξτ1,ξ,0,I

uη,0,I =
√
ϵZ1,ητ1,η,0,I

δ̄ξ,I = sign
(
ξ̇0,Isn [uξ,0,I ,Kξ,I ] cn [uξ,0,I ,Kξ,I ]

)
δ̄η,I = sign (η̇0,Isn [uη,0,I ,Kη,I ] cn [uη,0,I ,Kη,I ])

τ1,ξ,0,I = − 1√
ϵZ1,ξ

F

[
Zξ,I,0

Z3,ξ
,Kξ,I

]
τ1,η,0,I =

1√
ϵZ2,η

F

[
Zη,0,I

Z3,η
,Kη,I

]

(5.170)

Since the Jacobi elliptic functions are periodic, the solution for Case I corresponds to bounded, periodic
motion. Therefore, this case represents the Stark problem analogue of the elliptic motion in the classical
Kepler problem.

5.5.2. Case II
The evolution of the state variables for Case II is described by the set (ξII , ηI , ϕ) and their correspond-
ing derivatives:

ξII =
√

Y ∗
ξ,II + Z2

2,ξ tanh
2 [uξ,II ]

ηI =
√

Y ∗
η,I − Z2

3,ηsn
2 [uη,I ,Kη,I ]

ϕ = ϕ0 + pϕτ2,II

ξ̇II = −
√
ϵZ3

2,ξ δ̄ξ,II tanh [uξ,II ]
(
1− tanh2 [uξ,II ]

)
ξII (ξ2II + η2I )

η̇I =

√
ϵZ2,ηZ

2
3,η δ̄η,Isn [uη,I ,Kη,I ] cn [uη,I ,Kη,I ] dn [uη,I ,Kη,I ]

ηI (ξ2II + η2I )

ϕ̇ =
pϕ

ξ2IIη
2
I

(5.171)

The corresponding relations between the fictitious times and the physical time are:

τ2,II = − Ī [uξ,II ]− Ī [uξ,0,II ]

Y ∗
ξ,II

√
ϵZ2,ξ δ̄ξ,II

− Π [nη,I , uη,I ,Kη,I ]−Π [nη,I , uη,0,I ,Kη,I ]

Y ∗
η,I

√
ϵZ2,η δ̄η,I

tII =
(
Y ∗
ξ,II + Y ∗

η,I

)
τ1 −

Z2,ξ√
ϵδ̄ξ,II

[uξ,II − tanh [uξ,II ]− uξ,0,II + tanh [uξ,0,II ]]

+
Z2
3,η√

ϵZ2,ηδη,IK2
η,I

[uη,I − E [uη,I ,Kη,I ]− uη,0,I + E [uη,0,I ,Kη,I ]]

(5.172)
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Equations (5.171) and (5.172) are functions of the following parameters:

Kη,I =
Z3,η

Z2,η

nξ,II =
Z2
2,ξ

Y ∗
ξ,II

nη,I =
Z2
3,η

Y ∗
η,I

uξ,II = −
√
ϵZ2,ξ

(
δ̄ξ,IIτ1 − τ1,ξ,0,II

)
uη,I = −

√
ϵZ2,η

(
δ̄η,Iτ1 − τ1,η,0,I

)
uξ,0,II =

√
ϵZ2,ξτ1,ξ,0,II

uη,0,I =
√
ϵZ1,ητ1,η,0,I

δ̄ξ,II = sign
(
ξ̇0,IIZ2,ξ tanh [uξ,0,II ]

)
δ̄η,I = sign (η̇0,Isn [uη,0,I ,Kη,I ] cn [uη,0,I ,Kη,I ])

τ1,ξ,0,II = − 1√
ϵZ2,ξ

arctanh

(
Z2
ξ,0,II

Z2
2,ξ

− 1

)

τ1,η,0,I =
1√
ϵZ2,η

F

[
Zη,0,I

Z3,η
,Kη,I

]

Ī [u] =


u+

√
nξ,II arctan(√nξ,IIu)

1+nξ,II
If nξ,II > 0

u−
√

−nξ,IIarctanh(
√

−nξ,IIu)
1+nξ,II

If nξ,II < 0
where nξ,II =

Z2
2,ξ

Y ∗
ξ,II

(5.173)

Since tanh [u] ∈ [−1, 1] for u ∈ (−∞,∞), Eq. (5.171) indicates that the solution for Case II corresponds
to bounded, asymptotic motion: ξ evolves toward a finite asymptotic value, while η remains periodic.
Moreover, because Ī involves the arctanh [u] function, defined only for u ∈ (−1, 1), the entire range of
physical times t is mapped to a finite range of the fictitious time τ1.

Therefore, Case II represents the analogue of the parabolic trajectory in the Kepler problem. The
key distinction is that, unlike the unbounded parabolic motion in the Kepler problem, the Stark problem
yields a bounded trajectory, with one coordinate asymptotically approaching a finite value while the
other remains periodic.

5.5.3. Case III
The evolution of solutions corresponding to Case III is described by the set (ξIII , ηI , ϕ) and their
derivatives:

ξIII =

√
Y ∗
ξ,III +

Z2
1,ξ

sn2 [uξ,III ,Kξ,III ]

ηI =
√
Y ∗
η,I − Z2

3,ηsn
2 [uη,I ,Kη,I ]

ϕ = ϕ0 + pϕτ2,III

ξ̇III =

√
ϵZ3

1,ξ δ̄ξ,IIIcn [uξ,III ,Kξ,III ] dn [uξ,III ,Kξ,III ]

ξIII (ξ2III + η2I ) sn
3 [uξ,III ,Kξ,III ]

η̇I =

√
ϵZ2,ηZ

2
3,η δ̄η,Isn [uη,I ,Kη,I ] cn [uη,I ,Kη,I ] dn [uη,I ,Kη,I ]

ηI (ξ2III + η2I )

ϕ̇ =
pϕ

ξ2IIIη
2
I

(5.174)



5.5. Summary of Solutions 42

Propagation of Eq. (5.174) requires the relations between the fictitious times and the physical time,
which are expressed as:

τ2,III = −Π [nξ,III , uξ,III ,Kξ,III ]− F [uξ,III ,Kξ,III ]−Π [nξ,III , uξ,0,III ,Kξ,III ] + F [uξ,0,III ,Kξ,III ]√
ϵZ3

1,ξ δ̄ξ,IIInξ,III

− Π [nη,I , uη,I ,Kη,I ]−Π [nη,I , uη,0,I ,Kη,I ]

Y ∗
η,I

√
ϵZ2,η δ̄η,I

tIII =
(
Y ∗
ξ,III + Y ∗

η,I

)
τ1 −

Z1,ξ√
ϵδξ,III

[
uξ,III − E [uξ,III ,Kξ,III ]−

dn [uξ,III ,Kξ,III ] cn [uξ,III ,Kξ,III ]

sn [uξ,III ,Kξ,III ]

− uξ,0,III + E [uξ,0,III ,Kξ,III ] +
dn [uξ,0,III ,Kξ,III ] cn [uξ,0,III ,Kξ,III ]

sn [uξ,0,III ,Kξ,III ]

]

+
Z2
3,η√

ϵZ2,ηδη,IK2
η,I

[uη,I − E [uη,I ,Kη,I ]− uη,0,I + E [uη,0,I ,Kη,I ]]

(5.175)
Equations (5.174) and (5.175) depend on the following variables and parameters:

Kξ,III =
Z3,ξ

Z1,ξ

Kη,I =
Z3,η

Z2,η

nξ,III = −
Y ∗
ξ,III

Z2
1,ξ

nη,I =
Z2
3,η

Y ∗
η,I

uξ,III = −
√
ϵZ1,ξ

(
δ̄ξ,IIIτ1 − τ1,ξ,0,III

)
uη,I = −

√
ϵZ2,η

(
δ̄η,Iτ1 − τ1,η,0,I

)
uξ,0,III =

√
ϵZ1,ξτ1,ξ,0,III

uη,0,I =
√
ϵZ1,ητ1,η,0,I

δ̄ξ,III = sign
(
ξ̇0,IIIsn [uξ,0,III ,Kξ,III ] cn [uξ,0,III ,Kξ,III ]

)
δ̄η,I = sign (η̇0,Isn [uη,0,I ,Kη,I ] cn [uη,0,I ,Kη,I ])

τ1,ξ,0,III =
1√
ϵZ1,ξ

F

[
Z1,ξ

Zξ,III,0
,Kξ,III

]
τ1,η,0,I =

1√
ϵZ2,η

F

[
Zη,0,I

Z3,η
,Kη,I

]

(5.176)

Equation (5.174) indicates that Case III corresponds to unbounded motion. In particular, because
sn [uξ,III ,Kξ,III ] appears in the denominator, the physical time t spans an infinite range while the cor-
responding fictitious time τ1 remains finite, analogous to Case II. Consequently, Case III represents
the hyperbolic analogue in the Stark problem, corresponding to the unbounded hyperbolic trajectories
in the Kepler problem.
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5.5.4. Case IV
The evolution of solutions corresponding to Case IV is described by the set (ξIV , ηI , ϕ) and their deriva-
tives:

ξIV =

√
Y ∗
ξ,IV + λ2

(
sn [uξ,IV ,Kξ,IV ]− N̄cn [uξ,IV ,Kξ,IV ]

sn [uξ,IV ,Kξ,IV ] + N̄cn [uξ,IV ,Kξ,IV ]

)2

ηI =
√
Y ∗
η,I − Z2

3,ηsn
2 [uη,I ,Kη,I ]

ϕ = ϕ0 + pϕτ2,IV

ξ̇IV =

√
ϵλN̄M̄2δ̄ξ,IV dn [uξ,IV ,Kξ,IV ]

(
sn [uξ,IV ,Kξ,IV ]− N̄cn [uξ,IV ,Kξ,IV ]

)
2ξIV (ξ2IV + η2I )

(
sn [uξ,IV ,Kξ,IV ] + N̄cn [uξ,IV ,Kξ,IV ]

)3
η̇I =

√
ϵZ2,ηZ

2
3,η δ̄η,Isn [uη,I ,Kη,I ] cn [uη,I ,Kη,I ] dn [uη,I ,Kη,I ]

ηI (ξ2IV + η2I )

ϕ̇ =
pϕ

ξ2IV η
2
I

(5.177)

Propagation of Eq. (5.177) requires the relation between the fictitious times and the physical time, given
by:

τ2,IV =

∫
τ1

0

dτ1

Y ∗
ξ,IV + λ2

(
sn[uξ,IV ,Kξ,IV ]−N̄cn[uξ,IV ,Kξ,IV ]

sn[uξ,IV ,Kξ,IV ]+N̄cn[uξ,IV ,Kξ,IV ]

)2 − Π [nη,I , uη,I ,Kη,I ]−Π [nη,I , uη,0,I ,Kη,I ]

Y ∗
η,I

√
ϵZ2,η δ̄η,I

tIV =
(
Y ∗
ξ,IV + Y ∗

η,I

)
τ1 +

∫
τ1

0

λ2

(
sn [uξ,IV ,Kξ,IV ]− N̄cn [uξ,IV ,Kξ,IV ]

sn [uξ,IV ,Kξ,IV ] + N̄cn [uξ,IV ,Kξ,IV ]

)2

dτ1

+
Z2
3,η√

ϵZ2,ηδη,IK2
η,I

[uη,I − E [uη,I ,Kη,I ]− uη,0,I + E [uη,0,I ,Kη,I ]]

(5.178)
Equations (5.177) and (5.178) are functions of the following parameters:

Kξ,IV =

√
1− 1

N̄4

Kη,I =
Z3,η

Z2,η

nη,I =
Z2
3,η

Y ∗
η,I

uξ,IV =
√
ϵ
M̄2

2λ

(
δ̄ξ,IV τ1 − τ1,ξ,0,IV

)
uη,I = −

√
ϵZ2,η

(
δ̄η,Iτ1 − τ1,η,0,I

)
uξ,0,IV = −

√
ϵ
M̄2

2λ
τ1,ξ,0,IV

uη,0,I =
√
ϵZ1,ητ1,η,0,I

δ̄ξ,IV = sign
(
ξ̇0,IV N̄

(
sn2 [uξ,0,IV ,Kξ,IV ]− N̄2cn2 [uξ,0,IV ,Kξ,IV ]

