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The role of sound propagation in concentrated colloidal suspensions
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In a suspension, the hydrodynamic interactions between particles can propagate by two
mechanisms: relatively slowly, by the diffusion of transverse momentum, or relatively rapidly, by
the propagation of sound waves. Here we describe computer simulation results for the collective and
single particle dynamics of colloidal particles with the aim of clarifying the role of sound. We find
that for single particle motion the effect is rather trivial. As for an isolated particle, compressibility
modifies the decay of velocity fluctuations only at very short times. For collective correlations this
is not true. Our results show that the multiple scattering of sound waves between particles can
induce correlated collective motions on time scales comparable with the diffusion of transverse
momentum. The effects of compressibility are no longer restricted to very short times and manifest
themselves as rapid oscillations in the time dependence of the collective diffusion coefficient. We
suggest that these oscillations can largely be explained in terms of “effective” incompressible
hydrodynamic theory, the suspension bulk viscosity, kinematic viscosity, and speed of sound
becoming the relevant parameters. The oscillations are furthermore centered (byptbehetical
incompressible result. Thus, while the effects of sound propagation may extend to surprisingly long
times, thenet effect remains limited to very short times. We discuss where these sound-induced
oscillations will be relevant experimentally. @002 American Institute of Physics.

[DOI: 10.1063/1.1454995

I. INTRODUCTION role of sound propagation in unprecedented experimental de-
tail. In this paper our aim is to establish, from computer
A colloidal system consists of particles that are atomi-simu|ations, precise|y what role we expect sound to p|ay
cally large(the colloidal particlesdispersed in a solvent to To begin with, it is useful to consider a case where con-
form a liquid-like dispersion. In concentrated suspensionsiderable theoretical progress can be made, namely, a single
there are interactions between the colloidal particles thatspherical colloidal particle. This serves as a useful means of
relative to the dilute case, modify the dynamics. These “hy-llustrating the relative characteristics of the two mecha-
drodynamic” interactions are caused by colloidal particlesnisms. The analysis of the single particle case begins with
influencing one another by momentum transfer through thghe observation that the equation of motion for the colloidal
fluid occupying the space between them. This transport oparticle takes the form of a generalized Langevin equation
momentum can take place by two mechanisms that generalyGE).8~1° To study the decay of velocity fluctuations, it is
operate on very different time scales. The first is the diffu-yseful to consider the velocity autocorrelation function,
sion of transverse momentum. The second is the propagatiap(t). In terms of one component of the instantaneous veloc-

of a sound wave longitudinal to the direction of motion. ity v;(t), the velocity autocorrelation functiofVACF) is
Theoretical approaches developed thus4anly take  defined as

the first, diffusive, mechanism into account. Nonetheless,

there are cases where the second, sonic, mechanism has been €(1)=(vi(0)vi(t)). @
shown to be relevarit! The suggestion can also been madeThe solution to the GLE for the Laplace transform of the
that sound propagation may explain apparent discrepancieglocity autocorrelation functioridenoted by the tilde in
between computer simulations results and experiments tharms of the transform variable reads

probe the time dependence of the hydrodynamic interactions 2

in concentrated suspensioh$.With the development of C(z)= (vi) )
novel experimental techniques, such as position correlation z+y(z)/m’

microscopy, it is possible to actually measure the timey herem is the particle mass. Given the equations of motion
dependent hydrodynamic interactions between isolated Cohescribing the dynamics of the solvent and imposing the cor-
loidal particles’ It is now possible, therefore, to study the rect boundary conditions on the surface of the partigle)
can in principle be calculated. The simplest assumption is
3Electronic mail: lowe@science.uva.nl that the motion of the solvent can be described byitlkem-

0021-9606/2002/116(13)/5867/10/$19.00 5867 © 2002 American Institute of Physics

Downloaded 10 Sep 2010 to 131.180.130.114. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



5868 J. Chem. Phys., Vol. 116, No. 13, 1 April 2002 A. F. Bakker and C. P. Lowe

pressibleNavier—Stokes equations. For a sphere of radius 1.0 . . .
in a fluid with a kinematic viscosity and densityp, and
assuming a stick boundary condition, the problem can be Incompressible
solved! to yield, in terms of the dimensionless transform 98 ¢ -~~~ Compressible, a.=10,p=1 _
variable z* =za’/v, an expression for the dimensionless L Compressible, o= 100, p=1
VACF
06 |

vC(z* 9p* 1 1 s

aﬂ%:{z”%(%”*ﬁ) ’ O
where p* is the ratio of the mass of fluid displaced by the
particle to the mass of the particle itself, i.eg* 0.2
=47a3p/3m. Equation(3) implies that, for a given value of |
p*, the normalized VACF is a unique function of the dimen-
sionless timer,=tv/a2. Values ofr, of the order of unity 0.0 . . .
characterize the time it takes transverse momentum to diffust 0.00 0.10 0.20 0.30 0.40
a distance the order of a particle radius. As this is controlled K

by the viscosity, we subsequently refer to it as the ViSCOU%lG_ 1. The velocity autocorrelation functio@,(~,) for a single colloidal
time scale. A notable feature of E(B) is that it predicts a sphere as a function of the dimensionless tméa?2. The solid line is the
discontinuous drop in the value of the normalized VACFresult for an incompressible fluid, the dashed and dotted lines are for a
from unity att=0 to a value (¥ p*/2)~! at an infinitesimal ~ compressible fluidparameters given in the legend

