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Abstract: In this paper, we discuss the stability of general time-invariant discrete-event systems
modelled as max-min-plus-scaling (MMPS) systems. We analyze MMPS systems with two types
of states: time states and quantity states. A set of linear programming problems are proposed
to find the growth rates of the time states via a normalization of the MMPS system. Then a
framework for stability analysis of the general time-invariant MMPS system is discussed with
respect to the normalized system. The approach presented in this paper is an efficient way to
study the stability of a general MMPS system.
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1. INTRODUCTION

Max-min-plus-scaling (MMPS) systems are algebraic mod-
els that can describe linear and nonlinear discrete-event
systems in the max-plus algebra. These systems are exten-
sions of popular max-plus-linear (MPL) systems (Heider-
gott et al., 2006; Baccelli et al., 1992) and max-min-plus
(MMP) systems (Gunawardena, 1994a). MMPS systems
model operations such as synchronization, competition,
and state-dependent processing times (van den Boom
et al., 2023). These operations are used in applications like
urban railway networks, flexible manufacturing systems,
traffic networks, etc. The scaling operation in MMPS sys-
tems provides modelling advantages over MPL and MMP
systems when the states are dependent on each other.
For example, in an urban railway network, the number
of people in the train can be modelled as a fraction of
the number of people in the station; in a manufacturing
system the processing time can be linearly dependent on
previous states or external inputs.

Studies on MMPS systems have appeared in (De Schutter
and van den Boom, 2004, 2002; Heemels et al., 2001).
Heemels et al. (2001) presents the equivalence of MMPS
systems to other hybrid system classes such as piecewise
affine systems, mixed-logical dynamical systems, and lin-
ear complementarity systems. In (De Schutter and van den
Boom, 2004, 2002), the model predictive control problem
of the MMPS system has been considered. The MMPS
system as a modelling tool for discrete-event systems is
only recently discussed in (van den Boom et al., 2023;
Markkassery et al., 2024). However, the dynamics of
discrete-event MMPS systems have never been studied.

The dynamics of MPL systems and MMP systems have
been widely studied in (Bemporad and Morari, 1999;
Heidergott et al., 2006; Königsberg, 2001; Gunawardena,
1994a,b). They are focused on finding the additive eigen-
value/growth rate and additive eigenvector/stationary

regime/equilibrium point of the system, with all states
having the dimension of time (time states). However,
discrete-event systems can also have quantity states (e.g.
the number of passengers on a train in an urban railway
network). Having two different types of states helps in the
efficient modelling of discrete-event systems. In (van den
Boom et al., 2023), an urban railway network is modelled
as an MMPS system with both time and quantity states.
In general, MPL systems and MMP systems are monotone
and non-expansive and have a unique growth rate, if the
growth rate exists (Cochet-Terrasson et al., 1997). The
scaling operation in MMPS systems can make the system
non-monotone and expansive. As a result, the system
can have multiple growth rates and stationary regimes
(Markkassery et al., 2024).

The main contributions of this paper are as follows. Given
the importance of the MMPS systems in modelling the
discrete-event systems, we analyze their dynamics. A novel
approach is presented to derive a normalized MMPS sys-
tem with zero growth rate from a general MMPS system
with both time and quantity states. The most important
contribution of this paper is the proposed framework for
the stability analysis of a general time-invariant discrete-
event MMPS system. We establish a connection between
the stability analysis of discrete-event systems and linear
discrete-time systems via normalization. Finally, we pro-
pose an optimization problem to find the invariant regions
where the MMPS system is stable.

The paper is organized as follows. Section 2 presents
the mathematical preliminaries and definitions. Section 3
presents a method to derive a normalized system from
a general MMPS system and provides a set of linear
programming problems to calculate all the growth rates
and equilibrium points of MMPS systems. The internal
stability of MMPS systems is discussed in Section 4
using the normalized system. An optimization problem to
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els that can describe linear and nonlinear discrete-event
systems in the max-plus algebra. These systems are exten-
sions of popular max-plus-linear (MPL) systems (Heider-
gott et al., 2006; Baccelli et al., 1992) and max-min-plus
(MMP) systems (Gunawardena, 1994a). MMPS systems
model operations such as synchronization, competition,
and state-dependent processing times (van den Boom
et al., 2023). These operations are used in applications like
urban railway networks, flexible manufacturing systems,
traffic networks, etc. The scaling operation in MMPS sys-
tems provides modelling advantages over MPL and MMP
systems when the states are dependent on each other.
For example, in an urban railway network, the number
of people in the train can be modelled as a fraction of
the number of people in the station; in a manufacturing
system the processing time can be linearly dependent on
previous states or external inputs.

Studies on MMPS systems have appeared in (De Schutter
and van den Boom, 2004, 2002; Heemels et al., 2001).
Heemels et al. (2001) presents the equivalence of MMPS
systems to other hybrid system classes such as piecewise
affine systems, mixed-logical dynamical systems, and lin-
ear complementarity systems. In (De Schutter and van den
Boom, 2004, 2002), the model predictive control problem
of the MMPS system has been considered. The MMPS
system as a modelling tool for discrete-event systems is
only recently discussed in (van den Boom et al., 2023;
Markkassery et al., 2024). However, the dynamics of
discrete-event MMPS systems have never been studied.

The dynamics of MPL systems and MMP systems have
been widely studied in (Bemporad and Morari, 1999;
Heidergott et al., 2006; Königsberg, 2001; Gunawardena,
1994a,b). They are focused on finding the additive eigen-
value/growth rate and additive eigenvector/stationary

regime/equilibrium point of the system, with all states
having the dimension of time (time states). However,
discrete-event systems can also have quantity states (e.g.
the number of passengers on a train in an urban railway
network). Having two different types of states helps in the
efficient modelling of discrete-event systems. In (van den
Boom et al., 2023), an urban railway network is modelled
as an MMPS system with both time and quantity states.
In general, MPL systems and MMP systems are monotone
and non-expansive and have a unique growth rate, if the
growth rate exists (Cochet-Terrasson et al., 1997). The
scaling operation in MMPS systems can make the system
non-monotone and expansive. As a result, the system
can have multiple growth rates and stationary regimes
(Markkassery et al., 2024).

The main contributions of this paper are as follows. Given
the importance of the MMPS systems in modelling the
discrete-event systems, we analyze their dynamics. A novel
approach is presented to derive a normalized MMPS sys-
tem with zero growth rate from a general MMPS system
with both time and quantity states. The most important
contribution of this paper is the proposed framework for
the stability analysis of a general time-invariant discrete-
event MMPS system. We establish a connection between
the stability analysis of discrete-event systems and linear
discrete-time systems via normalization. Finally, we pro-
pose an optimization problem to find the invariant regions
where the MMPS system is stable.