))
δ̄η,I = sign (η̇0,Isn [uη,0,I ,Kη,I ] cn [uη,0,I ,Kη,I ])

τ1,ξ,0,IV =
2λ√
ϵM̄2

F

 N̄
λ+Zξ,0,IV

λ−Zξ,0,IV√
1 + N̄2

(
λ+Zξ,0,IV

λ−Zξ,0,IV

)2 ,Kξ,IV


τ1,η,0,I =

1√
ϵZ2,η

F

[
Zη,0,I

Z3,η
,Kη,I

]

(5.179)



5.5. Summary of Solutions 44

Equation (5.177) indicates that Case IV corresponds to unbounded motion. Unlike previous cases,
the integral appearing in τ2,IV and tIV involves a non-trivial combination of Jacobi elliptic functions for
which no closed-form expression could be obtained. Therefore, these relations are left in integral form,
representing an implicit dependence of the fictitious and physical times on τ1. As in Case III, Case IV
corresponds to hyperbolic-type solutions in the Stark problem, analogous to the hyperbolic trajectories
in the Kepler problem.
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AAS XX-XXX

ANALYTICAL PLANET-CENTRED SOLAR-SAIL TRAJECTORY
PREDICTION WITH THE STARK MODEL

Federico Fructuoso Vidal-Aragón∗

Planet-centred solar sailing offers a propellantless way of sustaining non-Keplerian
motion for Earth-centred missions. For preliminary mission design and broad
trade-space exploration, rapid yet accurate trajectory propagation tools are required.
This work evaluates the performance of the Stark model, an analytical formula-
tion that represents the dynamics as two-body motion subject to a uniform per-
turbing acceleration, applied to controlled solar-sail trajectories and benchmarked
against classical numerical integration. Two control strategies for the sail are con-
sidered: (i) constant cone-angle laws, for which the Stark solution enables direct
state evaluation, and (ii) time-varying locally optimal steering laws designed to tar-
get individual Keplerian elements. Performance is assessed in terms of positional
accuracy and computational cost over representative one-day propagations. For
constant control laws, accuracy is shown to improve with increasing perturbation
magnitude, corresponding to larger sail lightness numbers and smaller cone angles.
Sensitivity analyses reveal that smaller semi-major axes and larger eccentricities
lead to faster dynamical regimes, resulting in increased position error and higher
computational cost. For time-varying control laws, the Stark model’s performance
depends strongly on the smoothness of the control law: smooth profiles (semi-
major axis-, eccentricity-, and argument of periapsis-raising) yield broader regions
of superiority in the accuracy-cost trade space compared to numerical integration,
whereas abrupt profiles (inclination- and right ascension of the ascending node-
raising) significantly reduce these regions. Furthermore, larger lightness numbers
diminish the model’s ability to capture rapid dynamics, owing to the restriction of
fixed step sizes. Overall, the results demonstrate that the Stark model provides a
computationally efficient alternative for preliminary planet-centred solar-sail tra-
jectory design, with advantages over classical numerical integration methods in
specific regions of the accuracy-cost trade-off space, particularly for smooth con-
trol regimes.

INTRODUCTION

Solar sailing has emerged as a relevant propulsion concept due to its propellantless nature. The
mechanism relies on solar radiation pressure (SRP), whereby incident solar photons reflect off the
sail surface, imparting momentum to the spacecraft.1 While the majority of research to date has
focused on heliocentric applications, there is growing interest in planet-centred solar sailing. In this
context, SRP can be exploited to achieve sustained non-Keplerian behaviour, enabling concepts such
as displaced orbits, pole-sitter configurations, orbit precession for persistent coverage, and propel-
lantless station-keeping.1–3 These applications provide complementary benefits to the more widely
studied heliocentric use cases.

In astrodynamics, mission design is a central process concerned with determining trajectories and
control strategies that meet mission requirements in an efficient manner.4 The standard workflow

∗Graduate Master’s Student, Department of Astrodynamics and Space Missions, Faculty of Aerospace Engineering, ffruc-
tuosovida@tudelf.nl.
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begins with a global optimisation across a large design space using low-fidelity dynamical models,
which allows the rapid identification of promising regions.4,5 The most viable candidates are then
refined through local optimisation with higher-fidelity models, ultimately yielding optimal or near-
optimal solutions suitable for mission proposals.4

Both global and local optimisation typically require extensive trajectory simulations. To mitigate
computational cost, low-fidelity models and relaxed numerical integration tolerances are employed
during global searches. In contrast, local optimisation demands higher accuracy, and therefore higher
fidelity and tighter tolerances.

While for most dynamical models trajectory propagation can only be achieved through numerical
integration, there are cases where analytical or semi-analytical solutions are available and may offer
compelling computational advantages with respect to classical numerical integration methods. They
can reduce the per-evaluation cost of trajectory propagation and steering-law evaluation, enabling
larger parameter sweeps and faster optimization loops compared to brute-force numerical propaga-
tion.4–6

The most notable example is the two-body problem (TBP), for which the Keplerian solution pro-
vides exact analytical propagation at a fraction of the computational expense of numerical integra-
tion.5,7 Moreover, extensive analytical treatments exist for several perturbation models. The J2 per-
turbation has been analysed for both single-satellite motion8–13 and relative dynamics.14–16 Similar
analytical or semi-analytical formulations have been developed for atmospheric drag and third-body
perturbations, particularly in regimes where these effects dominate.17–21

Analytical approaches to solar-sail dynamics have predominantly been studied in heliocentric con-
texts. The literature includes formulations for conic-like trajectories, linear perturbation-based so-
lutions, and shape-based approaches, among others.1,22–27 By contrast, planet-centred solar-sail
dynamics remain largely unexplored from an analytical standpoint. One of the few early efforts is by
Isayev, who analysed the motion of a planet-bound satellite subject to SRP using a formulation now
referred to as the Stark model.28 The Stark model provides an analytically tractable framework that
captures first-order deviations from Keplerian motion while allowing closed- or semi-closed-form
solutions.29–32

Historically, the Stark model has been studied mainly in the context of low-thrust propulsion.33

More recently, Hatten et al. extended the model to include time-varying perturbations, specifically J2
and atmospheric drag, and compared its performance to classical numerical integration methods.34,35

Their findings indicate that within specific regions of the accuracy-efficiency trade space, the Stark
model can outperform traditional numerical integrators.

Despite this progress, the application of the Stark model to preliminary mission design in planet-
centred solar sailing remains unexamined. The objective of this work is to assess the feasibility of
employing the Stark model as an alternative to numerical integration in this context. Specifically,
the study evaluates the performance of the Stark model against conventional numerical methods to
determine whether it offers a viable framework for preliminary mission design.

Improving the efficiency of preliminary mission design is of particular importance as solar-sailing
concepts transition from theoretical studies to practical mission proposals. Analytical frameworks
such as the Stark model could enable faster trade-off analyses, reduce computational demands in
optimisation loops, and expand the range of feasible design studies. Establishing the viability of such
methods is therefore a critical step toward enabling more rapid and robust mission design workflows
for future solar-sail missions.
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The remainder of this work is organised as follows. First, the dynamical model underlying the
problem is formulated in detail. Next, the Stark model is introduced and derived, beginning with the
equations of motion and proceeding to their solution through Hamiltonian formalism. The subse-
quent part of the paper presents the numerical results obtained from applying the model, together with
a comparative assessment of its performance relative to conventional numerical integration methods.
Finally, the study concludes with a summary of the key findings and the main contributions of the
work.

DYNAMICAL MODEL

This section provides a description of the dynamical model under consideration. The employed
reference frames are introduced first. Subsequently, the acceleration model is defined and the cor-
responding equations of motion are presented. Finally, the derivation of the locally optimal control
laws for planet-centred solar sailing are outlined.

Reference Frames

The following reference frames are employed in this work.

Sun

Earth
O x̂

ŷ

ẑ

(a) ECI Reference Frame

x̂

ŷ

ẑ

O

x̂s ∥ n

ŷs

ẑs
δ

α

(b) SECI Reference Frame

Figure 1: ECI and SECI Reference Frames

Earth Centred Inertial. The Earth Centred Inertial (ECI) reference frame, Oxyz , is defined with
its origin O fixed at the centre of the Earth and three non-rotating axes x̂, ŷ, and ẑ (see Fig. 1a).
The x̂-axis is aligned with the Sun-Earth direction, pointing away from the Sun. The ŷ-axis lies
in the ecliptic plane, perpendicular to x̂, and is oriented in the prograde direction. The ẑ-axis is
perpendicular to both x̂ and ẑ, completing the right-handed trihedron.

Stark Earth Centred Inertial. The Stark Earth Centred Inertial (SECI) reference frame, Oxsyszs ,
is an inertial frame with its origin O at the centre of the Earth and three non-rotating axes x̂s, ŷs, and
ẑs (see Fig. 1b). It is introduced to facilitate the transformation between the coordinates used in the
Stark model and those of the ECI frame. The x̂s-axis is aligned with the sail normal vector n. The
ẑs-axis is the unit vector normal to the plane defined by x̂ and x̂s, that is, ẑs = x̂×x̂s

∥x̂×x̂s∥ . The ŷs-axis
is orthogonal to both, completing the right-handed trihedron.

The cone, α, and clock, δ, angles of the three-dimensional solar-sail acceleration model, see below,
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in the ECI frame define the transformation between the two frames as:

Xs = RECI
SECIX where RECI

SECI =

 cosα sinα sin δ sinα cos δ
− sinα cosα sin δ cosα cos δ

0 − cos δ sin δ

 (1)

Here,RECI
SECI is the rotation matrix from the ECI frame to the SECI frame, corresponding to a rotation

by δ about the x̂-axis followed by a rotation by α about the ẑs-axis.

Angles α and δ, as defined in Fig. 1b, differ from the true cone and clock angles of the solar-sail
acceleration model, since the cone angle is measured relative to the Sun-satellite direction rather
than the Sun-Earth direction. However, for near-Earth orbits, the assumption of parallel solar rays
justifies this approximation.

Radial-AlongTrack-CrossTrack. The Radial-AlongTrack-CrossTrack (RSW) frame, BRSW , is a
body frame with its origin B at the centre of mass of the solar sail and three moving axes R̂, Ŝ,
and Ŵ. The R̂-axis is aligned with the radial direction, pointing away from the Earth, R̂ = r

r ,
where r is the position vector in the ECI frame. The Ŵ-axis is normal to the orbital plane, pointing
along the orbital angular momentum vector, Ŵ = r×v

||r×v|| , where v is the velocity vector in the ECI
frame. Finally, the Ŝ-axis is orthogonal to both R̂ and Ŵ, completing the right-handed trihedron,
Ŝ = Ŵ × R̂.

Acceleration Model

The acceleration model adopted in this work corresponds to the simplest solar-sail acceleration
formulation. This choice enables a direct comparison between the Stark model and numerical propa-
gation while avoiding additional dynamical complexities. Accordingly, only Earth point-mass grav-
ity and SRP accelerations are considered.

The SRP acceleration model is further simplified by the following assumptions: (i) the Sun-sail
distance is taken as constant along the orbit and equal to the mean Sun-Earth distance, such that the
acceleration magnitude depends only on the sail orientation; (ii) solar flux is modelled under the
parallel rays approximation; (iii) eclipses are neglected; and (iv) the sail is assumed to possess ideal
optical properties, resulting in perfect reflectivity. Under these assumptions, the SRP acceleration in
a planet-centred orbit is expressed as:

aSRP = 2P
A

m
(n · x̂)2 n (2)

Here, P denotes the SRP, A the sail area, and m the spacecraft mass. Note that the formulation in
Eq. (2) differs from the classical heliocentric expression, where (n · r̂) is used instead of (n · x̂). The
distinction arises because, in the heliocentric case, the direction of sunlight is radial, r̂, whereas in
the planet-centred case it coincides with the x̂-axis of the ECI frame. Introducing the sail loading
σ = m

A , together with the SRP definition P = L⊙
4πr2Ec

, where L⊙ is the solar luminosity and rE

the mean heliocentric distance of the Earth, and noting that (n · x̂) = cosα, the SRP acceleration
becomes:

aSRP = β
GM⊙
r2E

cos2 αn (3)

Here, β denotes the sail lightness number, defined as:

β =
σ∗

σ
where σ∗ =

L⊙
2πGM⊙c

(4)
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Thus, for a given cone angleα, the SRP acceleration has constant magnitude: aSRP = βGM⊙
r2E

cos2 α.
The resulting equations of motion in the ECI frame are given by:

ẍ = −µ
x

r3
+ aSRP cosα

ÿ = −µ
y

r3
+ aSRP sinα sin δ

z̈ = −µ
z

r3
+ aSRP sinα cos δ

(5)

Here, µ denotes the standard gravitational parameter of the Earth. Applying the rotation matrix in
Eq. (1), the equations in the SECI frame are obtained as

ẍs = −µ
xs
r3

+ aSRP

ÿs = −µ
ys
r3

z̈s = −µ
zs
r3

(6)

The form in Eq. (6) corresponds to the Stark problem. In this frame, for given cone and clock
angles, the SRP perturbation is constant both in magnitude and direction, which forms the basis for
the integration of the model.