time later. For a neutrally buoyant particle*(=1) the nor-
malized VACF drops instantaneously to a value of 2/3, re-
flecting the fact that 1/3 of the momentum is carried away by ] - :
sound propagation and that this happens instantaneously, ~ during which the particle generates_';he sound wave.
This so-called “added mass” effect is an artifact of assuminglll) At intermediate timest~a/c(t~10"°) there is a

that the fluid is incompressible. In practice fluids are not, of “mixed” region where the viscous time, sonic time,
course, completely incompressible. Sound propagates on a anq viscosity ratio are all relev_ant. This _reflects the
time scale set by the speed of sound through the system. To  Period where the sound wave is separating from the
allow for the finite speed of sound, one needs to proceed ag_ ~ Particle. L

above, but solve the more compleompressibleNavier— (i)  For Ionger tlmest>§1/c(t>10 ) the result reduces
Stokes equations. Despite the greater degree of complexity, ~ (© the incompressible result aboj&qg. (3)]. The

this problem can still be solveéd.Again imposing a stick sound wave has departed and consequently compress-
boundary condition, an expression can be derived,fa) ibility plays no role.

and hence the VACF. The full result is given in Ref. 12; here
we V_l\_"rl]l JUStI stgmmarlzle thet\;,ahedn(;_?omtls. ¢ .ible model for the fluid, we get rid of the discontinuity in the
ated W(iaths c;gu'gg g]r\:)c;;gztiori ?he ';822 dp;rzg];gz ?ﬁZOC'_\/ACF at very short times. Further, we find that for times
bulk viscosityvg . These are most conveniently incorporated.T s> 1 we CO.UId have save(_j oursel\_/es_ th_e trouble b_ecat_Jse the
into the analysis by defining, in addition to the viscous time,mcompressmle result suffices. This is illustrated in Flg._ 1,
a “sonic” time .=tc/a and a viscosity ratigg= v /v. For where we have plotted the VACF predicted by compressible

most fluids the latter is of the order of unity. The sonic tlmetheory, for a ngutrally_buoyant p‘.i”'c'e with=10 and «

. . . S =100, along with the incompressible result.

is the time relative to the time it takes a sound wave to travel . . . .
While the above discussion serves as a useful guide to

a distance of a particle radius. To get an idea of the two t'm?he relevant parameters and time scales for a compressible

scales involved, it is useful to consider real times in a “typi- ., - . . . .
) . . . -~ fluid, it only applies for a single particle. What we are inter-
cal” suspension. We consider a typical system to be particles

: : . ._ested in is a concentrated suspension. The question then
of radius Ju dispersed in water at room temperature. This_ . . ' .
. 5 arises, what role does sound play in a suspension? In prin-
being the case, we have~1 whent~10"° s, whereas

~1 whent~10-° s. The ratio of the twar=7,/7,=aclv ciple, part of the interactions can develop on the fast sonic

. time, rather than the slow viscous time. There are several
takes the valuex~1000. In this case sound propagates mo- . A
reasons to establish whether such a mechanism is present.

mentum much more rapidly than does viscous diffusion. In_. ! S
. S L First, the separation of the relative time scales for processes
terms of the viscous and sonic time scales, the principal char-

acteristics of the VACF in a compressible fluid can now beoper_atlng.ln suspensions under_hes theoretical treatme.nts. A
) . . detailed discussion of this was given by MasterSecond, if
summarized as followg&eal times, where given, correspond

. . sound can be neglected then the size of colloidal partiees
to the typical system described abgve . : . .
a given volume fractionbecomes essentially irrelevant. The
(i) At short times,t<c/a(t<10 °s), the normalized results for any correlation function can be expressed as uni-
VACF depends only or/a and is a unique function versal functions of the dimensionless parameters outlined
of the dimensionless “sonic” time scale;=tc/a. above. On the other hand, if sound propagation does play a
This very rapid decay replaces the discontinuity foundrole this is no longer true. The size of the particles enters in

for the incompressible case and reflects the period

In summary, by going from an incompressible to a compress-
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the expression for the compressibility facter Thus, if  effect of sound propagation can be safely neglected and con-

sound plays a role, correlation functions for particles of dif-versely where not. To do so, we have chosen to study the

ferent sizes differ fundamentally. They cannot simply bewave-vector-dependent current—current correlation function

scaled onto each other. This is important because the cond{k,t), defined as

pressibility can vary considerably between different systems 1/ N N

that could still lay claim to being called colloidal. For in- - .y (0)-k i (r—r-

stance, we quoted a value~ 10 for our typical system of a ki) N < igl J‘zl evi(tv;(0) - Klextl ik (r; rJ)]> '

micron sized particle suspended in water. There is nothing (4)

Special about 1 micron, thOUgh. Particles of sizes in the rang@here k is the wave vector. The reasons for Choosing to

1 nm<a<10u satisfy the criterion of being atomically large study this function are twofold. First, it gives an insight into

but macroscopically small. This implies compressibilities incollective correlations, that is, the ability of the instantaneous

the range ¥a<10% i.e., ranging from sound propagation velocity of one particle to subsequently influence the motion

and viscous diffusion occurring on similar time scales to theof jts neighbors. There is no analogue of this process for a

regime where the latter is much slower. single particle, so the inference that sound does not influence
Despite the fact that sound propagation might be an imthis function cannot, by analogy, be drawn. Second, the sug-

portant mechanism for propagating interactions in a suspemgestion has already been made that this quantity is indeed

sion, until relatively recently the tacit assumption was that itinfluenced by sound propagatiofi.

is not. There are two substantive reasons to support this view.