The paper is organized as follows. Section 2 presents
the mathematical preliminaries and definitions. Section 3
presents a method to derive a normalized system from
a general MMPS system and provides a set of linear
programming problems to calculate all the growth rates
and equilibrium points of MMPS systems. The internal
stability of MMPS systems is discussed in Section 4
using the normalized system. An optimization problem to
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The main contributions of this paper are as follows. Given
the importance of the MMPS systems in modelling the
discrete-event systems, we analyze their dynamics. A novel
approach is presented to derive a normalized MMPS sys-
tem with zero growth rate from a general MMPS system
with both time and quantity states. The most important
contribution of this paper is the proposed framework for
the stability analysis of a general time-invariant discrete-
event MMPS system. We establish a connection between
the stability analysis of discrete-event systems and linear
discrete-time systems via normalization. Finally, we pro-
pose an optimization problem to find the invariant regions
where the MMPS system is stable.

The paper is organized as follows. Section 2 presents
the mathematical preliminaries and definitions. Section 3
presents a method to derive a normalized system from
a general MMPS system and provides a set of linear
programming problems to calculate all the growth rates
and equilibrium points of MMPS systems. The internal
stability of MMPS systems is discussed in Section 4
using the normalized system. An optimization problem to

find the invariant regions of the stable MMPS system is
presented in Section 5. The analysis of an example MMPS
system is presented in Section 6. Section 7 presents the
conclusions.

2. MATHEMATICAL PRELIMINARIES

In this paper, we consider MMPS systems that are explicit,
time-invariant, and autonomous with both time states and
quantity states.

Let ⊤ = ∞, ε = −∞, R⊤ = R ∪ {∞}, Rε = R ∪ {−∞},
Rc = R ∪ {∞} ∪ {−∞} and let Z+, denote the set of
positive integers. We use the set R to denote one of the
following sets: R, Rε, R⊤, or Rc. The notations 1 and 0
are used to denote the vector with all components equal
to 1 and the zero vector of the appropriate dimension,
respectively. In some cases we use the notation 1n and
0n to specify the dimension, n, of vectors 1 and 0,
respectively. An identity matrix of size n is denoted as
In. Let n denote the set of all positive integers up to
n ∈ Z+. Let A ∈ Rn×m be a matrix, then [A]i denote the
ith row of the matrix. The notation ‘⊺’ is used to denote
transpose of a matrix/vector. For a, b ∈ R, the operations
a ⊕ b = max (a, b) and a ⊗ b = a + b are called max-
plus addition and max-plus multiplication. The operations
a ⊕′ b = min (a, b) and a ⊗′ b = a + b are called min-plus
addition and min-plus multiplication. Max-plus addition,
max-plus multiplication, min-plus addition and min-plus
multiplication (Heidergott et al., 2006) of matrices A,B ∈
Rm×n and C ∈ Rn×p are defined as:

[A⊕B]ij=max([A]ij , [B]ij), [A⊗C]ij=max
k∈n

([A]ik+[C]kj)

[A⊕′B]ij=min([A]ij , [B]ij), [A⊗′C]ij=min
k∈n

([A]ik+[C]kj)

From conventional algebra and matrix theory, we use
the following notations and definitions. The matrix-vector
product of the matrix, C ∈ Rn×p and a vector, x ∈ Rp is
denoted as C · x and the scalar multiplication of a scalar
µ ∈ R and the vector x is denoted as µx. The standard
basis vector is denoted as a row vector of appropriate
size, ej , with the j-th component equal to 1 and other
components equal to 0.
Definition 1 (Kronecker Product). The Kronecker product
of a matrix A and vector 1n, A⊠1n stacks n copies of every
row of the matrix A vertically and 1n ⊠A stacks n copies
of the entire A matrix vertically.
Definition 2 (Row-major order of a matrix). The row-
major order of a matrix A ∈ Rn×m is the order of mapping
a matrix to a column vector, vec(A), in which the rows of
matrix A are stacked in one column,

vec(A) = [A⊺
1 A⊺

2 . . . A
⊺
n]

⊺

where Ai, i ∈ n denote the row i of matrix A.
Definition 3. Given the vector v ∈ Rn, we define a max-
plus diagonal matrix, d⊗(v) and the min-plus diagonal
matrix, d⊗′(v)

d⊗(v) =




v1 ε · · · ε

ε v2
...

...
. . .

...
ε · · · · · · vn


, d⊗′(v) =




v1 ⊤ · · · ⊤

⊤ v2
...

...
. . .

...
⊤ · · · · · · vn




The inverse max-plus diagonal matrix is, [d⊗(v)]
−1 =

d⊗(−v) and the inverse min-plus diagonal matrix is
[d⊗′(v)]−1 = d⊗′(−v).

Definition 4 (Markkassery et al. (2024)). (ABC canonical
form) The autonomous MMPS system x(k) = f(x(k− 1))
with f being an MMPS function can be formulated as the
following canonical form:

x(k) = A⊗ (B ⊗′ (C · x(k − 1))) (1)

for some matrices A ∈ Rn×m
ε , B ∈ Rm×p

⊤ , C ∈ Rp×n, and
x ∈ Rn, k ∈ Z+.

MMPS systems with time and quantity states gives ease
in modelling of complex systems such as an urban railway
network and are studied in detail in (van den Boom et al.,
2023) along with a case study. In this paper, we define a
structure of A, B, and C matrices for MMPS systems with
both time and quantity states.
Definition 5. An autonomous MMPS system with both
time states and quantity states is defined as


xt(k)
xq(k)


=


At ε
ε Aq



  
A

⊗


Bt ⊤
⊤Bq



  
B

⊗′


C11C12

C21C22



  
C

·

xt(k−1)
xq(k−1)


(2)

where xt ∈ Rnt , xq ∈ Rnq , At ∈ Rnt×mt
ε , Aq ∈ Rnq×mq

ε ,

Bt ∈ Rmt×pt

⊤ , Bq ∈ Rmq×pq

⊤ , C11 ∈ Rpt×nt , C12 ∈ Rpt×nq ,
C21 ∈ Rpq×nt , and C22 ∈ Rpq×nq . The notations ε
and ⊤ represent matrices of appropriate sizes with all
elements equal to ε and, ⊤ respectively. The subscript ‘t’
is associated with time states, and ‘q’ is associated with
quantity states.
Definition 6 (van den Boom et al. (2023)). (Partial Addi-
tive Homogeneity) Consider xt ∈ Rnt and xq ∈ Rnq and
MMPS functions ft : Rnt×nq → Rnt and fq : Rnt×nq →
Rnq . Then the system


xt(k)
xq(k)