Planet-Centred Solar-Sailing Locally Optimal Control Laws

Locally optimal control laws (LOCLs) aim to maximise the instantaneous rate of change of a
chosen orbital element, providing analytical expressions for the control that depend solely on the
current state. Although such laws do not yield globally optimal trajectories, they avoid the need for
numerical optimisation and enable simple manoeuvres, such as orbit raising. The derivations shown
below concern the planet-centred solar-sailing LOCLs first derived by Macdonald and McInnes.36

Consider the Lagrange variational equation for the orbital element of interest, k, which is given
by:

dk

dt
= f · λλλk (7)

Here, f denotes the SRP force and λλλk a vector depending on the current state. Maximising the rate
of change of k is equivalent to maximising the projection f · λλλk. To this end, λλλ can be defined as a
unit vector expressed in terms of its own cone and clock angles, α̃ and δ̃:

λλλ = cos α̃x̂ + sin α̃ sin δ̃ŷ + sin α̃ cos δ̃ẑ (8)

Note that the subindex k has been dropped for simplicity. For a given state, α̃ and δ̃ are then deter-
mined as:

α̃ = arccosλx

δ̃ = arctan
(
λy

λz

) (9)

The projection of the SRP force on λλλ, obtained from Eq. (2), is given by:

fλ = 2PA (n · x̂)2 n · λλλ (10)
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Expressed in terms of the cone and clock angles of n and λλλ, Eq. (10) becomes:

fλ = 2PA cos2 α
[
cosα cos α̃+ sinα sin α̃ cos

(
δ − δ̃

)]
(11)

From Eq. (11), it follows that the projection is maximised when δ = δ̃. The optimal cone angle is
then obtained by solving ∂fλ

∂α = 0. After algebraic simplification, the locally optimal cone and clock
angles are given by:

δ∗ = δ̃

α∗ = arctan

(
−3 cos α̃+

√
9 cos2 α̃+ 8 sin2 α̃
4 sin α̃

)
(12)

These analytical expressions depend only on α̃ and δ̃, which in turn are functions of the spacecraft
state, x̂, at a given epoch and of the chosen orbital element k.

STARK MODEL

This section addresses the bounded case of the three-dimensional Stark model according to the
approach developed by Lantoine.29,30 The equations of motion of the Stark problem are first pre-
sented, followed by the definition of the variable transformations employed in the formulation. The
Hamilton-Jacobi formalism is then applied to obtain the integrals of motion, which are subsequently
integrated.

Stark Problem

The Stark problem corresponds to the particular case of the perturbed TBP in which the perturba-
tion is constant in both magnitude and direction. The equations of motion are therefore those of the
TBP, r̈ = −µ r

r3
, with the addition of a constant acceleration ϵ along one coordinate axis:

ẍ = −µ
x

r3

ÿ = −µ
y

r3

z̈ = −µ
z

r3
+ ϵ

(13)

Here, the constant perturbation is introduced in the z-direction. However, any arbitrary direction
in R3 can be reduced to this form through a suitable rotation. This corresponds to the equations of
motion of the SRP acceleration in the SECI frame given in Eq. (6).

Variable Changes

To integrate the equations derived from the Hamilton-Jacobi formalism, changes of variables are
required for both the state and the time.

State The state transformation consists of converting Cartesian coordinates into three-dimensional
parabolic coordinates. Taking the z-direction as the direction of the perturbation, as in Eq. (13), the
transformation is given by:

x = ξη cosϕ
y = ξη sinϕ

z =
1

2

(
ξ2 − η2

) ⇒

ẋ =
(
ξ̇η + ξη̇

)
cosϕ− ξηϕ̇ sinϕ

ẏ =
(
ξ̇η + ξη̇

)
sinϕ+ ξηϕ̇ cosϕ

ż = ξξ̇ − ηη̇

(14)
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The inverse transformation is as:

ξ =
√
r + z

η =
√
r − z

ϕ = arctan
(
x

y

) ⇒

ξ̇ =
ṙ + ż

2
√
r + z

η̇ =
ṙ − ż

2
√
r − z

ϕ̇ =
xẏ − ẋy

x2 + y2

(15)

Time To motivate the time transformation, consider the velocity in parabolic coordinates:

v2 = ẋ2 + ẏ2 + ż2 =
(
ξ2 + η2

) (
ξ̇2 + η̇2

)
+ ξ2η2ϕ̇2 (16)

From Eq. (16), it is evident that the contributions associated with ξ and η scale with (ξ2 + η2),
whereas the contribution associated with ϕ scales with ξ2η2. This motivates the introduction of the
following time variables:

dτ1 =
1

ξ2 + η2
dt (17)

dτ2 =
1

ξ2η2
dt (18)

Here, τ1 and τ2 represent the radial and azimuthal fictitious times, respectively. These transforma-
tions facilitate the integration of the equations of motion, as will be demonstrated later.

Hamilton-Jacobi Formalism

To obtain a solution to the Stark problem, this subsection approaches the integration of the equa-
tions of motion within the framework of the Hamilton-Jacobi formalism. The objective is to construct
Hamilton’s principal function in a form that admits separation of variables, thereby enabling the in-
tegration of the equations of motion. Derivations and statements regarding analytical mechanics
concerns follow Analytical mechanics: an introduction from Fasano and Marmi.37

The starting point is the Hamilton-Jacobi equation, which establishes the relation between Hamil-
ton’s principal function, S, and the Hamiltonian, H , of the system:

H

(
q, p =

∂S

∂q , t

)
+

∂S

∂t
= 0 where S = S (q,ρ, t) (19)

Here, q denotes the vector of generalised coordinates, p the vector of associated canonical momenta,
and ρ a vector of constants of motion. To solve Hamilton-Jacobi equation, it is first necessary to
formulate the Hamiltonian, which is related to the Lagrangian, L, of the system by:

H =
∑

piq̇i (p, q, t)− L (q, q̇ (p, q, t) , t) (20)

Since the Lagrangian is defined as the difference between the kinetic K̃ and potential U energies,
the first step is to express these quantities in parabolic coordinates.

K̃ =
1

2

(
ẋ2 + ẏ2 + ż2

)
=

1

2

[(
ξ2 + η2

) (
ξ̇2 + η̇2

)
+ ξ2η2ϕ̇2

]
(21)

U = −µ

r
− ϵz = − 2µ

ξ2 + η2
− 1

2
ϵ
(
ξ2 − η2

)
(22)
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The Lagrangian then follows as:

L = K̃ − U =
1

2

[(
ξ2 + η2

) (
ξ̇2 + η̇2

)
+ ξ2η2ϕ̇2

]
+

2µ

ξ2 + η2
+

1

2
ϵ
(
ξ2 − η2

)
(23)

From Eq. (23), the canonical momenta are obtained as:

pξ =
∂L

∂ξ
=
(
ξ2 + η2

)
ξ̇

pη =
∂L

∂η
=
(
ξ2 + η2

)
η̇

pϕ =
∂L

∂ϕ
= ξ2η2ϕ̇

(24)

The time transformation introduced earlier is implicitly recovered in these expressions. Substituting
Eqs. (23) and (24) into Eq. (20) yields the expression for the Hamiltonian in terms of the generalised
coordinates and their canonical momenta.

H =
1

2

p2ξ + p2η

ξ2 + η2
+

1

2

p2ϕ
ξ2η2

− 2µ

ξ2 + η2
− 1

2
ϵ
(
ξ2 − η2

)
(25)

With the Hamiltonian in Eq. (25), the Hamilton-Jacobi equation can be solved by applying the
separation of variables technique to determine Hamilton’s principal function.

Separation of variables on t Since the Hamiltonian does not explicitly depend on time, the vari-
able t can be separated into an independent contribution S′ (t,ρ). This immediately implies that the
Hamiltonian is conserved, H = constant. From Eq. (19), the time-dependent part of Hamilton’s
principal function follows as:

S′ (t,ρ) = −H (t− t0) (26)

Here, t0 corresponds to the initial condition of the time variable.

Separation of variables on ϕ Analogous to the time variable, the Hamiltonian does not explicitly
depend on ϕ. This allows for the separation of the ϕ-dependent part of Hamilton’s main function
as Wϕ(ϕ). Since ϕ is thus a cyclic coordinate, its conjugate momentum pϕ is conserved, pϕ =
constant. Recalling that pϕ = ∂S

∂ϕ , the corresponding contribution to the principal function is

Wϕ (ϕ,ρ) = pϕ (ϕ− ϕ0) (27)

Here, ϕ0 corresponds to the initial condition of ϕ.

Separation of variables on ξ and η After the separation in t and ϕ, the principal function can
be expressed as S = S′ (t,ρ) + Wϕ (ϕ,ρ) + W ′ (ξ, η,ρ). Using the definitions of the canonical
momenta, p = ∂S

∂q , the Hamilton-Jacobi equation can be expanded. After algebraic manipulation, it
becomes

1

2

1

ξ2 + η2

[(
∂W ′

∂ξ

)2

+

(
∂W ′

∂η

)2
]
+

1

2

1

ξ2η2
p2ϕ − 2µ

ξ2 + η2
− 1

2
ϵ
(
ξ2 − η2

)
−H = 0 (28)

Multiplying both sides by 2(ξ2 + η2) yields:(
∂W ′

∂ξ

)2

+
p2ϕ
ξ2

− 2µ− ϵξ4 − 2Hξ2 = −
(
∂W ′

∂η

)2

−
p2ϕ
η2

+ 2µ− ϵη4 + 2Hη2 = κ (29)
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Equation (29) shows that the left-hand side depends only on ξ, while the right-hand side depends
only on η. The only consistent solution is that both sides are equal and constant, allowing to identify
a constant of motion, κ. Therefore, separation of variables can be applied to W ′ (ξ, η,ρ). Each
contribution can then be integrated independently:

Wξ (ξ,ρ) =

∫
ξ

ξ0

δ̄ξ

√
ϵξ4 + 2Hξ2 + (2µ+ κ)−

p2ϕ
ξ2

dξ (30)

Wη (η,ρ) =

∫
η

η0

δ̄η

√
−ϵη4 + 2Hη2 + (2µ− κ)−

p2ϕ
η2

dη (31)

Here, δ̄ξ and δ̄η denote the undetermined sign of the square root. These signs must be determined
at a later stage, based on the initial conditions of the trajectory. Since the subsequent derivations of
the equations of motion require differentiating the expressions in Eqs. (30) and (31), it is sufficient
to retain these expressions in their integral form at this stage.

Hamilton’s Principal Function The complete expression for Hamilton’s principal function is given
by a combination of functions, each depending solely on one variable.

S (q,ρ, t) = S′ (t,ρ) +Wξ (ξ,ρ) +Wη (η,ρ) +Wϕ (ϕ,ρ) (32)

Furthermore, the vector of constants of motion ρ remains defined.

ρ = [H, pϕ, κ] (33)

Integration

To integrate the equations of motion, the expressions for the canonical momenta given in Eq. (24)
are combined with their definition in terms of Hamilton’s principal function:

p =
∂L

∂q =
∂S

∂q (34)

This relation provides a direct connection between the separated contributions of S and the evolution
of the parabolic coordinates. Consequently, three equations of motion are obtained, one for each of
the variables ξ, η, and ϕ.