First, as we have seen, it is largely irrelevant for a single

particle. Second, at sufficiently long times sound cannot pla)”' DESCRIPTION OF THE MODEL

a role. This is simply because the integral of a correlation  The model we have used consists of configurations of
function is related to the zero frequency response. The zerggyq spheres, generated using standard Monte Carlo tech-
frequency response to an external perturbation is the samgques, embedded in a model compressible fluid. In keeping
for a compressible or an incompressible fluid. Thus, theyith an assumption of short-time dynamics, we impose the
speed of sound does not enter into the expression for th@me-scale separatiom,<7,, where 7, is a characteristic
diffusion coefficient of a single particle, for example, time for the particles to displace significantly. Thus, the po-
whether the fluid is compressible or not. The question muséitions of the colloidal particles are not considered to change
always be one of when, not if, it becomes irrelevant. Experiguring a run. The compressible fluid is modeled using a lat-
mental, theoretical, and computer simulation results havgice Boltzmann equatiof!, in which the state of the fluid
nonetheless suggested that, for concentrated suspensions, §§gtem is characterized by the single-particle distribution
effects of sound propagation may persist on longer timgunctionn;(r,t) (see, e.g., Ref. 22This denotes the average
scales. First, experiments were repotfédprobing the tran-  number of particles at a particular node of the latticat a
sient behavior of the mean-square displacement at shofime t, with the discrete velocity; .
times (r,~1). By comparing the short-time dynamics of ~ The motion of the colloidal particles is determined by
particles in a concentrated suspension with those of an isahe forces and torques exerted on them by the fluid. These
lated particle, Zhuet al! found that the experimental data are in turn a result of the stick boundary conditions applied at
could be plausibly collapsed onto the single-particle curve ifthe solid/fluid interface. For moving boundaries the modified
the time was rescaled in units af/v,, wherev, is the  bounce-back rule is applied, whereby some of the particles
kinematic viscosity of the suspension. This was surprisingnoving in the same direction as the solid object are allowed
because, if the hydrodynamic interactions develop on the visto “leak” through, thus matching the fluid velocity to the
cous time scale, one would expect that the suspension coutshject velocity at the boundary and implyirithrough con-
only display this “effective fluid” behavior on time-scales servation of total linear and angular momenjuaforce and
7,>1. Computer simulations performed by La8d" ap-  torque acting on the particle. Given this information, we can
peared to confirm this, although more detailed simulatféns solve the equations of motion for the colloidal particles. To
and theoretical worksuggested that the effective fluid re- do so we use the “self-consistent” method, described in Ref.
gime was only reached at longer times>1. Nonetheless, 23, whereby the new fluid velocity at the boundary implies a
these observations led ESparet al!*?° to re-examine the force and torque on the object which, when incorporated into
role of sound propagation and suggest that the speed dfie equations of motion of the object, give the same new
sound may play a role in determining the time scale onvelocity for the particle. The advantage of this approach is
which the hydrodynamic interactions propagate. Similarly, ahat it is unconditionally stable. The density ratio can be
discrepancy between experimental work and computer simwshosen freely. This parameter, as we have seen, determines
lationsvis avis the collective dynamics, was tentatively as- the relative proportion of momentum carried by sound
cribed to sound propagatiGnMore recently, for a colloidal propagation and momentum diffusion. If one is interested in
particle confined by some fixed geometry, it was demonthe role of sound it is therefore important that it takes a
strated that the effects of sound propagation persist well beghysically sensible valup* ~1. Because of stability prob-
yond the sonic time scale and into the the viscous diffusiodems, the simulations reported in Refs. 5 and 6 used a lower
regime® In fact, compressibility actually determines the value ofp* (p*<0.2), in which case the proportion of mo-
long-time form of the decay of the VACF. mentum carried away by sound waves is underestimated
Our aim here is thus to establish in what regimes theelative to the neutrally buoyant case. This was suggested as
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a possible source of discrepancy between the simulations arkd— 0 this should approach thshort-time collective diffu-

experimental results. For all the simulations we report heresion coefficient,D.. In the opposite limitk—o, D(k,t)

p* takes the value unity. approaches the single-particle or self-diffusion coefficient.
The approach outlined above has been used to studphis is in turn equal to the integral over all time of the

(nominally) neutrally buoyant colloidal particlé§:?® How-  velocity autocorrelation function. In terms of transport coef-

ever, there are certain artifacts generated by the presence fidients, the time integral ad;(k,t) is therefore equal to the

fluid inside what should be solid objeésWe will be look-  difference between the wave-vector-dependent collective dif-

ing for the effects of sound propagation in a suspensioriusion coefficient and the self-diffusion coefficieil,

largely by studying scaling behavior and these artifacts com- .

plicate the analysis considerably. We have therefore adopted f Ji(k,t)dt=D(k)—Ds. (6)

the procedure outlined in Ref. 24 to remove the effects of the 0

|_ntern_al f:;“d' Th|s_ l::asmarI]Iy_|nvol\_/|¢bs_sett|ng| al tfhe d'ﬁtr.'gu' Given the above, we expect that ks>« the integral of
tions inside a patrticle to their equilibrium values for a flui atJi(k,t) will be zero, whereas in the limk—0 it will be

rest. The force and torque required to do this are then incor; ual toD,— D,. The collective diffusion coefficient can be