=


ft(xt(k − 1), xq(k − 1))
fq(xt(k − 1), xq(k − 1))


(3)

is partly additive homogeneous if

ft(xt + h1, xq) = ft(xt, xq) + h1

fq(xt + h1, xq) = fq(xt, xq)

An MMPS system is time-invariant if it is partly additive
homogeneous (van den Boom et al., 2023).
Definition 7. (Additive eigenvalue, additive eigenvector)
The time-invariant MMPS system x(k) = f(x(k − 1)),
x ∈ Rn and f : Rn → Rn with both time and quantity
states is said to have an additive eigenvalue if there exists
a real number λ ∈ R and a vector v ∈ Rn such that

f(v) = v + λ[1⊺
nt

0⊺
nq
]⊺

where nt and nq are the number of time states and quan-
tity states, respectively. The scalar λ is then called an
additive eigenvalue, and the vector v is called a correspond-
ing additive eigenvector. Further, if v is an eigenvector,
v + h[1⊺

nt
0⊺
nq
]⊺ is also an eigenvector for any h ∈ R.

In the rest of the paper, we call the additive eigenvalue the
growth rate, and the additive eigenvector the equilibrium
point.
Definition 8 (Heidergott et al. (2006)). The Hilbert’s
projective norm of a vector x ∈ Rn in max-plus algebra is
defined as

||x||P = max
i∈n

xi −min
i∈n

xi
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find the invariant regions of the stable MMPS system is
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3. GROWTH RATES OF TIME-INVARIANT MMPS
SYSTEMS

In (Markkassery et al., 2024), we proposed a method to
find the growth rates and equilibrium points of a general
time-invariant MMPS system with only time states. In this
section, we extend that result to MMPS systems with both
time and quantity states.
Proposition 1. The MMPS system (2) is time-invariant if
and only if:∑

i∈nt

[C11]ℓi = 1, ∀ℓ ∈ pt,
∑
i∈nt

[C21]ti = 0, ∀t ∈ pq

Proof. It is proved in (Markkassery et al., 2024) that for
the time-invariant MMPS system (1), we have

A⊗
(
B ⊗′ (C · (x(k − 1) + h1)

))
=

A⊗
(
B ⊗′ (C · x(k − 1))

)
+ h1

(4)

for h ∈ R. From Definition 6, the MMPS system is time-
invariant if it is partly additive homogeneous. That is, for
some h ∈ R
At ⊗

(
Bt ⊗′ (C11 · (xt(k − 1) + h1) + C12 · xq(k − 1)

))

= At ⊗
(
Bt ⊗′ (C11 · xt(k − 1) + C12 · xq(k − 1)

))
+ h1,

Aq ⊗
(
Bq ⊗′ (C21 · (xt(k − 1) + h1) + C22 · xq(k − 1)

))

= Aq ⊗
(
Bq ⊗′ (C21 · xt(k − 1) + C22 · xq(k − 1)

))

By using (4), this leads to

At ⊗
(
Bt ⊗′ (C11 · xt(k − 1) + C12 · xq(k − 1) + C11 · h1

))

= At ⊗
(
Bt ⊗′ (C11 · xt(k − 1) + C12 · xq(k − 1)

))

+C11 · h1,

Aq ⊗
(
Bq ⊗′ (C21 · xt(k − 1) + C22 · xq(k − 1) + C21 · h1

))

= Aq ⊗
(
Bq ⊗′ (C21 · xt(k − 1) + C22 · xq(k − 1)

))

+C21 · h1
Therefore it is required that C11 ·h1 = h1 and C21 ·h1 = 0.
So,

∑
i

[C11]li = 1 ∀l and
∑
r

[C21]tr = 0 ∀t.

A stable MMPS system cannot have growing quantity vari-
ables over events. Hence, the growth rate of the quantity
states should always be zero to maintain stability. But,
time states should have a constant growth rate. Let λ be
the temporal growth rate and

v = (xte, xqe, yte, yqe, zte, zqe) be the equilibrium point of
the system (2). Then, from the Definition 7, we can get
the following.

zte = C11 · (xte − λ1) + C12 · xqe

zqe = C21 · (xte − λ1) + C22 · xqe

yte = Bt ⊗′ zte, yqe = Bq ⊗′ zqe
xte = At ⊗ yte, xqe = Aq ⊗ yqe

(5)

Let At,λ = [At]ij − λ ∀i, j and xte,λ = xte − λ1, then

zte = C11 · xte,λ + C12 · xqe

zqe = C21 · xte,λ + C22 · xqe

yte = Bt ⊗′ zte, yqe = Bq ⊗′ zqe
xte,λ = At,λ ⊗ yte, xqe = Aq ⊗ yqe

(6)

Now define the transformation matrices Xt = d⊗(xte,λ),
Xq = d⊗(xqe), Yt = d⊗(yte), Yq = d⊗(yqe), Y

′
t = d⊗′(yte),

Y ′
q = d⊗′(yqe), Z

′
t = d⊗′(zte) and Z ′

q = d⊗′(zqe). From
Definition 3 inverses of these matrices are obtained by
replacing the diagonal entries with their corresponding
negative values. Then we have

X−1
t ⊗ xte,λ = 0, X−1

q ⊗ xqe = 0

Y −1
t ⊗ yte = 0, Y −1

q ⊗ yqe = 0

(Y ′
t )

−1 ⊗′ yte = 0, (Y ′
q)

−1 ⊗′ yqe = 0

(Z ′
t)

−1 ⊗′ zte = 0, (Z ′
q)

−1 ⊗′ zqe = 0.

By applying the transformation matrices to (6), we get

(Y ′
t )

−1 ⊗′ yte = (Y ′
t )

−1 ⊗′ Bt ⊗′ Z ′
t ⊗′ (Z ′

t)
−1 ⊗′ zte

= (Y ′
t )

−1 ⊗′ Bt ⊗′ Z ′
t︸ ︷︷ ︸

B̃t

⊗′0

(Y ′
q)

−1 ⊗′ yqe = (Y ′
q)

−1 ⊗′ Bq ⊗′ Z ′
q ⊗′ (Z ′

q)
−1 ⊗′ zqe

= (Y ′
q)

−1 ⊗′ Bq ⊗′ Z ′
q︸ ︷︷ ︸

B̃q

⊗′0

X−1
t ⊗ xte,λ = X−1

t ⊗At,λ ⊗ Yt ⊗ Y −1
t ⊗ yte

= X−1
t ⊗At,λ ⊗ Yt︸ ︷︷ ︸

Ãt

⊗ 0

X−1
q ⊗ xqe = X−1

q ⊗Aq ⊗ Yq ⊗ Y −1
q ⊗ yqe

= X−1
q ⊗Aq ⊗ Yq︸ ︷︷ ︸

Ãq

⊗ 0

(7)

