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Abstract 
The performance of railway operations depends highly on the quality of the railway 
timetable. In particular for dense railway networks it can be a challenge to obtain a stable 
robust conflict-free and energy-efficient timetable with acceptable infrastructure 
occupation and short travel times. This paper presents a performance-based railway 
timetabling framework using an integrated approach on three levels: microscopic, 
macroscopic and a corridor fine-tuning level, to compute a timetable explicitly driven by 
the above mentioned performance indicators. A case study on the Dutch railway network 
illustrates the feasibility of this approach to achieve the highest timetabling design level. 

Keywords 
Railway timetabling, Robustness, Stability, Micro-macro, energy efficiency 

1 Introduction 

The performance of railway operations depends highly on the quality of the timetable. In 
the last decade, timetabling software has become more and more common, from running 
time computations via mathematical timetable optimization to railway operations 
simulation. Nevertheless, these tools and their focus vary widely from country to country 
and often lack consistency since they are used independently for different purposes and do 
not lead to an integrated set of tools geared towards a well-defined timetable design 
process. In the EU FP7 project ON-TIME (Optimal Networks for Train Integration 
Management across Europe) one of the aims was to improve the timetabling design 
process with a timetabling framework that leads to improved robust and resilient 
timetables capable of coping with normal statistical variations and minor perturbations in 
operations. This paper describes the developed ON-TIME timetabling framework. 

A state-of-the-art review of literature and practice revealed a lot of research in 
mathematical models for macroscopic timetable optimization (ON-TIME  2013), see also 
the review papers by Bussieck et al. (1997), Cordeau et al. (1998), Caprara et al. (2007), 
and Lusby et al. (2011). These macroscopic models rely implicitly on reliable input data 
which may not always be available. This might explain why these models and algorithms 
did not yet find their way into daily timetabling practice, except at the strategic level. A 
recent trend in the scientific literature consists of robust timetabling models (Cacchiani 
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and Toth 2012) that incorporate stochasticity or uncertainty in the input. Microscopic 
timetabling models that use a higher level of detail are limited in the literature and mainly 
focus on single track railways, see e.g. Brännlund et al. (1998). Also models based on 
blocking time theory (Hansen and Pachl, 2014) fall within this category. Most of these 
blocking time models are employed for computing capacity consumption using the 
timetable compression method or within microscopic simulation tools. Moreover, 
optimization models based on blocking times have been developed for real-time 
rescheduling, see e.g. D’Ariano et al. (2007). Recent papers apply two-level microscopic-
macroscopic models to generate conflict-free timetables (Gille et al. 2008, Caimi et al. 
2011, Schlechte et al. 2011). In these papers, the transformation from microscopic to 
macroscopic models is straightforward but the reverse is more complicated.  

The timetabling practice shows a similar separation, with either macroscopic models 
to compute network timetables using normative input, or microscopic blocking-time based 
tools for detailed planning on corridors and stations but without support for network 
optimisation. Timetable evaluation on feasibility, stability or robustness is typically 
applied –if at all– after timetable construction using simulation tools with unclear 
procedures how the results are used to improve the timetable design. Timetabling tools are 
mostly concerned with routine work such as running time calculations, mostly discarding 
energy-efficiency, and making visualizations such as time-distance diagrams and platform 
occupation diagrams. Some railways (SE, UK) are starting to apply microscopic 
simulation tools for conflict detection as a complementary step to their macroscopic 
timetable planning tools. If a significant change of the timetable is foreseen either for lines 
or for complicated areas, robustness simulation studies are made also to ensure the 
feasibility of the timetable and give a rough idea of its robustness (ON-TIME 2013). 

Based on the state-of-art review essential performance measures were derived that 
should be taken into account to achieve a good timetable (Goverde and Hansen 2013). 
These performance indicators include infrastructure occupation, stability, feasibility, 
robustness, resilience, travel times and energy efficiency. Depending on the degree that 
these indicators are taken into account in the timetable design process, a higher 
timetabling level can be obtained that lead to better timetables but at the cost of increased 
data requirements (Goverde and Hansen 2013).  

This paper presents a new innovative three-level timetabling framework to achieve the 
highest timetabling level by integrating all the mentioned performance indicators in the 
design process. The approach is an iterative process on three levels: microscopic, 
macroscopic, and a corridor fine-tuning level, where each performance indicator is 
optimized or tested at the appropriate level. A set of implemented algorithms are 
described from a functional perspective as a proof of concept for this framework 
demonstrating the feasibility of this approach. The approach is applied to a case study 
from the Dutch railways showing the overall improved timetable performance. 

Section 2 presents the timetable performance indicators that should be taken into 
account to reach a high timetabling design level. Section 3 then presents the performance-
based timetabling framework with successively the functionalities of microscopic 
timetabling, macroscopic timetabling and corridor fine-tuning and their interactions. 
Section 4 illustrates the approach to a case study of the Dutch railway network and finally, 
Section 5 ends with conclusions and recommendations. 

2 Timetable performance  

The quality of a railway timetable can be measured by several Key Performance 
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Indicators (KPIs). Traditional KPIs are the operational speeds or scheduled running times 
on train lines, and more general scheduled travel times in networks including transfer 
times where train lines meet. On the other hand, the main KPIs of railway operations are 
punctuality and reliability. Short travel times in the timetable do not necessarily imply 
good punctuality or transfer reliability, but on the contrary they may lead to large waiting 
and realized travel times when connections are missed or trains cancelled. Therefore, the 
timetable must also be robust to normal variations of running and dwell times so that 
punctual and reliable operations can be realized.  