-, . . €
porgted as'addltlonal forces and torques in the equations (?:fglculated(to a good approximatiortheoreticallj® and has
motion. This procedure can be shown to reproduce acc

: . ) _8CCliso been calculated numerically’ Both concur thatD,
rately the velocity autocorrelation function for a single

. . . ) . <Dy, so we expect that, ds—0, the integral ofJ;(k,t) will
spherical particle suspended in a compressible ftiid. be a negative qF:Jantity 9 (k1)
In order to calculate the wave-vector-dependent current— We will begin by considering the self-, or single-particle,

culrrer:t (;Iorrfla?on ﬂ.J“tCt'?h'ﬁEq- (‘t‘)], Wg need tot |ndtroduqet contribution, C(t). Measuring all quantities in units such
velocily fiuctuations into the system. LUne way 10 6o SO 1S G4t the |attice spacing and time step are equal to unity, we

drive fluctuations in the stress tensor of the fluid and thu ook a suspension with volume fractiak=0.25 and calcu-

maintain thel model co!lmdgl particles at. some prgscnbe ated the VACF for spheres with three different radi,
temperaturé! The other is to impose velocity fluctuations on =25, 4.5, and 6.5. The viscosity speed of sound, and

t_he cc_JIIoidaI partigles e_md_ stgdy the decay of _these ﬂuct'“'aE)qu viscosity vg were kept at constant values of 1/6y2/
tions |,n an other_W|sehd|53|r|]3at|_ve ﬁystéf’rAccorrc]imdg tor:) n-l d and 1/30, respectively. This means that for these three simu-
Sagers regression ypothesis the twp methods shou tBtions the compressibility factar(=ac/v) took the values
equivalent. For reasons of computational expediency W80.6, 19.1, and 36.0. For these three particle sizes we have

have chosen the latter. Our method therefore proceeds #aen able to simulate systems large enough to calculate the

f.O'I'OWS' The initial d"fe'oc'“eé"’i(o).' Og.the.go'.'o'da'. Par_ YACF up to sufficiently long times, while siil limiting the
ticles are generated from a Gaussian distribution With a ixed . ations to times less than those required for sound to

variance. The subsequent velocitigt) are calculated by cross the simulation box. The periodic boundary conditions

simply letting the system evolve in time as described aboveapplied at the faces of the simulation box cannot, therefore,

The gorr_elatlon functlon_ pan_then be calcula‘Fed by Slmplyinﬂuence the resultgf such a procedure is not adopted there
substituting these quantities into E@) and taking the en-

. o . ; is a pronounced perturbation to the decay of the VACF as a
semble average over different initial configurations of par-

. 2 . o article gets hit by the sound wave generated by its periodic
ticles and statistically independent initial values of the Veloc“ﬁnages g y 9 yusp

ity. In pr.acticg we.do both at the same time by r(_apeating the The results we obtained for the normalized VACF, as a
calculation with different configurations, each with a set Offunction of the viscous time scale,, are plotted in Fig. 2.

initi.al velocities drawn independently from Gaussian distri—Plotting the data in this form makes the effects of compress-
butions. ibility simple to spot. Any difference between the curves
(apart from numerical errors, which are relatively small even
. RESULTS for a=2.5*%) must be attributed to sound propagation. If the
fluid is incompressible, then, in these dimensionless terms
In order to separate out collective motions from singleye are basically simulating the same system. Clearly, at short
particle motion, it is useful to split the wave-vector- times the response of the three systems is not identical. How-
dependent current—current correlation function into(i@-  ever, at longer times the three functions converge, indicating
mal) velocity autocorrelation functiorC(t), and an “inter-  that sound is playing no role. Furthermore, they become in-
action” correlation functionJi(k,t). Thus, we havel(k,t)  distinguishable at shorter times as we decrease the compress-
=C(t) +Ji(k,t), where, by definitiojsee Eq(4)] Ji(k,t) is ipility (increasea). More quantitatively, we find that the

defined as VACF calculated fora=10.6 becomes indistinguishable
1 N from the other two(highep values of @ for 7,>0.40,

Ji(k't)zﬁ E 2 [IZ-vi(t)vj(O)-IZ]exp[ik-(ri—rj)]>. whereas the result foe=19.1 becomes indistinguishable
=17 from that calculated atr=36.0 for timesr,>0.20. For the

) single-particle case, we saw that the effects of compressibil-
By considering the properties dfk,t) we can deduce some ity can be neglected on time scales long as compared to the
of the features we expect to characterize fhgk,t). The  sonic timerg, that ist>a/c. In terms of the viscous time
integral over all times ofJ(k,t) defines the wave vector- this condition corresponds te,>1/«a, i.e., the effects of
dependent collective diffusion coefficiem(k). In the limit  compressibility become negligible after a viscous time which
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FIG. 3. The dimensionless interaction correlation functigk,t)/J;(k,0),
FIG. 2. The velocity autocorrelation functio(,), for a suspension of calculated for systerR4. The results for various values of the reduced wave
volume fractions=0.25, as a function of the dimensionless titméaZ. vectork* are shown. In the interests of clarity, the data have been displaced,

The three sets of data correspond to three different values of the compres§om bottom to top, by successive increments of 0.2 alongythis.
ibility factor a.