Integration of ϕ For the case of ϕ, the equation of motion in terms of the physical time t is given
by:

ξ2η2
dϕ

dt
= pϕ (35)

To facilitate the integration, the fictitious time variable τ2 is introduced by applying the transforma-
tion in Eq. (18).

dϕ

dτ2
= pϕ (36)

Since pϕ is a constant of motion, integration of Eq. (36) is given by:

ϕ = ϕ0 + pϕτ2 (37)

9

54



Integration of ξ and η For the case of ξ and η the equations of motion attain a more complex
form:

(
ξ2 + η2

) dξ
dt

= δ̄ξ

√
ϵξ4 + 2Hξ2 + (2µ+ k)−

p2ϕ
ξ2

(38)

(
ξ2 + η2

) dη
dt

= δ̄η

√
−ϵη4 + 2Hη2 + (2µ− k)−

p2ϕ
η2

(39)

As for the variable ϕ, with the use of the transformation in Eq. (17), Eqs. (38) and (39) can be
simplified as:

dτ1 = δ̄ξ
ξdξ√

ϵξ6 + 2Hξ4 + (2µ+ k) ξ2 − p2ϕ

(40)

dτ1 = δ̄η
ηdη√

−ϵη6 + 2Hη4 + (2µ− k) η2 − p2ϕ

(41)

Since these integrals share the same mathematical structure, it is convenient to instead consider a
generic form of the equation:

dτ1 = δ̄
XdX√
P1 (X)

where P1 (X) = a1X
6 + a2X

4 + a3X
2 + a4 (42)

Since P1 (X) is an even polynomial, its order can be reduced by introducing the transformation:

X2 = Y ⇒ 2XdX = dY (43)

Substituting Eq. (43) into Eq. (42) yields the following:

dτ1 = δ̄
dY

2
√
P1 (Y )

where P1 (Y ) = a1Y
3 + a2Y

2 + a3Y + a4 (44)

Depending on the coefficients of the polynomial, different cases arise in the Stark model. In this
work, only the bounded case is considered, for which the discriminant of the cubic equation is given
by:

D = R2 +Q3 < 0 where R = −2a32 − 9a1a2a3 + 27a1a
2
4

54a31
& Q =

3a1a3 − a22
9a21

(45)

Solving the cubic equation yields the three roots of P1 (Y ) for the bounded case, all of which are
real.

Y1 = − a2
3a1

+ 2
√
−Q cos

(
θ̄

3

)
Y2 = − a2

3a1
−
√
−Q cos

(
θ̄

3

)
−
√
3
√
−Q sin

(
θ̄

3

)
Y2 = − a2

3a1
−
√
−Q cos

(
θ̄

3

)
+
√
3
√
−Q sin

(
θ̄

3

) (46)
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Here, θ̄ = arctan
(√

−D
R

)
. Consequently, the cubic polynomial P1 (Y ) can be factorised as:

P1 (Y ) = a1 (Y − Y1) (Y − Y2) (Y − Y3) (47)

From Eq. (46), it follows that Y1 > Y3 > Y2. For the integral to be feasible, it is required that
P1 (Y ) > 0. Depending on the sign of a1, this condition defines different intervals corresponding
to the bounded solution.

ξ : a1 > 0 ⇒ Y1,ξ > Y3,ξ > Yξ > Y2,ξ

η : a1 < 0 ⇒ Y1,η > Yη > Y3,η > Y2,η
(48)

Introducing the change of variable:

Y − Y ∗ = sign (a1)Z
2 ⇒ dY = sign (a1) 2ZdZ (49)

Here, Y ∗ has to be chosen such that a1 (Y − Y ∗) > 0. Therefore, the change of variable for ξ and
η is given by:

ξ : a1 > 0 ⇒ Z2
ξ = +(Yξ − Y ∗

ξ ) where Y ∗
ξ = Y2,ξ

η : a1 < 0 ⇒ Z2
η = −(Yη − Y ∗

η ) where Y ∗
η = Y1,η

(50)

DefiningP1 (Y ) = a1 (Y − Y ∗)P2 (Y ), the transformation in Eq. (49) allows to rewrite the integral
in Eq. (44) as:

dτ1 = δ̄
sign (a1) dZ√
|a1|
√
P2 (Z)

(51)

Furthermore, applying the changes of variable in Eqs. (43) and (49), the solution for X is given by:

X =
√

Y ∗ + sign (a1)Z2 (52)

To integrate Eq. (51), the polynomial P2 (Z) must be manipulated such that the resulting integral
takes the form of an elliptic integral of the first kind, F . Furthermore, F is equivalent to the inverse
Jacobi elliptic sine, arcsn. The relation between these functions is given by:38,39

F [u,K] =

∫ u

0

dω̄√
(1− ω̄2) (1−K2ω̄2)

= arcsn [u,K] where
{
−1 ≤ u ≤ 1

0 ≤ K ≤ 1
(53)

Through algebraic manipulation of the equations of motion for both ξ and η, the final form of the
integrated solution for Z can be obtained as:

Zξ = Z3,ξsn [uξ,Kξ] where uξ =
√
ϵZ1,ξ

(
δ̄ξτ1 − τ1,0,ξ

)
& Kξ =

Z3,ξ

Z1,ξ
(54)

Zη = Z3,ηsn [uη,Kη] where uη = −
√
ϵZ2,η

(
δ̄ητ1 − τ1,0,η

)
& Kη =

Z3,η

Z2,η
(55)

Note that |a1| has already been substituted by ϵ, which is the perturbation parameter in the Stark
problem. The values of τ1,0 are determined from evaluating the integral at the initial conditions. The
δ̄ parameters are determined by differentiating the final solutions for ξ and η with respect to time at
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t = 0 and solving for the corresponding sign. With these considerations, the resulting expressions
are given by:

τ1,0,ξ = − 1√
ϵZ1,ξ

F

[
Zξ,0

Z3,ξ
,Kξ

]
(56)

τ1,0,η =
1√
ϵZ2,η

F

[
Zη,0

Z3,η
,Kη

]
(57)

δ̄ξ = sign
(
ξ̇0sn [uξ,0,Kξ] cn [uξ,0,Kξ]

)
where uξ,0 = −

√
ϵZ1,ξτ1,0,ξ (58)

δ̄η = sign (η̇0sn [uη,0,Kη] cn [uη,0,Kη]) where uη,0 =
√
ϵZ2,ητ1,0,η (59)

Here, sn and cn are the Jacobi elliptic sine and cosine, respectively. The final expressions for the
evolution of ξ and η is with respect to τ1 is given by:

ξ =
√
Y ∗
ξ + Z2

ξ (60)

η =
√
Y ∗
η − Z2

η (61)

Integration of τ2 Although the equations of motion have already been integrated, the relation
between the two fictitious time variables, τ1 and τ2, has not yet been established. Without this
relation, a consistent integration with two different independent variables is not possible. To resolve
this issue, the connection between τ1 and τ2 must be derived. From Eqs. (17) and (18), one obtains
a differential relation between τ1 and τ2 as:

dτ2 =

(
1

ξ2
+

1

η2

)
dτ1 (62)

Since ξ and η appear in separate terms, each contribution can be integrated independently. Substi-
tuting their integrated expressions into Eq. (62) leads to:

dτ2 =
1

Y ∗
ξ + Z2

3,ξsn2 [uξ,Kξ]
dτ1 +

1

Y ∗
η + Z2

3,ηsn2 [uη,Kξ]
dτ1 (63)

The integrals in Eq. (63) can be manipulated into the form of an elliptic integral of the third kind,
Π, defined as:40

Π [n, u,K] =

∫ u

0

dω̄

1− nsn2 [ω̄,K]
where 0 ≤ K ≤ 1 & n ̸= 1 (64)

After algebraic manipulation of Eq. (62), the integrated expression for τ2 becomes:

τ2 =

Π

[
−Z2

3,ξ

Y ∗
ξ
, uξ,Kξ

]
−Π

[
−Z2

3,ξ

Y ∗
ξ
, uξ,0,Kξ

]
Y ∗
ξ

√
ϵZ1,ξ δ̄ξ

−
Π

[
Z2
3,η

Y ∗
η
, uη,Kη

]
−Π

[
Z2
3,η

Y ∗
η
, uη,0,Kη

]
Y ∗
η

√
ϵZ2,η δ̄η

(65)

Integration of τ1 Having expressed τ2 as a function of τ1, it is now possible to use τ1 as the
independent variable and propagate the equations of motion accordingly. However, the relation be-
tween the physical time t and the fictitious time τ1 remains to be established. To obtain this relation,

12

57



Eq. (17) must be employed. In this case, the integration can only be carried out after inverting the
equation. Substituting the integrated expressions of ξ and η then yields the following form.

dt =
(
Y ∗
ξ + Z2

3,ξsn2 [uξ,Kξ]
)
dτ1 +

(
Y ∗
η + Z2

3,ηsn2 [uη,Kη]
)
dτ1 (66)

To integrate Eq. (66), the integral of the squared Jacobian elliptic cosine is required, which is given
by:40 ∫ u

0
sn2 [ω̄,K] dω̄ =

1

K2
(u− E [u,K]) (67)

Here,E represents the incomplete elliptic integral of the second kind. Applying Eq. (67), the integral
in Eq. (66) can be solved as:

t =
(
Y ∗
ξ + Y ∗

η

)
τ1 +

Z2
3,ξ√

ϵZ1,ξ δ̄ξK
2
ξ

(uξ − uξ,0 − E [uξ,Kξ] + E [uξ,0,Kξ])

+
Z2
3,η√

ϵZ2,η δ̄ηK2
η

(uη − uη,0 − E [uη,Kη] + E [uη,0,Kη])

(68)

Equation (68) is referred to as the Stark equation. This equation provides an implicit relation between
the fictitious time τ1 and the physical time t. The Stark equation serves as the analogue of the Kepler
equation in the classical Kepler problem, with the key distinction that it involves the evaluation of
elliptic integrals rather than simple transcendental functions. Consequently, its computational cost
is higher than that of the Kepler equation.

RESULTS

This section presents and analyses the results with the aim of comparing the performance of the
Stark model against classical numerical integration in the context of planet-centred solar sailing.
First, the simulation setup is described. Next, the performance of the Stark model under constant-
control scenarios is evaluated. Finally, the analysis is extended to time-varying control laws.

Simulation Setup

This subsection describes the simulation parameters and the adopted numerical integration method-
ology.

The parameters employed in the simulations are grouped into three categories: (i) reference con-
stants, (ii) initial conditions of the reference orbit, and (iii) sets of values used in the parametric
analyses.

Table 1 lists the standard gravitational parameters of the Sun, µ⊙, and Earth, µE , together with
the lightness number of the Advanced Composite Solar Sail System (ACS3) sail.41,42 The initial
conditions of the reference orbit, expressed in both Cartesian coordinates and Keplerian elements
within the ECI frame, are shown in Table 2. For the parametric analyses, different ranges of sail and
orbital parameters were explored. Table 3 summarizes the intervals, number of elements, and dis-
tributions adopted for the sail-related variables. Similarly, Table 4 details the corresponding values
for the orbital parameters. The benchmark numerical integration was determined by performing
numerical integrations at different tolerances. The solution obtained at a given tolerance was com-
pared against that computed with a tolerance one order of magnitude smaller, thereby providing an
estimate of the integration error at the larger tolerance. This approach enables the identification of
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Table 1: Reference values: solar standard gravitational parameter µ⊙, Earth’s standard gravitational
parameter µE , and solar-sail lightness number β.

µ⊙ [m3/s2] µE [m3/s2] βACS3 [-]
1.327e+20 3.986e+14 0.0077

Table 2: Initial conditions of the reference orbit in the ECI frame, given in Cartesian and Keplerian
form. The data is derived from a two-line element set (TLE) with epoch 6 July 2025, 22:10:15.44
UTC.43

x [km] y [km] z [km] vx [km/s] vy [km/s] vz [km/s]
-2.132e+03 -7.006e+03 -8.606e+01 -3.635 1.080 6.341
a [km] e [-] i [deg] Ω [deg] ω [deg] θ [deg]

7.346e+03 7.414e-03 120.9 252.7 65.52 293.7

Table 3: Sail parameters employed in the parametric analyses: intervals, number of elements, and
distributions.

Parameter β [βACS3] α [deg]
Interval

[
10−1, 101

]
[0, 89]

Elements 21 90
Distribution Logarithmic Linear

Table 4: Orbital parameters employed in the parametric analyses: intervals, number of elements,
and distributions.