Furthermore, structural route conflicts between trains due to too tight scheduling must 
be avoided to prevent unnecessary braking and waiting of trains with negative 
consequences for safety, punctuality and energy consumption. The latter point is typical 
for railways which are characterized by trains competing for the same infrastructure. 
Track capacity allocation is therefore an integrated part of railway timetable design. On 
this level the timetable is therefore also known as the traffic plan, which contains the exact 
routes of all trains and the orders of trains over conflicting routes. At this level also the 
safety and signalling constraints must be incorporated to prove that the traffic plan is 
conflict free and the infrastructure capacity consumption allows normal deviations from 
train paths.  

The above concepts are captured in several performance measures as follows 
(Goverde and Hansen 2013): 

 Scheduled travel time: The time scheduled between any origin and destination 
including running times, dwell times and transfer times. 

 Infrastructure occupation: The share of time required to operate trains on a 
given railway infrastructure according to a given timetable pattern. 

 Timetable feasibility: The ability of all trains to adhere to their scheduled train 
paths. A timetable is feasible if (i) the individual processes are realizable within 
their scheduled process times, and (ii) the scheduled train paths are conflict free, 
i.e., all trains can proceed undisturbed by other traffic. 

 Timetable stability: The ability of a timetable to absorb initial and primary 
delays so that delayed trains return to their scheduled train paths without 
rescheduling. 

 Timetable robustness: The ability of a timetable to withstand design errors, 
parameter variations, and changing operational conditions. 

 Energy consumption: The amount of energy consumed by the train traffic. 

Some of these performance measures are based on typical macroscopic quantities 
such as the scheduled travel times, while others require a microscopic level of detail such 
as infrastructure occupation, timetable feasibility and energy consumption. Timetable 
stability refers to a minimum amount of time allowances that must be available 
throughout the timetable and in particular at bottlenecks, while robustness refers to how 
these allowances are distributed between the train paths to maintain performance when 
trains deviate ‘slightly’ from their scheduled paths. Stability is closely related to 
infrastructure occupation and can be incorporated using the UIC guidelines on acceptable 
infrastructure occupation (UIC 2013) at the microscopic level, while robustness represents 
a trade-off with short travel times and is therefore best considered at the macroscopic level 
together with travel time. Energy consumption is typically a secondary objective and can 
therefore be considered as a fine-tuning step after the time allowances have been set based 
on feasibility and robustness.  
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3 Performance-based timetabling 

3.1 Framework 
The proposed timetabling approach tries to schedule all train path requests with sufficient 
time allowances for a stable and robust conflict-free timetable and satisfying the UIC 
infrastructure occupation norms (UIC 2013). This is in accordance to the Network 
Statements issued by the Infrastructure Managers from all EU countries to allocate the 
infrastructure capacity to the Railway Undertakings. This might require extending critical 
running times on corridors with an unacceptable capacity consumption to decrease 
running time differences. However, we compute timetables at a precision of 5 s instead of 
a minute, to avoid capacity waste and unrealizable process times by rounding to minutes. 

The timetabling framework is performance-based in the sense that all six timetabling 
KPIs from Section 2 are explicitly taken into account to guide the timetable construction 
process. To make this possible an integrated approach is proposed on three levels:  

 A microscopic level for highly detailed local computations;  
 A macroscopic level for aggregated network optimisation; and  
 A fine-tuning level for corridor optimization. 

 
Figure 1 Three-level performance-based timetabling framework 

Figure 1 illustrates this three-level timetabling approach. The input data are 
standardized RailML files. The microscopic model computes detailed running and 
blocking times, and aggregates the results into a macroscopic model that contains only the 
main macroscopic stations characterized by train interactions such as overtaking, 
connections, and merging or crossing railway lines that need decisions at the macroscopic 
level such as synchronization and train sequence orders. The macroscopic model then 
computes a network timetable taking into account network constraints and trying to avoid 
cancelled train path requests. The macroscopic timetable is transformed back to the 

065-4

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015



microscopic model that fills in the details on microscopic level. These two models work 
iteratively where the microscopic model is used for conflict detection, infrastructure 
occupation and stability given the (completed) macroscopic timetable, while the 
macroscopic model optimizes travel times and robustness given the constraints set by the 
microscopic model. Infrastructure occupation is based on the UIC timetable compression 
method (UIC 2013) which also provides norms for acceptable stability. The macroscopic 
model is an ILP model and includes a simulation model to find the most robust timetable 
out of several hundred feasible solutions. The overall cost function contains several terms 
including a robustness cost derived from the simulations. These micro-macro iterations 
converge to a timetable that is conflict-free, stable and robust (Besinovic et al. 2015).  

The third level optimizes the speed profiles of all trains on each corridor between main 
stations while maintaining the scheduled event times at the corridor ends. In this 
optimization, the stochastic dwell times at the intermediate stops are taken into account 
and the arrival and departure times at these stops are optimized with respect to expected 
delays and energy savings. The input to this level is again provided by the microscopic 
model that computes both the aggregated data for the corridor and the bandwidths that can 
be used by the local trains for optimizing their speed profile. The final result is exported in 
RailML format extended with the scheduled speed profile information that can be used by 
the trains for running punctual and energy-efficiently (ON-TIME 2014a).  

Algorithm 1 shows a complete list of the successive steps of the performance-based 
timetabling. Each of these steps is performed by a separate exchangeable module and as 
such the approach is general. In the remainder of the paper we will focus on the 
implementations carried out within the ON-TIME project from a functional point of view.    