Turning our attention to the interaction part of the trans-
scales as . The behavior we noted above is quite consis-verse current correlation functiody(k,t), we found it useful
tent with this being the case in a suspension. On increasing to modify our approach in two respects. First, by comparing
from a value of 10.6 to 19.(a factor of 1.8, we see that the the results for simulations on different system sizes we found
time at which incompressible behavior is recovetib@ “in- that, in contrast to the VACF, the periodic boundary condi-
compressible” time decreases by a factor of approximately tions did not influence the results significantly, even on time
2. Given the uncertainty involved in establishing a precisescales long as compared to the time taken by a sound wave
value for the incompressible time, this difference cannot bdo cross the simulation box. We were therefore able to cal-
regarded as significant. It is interesting to note that the inculate J;(k,t), free from finite-size artifacts, up to longer
compressible time not only scales in the same way as for themes(and using smaller systemsSecond, in order to gain a
single particle case but is also quantitatively almost identicalreasonable degree of insight into the role of sound propaga-
Examining the Bedeaux and Mazur resdRig. 1) for a  tion, the compressibility factor needed to be varied to a
single particle, the incompressible time is, to a good approxigreater extent than was practical by varying the particle size
mation, 7,~4/«a. Extrapolating the same behavior to a sus-alone. Six sets of simulations were carried out in total, all at
pension, one would predict an incompressible timerpf a volume fractiong=0.25. The parameters associated with
=0.38, for the system witle=10.6, andr,=0.21 for the these simulations, which we dend®, R2,...R6, are sum-
system witha=19.1. This compares with values 0.4 and marized in Table I. In Fig. 3 we have plottddk,t), calcu-

0.2, respectively, calculated from the simulation results. Théated for various values of the dimensionless wave vector
most obvious conclusion we can therefore draw from Fig. Z&* =ka, for run R4. This simulation had a compressibility

is that, in a suspension, the influence of sound propagatiofactor «=36 and, as such, corresponds to particles of radius
on the velocity autocorrelation function is rather trivial. It is a~25 nm suspended in water, i.e., small colloidal particles.
remarkably similar to the single-particle case in that it modi-The most notable feature is clearly the pronounced oscilla-
fies the decay on the short sonic time scale. On the longdion. This phenomenon was also observed in computer simu-
viscous time scale it is irrelevant and an incompressibldations performed by Ladét al.,> who further concluded that

theory could adequately describe the dynamics of the systernthese oscillations were sonic in origin. However, these oscil-

TABLE |. The parameters associated with the six systems studied: sphere rajlieffective radius ¢*),
viscosity (v), compressibility factof«), sound wave attenuation coefficiefit), number of spheres\), and
system dimensiond (). The volume fraction was 25% in all cases and values are quoted in lattice units.

Set a ar v @ r N LXLXL

R1 15 15 1/6 6.3 0.255 3820 B8®B0X 60
R2 2.5 2.5 1/6 105 0.255 3820 180.00x 100
R3 4.5 4.5 1/6 18.9 0.255 3820 18080x 180
R4 8.5 8.5 1/6 35.7 0.255 477 1%@70x170
R5 4.5 4.7 1/48 157.9 0.0611 119 AATX94
R6 4.5 4.79 1/96 321.89 0.0472 120 x88x 96
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M k*=1.57

0.40 - r
k*=0.94
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k*=0.63
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Ji(krt)

FIG. 4. As Fig. 3, but for rurR6.

A. F. Bakker and C. P. Lowe

what one may term “classic hydrodynamic” behavior. For a
one-component, isothermal, compressible fluid, the contribu-
tion to J;(k,t) due to sound propagatiod;(k,t), is of the
form?®

kT

S —

cogket)exp —Tk?t), (7)

wherel” = (4v/3+ vg) is the sound attenuation coefficieft,

the temperature, and; Boltzmann’'s constant. The full form

of J(k,t), in the frequency domain, is given in Ref. 28.
Equation(7) is obtained by taking the inverse transformation
for frequenciesw<<ck and so can only be expected to hold
for times 7sk* > 1. In a suspensiod;(k,t) can in general be
only one component of the total interaction functigfk,t).

We know this because, as noted above, the integral over all
time of J;(k,t) at smallk is equal to the difference between
the collective and self-diffusion coefficients. Furthermore, as
we pointed out in the Introduction, this quantity, being the
difference between transport coefficients, cannot depend on

lations cannot be considered simply as artifacts of the modehe compressibility of the fluid. There must therefore be an

fluid being too compressibfeas the results shown in Fig. 3
are parametrically correct for small colloidal particles. In
Fig. 4 we show the equivalent plot for riR6. For this simu-
lation the compressibility factor wag= 325, approximately

incompressible contribution t§ (k,t), i.e., a component that

is independent of the compressibility of the solvent. This is
clearly illustrated in both Figs. 3 and 4, particularly at short
times, whereJ;(k,t) oscillates about a negative nonzero

one order of magnitude greater. As such, it corresponds tajye. To try to separate out the compressible component of

particles of radiusa~250 nm suspended in water. These

Ji(k,t), itis convenient to work with the relative amplitudes

could reasonably be described as “average” colloidal parof syccessive oscillations rather than absolute values. We
ticles. As Fig. 4 shows, we still observe oscillations althoughherefore define the following quantities.

they are characterize@t a given value of the dimensionless

wave vectoy by a higher frequency and more rapid damping
than was the case far=36. Taking Figs. 3 and 4 together,

(i) A frequencyw defined aso=2x/At, whereAt is the
time between successive maxirt@ minima in the

it appears that these oscillations are sensitive to the com-  oscillations. From the first maximurfor minimum
pressibility of the system. The fact that their characteristics onwards we find that this value is constant, in agree-

depend on the compressibility factor shows that they must b

e ment with Eq.(7). Equation(7) further predicts that

sonic in origin. If the solvent were incompressible this be- “’:Ck-. _ L .