Therefore,

0 =

[
B̃t ⊤
⊤ B̃q

]
⊗′ 0, 0 =

[
Ãt ε

ε Ãq

]
⊗ 0. (8)

Consider the normalized MMPS system,

[
x̃t(k)
x̃q(k)

]
=

Ã︷ ︸︸ ︷[
Ãt ε

ε Ãq

]
⊗

( B̃︷ ︸︸ ︷[
B̃t ⊤
⊤ B̃q

]
⊗′
( C︷ ︸︸ ︷[

C11 C12

C21 C22

]
·
[
x̃t(k−1)
x̃q(k−1)

]))

(9)

This system has a growth rate λ̃ = 0 and equilibrium point
(x̃te, x̃qe, ỹte, ỹqe, z̃te, z̃qe) = (0,0,0,0,0,0). Furthermore,
there holds:
xt(k) = x̃t(k) + (kλ)1+ xte, xq(k) = x̃q(k) + xqe

yt(k) = ỹt(k) + (kλ)1+ yte, yq(k) = ỹq(k) + yqe
zt(k) = z̃t(k) + (kλ)1+ zte, zq(k) = z̃q(k) + zqe

(10)

From (8), it can be deduced that

max
j∈mt

[Ãt]ij = 0 ∀i ∈ nt, max
s∈mq

[Ãq]rs = 0 ∀r ∈ nq

min
l∈pt

[B̃t]jl = 0 ∀j ∈ mt, min
t∈pq

[B̃q]st = 0 ∀s ∈ mq

(11)

From (9) and (11), we can infer that

[Ã]ij ≤ 0 ∀i ∈ n and [B̃]jk ≥ 0 ∀j ∈ m

where n = nt + nq and m = mt + mq. This shows that

both Ã and B̃ have a specific structure. Each row of Ã has
at least one zero element, and all the nonzero elements
are less than zero. Similarly, each row of B̃ has at least
one zero element and all the non-zero elements are greater
than zero.

For a general time-invariant MMPS system, multiple tem-
poral growth rates might exist (Markkassery et al., 2024).
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3. GROWTH RATES OF TIME-INVARIANT MMPS
SYSTEMS

In (Markkassery et al., 2024), we proposed a method to
find the growth rates and equilibrium points of a general
time-invariant MMPS system with only time states. In this
section, we extend that result to MMPS systems with both
time and quantity states.
Proposition 1. The MMPS system (2) is time-invariant if
and only if:∑

i∈nt

[C11]ℓi = 1, ∀ℓ ∈ pt,
∑
i∈nt

[C21]ti = 0, ∀t ∈ pq

Proof. It is proved in (Markkassery et al., 2024) that for
the time-invariant MMPS system (1), we have

A⊗
(
B ⊗′ (C · (x(k − 1) + h1)

))
=

A⊗
(
B ⊗′ (C · x(k − 1))

)
+ h1

(4)

for h ∈ R. From Definition 6, the MMPS system is time-
invariant if it is partly additive homogeneous. That is, for
some h ∈ R
At ⊗

(
Bt ⊗′ (C11 · (xt(k − 1) + h1) + C12 · xq(k − 1)

))

= At ⊗
(
Bt ⊗′ (C11 · xt(k − 1) + C12 · xq(k − 1)

))
+ h1,

Aq ⊗
(
Bq ⊗′ (C21 · (xt(k − 1) + h1) + C22 · xq(k − 1)

))

= Aq ⊗
(
Bq ⊗′ (C21 · xt(k − 1) + C22 · xq(k − 1)

))

By using (4), this leads to

At ⊗
(
Bt ⊗′ (C11 · xt(k − 1) + C12 · xq(k − 1) + C11 · h1

))

= At ⊗
(
Bt ⊗′ (C11 · xt(k − 1) + C12 · xq(k − 1)

))

+C11 · h1,

Aq ⊗
(
Bq ⊗′ (C21 · xt(k − 1) + C22 · xq(k − 1) + C21 · h1

))

= Aq ⊗
(
Bq ⊗′ (C21 · xt(k − 1) + C22 · xq(k − 1)

))

+C21 · h1
Therefore it is required that C11 ·h1 = h1 and C21 ·h1 = 0.
So,

∑
i

[C11]li = 1 ∀l and
∑
r

[C21]tr = 0 ∀t.

A stable MMPS system cannot have growing quantity vari-
ables over events. Hence, the growth rate of the quantity
states should always be zero to maintain stability. But,
time states should have a constant growth rate. Let λ be
the temporal growth rate and

v = (xte, xqe, yte, yqe, zte, zqe) be the equilibrium point of
the system (2). Then, from the Definition 7, we can get
the following.

zte = C11 · (xte − λ1) + C12 · xqe

zqe = C21 · (xte − λ1) + C22 · xqe

yte = Bt ⊗′ zte, yqe = Bq ⊗′ zqe
xte = At ⊗ yte, xqe = Aq ⊗ yqe

(5)

Let At,λ = [At]ij − λ ∀i, j and xte,λ = xte − λ1, then

zte = C11 · xte,λ + C12 · xqe

zqe = C21 · xte,λ + C22 · xqe

yte = Bt ⊗′ zte, yqe = Bq ⊗′ zqe
xte,λ = At,λ ⊗ yte, xqe = Aq ⊗ yqe

(6)

Now define the transformation matrices Xt = d⊗(xte,λ),
Xq = d⊗(xqe), Yt = d⊗(yte), Yq = d⊗(yqe), Y

′
t = d⊗′(yte),

Y ′
q = d⊗′(yqe), Z

′
t = d⊗′(zte) and Z ′

q = d⊗′(zqe). From
Definition 3 inverses of these matrices are obtained by
replacing the diagonal entries with their corresponding
negative values. Then we have

X−1
t ⊗ xte,λ = 0, X−1

q ⊗ xqe = 0

Y −1
t ⊗ yte = 0, Y −1

q ⊗ yqe = 0

(Y ′
t )

−1 ⊗′ yte = 0, (Y ′
q)

−1 ⊗′ yqe = 0

(Z ′
t)

−1 ⊗′ zte = 0, (Z ′
q)

−1 ⊗′ zqe = 0.