Algorithm 1 PerformanceBasedTimetabling 
Input: railML infrastructure, rolling stock, interlocking, timetable 
Output: Traffic plan at track section level in Timetable railML 
Build microscopic network topology 
Compute time-optimal speed profile and minimum running times 
Build macroscopic network topology 
Compute nominal running times by adding minimum running time supplements 
Compute operational speed profiles based on nominal running times 
Compute blocking times 
Conflicts ← 1; Stable ← 0 
repeat until Stable  
   while Conflicts do  
      Compute minimum local headways 
      Compute macroscopic network by aggregating running times and local headways 
      Compute macroscopic timetable using network timetable optimization 
      Recompute operational speed profiles based on the macroscopic timetable 
      Compute microscopic running and blocking times 
      Conflict detection 
   end while 
   Compute capacity consumption 
   if an unstable corridor exists  
      then for each unstable corridor do  
            Relax nominal and maximum running times 
            Conflicts ← 1 
      else Stable  ← 1 
   end if  
end repeat 
Compute energy-efficient speed profiles 
Compute bandwidths for local trains 
Corridor timetable optimization of local trains 
Return Timetable railML 
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3.2 Microscopic timetabling 
The microscopic module considers multiple functions for computing and providing 
necessary input to other modules as well as evaluating a timetable at the microscopic 
level. These functions incorporate three KPIs: infrastructure occupation, stability and 
feasibility. As already mentioned in Section 3.1, the module first computes the speed 
profiles and running times. Afterwards, the blocking times are determined which are the 
necessary input for conflict detection and infrastructure occupation, as well as for deriving 
the minimum local headway times for the macroscopic module.  

The microscopic network used within the microscopic timetabling allows high detailed 
computations with accurate output. Arcs represent homogeneous behavioural sections 
defined by a constant characteristic of speed limit, gradient and radius, while the nodes 
present various infrastructure elements like signals, switches, stopping points or section 
borders. Additionally, procedures were developed for network and data transformations 
from the microscopic to macroscopic level, and vice versa. Details of the building blocks 
of the microscopic module are given in Besinovic et al. (2015a, 2015b). 

In the remainder of this section we consider successively the main microscopic 
functionalities: speed and running time calculations, conflict detection, and infrastructure 
occupation and stability.  

3.2.1 Speed and running time calculations 
At the basis of a good timetable are well-defined running times. In particular, the 
scheduled running time consists of a minimum running time and an additional running 
time supplement. A good understanding of these two components is essential for the 
design of conflict-free, robust and energy-efficient timetables.  

The minimum running time is the time required for driving a train from one point to 
another assuming conflict-free driving as fast as possible. Additionally, the corresponding 
speed profile represents a detailed train trajectory. The computation algorithms for speed 
profiles and running times have to be as detailed as possible in order to provide the high 
accuracy requirements. Running times are computed from microscopic train dynamics 
that require detailed rolling stock and infrastructure data, including route-specific static 
speed and height profiles. The corresponding Newton’s motion equations are solved by 
numerical ordinary differential equation solvers (Hansen and Pachl 2014).  

In regular day operations, trains are affected by stochastic variations of running and 
dwell times due to e.g. varying train compositions, driver behaviour, passenger volumes 
and weather conditions. Therefore, allowance times are added to the minimum process 
times so that they are robust to normal variations of the process times. These allowances 
must satisfy certain timetable design norms, consisting of a mix of relative and absolute 
values for the nominal process times (minimum process time plus minimum allowance). 
Running time supplements are given in percentage of minimum running time, in some 
countries depending on train category, while nominal dwell times are specified depending 
on rolling stock type and station, and nominal transfer times are provided depending on 
station and platform distances. The resulting nominal process times are input to the 
macroscopic timetable optimization as lower bounds to the scheduled process times. In 
the optimization the nominal times can be increased further depending on the network 
constraints and objective functions, resulting in the scheduled running times. The 
objective function of the macroscopic optimization must prevent excessive journey times 
by stretches of all running and dwell times. In addition an overall upper bound can be 
provided to the roundtrip time of trains. 

Hence, in the first iteration, the minimum running times are enriched with the 
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minimum time supplements and as such represent the nominal running times that are used 
in the macroscopic model. Additional to the running time, the operational speed profile 
defines the associated train trajectory. The operational speed profile can be obtained by 
exploiting the available time supplements in two ways: a) cruising at speeds below the 
speed limits, or b) computing energy-efficient speed profiles with optimal cruising speeds 
and coasting. During the timetable construction with several micro-macro iterations the 
reduced speeds are applied as these are much faster to compute than the optimal speed 
profiles. In the fine-tuning these speed profiles are replaced by the energy-efficient ones. 

In current practice mostly macroscopic timetabling models are used that, in a nutshell, 
try to assign time allowances in order to satisfy a given objective function. In this way, the 
running time supplements are allocated without actually testing that the resulting 
distribution of time supplements result in acceptable train trajectories. A big variation 
between two (or more) successive allocated time supplements may be problematic to 
reproduce a valid speed profile. Even if a speed profile is possible satisfying the given 
time supplements, the constructed running behaviour may be unacceptable from a 
practical point of view when very low cruising speeds result. For example, the German 
practice requires that cruising speeds may not be under 40 km/h. This may be violated in 
the case of a relative large running time supplement over a short section. Furthermore, it is 
undesirable to continuously change driver behaviour such as alternating between 
accelerating and decelerating with different cruising speeds. Hence, even a 
macroscopically feasible timetable cannot always be reconstructed at the microscopic 
level and consequently implemented in practice. Therefore, the operational speed profiles 
must be computed to test feasibility of the distribution of the time allowances.  