havior could not be observed, and Figs. 3 and 4 would bd) A  dimensionless  “initial”  amplitude ~ Ag
identical. A further point illustrated by Figs. 3 and 4 is that =Aom/2mkgT, whereA, is defined as the difference
both the frequency and damping of the oscillations depend between the first minimum afi(t) and the first maxi-
on the wave vector. In order to come to any conclusion as to mum. According to Eq.(7), Aj=exp(-Tk*m/w)(1
whether this effect will be relevant in the analysis of experi- +exp(-TKmlw). If k’T'm/w<1 (the decay of the
mental results, it is necessary to establish the scaling with oscillations is slow compared to the frequepdhis
respect to the wave vector. There are two reasons for this. can be expanded in the simpler form

First, experimentally it is not possible to measure the corre
lation functionJ(t) itself. It is only possible to measure its
time integral (as in photocorrelation spectroscopyr a
guantity closely related to the time integral. The contribution
these oscillations make to the integral of the correlation func
tion, and the time scale over which this contribution will be

3:2—k21“77/w+ Ok*, (8)

(i) A dimensionless time-dependent amplitud€;(t,),
defined as

A* (t|) = |J|(t| - At/4) _Ji(t| + At/4)|m/27TkBT, (9)

significant, will depend on the amplitude, frequency, and rate

of damping. Second, the time regime probed by experimentgere | =1,2,..., is aninteger andt;=IAt/2+At/4. Ac-
depends on the wave vector. Smaller wave vectors are, foording to Eq.(7), this should decay as

instance, characterized by longer decay times for correlatio

n

functions of position. Thus, decreasing the wave vector nor-  2A* (t,)=exp( — k°I't)) (exp( — kT 7/2w)

mally implies probing longer times. If the oscillations in

J(k,t) increase in magnitude with decreasing wave vector,

but correspondingly decay over shorter times, their effec
may still not be relevant.
A convenient reference point for analyzing the wave-

+exp(K2T 7/2w)). (10)

hgain, so long ak’l'm/w<1, this can be expanded in a
simpler form

vector-dependent current—current correlation function is  A*(t))=exp —kT't)) + Ok*. (12
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FIG. 5. The reduced frequency of the oscillations in the interaction correlag ¢ rpq gimensionless initial amplitude of the oscillations in the inter-
tion function as a function of the reduced wave vedtbr=ka. These data

. A action correlation functiorA,* (defined in the tejtas a function of the
Lv:\;s):)btamed from syste4. The other systems displayed the same be- reduced wave vectde*. The data correspond to systeR2, R4, andR6.

likely to be a consequence of the structure present in the
fluid. This (in Fourier spaceis most conveniently probed by

We will take these characteristics in turn and examine tghe static structure factd(k)
what extent they describe the results we find in a suspension. 1
Beginning with the frequency, in Fig. 5 we have plotted the ~ S(k)= > explir-k) X exp(—iri-k)). (12)
dimensionless frequencw/ck, as a function of the dimen- ' '
sionless wave vector. According to classic hydrodynamicAt sufficiently small wave vectors the static structure factor
theory, this function takes a value of unity, independent of(fSSH approaches a constant value, reflecting the fact that, on
wave vector. As Fig. 5 shows, the dimensionless frequencgufficiently long length scales, the suspension appears homo-
of the oscillations displays a weak dependence on the wavgeneous. For hard spheres at this volume fractsme, for
vector, but becomes independentlkofor k* <0.5. That is, example, Ref. 2P the SSF becomes essentially independent
we recover hydrodynamic behavior on sufficiently longof k for k* <0.5, in line with our estimate for the wave
length scales. However, careful analysis of Fig. 5 shows thatectors for which we observe classic hydrodynamic behav-
in this limit the dimensionless frequency is not asymptoti-ior. Thus, the wave-vector dependence we observe/ak,
cally unity. The value we find is lipy,ow/ck=1.05£0.01.  at short wavelengths, is consistent with the structure of the
We now note, however, that there are two primary objectionsuspension, not accounted for in the simple theory, playing a
to applying the classic theory for a suspension. First, there isole. We finally note that generalizing the hydrodynamic re-
an ambiguity as to the values we should take for the transpogult by defining a wave-vector-dependent speed of sound
coefficients. In the above analysis we have taken the speed ofk), such thaw/c(k)k=1, the data we have plotted in Fig.
sound to be the speed of sound through the solvent. CB are consistent, at short wavelengths, witk) <c. That is,
course, we do not necessarily expect the speed of sound insawave-vector-dependent speed of sound less than the speed
suspension to be equal to the speed of sound in the solvertdf sound in the solvent. Although this is somewhat counter-
Second, it takes no account of the structure of the fluid. Oné@ntuitive, the same phenomenon—on length scales where
possible explanation for the low-frequency asymptote differ-structure cannot be neglected—is observed in simple atomic
ing from unity concerns the former. It is simply that the fluids*>*'and can be accounted for theoreticdfyt should
speed of sound in the suspensiar(gp) is slightly greater also be pointed out that in simple atomic fluids the wave-
than that in the solvent, specificaltf ¢)/c=1.05. We have vector dependence of the speed of sound is significantly
independently confirmed that this is the case by measuringnore pronounced. The suspensions we consider here follow
directly the speed of sound in the systéloy examining the classic hydrodynamic behavior to a better approximation
time at which sound-induced perturbations to the decay othan do simple fluids.
the VACF, resulting from the periodic boundary conditions, The second characteristic of classic hydrodynamic be-
are observed This analysis also gives a value of¢)/c havior, the initial dimensionless initial amplituddy , is
=1.05. The asymptotic behavior we observe for the fre-plotted in Fig. 6. Examining Fig. 6 we see that the dimen-
guency of the oscillations at long wavelengths is thus consionless initial amplitude is approaching the value 2kas
sistent with classic hydrodynamic theory if we replace a—0, so again we are recovering classic hydrodynamic be-
transport coefficient characteristic of the solvent,with a  havior in the limit of long wavelengths. However, there is a
transport coefficient characteristic of the suspensogia). clear k dependence with the amplitude decreasing roughly
If we now turn to the wave-vector dependence, this is mostinearly with increasing wave vector. THe dependence is
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-1.00 ‘ TABLE 1. The apparent suspension sound wave attenuation coefficient,
M. TR Y T'(¢), normalized by the solvent valu€&, The values are calculated from
*’\Hj‘ Ble-lro linear fits to the data shown in Fig. 7.
R
-2.00 L7 ~ O Tl B
+*}* e, ey el Simulation ()T
Y ' e
\N% R1 2.1
-3.00 |- X . R2 2.2
= %ti ?‘& R3 2.0
< RS R4 2.6
—4.00 - ﬁ**{i\ i R5 4.8
iﬁ R6 4.4
=500 + +T+ 4
~4v/3. If we further interpretl’(¢) as depending on the
-6.00 w w w w suspension viscosity(¢) and the suspension bulk viscosity
00 02 0 e °° 08 Y0 a(9), ie., T(¢)=4v(d)I3+ vg(¢h), this condition corre-