By applying the transformation matrices to (6), we get

(Y ′
t )

−1 ⊗′ yte = (Y ′
t )

−1 ⊗′ Bt ⊗′ Z ′
t ⊗′ (Z ′

t)
−1 ⊗′ zte

= (Y ′
t )

−1 ⊗′ Bt ⊗′ Z ′
t︸ ︷︷ ︸

B̃t

⊗′0

(Y ′
q)

−1 ⊗′ yqe = (Y ′
q)

−1 ⊗′ Bq ⊗′ Z ′
q ⊗′ (Z ′

q)
−1 ⊗′ zqe

= (Y ′
q)

−1 ⊗′ Bq ⊗′ Z ′
q︸ ︷︷ ︸

B̃q

⊗′0

X−1
t ⊗ xte,λ = X−1

t ⊗At,λ ⊗ Yt ⊗ Y −1
t ⊗ yte

= X−1
t ⊗At,λ ⊗ Yt︸ ︷︷ ︸

Ãt

⊗ 0

X−1
q ⊗ xqe = X−1

q ⊗Aq ⊗ Yq ⊗ Y −1
q ⊗ yqe

= X−1
q ⊗Aq ⊗ Yq︸ ︷︷ ︸

Ãq

⊗ 0

(7)

Therefore,

0 =

[
B̃t ⊤
⊤ B̃q

]
⊗′ 0, 0 =

[
Ãt ε

ε Ãq

]
⊗ 0. (8)

Consider the normalized MMPS system,

[
x̃t(k)
x̃q(k)

]
=

Ã︷ ︸︸ ︷[
Ãt ε

ε Ãq

]
⊗

( B̃︷ ︸︸ ︷[
B̃t ⊤
⊤ B̃q

]
⊗′
( C︷ ︸︸ ︷[

C11 C12

C21 C22

]
·
[
x̃t(k−1)
x̃q(k−1)

]))

(9)

This system has a growth rate λ̃ = 0 and equilibrium point
(x̃te, x̃qe, ỹte, ỹqe, z̃te, z̃qe) = (0,0,0,0,0,0). Furthermore,
there holds:
xt(k) = x̃t(k) + (kλ)1+ xte, xq(k) = x̃q(k) + xqe

yt(k) = ỹt(k) + (kλ)1+ yte, yq(k) = ỹq(k) + yqe
zt(k) = z̃t(k) + (kλ)1+ zte, zq(k) = z̃q(k) + zqe

(10)

From (8), it can be deduced that

max
j∈mt

[Ãt]ij = 0 ∀i ∈ nt, max
s∈mq

[Ãq]rs = 0 ∀r ∈ nq

min
l∈pt

[B̃t]jl = 0 ∀j ∈ mt, min
t∈pq

[B̃q]st = 0 ∀s ∈ mq

(11)

From (9) and (11), we can infer that

[Ã]ij ≤ 0 ∀i ∈ n and [B̃]jk ≥ 0 ∀j ∈ m

where n = nt + nq and m = mt + mq. This shows that

both Ã and B̃ have a specific structure. Each row of Ã has
at least one zero element, and all the nonzero elements
are less than zero. Similarly, each row of B̃ has at least
one zero element and all the non-zero elements are greater
than zero.

For a general time-invariant MMPS system, multiple tem-
poral growth rates might exist (Markkassery et al., 2024).

Hence, we can normalize the system (2), with respect to
each growth rate and the corresponding equilibrium point.
Let there be S possible temporal growth rates denoted as
λθ, θ ∈ {1, . . . , S} and let Ãθ, B̃θ be the corresponding
normalized matrices of the form (9). Then we define a pair
of footprint matrices (GAθ

, GBθ
) as follows:

GAθ
=

[
GAtθ

0
0 GAqθ

]
, GBθ

=

[
GBtθ

0
0 GBqθ

]
(12)

[GAtθ
]ij =

{
1 if [Ãtθ]ij = 0

0 if [Ãtθ]ij < 0
, [GBtθ

]jl=

{
1 if [B̃tθ]jl = 0

0 if [B̃tθ]jl > 0

[GAqθ
]rs=

{
1 if [Ãqθ]rs=0

0 if [Ãqθ]rs<0
, [GBqθ

]st=

{
1 if [B̃qθ]st = 0

0 if [B̃qθ]st > 0

Here 0 denotes the zero matrix of appropriate size. Each
pair of footprint matrix defines the location of zeros in
a normalized system. They can be used to define a linear
programming problem to find a possible growth rate and a
corresponding equilibrium point, as discussed in 13. There-
fore, the total number of linear programming problems
is equal to the total number of possible footprint matrix
pairs, which will be less than or equal to mnt

t pmt
t m

nq
q p

mq
q .

Let the variables λ and (xt, xq, yt, yq, zt, zq) denote the
unknown growth rate and equilibrium point of MMPS
system (2). From (7) and (11), we formulate a linear
programming problem (LPP) (13) similar to (Markkassery
et al., 2024) for each pair of (GAθ

, GBθ
).

min
λ,xt,xq,yt,
yq,zt,zq

λ

s.t. −λ− [xt]i + [yt]j ≤ −[At]ij if [GAtθ
]ij = 0

λ+ [xt]i − [yt]j = [At]ij if [GAtθ
]ij = 1

−[xq]r + [yq]s ≤ −[Aq]rs if [GAqθ
]rs = 0

[xq]r − [yq]s = [Aq]rs if [GAqθ
]rs = 1

[yt]j − [zt]l ≤ [Bt]jl if [GBtθ
]jl = 0

−[yt]j + [zt]l = [Bt]jl if [GBtθ
]jl = 1

[yq]s − [zq]t ≤ [Bq]st if [GBqθ
]st = 0

−[yq]s + [zq]t = [Bq]st if [GBqθ
]st = 1

zt = C11 · xt + C12 · xq

zq = C21 · xt + C22 · xq

(13)

Remark 1. The size of each LPP increases in a quadratic
manner as the size of system matrices A,B,C increases.
But, if any element in At, Aq is ε or Bt, Bq is ⊤, the
corresponding constraints can be omitted from the LPP.
This reduces the computational complexity.