We implemented these guidelines in the computation of operational speed profiles. 
The scheduled running times and corresponding operational speed profiles are computed 
after each macroscopic timetable computation, resulting in feasible train trajectories, 
which are also essential for an accurate calculation of blocking times.  

The successive blocking times per train over a corridor represent a so-called blocking 
time stairway. Blocking times are computed using blocking time theory (Hansen and 
Pachl 2014). The blocking time of a single block section depends on the block length, the 
train speed, and the signalling system. It consists of a setup time, sight and reaction time, 
the approach time to the block section over at least the braking distance, the running time 
in the block, the clearing time in which the train clears the block over its entire length, and 

Figure 2 Blocking time of a running train 
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the release time of the route, see Figure 2. The blocking times are the essential input to the 
main microscopic algorithms such as conflict detection, capacity assessment and 
minimum headway computation. Recall that the blocking times are based on the nominal 
running times in the initial micro-macro iteration, and on the scheduled running times in 
all following iterations. 

3.2.2 Conflict detection and realizability 
Timetable feasibility is a key performance measure. It is important to have a feasible 
timetable in order to provide uninterrupted train runs, i.e., without unnecessary braking 
and re-acceleration. This timetable KPI is beneficial from several perspectives: 1) it 
improves safety by preventing unnecessary red signal approaches; 2) it gives less 
workload to drivers; 3) it provides a more comfortable ride to passengers; and 4) it saves 
energy. Therefore, each time a macroscopic timetable has been computed, the microscopic 
module automatically checks the timetable on microscopic feasibility.  

The feasibility of the timetable is tested twofold: a) a realizability check of scheduled 
event times; and b) conflict detection. The former is simply tested by checking whether 
the scheduled running and dwell times exceed the minimum values. Note that the 
macroscopic timetabling model always provides realizable aggregated scheduled process 
times, so this realizability check is mainly focused on the event times at the smaller 
stations and other microscopic timetable points after transforming the macroscopic 
timetable onto the microscopic network. Unrealizable process times are mainly caused by 
rounding down, which becomes problematic specifically when scheduled event times 
must be given in minutes. In our approach, the macroscopic model computes timetables 
with a precision of 5 s, while we allow a precision of 1 s in the microscopic model so that 
rounding is not an issue anymore.  

The conflict detection model determines if the scheduled trains can run undisrupted. 
For this blocking times are used on the basis of the operational speed profiles. Conflicts 
are indicated by an overlap of the blocking times of two successive trains. The second 
train then approaches the block section that is still blocked by the preceding train and 
therefore must brake in response to the signalling logic. These track conflicts are solved 
by shifting trains in time until their blocking times do not overlap anymore. This shift 
naturally initiates the change in the minimum headway between the trains. So, after all 
track conflicts have been detected, the corresponding minimum headways are recomputed. 
These new headways are given back to the macroscopic timetabling model to iteratively 
adjust the macroscopic timetable until all track conflicts are resolved. 

3.2.3 Capacity consumption and stability 
Capacity consumption is defined as the time share needed to operate trains according to a 
given timetable pattern taking into account scheduled running and dwell times. As such, it 
directly determines the stability of the timetable. The same as for conflict detection, we 
use the computed blocking times to evaluate the capacity consumption.  

A timetable is called stable if any train delay can be absorbed by the time allowances 
in the timetable without active dispatching. Therefore, the larger the time supplements and 
buffer times the better is the ability of the timetable to prevent propagation of delays, i.e., 
the timetable is more stable. If the total amount of buffer time in a corridor is higher than 
the amount recommended by the UIC code 406, the timetable is considered sufficiently 
stable. Otherwise it is defined unstable and the macroscopic timetable has to be 
recomputed to reduce the infrastructure occupation on the critical corridors or stations and 
thereby releasing buffer times. 
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The recommended UIC stability norms are given in Table 1. The values presented here 
are for a given corridor for the peak period or the whole day. Norms for station areas still 
require more research as elaborated in UIC (2013). 

Table 1 Recommended UIC infrastructure occupation for corridors 
Type of line Peak period Daily period 
Dedicated suburban passenger traffic 85% 70% 
Dedicated high-speed  75% 60% 
Mixed traffic  75% 60% 

The capacity assessment model developed is based on max-plus automata (Gaubert 
and Mairesse 1999) and explained in Besinovic et al. (2015b). The model is applicable to 
both corridors and stations. For now, we assume the given UIC norms from Table 1 for 
both corridors and stations. If the computed infrastructure occupation is not satisfactory 
for a corridor then we relax the running time supplements of the trains in the corridor to 
allow more homogenised traffic through the considered corridor by reducing running time 
differences. This relaxation is explained in Besinovic et al. (2015a). The relaxed 
constraints are provided to a new iteration of the macroscopic timetable optimization. 

 
3.3 Macroscopic timetabling 
The macroscopic timetabling considers the railway network at an abstract level, 
neglecting many details of the real-world network. In particular, only timetable points like 
stations and junctions, where trains overtake, merge, cross or connect, as well as the lines 
connecting them are represented at the macroscopic level. The motivation of applying this 
network reduction is that it is computationally faster to work with a simplified network, 
and therefore several potential timetables can be evaluated according to the different key 
performance indicators, including robustness. Clearly, once the ‘best’ macroscopic 
timetable has been determined, its feasibility at a microscopic level is checked, as 
described in Section 3.1. 