sponds to I'(p)/T=v(¢p)/lv (so long as vg(d)/vg

FIG. 7. Linear-log plot of the dimensionless time-dependent amplitude< 5( 5)/v). The value of »(¢) for suspensions of hard
A*(t) of the oscillations in the interaction correlation functi@efined in spheres is known.

the tex) as a function of the dimensionless tirtig,k2. The reduced wave . . 3
vectork* was equal to 0.314. Data for all six systems are shown. Accurate multipole calculations performed by Ladd

give a valuerv(¢)/v=2.17 at this volume fraction. The val-

ues we obtained for the ratid()/T" [ ~v(¢)/v] from the
not quadratic, so it cannot be accounted for by @€ term  first four simulations are roughly equivalent to this value. It
appearing in Eq(8) (which simply reflects the relatively should be noted that because these simulations use spheres of
trivial change in the value of the exponential decay envelopélifferent radii, the numerical errors are not the same. We
between the first minimum and first maximunThe k de-  expect the rurR4, where the radius of the spheres was 8.5
pendence we observe therefore represents behavior not dattice units, to be the most accurate. This simulation gives a
counted for by simple hydrodynamics, again manifesting it-value I'(¢)/I'=2.6, somewhat higher than the value for
self on length scales where the structure of the suspensiorn(¢)/v quoted above. It is nonetheless clear from Table I
cannot be neglected. One further point illustrated by Fig. 6 ighat the most anomalous results are those for RBsand
that, following the trend, the amplitude of the oscillations R6. These are characterized by, respectively, a solvent bulk
tends to zero at a value® ~2. That is, we observe no col- viscosity greater than the kinematic viscosity and a bulk vis-
lective effects at all folk* >1.75. Presumably this reflects cosity roughly equivalent to the kinematic viscosity. The ob-
the fact that the minimum separation ¢ Between particles vious explanation for this is that the ratig(¢)/vg behaves
essentially defines a maximum wave vector at which parsignificantly differently from the ratio($)/v. If we take the
ticles interact via sound propagation. Again, the theory outvalues ofI'(¢)/I" for these two runs and solve for the two
lined above takes no account of this effect. viscosity ratios, we find/(¢)/v=2.3 andvg(p)/vg=4.8. If

Having examined the factors determining the frequencywe now return to rurR6 but this time, instead of neglecting,

and initial amplitude of the sound-induced oscillations, allwe include the bulk viscosity, then, substituting this value for
that remains is to establish what determines the subsequeng(¢) we find thatl'(¢)/T"'=2.5, in better agreement with
rate of decay. In Fig. 7 we have plotted, at a reduced wavéhe value we calculated. Taken as a whole, our results are
vectork* =0.314, the dimensionless time-dependent amplitherefore consistent with the sound wave attenuation coeffi-
tude as a function of a dimensionless tind&? for all six ~ cient in the suspension taking the forf(¢)=4v(¢)/3
simulations. Hydrodynamically, this plot should be linear +vg(¢), if vg(¢)/vg~4.8, suggesting that the bulk viscos-
with a slope equal to unity. As Fig. 7 shows, the data are, taty of the suspension has a stronger dependence on the vol-
a good, approximation, linear. The amplitude of the oscilla-ume fraction than does the shear viscosity. It would be useful
tions decays exponentially. However, if we calculate theto test this hypothesis by calculating(¢) directly. Unfor-
slopes by linear regression, the values are not unity. Followtunately, we have not as yet succeeded in doing so. The
ing the same reasoning applied for the speed of sound, @bove must therefore remain a working hypothesis.
seems sensible to interpret this as indicating that the sound We now turn our attention to the contribution the oscil-
wave attenuation coefficient in the suspendig®) is not the  lations do, or do not, make to the time integraldgfk,t). In
same as the solvent vallie That is, we expect the amplitude Fig. 8 we have plotted the time integral df(k,t), at a
of the oscillations to decay as expl((¢)k?). Having made reduced wave vectde®* =0.314, as a function of the viscous
this assumption, we can calculate valuesli¢tb) consistent time scale. Data for five of the six runs are plotted; data from
with the data shown in Fig. 7. These values are summarizetin R5 is omitted for clarity(it follows the same trend As
in Table II. As the table shows, for the first four systefRe,  the figure shows, for the data obtained from the least com-
R2, R3, R4) the ratiol'(¢)/1" takes a roughly constant value pressible simulationR6), the frequency of the oscillations
between 2.0 and 2.6. For these simulations, the solvent visna J;(t) is high enough to hardly influence the time integral.
cosity is greater than the bulk viscosity so, to a first approxi-The striking thing is, for all the other data where the effect of
mation, we can neglect the bulk viscosity and thlls the oscillations is not negligible, the time integrals clearly
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FIG. 8. The time integral of the interaction correlation function, made di-
mensionless by dividing the Stokes—Einstein diffusion coefficiznt The
reduced wave vectde* was equal to 0.314. Data for systé®b are omitted