Parameter a [km] e [-] i [deg] Ω [deg] ω [deg] θ [deg]
Interval [6971, 100000]

[
10−3, 0.9

]
[1, 179] [1, 359] [0, 360] [0, 360]

Elements 100 100 100 100 100 100
Distribution Linear Linear Linear Linear Linear Linear

the tolerance value for which the truncation error, introduced by the integration scheme, equals the
round-off error caused by floating point arithmetic limitations.44

The scheme selected for the numerical integration is the Runge-Kutta 45 (RK45), due to its robust-
ness and efficiency, stemming from its step-size adaptability, which makes it particularly suitable for
trajectory propagation problems.45 Based on the benchmarking methodology, the tolerance adopted
for the reference integrations is of tol = 10−14.

All trajectories were propagated for one day. The performance of the Stark model is evaluated in
terms of computational efficiency and maximum position error with respect to the benchmark nu-
merical integration. The maximum position error is selected as the accuracy metric due to the noisy
nature of the model solution, as will be shown later. Although velocity errors were also computed,
they are not reported here, as they exhibit trends similar to those observed in the position errors.

∆rmax = max (||rt,A − rt,N ||) (69)

Equation (69) defines the maximum position error, ∆rmax, as the maximum norm of the difference
between the analytical trajectory position vector, rt,A, and the numerical trajectory position vector,
rt,N .
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Constant Control Law

The Stark model integrates the equations of motion under the assumption that the perturbation
has constant magnitude and direction. These conditions are satisfied under a constant control law,
enabling the model to propagate the trajectory over an indefinite time interval in a single step. Conse-
quently, the computational cost of the Stark model is inherently lower than that of numerical integra-
tion, which requires intermediate steps to reach the final propagation time. Therefore, the analysis
focuses on the maximum position error relative to the numerical benchmark, while reporting the
average computational time required for a single-step propagation with the Stark model.

Since the governing equations are expressed in terms of the fictitious time τ1, two possible in-
dependent variables can be used for the integration: the physical time t and the fictitious time τ1.
When integrating with t, the Stark equation (Eq. (68)) must be solved iteratively to obtain the ficti-
tious times corresponding to the desired physical times. Conversely, integration with τ1 allows for
direct evaluation at specified values of the fictitious time. However, in this case, the Stark equation
is still required to recover the corresponding physical times at which the benchmark solution must
be evaluated.

The results of the parametric analysis with t as the independent variable are presented in Fig. 2.
The figure shows the position error relative to the benchmark (Fig. 2a) and the average computational
time per evaluation (Fig. 2b) for different combinations of the sail cone angleα and lightness number
β. For the ranges of sail cone angle and lightness number considered, position errors range between
∆rmax ∈

[
10−3, 103

]
m while the computational time per evaluation ranges between CPU Time ∈

[1, 3]× 10−4 s.

The results indicate that both the position error and the computational time per evaluation increase
for larger α and smaller β. This behaviour reflects the dependence of accuracy and computational
effort on the perturbation magnitude ϵ = ||aSRP ||: both metrics worsen as ϵ decreases. The re-
ciprocal of the perturbation magnitude, ϵ−1, for each pair (α, β) is plotted in Fig. 3. The contour
patterns match those observed in Fig. 2, further confirming the correlation between error growth,
computational time, and decreasing perturbation magnitude. This result appears counter-intuitive,
since larger values of the perturbation magnitude increase the influence of the perturbation on the dy-
namics for time-varying perturbations, thus reducing the controllability and increasing the stiffness
of the system. However, for a constant perturbation, controllability and stiffness remain unaffected,
with the perturbation simply shifting the dynamics. The observed relation between the perturbation
magnitude and the performance of the Stark model arises from numerical noise introduced in the
evaluation of intermediate functions, as discussed in detail below.

When integrating with τ1 as the independent variable, the parametric results are shown in Fig. 4.
As before, the position error increases for larger α and smaller β. However, in contrast to the t-based
case, the computational time per evaluation shows no direct dependence on either parameter. These
results indicate that the position error is still inversely correlated with ϵ, but computational time is
unaffected by sail parameters when τ1 is used as the independent variable.

A comparison of Figs. 2a and 4a reveals that the choice of independent variable has negligible
impact on the maximum position error. This suggests that errors introduced during the inversion of
the Stark equation are not the dominant source of inaccuracy. In contrast, Figs. 2b and 4b show
that the inversion substantially increases computational cost, by up to two orders of magnitude. This
effect is more pronounced for small ϵ, where the root-finding algorithm requires more iterations to
compute the corresponding fictitious time. Since the differences associated with the choice of inde-
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Figure 2: Position error (a) with respect to the numerical benchmark and computational time per
evaluation (b) of the Stark model for different combinations of cone angle α and lightness number
β, integrating with the physical time t as the independent variable.
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Figure 3: Reciprocal perturbation magnitude ϵ−1 for different combinations of cone angle α and
lightness number β.

pendent variable have been established, subsequent analyses will adopt the same integration strategy.
Although using the fictitious time τ1 has shown greater computational efficiency, its relation to the
physical time t is both non-linear and dependent on the initial conditions and perturbation magni-
tude. Consequently, the correspondence between discretisation in τ1 and t cannot be determined a
priori. For consistency, all subsequent analyses are therefore performed using the physical time t as
the independent variable.

The observed inverse correlation between position error and perturbation magnitude suggests that
the dominant error source is numerical noise introduced by intermediate operations, such as the
evaluation of elliptic integrals. This noise is amplified by a negative power of ϵ. To illustrate this
issue, Fig. 5 shows the error in the calculation of the elliptic integral of the first kind F (Fig. 5a),
used in computing the initial fictitious times τ1,0 in Eqs. (56) and (57), with respect to Wolfram
Mathematica 14.2,46 and the corresponding error in the physical time t recovered in the Stark model
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Figure 4: Position error (a) with respect to the numerical benchmark and computational time (b) of
the Stark model for different combinations of cone angle, α, and lightness number, β, integrating
with the fictitious time τ1 as the independent variable.

integration (Fig. 5b). The results, obtained for β = βACS3, α = 0◦, and the initial orbit in Table
2, show that the noise in the evaluation of intermediate functions, in this case the elliptic integral
of the first kind, grows with physical time. Since this noise is then multiplied by a negative power
of ϵ (see Eqs. (56) and (57)), it propagates into the evaluation of the Stark equation (Eq. (68)),
ultimately leading to a mismatch between the target and actual physical times at which the solution
is obtained. This time discrepancy propagates into position errors, as shown in Fig. 6. The figure
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Figure 5: (a) Error in the calculation of the elliptic function of the first kind F relative to Wolfram
Mathematica 14.2,46 ∆F , and (b) error in the the physical time t, ∆t, in the Stark model integration
for β = βACS3, α = 0◦, and the reference initial conditions.

compares the position error relative to the benchmark for both the analytical integration (blue) and
the numerical integration (orange), which corresponds to the numerical benchmark evaluated at the
physical times derived from the inversion of the Stark equation. The results show that the time
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discrepancy is also translated into a position error in the numerical integration, which increases with
physical time. While the error magnitudes differ between the two approaches, their evolution exhibits
the same trend, confirming that the dominant error source is the numerical evaluation of intermediate
functions.
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Figure 6: Position error relative to the benchmark propagation for analytical (blue) and numerical
(orange) integrations, both evaluated at the physical time obtained via inversion of the Stark equation.

The influence of the initial orbital elements on model performance is examined in Fig. 7, where
t is used as the independent variable. The figure shows the position error (blue) and computational
time per evaluation (orange) as each Keplerian element is varied independently across the ranges
specified in Table 4. The results show negligible sensitivity to i, Ω, ω, and θ. By contrast, the
position error and computational cost both decrease with increasing semi-major axis a, and increase
with increasing eccentricity e. This behavior arises because smaller a and larger e correspond to
faster orbital dynamics, so the same time mismatch translates into larger spatial errors. Since the
reference orbit is nearly circular (Table 2), the apparent independence of accuracy and computational
cost on ω may not be representative. To verify the independence of the Stark model performance
from the argument of periapsis of the initial orbit, simulations were repeated with the same reference
orbit but eccentricity set to e = 0.5. The results confirmed that accuracy and computational cost
remain unaffected by ω, even for non-circular orbits.

Time-Varying Control Law

For constant control laws, the Stark model permits integration up to any desired time instant in a
single step. This property no longer holds for time-varying control laws, as both the magnitude and
direction of the SRP acceleration change throughout the trajectory. Consequently, the integration
must follow a numerical-like approach: the control law is approximated as piecewise constant, dis-
cretising the trajectory into intervals where the control is assumed constant. For each interval, the
model is reinitialised and the trajectory propagated over the corresponding time span.

This subsection analyses the performance of the Stark model under time-varying control laws,
using numerical integration as a benchmark. The laws considered correspond to planet-centred
solar-sailing LOCLs discussed on page 5. The analysis is divided into two parts. First, since the
present implementation of the Stark model does not support step-size adaptability, its performance
is evaluated for different fixed step sizes and compared against numerical integrations conducted with
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Figure 7: Position error (blue) and computational time per evaluation (orange) as a function of the
initial Keplerian elements, varied one at a time across the ranges in Table 4, with the remaining
elements set to the reference orbit in Table 1.

varying tolerances. Second, the control laws are studied using the variable-step-size discretisation
provided by the numerical integrations under the considered tolerances.

Fixed Step Size The performance of the Stark model with fixed step sizes is evaluated by compar-
ing its accuracy and computational cost against numerically integrated simulations. In the analytical
case, different step sizes are considered, while in the numerical case different integration tolerances
are employed. Table 5 summarises the intervals, number of elements, and distributions of tolerances
and step sizes used in the parametric analysis. The simulations are conducted for each control law
and for several values of the lightness number (see Table 3) to assess how sail performance affects
the Stark model under time-varying perturbations. The effect of the initial orbit is not studied, since
at each step the error is assumed to scale with the initial Keplerian elements, as previously shown in
Fig. 7.

Table 5: Intervals, number of elements, and distributions of tolerances and step sizes employed for
the parametric analysis with fixed step size.

Parameter Tolerance [-] ∆t [s]
Interval

[
10−13, 10−4

]
[1, 100]

Elements 11 33
Distribution Logarithmic Divisors of 86400 (1 day)

For each control law and lightness number, simulations are performed with the integration toler-
ances (numerical propagation) and step sizes (analytical propagation) shown in Table 5. This enables
comparison in the computational time-accuracy space, identifying the regions where the Stark model
outperforms numerical propagation and where the opposite holds. As an example, Fig. 8 shows the
computational time-accuracy space for the simulations carried out for β = 10−1βACS3. Numeri-
cal simulations exhibit an approximately linear relation between accuracy and computational cost
with respect to tolerance. In contrast, the performance of the Stark model depends strongly on the
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step size, which significantly influences computational cost, but to a lesser extent the accuracy for
the step sizes considered. For certain step sizes, the Stark model achieves higher accuracy at lower
computational cost than numerical propagation.
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Figure 8: Computational time-accuracy space for the SMA-raising LOCL with β = 10−1βACS3.

To assess the combinations of step size ∆t and lightness number β for which the Stark model sur-
passes numerical integration in the time-accuracy space, a dedicated metric is introduced. Specifi-
cally, for each pair (∆t, β), the aim is to determine whether the analytical solution achieves superior
performance in terms of accuracy, computational cost, or both, when compared to numerical inte-
grations carried out at different tolerances for the same β. The metric must therefore capture both
computational time and position error. For example, in Fig. 8, Stark model points located to the left
of the numerical integration curve are considered superior, since they achieve lower computational
cost for a comparable accuracy. Conversely, points to the right are always outperformed by some
numerical integration tolerance.

Consider all simulations, analytical (subscript A) and numerical (subscript N ), for a fixed light-
ness number. Because both the computational time t̄ and the position error ē span several orders of
magnitude, it is convenient to work with their logarithmic values:

¯̄t = log10 (t̄)
¯̄e = log10 (ē)

(70)

The computational time and position error are first normalised to allow a consistent comparison
across simulations. To obtain a final metric bounded within a standard range, a min-max normalisa-
tion is applied as follows:

T̄ =
¯̄t− min

(¯̄t)
max

(¯̄t)− min
(¯̄t)

Ē =
¯̄e− min (¯̄e)

max (¯̄e)− min (¯̄e)

(71)

Normalisation ensures T̄ , Ē ∈ [0, 1], where values close to zero correspond to low computational
cost and low error. A cost function with equal weight to both contributions is then defined:

C =
T̄ + Ē

2
(72)
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For each analytical simulation j, the Euclidean distance in the time-accuracy plane to each numerical
simulation i is computed as:

di =

√(
T̄N,i − T̄A,j

)2
+
(
ĒN,i − ĒA,j

)2 (73)

The closest numerical simulation i∗ is then identified, and the metric for the analytical simulation is
defined as:

Mj = CN,i∗ − CA,j (74)

The metric Mj defined in Eq. (74) quantifies the performance of the analytical simulation j relative
to the nearest numerical simulation i∗ in the time-accuracy plane. Its interpretation is as follows:

• Mj > 0: The analytical simulation outperforms the closest numerical simulation.