As explained in Section 2, the quality of a timetable is evaluated according to several 
performance measures. In the macroscopic model we incorporate several objectives, in 
order to consider these performance measures in the computation of the macroscopic 
timetable. They are based on the nominal running times, dwell times and connection times 
computed in the microscopic model, as described in Section 3.2. The macroscopic 
timetabling is used to determine the best feasible schedule of trains in the macroscopic 
network by considering a trade-off between timetable efficiency (i.e. journey times, 
connection times, number of scheduled trains) and robustness. 

In the following, we describe the objectives and constraints that are included in the 
macroscopic ILP model, and present a delay propagation model that is used to achieve 
timetable robustness. We refer the reader to Besinovic et al. (2015a) for further details on 
these models. 

3.3.1 Macroscopic timetable optimization 
The macroscopic timetable optimization is based on the definition of a time expanded 
graph, built upon the macroscopic network described above: in the time expanded graph, 
every node corresponds to an arrival or departure of a train at or from one of the stations 
of the macroscopic network at a certain time of the planning horizon.  

For a given train and its route (i.e. the sequence of macroscopic stations that the train 
serves or passes) its macroscopic feasible timetable corresponds to a feasible time-
distance path in this time expanded graph that visits all the stations on the route while 
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respecting the given maximum journey time from its origin station to its destination 
station. This correspondence is the key element of the macroscopic ILP optimization 
model. More specifically, the ILP model contains a binary variable for each feasible time-
distance path of any train, which specifies whether the path is selected as the timetable of 
the train in the solution or not. It is useful to define the variables of the model in this way, 
since all the constraints that are related to the feasibility of a timetable of a single train can 
be directly expressed through the definition of its feasible time-distance paths. However, 
the drawback of this model is that it contains an exponential number of variables. We can 
cope with this drawback by solving the ILP model in a heuristic way using a randomized 
multi-start greedy heuristic (Besinovic et al. 2015a).  

We associate a cost to each time-distance path, which represents the quality of the 
corresponding timetable for the train, without taking into account the interaction with 
other trains. In particular, the cost takes into account the running and dwell times 
exceeding the nominal ones. The minimization of path costs is one of the objectives of the 
ILP model, which is clearly related to the performance measure of scheduled travel time 
described in Section 2, as it corresponds to the minimization of the journey times of the 
trains. The journey times in the final solution may however be larger than the feasible 
minimal ones, since the optimization must find a balance between minimizing running 
and dwell times, and the other objectives, described in the following. Train paths are 
scheduled by taking into account a trade-off between minimal and robust journey times. 

Connection times cannot be included directly in the path cost: indeed, they refer to 
pairs of trains and not to single trains. However, timetable connectivity, i.e., the 
connection between pairs of trains for passenger transfers or rolling stock connections, is 
also taken into account as one of the objectives of the macroscopic model. In particular, 
we minimize the number of missed connections, as well as the time exceeding the nominal 
connection time. To this aim, the macroscopic model receives as input the set of train 
connections that should be included in the timetable, which are given as triplets (train1, 
train2, station) and the nominal connection time, i.e., the ideal time between the departure 
of train2 and the arrival of train1 at the station. We consider that a connection is missed 
when at least one of the two connecting trains is cancelled. Recall that we are in the 
planning stage of timetabling. In this stage a train cancellation corresponds to not 
fulfilling a request for a train service. If both trains are scheduled we compute the 
difference between the actual connection time and the nominal one. Both missed 
connections and exceeding connection times are minimized in the objective function of 
the ILP model. Note that similarly to what happens for journey times tight connection 
times may lead easily to delay propagation. Hence, tight connection times may be 
penalized leading to a trade-off between small and robust connection times. 

Another main goal of our ILP model is to maximize the transport volume, i.e., the 
passenger or cargo-tonne delivered (ON-TIME 2014a): this is achieved in our model as 
the minimization of cancelled train path requests.  

We consider an additional main objective: timetable robustness. This objective is not 
directly included in the ILP model or in the randomized multi-start greedy heuristic, but it 
is dealt with by a delay propagation model that will be described in the next subsection. 

All the described objectives are included in the ILP model by using a weighted multi-
objective function, in which different penalties are associated with the different 
objectives. Depending on the penalty values, one objective can have priority over another 
one, or the goal can be to find a trade-off between the different objectives. In summary, 
the multi-objective function contains the following terms, each one weighted by a penalty 
that is a parameter of the optimization model: 
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 Minimization of path costs, i.e., minimization of journey times 
 Minimization of missed connections 
 Minimization of time exceeding the nominal connection times, and 
 Minimization of cancelled trains, i.e., maximization of the transport volume. 

In order to take into account the described objectives, next to the path variables also 
auxiliary variables are included in the ILP model used respectively for computing the 
number of missed connections, the excess times over the nominal connection times and 
the overall number of cancelled trains (Besinovic et al. 2015a).  

Timetable feasibility at a macroscopic level is achieved by means of the constraints 
included in the ILP model. In particular, feasibility is ensured by imposing that the 
timetable is conflict-free, i.e., it respects nominal running times, nominal dwell times, 
minimum headway times, and capacity constraints. 

The nominal running and dwell times are respected by defining, for each train, feasible 
time-distance paths in the graph. In order to respect headway times and capacity 
constraints, we impose that at most one path, among a set of conflicting paths, can be part 
of the solution. Auxiliary constraints are imposed in the ILP model, in order to ensure the 
correct definition of the auxiliary variables for computing the objectives.   