4. INTERNAL STABILITY OF MMPS SYSTEM AT
DIFFERENT GROWTH RATES

In this section, we study the local internal stability of a
DES modelled as an MMPS system. A DES is stable when
all the time states of the system grows at the same rate,
i.e. the buffer of the system stays bounded (bounded buffer
stability (Gupta et al., 2020)) and the quantity states does
not grow with events, ‘k’.
Definition 9 (Gupta et al. (2020)). An autonomous
discrete-event system is max-plus bounded buffer stable
if for every initial time state, xt0 ∈ Rn, there exist a
bound M(x0) ∈ R such that the time states are bounded
in Hilbert’s projective norm: ||xt(k)||P ≤ M(x0) ∀k ∈ Z+

From Section 3, we see that a time-invariant MMPS
system with multiple growth rates can be represented
using a set of normalized MMPS systems:

x̃θ(k) = Ãθ ⊗
(
B̃θ ⊗′ (C · x̃θ(k − 1))

)
(14)

for θ ∈ {1, . . . , S}, and where Ãθ ∈ Rn×m, B̃θ ∈ Rm×p,

C ∈ Rp×n have the same structure as Ã, B̃, C in (9). Let
Ωθ be a region containing all the vectors x ∈ Rn such that

Ãθ ⊗
(
B̃θ ⊗′ (C · x)

)
= GAθ

·GBθ
· C · x (15)

This means that y := B̃θ ⊗′ (C · x) selects the i0,j-th
component of the vector C · x where i0,j denotes the

position of 0 in row j of B̃θ, and Ãθ ⊗ y selects the l0,i-th
component of the vector y where l0,i denotes the position

of 0 in row, i, of Ãθ.
Proposition 2. Any normalized MMPS system can be
reformulated as a linear system in conventional algebra
for all x̃θ(k) ∈ Ωθ, k ∈ Z+ as follows,

x̃θ(k) = Dθ · x̃θ(k − 1), Dθ = GAθ
·GBθ

· C (16)

Remark 2. Here we assume that the matrices GAθ
and

GBθ
have exactly one ‘1’ in each row. When there are

multiple 1’s in the same row, the equilibrium point is on
the boundary of different regions. The analysis of this case
is outside the scope of this paper.

Note that GAθ
·GBθ

is a selection matrix and that it has
the same block diagonal structure as in (12). So, Dθ will
preserve the properties of C (Proposition 1) and hence Dθ

will be time-invariant. Then we have,

Dθ =

[
D11 D12

D21 D22

]
,
∑
j

[D11]ij = 1,
∑
j

[D21]ij = 0 (17)

Therefore, the matrix Dθ will have at least an eigenvalue
equal to one with eigenvector v=[1⊺

nt
0⊺
nq
]⊺, i.e.Dθ ·v=1·v.

The max-plus bounded buffer stability of (16) can be as-
sessed using the stability criteria of discrete-time systems
in the conventional algebra, as stated in Proposition 3.
Proposition 3. The linearized system (16) for

θ ∈ {1, . . . , S} (recall that S is the total number of growth
rates that exist) is

• max-plus bounded buffer stable if the system matrix
Dθ has eigenvalues less than or equal to one and all
Jordan blocks corresponding to magnitude one are
1× 1 (Hespanha, 2018)

• Unstable if it has at least one eigenvalue greater than
one or at least one of the Jordan blocks corresponding
to magnitude one are not of size, 1 × 1 (Hespanha,
2018)

Note that the states of a stable linearized system will not
keep growing. But neither do they always converge back to
the equilibrium point 0. This is because there always exists
an eigenvalue equal to 1. However, the states never diverge
from each other. As a result, Hilbert’s projective norm of
the time-state vector ||x̃tθ||P will always be bounded. From
(10),

||xtθ(k)||P = ||x̃tθ(k) + xteθ + λθk1||P
= ||x̃tθ(k) + xteθ||P ≤ ||x̃t(k)||P + ||xteθ||P

where xteθ is the equilibrium point of the original system
(2) when the growth rate is λθ. Hence, the MMPS system
(2) is max-plus bounded buffer stable at the temporal
growth rate, λθ in the region Ωθ. Also, a stable linearized
system guarantees that none of the states are growing,
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hence the quantity states, x̃q(k) remain bounded as well.
From 10, we can see that if x̃q(k) is bounded, xq(k) is also
bounded.

5. INVARIANT REGIONS OF THE STABLE MMPS
SYSTEM

The mapping between the systems (14) and (16) is valid
for all x̃θ ∈ Ωθ. Later in this section, we will find an
invariant subset of Ωθ, such that if the stable equivalent
linear system (16) is initialized in this region it will stay
there.
Proposition 4. The region, Ωθ associated to (15) is a
polyhedron given by the set of inequalities

U · x ≤ b̃ and L · x ≥ ã

with, U=
(
(GBu ⊠ 1p)− (1m ⊠ Ip)

)
· C, b̃=vec(B̃u)

L=
(
(GAu ⊠ 1m)− (1n ⊠ Im)

)
·GBθ

·C, ã=vec(Ãu)

where x ∈ Rn, ⊠ is the Kronecker product (see Definition
1) and vec(·) is the vector constructed in the row major
order (see Definition 2) of the matrix.

Proof. The condition (15) can be reformulated as

B̃θ ⊗′ z = GBθ
· z, z = C · x (18)

Ãθ ⊗ y = GAθ
· y, y = GBθ

· z (19)

for some z ∈ Rp, y ∈ Rm, x ∈ Rn. From (18) we have,

min
k∈p

([B̃θ]jk + zk) = [GBθ
· z]j , j ∈ m

So, [B̃θ]jk + ek · z ≥ [GBθ
]j · z, ∀j, k

and thus, ([GBθ
]j − ek) · z ≤ [B̃θ]jk, ∀j, k (20)

Here, ek is the standard basis vector (see section 2).
Therefore, (20) can be written as

(GBθ
⊠ 1p − 1m ⊠ Ip) · C · x ≤ vec(B̃θ)

Similarly, from (19), we have

max
j∈m

([Ãθ]ij + yj) = [GAθ
· y]i, i ∈ n

[Ãθ]ij + ej · y ≤ [GAθ
]i · y, ∀i, j

([GAθ
]i − ej) · y ≥ [Ãθ]ij , ∀i, j (21)

Equation (21) can be written as

(GAθ
⊠ 1m − 1n ⊠ Im) ·GBθ

· C · x ≤ vec(Ãθ)

Remark 3. The constraints with both time states xt and
quantity states xq, i.e. constraints of the form

[U ]i · [x⊺
t x⊺

q]
⊺ ≤ [b̃]i (and [L]i · [x⊺

t x⊺
q]

⊺ ≥ [ã]i), with
nonzero coefficients for xt as well as xq, can be eliminated

as their upper bound in b̃ (lower bound in ã) will be ε (⊤)

due to the block diagonal structure (9) of B̃θ (Ãθ).

The linearization (16) is valid only when x̃θ(k) lies in Ωθ.
However, in general it is not guaranteed that if x̃θ(k) lies
in Ωθ, x̃θ(k+1) also lies in Ωθ. Hence, we seek an invariant
subset of Ωθ such that the states initialized in this subset
will not leave the subset.