• Mj = 0: The analytical and closest numerical simulation perform equivalently.

• Mj < 0: The analytical simulation is outperformed by the closest numerical simulation.

Relating this definition of the metric M to Fig. 8, points to the left of the numerical solutions’ curve
correspond to Mj > 0, points on the curve to Mj = 0, and points to the right to Mj < 0.

Figure 9 shows the values of the metric M for different combinations of step size and lightness
number for the LOCLs concerning the raising of the Keplerian elements: semi-major axis (SMA,
Fig. 9a), eccentricity (Fig. 9b), inclination (Fig. 9c), right ascension of the ascending node (RAAN,
Fig. 9d) and argument of periapsis (Fig. 9e). Furthermore, in these figures, the black dashed line
indicates M = 0, along which the tolerances of the closest numerical solutions are annotated. The
results show that for all LOCLs there exists a region where the Stark model outperforms numerical
propagation. This region is smaller for out-of-plane control laws (inclination and RAAN). Moreover,
smaller lightness numbers yield larger regions of outperformance. These results indicate that fixed
step sizes penalise large perturbations due to loss of dynamical information, and especially penalise
control laws involving sudden changes in perturbation direction. This issue is the case for inclination-
and RAAN-raising control laws, for which the sail attitude changes abruptly when crossing the line
of nodes. Finally, it is worth noting that, while under constant control laws larger lightness num-
bers reduce the position error (see Fig. 2), for time-varying perturbations they lead to less efficient
solutions (see Fig. 9) because of increased loss of dynamical information.

Variable Step Size Following the same procedure as for the fixed-step-size analysis, the perfor-
mance of the Stark model is compared against numerical integrations and assessed with the metric
M . Each numerical integration under the tolerances in Table 5 provides a variable-step discretisation
generated by the step-size adaptation algorithm of the RK45 scheme. These discretisations are then
provided as inputs to the Stark model, which performs the analytical propagations using the same
step distributions, each corresponding to a different tolerance. This approach enables the study of
the Stark model under variable-step discretisations, which the analytical model itself cannot generate
intrinsically.

Figure 10 shows the values of the metricM for different combinations of the numerical-integration-
tolerance discretisation and lightness number for the LOCLs concerning the raising of the Keplerian
elements: SMA (Fig. 10a), eccentricity (Fig. 10b), inclination (Fig. 10c), RAAN (Fig. 10d) and
argument of periapsis (Fig. 10e). Furthermore, in these figures, the black dashed line indicates
M = 0, along which the tolerances of the closest numerical solutions are annotated.
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Figure 9: Metric M for different combinations of ∆t and β for various LOCLs: SMA (a), eccen-
tricity (b), inclination (c), RAAN (d), and argument of periapsis (e). The black dashed line indicates
M = 0, along which the tolerances of the closest numerical solutions are annotated.
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Figure 10: MetricM for different combinations of the numerical-integration-tolerance discretisation
and β for various LOCLs: SMA (a), eccentricity (b), inclination (c), RAAN (d), and argument of
periapsis (e). The black dashed line indicates M = 0, along which the tolerances of the closest
numerical solutions are annotated.
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As for the fixed-step analysis, the results show that for all LOCLs there exists a region where the
Stark model outperforms numerical propagation. The general trend indicates that larger tolerances
favour the Stark model relative to numerical integration. For out-of-plane control laws (inclination-
and RAAN-raising), this trend is less uniform, allowing to find isolated regions for the inclination-
raising control law on which the Stark model outperforms the numerical solution for tolerances of
tol ∈

[
10−11, 10−8

]
. Moreover, while smaller lightness numbers yield larger regions of outperfor-

mance, the effect is less pronounced than in the fixed-step analysis (see Fig. 9).

Overall, the use of variable-step discretisations allows the Stark model to outperform numerical
solutions for tolerances in the range tol ∈

[
10−9, 10−4

]
, range that varies depending on the con-

trol law. This behaviour arises because smaller tolerances lead to larger step sizes, where RK45
suffers from truncation errors due to its series formulation, while the Stark model preserves full
dynamical accuracy regardless of step size. Control laws with abrupt changes in perturbation di-
rection (inclination- and RAAN-raising) particularly benefit from variable discretisation, producing
well-defined regions of outperformance. Similarly, larger lightness numbers also gain accuracy from
variable-step propagation, as it improves the resolution of the underlying dynamics.

It should be noted, however, that these discretisations were externally provided to the Stark model.
Thus, the computational overhead of step-size adaptation, included in the numerical integrations but
not in the analytical propagations, is absent from the comparison. Consequently, the computational
cost of the Stark model in this analysis is optimistic, leading to a slightly unfair performance assess-
ment. Nonetheless, it still provides a qualitative indication of the Stark model’s performance under
variable-step propagation.

CONCLUSION

This work has investigated the applicability of the Stark model as an analytical alternative to
numerical integration methods for the simulation of controlled solar-sail trajectories in Earth orbit
under solar radiation pressure. The motivation arises from the high computational cost of trajectory
propagation during preliminary mission design, where efficient yet accurate propagation schemes
are required.

The analysis demonstrates that the Stark model can outperform classical numerical integration
methods in defined regions of the computational time-accuracy space. For constant control laws,
the model consistently provided lower computational cost due to its ability to propagate the state
at any given instant without sequential integration, while maintaining competitive accuracy. Po-
sition errors were found to range between ∆rmax ∈ [10−3, 103],m for perturbation magnitudes of
ϵ ∈ [10−9, 10−3],m/s2. For time-varying, locally optimal control laws, performance strongly de-
pended on the control strategy when a fixed-step discretisation strategy was considered. Smooth
laws, such as semi-major axis-, eccentricity-, and argument of periapsis-raising, allowed the identi-
fication of step-size regions where the Stark model outperformed numerical integration. In contrast,
abrupt control changes, such as inclination- and right ascension of ascending node-raising, signifi-
cantly reduced the regions of outperformance due to the fixed-step limitation of the analytical for-
mulation. With a variable-step discretisation strategy, the dynamics were captured more accurately,
yielding solid regions of outperformance independently of the control law smoothness. Nonethe-
less, as the variable-step discretisations were provided externally, the Stark model did not account
for the overhead of the step-size adaptation algorithm, resulting in optimistic computational times.
Consequently, the variable-step analysis is considered qualitative.
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The study further revealed that the solar-sail lightness number plays a dual role: larger values im-
prove accuracy under constant control laws by reducing integration errors, but degrade performance
for time-varying cases where fixed step sizes fail to capture more dynamic perturbations. Orbital
parameters were also shown to influence the model’s performance: semi-major axis and eccentric-
ity have a direct impact on error growth and computational time, while angular elements, such as
inclination or right ascension of the ascending node, were found to be negligible in this context.

Overall, the findings confirm that the Stark model constitutes a valuable analytical tool for prelim-
inary solar-sail trajectory design, particularly in scenarios governed by smooth control laws. Future
work should focus on overcoming the fixed-step limitation to better handle strongly time-varying
perturbations and on extending the dynamical model to incorporate additional effects such as J2,
atmospheric drag, third-body perturbations, and eclipses. These advancements would enhance both
the accuracy and the applicability of the Stark model in realistic mission design contexts.
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7
Conclusions and Recommendations

for Future Work

This chapter finalises the work by presenting the main conclusions derived from the research and
outlining recommendations for future developments. Section 7.1 revisits the research objective and
systematically answers the main research question and sub-questions, based on the results obtained.
Section 7.2 then proposes directions for future work, taking into account both the findings and the
limitations identified.

7.1. Conclusions
While heliocentric solar sailing has traditionally attracted the most attention, Earth-centred solar sailing
is emerging as a promising concept. In particular, solar radiation pressure (SRP) enables sustained
non-Keplerian behaviour that can be exploited for novel mission applications.

Mission design requires extensive simulations, which result in significant computational cost. During the
preliminary design phase, low-fidelity models are typically used to reduce this cost. Analytical models
can further provide efficient alternatives to such numerical approaches. Among these, the Stark model
offers a convenient analytical framework to capture first-order deviations from Keplerian motion, such
as SRP perturbations, while still admitting closed- or semi-closed-form solutions.

On this basis, the research objective of this thesis was formulated as:

Investigate the performance, in terms of accuracy and computational cost, of the Stark model in
the context of a controlled solar sail orbiting around Earth, under the effect of point-mass gravity
and solar radiation pressure, for different simulation scenarios.

The Stark model was implemented following a Hamilton-Jacobi formulation of the SRP-perturbed two-
body problem (TBP). A numerical acceleration model was also implemented as a reference. Both
analytical and numerical formulations assume:

• The Sun-sail distance is constant and equal to the mean Sun-Earth distance.
• The solar flux is modelled under the parallel-rays approximation.
• Orbital eclipses are neglected.
• The solar sail is considered ideal.

In order to address the controlled aspect of the problem, both a constant control law and planet-centred
solar-sail locally optimal control laws (LOCLs) were considered. The latter correspond to the raising of
the following orbital elements: semi-major axis (SMA), eccentricity, inclination, right ascension of the
ascending node (RAAN), and argument of periapsis.
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The research objective is studied through the answering of the research question and its sub-questions,
which are presented and answered below.

Research Question

Can the Stark model serve as a reliable alternative to numerical integration methods for pre-
liminary design of controlled solar-sail trajectories around Earth under the effect of point-mass
gravity and solar radiation pressure?

The analysis demonstrates that the Stark model can indeed outperform conventional numerical inte-
gration methods within certain regions of the computational time-accuracy space.

For constant control laws, the Stark model consistently provided superior computational efficiency, as
it allows direct propagation of the state at any time instant. Accuracy depends on the perturbation mag-
nitude: larger perturbations yield smaller errors, with position errors spanning ∆rmax ∈

[
10−3, 103

]
m,

for perturbation magnitudes in the range of ϵ ∈
[
10−9, 10−3

]
m/s2.

For time-varying control laws, the regions of outperformance strongly depend on the chosen control law
under a fixed-step discretisation. Laws characterised by abrupt directional changes, such as inclination-
and RAAN-raising, significantly reduce the regions where the Stark model outperforms numerical inte-
gration. Conversely, smooth laws, such as SMA-, eccentricity-, and argument of periapsis-raising, al-
low broader regions of advantage. Analytical solutions that attained comparable or better performance
than numerical solutions were only found for numerical integrations with tolerances tol ∈

[
10−10, 10−7

]
.

The associated numerical integration errors in these cases were bounded by ∆rmax ∈
[
10−1, 103

]
m.

Under a variable-step discretisation strategy, the improved accuracy in capturing the dynamics led to
solid regions of where the Stark model outperforms the numerical integration, independent of control
law smoothness. Nonetheless, this analysis remains qualitative, as the variable-step discretisations
were provided externally, yielding optimistic computational cost estimates.

Sub-question 1

How does the performance of the Stark model compare to numerical integration methods when
simulating solar-sail trajectories governed by a constant control law?

The Stark model predicts the state of a solar-sail trajectory governed by a constant control law in a
single integration step. The maximum position error increases with integration time and depends on
the perturbation magnitude. For perturbations of ϵ ∈

[
10−9, 10−3

]
m/s2, one-day trajectories exhibit

maximum position errors in the range of ∆rmax ∈
[
10−3, 103

]
m.

These errors originate from inaccuracies in the evaluation of intermediate functions, such as elliptic inte-
grals, that grow with increasing integration time. This translates into a mismatch between the physical
time at which the Stark model evaluates the solution and the reference time of the numerical solution,
thereby producing state deviations. Similar behaviour in accuracy was observed regardless of whether
the integration used physical time t or fictitious time τ1.