The proposed model can deal both with cyclic and non-cyclic timetabling. In the 
former, we are given routes for train lines rather than individual trains, as all trains 
belonging to the same line must visit the same sequence of stations. Similarly, we are 
given the journey time of each line and in addition the periodicity of the trains of the line. 
In order to satisfy the periodicity constraint, we impose that either all trains of the line are 
scheduled or all of them are cancelled. Clearly, the penalty for train cancellation is very 
high and therefore it is very unlikely that a complete train line will be cancelled. Different 
planning time horizons are to be considered for cyclic or non-cyclic timetabling. In our 
case study we focus on the cyclic case (see Section 4). 

The ILP model is solved in a heuristic way by using a randomized multi-start greedy 
heuristic. This is an iterative algorithm starting each iteration from a different order of the 
trains. Each iteration, the trains are scheduled one at a time according to the given order. 
More precisely, scheduling a train corresponds to selecting one of the feasible time-
distance paths of the graph for the train, i.e., fixing one of the corresponding variables in 
the ILP model. The choice of the best variable to be fixed is done by executing a dynamic 
programming procedure which takes into account all the trains already scheduled in the 
current iteration and therefore computes a conflict-free timetable for the current train. In 
addition, all the described objectives are taken into account in the dynamic programming 
procedure by assigning penalties to the unpromising nodes of the graph of the train, so 
that the best path will visit the nodes with the smallest possible penalties. In the case of 
periodic timetabling, at each iteration of the algorithm we select a feasible time-distance 
path for the entire line, i.e., we select simultaneously one path for each train of the line, 
therefore ensuring that the periodicity constraint is respected.  

Clearly, different orders of trains can lead to different timetables as each train is 
scheduled by the dynamic programming procedure in the best possible way, while 
avoiding conflicts with the trains previously scheduled in the given order. 

Once the algorithm has been executed for a given number of iterations, several 
macroscopic feasible timetables are available among which we would like to choose the 
best one. One possibility is to select the timetable with minimum cost with respect to the 
objectives considered in the multi-objective function. In this case, we would select a 
timetable with minimum journey times for the trains, minimum connection times between 
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connecting trains and maximum number of trains in the network. This could be a very 
good choice with respect to the efficiency of the railway system, but, at the operational 
stage trains close to each other could lead to large delay propagation as well as missed 
connections. A trade-off between the timetable efficiency and its robustness must be 
achieved to avoiding bad performance at the operational stage. As explained in Section 
3.2, robustness is incorporated at a microscopic level by inserting time allowances. In the 
next paragraph, we explain how we consider robustness also at a macroscopic level. 

3.3.2 Robustness evaluation 
As previously mentioned, timetable robustness is not directly inserted in the ILP model, 
but computed in a post-optimization phase using a delay propagation model. This model is 
used to take into account the stochasticity of the events that can occur at the operational 
stage, such as train delays. The goal of this model is to evaluate the robustness quality of 
each feasible timetable determined by the randomized multi-start greedy heuristic and to 
select as best timetable the one having the smallest robust cost, given by the cost of the 
timetable according to the multi-objective function plus the cost of the timetable 
according to the delay propagation model. The latter works as follows.  

A set of delay scenarios (1000 in our computational experiments) is randomly 
generated using a standard normal distribution. For each delay scenario the effect on each 
timetable is evaluated by applying a heuristic algorithm that tries to resolve the potential 
conflicts caused by the generated delays by retiming the trains (see Besinovic et al. 2015a 
for further details). The algorithm computes the overall delay propagation or establishes 
that some conflicts cannot be resolved. Accordingly, a cost is assigned to each timetable 
which takes into account the effect of all the delay scenarios on the timetable. This cost 
corresponds to the cost of the timetable according to the delay propagation model and is 
defined as the average settling time over all delay scenarios, where the settling time is the 
time required until all delays have been absorbed by the time allowances in the timetable.  

The best timetable in terms of multi-objective value and robustness is then selected as 
the best macroscopic timetable and this is the outcome of the macroscopic timetabling. 

 
3.4 Corridor fine-tuning 
Energy efficiency becomes more and more important within the railway system. Currently 
several approaches exist for energy-efficient driving and energy-optimal conflict 
resolution within real-time traffic management and optimization (Hansen and Pachl 
2014). However, the timetable is the static basis for real-time operation. On the one hand, 
the static timetable has to enable real-time operational control measures, which means that 
allowance times are available and provide flexibility for traffic management. On the other 
hand, when real-time optimization methods are applied such as energy-efficient driving, 
the possible real-time trajectories have to be considered already within the timetabling 
process in order to avoid conflicts due to the real driving behaviour. Therefore, within the 
ON-TIME timetabling approach energy-efficient speed profiles are already considered in 
the timetabling process. 

3.4.1 Energy-efficient speed profiles 
The energy-efficient speed profiles are computed with respect to the microscopic 
infrastructure and rolling stock characteristics for the given scheduled running times 
(including running time supplements) that were the result of the micro-macro timetabling 
iterations. The optimal driving trajectories are determined according to the theory of 
energy-efficient driving (Howlett and Pudney 1995). This trajectory is typically 
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characterised by different regimes and the switching points between the regimes: 
acceleration with maximum acceleration power, cruising at maximum speed, coasting, 
and braking with maximum (service) braking effort. Figure 3 shows a simplified 
illustration of the application of different driving regimes between two stops on a simple 
section with constant gradient and speed limit (Albrecht 2014). 