for clarity.

oscillate about the same underlying function as Ré This
is despite the fact that between ruR& andR6 the com-
pressibility factor varies by a factor of 50. It is therefore clear

that the correlation function consists of a compressible com

The role of sound propagation 5875
propagation of hydrodynamic interactions. Thus, our results
show that the motion of one particle does influence others by
sound propagation. However, we might prefer to define a
hydrodynamic interaction as the motion of one patrticle influ-
encing anotheion average If we took this definition we
would come to a different conclusion. Looking at the inte-
grated effects of sound propagation we found no net effect
for times greater than the oscillation period. On average,
sound does nothing but induce wiggles about the incom-
pressible result. It is still, therefore, the viscous diffusion
mechanism that determines the time scale on which the in-
teractions have a net effect—the “relaxation” time scale on
which the transport coefficients are asymptotic. Conse-
quently, we find no evidence to support the speed of sound
propagation mechanism suggested by Latldl. to explain

the different relaxation times observed in computer simula-
tions and experiment. The origin of this discrepancy remains
unknown.

Where our simulations show that sound propagation is
relevant, its role can, we suggest, be understood relatively
simply. At sufficiently small wave vectorg&he simulations
suggest roughlka<0.1) the effect of sound in a suspension
is the same as the effect of sound propagation in a simple
fluid. In other words, if one views a colloidal suspension on
length scales very much longer than the size of the particles,

it behaves in the same way as a generic “structureless” fluid.

ponent, which oscillates about zero and ultimately contrib—ThIS can be understood quite simply in terms of what one

utes nothing to the integral, and an incompressible comp
nent, determined entirely by,. Although we only show

results fork* =0.314, where the statistical errors are mini-
mal, the same was true for all the wave vectors we studie

IV. DISCUSSION

Having carefully examined the role sound plays in
propagating hydrodynamic interactions, we arrive at the fo

lowing conclusions. On the dynamics of a single tagged par: X .
9 y 9 ggeap | for the latter. The scattering of sound waves by the particles

ticle in a suspension, the effect of sound is relatively trivia
Sound propagation only influences the dynamics on tim
scales of the order of the time it takes a sound wave t
propagate a distance the order of a particle radius.

If, however, we consider collective motions, that is the
ability of one particle to influence the velocity of others, the
situation is more complicated. We observe oscillations in th
current—current correlation function that are clearly the resul

of sound propagation back and forth between particlesé.)rder ink, is given by

These oscillations are not restricted to the very short tim

(0]

e

may term classical hydrodynamics. The only modification
required is that the transport coefficients be those character-

istic of the suspensiofspeed of sound, bulk- and shear vis-

dcosit)o, rather than the solvent. Our simulations suggested

that for a suspension where the colloidal particles occupy
25% of the available volume, the speed of sound is approxi-
mately 1.05 times the value for the solvent and the bulk
viscosity 4.8 times the solvent value. Relative to other trans-

| port coefficients, this implies a very weak dependence on

volume fraction for the former and a very strong dependence

is, it seems, a more effective means of dissipating density
luctuations than propagating them.

Based on these results we can estimate when sound-
induced oscillations should be observable experimentally. To
do so we return to the time-dependent transport coefficients.
The quantity measured experimentally, in photocorrelation
pectroscopy, for example, is the dynamic structure factor
(k,t). The decay of the dynamic structure factor, to lowest

scale characteristic of sound propagating a characteristic dis-

tance in the suspension. Rather, in the limit of small wave

vectors k<<1/a), these oscillations will be negligible, our
results imply, only wheri>k?I". Thus, at sufficiently small

S(k,t)zS(k,O)ex;(—kZJOtD(k,t’)dt'>, (13

wave vectors, the influence of sound propagation on the cofhere

relation function can always be significant. If we ask the

question, do hydrodynamic interactions propagate at the t
speed of sound, the answer is a qualified yes. Strictly, a part D(k,t)Zf J(k,t")dt’.

of the time-dependent interaction of one particle with its 0

neighbors is governed by the speed of sound and the sound

wave attenuation coefficient. Since these are quantities chalf we approximate the nonoscillatory componentsJok,t)
acteristic of sound propagation, this clearly implies a sonidy their asymptotic value@valid for timest>a?/v), we have

(14
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