In terms of computational efficiency, integration in physical time requires on the order of 10−4 s per
evaluation, compared to 10−6 s for fictitious time. The difference arises from the need to invert the
implicit Stark equation when using physical time as the independent variable.

Sub-question 2

How does the performance of the Stark model compare to numerical integration methods when
simulating solar-sail trajectories governed by time-varying locally optimal control laws?

The performance of the Stark model under time-varying control laws depends strongly on the nature of
the law. Since the model requires fixed integration steps and does not allow adaptive step-size control,
its efficiency is reduced compared to numerical methods in cases involving rapid variations.



7.2. Recommendations for Future Work 74

For smooth laws (SMA-, eccentricity-, and argument of periapsis-raising), the Starkmodel outperformed
numerical methods in regions corresponding to step sizes of ∆t ∈ [36, 100] s, with numerical methods
requiring tolerances of tol ∈

[
10−10, 10−7

]
to achieve similar accuracy. For abruptly changing laws

(inclination- and RAAN-raising), the region of outperformance is much narrower with step sizes of∆t ∈
[90, 100] s and associated numerical tolerances of tol ∈

[
10−8, 10−7

]
.

Additional analyses were performed by supplying the Stark model with the variable-step discretisa-
tions generated by the step-size adaptation algorithm of the numerical integration scheme. The results
showed improved accuracy in capturing the dynamics, with the Stark model outperforming numerical
integration for all control laws over tolerance ranges of tol ∈

[
10−9, 10−4

]
(slightly varying with the

control law). These findings highlight a key model limitation: the inability to internally adapt step sizes
under time-varying perturbations.

Sub-question 3

How does the solar-sail lightness number affect the performance of the Stark model?

The effect of the lightness number β is twofold. Under constant control laws, larger values of the light-
ness number improve performance, since stronger SRP perturbations lead to smaller relative errors.
Conversely, under time-varying control laws, larger values of the lightness number worsen performance,
as the stronger perturbations hinder the fixed-step Stark model’s ability to capture the dynamics accu-
rately.

For inclination- and RAAN-raising laws, regions of outperformance were only found at smaller lightness
number values β ≈ 10−1βACS3, with βACS3 = 0.0077. For SMA- and eccentricity-raising laws, these re-
gions extended to β ∈

[
10−1, 100

]
βACS3, while for argument of periapsis-raising laws, outperformance

was observed across the entire studied interval, β ∈
[
10−1, 101

]
βACS3.

In the variable-step analysis for time-varying control laws, this dependence was less pronounced, with
regions of outperformance for all control laws over the entire range of lightness numbers.

Sub-question 4

How do orbit parameters affect the performance of the Stark model?

The influence of orbital parameters on performance was found to be selective. Angular parameters
(inclination, RAAN, argument of periapsis, and true anomaly) do not affect either accuracy or computa-
tional time, as they do not alter the orbital dynamics. In contrast, SMA and eccentricity strongly influence
both. Smaller SMA and larger eccentricities, which correspond to faster orbital dynamics, increase both
position errors and computational time per evaluation. This behaviour is attributed to greater sensitivity
to small time deviations between the Stark model and numerical solutions in fast-dynamic regimes.

7.2. Recommendations for Future Work
The conclusions in Section 7.1 have highlighted several limitations of the Stark model, which in turn sug-
gest potential directions for future research. As the performance assessment was carried out separately
for constant and time-varying control laws, the recommendations are likewise structured according to
this distinction.

For constant control laws (and, by extension, for each individual step in the integration of time-varying
perturbations), the main limitation arises from numerical noise in the evaluation of intermediate func-
tions. This noise is amplified by the reciprocal of the perturbation magnitude, ultimately constraining
accuracy. Since the origin of this limitation is the finite precision of floating-point arithmetic, it cannot be
fully eliminated. A straightforward mitigation strategy is to employ higher-precision arithmetic, trading
computational cost for improved accuracy. This additional cost could, however, be partially offset by
using the fictitious time τ1 as the independent variable instead of the physical time t, allowing for a
reduction in the computational time per evaluation by approximately two orders of magnitude.

In the case of time-varying control laws, the primary limitation is the inability of the Stark model to cap-
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ture the underlying dynamics with a fixed step size. Classical numerical integration schemes achieve
step-size adaptability by exploiting error estimates between solutions of different orders, a feature not
directly transferable to the analytical solution provided by the Lantoine formulation [35, 70]. One pos-
sible avenue to address this issue is the Pellegrini formulation [73], which employs a series expansion
to solve the Stark problem. Although this approach restricts the maximum step size, it provides higher
accuracy for smaller step sizes [74]. Moreover, the series expansion framework may enable the devel-
opment of adaptive step-size schemes for the Stark model.

In the context of time-varying perturbations, future work could also aim to expand the accelerationmodel
to include additional perturbations such as J2, atmospheric drag, or third-body effects. Depending
on the cumulative effect of these perturbations, the accuracy of the model may improve due to the
larger effective perturbation magnitude. Furthermore, in the context of planet-centred solar sailing,
incorporating the effect of orbital eclipses would be particularly valuable, as eclipses are especially
relevant in low-Earth orbit regimes.

In summary, the recommendations outlined above address two complementary aspects: mitigating
numerical limitations inherent to the Stark model and extending its applicability through a broader dy-
namical framework. Together, these directions define a clear path towards enhancing both the accuracy
and versatility of the Stark model for future solar-sail trajectory design studies.
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A
Verification

This appendix describes the methods used to verify the implementation of the capabilities required
for this work. Section A.1 presents the verification of the conversion routines. The verification of the
dynamical model is addressed in Section A.2. Finally, Section A.3 focuses on the verification of the
Stark model.

A.1. Conversions
This section presents the verification of the coordinate conversions employed in this work. The method-
ology consists of verifying the transformations between Cartesian coordinates and the other coordinate
systems considered. Since Cartesian coordinates are used as an intermediate frame, validating these
transformations also ensures the correctness of conversions between any pair of coordinate systems.
Subsections A.1.1, A.1.2, and A.1.3 address the conversions between Cartesian and Keplerian, Radial-
AlongTrack-CrossTrack (RSW), and parabolic coordinates, respectively.

A.1.1. Cartesian-Keplerian
The verification of the conversion between Cartesian coordinates and Keplerian elements is carried out
using the Python library Poliastro [84]. For both the direct and inverse transformations, the standard
gravitational parameter employed is that defined in Poliastro.

For the direct transformation, two Cartesian states are considered, listed in Table A.1. The set C1
corresponds to an arbitrary orbit, while the set C2 represents a circular orbit. The error in the Keplerian

Table A.1: Sets of Cartesian coordinates used for verification.

x [km] y [km] z [km] vx [km/s] vy [km/s] vz [km/s]
C1 7123 3485 3389 3.389 7.123 3.485
C2 7000 0 0 0 7.546 0

elements between the in-house implementation and the Poliastro routine is reported in Table A.2. For

Table A.2: Error in the conversion from Cartesian to Keplerian elements.

a [km] e [-] i [rad] Ω [rad] ω [rad] θ [rad]
C1 -1.091e-11 -1.110e-16 0 0 0 0
C2 -1.819e-12 0 0 0 0 0

the inverse transformation, the Keplerian elements corresponding to sets C1 and C2 are used (Table
A.3). The associated Cartesian errors are presented in Table A.4.
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Table A.3: Keplerian element sets used for inverse verification.

a [km] e [-] i [rad] Ω [rad] ω [rad] θ [rad]
K1 2.205e+04 8.894e-01 4.318e-01 5.551 5.381 2.122
K2 7000 0 0 0 0 0

Table A.4: Error in the conversion from Keplerian to Cartesian coordinates.

x [km] y [km] z [km] vx [km/s] vy [km/s] vz [km/s]
K1 0 4.547e-13 0 -4.441e-16 -2.665e-15 -8.882e-16
K2 0 0 0 0 0 0

A.1.2. Cartesian-RSW
The conversion between Cartesian and RSW frames is verified using the Python library beyond [85].
Because the transformation matrix between these frames is orthonormal, the inverse is equal to its
transpose; thus, validating the forward transformation suffices to verify the inverse as well.

Since the RSW frame is defined locally, the transformation depends on the Cartesian state vector. The
sets C1 and C2 from Table A.1 are used. In addition, a dimensionless vector ū in the Cartesian frame
is transformed:

ū = [1, 2, 3] (A.1)

The resulting errors are reported in Table A.5.

Table A.5: Error in the conversion between Cartesian and RSW frames.

R [-] S [-] W [-]
C1 0 0 0
C2 0 0 0

A.1.3. Cartesian-Parabolic
The conversion between Cartesian and parabolic coordinates is verified using Wolfram Mathematica
[86]. As this transformation is nonlinear, both the direct and inverse mappings must be verified. It is
noted, however, that Mathematica provides conversions only for position coordinates; explicit verifica-
tion of velocity components is therefore not possible. Nonetheless, the subsequent verification of the
Stark model in Section A.3 implicitly validates the parabolic velocity formulation, since the model is
expressed in parabolic coordinates.

For the direct transformation, sets C1 and C2 from Table A.1 are employed. The associated errors are
shown in Table A.6. For the inverse transformation, the parabolic coordinates corresponding to C1 and

Table A.6: Error in the conversion between Cartesian and parabolic coordinates.

ξ [km 1
2 ] η [km 1

2 ] ϕ [rad]
C1 0 0 0
C2 0 0 0

C2 are listed in Table A.7. The Cartesian errors for the inverse mapping are given in Table A.8.

Table A.7: Parabolic coordinate sets used for verification.

ξ [km 1
2 ] η [km 1

2 ] ϕ [rad] ξ̇ [km 1
2 /s] η̇ [km 1

2 /s] ϕ̇ [rad/s]
P1 1.096e+02 7.235e+01 4.550e-01 4.805e-02 2.462e-02 6.190e-04
P2 8.367e+01 8.367e+01 0 0 0 1.078e-03
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Table A.8: Error in the conversion from parabolic to Cartesian position coordinates.

x [km] y [km] z [km]
P1 0 0 0
P2 0 0 0

A.2. Dynamical Model
This section presents the verification of the dynamical model. The process is divided into two parts:
verification of the acceleration model and verification of the planet-centred solar-sail locally optimal
control laws (LOCLs). The former is described in Subsection A.2.1, while the latter is addressed in
Subsection A.2.2.

A.2.1. Acceleration Model
The acceleration model accounts for Earth point-mass gravity and solar radiation pressure (SRP). Ver-
ification is carried out in two stages: first, the two-body problem (TBP) acceleration model is validated,
and then SRP is added on top of the verified TBP dynamics.

Earth Point-Mass
The point-mass gravity model has been implemented following the formulation of the TBP given in
[43]. In the TBP, all Keplerian elements remain constant except for the true anomaly. To verify correct
implementation, an orbit propagation in Cartesian coordinates was performed.

The initial Keplerian conditions are listed in Table A.9. Using these conditions, the orbit was propagated

Table A.9: Initial conditions in Keplerian elements.

a [km] e [-] i [rad] Ω [rad] ω [rad] θ [rad]
7.346e+03 7.414e-03 1.209e+02 2.527e+02 6.552e+01 2.937e+02

for one day. The resulting evolution of the Keplerian elements is shown in Fig. A.1. Figure A.1 confirms
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Figure A.1: Evolution of Keplerian elements for a one-day propagation of the TBP.

that the Keplerian elements remain nearly constant, with deviations attributable to numerical integration
errors. As an additional validation step, the propagation was compared to a proprietary analytical
solution of the Kepler problem. Figure A.2 shows the evolution of the error, further confirming the
correct implementation of the TBP model.

Solar Radiation Pressure
The SRP acceleration model was implemented using the planet-centred solar-sail equations of motion
from [1]. To verify correctness, the planet-centred locally optimal control law for semi-major axis (SMA)-
raising described in [1] was reproduced. The simulation uses the lightness number and initial conditions
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Figure A.2: Evolution of error in Keplerian elements for a one-day propagation between the numerical propagation and the
analytical implementation of the Kepler Problem.

Table A.10: Ligthness number and initial conditions for verification of SRP accleration model.