 
Figure 3 Energy-optimal driving regimes (Albrecht 2014) 

The trajectories are used to re-define the blocking times and check conflicts within the 
static timetable. In addition, the information on the switching points and regimes can be 
used to guide optimal energy-efficient driving in case of punctual train operation even if 
no dynamic driver advisory systems are used. If driver advisory systems are used they 
essentially give dynamic speed advice with respect to delays and follow the scheduled 
energy-efficient speed profile otherwise. 

3.4.2 Corridor optimization 
The last step in the timetabling process is the corridor fine-tuning for regional trains 
between the macroscopic timetable points. Note that the event times at these macroscopic 
timetable points were optimized in the macroscopic timetable optimization. For intercity 
trains all served stations are important points and the energy-efficient speed profiles are 
already determined in the previous step. For local trains however the arrival and departure 
times at intermediate stops on the corridors were not yet optimized and they offer 
flexibility for optimization within given time windows, see Figure 4. 

The bandwidths are determined from the blocking times of the trains preceding and 
following the local train that has to be optimized. Hence, the trajectories of the 
neighbouring trains are important in order to maintain a conflict-free timetable. The total 
amount of running time supplement over the corridor and the bandwidth between the 
macroscopic timetable points are provided by the macroscopic and microscopic timetable 
levels, respectively. Given these parameters, the published arrival and departure times at 
the intermediate stops for the local trains can still be optimized. In this optimization the 
stochastic dwell times are the most influencing factors.  
On the one hand, the published times are important for passenger arrivals and delay 
calculations in case of long dwell times. On the other hand, these published times are 
restrictive because early departures are not allowed in case of small dwell times. During 
timetabling the dwell time allowances could be exchanged with running time allowances 
where they could be applied for e.g. energy-efficient driving in case of short dwell times. 

065-13

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015



 
Figure 4 Flexibility of the corridor optimization 

Figure 5 explains the dependency between the dwell time distribution, the departure of 
the train and the corresponding energy consumption. The figure at the top shows that a 
short planned dwell time leads to a possible punctual departure of the train and less energy 
consumption because the allowance time could be used for additional running time. If the 
dwell time is a slightly higher this leads to a little delayed departure and higher energy 
consumption on the following section. In contrast to this the bottom figure shows the 
pessimistic published departure time (for a higher predicted dwell time). In this case, the 
probability for a delayed departure is less, but the probability of waiting for the departure 
time is higher. Therefore, the minimal achievable energy consumption is higher than when 
publishing an earlier departure time. This means that dwell times should not be considered 
as deterministic in the timetabling process but as dwell time distributions within the 
process of finding the published departure times. The dwell time distributions must 
correspond to the realized dwell times and must be obtained using operational data. This 
enlarges the robustness of the timetables for the local trains. 

The target of the corridor optimization is consequently to determine the published 
arrival and departure times at intermediate stops within the given bandwidths under 
consideration of the stochastic dwell times and enabling energy efficient driving in case of 
short dwell times. The mathematical approach is another two-stage optimization process 
in order to find the optimal timetable on a corridor where the objective function is a 
weighted sum of energy consumption and expected delays at the intermediate and final 
station (Binder and Albrecht 2013).  

Finally, the energy-efficient speed profiles provide additional information to train 
drivers. Particularly, the detailed train trajectory computed by the microscopic and fine-
tuning module could be adopted as static driver information as well as input to traffic 
management systems that need a trajectory at track section or signal level. 
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Figure 5 Dependency of published departure time and energy consumption 

4 Case study 

The performance-based timetabling approach has been applied on a case study of a central 
part of the railway network in the Netherland (ON-TIME 2014b), consisting of the 
railway network bounded by the four main stations Utrecht (Ut), Eindhoven (Ehv), 
Tilburg (Tb) and Nijmegen (Nm), with a fifth main station ‘s-Hertogenbosch (Ht) in the 
middle and 20 additional smaller stations and stops. Four corridors connect Ht to the other 
main stations. The train line plan in this part of the network is taken from the 2011 
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timetable and consists of four intercity lines and six local train lines with a frequency of 
two trains per hour each, see Figure 6. The intercity lines 800 and 3500 offer a regular 15 
min service between Ut and Ehv but have different origin/destinations outside this area. 
The regional line 13600 from Tb to Ht continues as the line 16000 from Ht to Ut, and vice 
versa. The line 9600 from Ehv couples in Ht to the line 4400 to Nm, and vice versa. In 
addition, an hourly freight path with maximum speed of 120 km/h is scheduled from Ut-
Ehv. So overall, 41 trains are running per hour in this network. As an illustration of our 
results we focus on the corridor Utrecht-Eindhoven in this paper. 

 
Figure 6 Passenger line plan of the Dutch case study 

Figure 7 shows a time-distance diagram of the computed hourly timetable for the 
corridor Ut-Ehv. The vertical axis shows time in minutes downwards. The horizontal axis 
shows distance with the station positions indicated. The blue lines are IC trains, the 
magenta lines are local trains, and the green line is the freight train. Note that the sections 
Btl-Ehv and Htn-Htnc have four tracks. Figure 8 shows the corresponding blocking time 
diagram for the route of intercity train line 3500. Note that only the blocking times are 
shown for all trains running on the same tracks as train line 3500. The gaps in the 
blocking time stairways for some trains correspond to running on parallel tracks in 
stations or the four-track lines between Htn-Htnc and Btl-Ehv. Around Ht also some 
blocking times are visible corresponding to crossing trains from/to Tilburg or Nijmegen. 