Let v1, v2, . . . , vn be the eigenvectors of Dθ associated with
eigenvalues µ1, µ2, . . . µn of the linearized system (16).
Using T = [v1 v2 . . . vn] as the transformation matrix,
the linearized system is rewritten with the system matrix
in the Jordan normal form of D (Hespanha, 2018) as,

w(k + 1) =

[
w1(k + 1)
w2(k + 1)

]
=

[
1 0
0 J

] [
w1(k)
w2(k)

]
(22)

where w(k) = T−1x(k) and J is the Jordan block (Hes-
panha, 2018) related to the eigenvalues with magnitude
less than 1.
Proposition 5. The region Ωθ is unbounded in the direc-
tion of the eigenvector v1 = [1⊺

nt
0⊺
nq
]⊺.

Proof. Sufficient conditions for the region Ωθ to be un-
bounded in the direction of v1 are U · v1 = 0 and

L · v1 = 0. From the properties (Proposition 1) of C, we
have C · v1 = v1. So,

U · v1 = (GBu
⊠ 1p)− (1m ⊠ Ip)

)
︸ ︷︷ ︸

Û

·v1

L · v1 = (GAu ⊠ 1m)− (1n ⊠ Im)
)
·GBθ︸ ︷︷ ︸

L̂

·v1

From Remark 3, it is evident that the finite constraints
generated by U and L involve either xt or xq. Without

loss of generality, we consider a nonzero row i of Û with
finite [b̃]i as below.

[Û ]i = ej − ek, j ̸= k

and either j, k ≤ nt or j, k ≥ nt. Therefore [Û ]i · v1 = 0.

As every row of Û has the same structure except for the
values of j and k, Û · v1 = 0. The condition L̂ · v1 = 0 can
be proved similarly.

Now, we find a solution P ≥ 0 for the Lyapunov inequality
(Hespanha, 2018),

J⊺ · P · J − P < 0.

Then the ellipsoid, w⊺
2 · P ·w2 ≤ 1 will be an invariant set

for the system (22) (Hespanha, 2018). Let T2 = [v2 . . . vn].

Then, T = [v1 T2] and the constraints U · T · w ≤ b̃

and L · T · w ≥ ã will reduce to U · T2 · w2 ≤ b̃ and
L · T2 · w2 ≥ ã. The maximal ellipsoid that fits inside the
region Ωθ will be an invariant set for the system (22). This
can be found using the optimization problem (23) (Boyd
and Vandenberghe, 2004, Section 8.4.2) 1 .

min
P

logdet P

s.t. J⊺ · P · J − P < 0,

[U · T2]i · P−1 · [U · T2]
⊺
i ≤ b̃2i ∀i,

[L · T2]j · P−1 · [L · T2]
⊺
j ≥ ã2j ∀j,

P > 0, P = P ⊺

(23)

Note that optimization problem (23) can be reformulated
as a linear matrix inequality (LMI) problem (Scherer and
Weiland, 2000). Let P ∗ be the solution to the optimization
problem (23). Then, the elliptical cylinder

Ωiu : x⊺ · Pell · x ≤ 1, Pell = (T−1)⊺ ·
[
0 0
0 P ∗

]
· T−1

with its axis along the eigenvector v1 is an invariant set
for the linearized system (16). Hence, the linearized system
initialized in this set will stay in the set.

1 The variable P used in problem (23) is equivalent to (B · B⊺)−1

from the problem formulation of Boyd and Vandenberghe (2004,
Section 8.4.2).
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hence the quantity states, x̃q(k) remain bounded as well.
From 10, we can see that if x̃q(k) is bounded, xq(k) is also
bounded.

5. INVARIANT REGIONS OF THE STABLE MMPS
SYSTEM

The mapping between the systems (14) and (16) is valid
for all x̃θ ∈ Ωθ. Later in this section, we will find an
invariant subset of Ωθ, such that if the stable equivalent
linear system (16) is initialized in this region it will stay
there.
Proposition 4. The region, Ωθ associated to (15) is a
polyhedron given by the set of inequalities

U · x ≤ b̃ and L · x ≥ ã

with, U=
(
(GBu ⊠ 1p)− (1m ⊠ Ip)

)
· C, b̃=vec(B̃u)

L=
(
(GAu ⊠ 1m)− (1n ⊠ Im)

)
·GBθ

·C, ã=vec(Ãu)

where x ∈ Rn, ⊠ is the Kronecker product (see Definition
1) and vec(·) is the vector constructed in the row major
order (see Definition 2) of the matrix.

Proof. The condition (15) can be reformulated as

B̃θ ⊗′ z = GBθ
· z, z = C · x (18)

Ãθ ⊗ y = GAθ
· y, y = GBθ

· z (19)

for some z ∈ Rp, y ∈ Rm, x ∈ Rn. From (18) we have,

min
k∈p

([B̃θ]jk + zk) = [GBθ
· z]j , j ∈ m

So, [B̃θ]jk + ek · z ≥ [GBθ
]j · z, ∀j, k

and thus, ([GBθ
]j − ek) · z ≤ [B̃θ]jk, ∀j, k (20)

Here, ek is the standard basis vector (see section 2).
Therefore, (20) can be written as

(GBθ
⊠ 1p − 1m ⊠ Ip) · C · x ≤ vec(B̃θ)

Similarly, from (19), we have

max
j∈m

([Ãθ]ij + yj) = [GAθ
· y]i, i ∈ n

[Ãθ]ij + ej · y ≤ [GAθ
]i · y, ∀i, j

([GAθ
]i − ej) · y ≥ [Ãθ]ij , ∀i, j (21)

Equation (21) can be written as

(GAθ
⊠ 1m − 1n ⊠ Im) ·GBθ

· C · x ≤ vec(Ãθ)

Remark 3. The constraints with both time states xt and
quantity states xq, i.e. constraints of the form

[U ]i · [x⊺
t x⊺

q]
⊺ ≤ [b̃]i (and [L]i · [x⊺

t x⊺
q]

⊺ ≥ [ã]i), with
nonzero coefficients for xt as well as xq, can be eliminated

as their upper bound in b̃ (lower bound in ã) will be ε (⊤)

due to the block diagonal structure (9) of B̃θ (Ãθ).

The linearization (16) is valid only when x̃θ(k) lies in Ωθ.
However, in general it is not guaranteed that if x̃θ(k) lies
in Ωθ, x̃θ(k+1) also lies in Ωθ. Hence, we seek an invariant
subset of Ωθ such that the states initialized in this subset
will not leave the subset.