β [-] a [km] e [-] i [rad] Ω [rad] ω [rad] θ [rad]
0.17 42241 0 0 0 0 0

in Table A.10. The propagation was performed for three periods of the initial orbit. Figure A.3 shows
the evolution of the SMA, eccentricity, and sail cone angle, along with a two-dimensional trajectory plot.
The agreement between the obtained results and those published in [1] verifies the implementation of
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Figure A.3: Evolution of the SMA, eccentricity, and sail cone angle for a propagation of three initial-orbit periods. Additionally, a
two-dimensional representation of the trajectory is shown.

the SRP acceleration model.
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A.2.2. Planet-Centred Solar-Sail Locally Optimal Control Laws
The LOCLs were implemented following the derivations in [31]. Verification was carried out by com-
paring the proprietary implementation with reference data provided by Carzana [32], which includes
evaluations of SMA- and inclination-raising LOCLs at multiple points along a Keplerian orbit.

The orbital parameters, lightness number, and gravitational parameter used for the test case are re-
ported in Table A.11. The dataset consists of 721 evaluations uniformly spaced in true anomaly over
θ ∈ [0, 360]◦.

Table A.11: Earth’s standard gravitational parameter, lightness number and initial Keplerian elements for verification of the
LOCLs.

µ [km3/s2] β [-] a [km] e [-] i [rad] Ω [rad] ω [rad] θ [rad]
398600.441 0.0077 7500 0.123 1.1849342 2.0037891 9.4809535 0

Figures A.4 and A.5 present the evolution of the cone (α) and clock (δ) angles for the SMA- and
inclination-raising LOCLs, respectively.
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Figure A.4: Evolution of the cone, α, and clock, δ, angles for an SMA-raising LOCL along the full range of values of the true
anomaly of a Keplerian orbit.

Figure A.5 shows the evolution of the cone and clock angles for the inclination-raising LOCL along the
defined states. The agreement between the proprietary implementation and the reference data verifies
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Figure A.5: Evolution of the cone, α, and clock, δ, angles for an inclination-raising LOCL along the full range of values of the
true anomaly of a Keplerian orbit.

the correctness of the SMA- and inclination-raising control laws. While no external data was available
for the remaining LOCLs, their derivation differs only in the choice of the vector λ, as shown in Table
4.1. Since the computational process is otherwise identical, verification of these two cases suffices to
confirm the correct implementation of a generic planet-centred solar-sail LOCL.



A.3. Stark Model 86

A.3. Stark Model
This section presents the verification of the Stark model. For the purposes of this work, only the
bounded case is considered, and therefore only this case has been verified numerically.

The bounded case is governed by Eqs. (5.168), (5.169), and (5.170). These define the evolution of the
parabolic coordinates with respect to the fictitious times, the relations between fictitious and physical
times, and the parameters used in the formulation, respectively.

Verification was carried out by reproducing a reference case reported in [70]. The standard gravitational
parameter µ, the initial state vector x̃0, and the perturbation magnitude ϵ employed are listed in Table
A.12. Figure A.6 shows the three-dimensional trajectory (Fig. A.6a) and the time evolution of the semi-

Table A.12: Standard gravitational parameter, initial conditions and magnitude of the perturbation for the verification of the
bounded case of the Stark model.

µ [-] x̃0 [-] ϵ
1 [1,0,0,0,0.866,0.5] 0.0103

major axis, eccentricity, inclination, and argument of periapsis (Fig. A.6b) for the analytical propagation
of the initial conditions in Table A.12. The results are in full agreement with those published in [70],
thereby confirming the correct implementation of the Stark model for the bounded case.
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Figure A.6: (a) Three-dimensional trajectory and (b) evolution of the SMA, eccentricity, inclination, and argument of periapsis
for the initial conditions given in Table A.12.

It is worth noting that in [70] the horizontal axis of the Keplerian element plots is labelled as the physical
time t, whereas in this implementation the fictitious time τ1 is used. The relationship between t and
τ1 for the case considered is shown in Fig. A.7. The figure indicates that the physical time spans
approximately twice the range of the fictitious time. Since the trends in Fig. A.6b are equivalent to those
reported in [70], it is assumed that the labelling of the horizontal axis in the reference was incorrect.
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Figure A.7: Relation between the physical time t and the fictitious time τ1 for the initial conditions given in Table A.12.



B
Benchmark Definition

This appendix describes the methodology employed to define the numerical benchmark used through-
out this work. For each control law considered, numerical integrations were performed at different
tolerances. The solution obtained at a given tolerance was compared against that computed with a
tolerance one order of magnitude smaller, thereby providing an estimate of the integration error at the
larger tolerance. This approach enables the identification of the tolerance value for which the trunca-
tion error, introduced by the integration scheme, equals the round-off error caused by floating-point
arithmetic limitations [87].

The chosen numerical integrator is the SciPy implementation of the Runge-Kutta 45 (RK45) scheme
[88]. RK45 was selected due to its robustness and efficiency, stemming from its step-size adaptability,
which makes it particularly suitable for trajectory propagation problems [89].

The reference parameters used in the analysis are summarized in Table B.1, including the solar and
Earth standard gravitational parameters as well as the Advanced Composite Solar Sail System (ACS3)
solar-sail lightness number. The initial conditions of the reference orbit, expressed in both Cartesian
and Keplerian form in the Earth Centred Inertial (ECI) frame, are reported in Table B.2. The tolerance
sampling strategy is described in Table B.3. A logarithmic distribution of 17 values was adopted over
the interval

[
10−20, 10−4

]
. For the lowest tolerance, tol = 10−20, the error was estimated by comparison

with a simulation at tol = 10−21. The results of the benchmark definition analysis are presented in Fig.

Table B.1: Reference values: solar standard gravitational parameter µ⊙, Earth’s standard gravitational parameter µE , and
solar-sail lightness number β.

µ⊙ [m3/s2] µE [m3/s2] βACS3 [-]
1.327e+20 3.986e+14 0.0077

Table B.2: Initial conditions of the reference orbit in the ECI frame, given in Cartesian and Keplerian form.

x [km] y [km] z [km] vx [km/s] vy [km/s] vz [km/s]
-2.132e+03 -7.006e+03 -8.606e+01 -3.635 1.080 6.341

a [km] e [-] i [deg] Ω [deg] ω [deg] θ [deg]
7.346e+03 7.414e-03 120.9 252.7 65.52 293.7

Table B.3: Tolerances employed in the benchmark definition analysis: interval, number of elements, and distribution.

Tolerance [-]
Interval

[
10−20, 10−4

]
Elements 17
Distribution Logarithmic

88



89

B.1 for the different control laws: constant (Fig. B.1a), semi-major axis (SMA. Fig. B.1b), eccentricity
(Fig. B.1c), inclination (Fig. B.1d), right ascension of the ascending node (RAAN, Fig. B.1e), and
argument of periapsis (Fig. B.1f). In all cases, the position error exhibits a change in behaviour at
tol = 10−14, marked by the red dashed line. This tolerance is identified as the lowest value unaffected
by round-off error. Consequently, tol = 10−14 was selected for the benchmark simulations.
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Figure B.1: Position error resulting from the benchmark definition analysis for the tolerances given in Table B.3 for different
control laws: constant (a), SMA (b), eccentricity (c), inclination (d), RAAN (e), and argument of periapsis (f). The red, dashed

line corresponds to a tolerance of tol = 10−14, which corresponds to the tolerance chosen for the benchmark.



C
Solution to the Cubic Equation

This appendix presents the detailed derivation of the solution to the cubic equation, which is required for
the integration of the equations of motion of the Stark problem introduced in Chapter 5. The objective
is to characterize the roots of the polynomial P1 (Y ) in Eq. (5.43) as a function of the coefficients of the
cubic. The methodology follows the approach described in [90].

The first step consists in transforming the general cubic into its depressed form. This is achieved
through the variable substitution given by:

Y = Y ′ − a2
3a1

(C.1)

Substitution in Eq. (C.1) eliminates the quadratic term. Applying this transformation, P1 (Y ) can be
rewritten as:

P1 (Y
′) = a1

(
Y ′3 + p̄Y ′ + q̄

)
where p̄ =

3a1a3 − a22
3a21

& q̄ =
2a32 − 9a1a2a3 + 27a21a4

27a31
(C.2)

Hence, the problem reduces to solving the depressed cubic equation given by:

Y ′3 + p̄Y ′ + q̄ = 0 (C.3)

To further simplify the problem, Vieta’s substitution is introduced:

Y ′ = Y ′′ − p̄

3Y ′′ (C.4)

Substituting Eq. (C.4) into Eq. (C.3) yields the following:

Y ′′3 − p̄3

27Y ′′3 + q̄ = 0 (C.5)

Multiplying Eq. (C.5) by Y ′′3 and defining Y ′′′ = Y ′′3 leads to a quadratic equation:

Y ′′′2 + q̄Y ′′′ − p̄3

27
= 0 (C.6)

Equation (C.6) is solved using the quadratic formula, yielding two possible values for Y ′′′:

Y ′′′ = R±
√
R2 +Q3 where R = −1

2
q̄ & Q =

1

3
p̄ (C.7)

In Eq. (C.7), the radicand corresponds to the discriminant of the cubic equation.

D = R2 +Q3 (C.8)
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From the two solutions of Y ′′′, the corresponding values of Y ′′ can be expressed as:

Y ′′
1 =

3

√
R+

√
D (C.9)

Y ′′
2 =

3

√
R−

√
D (C.10)

Using Eq. (C.4), the three solutions of the depressed cubic equation are then given by:

Y ′
1 = (Y ′′

1 + Y ′′
2 )

Y ′
2 = −1

2
(Y ′′

1 + Y ′′
2 ) + i

√
3

2
(Y ′′

1 − Y ′′
2 )

Y ′
3 = −1

2
(Y ′′

1 + Y ′′
2 )− i

√
3

2
(Y ′′

1 − Y ′′
2 )

(C.11)

Finally, applying the transformation in Eq. (C.1), the solutions of the original cubic equation are ob-
tained:

Y1 = − a2
3a1

+ (Y ′′
1 + Y ′′

2 )

Y2 = − a2
3a1

− 1

2
(Y ′′

1 + Y ′′
2 ) + i

√
3

2
(Y ′′

1 − Y ′′
2 )

Y3 = − a2
3a1

− 1

2
(Y ′′

1 + Y ′′
2 )− i

√
3

2
(Y ′′

1 − Y ′′
2 )

(C.12)

Equation (C.12) provides the general form of the solution to a cubic equation. The nature of the roots
depends on the sign of the discriminant D:

• If D > 0: Yi ∈ C ∀ i ∈ [1, 3]

• If D = 0: Yi ∈ R ∀ i ∈ [1, 3] & Y2 = Y3

• If D < 0: Yi ∈ R ∀ i ∈ [1, 3]

In Chapter 5, these cases are employed to determine the explicit solutions of the equations of motion
of the Stark problem depending on the discriminant.



D
Work Breakdown Structure

This appendix provides an overview of the thesis organisation. Table D.1 presents a detailed description
of the work packages, including their expected duration in weeks and a concise summary of their
objectives. The project timeline, organised according to these work packages, is illustrated in the
Gantt chart in Fig. D.1.

Table D.1: Thesis work packages description.

Work package Weeks Description
1. Literature Review 6 Review of state-of-the-art research.
2. Research Proposal Reporting 1 Preparation of the research proposal.
* Research Proposal Deliverable - Milestone
3. Dynamical Model 3 -
3.1. Model Definition 1 Specification of the dynamical model.
3.2. Model Implementation 1 Implementation of the dynamical model.
3.3. V&V 1 Validation and Verification of the dynamical model.
4. Analytical Model 6 -
4.1. Model Implementation 3 Implementation of the Stark model.
4.2. V&V 1 Validation and Verification of the Stark model.
4.3. Code Profiling 2 Optimisation of the computational performance of

the analytical model.
5. Mid-Term Deliverable Reporting 2 Preparation of the Mid-Term report.
* Mid-Term Deliverable - Milestone
+ Vacation 2 -
6. Analysis 8 -
6.1. Constant Control Law 4 Analysis under constant laws.
6.2. Time-Varying Control Law 4 Analysis under time-varying control laws.
+ Vacation 2 -
7. Thesis Draft Reporting 6 Preparation of the thesis draft.
* Thesis Draft Deliverable - Milestone
8. Final Thesis Reporting 2 Finalisation of the thesis report.
* Final Thesis Hand-In - Milestone
9. Defence Preparation 2 Preparation for the thesis defence.
* Thesis Defence - Milestone
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Figure D.1: Gantt chart of the thesis.
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