The optimized timetable shows periodic passenger trains with regular 15 min services 
of both IC and local trains where two similar train lines follow the same route. Hence, 
effectively 15 min train services are realized instead of two separate 30 min train lines. 
The ICs overtake the local trains at Geldermalsen (Gdm) in the southbound direction, but 
not in the return direction. The fast freight train departs after the local train from Utrecht 
Centraal (Ut) and overtakes this local train at the four-track line around Houten (Htn). 
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Figure 7 Time-distance diagram corridor Utrecht – Eindhoven 

 
Figure 8 Blocking time diagram corridor Utrecht – Eindhoven 

The blocking time diagram of Figure 8 shows no overlapping blocking times and 
hence illustrates that the timetable is conflict-free. Moreover, the timetable is robust 
illustrated by the buffer times (white space) between the train paths. Only between Houten 
Castellum (the station just after Htn) and Culemborg (Cl) the freight path and the next 
local train are tight so that a slight delay of the freight train might propagate to the local 
train but the buffer time between this local train and the next IC prevents further knock-on 
delays. In Gdm, the local train also has a longer dwell time that can be used to recover 
from an arrival delay. In the absence of the freight train the situation is robust, which is 
the usual case currently with on average one freight path per two hours on this corridor. 

Table 2 gives the infrastructure occupation of the main corridors and stations, 
respectively. All the infrastructure occupation percentages are below the recommended 
stability value of 60% defined by the UIC for mixed traffic corridors in daily periods, 
which was one of the constraints of the timetabling algorithms. Corridor Ut-Ht is the 
heaviest used one with infrastructure occupation 57.8%. Ht has the highest infrastructure 
occupation of 58.3%, which includes also the crossing routes from/to Tilburg and 
Nijmegen. The relative low infrastructure occupation of corridors Ht-Ehv and back is due 
to the four tracks between Btl and Ehv. 
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Table 2 Infrastructure occupation 
Corridors  Stations 

Corridor Time [min] Ratio [%]  Station Time [min] Ratio [%] 
Ut-Ht 34.7 57.8  Btl 15.7 26.2 

Ht-Ut 32.1 53.4  Ehv 15.7 26.1 
Ehv-Ht 22.0 36.7  Gdm 15.7 29.5 
Ht-Ehv 24.2 40.3  Ht 35.0 58.3 
    Htn 15.0 25.0 
    Ut 20.9 34.8 
    Vga 17.2 28.7 

Table 3 Journey times 
O-D Minimum journey time 

[min] 
Scheduled journey time 

[min] 
Journey time increase 

[%] 
Ut-Ehv 44.9 48.2 7.3 
Ehv-Ut 47.6 51.3 7.8 

Table 4 Energy consumption all trains 
Speed profile Energy consumption 

[kWh] 
Energy saving  

[%] 
Minimal-Time 64 395 - 
Reduced cruising speed 58 800 8.7 
Energy-optimal 41 667 35.3 

Table 3 gives the average journey times over all trains running over the complete 
corridor from Ut to Ehv or backwards in a basic hour, i.e., eight IC trains and one non-
stop freight train of 120 km/h speed limit. The minimum journey time refers to the 
minimum running and dwell times while the scheduled journey time includes the time 
supplements. On average, the time allowances over the complete corridor are 7.3% and 
7.7% for the southbound and northbound directions, respectively, which can be exploited 
for energy-efficient driving. 

 
Figure 9 Speed profiles: static speed limit (solid grey), time-optimal (dashed red), reduced 

cruising speed (dotted blue), and energy-optimal (solid green) 

Figure 9 illustrates the various speed profiles for the intercity line 3500 Ut-Ehv with 
intermediate stop in Ht. The bottom of the figure indicates the gradients (solid black line) 
and the signals (grey circles) over the line. The dashed red line is the time-optimal speed 
profile corresponding to the minimum running times, while the dotted blue line is the 
operational speed profile with the running time supplements distributed over the line using 
reduced cruising speeds. The solid green line is the energy-optimal speed profile with 
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clear coasting regimes before the areas with speed restrictions. Table 4 gives the total 
energy consumption of all trains running in the network of the case study, so 21 trains 
with all passenger trains counted once (corresponding to a basic half hour timetable 
including the freight train). With respect to the minimum running times the running time 
supplement saves 8.7% energy consumption when cruising at a reduced speed and even 
35.3% using the energy-optimal speed profile with coasting. As was illustrated in Figure 9 
for the IC 3500, the time supplements of the trains are distributed well over the corridor so 
that coasting could be applied very effectively. 

5 Conclusions 

This paper presented a performance-based timetabling approach and illustrated it to a case 
study from the Netherlands showing good results on all performance indicators. In 
particular, the approach highlighted eight recommendations that need to be considered 
explicitly in the design of a stable robust conflict-free timetable with optimal journey 
times: 

 Microscopic calculations of running and blocking times taking into account all 
running route details at section level (gradients, speed restrictions, signalling) 

 Microscopic conflict detection guaranteeing a conflict-free timetable 
 Timetable precision below 15 s to minimize capacity waste  
 Incorporation of (UIC) infrastructure occupation and stability norms 
 Macroscopic network optimization with respect to journey times, transfer times, 

cancelled train path requests and associated cancelled connections 
 Macroscopic robustness analysis using stochastic simulation to obtain the most 

robust network timetable 
 Stochastic optimization of timetables for local trains on corridors taking into 

account stochastic dwell times at intermediate stops  
 Energy-efficient speed profiles computed and incorporated for all trains. 

Moreover, standardized exchange files such as railML for infrastructure, rolling stock, 
and the timetable is recommended, where the presented timetabling approach generates an 
output Timetable railML with scheduled train paths at (track-free detection) section level, 
extended with scheduled energy-efficient speed profiles. 
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