Let v1, v2, . . . , vn be the eigenvectors of Dθ associated with
eigenvalues µ1, µ2, . . . µn of the linearized system (16).
Using T = [v1 v2 . . . vn] as the transformation matrix,
the linearized system is rewritten with the system matrix
in the Jordan normal form of D (Hespanha, 2018) as,

w(k + 1) =

[
w1(k + 1)
w2(k + 1)

]
=

[
1 0
0 J

] [
w1(k)
w2(k)

]
(22)

where w(k) = T−1x(k) and J is the Jordan block (Hes-
panha, 2018) related to the eigenvalues with magnitude
less than 1.
Proposition 5. The region Ωθ is unbounded in the direc-
tion of the eigenvector v1 = [1⊺

nt
0⊺
nq
]⊺.

Proof. Sufficient conditions for the region Ωθ to be un-
bounded in the direction of v1 are U · v1 = 0 and

L · v1 = 0. From the properties (Proposition 1) of C, we
have C · v1 = v1. So,

U · v1 = (GBu
⊠ 1p)− (1m ⊠ Ip)

)
︸ ︷︷ ︸

Û

·v1

L · v1 = (GAu ⊠ 1m)− (1n ⊠ Im)
)
·GBθ︸ ︷︷ ︸

L̂

·v1

From Remark 3, it is evident that the finite constraints
generated by U and L involve either xt or xq. Without

loss of generality, we consider a nonzero row i of Û with
finite [b̃]i as below.

[Û ]i = ej − ek, j ̸= k

and either j, k ≤ nt or j, k ≥ nt. Therefore [Û ]i · v1 = 0.

As every row of Û has the same structure except for the
values of j and k, Û · v1 = 0. The condition L̂ · v1 = 0 can
be proved similarly.

Now, we find a solution P ≥ 0 for the Lyapunov inequality
(Hespanha, 2018),

J⊺ · P · J − P < 0.

Then the ellipsoid, w⊺
2 · P ·w2 ≤ 1 will be an invariant set

for the system (22) (Hespanha, 2018). Let T2 = [v2 . . . vn].

Then, T = [v1 T2] and the constraints U · T · w ≤ b̃

and L · T · w ≥ ã will reduce to U · T2 · w2 ≤ b̃ and
L · T2 · w2 ≥ ã. The maximal ellipsoid that fits inside the
region Ωθ will be an invariant set for the system (22). This
can be found using the optimization problem (23) (Boyd
and Vandenberghe, 2004, Section 8.4.2) 1 .

min
P

logdet P

s.t. J⊺ · P · J − P < 0,

[U · T2]i · P−1 · [U · T2]
⊺
i ≤ b̃2i ∀i,

[L · T2]j · P−1 · [L · T2]
⊺
j ≥ ã2j ∀j,

P > 0, P = P ⊺

(23)

Note that optimization problem (23) can be reformulated
as a linear matrix inequality (LMI) problem (Scherer and
Weiland, 2000). Let P ∗ be the solution to the optimization
problem (23). Then, the elliptical cylinder

Ωiu : x⊺ · Pell · x ≤ 1, Pell = (T−1)⊺ ·
[
0 0
0 P ∗

]
· T−1

with its axis along the eigenvector v1 is an invariant set
for the linearized system (16). Hence, the linearized system
initialized in this set will stay in the set.

1 The variable P used in problem (23) is equivalent to (B · B⊺)−1

from the problem formulation of Boyd and Vandenberghe (2004,
Section 8.4.2).

Fig. 1. The polyhedral region Ωθ (“light gray”) and the
invariant elliptical cylinder Ωiθ (“dark gray”) and
their orthographic projection on to the x− y plane

6. EXAMPLE

Consider the time-invariant MMPS system of the form (2)
with matrices,

A =

[
9 5 ε
2 6 ε
ε ε 10

]
, B =

[
8 3 ⊤
5 8 ⊤
⊤ ⊤ 9

]
, C =

[−0.75 1.75 4
−0.75 1.75 0.2458
−4 4 0.1

]

This system has two time states and a quantity state. The
C matrix is in accordance with Proposition 1. This system
has two growth rates according to the LPP (13):

λ1 = 19.0805, λ2 = 13.2289 (24)

The normalized system matrices, (Ãθ, B̃θ) associated with
the growth rates λθ, θ ∈ {1, 2} are:

Ã1 =

[−1 0 ε
0 −9 ε
ε ε 0

]
, B̃1 =

[
102.8918 0 ⊤
94.8918 0 ⊤

⊤ ⊤ 0

]

Ã2 =

[
0 −5.4374 ε

−2.5626 0 ε
ε ε 0

]
, B̃2 =

[
1.5626 0 ⊤

0 6.4374 ⊤
⊤ ⊤ 0

]

The footprint matrix pair (GAθ
, GBθ

) for these normalized
systems has the same structure as the normalized matrix
pair (Ãθ, B̃θ) and can be constructed using (12). Then
the linearized system (16) matrices Dθ and the associated
eigenvalues µθ are

D1 =

[
1.2 −0.2 0.2458
1.2 −0.2 0.2458
−4 4 0

]
, D2 =

[
1.2 −0.2 0.2458

−0.75 1.75 4
−4 4 0.1

]

µ1 ∈ {0, 0.1, 1}, µ2 ∈ {5.0090, 1,−2.9590}
It can be observed that the linear system with matrixD2 is
unstable as some of its eigenvalues have magnitude greater
than one (Proposition 3). Now the stable linearized system
x(k + 1) = D1 · x(k) is transformed to the Jordan normal
form to find the maximal invariant ellipsoid. By solving
the optimization problem (23), we get

P ∗=

[
0.0013 0.0013
0.0013 0.0014

]
, Pell=

[
0.0253 −0.0253−0.0011
−0.0253 0.0253 0.0011
−0.0011 0.0011 0.0016

]

The polyhedral region Ωθ is the half plane

1.95x1 − 1.95x2 − 3.7542x3 ≤ 94.8918 and the invariant
region Ωiu is the elliptical cylinder x⊺ · Pell · x ≤ 1. Figure
1 shows the regions Ωθ and Ωiu with states x1, x2, x3

plotted on the x, y, z axes, respectively, for the linearized
system with system matrix D1. It can be observed that
the invariant set Ωiu is an elliptical cylinder with its axis
along the eigenvector [1 1 0]⊺.

7. CONCLUSIONS

This paper has proposed a novel framework to examine
the stability of a general time-invariant MMPS system. A

set of linear programming problems has been developed
to find all the temporal growth rates and equilibrium
points of a general MMPS system with both time and
quantity states. Further, we have related the stability of
a time-invariant MMPS system to a linear discrete-time
system through normalization. This method establishes
the stability analysis of any discrete-event system modelled
as an MMPS system.

In our future work, we plan to study the region of attrac-
tion of the invariant set and formulate Lyapunov stability
criterion for MMPS systems.
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